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Abstract: Background: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6 i), abemaciclib, palbociclib,
and ribociclib, have been FDA-approved for the treatment of hormone receptor-positive (HR+),
HER2−negative (HER2−) advanced breast cancer (aBC). This targeted therapy has revived hope in
those aBC patients who did not respond to standard therapies. Interestingly, when administered
as a single agent, CDK4/6 modulated several peripheral blood cells after a short-course treatment
of 28 days. However, the impact of these immune effects has yet to be thoroughly investigated.
Methods: We administered abemaciclib, palbociclib, and ribociclib monotherapy to 23 patients
with HR+/HER2− metastatic breast cancer. The aim is to investigate the impact of on-treatment
modifications on peripheral blood cells and their composite scores in patients after a 28-day course
of CDK4/6 i alone. Results: In the current study, we observed a significant decrease in neutrophils
(p-value < 0.001) for patients treated with abemaciclib, palbociclib, and ribociclib. An overall decrease
of Tregs was observed and potentially linked to palbociclib treatment. The neutrophile to lymphocyte
(N/L) ratio was also decreased overall and potentially linked to abemaciclib and palbociclib treatment.
Platelets were decreased in patients administered with abemaciclib. Notably, the radiometabolic
response was available only for those patients treated with ribociclib and abemaciclib, and only
those lesions treated with ribociclib reached statistical relevance. Conclusions: Our study strongly
supports the notion that CDK4/6 inhibitors induce tumour immune modulation. N/L ratio and
platelet levels decreased due to treatment. Future studies should test whether patients would benefit
from immunomodulators in association with CDK4/6 agents in a larger clinical trial. Moreover, the
CDK4/6-induced immune modulation could also be considered a potential predictive clinical factor
in HR+/HER2− advanced breast cancer.
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1. Introduction

Breast cancer (BC) is the most diagnosed cancer in women worldwide, with over
2.2 million new cases in 2021 [1]. Two out of three cases of BC include hormone receptor-
positive (HR+) and human epidermal growth factor receptor 2-negative (HER2−) histol-
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ogy [2]. Endocrine therapy (ET) combined with cyclin-dependent kinase 4 and 6 (CDK4/6)
inhibitors, namely, abemaciclib, palbociclib, and ribociclib, is currently the standard first-
line hormonal palliative treatment for HR+/HER2− metastatic BC (mBC), both in pre-and
postmenopausal patients [3].

CDK4/6 act to control cell cycle progression through the early G1 phase and are
positively regulated by the interaction with cyclins (e.g., D1/D2/D3) and negatively regu-
lated by tumour suppressors (e.g., p16 INK4 A) that stop CDK4/6 interaction with D-type
cyclins [4]. Once the stimulatory signal is provided, cyclin D-CDK4/6 complexes hyper-
phosphorylate retinoblastoma proteins (RB), releasing E2 F transcription factors, which
guide the transcription of genes responsible for cell cycle progression. RB and p16 INK4 A
play a pivotal role in the regulation of cell proliferation, and several inactivating mutations
in R.B. and p16INK4A genes have been identified in various cancer types [4,5].

Broadly targeting the cell cycle using CDK inhibitors started in the early 1990s with
dinaciclib and flavopiridol [6–8]. Unfortunately, the outcome of these preliminary trials
was underwhelming, primarily due to poor patient selection criteria and low specificity of
compounds. Joint efforts were made to develop more effective CDK4/6 inhibitors, which
ultimately led to the development of palbociclib (PD0332991), an orally available CDK4/6
inhibitor synthesized by Pfizer [9]. In May 2015, palbociclib was granted breakthrough
therapy designation and, subsequently, FDA approval for the treatment of postmenopausal,
HR+/HER2− breast cancer patients in association with fulvestrant (a selective HR de-
grader) or an aromatase inhibitor. Further selective CDK4/6 inhibitors, including abemaci-
clib/LY2835219 (Eli-Lily, Indianapolis, IN, USA) and ribociclib/LEE011 (Novartis, Basel,
Switzerland), were developed with additional properties and safer toxicity profiles.

