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Abstract
We develop a new family of marked point processes by focusing the characteristic properties of marked 
Hawkes processes exclusively on the space of marks, allowing a separate model specification for the 
occurrence times. We develop a Bayesian framework for their inference and prediction that can naturally 
accommodate covariate information to drive cross-excitations, offering broad flexibility for real-world 
applications. The framework is applied to in-game event sequences from association football, resulting in 
inferences about previously unquantified characteristics of game dynamics, extraction of event-specific 
team abilities and predictions for event occurrences, such as goals or fouls in a specified interval of time.
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1 Introduction
Football is one of the most popular team sports and is an example of an invasive sport, where two 
opposing teams compete for the possession of the ball with the dual objective of attacking to score 
a goal and defending against attacks from the opposition. Most analyses in football is typically 
done manually by studying video footage or using simple frequency analysis of match events. 
Hence, there is huge scope to improve the efficiency of the data-analytic methods as well as the 
quality of performance evaluation. However, the analysis of football data is mathematically 
and statistically challenging due to the continuous interaction between players within and across 
the two teams. As an introduction, we describe the event data from football and survey the existing 
work in this area before arguing how marked point processes are well suited to developing a mod
elling foundation to achieve our goal of describing the game dynamics.

1.1 Football event data
Over the last decade, the availability of spatio-temporal data from team sports has inspired re
search into the application of statistical methods for team and player performance evaluation. 
A comprehensive survey of the recent research efforts into the spatio-temporal analysis of team 
sports is provided in Gudmundsson and Horton (2017). There are two primary types of spatio- 
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temporal data collected from team sports. Movement data consists of samples of time-stamped 
locations in the plane tracking the movement of all players and the ball during the game. Player 
movement is captured using fixed cameras in optical tracking systems that process the images 
to obtain the trajectories. Event data streams, on the other hand, record the sequence of events 
that occur during the game and are collected manually by trained analysts who watch video feeds 
of the games through special annotation software. As our work is motivated by the availability of 
event data from football, we focus on reviewing research that uses event data streams. Event data 
is less dense than movement data but richer in the sense that they contain more information about 
what is happening in the game. Events broadly fall into two categories: player events such as passes 
and shots; and stoppage events such as fouls, end of the game, etc. Every event is annotated with a 
time-stamp, its location, its type (pass, foul, etc.), the players involved, and team information.

A popular research topic based on event data is the network analysis of player interaction. Models 
for player interaction can quantify a team’s playing style as well as the importance of an individual 
player within the team. Players are identified as nodes of a network and are connected using directed 
edges whose weights are proportional to the number of successful passes between the two players. 
Passing networks were first applied to team sports in Passos et al. (2011) to study a team’s collective 
behaviour in water polo. Grund (2012) studied the degree centrality of passing networks in football, 
which quantifies the importance of nodes in the network based on the number of edges. They showed 
that teams that rely heavily on key players performed relatively worse. Duch et al. (2010) used flow 
centrality to assess player performance by capturing the fraction of times that a player intervenes in 
those paths that result in a shot on goal. They also take into account defensive behaviour by letting 
each player start a number of paths proportional to the number of balls they recover. Clemente et al. 
(2015) studied the density and heterogeneity of passing networks and showed that high heterogen
eity leads to the formation of sub-communities, meaning there is a low level of cooperation between 
the players of a team. Pena and Touchette (2012) looked at other centrality measures such as close
ness and eigenvector centrality as well as clustering in football passing networks.

Another use of event data is in the identification of frequently occurring sequences of passes be
tween a small group of players within the same team. In Borrie et al. (2002), passes are identified 
by the zones in the pitch they start and end in and frequently occurring sequences are detected by 
also taking into account the time intervals between passes. Wang et al. (2015) proposed an unsuper
vised approach to automatically detect tactical patterns in football. They present the Team Tactic 
Topic model based on Latent Dirichlet Allocation to identify tactics from pass sequences. 
Interesting visualisations are provided for the most successful tactics as well as how a team’s tactical 
patterns evolve over a season. Van Haaren et al. (2016) also look at the automatic discovery of pat
terns in attacking strategy. They use a data-driven approach to determine a number of spatial features 
about the areas occupied during a continuous possession phase of a team. The features are then used 
to cluster similar phases together to identify frequently occurring event sequences within the cluster. 
Decroos et al. (2017) partition the game using overlapping intervals to create subsequences of events 
to use as a feature to predict a goal event in the near future. They compute the similarity between sub
sequences using Dynamic Time Warping, a distance measure for time-dependent sequences.

Extracting game states from event sequences to quantify the value of player actions or to make pre
dictions of the game outcome is another interesting area of research. Routley and Schulte (2015) used 
Markov decision processes for valuing player actions in Ice Hockey. Game states are derived from 
contextual features like game score and time remaining along with the recent history of events. 
The associated reward for an action in the Markov decision process gives the value of the player ac
tion. A similar approach based on game states is taken in Decroos et al. (2018) to value player actions 
in football. They train a classification model to calculate the probability a game state will lead to a 
goal in the near future, where each game state is described using over 150 features. The value of a 
player’s action is then calculated by the shift in the predicted goal probability before and after the ac
tion. Other approaches for predicting goal probabilities based on a current game state are by Mackay 
(2017) and Robberechts et al. (2019). Approaches based on game states involve significant effort into 
feature engineering, and with the use of learning algorithms like gradient boosting that limit param
eter interpretations, the methods provide, typically, little insight into the dynamics of the game.

The major focus of existing methods in team sport analysis appears to be tailored towards in
dividual player performance evaluation or identifying specific patterns in team play. Most ap
proaches take the route of summarising the event data into compact representations like 
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networks and game states. In this paper, we take a more holistic approach to studying football as a 
dynamic system and model the entire sequence of events within a game. Such a model, which cap
tures all event interactions, is attractive for predicting the occurrence of the rare goal-scored events 
that determine the outcome of the game.

1.2 Point processes
Phenomena that are observed as a sequence of events happening over time can be represented using 
point processes. While point processes can describe a random collection of points in any general 
space, we limit ourselves to the case in which the points denote events that occur along a time axis. 
Such point processes, having a natural order in which the points occur, are suitable for a wide 
range of real-world applications and are well studied in probability theory.

As in Daley and Vere-Jones (2003, Section 6.4), processes in which points are identified only by 
the occurrence times are referred to as univariate point processes. Multivariate point processes, on 
the other hand, are those in which the realisation of a discrete random variable, say m, with a finite 
number of categories is recorded along with the occurrence times. Marked point processes are 
processes where m is allowed to be a continuous random variable. An example application of a 
marked point process with continuous marks is in seismology, where the magnitude of an earth
quake is recorded in addition to the time of occurrence. In this paper, we model event sequences 
observed in football using marked point processes with discrete marks used to denote the event 
type.

When event sequence data are analysed using point process models, an important distinction is 
between empirical models and mechanistic models as noted by Diggle (2013). Empirical models 
have the solitary aim of describing the patterns in the observed data, while mechanistic models 
go beyond that and attempt to capture the underlying process that generated the data. 
Mechanistic models for marked point processes are typically specified using a joint conditional in
tensity for the occurrence times and the marks and in general are not flexible enough to be applied 
to complex real-world phenomena. The joint modelling of the components of the process can also 
be challenging and it is common to make strong restrictive assumptions like separability (González 
et al., 2016) to simplify the model. In this paper, we present a flexible mechanistic modelling 
framework for marked point processes that are suitable for a wide range of applications without 
the need for assumptions like separability.

We produce a family of marked point processes that generalises the classical Hawkes process, a 
mathematical model for self-exciting processes proposed in Hawkes (1971) that can be used to 
model a sequence of arrivals of some type over time, for example, earthquakes in Ogata (1998). 
Each arrival excites the process in the sense that the chance of a subsequent arrival increases for 
a period of time after the initial arrival and the excitation from previous arrivals add up. 
Marked Hawkes processes are typically specified using a joint conditional intensity function for 
the occurrence times and the marks (see, for example, Rasmussen, 2013, expression 2.2), and cap
tures the magnitudes of all cross-excitations between the various event types as well as the rate at 
which these excitations decay over time. Excitation leads to the clustering of events in time as the 
process is driven by an intensity that increases with every arrival for a short period of time. 
However, in applications like the event sequences observed in football, the events tend not to clus
ter in time and the marked Hawkes process model is not suitable. The joint modelling of the times 
and the marks have to be decoupled to restrict the excitation property of the process exclusively to 
the dimension of the marks.

Similar to the decomposition of a multivariate distribution function that motivated the partial 
likelihood in Cox (1975), we factorise the joint conditional distribution for a marked point process 
into probability density functions for each event time conditioned on past occurrences times and 
marks, and probability mass functions for the event marks conditioned on the time of occurrence 
and the filtration of the process. Therefore, an alternative approach to specifying a marked point 
process model is to specify the conditional distribution functions for the times and the marks sep
arately. We derive the conditional distribution function for the marks from a marked Hawkes pro
cess, which gives us then the freedom to specify the conditional distribution for the times 
separately. In this way, we are able to construct marked point process models that retain the char
acteristic properties of Hawkes processes, such as excitation for the marks, while avoiding the 
strong clustering of event times.
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We develop a framework for Bayesian inference of such flexible marked point processes, which 
is realised through the Stan (Stan Development Team, 2020) software for statistical modelling. 
Stan implements a variant of the Hamiltonian Monte Carlo algorithm, originally proposed by 
Duane et al. (1987), to generate samples from the posterior distribution of the parameters. The 
Bayesian models we consider are compared using the out-of-sample log predictive density.

We define marked point processes for the modelling of touch-ball events in football, which 
along with time and event type information also carry location information. As we illustrate, 
the family of marked point processes can be readily enriched to handle all times, event types 
and locations. We are also able to incorporate team information in a direct way that captures 
the relative abilities of the teams for each event type. We develop a method based on association 
rules (Agrawal et al., 1993) to reduce the complexity introduced by the model extensions we intro
duce. The rule-based approach identifies significant event interactions within sequences by placing 
thresholds on particular measures of significance. We then evaluate the accuracy of the excitation- 
based models by comparing them against two baseline models and confirm the superior perform
ance of the models with excitation effects.

We provide a detailed parameter description showing how the model parameters can be used to 
gain valuable insights into football. The excitation component of the proposed model captures both 
the magnitudes and the durations of all pairwise event interactions across different locations. From 
the conversion rate parameters, we are able to confirm the well-known home advantage effect, and 
quantify the relative performance of each team when playing games at their home venue compared 
to away. The conversion rate parameters are also driven by team information, via the team ability 
parameters which, for example, can capture the relative ability of a team to convert one successful 
pass to another and retain possession of the ball. We also discuss how the team ability parameters 
can be used to obtain rankings for the teams by event type, which can be used as predictors of team 
performance. The team ability parameters also capture some interesting differences in the playing 
styles of the teams that are not immediately apparent just by looking at the event data. In this way, 
the model along with its parameters can be used to develop a deeper understanding of the game-play 
by the coaching staff and inform strategic decision-making. The proposed model can also be used to 
simulate the sequence of events in a game to obtain real-time predictions of event probabilities. The 
simulator results in predictions that can enhance, among others, the viewing experience of televised 
games. Finally, like Hawkes Processes, the proposed model also allows the recovery of the hidden 
branching structure of the process that quantifies the relative contributions of the background pro
cess and previous occurrences to the triggering of a new event.

The developments in this paper can be readily applied to many other team sports like rugby, 
hockey, basketball, etc. As none of the methods have been tailored specifically to football or 
even sports for that matter, they can also be applied to a wide range of applications that generate 
event data streams.

