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A B S T R A C T

Wooden Breast (WB) anomaly on poultry meat causes changes in appearance, reduction of technological and
nutritional quality, and consumer acceptance. The objective of this study was to identify and classify chicken
with WB using a Computer Vision System (CVS) and spectral information from the Near Infrared (NIR) region by
linear and nonlinear algorithms. Moreover, it was characterized the physicochemical and technological para-
meters, which supported a decision tree modeling. Pectoralis major muscle (n= 80) were collected from a
poultry slaughterhouse, spectral information was obtained by NIR and CVS, and WB of chicken was char-
acterized. Combining image analyses with a Support Vector Machine (SVM) classification model, 91.8% of
chicken breasts were correctly classified as WB or Normal (N). NIR spectral information showed 97.5% of ac-
curacy. WB showed significant increases in moisture and lipid contents and value of a*, decreases of protein and
ash contents, and water holding capacity. The shear force of raw WB was 49.51% hardness, and after cooking
was 31.79% softer than N breast. CVS and NIR spectroscopy can be applied as rapid and non-destructive
methods for identifying and classifying WB in slaughterhouses.

1. Introduction

In recent years, the occurrence of wooden breast (WB) in broilers
has been reported and is associated with the rapid growth and devel-
opment of breasts, but its etiology remains unclear [1–3]. To meet the
growing demand for chicken meat, mainly from western countries,
genetic improvement is used as an important solution for the poultry
industry to obtain high-yielding broilers [4]. However, this has led to
an increased incidence of WB in Europe, USA and Brazil, and is asso-
ciated with the rapid growth and development of chicken breast
[5,1–3].

WB is characterized by reduced meat quality related to undesirable
changes in visual aspects, technological characteristics, and nutritive
properties [2,6–8]. WB myopathy shows hardness and pale areas, su-
perficial viscous fluid and can be accompanied by white striping (WS)
[2]. In addition, the breast shows alterations in chemical and

technological characteristics, such as increased moisture and lipid
contents, reduced protein content and water holding capacity
[1–2,6–8]. The identification and characterization of WB at the
slaughterhouse are based on visible appearance and hardness of
chicken breast [2] and depends on the sensitivity, training, and
knowledge of the analyst.

The use of rapid, non-destructive, and accurate analytical methods
has increased among industry professionals seeking to optimize food
quality inspection lines and reduce measurement time and costs [8–10].
These methods include near infrared (NIR) spectroscopy and image
analysis. NIR spectroscopy is a nondestructive, efficient, and rapid
technique for measuring properties from complex food matrices such as
moisture, carbohydrate, lipid, and protein contents using regression
models [11–15]. NIR-based analysis involves large groups of overtones
and combination bands related to chemical bonds usually linked to the
desired response information [16]. Commonly, multivariate analysis is
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used to extract information from NIR spectra, which can also be em-
ployed for modeling the studied problem. This multivariate model
evaluates characteristics extracted from a sample based on its spectral
properties and can be used to predict attributes in new samples [17].

In contrast, image analysis solutions have been widely employed
because of their flexibility, simplicity, low-cost, and reduced processing
time. An example of this flexibility was explored by Barbin et al. [18]
through automatic broiler breast color measurements, which presented
larger and trustful areas measured in contrast of the small area mea-
sured by colorimeter. A CVS is a computing implementation of an au-
tomate image analysis solution for sample analysis from the acquisition
to decision step. Sun [19] described CVS as a fast, robust, objective,
non-destructive, and reliable method, as a low-cost alternative for la-
boratory analysis. In some applications, it is possible to simulate the
human technician’s visual and instrumental inspection using a CVS, for
example, to estimate fat content in poultry meat [19]. Features ex-
tracted from images are often used for classification of samples and to
create prediction models of quality parameters. Some approaches in-
clude linear methods and non-linear machine learning algorithms, such
as SVM, Multilayer Perceptron (MLP), Decision Trees (DT), and
Random Forest (RF) [20]. There are no reports in the literature re-
garding the application and comparison of two non-destructive
methods, such as NIR spectroscopy and CVS, in order to obtain a more
accurate method to identify and classify chickens with WB.

