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Abstract
In this paper, we determine the maximum hmax and the minimum hmin of the Hilbert vectors
of Perazzo algebras AF , where F is a Perazzo polynomial of degree d in n+m+1 variables.
These algebras always fail the Strong Lefschetz Property. We determine the integers n,m, d
such that hmax (resp. hmin) is unimodal, andwe prove that AF always fails theWeakLefschetz
Property if its Hilbert vector is maximum, while it satisfies the Weak Lefschetz Property if it
is minimum, unimodal, and satisfies an additional mild condition. We determine the minimal
free resolution of Perazzo algebras associated to Perazzo threefolds in P

4 with minimum
Hilbert vectors. Finally we pose some open problems in this context.

Keywords Perazzo hypersurface · Lefschetz properties · Gorenstein algebra · Hilbert
function · Minimal free resolution

Mathematics Subject Classification 14J70 · 14M05 · 13E10

1 Introduction

A Perazzo form of degree d is by definition (see [7]) a homogeneous polynomial F ∈
K [X0, . . . , Xn,U1, . . . ,Um]

F = X0 p0 + X1 p1 + · · · + Xn pn + G,

with n ≥ m ≥ 2, p0, . . . , pn ∈ K [U1, . . . ,Um]d−1, G ∈ K [U1, . . . ,Um]d , where
p0, . . . , pn are algebraically dependent but linearly independent.
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The interest of Perazzo forms comes form the fact that their sets of zeros are a class
of examples of hypersurfaces with vanishing hessian which are not cones. The problem
of characterizing the hypersurfaces not cones with vanishing hessian is an important open
problem in projective algebraic geometry since the classical works of Hesse and of Gordan–
Noether [6, 11, 12]. Hesse believed that the hessian of a homogenous polynomial vanishes
if and only if its variety of zeros is a cone, as is indeed the case when the degree of the
form is 2. However, P. Gordan and M. Noether proved that while Hesse’s claim is true for
forms in at most 4 variables, it is false for 5 or more variables and any degree ≥ 3. They also
gave a complete description of the hypersurfaces in P4, non cones, having vanishing hessian:
their equations are elements of K [U1,U2][�], where � is a Perazzo polynomial of the form
X0 p0+ X1 p1+ X2 p2. Since then, many efforts have been made to find a characterization for
arbitrary degree and number of variables. It turns out that all the counterexamples known so far
can be built starting from Perazzo forms (see [7, Appendix A], [18, Chapter 7]). The original
paper of Perazzo [17] deals with the case of cubic hypersurfaces, it was revisited in [8].

The study of hessians of homogeneous polynomials has gained new attention because of
its connection to Lefschetz properties for graded Artinian Gorenstein algebras. Recall that a
standard graded Artinian algebra A has the weak Lefschetz property (WLP) if multiplication
by a generic linear form � has maximal rank in each degree. Similarly A has the strong
Lefschetz property (SLP) if multiplication by �s has maximal rank in each degree for every
positive integer s. The study of the Lefschetz properties for graded Artinian algebras origi-
nates from the Hard Lefschetz Theorem, which implies that the cohomology ring A of any
smooth complex projective variety has the SLP; moreover A is a graded Artinian Gorenstein
algebra.

Although Lefschetz properties have been the subject of intense research in recent years,
many natural problems are still open and the general picture is far from being understood.
In the Gorenstein case every standard graded Artinian algebra can be written as AF , the
quotient of a ring of differential operators by the annihilator of a homogeneous polynomial
F , called its Macaulay dual generator (see Sect. 2.1 for details). Due to work of Watanabe
andMaeno–Watanabe [15, 20], a non-trivial characterization of Artinian Gorenstein algebras
failing the SLP, in terms of the Macaulay dual generator, has been found. Indeed, AF fails
the SLP if and only if one of the non-trivial higher hessians of F vanishes. This result has
been generalised to the WLP using the so called mixed hessians (see [9]).

It follows that the Artinian Gorenstein algebras AF associated to Perazzo forms fail the
SLP. It is therefore natural to pose the question if these algebras satisfy or fail the WLP. This
question has been considered in some recent articles [1, 5, 16], where the case of Perazzo
forms with m = 2 has been completely solved.

Before summarizing the results of those articles, we recall a few basic facts about the
Hilbert functions of graded Artinian Gorenstein algebras. If A is such an algebra of socle
degree d , then its Hilbert function is captured by its h-vector (h0, h1, . . . , hd), where hi =
dimK Ai . Since A is a Poincaré duality algebra, the h-vector results to be symmetric, i. e.
hi = hd−i . On the set of h-vectors of the same length there is the natural componentwise
partial order: given h = (h0, h1, . . . , hd) and h′ = (h′

0, h
′
1, . . . , h

′
d), we say that h ≤ h′ if

hi ≤ h′
i for every i , 0 ≤ i ≤ d .