2 Data
2.1 Description and descriptives
The data that motivated this work was provided by Stratagem Technologies Ltd, and consists of all 
touch-ball events from all English Premier League games in the 2013/2014 season. A touch-ball 
event is an event where a player has acted on the ball by touching it with some part of their 
body. We identified mistakes in the original data, with the most critical issues relating to impos
sible sequences of consecutive events (e.g. a dribble a few seconds after a goal). Such data issues 
have been addressed in a systematic way, using the data-cleaning workflow in the publicly avail
able PhD thesis by Narayanan (see, Narayanan, 2021, Section 5.3). In total, the data consists of 
over half a million touch-ball events recorded over the season along with other attributes. A snap
shot of the data is provided in Table 1. The league is contested by a total of 20 teams and follows a 
round-robin tournament schedule, where each team plays every other team at their home and 
away venues, which results in a total of 380 games over the season.

Each game comprises two halves that are separated by an interruption of approximately 15 min. 
In what follows, we refer to each uninterrupted game half as a game period. For each touch-ball 
event, we have records of the event type, time-stamp, (x, y) co-ordinates of its location in the play
ing field, team and unique player identifiers, game period, and if the touch-ball event is a Pass, the 
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event outcome (successful/unsuccessful) and the end (x, y) co-ordinates. Table 2 gives the fre
quency of each of the 22 distinct touch-ball event types recorded in the data.

Figure 1 shows the trajectory of the ball during an attacking move that led to a goal in the 18th 
minute of the game between Arsenal and Norwich City on 19 October 2013. The goal was scored 
by Jack Wilshere for Arsenal and was voted as the best goal in the English Premier League for the 
2013/2014 season.

Latent game characteristics, such as the home advantage, and differences in playing styles and 
formations between the teams are also reflected in the touch-ball events. For example, Figure 2
compares the concentration of ball-touches for Arsenal and Chelsea between their home and 
away games in the 2013/2014 season. The playing field is plotted so that the team is always attack
ing to the right. It is clear that when the teams play at home the density of events is higher towards 
the opponent’s goal. In fact, the point process modelling framework developed in this paper allows 
us to quantify home advantage by, for example, learning the relative ability of each team to retain 
possession when playing at home compared to away (see Section 6.6).

2.2 Data preparation
We combine the types and outcomes of touch-ball events into in-play and terminal composite 
events. The in-play composite events are Win, Dribble, Successful Pass (Pass_S), Unsuccessful 

Table 1. Events and their attributes from the first 20 s of the game between Southampton and West Ham United on 
15 September 2013

Second Minute Team_id Player_id Type x y Outcome End_x End_y

1 0 14 29,544 Pass 50.1 48.8 Successful 51.1 48.2

2 0 14 21,683 Pass 51.1 48.2 Successful 39.2 47.8

4 0 14 71,714 Pass 39.2 47.8 Successful 29.5 77.6

6 0 14 118,244 Pass 30.8 79.6 Unsuccessful 33.5 79.7

12 0 20 12,533 BallRecovery 34.9 89.9

13 0 20 12,533 Pass 35.9 88.3 Successful 37.3 76.1

15 0 20 8,247 Pass 34.9 77.0 Unsuccessful 44.9 85.9

16 0 14 71,714 Interception 53.2 16.7

18 0 14 69,375 Pass 43.1 23.1 Unsuccessful 70.9 9.7

Note. For each event, we have records of the event time-stamp, team and player ids, event type, (x, y) co-ordinates of its 
location in the playing field, and if the event type is a Pass, the event outcome (successful/unsuccessful) and the end (x, y) 
co-ordinates.

Table 2. Frequencies of the 22 distinct types of touch-ball events in the data

Event type Frequency Event type Frequency

Pass 376,924 SavedShot 4,971

BallRecovery 36,908 Save 4,910

Clearance 25,462 CornerAwarded 4,100

Tackle 14,581 MissedShots 4,076

TakeOn 13,607 OffsidePass 1,582

BallTouch 13,517 Claim 1,181

Aerial 12,871 Goal 1,052

Interception 10,422 Punch 380

Dispossessed 8,897 ShotOnPost 187

Foul 8,238 Smother 122

KeeperPickup 5,208 CrossNotClaimed 81
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Pass (Pass_U), Shot, Keeper, Save, Clear, and Lose. Win denotes a player regaining possession of 
the ball from the opponent. Dribble is taking the ball forward with repeated slight touches. Passes 
are deemed to be successful when the ball is received by a team-mate and unsuccessful otherwise. 
Shots include all attempts on the opponents’ goal, including those missing the target. The Keeper 

Figure 1. Tracing the locations of the sequence of events that led to the goal scored by Jack Wilshere for Arsenal 
against Norwich City (voted the best goal of the 2013/2014 season).

Figure 2. Heat maps showing the density of ball-touches for Arsenal and Chelsea in their home and away games in 
the 2013/2014 season. In all heat maps, the team is attacking to the right.
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event denotes the goalkeeper taking possession of the ball into their hands by picking it up or 
claiming a cross. The Keeper event is unlike any other in-play event, as the goalkeeper is allowed 
to hold the ball without being challenged for a period of time while waiting for opponents to clear 
the goal area. As a result, there is often a delay before the next event even though the ball is tech
nically in-play. Saves are events where the goalkeeper prevents a shot from crossing the goal line. 
Clear events are those where a player moves the ball away from their goal area to safety while the 
Lose event is when a player loses possession of the ball. The terminal composite events are those 
which result in the ball going out-of-play and are Goal, Foul, Out_Throw, Out_GK, Out_Corner, 
and Offside Pass (Pass_O). The terminal events interrupt the game resulting in a delay before play 
resumes. Each composite event is tracked for both the home and away teams. For this reason, we 
append ‘Home’ or ‘Away’ as a prefix to the event label to distinguish between the events of the two 
teams playing the game. This results in M = 30 distinct composite events, whose labels and ob
served frequencies are given in Table 3.

For each touch-ball event, the data also contains the associated (x, y) co-ordinates on the play
ing field. We partition the playing field into 3 zones of equal area. The zones and their correspond
ing labels are shown in Figure 3. Zone 1 is the region where the home team defends their goal, zone 
3 is the region where the home team attacks, and zone 2 is the midfield region. It is natural to ex
pect that the control a team has on the game depends on the zone the ball is at. For example, the 
home team is expected to retain possession of the ball more successfully in zone 1 as compared to 
zone 3.

Table 4 shows a snapshot of the data after its preparation, including a unique identifier for each 
game period in the data.

3 Marked point processes
3.1 Conditional intensity function
Sequences of events over time are conveniently represented as realisations of a point process. 
Oftentimes, the events can carry additional information, which are assumed to be realisations 
of random variables, referred to as marks. The collection of the times {ti} at which the events occur 
and the marks {mi} is a marked point process, whose ground process, is the process for {ti} only.

A marked point process is typically specified through its joint conditional intensity function

λ∗(t, m) = λ∗g(t)f ∗(m ∣ t), (1) 

Table 3. Composite event types along with their labels and observed frequencies in the data

M Mark label Count M Mark label Count

1 Home_Win 10,864 16 Away_Win 10,829

2 Home_Dribble 3,432 17 Away_Dribble 3,123

3 Home_Pass_S 152,140 18 Away_Pass_S 140,975

4 Home_Pass_U 42,344 19 Away_Pass_U 41,462

5 Home_Shot 5,127 20 Away_Shot 4,107

6 Home_Keeper 3,273 21 Away_Keeper 3,555

7 Home_Save 2,208 22 Away_Save 2,702

8 Home_Clear 11,780 23 Away_Clear 14,059

9 Home_Lose 16,534 24 Away_Lose 16,515

10 Home_Goal 597 25 Away_Goal 455

11 Home_Foul 4,229 26 Away_Foul 4,009

12 Home_Out_Throw 8,982 27 Away_Out_Throw 8,396

13 Home_Out_GK 3,084 28 Away_Out_GK 3,697

14 Home_Out_Corner 2,321 29 Away_Out_Corner 1,779

15 Home_Pass_O 814 30 Away_Pass_O 768

J R Stat Soc Series C: Applied Statistics, 2023, Vol. 72, No. 5                                                             1101
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/72/5/1127/7233315 by U
niversita degli Studi di Trieste user on 25 January 2024



where λ∗g(t) is the conditional intensity of the ground process and f ∗(m ∣ t) is the conditional prob
ability density or mass function of the mark m at time t. Both λ∗g(t) and f ∗(m ∣ t) in equation (1) are 
understood as being conditional on F t− , which is the filtration of the marked point process up to 
but not including t.

3.2 Marked Hawkes processes
Marked Hawkes processes are point processes whose defining characteristic is that they self- 
excite, meaning that each arrival increases the rate of future arrivals for a period of time. More 
formally, consider a realisation of a marked point process, consisting of event times {ti} with ti ∈ 
R+ and ti > ti−1, and marks mi ∈ {1, . . . , M} (i = 1, . . . , n), where M is the number of discrete 
marks. The marked Hawkes process is most intuitively specified using its mark dependent condi
tional intensity function λ∗(t, m), which for an exponentially decaying intensity is (Rasmussen, 
2013, expression 2.2)

λ∗(t, m) = μδm +
􏽘

tj<t

ϵβe−β(t−tj)γm j→m. (2) 

In equation (2), the parameter μ > 0 is a constant background intensity and δm ∈ (0, 1) is the back
ground mark probability for mark m with 

􏽐M
m=1 δm = 1. The parameter ϵ ∈ (0, 1) is the excitation 

Table 4. Snapshot of the final data prepared for modelling where each event, indexed by i = 1, . . . , n, consists of the 
following components, the time of occurrence ti , the zone zi , and the mark mi

i id Period Team_id Time (ti) Zone (zi) Mark (mi)

1 101 1 1 0 2 18

2 101 1 1 1 2 19

3 101 1 2 3 1 8

4 101 1 1 6 3 16

5 101 1 1 8 3 18

6 101 1 1 15 2 18

7 101 1 1 16 1 19

8 101 1 2 19 1 12

Note. The home and away team information for each game is assumed to be known and the first event (t1, z1, m1) in each 
game period is considered to be deterministic and therefore, not modelled.

Figure 3. Mapping from event location in (x, y) co-ordinates to zones.
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factor, β > 0 is the exponential decay rate, and γm j→m ∈ (0, 1) is the probability the excitation from 

an event of mark mj triggers an event of mark m, with 
􏽐M

m=1 γm j→m = 1 for any mj ∈ {1, . . . , M}.

3.3 Limitations of the marked Hawkes process model
The specification in equation (2) describes a marked Hawkes process that is linear in the sense that 
the excitations from different arrivals add up, not only increasing the probability of triggering an 
event of a particular type, but also concentrating the occurrence times for a certain period of time. 
For this reason, marked Hawkes processes have proven useful in a wide range of applications, 
where events tend to cluster in time, such as the modelling of earthquakes (Ogata, 1998), gang vio
lence (Mohler et al., 2011), and financial market events (Bowsher, 2007).

However, in applications like the modelling of event sequences in football, each event triggers 
other events of a particular type with high probability, while it is not necessarily true that the oc
currence times cluster.

As an illustration that the observed events in football do not exhibit clustering, consider only the 
collection of the times {ti} at which the events occur. A succinct method to investigate the aggre
gation of the points is using the non-parametric Ripley’s K-function summary (Ripley, 1977), 
which is the reduced second-moment measure. An estimator of the K-function in the one- 
dimensional case is derived in Diggle (1985) as

K̂(t) =
T
n2

􏽘n

i=1

􏽘

j≠i

wij1(|ti − tj| ≤ t), (3) 

where (0, T) is the time interval over which the n points are observed, 1(.) is the indicator function, 
and wij is an edge correction taking values wij = 1 if |ti − tj| ≤ min (ti, T − ti) and wij = 2, 
otherwise.