Therefore, considering the impact of WB myopathy on the quality
and acceptability of chicken breast, the aim of this study was to identify
and classify chicken with WB using a CVS and spectral information from
the NIR region by linear and nonlinear algorithms. In addition, physi-
cochemical and technological parameters of N and WB samples were
carried out.

2. Material and methods

2.1. Chicken breast selection

Eighty pectoralis major muscle samples were obtained from a com-
mercial processing plant at 3 h postmortem. Broilers from a single flock
of Cobb fast (48 days of age and 3.1 kg live weight) were slaughtered
according to standard commercial slaughtering practice. Chicken
breasts were selected and classified by a specialist as described by Sihvo
[2]. N breasts (n= 40 samples) presented soft and light-pink char-
acteristics, while WB (n=40 samples) presented substantial hardness,
pale areas, presence of superficial viscous liquid and protuberances at
the caudal end. The samples were placed in separate plastic bags and
transported under refrigeration to the laboratory. After image acquisi-
tion by CVS and NIR spectral acquisition by spectrometer, the breast
samples were stored at 4 °C for determination of physical-chemical and
technological parameters.

2.2. Computer vision system

An image acquisition system (Doc L-Pix model, Loccus
Biotecnologia, São Paulo, Brazil) was used to acquire images of N and
WB chicken. The equipment consists of a standard illumination and
image acquisition system controlled by L-PIX IMAGE 7.1 software.
Images were stored with 1600×1200 pixels in png format. Overview
of the proposed CVS was (i) image acquisition and segmentation; (ii)
contrast enhancement and feature extraction, and (iii) classification
model induction in two classes, as N or WB.

2.2.1. Image acquisition and segmentation
After image acquisition, the meat portion was segmented from the

background (Step 1). Image segmentation steps are presented in Fig. 1.
Contrast enhancement was applied to the segmented region to accent-
uate the visual texture aspects typically present in WB of chicken. Image
features were extracted from the processed image (Step 2) and used to

describe the occurrence or non-occurrence of WB myopathy by ap-
plying a machine learning model (Step 3).

For chicken breast segmentation, we applied illumination normal-
ization (Step 2 in Fig. 1), as described by Barbin et al. [18] to attenuate
the effect of incident light spots. This technique uses a combination of
the original image’s brightness information combined and its reverse
intensity representation to mitigate the visual effect of incident spot-
lights. Next, the difference between V and H channels from hue, sa-
turation, and value (HSV) images was used to separate the sample from
the background. Pixels not related to the sample were removed from
the image. A threshold was established to create a mask for segmen-
tation of the sample from the background using Otsu’s thresholding.

The operation resulted in a rough binary meat mask, representing
the region of interest (ROI) (Fig. 1, Step 5). At the end of Step 6, a
morphological erode operation was performed to separate small con-
nected regions, such as undesired ruler’s contours. An algorithm for
removing small connected regions (Step 7) was used to eliminate pos-
sible remaining noisy areas.

2.2.2. Contrast enhancement and feature extraction
The normalized, segmented, and filled images were subjected to the

contrast limited adaptive histogram equalization (CLAHE) as shown in
Fig. 1, Step 9. This technique was performed to increase the contrast
between the meat region and the visual appearance of WB myopathy.
The CLAHE technique uses two parameters: window size, corre-
sponding to the length of blocks that subdivide the image for equal-
ization, and clip limit, which determines a limit for contrast enhance-
ment. For images with 1600× 1200 resolution, we suggest a window
size of [64, 64] and clip limit of 0.07.

Features extracted from images provide useful information for au-
tomatic classification as described by Nixon and Aguado [21] and can
be used to describe the visual appearance of chicken breast to differ-
entiate N and WB samples. In this study, we used features from two
groups: intensity and texture.

The color information of an image follows a probability distribution
as described by Li et al. [22]. Thus, their distribution moments were
used as image features for classification. Grayscale metrics were chosen
to explain the occurrence of WB, as the output from the presented
image processing framework corresponded to an improved grayscale
enhanced image. Hence, the moments of the color of the first and
second order (mean and standard deviation) were extracted directly
from the intensity representation. We also calculated entropy, a sta-
tistical measure of randomness, to characterize the texture and contrast
of the grayscale image [23–25]. Furthermore, from the histogram
(frequency distribution of pixels values), we extracted the standard
deviation, kurtosis, and skewness values (second, third, and fourth
statistical moments).