Abemaciclib, palbociclib, and ribociclib demonstrated increased progression-free
survival from 5 to 10 months in crucial clinical trials [10–16]. Furthermore, a recent meta-
analysis showed that CDK4/6 inhibitors in association with hormonal therapy improved
overall survival (OS) (independent of endocrine sensitivity, menopausal status, visceral
involvement, and age) when compared to ET alone [17]. For the reasons above, CDK4/6
therapy associated with ET is considered the gold-standard treatment for HR+/HER2−
mBC with no extensive visceral involvement. Despite the survival benefits of CDK4/6
inhibitors, resistance occurs in a large fraction of patients (approximately 15% and 30%
in those administered with CDK4/6 plus anti-aromatase inhibitors or fulvestrant, respec-
tively) [18]. Further research by Turner et al. showed that a potential resistance mechanism
to CDK4/6 treatment—and thus leading to tumour relapse—might involve specific muta-
tions occurring in Rb, ERS1, and PIK3 CA genes [19]. Artega et al. additionally observed
that FGFR1 gene amplifications can be a resistance mechanism to CDK4/6 inhibitors and re-
sult in tumour relapse [20]. Notably, there are currently no predictive factors of response to
CDK4/6 inhibitors, and ER positivity is deemed to be the only robust marker in predicting
CDK4/6 response in breast cancer patients.

However, BC progression is closely associated with the immune system [21]. Adaptive
and innate immunity affect the occurrence, development, and spread of breast cancer [22].
Moreover, immune tolerance is one of the crucial factors in the development of tumour
resistance to treatments. Available evidence suggests that tumour-infiltrating lymphocytes
play an essential role in tumour monitoring and are related to increased survival [22].
Previous studies have mainly focused on the local immune response within the tumour
microenvironment; however, several studies have shown that the local antitumour immune
response is connected to the systemic immune response [23]. Additionally, some trials
have observed that unexpected T cell clones in the peripheral blood might lead to better
outcomes [18]. The role of circulating immune cells in the control of tumour response to
therapies has gained widespread interest over the last decade, and baseline lymphopenia
has been observed as a potential prognostic factor in different types of cancer [18].

However, very little has been published concerning the predictive and prognostic role
of peripheral blood lymphocytes (PBLs). In our study, we focus on PBLs and platelets.
These samples are easy to access, simple to analyse, allow for dynamic monitoring, and
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offer robust homogeneity compared to TILs. Only a few studies have observed that the
neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) before
neoadjuvant treatment, mostly including taxanes and anthracyclines, are associated with
responsiveness and prognosis [24–26].

The present study aimed to explore the biological effect of short abemaciclib, palboci-
clib, and ribociclib (28 days of continuous treatment for abemaciclib, 21 days of treatment
and one week off for palbociclib and ribociclib) on circulating immune cells and platelets,
in 23 advanced ER+/HER2− BC patients. Additionally, we investigated the radiometabolic
effect of the aforementioned chemotherapeutic agents on 9 out of 23 patients (24 lesions
in total). The data collected could provide a reference base for exploring other biomarkers
to streamline treatment decisions in the future by enabling early identification of patients
responding to therapy.

2. Materials and Methods
2.1. Study Design and Eligibility Criteria

From January 2019 to February 2020, 23 treatment-naïve patients diagnosed with
metastatic Luminal A and B breast cancer (stage IV, according to the AJCC 8th edition)
eligible for systemic therapy were enrolled at the ASST of Cremona Hospital. Only those
patients with an Eastern Cooperative Oncology Group (ECOG) performance status of
1 or below, with good baseline cardiac, renal, hepatic, and haematological functions,
were recruited for the study. The study was conducted following the Declaration of
Helsinki, Good Clinical Practice principles, and all local regulations. The study (Mozart
Trial EUDRACT 2018-002116-26) was granted ethical approval by the ethical committee of
the ASST of Cremona Hospital (IRB Approval 27.12.18 n 433), and all patients involved
provided written consent.

2.2. Study Objective and Endpoints

This study’s main objective was to investigate the biological effects of the CDK4/6 i ad-
ministered alone in a window of opportunity fashion in metastatic BC patients [17,27]. The
primary endpoint was the exploratory evaluation of early changes in circulating immune
cells for the overall cohort of patients (n = 23) induced by each agent under investigation.
Secondary endpoints included the experimental assessment of radiometabolic (PET/TC)
response to either abemaciclib, palbociclib, or ribociclib short course.