For a homogeneous Poisson process, K(t) = 2t. If K(t) > 2t, the process is said to be over- 
dispersed relative to the Poisson and exhibits some degree of clustering. If K(t) < 2t, the process 
is under-dispersed relative to the Poisson and tends towards regular occurrences. Figure 4 shows 
the K function estimate, K̂(t) − 2t for t ∈ {1, 2, . . . , 100}, of the observed event times from the first 
game of the season between Aston Villa and Arsenal (n = 1,279). We also compare the estimates 
from those observed times with the estimates of the events simulated from several one-dimensional 
Hawkes processes with a conditional intensity of the form, λ∗(t) = μ +

􏽐
tj<t ϵβe−β(t−tj). Hawkes I 

(green) is the fitted Hawkes process with parameters (μ, ϵ, β) = (0.4183, 0.0035, 0.0004) esti
mated from the observed times using maximum likelihood. Note that the estimated ϵ is very close 
to 0, indicating no clustering. A Hawkes process with ϵ = 0 is the trivial case with no excitation 
that reduces to a Poisson process (orange) with an estimated rate μ = 0.4189. Hawkes II (pink) 
has parameters (μ, ϵ, β) = (0.2594, 0.4, 0.01) and Hawkes III (purple) has parameters 
(μ, ϵ, β) = (0.1068, 0.8, 0.01). Hawkes II and Hawkes III are examples of processes with moderate 
and severe clustering, respectively, whose μ parameters were estimated from the observed times 
using maximum likelihood after fixing ϵ, β. The box plots of the estimates for the Hawkes and 
Poisson processes were computed using 100 independent simulations of each process over the 
same time interval as the observed times.

The K̂(t) − 2t values for the Hawkes II and Hawkes III processes quickly get above 0 and in
crease with t demonstrating the behaviour of processes with different degrees of clustering. On 
the other hand, the K̂(t) − 2t values for the fitted Hawkes process (Hawkes I) and the Poisson 
process concentrate around 0, being indicative of the expected behaviour of processes where 
points do not cluster. The K̂(t) − 2t values from the observed times range from −1.4 to −0.9 in
dicating slight under-dispersion relative to the Poisson process. In other words, the observed 
times in football exhibit no clustering and in fact show evidence of being more regular than 
the Poisson process.

Another method to investigate the aggregation of points is by looking at the distribution of the 
inter-arrival times. Figure 5 shows the empirical distribution function of the first 10,000 inter- 
arrival times from the first seven games of the league season. We also plot the cumulative distribu
tion functions of a homogeneous Poisson process and a Hawkes process, whose parameters are 
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estimated from the aforementioned 10,000 events using maximum likelihood. The fitted Hawkes 
process is far from the empirical distribution function, and almost identical to the fitted Poisson pro
cess confirming that the arrival times in football do not cluster. This is further evidence that Hawkes 
processes are not appropriate for modelling events such as those observed in football, which tend 
not to cluster in time. Figure 5 also includes the cumulative distribution function of a fitted Gamma 
process, which, as is apparent provides an excellent fit to the observed inter-arrival times.

4 Specification of flexible marked point processes
4.1 Decoupling the modelling of times and marks
According to the decomposition of a multivariate distribution function in Cox (1975, expression 2), 
the likelihood of a marked point process observed in (0, T) can always be factorised as

L(F tn ∣ ζ, θ) =
􏽙n

i=1

g(ti ∣ F ti−1 ; ζ)f (mi ∣ ti, F ti−1 ; θ)
􏼈 􏼉

1 − G(T ∣ F tn ; ζ)
􏼈 􏼉

, (4) 

where g, G, and f are the conditional density and distribution function for the times, and the prob
ability mass function for the marks, respectively, and ζ, θ are unknown parameter vectors that 
may or may not share components. The last term in equation (4) accounts for the fact that the 

Figure 4. The K function estimate K̂ (t) − 2t of the observed event times (black points) from the first game of the 
season between Aston Villa and Arsenal. Hawkes I (top left) is a Hawkes process with parameters (μ, ϵ, β) = 
(0.4183, 0.0035, 0.0004) estimated from the observed times using maximum likelihood. A Hawkes process with 
ϵ = 0 is the trivial case with no excitation that reduces to a Poisson process (top right) with an estimated rate 
μ = 0.4189. Hawkes II (bottom left) has parameters (μ, ϵ, β) = (0.2594, 0.4, 0.01) and Hawkes III (bottom right) has 
parameters (μ, ϵ, β) = (0.1068, 0.8, 0.01). Hawkes II and Hawkes III are examples of processes with moderate and 
severe clustering, respectively, whose μ parameters were estimated from the observed times using maximum 
likelihood after fixing ϵ, β. The box plots of the estimates for the Hawkes and Poisson processes were computed 
using 100 independent simulations of each process over the same time interval as the observed times.
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unobserved occurrence time tn+1 must be after the end of the observation interval (0, T). 
Therefore, an alternative approach to specifying a marked point process is to specify the functions 
g(· ∣ F ti−1 ; ζ) and f (· ∣ ti, F ti−1 ; θ), separately, and combine them as in equation (4). The key insight 
in the current work is to derive the specification for the marks f (· ∣ ti, F ti−1 ; θ) from the joint con
ditional intensity function of a marked Hawkes process model, and then specify a probability 
density function for the times g(· ∣ F ti−1 ; ζ) best suited to our application. In this way, we can re
strict the characteristic excitation property of marked Hawkes processes exclusively to the mod
elling of the marks, and have the freedom to specify a different model for the occurrence times.

By the definition of the conditional intensity function for a marked point process in equation (1), 
f (mi ∣ ti, F ti−1 ; θ) = λ∗(ti, mi)/

􏽐M
m=1 λ∗(ti, m). Plugging in λ∗(ti, m) from equation (2) in the latter ex

pression, gives

f (mi ∣ ti, F ti−1 ; θ) =
δmi +

􏽐
tj<ti

α∗e−β(ti−tj)γm j→mi

1 +
􏽐

tj<ti
α∗e−β(ti−tj)

, (5) 

where α∗ = ϵβ
μ . Expression (5) makes it immediately apparent that the parameters μ and ϵ of the marked 

Hawkes process as specified by equation (2) are not always identifiable for general specifications of 
g(· ∣ F ti−1 ; ζ) in equation (4). Apart from a mathematical fact, this is also rather intuitive, because μ 
and ϵ in equation (2) characterise the evolution of the Hawkes process in the time dimension and 
the sequence of marks is not sufficient to identify them.

The specification of the marked point process likelihood is complete once a probability density 
function g(· ∣ F ti−1 ; ζ) for the event times is specified.

We should highlight here that the marked point processes from the factorisation in equation (4) 
are generally different to the ones that result by assuming the separability of the conditional inten
sity functions (see, for example, González et al., 2016, Section 6.5). A separable conditional inten
sity function has the form

λ∗(t, m) = λ∗g(t)f ∗(m) 

Figure 5. Comparing the cumulative distribution functions (CDFs) of the inter-arrival times of events simulated from 
a Poisson process (green), a Hawkes process (orange), a Gamma process (purple), and observed event times in 
football (pink). Empirical CDFs were computed using 10,000 inter-arrival times in each case.
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and implies that the conditional distribution of the mark does not depend on the occurrence time t. 
Separability is a convenient assumption because it allows for the sequence of marks to be modelled 
separately from the sequence of times. In contrast, the factorisation in equation (4) allows the con
ditional distribution of the mark to depend on the time of occurrence as well as the history, still 
allowing for estimating θ separately from ζ, if θ and ζ do not share components.

The proposed marked point process model also allows the recovery of the hidden branching 
structure of the process, a key feature of Hawkes Processes (Hawkes & Oakes, 1974). In 
Section 6.8, we calculate the branching structure probabilities and quantify the relative contribu
tions of the background process and previous occurrences to the triggering of a new event.

4.2 Parameter interpretation
In equation (5), the mark probability of each event in the sequence is determined by a combined 
additive effect from a background component and all previous occurrences. The first term δmi in 
the numerator is the mark probability associated with the background component, while each 
term α∗e−β(ti−tj)γmj→mi 

is the contribution from the excitation caused by a previous occurrence in 
the sequence.

The background mark probability δm ∈ (0, 1) is the probability an event has a mark m if the 
event is triggered solely by the background component. The excitation factor α∗ ≥ 0 is a scaling 
factor applied to the contributions from the previous occurrences to the event mark probability. 
Large values of α∗ indicate a stronger dependence of the process on its history because the contri
butions from previous occurrences are weighted higher relative to the background component. 
The decay rate β > 0 is the exponential rate at which the excitations from previous occurrences 
decay over time. The parameter γm j→mi

∈ (0, 1) is the probability the excitation from 
an event of mark mj triggers an event of mark mi. In other words, γm j→mi 

can be viewed as the con
version rate for the transition from an event with mark mj to an event with mark mi.

In summary, as in marked Hawkes processes, the specification for the marks in equation (5) cap
tures not only all cross-excitations between the various marks but also the rate at which these ex
citations decay over time.

4.3 Covariate-driven cross-excitation
The conditional distribution of marks with probability mass function (5), allows to drive the cross- 
excitation of the marks using covariates. The conversion rates γm j→m can be linked to a covariate 
vector x = (x1, . . . , x p)⊤ observed at the current time through the baseline-category logit specifi
cation (see, for example, Agresti, 2007, Section 6.1)

log
γm j→m

γm j→M

􏼠 􏼡

= ϕm j→m + ω⊤
mx (m = 1, . . . , M − 1), (6) 

where ωm is an unknown p-vector of regression parameters. Then, keeping all covariates apart from 
xt fixed, ωmt is the log of the ratio of odds for category m vs. the baseline category M at xt + 1 to that 
at xt (t = 1, . . . , p). Also, by setting all covariates xt equal to 0, ϕm j→mi 

is the log of the ratio of odds 
for category m vs. the baseline category M. The covariate vector x can include a combination of 
process-specific covariates that are time-invariant, and event-specific covariates. For example, in 
Section 5.2, we use equation (6) to parameterise the marked point process in terms of the relative 
abilities of teams for each event type, and produce team rankings per event type.

4.4 Spatio-temporal marked point processes
We can readily extend the factorisation of the likelihood in equation (4) to include conditional 
densities for the event locations, when the latter are observed. We can write

L(F tn ∣ ψ) =
􏽙n

i=1

g(ti ∣ F ti−1 ; ζ)h(zi ∣ ti, F ti−1 ; η)f (mi ∣ ti, zi, F ti−1 ; θ)
􏼈 􏼉

1 − G(T ∣ F tn ; ζ)
􏼈 􏼉

, (7) 
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where {zi} is the collection of random variables corresponding to the spatial component of the 
process, which is characterised by the conditional probability mass or density functions 
h(· ∣ ti, F ti−1 ; η) with η being a parameter vector that may or may not share parameters with ζ 
and θ, and ψ = (ζ⊤, η⊤, θ⊤)⊤. The filtration F ti now includes all times, marks and locations up 
to time ti.

If the process ends at the last occurrence time tn, then the last term 1 − G(T ∣ F tn ; ζ) in equations 
(4) and (7) is not part of the likelihood (see, for example Lindqvist, 2006, Section 4.2). This is the 
case in the modelling of touch-ball event sequences in football we consider here, where the process 
ends with or immediately after the last event observed in each half of the game.

5 Bayesian modelling of in-game event sequences
5.1 Preamble
The framework for specifying flexible marked point processes of Section 4 is rather attractive for 
the modelling of in-game event sequences in football and other team sports. Firstly, cross- 
excitation of in-game events is a natural assumption because any event in an event sequence is like
ly to be triggered by one or more of the previous events. For example, following a corner kick, the 
next event is with high probability one among a shot on goal, a defensive clearance or a claim by 
the keeper. Such effects can be naturally and readily captured by the parameters of the conditional 
mark distribution in equation (5), which involves not only the magnitudes of all cross-excitations 
between the various event types but also the rate at which these excitations decay over time. 
Secondly, the preliminary analyses in Section 3.3 provides strong evidence that occurrence times 
do not necessarily cluster, as off-the-shelf marked Hawkes processes imply. Hence, the freedom to 
use a more flexible conditional distribution for the occurrence times, such as a Gamma process, is a 
rather attractive prospect. Furthermore, as discussed in Section 4.3, team information can be in
corporated into the model in a direct way as covariate information to drive the cross-excitation 
based on the relative abilities of the teams.