Texture features are used to identify visual repetition patterns (such
as WB striations), objects, or regions of interest in an image and are
applied in a wide variety of image classification tasks [26]. Local binary
patterns (LBP) were used as a texture descriptor of local images [27]. It
encodes the local texture in a binary vector by comparing a grayscale
pixel and its neighbors. We adopted 10 values from the rotationally
invariant features of LBP [27]. Table 1 summarizes all image features
used to build the supervised classification models.

2.2.3. Identification of WB in chickens and classification approaches
A supervised machine learning algorithm was used to classify

chicken breasts into N and WB categories. A machine learning model
learns how to associate meat surface visual aspects with a categorical
response and can then be applied to predict new samples. A total of four
classification approaches were evaluated. Our choice was based on
evaluating techniques belonging to algorithms in different families and
their wide use in different classification tasks. Thus, the experiments
were performed using SVM, MLP, J48 decision tree, and RF ensemble
classifier method.
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SVM is a machine learning algorithm that belongs to the class of
kernel-based methods, for which the main idea relies on finding a hy-
perplane that best separates a problem’s classes. SVMs are highly flex-
ible for evaluating multiple types of problems and were originally used
for binary classification tasks [19]. In our experiments, the e1071 R
package for SVMs induction was used.

Another frequently applied algorithm is MLP feed forward net-
works, an important class of artificial neural networks (ANN) that si-
mulate brain synapses and knowledge learning using linear and non-
linear relationships [19]. The RSNNS R package was utilized for MLP
computation.

Considering its simplicity, the J48 algorithm, a decision tree tech-
nique and version of the C4.5 technique was developed by Weka soft-
ware [28]. The classification model is built by successive partition of

input space into smaller problems. A wrapper for Weka J48 im-
plementation was employed in our experiments using the RWeka
package.

The RF method is an ensemble learning approach proposed by
Breiman [29]. The term ensemble refers to the combination of many
simple, or weak, learners in a set, in RF case, to combine many decision
trees into a forest, naming the technique. The randomForest R package
was used in this study.

Each described classification model was performed 50 times using
different training and testing dataset configurations. A holdout ap-
proach with 70% of the dataset was used for training and the remaining
cases for testing trained classifiers. To evaluate the performance of the
classification models, accuracy and F-measure were used. Recall or
sensitivity measures the effectiveness of a classifier to identify positive
labels (i.e., problem’s classes). For each class, recall is defined as the
number of true positive predicted cases divided by the number of in-
stances belonging to the referred class. We used weights equal to one
for both precision and recall in F-measure calculation.

2.2.4. Decision tree
The decision tree corresponds to a flexible statistical method used to

solve class prediction problems. Moreover, the decision tree is easily
interpretable because the prediction model has a tree structure with a
clear decision and classification [30].

The decision tree was built to better understand the image features
and use a practical model for application in a commercial broiler
slaughterhouse to classify chicken breasts into N or WB. Finally, per-
formance was evaluated by determining the prediction model accuracy.

Fig. 1. Computer Vision System - Image processing steps.

Table 1
List of all image features used in the proposed approach for Wooden Breast
(WB) assessment.

No. Type Name Description

1 Intensity MeanInten Mean value of intensity image
2 Intensity StdInten Standard deviation of intensity image
3 Intensity EntropyInten Entropy of intensity image
4 Intensity StdHistInten Standard deviation of intensity image

histogram
5 Intensity KurtHistInten Kurtosis of intensity image histogram
6 Intensity ShewHistInten Skewness of intensity image histogram
7–16 Texture LBP Vector of Local Binary Patterns (LBP)

rationally invariant features
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2.3. NIR spectroscopy measurements

The absorbance spectra of N and WB of chicken were obtained in
the NIR range of 1150–2150 nm using a portable MicroNIR 2200
spectrometer (JDSU Corporation, Santa Rosa, CA, USA) with a linear
variable filter as the dispersing element. For absorbance measurements,
a collar was attached to the sensor to provide an optimal focal distance
of 3mm from the chicken breast to the spectrometer. The equipment
was calibrated using a 99% diffuse reflectance standard.