2.3. Study Treatments and Procedures

Patients were assigned to orally receive either abemaciclib (n = 8, 34.8%), palbociclib
(n = 6, 26.1%), or ribociclib (n = 9, 39.1%) at a dose of 150 mg/bid daily, 125 mg/daily, and
600 mg daily, respectively (28 days of continuous treatment for abemaciclib, 21 days of
treatment and one week off for palbociclib and ribociclib) before starting with the standard
combination with letrozole 2.5 mg/daily [17,27]. Blood sampling was performed at baseline
and after 28 days of treatment. Treatment was stopped in cases of unacceptable toxicity or
imaging confirmation of disease progression. Toxicities were classified according to the CT-
CAE version 4.03. All patients enrolled in the study experienced at least one adverse event
(AE), and all except 1 patient in the 600 mg dose group experienced at least one grade 3 AE.
The most frequent AEs were hematologic, followed by nausea and increased laboratory val-
ues. The most frequent AEs of any grade were hematologic, a finding consistent with other
studies of CDK4/6 i. The most frequent treatment-related ≥3 grade AEs were leukopenia
(82%), neutropenia (72%), and lymphopenia (69%). However, these AEs were generally
mild and none of them individually occurred in more than two patients enrolled in the trial.
All events resolved without clinical action. None of the patients discontinued treatment
due to an AE.

FDG18-PET/CT scan was conducted at baseline and after 28 days of treatment ± 2 days.
Patients were considered responsive to agents under investigation when a reduction of
SUVmax was significant after 28 days of treatment. Conversely, patients were considered
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nonresponsive when stability or increase in SUVmax was observed according to PERCIST
criteria. The same radiologist evaluated PET/CT responses at baseline and after 28 days
of treatment.

2.4. Flow Cytometry Analysis

Flow cytometry analyses were used to investigate the circulating immune cells via
whole blood samples, which were taken before and following either abemaciclib, palbo-
ciclib, or ribociclib administration. The use of Becton Dickinson (BD) FACSCantoTM and
BD FACSCanto IITM with BDTM Cytometer Setup and Tracking (CS&T) control enabled
signals to be reproducible and comparable in spite of any fluctuation in environmental
conditions. BDFACSC Diva Software was used for the acquisition and assessment of at least
1.5 × 106. The BD Multitest 6-color TBNK kit (BD) was used for the assessment of the
following subpopulations: lymphocytes B, natural killer (NK), and T cells with CD4 and
CD8 subpopulations.

2.5. Statistical Analysis

The distribution of continuous variables was inspected for normality using the Shapiro–
Wilk test. Data were reported using the mean and standard deviation (SD) if normally
distributed or median and range (minimum–maximum) if not. Categorical variables were de-
scribed by frequency and proportion. Parameters of interest, including SUV, the overall count
of lymphocytes (CD45+), count of lymphocytes B (CD19+), NK (CD16+CD56+), T (CD3+),
T Helper (CD3+CD4+), T Suppressor (CD3+CD8+), Tregs (CD3+CD4+CD25++CD127−),
neutrophils, platelets, CD4/CD8, N/L (neutrophil to lymphocytes) and P/L (platelets
to lymphocytes) ratios before and following 28-day treatment, were compared using the
Student’s t-test and the Wilcoxon matched-pairs test for continuous data. We used water-
fall plots to provide an overview of how patients responded to the therapies. Statistical
analysis was achieved by R software (version 4.1.21, R Core Team (2020). R: A language
and environment for statistical computing. R Foundation for Statistical Computing, Vienna,
Austria, URL https://www.R-project.org/ (accessed on 1 February 2022). A p-value < 0.05
was deemed to be significant, although formal comparisons were only exploratory.