Overall, as we demonstrate later, the framework of Section 4 can be used to provide valuable 
explanatory tools into the underlying dynamics of the game for the coaching staff and inform stra
tegic decision-making. It can also produce predictions of events, such as goals, in a specified time 
horizon, and of game outcomes that can enhance, among other things, the viewing experience in 
televised games.

5.2 Excitation-based models
Assume that the touch-ball events in S game periods are S realisations of independent spatio- 
temporal point processes, with the sth realisation involving ns events. Denote by tsi, msi, and zsi 

the occurrence time, mark, and location of the ith event in the sth realisation, respectively. Each 
of the S independent spatio-temporal marked point processes have a likelihood as in equation 
(7) after dropping the last term, and with conditional probability mass function for the marks 
as in equation (5). The product of the S likelihoods is the overall likelihood based on the S 
game periods.

The probability density functions for the occurrence times within each period is set to

g(tsi ∣ F stsi−1 ; ζ) = p(tsi − tsi−1 ∣ msi−1, a, b)

tsi − tsi−1 ∣ msi−1, a, b ∼ Gamma(amsi−1 , bmsi−1 ),
(8) 

where F stsi denotes the filtration of the sth process up to time tsi.
By this specification, the time to the next event is modelled using a gamma distribution with 

shape and rate parameters that are specific to the mark of the last observed event. In this way, 
we wish to capture the differences in the expected time to the next event across the different event 
types. For example, we expect a shorter time to the next event after an in-play event like a Pass, 
compared to that of an out-of-play event like a Foul. Even within the group of out-of-play events, 
we expect a shorter delay following a Throw-in as compared to a Goal event.
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For a discrete set of locations {1, . . . , Z}, the conditional probability mass function for the cur
rent location is set to

h(zsi ∣ tsi, F stsi−1 ; η) = η(zsi−1,msi−1)→zsi
, (9) 

where η(zsi−1,msi−1)→zsi 
is the probability of transitioning into location zsi given the location zsi−1 and 

the mark msi−1 of the last observed event. Expression (9) models the sequence of locations as a dis
crete first-order Markov chain (see, for example, Norris, 1997) with a transition probability ma
trix η. The current state of the Markov chain is determined by the combination of the location and 
the mark of the last observed event, and the probability of transitioning into the next location de
pends only on the current state. The state space of the Markov chain is given by the Cartesian prod
uct {1, . . . , Z} × {1, . . . , M}.

We consider four alternative parameterisations for the conditional probability mass function 
for the marks. The Sβ (scalar β) spatio-temporal marked point process results from equations 
(8), (9), and a conditional mark distribution of the form (5), that is

f (msi ∣ tsi, F stsi−1 ; θ) =
δmsi +

􏽐
tsj<tsi

eα−β(tsi−tsj)γmsj→msi

1 +
􏽐

tsj<tsi
eα−β(tsi−tsj)

, (10) 

where α = log (α∗). The Vβ (vector β) model results from equations (8), (9), and

f (msi ∣ ti, F stsi−1 ; θ) =
δmsi +

􏽐
tsj<tsi

eα−βmsj
(tsi−tsj)γmsj→msi

1 +
􏽐

tsj<tsi
eα−βmsj

(tsi−tsj)
, (11) 

where βm is the exponential decay rate of the excitation caused by an event of mark m. Vβ allows 
the decay rates to depend on the mark of the event causing the excitation. Hence, Sβ is formally 
nested in Vβ and results when β = β1 = · · · = βM. The Mβ (matrix β) process results from equations 
(8), (9), and

f (msi ∣ tsi, zsi, F stsi−1 ; θ) =
δmsi∣zsi +

􏽐
tsj<tsi

eα−βmsj→msi ∣zsi
(tsi−tsj)γmsj→msi ∣zsi

􏽐M
m=1 δm∣zsi +

􏽐
tsj<tsi

eα−βmsj→m∣zsi
(tsi−tsj)γmsj→m∣zsi

􏽨 􏽩 , (12) 

where βm→m′∣z is the decay rate of the excitation caused by an event of mark m on an event of mark 
m′ at location z. Specification (12) allows the decay rates to vary both with the pair of marks in
volved in the excitation and across locations, and allows the background mark probabilities δ and 
event conversion rates γ to vary across location. The Mβ model can be used to account for scen
arios like those where a Corner event excites a Pass event in the short term and a Shot event in the 
longer term (βCorner→Pass∣3 > βCorner→Shot∣3). It also allows us to capture effects such as how a team 
is more likely to make more passes and retains possession of the ball in the defensive zone, while 
attempting more shots on goal in the attacking zone (γPass→Pass∣1 > γPass→Pass∣3 and 
γPass→Shot∣3 > γPass→Shot∣2). The final model we consider is the MβA (matrix β with abilities) where 
the baseline-category logits of the conversion rates in equation (6) are driven by team information 
as

log
γmsj→m∣z(c)

γmsj→M∣z(c)

􏼠 􏼡

= ϕmsj→m∣z + ωcm (m = 1, . . . , M − 1; c = 1, . . . , C). (13) 

In the above expression, ϕm→m′∣z is a location-dependent baseline conversion, and c is the team in 
possession of the ball attempting the event conversion. The parameter ωcm, then, reflects the ability 
of a team to complete a conversion to an event of mark m.

5.3 Prior distributions
The shape and rate parameters of the Gamma distributions for the inter-arrival times in equation 
(8) are assigned independent exponential priors with rates a′ and b′, respectively. The probability 
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mass function for the locations specified in equation (9) models the locations as a multinomial dis
tribution given the current state of the Markov chain. The conjugate prior for the multinomial dis
tribution is the Dirichlet distribution (see, for example, Gelman et al., 2013, Section 3.4) and 
therefore we assign a Dirichlet prior on the multinomial probabilities η with a common concen
tration rate parameter ν. The background mark probability vector δ in the Sβ, Vβ, Mβ, and 
MβA models is also assigned a Dirichlet prior with concentration hyper-parameter δ′. The 
location-specific mark probability vectors (δ1∣1, . . . , δM∣1)⊤, . . . , (δ1∣Z, . . . , δM∣Z)⊤ in the Mβ and 
MβA models are assigned independent Dirichlet priors with concentration hyper-parameter δ′′. 
The excitation factor α is assigned a normal prior with mean 0 and standard deviation σα. The 
decay rate parameter β in the Sβ model, the parameters β1, . . . , βM in the Vβ model, and 
their location-specific counterparts in the Mβ and MβA models are assigned independent 
exponential priors with a common rate β′. The parameters ϕm→m′∣z and ωcm (m, m′ = 
1, . . . , M; z = 1, . . . , Z; c = 1, . . . , C) in the MβA model are assigned independent Normal priors 
with mean 0 and standard error σγ. The conversion rate parameters (γm→1, . . . , γm→M)⊤ in the Sβ 
and Vβ models, and their location-specific counterparts in the Mβ model are assigned independent 
Dirichlet priors with a common concentration rate parameter γ′.

5.4 Posterior distributions
The time and location conditional distributions corresponding to equations (8) and (9) share no 
parameters with each other, and no parameters with any of the conditional mark distributions 
for the Sβ, Vβ, Mβ, and MβA models. Furthermore, the likelihood in equation (7) can be factorised 
into a term depending only on the time parameters ζ, a term depending only on the location pa
rameters η and a term depending only on the mark parameters θ. Given that the priors for ζ, η, and 
θ are also independent, the derivation of, or sampling from, the posterior distributions can be per
formed separately for each of those parameters.

The priors for the location parameters η are conjugate, so the posterior for η is readily obtained. 
If y = {yi→j}, for j ∈ {1, . . . , Z}, are the observed counts of transitions originating from the state i 
where i ∈ {1, . . . , Z} × {1, . . . , M}, then the posterior distribution of each row of the transition 
matrix ηi is a Dirichlet distribution with concentration parameters (yi1 + ν, . . . , yiZ + ν).

Posterior sampling for the parameter vectors a, b in equation (8) of the conditional distributions 
for the times, and the parameters θ of the conditional distributions for the marks in each of the Sβ, 
Vβ, Mβ, and MβA models is carried out using the variant of the Hamiltonian Monte Carlo pro
cedure (Duane et al., 1987) that is implemented in Stan (Stan Development Team, 2020).

We have also implemented posterior sampling using a Metropolis-within-Gibbs procedure, 
which, though, proved to mix poorly in artificial data sets for the Sβ, Vβ, Mβ, and MβA, rendering 
it computationally infeasible. As in the case of the Hawkes process, the poor mixing stems from the 
presence of strong correlations between the model parameters as well as the flatness of the likeli
hood function (Veen & Schoenberg, 2008). Stan, on the other hand, implements the No-U-Turn 
Sampler (Hoffman & Gelman, 2014) that automatically calibrates tuning parameters in a warm- 
up phase and can efficiently sample from complex posterior distributions.

5.5 Model complexity
The conditional mark distribution in the Mβ and MβA models involves a large number of param
eters. There are M2Z decay rate parameters and M(M − 1)Z baseline conversion rate parameters 
which makes posterior sampling a computationally challenging task. We have developed a screen
ing procedure based on the association rule learning (see, for example, Agrawal et al., 1993) that 
operates on the data involved in the likelihood and eliminates parameters prior to posterior 
sampling.

The screening procedure retains only those parameters that capture the most significant event 
interactions and depends on two constants that need to be chosen. The first is the window size 
W for the number of transient events, and any event is allowed to be triggered by only one of 
the W events leading up to it. The other is the number of event pairs N considered in each of 
the three zones and sets a threshold on the number of significant event interactions that are iden
tified. Full details on the association rule-based screening procedure are given in Section S2 of the 
online supplementary material.
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5.6 Model evaluation
Let X(train) be the set of the training data on which the likelihood is based on, consisting of n(train) 

events, and let ψ(1), . . . , ψ(R) be R samples from the posterior distribution. Denote by X(test) the set 
of held-out test data, consisting of n(test) events.

One method to evaluate the predictive accuracy of each model is to use the log point-wise pre
dictive density (Vehtari et al., 2017) computed on the test data, using the posterior samples

􏽣lpd =
􏽘

(t,z,m)∈X(test)

log
1
R

􏽘R

r=1

L(t, z, m ∣ F t− , ζ(r), η(r), θ(r))

􏼠 􏼡

, (14) 

where L(t, z, m ∣ F t− , ζ(r), η(r), θ(r)) is the likelihood of (t, z, m) given the filtration F t− at the pos

terior sample ζ(r), η(r), θ(r). Large values of 􏽣lpd indicate better predictive accuracy.
Apart from Sβ, Vβ, Mβ, and MβA, we also evaluate the predictive accuracy of two simpler base

line models that do not include Hawkes-like excitation effects. The first baseline model termed 
FOMC model is based on the factorisation of the likelihood of marked spatio-temporal processes 
in expression (7) with models for the times and locations as in equations (8) and (9), respectively, 
but with the conditional probability mass function for the marks being a first-order Markov chain

f (mi ∣ ti, zi, F ti−1 ; θ) = θ(zi,mi−1)→mi . (15) 

In this specification, θ(z,m)→m′ is the probability of the event mark m′ given that last observed event 
has location z and mark m. The second baseline model, termed MSTHP, is the marked spatio- 
temporal homogeneous Poisson process (Daley & Vere-Jones, 2003, Section 7.3), which has like
lihood

L(P)(q ∣ ρ) =
􏽙M

m=1

􏽙Z

z=1

ρqmz
mz exp −Tρmz

􏼈 􏼉
, (16) 

where ρmz is the Poisson rate parameter and qmz is the number of event occurrences for mark m at 
location z over a total observation time T in the data.

The FOMC and MSTHP models have conjugate prior distributions and therefore their posteri
ors are readily obtained. Details on those prior distributions and the derivation of their posterior 
distributions are given in Section S1 of the online supplementary material.