Spectral information was acquired on the surface of N and WB of
skinless chicken samples at 25 °C, as described by De Marchi et al. [31],
at three different locations on the surface of each sample: cranial,
middle, and caudal of the pectoralis major muscle. Before each mea-
surement, the lens was cleaned with 70% ethanol and distilled water
and dried using soft paper.

2.3.1. Spectral data processing
Spectral data of the N and WB samples obtained from the MicroNIR

were analyzed using the Unscrambler software (Version 9.8, Camo
Software AS, Oslo, Norway). Principal component analysis (PCA) was
used for identification and classification of samples [32]. In addition,
stepwise regression was used for selecting most relevant wavelengths to
be used as predictors for Linear discriminant analyses (LDA) models,
with full cross-validation.

2.4. Measurements of physicochemical and technological parameters

2.4.1. Color and pH measurement
Color was measured 24 h post-mortem on the bone-side surface of

chicken breast using a Minolta chromameter CR-400, illuminant D65
(Minolta Camera Corp., Meter Division, Ramsey, NJ, USA) and the re-
sults were reported for lightness (L*), redness (a*), and yellowness (b*)
according to the Commission Internationale de l’Eclairage color system
[33]; pH was measured 24 h post-mortem using a contact pH-meter
(Testo 205, Lenzkirch, Germany).

2.4.2. Chemical composition
Moisture, protein, ash, and lipid contents were determined on the

cranial part of the pectoralis major muscle according to the Association
of Official Analytical Chemists (AOAC) [34] in triplicate.

2.4.3. Water holding capacity (WHC) and cooking loss (CL)
WHC was determined 24 h post-mortem according to Carvalho et al.

[35]. CL was determined as described by Honikel [36] with minor
modifications. After 24 h post-mortem, cubes from the cranial area were
weighed (75 ± 5 g) and placed in sealed packages and then cooked
until the internal temperature reached 75 °C. CL was obtained using the
following equation: 100− [(Wi−Wf/Wi)× 100], where Wi and Wf
were the initial and final sample weights, respectively.

2.4.4. Texture
Shear force (SF) was measured in the cranial area of the chicken

breasts (raw and cooked) according to Honikel [36] with minor mod-
ifications. Chicken breast cuts were placed in separate plastic bags and
were immersed in water and heated until the internal temperature
reached 75 °C. Next, raw and cooked chicken breast were cut into
2× 1×1 cm rectangular pieces. SF was measured using a texture
meter Micro Stable Systems TA-XT2i (Stable Micro Systems, God-
alming, Surrey, UK) and samples were sheared perpendicularly to the
fibers with a Warner Bratzler shear blade. Testing conditions were:
pretest speed 10.0 mm/s, test speed 5.0mm/s, posttest speed 10.0 mm/
s, and distance 20mm as described by Wilhelm et al. [37].

2.4.5. Statistical analyses
The physicochemical (moisture, ashes, proteins and lipids, color,

and pH) and technological (WHC, CL, and SF) parameters of N and WB

of chicken were compared by Student's t-test using Statistica 8.0 soft-
ware (StatSoft, Tulsa, OK, USA).

3. Results and discussion

3.1. Computer vision system

To examine different training/testing compositions and thus pro-
vide a more realistic evaluation scenario, induction was performed as
described. Table 2 presents a summary of the performance results ob-
tained using the four classifiers during the experiments ordered by
accuracy. As shown, SVM showed superior performance with accuracy
above 90%. The higher F-measure values for all classification techni-
ques indicate that the predictive task could be explained by the image
features.

Fig. 2 shows a boxplot representation of the induced models’ ac-
curacies. Outliers were identified from the analysis of the algorithms’
performance, being possible to visualize in the boxplot (Fig. 2), which is
characterized by the points that are outside the curve. SVM was the
only model without outliers. Both MLP and J48 presented narrow
boxes, indicating stability, but also presented outliers in contrast to the
previous statement. RF showed similar behavior as SVM, but with lower
accuracy and the presence of outliers.