3. Results
3.1. Patients and Tumour Characteristics

A total of 23 patients were enrolled. The median patient age was 62.8, and surgery
technique, namely, either conservative or mastectomy as initial treatment, was equally
distributed. All patients were diagnosed with metastatic stage IV disease. In case of
relapse, metastasis was biopsied for biomarker evaluation. In terms of molecular subtype,
16 (69.6%) patients carried the Luminal B subtype (ER-positive and/or PR-positive tumours
with negative HER2 and low Ki67 proliferation (<14%)), while 7 (30.4%) patients carried
the Luminal A subtype (ER-positive and/or PR-positive tumours with positive/negative
HER2 and high Ki67 proliferation (≥14%)) [28]. All metastases were hormone-sensitive.
Eight patients were administered with abemaciclib (34.8%), six patients received palbociclib
(26.1%), and nine were administered with ribociclib (39.1%). At present, 14 patients (60.9%)
are still alive, while 9 (39.1%) are deceased (median follow-up of 9.5 years). Patients’
characteristics are summarised in Table 1.

Table 1. Patients’ characteristics.

Variable n= 23 Patients

Age
Median 62.8

Menopause status
Pre 5 (22%)
Post 18 (78%)

https://www.R-project.org/
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Table 1. Cont.

Variable n= 23 Patients

Surgery (initial treatment), n (%)
Conservative 11 (47.8%)
Mastectomy 12 (52.2%)

Stage, n (%)
IV 23 (100%)

Metastatic site
Brain 16 (70%)
Liver 8 (35%)
Lung 5 (22%)
Node 2 (7%)

Molecular subtype (primitive tumour), n (%)
Luminal A (HR+/HER2−) 7 (30.4%)
Luminal B (HR+/HER2−) 16 (69.6%)

Adjuvant therapy
AI 16 (70%)

ECP + AI 3 (13%)
ECP + LHRH + TAM 4 (17%)

Type of treatment, n (%)
Abemaciclib 8 (34.8%)
Palbociclib 6 (26.1%)
Ribociclib 9 (39.1%)

Status, n (%)
Alive 14 (60.9%)
Dead 9 (39.1%)

Follow-up (years)
Median (IQR) 9.5 (4.8–14.7)

Abbreviations: SD, standard deviation; HR, hormonal receptor; HER2, human epidermal growth factor
receptor−2; AI, aromatase inhibitors; ECP, epirubicin + cyclophosphamide (4 cycles) + paclitaxel (weekly);
LHRH, gonadotropin-releasing hormone; TAM, tamoxifen; IQR, interquartile range.

3.2. Overall Treatment Effect on Immune Circulating Cells and Platelets

Immune circulating subpopulations and platelets were evaluated at baseline and
after 28 days of treatment (Figure 1). We observed a decrease in the number of platelets
and all immune cell subpopulations, including the overall count of lymphocytes (CD45+)
(from an average of 1664.7 cells/µL to 1552.4 cells/µL), lymphocytes B (CD19+) (from
an average of 198 cells/µL to 125 cells/µL), NK cells (CD16+CD56+) (from an average
of 311.6 cells/µL to 280.7 cells/µL), T cells (CD3+) (from an average of 1134.3 cells/µL
to 1076.3 cells/µL), T Helper cells (CD3+CD4+) (from an average of 680.0 cells/µL to
654.2 cells/µL), T Suppressor cells (CD3+CD8+) (from an average of 470.7 cells/µL to
396.6 cells/µL), Tregs (CD3+CD4+CD25+CD127−) (from an average of 59 cells/µL to
46 cells/µL), neutrophils (from an average of 3.45 cells/µL to 1.33 cells/µL), platelets
(from an average of 250.8 cells/µL to 228.7 cells/µL), CD4/CD8 ratio (from an average of
1.74 cells/µL to 1.56 cells/µL), and N/L ratio (neutrophil to lymphocytes) (from an average
of 2.23 to 1.00). Contrastingly, the P/L ratio (platelets to lymphocytes) was increased (from
an average of 167.6 cells/µL to 1784.2 cells/µL). Among these values, only those regarding
Tregs, neutrophils, and the N/L ratio were reported to be statistically significant, with
p-values of 0.02, <0.001, and <0.001, respectively (Table 2).
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Baseline 1 Month
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Lymphocytes abs (CD45+)
Mean (SD) 1664.7 (589.2) 1552.4 (701.4) 0.33

Lymphocytes B (CD19+) abs
Median (min–max) 198 (21–484) 125 (8–448) 0.21

Lymphocytes NK
(CD16+CD56+)

Mean (SD) 311.6 (152.4) 280.7 (151.3) 0.22
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Mean (SD) 1134.3 (486.8) 1076.3 (555.1) 0.48
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Table 2. Cont.