6 Explanatory modelling
6.1 Training
Samples from the posterior distributions for the parameters of the Sβ, Vβ, Mβ, and MβA models of 
Section 5.2, and of the FOMC and MSTHP baseline models of Section 5.6 are obtained using all 
event sequences from the first 20 games of the league season played between 17 August 2013 and 
26 August 2013, which constitute X(train). The training data involves S = 40 game periods involv
ing of 27,660 events. Each of the 20 teams participating in the league plays in two of the 20 games, 
one at their home and one at their away venue. As is also described in Section 2.1, there are M = 30 
marks and Z = 3 zones. Table 5 gives the zone-wise event frequencies across marks in the training 
data used for modelling, reflecting the large variability in the frequencies both across marks and 
zones.

For the Mβ and MβA models, the association rule learning screening procedure of Section 5.5 is 
employed for all combinations of W ∈ {5, 10} and N ∈ {50, 100} to eliminate some of the model 
parameters and reduce the model complexity before posterior sampling.

The hyper-parameters for the prior distributions specified in Section 5.3 are as follows. The 
hyper-parameters a′ and b′ for the exponential priors on the parameters of the Gamma distribu
tions in equaiton (8) are both set to 0.01. The Dirichlet prior on the background mark probabilities 
δ has concentration hyper-parameter δ′ = 1. The exponential prior on the decay rates β has a rate 
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hyper-parameter β′ = 0.1. The Normal priors on the excitation factor α and the baseline-category 
logit model parameters ϕ and ω have hyper-parameters σα, σγ = 10. The location-specific back
ground mark probability vectors in the Mβ and MβA models are assigned independent 
Dirichlet priors with concentration hyper-parameter δ′′ = 1.

The ability parameters in the baseline-category logit specification for the conversion rates of the 
MβA are not directly identifiable. In order to make them so, we set the abilities ωcm for West Ham 
United to 0 (m = 1, . . . , 30). Then, ωcm > 0 indicates that for team c, a previous event is more like
ly to trigger an event of mark m when compared to the reference team.

Samples from the posterior distributions are obtained by running four parallel chains using the 
Hamiltonian Monte Carlo procedures implemented in Stan. The Stan templates we used are all 
provided in the online supplementary material. Each chain is initialised with different starting val
ues and runs for a total of 500 iterations post the warm-up phase. Table 6 gives posterior summar
ies along with convergence diagnostics for some of the parameters of the MβA model with W = 5 
and N = 100; the corresponding chain-wise trace plots are provided in the online supplementary 
material.

The convergence of the algorithm is assessed using the potential scale reduction factor R̂ pro
posed by Gelman et al. (1992), which is the ratio of the average variance within each chain to 
the variance of the aggregated samples across chains. If the chains have converged to the stationary 
distribution, the expected value of R̂ is 1. All parameters have R̂ < 1.1, which, as recommended in 
Gelman et al. (1992), is evidence for convergence. Table 6 also gives the effective sample size (see, 
for example, Gelman et al., 2013, Section 11.5) for the samples for each of the posterior marginals, 
which indicate that the sampler returned samples with acceptable autocorrelation. For some pa
rameters the effective sample size is larger than the sample size due to negative autocorrelations. 
This, as pointed out in Vehtari et al. (2021), is a consequence of the Hamiltonian Monte Carlo 
algorithm used in Stan being an antithetic Markov chain which has negative autocorrelations 
on odd lags. The impact of the prior distributions in Section 5.3 on the posterior samples is min
imal as seen, for a selection of parameters, in Figure 6 indicating that the posterior distributions of 
the parameters have concentrated after accounting for the likelihood.

Table 5. Zone-wise frequencies for each event type in the training data

Home Away

Mark  Zone Mark  Zone

M Label 1 2 3 M Label 1 2 3

1 Home_Win 236 257 41 16 Away_Win 25 204 301

2 Home_Dribble 17 96 96 17 Away_Dribble 76 65 19

3 Home_Pass_S 1,699 4,633 1,658 18 Away_Pass_S 1427 4,390 2,030

4 Home_Pass_U 541 825 725 19 Away_Pass_U 542 811 702

5 Home_Shot 0 0 292 20 Away_Shot 193 2 0

6 Home_Keeper 155 0 0 21 Away_Keeper 0 0 192

7 Home_Save 106 0 0 22 Away_Save 0 0 149

8 Home_Clear 557 141 32 23 Away_Clear 27 124 660

9 Home_Lose 122 287 368 24 Away_Lose 323 349 142

10 Home_Goal 0 0 22 25 Away_Goal 20 0 0

11 Home_Foul 62 126 64 26 Away_Foul 46 112 69

12 Home_Out_Throw 97 184 163 27 Away_Out_Throw 143 173 110

13 Home_Out_GK 149 0 0 28 Away_Out_GK 0 0 220

14 Home_Out_Corner 0 0 112 29 Away_Out_Corner 76 0 0

15 Home_Pass_O 7 19 20 30 Away_Pass_O 13 11 5
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6.2 Model evaluation
The Sβ, Vβ, Mβ, and MβA models are compared with each other and with the FOMC and MSTHP 
baseline models of Section 5.6 in terms of their log point-wise predictive density (14) computed on 
test data. The test data X(test) includes all events from the five games immediately following 
the games in the training data, played between 31 August 2013 and 1 September 2013. The 
test data involves S = 10 game periods involving 27,660 events.

Table 7 gives the log predictive densities 􏽣lpd, summed over all the events in the 10 game 
periods in the test data. Table 7 also provides the number of parameters in each model as a measure 
of their complexity. The three top-performing models are the Mβ model after screening with 
(W, N) = (5, 100), followed by Mβ model after screening with (W, N) = (10, 100), and MβA 
with (W, N) = (5, 100). Notably, the Mβ model after screening with (W, N) = (5, 100) performs 
the best among the list of fitted models, significantly outperforming also models of similar com
plexity, such as the Sβ, Vβ, and FOMC models. The slightly poorer performance of the MβA model 
with (W, N) = (5, 100) is most probably due to the fact that, in the training data, each team plays 
just one game at their home and one at their away venue. Nevertheless, in order to illustrate the full 
explanatory potential of the modelling framework in Section 4, we focus on inferences based on 
the posterior samples from the MβA model.

6.3 Background mark probabilities
Table 8 gives the posterior means of the background probabilities δm∣z for all marks m ∈ 
{1, . . . , 30} and all locations z ∈ {1, 2, 3}. The background mark probabilities for the home and 
away team events in zone 1 are almost equal to those in zone 3 for the away and home team events, 
respectively. This is as expected because the attacking zone for the home team is the defensive zone 
for the away team and vice-versa.

The similar probabilities for the home and away background mark probabilities could indicate that 
the background process of the game is not influenced by home advantage. To confirm this, we fit an
other MβA model after constraining all the corresponding home and away background mark prob
abilities to be equal, for example, δHome Pass S∣1 = δAway Pass S∣3, δHome Foul∣3 = δAway Foul∣1, 
δHome Dribble∣2 = δAway Dribble∣2 and so on. The constrained MβA model has 45 fewer parameters to 
be estimated as compared to the full MβA model.

The formal method to test our hypothesis is to calculate the Bayes factor, defined as the ratio 
of the marginal likelihood of the constrained MβA model to the marginal likelihood of the full 
MβA model. Then a Bayes factor greater than 1 would indicate that there is no evidence in fa
vour of the full MβA model and therefore, the background mark probabilities do not capture 
home advantage. However, as a consequence of both MβA models being high-dimensional 
(∼1,500 parameters), calculating their marginal likelihoods proved computationally 
infeasible.

Table 6. Posterior summaries and convergence diagnostics from 2,000 posterior samples for selected parameters 
from the MβA model after screening with (W , N) = (5, 100)

Parameter Mean sd R̂ N(eff ) Parameter Mean sd R̂ N(eff )

β3→3∣1 0.52 0.04 1.00 1309.81 ϕ3→4∣2 1.81 0.41 1.01 540.41

β27→8∣1 1.97 0.86 1.00 1953.81 ϕ3→5∣3 1.38 0.35 1.01 576.16

β24→1∣2 1.51 0.09 1.00 2042.84 ϕ3→10∣3 −1.31 0.59 1.01 1098.83

β3→4∣2 0.65 0.03 1.01 913.52 δ3∣1 0.56 0.03 1.00 1805.80

β3→5∣3 0.63 0.04 1.01 1933.43 δ3∣2 0.24 0.08 1.00 1356.85

β3→10∣3 0.81 0.24 1.01 882.31 δ3∣3 0.03 0.01 1.00 2207.39

ϕ3→3∣1 1.70 0.50 1.01 792.46 α 6.30 0.09 1.01 866.96

ϕ27→8∣1 -0.74 0.87 1.00 2159.96 ω9,3 0.59 0.26 1.03 334.15

ϕ24→1∣2 3.29 0.37 1.02 539.25 ω10,3 0.67 0.25 1.01 341.24
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As an alternative, for the constrained MβA model, we calculate its out-of-sample log predictive 
density on the same test data as carried out for all the other fitted models in Section 6.2. In fact, the 
constrained MβA model (􏽣lpd = −21,589.28) turns out with better predictive performance than the 
full MβA model (􏽣lpd = −21,599.81), supporting our claim that the background process of the 
game is not influenced by home advantage.

Figure 6. Visualising the impact of prior specifications by overlaying the posterior and prior densities for selected 
model parameters for the MβA model with (W , N) = (5, 100).

Table 7. Cumulative log posterior densities 􏽣lpd over 10 game periods in the test data for all fitted models along with 
the number of estimated parameters d (par) in each model

Model Abbreviation d(par) 􏽤lpd

Homogeneous Poisson process (Baseline) MSTHP 90 −35,469.50

Matrix β (W, N) = (10, 50) Mβ2 538 −22,288.64

Matrix β (W, N) = (5, 50) Mβ1 538 −22,152.08

First-order Markov chain (Baseline) FOMC 870 −21,898.31

Scalar β Sβ 902 −21,838.04

Vector β Vβ 915 −21,829.81

Matrix β with abilities (W, N) = (5, 100) MβA 1539 −21,599.81

Matrix β (W, N) = (10, 100) Mβ4 988 −21,496.56

Matrix β (W, N) = (5, 100) Mβ3 988 −21,342.57

Note. For the Mβ models, W is the number of transient events and N is the number of significant event pairs identified in 
the rule-based framework for reducing model complexity.
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We also observe that the successful Pass events account for the majority of the background 
probability mass, while events like Shots and Goals have nearly zero probability. This suggests 
that the Shot and Goal events are highly unlikely to originate solely from the background com
ponent, but are instead triggered by excitations from previous events.

6.4 Excitation factor
The excitation factor α in expression (12) is a scaling factor applied to the contributions from the 
previous occurrences to the event mark probability. In equation (12), the background component 
has a weight of 1, while previous occurrences are weighted by exp (α).

The 95% highest posterior density interval for exp (α) is (451.35, 642.54), providing evidence 
that the contributions from previous occurrences carry substantially higher weight relative to the 
background component. In other words, this indicates that event sequences in football have a sig
nificant dependence on their history.

6.5 Decay rates
As mentioned in Section 4.2 the decay rate βm→m′∣z in expression (12) is the exponential decay 
rate of the excitation caused by an event of mark m on an event of mark m′ at location z. By 
allowing the decay rates depend on the pair of marks involved in the excitation, we had hoped 
to account for scenarios like a Corner event exciting a Pass S event in the short term and a 
Shot event in the longer term. Indeed, the 95% highest posterior density interval for 
βHome Corner→Home Pass S∣3 is (1.34, 2.36) and βHome Corner→Home Shot∣3 is (0.16, 0.44) illustrating 
that the Corner→ Shot excitation decays at a much slower rate compared to the Corner→
Pass S excitation.

6.6 Conversion rates
The parameter γm→m′∣z in expression (12) is the probability the excitation from an event of mark m 
triggers an event of mark m′ at location z.

Table 9 gives the posterior means and standard deviations of γm→m′∣z in the midfield region 
(z = 2) for Manchester United. The probabilities for the Home Win→ Home Pass S, 
Home Dribble→ Home Pass S and Home Pass S→ Home Pass S conversions are higher 
compared to their away team counterparts, indicating that Manchester United is better at retain
ing possession of the ball when playing at home compared to away.