SVMs were first projected to deal with binary classification pro-
blems and high dimensional data, thus achieving the best results
overall. However, because of the manipulation of the kernel function to
explore non-linear relationships in the data, the resulting model may
have low interpretability. The generated hyperplane equation did not
reveal the relationships between image features and WB myopathy.

ANN are very powerful and flexible tools for modeling diverse types
of problems. In fact, MLPs are universal function approximators [38]
and, in our experiments, achieved a performance very similar to that of
SVM. However, in this approach, a satisfactory performance result lies
in the proper choice of network architecture, which may be determined
by extensive experimentation. Additionally, the resulting model does
not give clear information regarding how to explain features combined
for this task.

The RF bagging approach combines many weak, simpler classifiers
in an ensemble. The use of bootstrap sampling to compose each forest’s
classifier makes this technique robust against unbalanced (which was
not our case) and noisy data. However, the aggregation of many models
makes ensemble comprehension a difficult task. Each tree predictor
uses different cases for its construction, limiting the understanding of
relationships among image features and WB occurrence.

The choice of a proper classification algorithm depends on the ap-
plication to be developed and its requirements. In this study, we com-
pared different techniques based on diverse theoretical foundations to
analyze their behavior for N and WB. All identification and classifica-
tion models shared the same training and test sets during the evaluation
rounds, and misclassification rates for each chicken breast were mea-
sured independently of each classifier. Fig. 3 shows the misclassifica-
tion rate obtained when considering all tested classification approaches.

Table 2
Performance metrics of algorithms tested for identification of Wooden Breast
(WB) samples.

Algorithm Accuracy F-Measure

Mean Std Mean Std

SVM* (%) 91.83 5.39 91.80 5.42
MLP* (%) 90.67 4.34 90.60 4.42
RF* (%) 87.83 4.82 87.75 4.89
J48* (%) 85.25 5.72 85.04 5.98

SVM Support Vector Machine, MLP Multilayer Perceptron, RF Random Forest
and J48.
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The number of misclassifications of an instance was normalized by the
cases to which the sample belonged in the evaluation sets.

In this sense, chicken breast 34 deserves special attention, as it
belongs to the N class. In fact, in 20 of 50 repetitions, this instance was
chosen in testing sets, and nearly no predictors could correctly classify
this sample. Some visual aspects were observed in the corresponding
picture (Fig. 4) comparing the image of chicken breast 34 before and
after contrast enhancement. High levels of striations were observed in
the sample. Image texture features describe this type of characteristic as
a repetition pattern, i.e., visual properties of WB myopathy. Therefore,
the classifier models interpreted chicken breast 34 as a case of WB,
justifying the high error rates obtained. It is important to consider that
the source of information from CVS is the visual appearance, which may
be adversely affected by external factors, such as inappropriate illu-
mination or sample handling. In the last case, skin regions not removed
from carcasses may be interpreted as striations or repetition patterns.
Image acquisition is one of the most challenging steps of a CVS and
affects the system’s performance.

3.1.1. Decision tree
The physicochemical and technological parameters of N and WB

samples were used to build an alternative tool for assessing WB myo-
pathy. Using this decision tree algorithm, it is possible to observe which
of the properties separate samples accordingly. A decision tree was
constructed using information from non-destructive and fast acquisition
techniques, such as pH value and color measurements (L*, a*, and b*).
For this model, the L* (luminosity) was the attribute showing the
highest gain of information, followed by pH (Fig. 5).

In order to optimize the classifier, it was applied cross-validation,
achieving an accuracy of 88.75%. The implementation of the decision
tree in industrial lines may enable rapid prediction of quality and op-
timization of chicken breast inspection without requiring specialized
technicians, sophisticated instruments, and the use of harmful reagents,
reducing time and costs.