Variable
Baseline 1 Month

p-Value
(Cells/µL) (Cells/µL)

Lymphocytes T Suppressor
(CD3+CD8+) abs

Mean (SD) 430.7 (233.1) 396.6 (235.1) 0.35

Lymphocytes Treg
(CD3+CD4+CD25++CD127−)

Median (min–max) 59 (30–126) 46 (0.0–127) 0.02

Neutrophils
Median (min–max) 3.45 (1.20–9.91) 1.33 (0.71–2.49) <0.001

Platelets
Mean (SD) 250.8 (67.2) 228.7 (71.8) 0.16

CD4/CD8 ratio
Median (min–max) 1.74 (0.95–4.36) 1.56 (0.69–4.43) 0.55

N/L ratio
Median (min–max) 2.23 (0.77–7.18) 1.00 (0.27–6.00) <0.001

P/L ratio
Mean (SD) 167.6 (62.9) 1784.2 (87.9) 0.37

Abbreviations: abs, absolute value; SD, standard deviation; N/L, neutrophil to lymphocyte; P/L, platelet
to lymphocyte.

3.3. Treatment Effect on Immune Circulating Cells and Platelets According to the
Therapeutic Agent

Immune circulating subpopulations and platelets were further evaluated at baseline
and after 28 days according to each specific treatment. In agreement with previously
reported results, we observed an overall decrease—after 28-day therapy for each drug—in
the number of Tregs, neutrophils, platelets, and N/L ratio. However, Tregs and platelets
were found to be decreased at a statistically significant level in those patients administered
with palbociclib (from an average of 59 cells/µL to 44 cells/µL, p = 0.04) and abemaciclib
(from an average of 224.4 cells/µL to 187.8 cells/µL, p = 0.03, Figure 2). Interestingly,
neutrophils were decreased at a statistically significant level in patients administered with
all treatments under evaluation, namely, abemaciclib (from an average of 3.32 cells/µL
to 1.32 cells/µL, p = 0.02), palbociclib (from an average of 3.31 cells/µL to 1.46 cells/µL,
p = 0.03), and ribociclib (from an average of 3.45 cells/µL to 1.39 cells/µL, p = 0.008).
Additionally, the N/L ratio was also reported to be significantly decreased in those patients
administered with abemaciclib (from an average of 2.07 cells/µL to 0.84 cells/µL, p = 0.02)
and palbociclib (from an average of 2.48 cells/µL to 1.11 cells/µL, p = 0.03) (Table 3). No
statistically significant difference was observed for other immune cells.

Table 3. Comparison of values between baseline and after 1 month of therapy according to the type
of therapy.

ABEMACICLIB (n = 8) PALBOCICLIB (n = 6) RIBOCICLIB (n = 9)

Variable Baseline
(Cells/µL)

1 Month
(Cells/µL)

p-
Value

Baseline
(Cells/µL)

1 Month
(Cells/µL)

p-
Value

Baseline
(Cells/µL)

1 Month
(Cells/µL)

p-
Value

Lymphocytes Treg
(CD3+CD4+CD25++CD127−)

Median (min–max)
58 (36–120) 53 (22–127) 0.53 59 (45–97) 44 (37–84) 0.04 59 (30–126) 45 (0–102) 0.109

Neutrophils
Median (min–max)

3.32
(2.02–5.78)

1.32
(0.78–2.37) 0.02 3.31

(1.93–9.91)
1.46

(0.71–2.12) 0.03 3.45
(1.20–6.25)

1.39
(0.84–2.49) 0.008

N/L RATIO
Median (min–max)

2.07
(1.50–4.86)

0.84
(0.46–2.00) 0.02 2.48

(1.79–7.18)
1.11

(0.71–2.16) 0.03 1.75
(0.77–3.88)