Figure 7 provides a ridge-line plot of the log-odds ratio for the home vs. the away ability of a 
team to convert a Win→ Pass S (Figure 7a) and Pass S→ Pass S (Figure 7b). The teams 
are listed in decreasing order of the means of their respective posterior log-odds ratios which 
are indicated by vertical lines. The percentage values by each plot, indicate the fraction of the dis
tribution greater than 0. All but two teams in Figure 7a and five teams in Figure 7b have greater 
than 50% of their distribution greater than 0, confirming that the vast majority of teams possess a 
higher ability to retain possession while playing at home.

In this way, we not only confirm the well-known home advantage effect, but also quantify team 
performance for games played at home as well as away.

6.7 Team abilities
Figure 8 provides a ridge-line plot of the posterior distribution of the parameters ωc,Home Pass S 
and ωc,Away Pass S. The teams are listed in the decreasing order of the means of their respective pos
terior distributions which are indicated by vertical lines. We observe that Manchester United, the 
team with the highest ability to retain possession in home games (Figure 8a), drop significantly 
down in the rankings for the away games (Figure 8b). This is evidence that when Manchester 
United plays away they seem to deviate from the possession-based strategy they seem to adopt 
in the home games.

Figure 9a provides a ridge-line plot of the posterior distribution of the cumulative ability of a 
team to attempt a shot on goal. A higher ωc,Home Shot, for example, indicates that for the team 
c, an event like Home Pass S is more likely to trigger a Home Shot. We do not expect the cu
mulative abilities ωc,Home Shot + ωc,Away Shot of the dominant teams to be high, as they might pre
fer to make additional passes to create better goal-scoring opportunities. A weaker team, on the 
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other hand typically has fewer opportunities to attack and therefore, is more likely to attempt a 
shot on goal when possible. Indeed, this is what we observe in Figure 9, where we compare 
the team rankings based on their cumulative ability ωc,Home Shot + ωc,Away Shot with the number 
of shots per pass completed in the attacking third (S/P column in Figure 9b) in the training data. 
The comparison between Cardiff City and Norwich City is an interesting example of two teams 
that appear to be similar with 18 and 19 shots on goal attempted, respectively, in their two games 
in the training data. However, the two teams are at opposite ends of the ranking based on their 
cumulative ability ωc,Home Shot + ωc,Away Shot, capturing the clear difference between their at
tacking styles.

Column (a) in Table 10 shows the team rankings based on the cumulative ability to trigger five 
different event types. For example, the Pass column ranks teams in the decreasing order of their 
posterior means of ωc,Home Pass S + ωc,Away Pass S. The teams are ordered in Column (a) in 
Table 10 by the rankings based on their cumulative passing ability. Despite training on just the first 
20 out of 380 games of the 2013/2014 season, the rankings based on the passing ability is a good 
indicator of the positions the teams finished in the final league table of the 2013/2014 season in 
Column (b) in Table 10.

6.8 Event genealogy
The branching structure usi indicates whether the ith event in sth sequence is an ‘immigrant’ (usi = 0) 
or an ‘offspring’ of a previous event with index j (usi = j). Given an observed event sequence F stsns

, 
the conditional branching structure probabilities P(usi ∣ F stsi ) based on the model specification in 
expression (12) are
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Figure 7. Posterior distribution of ϕHome Win→Home Pass S∣2 + ωc,Home Pass S − ϕAway Win→Away Pass S∣2 − ωc,Away Pass S 

in (a) and ϕHome Pass S→Home Pass S∣2 + ωc,Home Pass S − ϕAway Pass S→Away Pass S∣2 − ωc,Away Pass S in (b), from the 
baseline logit specification for incorporating team abilities in equation (13). Interpreted as the relative ability of a team 
to convert a Win to a Successful Pass when playing at home compared to away in (a) and similarly from one 
Successful Pass to another Successful Pass in (b). Teams are ranked in the decreasing order of the means of their 
respective posterior distributions shown by the overlaid vertical lines.
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shots per pass completed in the attacking third (S/P) for each team in the training data.
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specification for incorporating team abilities in expression (13). Teams are ranked in the decreasing order of the 
means of their respective posterior distributions shown by the overlaid vertical lines.
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P(usi = 0 ∣ F stsi ) =
δmsi∣zsi

δmsi∣zsi +
􏽐

tsk<tsi
eα−βmsk→msi ∣zsi

(tsi−tsk)γmsk→msi∣zsi

,

P(usi = j ∣ F stsi ) =
eα−βmsj→msi ∣zsi

(tsi−tsj)γmsj→msi∣zsi

δmsi +
􏽐

tsk<tsi
eα−βmsk→msi ∣zsi

(tsi−tsk)γmsk→msi∣zsi

for tsj < tsi

0 for tsj ≥ tsi.

⎧
⎪⎪⎨

⎪⎪⎩

(17) 

The branching structure probabilities in equation (17) quantify the relative contributions of the 
background process and previous occurrences in the mark probability of the ith event in the sth se
quence. Figure 10 shows the posterior means of the branching structure probabilities for all events 
in the first 4 min of the game between Chelsea and Hull City on 18 August 2013. To illustrate the 
flexibility of the model to account for dependence between events over arbitrary durations of time, 
we highlight the event Home Shot showing a higher probability of being an offspring of the event 
Home Out Corner than being an offspring of the more recent Home Pass S event.

7 Model-based predictions
Finally, we illustrate how the mechanistic modelling framework presented in this paper can be 
used to simulate event sequences in football and obtain predictions of event probabilities in real 
time. We split the game between Arsenal and Tottenham Hotspur (1 September 2013) in the 
test data into 30-s intervals. For each interval, given the history of events up to but not including 

Table 10. Team rankings based on the cumulative ability to trigger a particular event type

(a) (b)

Team Pass Shot Goal Win Save League Position Team

Manchester City 1 11 1 15 11 1 Manchester City

Chelsea 2 5 11 20 4 2 Liverpool

Arsenal 3 9 3 5 7 3 Chelsea

Southampton 4 10 8 7 19 4 Arsenal

Manchester United 5 13 4 2 18 5 Everton

Everton 6 6 17 11 14 6 Tottenham Hotspur

Liverpool 7 18 12 9 5 7 Manchester United

Hull City 8 19 15 1 10 8 Southampton

Tottenham Hotspur 9 2 14 3 6 9 Stoke City

Fulham 10 14 7 14 3 10 Newcastle United

Stoke City 11 7 9 12 8 11 Crystal Palace

Newcastle United 12 8 19 16 17 12 Swansea City

Sunderland 13 1 13 8 2 13 West Ham United

Swansea City 14 17 18 17 12 14 Sunderland

Cardiff City 15 3 2 19 15 15 Aston Villa

Norwich City 16 20 10 4 20 16 Hull City

Crystal Palace 17 16 16 13 16 17 West Bromwich Albion

West Bromwich Albion 18 15 20 10 1 18 Norwich City

Aston Villa 19 12 5 6 13 19 Fulham

West Ham United 20 4 6 18 9 20 Cardiff City

Note. For example, the column Pass ranks teams in the decreasing order of their posterior means of 
ωc,Home Pass S + ωc,Away Pass S. The teams are ordered in (a) by the rankings based on their passing ability, which is a 
good indicator of the final position in the league table of the 2013/2014 season in (b).
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the interval, we simulate events over the next 30 s Q = 100 times for each of the R = 500 posterior 
samples from the MβA model with the tuning parameter setting (W = 5, N = 100).

In Figure 11, we plot the proportion of all simulations within each interval where at least one 
Home Shot event was simulated, and use dotted lines to denote the intervals where a 
Home Shot event was actually observed. We also include a 10-step moving average model 
(MA 10) as a benchmark for comparison. We excluded the first 5 min of the game to ensure 
that we have predictions from both the models being compared. A quick inspection reveals that 
in 11 of the 15 intervals in which a Home Shot is observed, the model predicts a shot probability 
greater than the 10-step moving average model.

In Figure 12, we formally validate the performance of the model against three moving average 
models for the classification task of whether a shot will be observed in an interval. For this pur
pose, we use data from the first 20 games in the test set, where we excluded the first 15 intervals 
of each game to ensure that we have predictions from all four models being compared. To validate 
the models, we had a total of 1,959 intervals out of which 202 intervals had at least one 
Home Shot event. The area under the receiver operating characteristic (ROC) curve is a perform
ance measure that evaluates the performance of a classification model across all classification 
thresholds. The area under the curve (AUC) values are given in the legend and clearly confirm 
the superior performance of the model.
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Figure 10. Posterior means of branching structure probabilities for events in the first 4 min of the game between 
Chelsea and Hull City on 18 August 2013. The highlighted event Home Shot has a higher probability of being an 
offspring of the event Home Out Corner than being an offspring of the more recent Home Pass S event.
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Figure 11. Forecasting the probability of observing at least one Home Shot event in 30-s intervals during the game 
between Arsenal and Tottenham Hotspur (1 September 2013) in the test data. Intervals with observed Home Shot 

events are highlighted using dotted lines. MA 10 is a 10-step moving average model used as a benchmark for 
comparison.
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8 Discussion and concluding remarks
Building on the decomposition of a multivariate distribution function, we showed how the joint 
modelling in classical point process models like Hawkes processes can be decoupled. The intro
duced flexible modelling framework can, for example, retain the characteristic property of excita
tion in Hawkes processes in the model for the marks while avoiding the clustering of event times. A 
comprehensive Bayesian approach for the modelling of flexible marked spatio-temporal point 
processes was developed including an approach to evaluate the predictive accuracy of the fitted 
Bayesian models using the out-of-sample log predictive density.

We presented a case study showing how the modelling framework developed in this paper can 
be tailored to separately model the components of the events in football, namely, the times, the 
locations and the event types. We were also able to incorporate team information into the model 
in a direct way that captured the relative abilities of the teams for each event type. We developed a 
method based on association rules to reduce the increased model complexity introduced by model 
extensions. The rule-based approach identified significant event interactions within sequences by 
placing thresholds on measures of significance. We then evaluated the accuracy of the excitation- 
based models by comparing them against two baseline models and confirmed the superior per
formance of the models with excitation effects.

We provided a detailed parameter description showing how the model parameters can be 
used to gain valuable insight into football. The excitation framework of the best-performing 
model captured both the magnitudes and the durations of all pairwise event interactions across 
different locations. From the conversion rate parameters, we were able to quantify the well- 
known home advantage effect. We also discussed how the team ability parameters can be 
used to obtain rankings for the teams by event type, which can be used as predictors for 
team performance. The team ability parameters also captured some interesting differences in 
the playing styles of the teams that were not immediately apparent just by looking at the 
data. In this way, the model along with its parameters can be used to develop a deeper under
standing of the game-play by the coaching staff and inform strategic decision-making. The pro
posed model can also be used to simulate the sequence of events in a game to obtain real-time 
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Figure 12. Validating the model performance against three moving average models for the task of whether a shot will 
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so on. The ROC curve evaluates the performance of a classification model across all classification thresholds. The area 
under the curve (AUC) values in the legend clearly confirm the superior performance of the model.
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predictions of event probabilities. We believe these predictions would enhance, among other 
aspects, the viewing experience of televised games.

The data set we used consists of events from a single English Premier League season, which has a 
total of 380 games. However, as described in Section 6.1, we only used the first 20 games of the 
season as training data for the modelling exercise, over which every team in the league plays exact
ly one game each at Home and Away venues. This represents the minimum number of games re
quired to ensure the identifiability of all model parameters, specifically the team abilities. Even 
though the volume of data was kept to a minimum for computational reasons, our results illustrate 
that the model can provide valuable insights with limited data. So, the methodology developed in 
this paper can be readily applied to other team sports like rugby, hockey, basketball, American 
football, etc., where there may be fewer events per game or fewer games in a season.