3.2. Spectral characteristics of WB samples

Spectral information has been used in previous studies to predict the
quality of chicken breast [13,14]. Loadings of the third principal
component (PC3) of the N and WB samples presented some noise and,
therefore, only the first two principal components PC1 and PC2 were
considered for wavelength selection (Fig. 6a). PCA scores (Fig. 6b) of
the first two principal components of N and WB samples accounted for
97.1% of the variation among the evaluated samples. In addition,
spectral data obtained from N and WB samples was effective for iden-
tifying and separating the samples, confirming that the occurrence of
the WB myopathy alters the chemical attributes of chicken breast which
can be distinguished in the NIR spectral range. The best separation
among chicken breast was obtained using the information from the
cranial area rather than the middle and caudal regions of the sample.
The spectral information in the NIR range provided satisfactory se-
paration between samples, in part because of differences in quality
parameters between these classes. This observation agrees with pre-
vious findings reporting that the cranial area of the muscle is more
severely affected by WB myopathy [2,39].

Successful results were obtained from NIR spectroscopy aiming to

Fig. 2. Overall algorithms’ performance: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Random Forest (RF) and J48.

Fig. 3. Misclassification rate per sample for each algorithm: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Random Forest (RF) and J48.
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identify chicken breast affected by WB myopathy. Therefore, this is a
fast and useful tool that can be applied in chicken slaughtering lines.
Using stepwise regression method, compared to PCA, some essential
wavelengths were selected for classifying samples into N or WB. Among
the MicroNIR 2200 electromagnetic range (1150–2150 nm), 6 wave-
lengths were identified, corresponding to 1281.05, 1378.85, 1452.20,
1639.65, 1835.25, and 1941.20 nm.

Classification into N or WB samples using these wavelengths
showed 97.5% accuracy, with only two samples being improperly
classified (from a total of 80 samples). In contrast, cross-validation
showed a lower accuracy of 96.3% and three samples were mis-
classified. However, among these samples, two were also improperly
classified by the other methods investigated in this study. Thus, these
samples can be considered as analytical outliers. Therefore, both ratings
were considered satisfactory for classifying the samples into N or WB.
More importantly, better results were obtained compared to the CVS
approach.

3.3. Physicochemical and technological parameters of WB samples

It was observed significant differences in chemical composition of N
and WB samples (Table 3). WB samples showed a moisture content that

was 2.21% higher than N chicken breast. Similar results were observed
by Soglia et al. [8] who reported the chemical composition of N, WB,
white stripping (WS), and WB/WS (simultaneous occurrence of ab-
normalities on the same broiler breast). The higher moisture content
observed in WB indicates possible edemas associated with in-
flammatory conditions [2,6].

WB also showed a 106.67% higher lipid content than N breast.
Previous studies showed histopathological changes as degeneration of
muscle fibers and increased intramuscular lipids due to accumulation of
adipocytes at the perimysium, which may explain the increased lipid
content on the affected pectoralis major muscle [1,6–8,40]. Protein
content is an important characteristic of meat and influences meat
nutritional properties, appearance, and texture [1]. WB showed 14.41%
lower protein content than N samples. Similar results were observed by
Mudalal et al. [1] and Soglia et al. [8]. The significant reduction in
protein content was associated with a reduced number of fiber and
muscle tissue degeneration, particularly myofibrillar and sarcoplasmic
proteins [1,2].

Ash content of WB was 13.04% lower than in N samples. Similar
results were reported by Mazzoni et al. [6] with the reduction in mi-
neral content attributed to the occurrence of muscular dystrophy when
membrane damage occurred, with consequent loss of cellular liquids.

Fig. 4. Chicken breast 34, belonging to the Normal class and misclassified in almost all cases, by all classification techniques tested: (a) Original Image; (b) Resulting
image after image processing steps.

Fig. 5. Decision tree from non-destructive and fast techniques of chicken breast meat quality.
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WB samples showed higher ultimate pH post-mortem compared with
N samples (Table 3).Similar results were obtained by Mudalal et al. [1]
and Trocino et al. [7]. This result demonstrated that the muscle de-
generation process decreases the glycolytic potential, reducing lactic
acid content and modifying acidification during post-mortem of pector-
alis major muscle affected by WB myopathy [1,2]. For the color of meat,
WB showed significantly higher values for L*, a*, and b*. Therefore, the
appearance of WB was altered, with more pale areas and yellow color,
as previously reported by Sihvo et al. [2] and Trocino et al. [7].