0.92
(0.27–6.00) 0.16

Platelets
Mean (SD) 224.4 (48.8) 187.8 (33.2) 0.03 234.8 (58.7) 232.7 (87.0) 0.96 284.9

(77.39) 262.6 (74.1) 0.44

Abbreviations: SD, standard deviation; N/L, neutrophil to lymphocyte.
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3.4. Radiometabolic Biomarkers According to Therapeutic Response

Radiometabolic response at baseline and after 28 days (28 days of continuous treatment
for abemaciclib, 21 days of treatment and one week off for palbociclib and ribociclib)
was available for only 9 out of 23 patients and a total of 24 malignant lesions. Four of
these patients were administered with abemaciclib (10 malignant lesions), and five were
issued with ribociclib (14 malignant lesions), as reported in Table 4. Overall, a significant
decrease in median SUVmax was reported among all 24 lesions from baseline. The median
SUVmax measure decreased from an average value of 4.8 at diagnosis to 2.9 at the end
of treatment (p = 0.006). Regarding the specific treatment, only those lesions treated with
ribociclib reached statistical significance (p = 0.008), with a decrease in median SUVmax
from an average value of 4.75 at diagnosis to 2.9 at the end of treatment. Those lesions
treated with abemaciclib, although showing a decreasing trend for SUVmax, did not achieve
statistical relevance (Figure 3).

Table 4. Comparison of SUV variation between baseline and after 1 month of therapy.

Lesions (n= 24) Baseline 1 Month p-Value

SUV
Median (min–max) 4.8 (1.9–13.0) 2.9 (0.0 −9.9) 0.006

Lesions Treated with Ribociclib
(n = 14)

SUV
Median (min–max) 4.75 (3.50–7.25) 2.90 (0.45–5.7) 0.008

Lesions Treated with
Abemaciclib (n = 10)

SUV
Median (min–max) 4.85 (2.53–5.93) 3.65 (1.95–6.4) 0.51
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4. Discussion

Despite the number of studies already published, no clear indication of a role for
peripheral systemic immunity has been observed so far in patients administered with
CDK4/6 i, partly due to the lack of standardized cut-off values and the limited number of
patients enrolled.

In our study, we first confirmed that CDK4/6 i-based therapy resulted in a considerable
decrease in peripheral blood white cells (primarily neutrophils), as previously observed
in phase II and phase III studies investigating CDK4/6 i agents [15,29–33]. The overall
decrease in total white blood cell and neutrophil counts is a well-established and common
adverse event (AE) of palbociclib, ribociclib, and abemaciclib-based therapy [10,15,29–32].
This side effect is likely due to the CDK6 inhibition of transcription modulation of the EGR1
gene, which results in the impairment of hematopoietic stem cell proliferation and differen-
tiation in bone marrow [34]. In a pooled safety analysis (including the PALOMA 1, 2, and
3 trials) 1% of patients reported grade 3–4 lymphopenia and the level of any grade 5-year
lymphopenia was 2.8% [10,11,35]. In the MONALEESA 2 trial, grade 3 and 4 lymphopenia
rates were 7% and 0.9%, respectively [12]. However, the overall impact of CDK4/6 i-based
therapy on peripheral blood counts in PALOMA, MONARCH, and MONALEESA trials
has not been accurately discussed, and only a single case study describes a patient who de-
veloped neutropenia, thrombocytopenia, and anaemia following a palbociclib regimen [36].
It is worth mentioning that lymphopenia is a robust predictor of chemotherapy-induced
toxicity and is also a predictive factor of treatment efficacy in lung, breast, and colon
cancer [37–39]. It has been observed that palbociclib and ribociclib have higher selectivity
towards CDK4 and CDK6 than abemaciclib, although the latter demonstrated higher off-
target activity and approximately 13 times more specificity for CDK4 than CDK6 [40,41].
For this reason, the incidence of neutropenia is more commonly observed in patients treated
with abemaciclib. Unlike chemotherapy-induced neutropenia, CDK4/6 i-induced neutrope-
nia is not correlated with an increased risk of developing severe infections, possibly because
CDK4/6 i does not result in irreversible damage and apoptotic cell death in white blood
cell precursors in the bone marrow [42]. On the contrary, CDK4/6 i can enable cytotoxic
activity by mitigation of myeloid-cell-mediated immunosuppression [43]. In light of the
above, our analysis is an emerging study describing the significant reduction of peripheral
blood counts following single-agent abemaciclib, palbociclib, and ribociclib administration.