Multiple seasons can be modelled together as if they were just one season using the modelling 
framework we propose, as long as the game rules, and hence, the definition of the events being con
sidered does not change. Another aspect of the tournament to note is the relegation and promotion 
of teams within the league, which results in some teams not playing the same number of games 
over multiple seasons. A limitation of the proposed model is that the game periods are exchange
able, because the likelihood is invariant to the order in which the game periods and the games oc
cur. It would be more natural to allow for the team ability parameters in equation (6) to be 
time-varying, especially over multiple seasons during which team players and managers are likely 
to change. Due to computational reasons, we were not able to utilise most of the data even within a 
single season and current work focuses on overcoming this computational barrier using variation
al inference (Blei et al., 2017).

As none of the methods have been tailored specifically to football or even sports for that matter, 
they can be applied to a wide range of applications that generate event data streams. Specifically, 
the conversion rate parameters can be used to capture the triggering structure between different 
event types, for example, the probability of large earthquakes triggering smaller aftershocks. 
Also, the team ability parameters can be used for other multi-agent environments, for example, 
accidents by car type, countries in the analyses of financial events, individuals in identity systems, 
and so on.
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I am very happy to discuss a valuable and innovative contribution on modelling soccer data. 
Recent advances in technology have provided a wealth of data from a soccer match. The paper, 
for the first time, combines such data in a novel way. In particular, the authors combine event 
data (data about particular events in soccer, like passes, fouls etc.) and spatial data about the lo
cation of players and the ball.

To summarise the paper, it offers an interesting modelling approach for in-game event 
sequences from soccer. The model is based on a marked spatio-temporal point process 
and its estimation is carried out via a Bayesian approach. The model is based on a huge 
amount of rather complex data and can provide quite powerful insights about soccer and 
the performance of teams in different aspects. Data from the Premier League of the period 
2012–2013 are used to illustrate the potential of the methodology. Overall, it provides a novel 
and fresh look on soccer data that, I believe, will find a lot of applications and extensions in the 
near future.

Data availability on soccer has long history. Starting from data collected and annotated by 
hand and personal observation (Reep & Benjamin, 1968), we can now have huge volumes of 
data collected automatically using player tracking technologies. Early research on soccer data 
focused on game-level events such as home advantage, the number of goals and the relative 
strength of individual teams and leagues. Data were available in an aggregated (per match) tabu
lation. Later, the collection of data for match events led to analyses of different events and tactics 
(Decroos et al., 2019). Nowadays, it is possible to track player and ball movements over the 
whole pitch, throughout the course of a game several times per second. This creates very detailed 
data for all actions during the match, including off-ball actions, and allows to calculate and cre
ate different statistics for the performance of the teams and players. Such data can be used in mul
tiple ways, measuring, for example, passing skill by looking at the geometry of players within 
passing lanes and quantifying how players create space for themselves and teammates (Bornn 
et al., 2018). Till now, availability of such data is not easy, but it is even possible to derive 
such data from broadcasting with some limitations. While the analysis of tracking data and event 
data is now known, the present paper is the first attempt to combine them together and create a 
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more holistic view of measuring performances in soccer taking into account the spatial and tem
poral aspects of the game.

The paper contributes both in the soccer modelling and the statistical methodology. For the for
mer, the main contributions are the use of tracking and event data together and the valuable in
sights that one can see from such an approach. Also player and team abilities can be derived 
from the model and create interpretable estimates for them. The model allows a simulation frame
work that can be the basis to simulate games in a very detailed manner.

For the latter, some new spatio-temporal marked point processes are defined that generalise 
classical Hawkes process (exciting process). The authors provide a Bayesian approach to estimate 
the parameters with an implementation in STAN.

There is a number of potential extensions of the recent model. The one direction is about 
the implementation. The current version is slow and needs to be improved. This would help 
to use more data, the current version uses few matches only. Also time varying abilities 
could be introduced if estimation can be done faster. Since the model is based on some 
tuning parameter choices, as for example, the number of zones, a more detailed examination 
is needed for such choices. An inherent advantage of the model is that it can forecast in 
a short horizon the events we expect to see and this makes the model very interesting for in- 
game modelling. As such, some more covariate information could be used that describes the 
in-game characteristics, like the current score, the remaining time, cards (yellows and perhaps 
more importantly red ones) etc. A final, important point, relates to the expansion of the model 
for simulating games, and hence, running scenarios or allow for in-game forecasts. Also note 
that while the model is described for soccer, I can see important extensions for other team 
sports.

I conclude by congratulating the authors on their innovative approach that combines recent ad
vances in data collection in sports with an interesting stochastic model that can produce valuable 
insights for all stakeholders. I enthusiastically propose the vote of thanks.

Conflict of interest: None declared.
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First of all, I want to start by warmly thanking the three authors for their valuable and challenging 
paper and their thorough paper presentation: this is a wonderful and deep scientific work. I will try 
to briefly challenge it from some distinct sides; on the other hand, using Popper’s words, a theory/ 
model is scientific only if is falsifiable.

The paper focuses on modelling of in-game event sequences in association football, the so-called 
touch-ball events, such as goals, corners, passes, etc., and generalises the Hawkes marked 
point processes to better capture the game dynamics. In fact, events in football tend to not 
cluster in time and are characterised by a non-negligible degree of correlation/self-excitation. 
The proposed Bayesian model, combined with an efficient MCMC Stan enginery, is applied to 
events data from the English Premier League 2013/2014: it allows the inclusion of team- 
information covariates, provides a deep game understanding, and informs strategic decision- 
making in real time through real-time predictions of event probabilities. Furthermore, team-ability 
parameters are used to obtain rankings for the teams by event type and capture different teams’ 
styles.

The paper is really well written and the methodology is clearly proposed; I also much appreci
ated how the authors communicated their results through nice plots and tables. I want to mention 
some possible weak criticisms and eventual further developments.

First, the authors could try to extend the volume of training data: at this stage, they use only 20 
games out of 380, the 5% fraction of the whole dataset. To this aim, what about using variational 
inference methods in order to provide faster real-time predictions and estimates? I guess these 
kinds of techniques could dramatically improve the computational times, if compared with the 
standard MCMC sampling.

Second, what about the amount of overfitting in these predictions?
As a third point, I wonder whether and how much the partition of the field in three rectangular 

zones influences the final model estimates.
Fourth, I would consider some posterior predictive checks to assess model accuracy.
Fifth, I wonder whether the model is ‘scalable’ when the number of training matches increases. 

Moreover, is a model with only two games for each of the 20 teams stable enough?
Sixth, passing ability seems a very discriminant predictor, according to your results. Maybe a 

model-free passing ability statistics could be even good to create rankings?
I tried to challenge the paper from some computational, predictive, and interpretative view

points. However, as you can see I have found the proposal in this paper very stimulating and ex
citing. For such reasons, it is with great pleasure that I second the vote of thanks for what will be, I 
am sure, a very influential paper in the field of in-game sports events, and potentially even in other 
applied settings.
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It was a pleasure (at a time when the World Cup is being televised) to hear some analytically based 
evidence on football rather than the usual pundit-based discussions. I enjoyed reading the paper, 
and both the paper and the proposer and seconder prompted some thoughts.

Splitting the field into three parts is clearly a pragmatic approach, but this is done determinis
tically and taken as a fixed part of the analysis. On the other hand, we can imagine that different 
areas of the field are related to different events (or chains of events). Is it possible to split the field 
into areas based on the observed data, and then to make inferences about the importance of dif
ferent parts of the field?

I was intrigued that events in football are more regular than a Poisson process, and it seems to 
me that this is most likely because the shortest inter-event times are missing. Could you therefore 
model the inter-event times more effectively with a truncated Poisson process?

The paper indicates that predicting future events is challenging, but shows some encouraging 
results on prediction of shots at goal. Can you extend the idea of simulating passages of play to 
simulate whole games? And if you do, is the scoreline for a simulated game plausible (e.g. 2–0) 
or implausible (e.g. 14–3)? This would give some evidence for the usefulness of the fitted param
eters in defining the important features of the game.

Finally, I read that statistical modelling for football is difficult because a lot of activity important 
to the outcome takes place off the ball. But the method in the paper focuses exclusively on ball- 
related events. Could you incorporate other information about the positions or qualities of players 
or the team in order to improve your model as a game descriptor?
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Modelling sports is by large a difficult task as human behaviour and many other, perhaps uncon
trolled, factors may unexpectedly change the course of the dynamics. This article, however, proposes 
a flexible family of Hawkes processes in combination with a Bayesian framework for inference. The 
authors are to be congratulated on this valuable and thought-provoking contribution. I would like to 
focus my attention on several aspects that are arguably of interest for the community.

Motivated by the evidence that football events do not cluster in time but only in marks, the au
thors build their approach on decoupling the joint modelling of the times and the marks providing 
a family of marked point processes that generalises the classical Hawkes process, A first point is 
how to model periodic effects in the background rate under this formulation. Under the standard 
equation (2), these effects can be easily added, but under (4), further development is needed. It is 
easy to guess that some sort of periodic or repetitive movements are due in the game. A second 
point is the role of relaxation parameters in (4). These parameters are basically essential to balance 
between the background rate and the triggering effects, as noted in Zhuang and Mateu (2019), and 
also a correct way of defining them permits reducing problems of identifiability, as the authors 
comment in relation to Hawkes processes. I wonder how in the authors’ framework, we can obtain 
the probability that an event comes from the background or if it is triggered by another event. 
Although the authors rely on a Bayesian framework, I would like to draw their attention to an in
ference technique called stochastic declustering and reconstruction, by which we can recover both 
background terms and triggering effects. This method has been implemented for Hawkes proc
esses so far, but adding marks would not mean a more complicated inferential strategy. It is indeed 
helpful in a semiparametric setup.

A final comment has to do with a promising extension of the flexible authors’ mechanistic model 
into two directions. One is considering a bivariate self-exciting mechanistic model, where each 
component is coming from one of the teams. In this context, negative interactions between the 
teams are better delineated. Another aspect is that of considering Hawkes models for trajectories, 
in case we aim for considering the trajectories of the ball conditioned on the player and team. This 
would be trickier but also interesting.

Conflicts of interest: None declared.
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In association football, there exist two types of in-game data: event-sequence data provide quali
tative information on the succession of ball-related events in time and space outlining a local view 
of the match; tracking data report with fine temporal granularity the positions of the ball and every 
player, allowing for a global view of the match, in which the ball is just one of many interacting 
objects. Using event-sequence data, the authors place themselves within a local perspective, with 
the possible undesirable consequence of missing part of relevant information. Figure 1 illustrates 
this idea, by showing two alternative situations in which red Player 1 has different probabilities of 
scoring a goal due to the different positions of the defenders.

By construction, event-sequence data do not report the positions of defenders, producing esti
mates potentially affected by the presence of unobserved information correlated with the observed 
outcome. To mitigate the impact of this shortcoming, multiple solutions can be accounted for. One 
option consists in enriching the event-sequence data with additional qualitative knowledge regard
ing the game situation. If also player tracking data are available, an alternative solution would be 
merging any observed event in the event-sequence data with the corresponding snapshot of player 
and ball positions of the tracking data set.

When this extra information is missing, a careful model specification is required. The process 
defined by the authors represents a brilliant answer to this challenge. Since any sequence of ball- 
related events is partially determined by the player’s locations on the pitch, the observation of a 
certain sequence carries with it additional implicit information about team positioning. Unlike 
most of the recent literature based on Markovian assumptions (Schulte et al., 2017; Rudd, 
2011; Singh, 2019), the Hawkes-fashioned specification in equations (10)–(12) recognises all 
past events as relevant factors in determining match evolution. Recognising event sequences as 
partially linked to the positioning of players may justify why, according to the authors, ‘event se
quences in football have a significant dependence on their history’.