The WHC of WB was 106.06% lower than in N breast. Previous
studies reported that lower WHC in WB can be associated with a higher

ultimate pH post-mortem and occurrence of fiber muscle degeneration
with the consequent reduction in protein content, particularly myofi-
brillar protein [1,2]. As a result of muscle atrophy associated with
variable amounts of interstitial connective tissue accumulation, raw WB
of chicken showed 49.51% greater shear force than N breast, in
agreement with the results of Sihvo et al. [2] and Trocino et al. [7], who
found that the pectoralis majormuscle affected by WB myopathy showed
greater hardness. In contrast, after cooking, WB was 31.79% softer
(Table 3). Histological evaluation reported by Sihvo et al [2], Trocino
et al. [7], and Velleman and Clark [40], revealed structural changes in
WB of chicken, such muscle degeneration of muscle fiber associated
with intramuscular fat accumulation. This could be explained as the fat
content directly influences the softness of meat.

3.4. Application of CVS approaches, NIR spectroscopy, and
physicochemical and technological parameters to identify and classify WB of
chicken

CVS approaches and NIR spectroscopy were performed in order to
propose a rapid and non-destructive technique for identifying and
classifying N and WB of chickens. In relation to CVS results, superior
performance was achieved using the SVM algorithm with an accuracy
of 91.83%. NIR spectroscopy showed higher performance, with an ac-
curacy of 97.50%. Therefore, successful accuracy was obtained for both
non-destructive and fast techniques and proved to be a potential
method to be implemented in chicken slaughter lines to predict the
quality, identify and classify as N or WB of chickens.

The application of NIR spectroscopy in the food industry has some
advantages, although there are limitations to its use such as lower
sensitivity for identifying the smaller constituents of food. It is re-
commended that for each food group, a method of application of NIR
spectroscopy should be developed, as each type of food is composed of a

Fig. 6. (a) Loadings plot of the two first principal components for spectral data of N and WB of chicken; (b) Score plot of the first two principal components for
spectral data of N and WB of chickens.

Table 3
Physical, chemical and technological parameters of Normal (N) and Wooden
Breast (WB) samples.

Parameters N WB

Mean Std Mean Std

Moisture (%) 74.98b 0.59 76.64a 1.21
Lipids (%) 1.20b 0.40 2.48a 0.64
Protein (%) 24.70a 1.59 21.14b 1.80
Ash (%) 1.15a 0.09 1.00b 0.14
pH 5.74b 0.11 5.85a 0.16
L* 56.12b 2.41 61.71a 2.13
a* 1.62b 0.74 2.66a 0.85
b* 5.97b 1.83 7.36a 2.01
CL (%) 16.48b 2.81 33.96a 4.77
WHC (%) 65.99a 3.62 62.44b 3.93
SF of raw chicken breast (Newton) 12.24b 1.70 18.30a 6.52
SF of cooked chicken breast (Newton) 37.52a 12.17 25.59b 5.93

CL cooking loss, WHC water holding capacity, SF shear force and Std standard
deviation. a,bDifferent letters on the same line were statistically different ac-
cording to Student’s t-test (p < 0.01).
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complex food matrix. In addition, calibration procedures require more
time, and the choice of spectral data processing is complex [41]. In
contrast, CVS results are influenced by the quality of images, standar-
dization of ambient lighting and may generate inadequate results. Thus,
both NIR spectroscopy as CVS have advantages and disadvantages, and
their implementation is strictly related to the specialist knowledge and
solution set up.

4. Conclusions

WB myopathy caused visual, technological, and physicochemical
changes in chicken breasts. Among them, chicken affected by WB
showed significant color changes with increased L*, a*, b*, and pH
values. Texture analyses revealed that raw WB of chicken presented
greater hardness, but after cooking was softer than N breast. In addi-
tion, WB showed increased moisture and lipid contents, reduced mi-
neral and protein contents, and inferior technological quality with re-
duced WHC. To identify this myopathy, we applied two different rapid,
non-destructive and accurate methods. NIR spectroscopy and CVS ap-
proaches showed high accuracy for quality prediction, identification
and classification of chicken breast samples as N or WB, showing that
both systems can be successfully implemented in chicken slaughtering
lines and is strictly related to the specialist knowledge and solution
setup.
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