A decline in neutrophil-to-lymphocytes (N/L) ratio was also observed during this
study, mainly in the abemaciclib and palbociclib groups. No statistically significant dif-
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ferences were observed for the ribociclib group. It was recently observed that peripheral
immunity and inflammation balance indicators such as the N/L ratio might be a predictive
response marker and correlate with good outcomes [24]. Vernieri et al. recently showed
that the N/L ratio was associated with response to platinum agents in metastatic triple-
negative breast cancer patients [44]. Further studies have investigated the N/L ratio in
breast cancer patients following neoadjuvant chemotherapy [45–47]. Overall, a low N/L
ratio potentially suggests a systemic background of decreased immune activation and
resulting inflammation, leading to better treatment response [24].

A decrease in the overall count of peripheral regulatory T cells (Tregs) was also ob-
served. To the best of our knowledge, this is one of the first studies observing an in vivo
correlation between CDK4/6 i administration and a decrease in peripheral Tregs in pa-
tients diagnosed with ER+/HER2− breast cancer. The ability of CDK4/6 i to decrease
Treg count has been described only in preclinical studies [48]. In this study, we observed
a significant decrease in Treg levels, particularly in patients administered palbociclib. Over-
all cohort data reported a reduction of Tregs cells, particularly the effector Tregs subset
(CD3+CD4+CD25++CD127−), which is involved in immunosuppressive functions.

Ultimately, we would conclude that ribociclib showed the most significant effect
on tumour shrinkage—according to the radiometabolic response, whilst no statistically
significant reduction was reached in those lesions treated with abemaciclib. We cannot
exclude that tumour shrinkage induced by abemaciclib treatment did not reach statistical
relevance due to the limited number of lesions under investigation. However, abemaciclib
appeared to be the CDK4/6 with the strongest effect, according to its ability to reduce
neutrophil, N/L ratio, and platelet levels; this is likely due to its higher selectivity for CDK4
and CDK9 [49].

With regards to thrombocytopenia, although we observed decreased platelet counts
among the entire cohort of patients, this was most apparent in patients treated with abemaci-
clib. Thrombocytopenia is another emerging side effect of CDK4/6 i treatment reported in
PALOMA−2, PALOMA−3, MONALEESA, and MONARCH−3 trials. More specifically,
any-grade thrombocytopenia was observed in 15–25% of patients in PALOMA−2 and
PALOMA−3 trials, with grade 3 and grade 4 thrombocytopenia observed in 1 to 2% and 0.2
to 1% of patients, respectively [29,30]. The incidence of any-grade thrombocytopenia was
9.3 to 11% in MONALEESA trials, with grade 3 and grade 4 thrombocytopenia observed in
1% of patients [33,50]. As for abemaciclib, any grade thrombocytopenia occurred in 36.2 to
53.2% of patients in MONARCH−2 and MONARCH−3 trials, with grade 3 and grade 4
thrombocytopenia reported in 1.3 to 2% and 0.6 to 1.4% of patients, respectively [13,15].

5. Conclusions

Collectively, these data strongly support the idea that CDK4/6 inhibitors induce
tumour immune modulation. Moreover, when considering the critical need for the identifi-
cation of patients with either a good treatment response or resistance to CDK4/6 agents,
CDK4/6 immune modulation should be evaluated as a novel and robust predictive factor.
Furthermore, modifications of peripheral immune subsets and tumour-infiltrating lympho-
cytes have been found to be closely related to one another, and immune profiling might
become a crucial tool in guiding treatment choice.

Despite some limitations, including the limited sample size, long follow-up, and
data concerning LDH as an indicator of tumour burden, the study brings some important
knowledge to the field, showing that there are immunological effects correlated to the use
of CDK4/6 inhibitor as a single agent. Furthermore, to overcome the aforementioned limi-
tations, these results must be investigated in large-scale studies with extensive follow-up
and assessment of other inflammatory markers.
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