With this model, predictive probability density functions of the occurrence of any marked event 
can be derived. Hence, one could reconstruct via simulation the distribution of the number of any 
event combination observable in a limited amount of time. This is allowed by joint modelling the 
event sequence and the time between subsequent events, with temporal modelling standing as a 
crucial feature to formulate in-game forecasts, and representing a key difference with respect to 
other frameworks based on a discrete-time game-states representation (Decroos et al., 2019; 
Fernández et al., 2021). To exploit such potentialities, fast updates of the parameters are needed, 
requiring new computational approaches (Panos et al., 2021).

A final remark concerns how model complexity is addressed. It would be interesting to compare 
the association rule learning method with alternative strategies in which the modelling assump
tions (e.g. Su et al., 2016) or prior distributions (Ishwaran & Rao, 2005) directly account for 
sparsity.
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To conclude, we thank the authors for their contribution, hoping that our thoughts may enrich 
the discussion.
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Figure 1. On the left, a sketch of the pass (continuous arrow) that led to the goal scored by Jack Wilshere (red circle, 
player 2) for Arsenal against Norwich, recalled in Figure 1 of the paper. Norwich player positions are reported with 
smaller yellow circles. On the right, a sketch of an alternative game situation, in which defenders 3 and 4 of Norwich 
City are placed, arbitrarily, in different positions with respect to the observed ones. Dashed arrows denote 
unobserved shot events.
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We thank the authors for their novel contribution to modelling the game of football in a dynamic 
manner that allows for flexible parametrisation. More generally, we are excited to read another 
methodological contribution that leverages the rich, complex data that are becoming increasingly 
available across all sports. As the field of sports analytics has matured in recent years, we are seeing 
more and more substantive methodological research also pushing forward the statistics and data 
science disciplines (see e.g. Journal of Quantitative Analysis in Sports). We encourage other re
searchers to pursue similar interdisciplinary work tackling complex problems in sports analytics. 
While, as the authors note, this approach can be applied to other scientific disciplines, these com
ments will focus on the impact of their approach in sports analytics.

Sports have a natural hierarchical structure across multiple facets, e.g. football teams consist of 
players with observed performances across plays within games across seasons. Statisticians need to 
make modelling choices about which levels to estimate or aggregate. The authors provide a clear 
demonstration of how this approach can provide team ability assessments. However, this of 
course results in an aggregate view, collapsing information distinguishing individual players. 
Does this approach comport to player-level parametrisation? Is it a matter of data? computational 
burden? A more granular view at the player-level could reveal invaluable insights that are relevant 
to teams at understanding their roster composition.

Additionally, the authors discuss how simulating in-game events with their proposed model esti
mates event probabilities. This is an exciting feature of their work, enabling the calculation of an 
expected goal value at a precise moment within a game. Seminal work by Cervone et al. (2016) in
troduced this idea in basketball using high-resolution spatio-temporal tracking data. More recently, 
Fernández et al. (2021) directly apply machine learning methods to estimate the expected goal value 
in football. While the methodology is inherently different, the end use case for analysts in sports is 
similar. Have the authors explored using their approach to provide a real-time value for player de
cision making? What are the advantages of their model in comparison to the simpler machine learn
ing framework by Fernández et al. (2021)? This discussion would be advantageous for both 
statisticians and data scientists as well as sports analysts looking to implement these approaches.

Again, we thank the authors for their insightful contribution. We look forward to future work, 
possibly addressing computational burdens, and are excited at the prospect of applying this ap
proach in other sports applications.
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1 Introduction
We are grateful to all discussants for the insightful comments, thoughts, pointers, and proposals 
for extending our work. We identified that the discussion contributions evolve around the 
themes: (i) Estimation and scalability, (ii) Evaluation of predictive performance and overfitting, 
(iii) Choice of field zones, (iv) Inclusion of extra covariate information, (v) Game simulation and 
in-game forecasts, (vi) Model outputs, (vii) Data considerations, and (viii) Model extensions. In 
what follows, we structure our reply according to those themes directly referring to the relevant 
contributions.

2 Estimation and scalability
Karlis (2023) and Egidi (2023) note that the current Hamiltonian Monte Carlo implementation 
can be slow and would benefit from improvement. We acknowledge these observations and 
note that this has been dealt with in the recent work by Panos et al. (2023) that develops a vari
ational inference framework to provide a highly scalable procedure for training the models we in
troduced. Panos et al. (2023) also extend the model to allow for time-varying abilities within their 
proposed variational inference framework and report computational times of a few hours for a 
whole season’s worth of touch-ball data.

Stival and Schiavon (2023) suggested using sparsity-inducing priors as an alternative to our 
work’s association rule learning method to deal with model complexity. That is an excellent sug
gestion that we plan to pursue as part of future work. The main challenge we faced in our limited 
attempts with sparsity-inducing priors within the current vanilla posterior sampling framework is 
again the dimension of the parameter space. Nevertheless, we believe such prior structures can 
prove helpful alongside the variational inference framework of Panos et al. (2023).
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3 Evaluation of predictive performance and overfitting
Egidi (2023) enquires about posterior predictive checks to assess model accuracy and the amount 
of overfitting in the model predictions.

In our work, we evaluate the predictive performance of the models using the log-pointwise pre
dictive density on test data; see Section 6.2 of the main text. Of course, if prediction is the aim of 
the modelling exercise, we recognise that it is helpful to evaluate the models’ predictive perform
ance using additional evaluation criteria that compare predictions against observables more expli
citly. Examples include out-of-sample root mean square error for the ability to predict the times of 
future events, and the wealth of classification performance measures for the ability to predict 
future marks (see, for example, Sokolova & Lapalme, 2009, for a systematic analysis of such). 
Within their variational framework, Panos et al. (2023) evaluated the model’s performance using 
such criteria and found that it offers highly competitive computational and predictive performance 
against other state-of-the-art methods, which typically involve high-dimensional structures 
through semi- or non-parametric components.

We did not observe any severe overfitting of the models. The order of the models in terms of 
increasing out-of-sample log-pointwise predictive density in Table 7 is similar to the one obtained 
by naively evaluating the in-sample log-pointwise predictive density. The latter is an overestimate 
of the expected log-pointwise predictive density with respect to future data. A notable difference is 
with the MβA model (matrix β with team abilities), which has the largest number of parameters, 
and the largest in-sample log-pointwise predictive density. Despite being close to the best and 
second-best models, the MβA model is the third best in the out-of-sample evaluations in 
Table 7. That may indicate a small degree of overfitting for that model, most probably because, 
in the training data, each team plays just one game at their home and one at an away venue.

4 Choice of field zones
Karlis (2023), Egidi (2023), and Smith (2023) comment on the choice of partitioning the field into 
three zones of known area and enquire how that choice influences the model estimates.

The event triggering parameters of the Mβ parameterisation of the model (see expression (12) 
in the main text) depend on specifying a partition. That dependence enables us to readily infer 
the importance of different zones for particular actions, substantially enhancing interpretability 
(see Sections 6.1–6.4 for such interpretations). For example, we can compute the chance of com
pleting a successful pass or attempting a shot on goal in a particular zone. The choice of zones 
and their areas represent an idealisation of our understanding of the game, where the playing 
strategies have a natural dependence on whether the ball is in the defensive, midfield or attacking 
third of the field.

The recommendation of Smith (2023) for a more data-driven approach to determine the parti
tions is fruitful and an exciting area for future work. For example, we can consider a team- 
dependent, continuous spatial process that respects the field boundaries (see, for example, Solin 
& Kok, 2019) for h(zi ∣ ti, F ti−1 ; η) in expression (7) of the main text, and threshold the field adap
tively into a fixed number of zones. This way, zones will have an adaptive area that depends on 
how each team realises its strategy.

5 Inclusion of extra covariate information
Karlis (2023), Smith (2023), and Yurko and Nugent (2023) suggested including covariate infor
mation, such as in-game characteristics, off-the-ball player positions and player qualities to im
prove the model performance.

Our current case study uses only the team information as covariates to demonstrate the model
ling framework. Nevertheless, the modelling framework readily allows for including other cova
riates to drive the cross-excitation of the marks; see Section 4.3 of the main text. Including 
covariates about the game’s current state, such as the current score, number of cards, etc., may 
be particularly beneficial in predictive ability and is the topic of ongoing investigations. The cross- 
excitation of the marks can also incorporate information about the positions and qualities of play
ers if that information is available.
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Other parameters, such as the background process parameters, excitation factors and decay 
rates, can also be appropriately linked with covariate information through regression structures. 
The inferential or predictive benefits of including such regression structures should be weighed 
against the increased model complexity.

6 Game simulation and in-game forecasts
Karlis (2023) and Smith (2023) enquire about the model’s ability to simulate whole games. The 
experiments in the paper only dealt with 30-second simulations.

The simulation framework of Section 7 of the manuscript and its implementation through the 
codebase we provide allows for the simulation of an arbitrary period or even the whole game using 
the in-game forecasts. We did run a limited number of simulations for entire games, and the fore
casted scorelines were in the plausible spectrum. Still, more work is needed to study the usefulness 
of the proposed model for such applications.

7 Model outputs
Egidi (2023) notes that passing ability appears to be a markedly discriminant predictor of team 
rankings and wonders whether model-free passing ability statistics could be good for generating 
rankings. The model is not specified with the direct intent to predict team rankings. Our rankings 
are a bonus, but perhaps unsurprising, output from using a highly interpretable parameterisation. 
Further work is required to study the utility of the model parameters for generating team rankings 
using data from multiple seasons and leagues.

Yurko and Nugent (2023) asked if we explored using our approach to provide a real-time value 
for player decision-making. That is an exciting area of application, which we did not consider and 
for which our approach is well suited. Including player-level covariate information is necessary in 
that direction, and we intend to explore it in future work.

8 Data considerations
Egidi (2023) enquires whether a model trained on only two games for each of the 20 teams is stable 
enough. Our decision to use only the first two games for each of the 20 teams resulted from our 
attempt to demonstrate the wealth of insights that can be generated from our proposal using a lim
ited amount of information, also accounting for the computational limitations we have been fa
cing when fitting the models. A potential stability assessment could come by fitting the models 
over different sets of games. Note that the variational inference framework in Panos et al. 
(2023) overcomes the computational limitations and can fit the MβA model with time-varying 
abilities in a whole season’s worth of touch-ball events in a few hours.

Smith (2023) suggests that the observations that events in football are more regular than Poisson 
may be because the shortest inter-event times are missing. That is true in the data analysed. Certain 
kinds of events in football, such as off-the-ball events like player runs, are not recorded. We found 
that the gamma model was adequate for modelling the inter-event times for the available data. 
Still, the truncated Poisson, as suggested by Smith (2023), is a valid alternative to compare with.

9 Model extensions
Mateu (2023) presents some helpful model extensions we have yet to consider and plan to inves
tigate, including (i) using periodicity on background rates and (ii) using Hawkes models for the 
ball’s trajectories. Naturally, and as identified by the discussant, the former extension is more dir
ect through the conditional intensity function than through the decomposition of a multivariate 
distribution function in (4). A remedy is to employ similar specifications as in Zhuang and 
Mateu (2019) and add periodic effects on the definition background mark probabilities in (5). 
Extensions in direction (ii) are directly possible through the appropriate specification of 
h(zi ∣ ti, F ti−1 ; η) in expression (7) of the main text. See Section 4 for relevant discussion.

Another direction for extension mentioned by Mateu (2023) is accommodating negative inter
actions between events. Indeed, our development here cannot capture inhibition behaviour (i.e. 
having the occurrence of an event decrease the likelihood of another event to occur). We define 
a multivariate process on composite event types, where each event type is tracked for both the 
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home and the away team (see Table 3 in the main text) to capture excitations from events both 
within each team and between teams. Capturing inhibition through our model specification is 
an exciting direction and valuable for the diverse applications of those models, for which recent 
developments such as Costa et al. (2020) and Bonnet et al. (2021) can be helpful.

Mateu (2023) also enquires how the probability of an event coming from the background or 
being triggered by another event can be computed. That is possible by calculating the posterior 
conditional branching structure probabilities in expression (17), which we use for deriving event 
genealogies in Section 6.8 of the main text.
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