In the quoted articles the following facts are proved. Let AF be the Artinian Gorenstein
algebra associated to a Perazzo form F with n ≥ m = 2, d ≥ n + 1. Let (h0, h1, . . . , hd) be
its h-vector. Then:

(1) the Hilbert function of AF is unimodal, i. e. h0 ≤ h1 ≤ · · · ≤ hk ≥ hk+1 ≥ · · · ≥ hd
for some k;
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(2) hi ≤ d + 2 for any index i and AF has the WLP if and only if �{i |hi = d + 2} ≤ 1;
(3) the h-vectors of the algebras AF for fixed n,m, d have a maximum and a minimum, that

are completely described. In particular if the h-vector is maximum AF fails the WLP,
while if the h-vector is minimum AF has the WLP if and only if d ≥ 2n;

(4) the Perazzo forms in 5 variables such that the h-vector is minimum admit a pre-
cise description in terms of the position of the 2-plane generated by p0, p1, p2 in
P(K [U1,U2]d−1) with respect to the rational normal curve.

In this article we consider Perazzo forms in any number of variables with the aim to
extend the results obtained for m = 2. Moreover we tackle the problem of describing the
minimal free resolutions of Perazzo algebras. We are able to prove that, for fixedm, n, d , the
h-vectors of Perazzo algebras have a maximum and a minimum as in the case m = 2, and
we describe them in Proposition 3.2 and Theorem 4.2 respectively. But, diversely from the
case m = 2, if m ≥ 3 these h-vectors are not always unimodal. In Theorems 3.5, 3.6 and
4.4 we characterize the integers n ≥ m ≥ 3 such that hmax (resp. hmin) is not unimodal. We
note that hmax is never unimodal for d large enough.

Regarding the WLP, we find that Perazzo algebras with maximal h-vector never have the
WLP, while those with minimal h-vector have the WLP provided that hmin is unimodal and
an additional mild condition is satisfied. The problem of characterizing whenWLP holds for
intermediate h-vectors remains open.

As for our second aim, we are able to compute in Theorem 5.4 the minimal free resolution
for a class of Perazzo algebras, those in 5 variables with minimal h-vector. The proof is by
induction on the degree d , the base of the induction being possible because of the explicit
description of the algebras AF with minimal h-vector.

Many questions remain open, and we devote the last section of this article to list a few
open problems that we think deserve to be considered.

The paper is organized as follows. We start by reviewing in Sect. 2 definitions and basic
results concerning Artinian Gorenstein algebras associated to Perazzo hypersurfaces, mini-
mal free resolutions and Lefschetz properties. In Sect. 3, we determine the maximal Hilbert
function once the integers n,m, d are fixed. We study when this function is unimodal and we
prove that Perazzo algebras with maximal Hilbert function do not have the WLP. In Sect. 4,
similarly, we determine the minimal Hilbert function, study its unimodality and prove that
Perazzo algebras with this Hilbert function, and satisfying an additional mild condition that
implies the unimodality of the h-vector, have the WLP. We also characterize the integers
n,m, d such that the maximum and the minimum Hilbert function coincide. In Sect. 5 we
compute the minimal free resolution for the Perazzo algebras in 5 variables with minimal
h-vector. Finally, in Sect. 6 we pose some relevant open problems in this circle of ideas.

2 Background

In this section we fix notations, we recall the basic facts on Hilbert functions, Lefschetz
properties, minimal free resolutions as well as on Perazzo hypersurfaces needed later on.

2.1 Hilbert functions

Throughout this paper K will be an algebraically closed field of characteristic zero. Given
a standard graded Artinian K -algebra A = R/I where R = K [x0, x1, . . . , xN ] and I is
a homogeneous ideal of R, we denote by HFA : Z −→ Z with HFA( j) = dimK A j =
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dimK [R/I ] j its Hilbert function. Since A is Artinian, its Hilbert function is captured in
its h-vector h = (h0, h1, . . . , hd) where hi = HFA(i) > 0 and d is the last index with
this property. The integer d is called the socle degree of A. We will use the terms “Hilbert
function” and “h-vector” interchangeably along the paper.

We recall the construction of the Artinian Gorenstein algebra AF with Macaulay dual
generator a given form F ∈ S = K [X0, . . . , XN ]; we denote by R = K [x0, . . . , xN ] the
ring of differential operators acting on the polynomial ring S, i. e. xi = ∂

∂Xi
. Therefore R

acts on S by differentiation. Given polynomials p ∈ R and G ∈ S we will denote by p ◦ G
the differential operator p applied to G. We define

AnnR F := {p ∈ R | p ◦ F = 0} ⊂ R,

and AF = R/AnnR F : it is a standard graded Artinian Gorenstein K -algebra and F is called
its Macaulay dual generator. We remark that every standard graded Artinian Gorenstein K -
algebra is of the form AF for some form F , in view of the “Macaulay double annihilator
Theorem” (see for instance [14, Lemma 2.12]). We may abbreviate and write Ann F when
the ring R is understood.

As an important key tool to determine the unimodality of the Hilbert function of a Perazzo
algebra or the minimal free resolution of Artinian Gorenstein algebras associated to Perazzo
threefolds in P

4, we state the following:

Proposition 2.1 Let AF be an Artinian Gorenstein graded K -algebra and set I = Ann F.
Then for every linear form � ∈ A1 the sequence

0 −→ R

(I : �)
(−1) −→ AF = R

I
−→ R

(I , �)
−→ 0 (1)

is exact. Moreover R
(I : �)

is an Artinian Gorenstein graded algebra with � ◦ F as Macaulay
dual generator.

Proof We get the result cutting the exact sequence

0 −→ (I : �)

I
(−1) −→ R

I
(−1)

×�−−−→ R

I
−→ R

(I , �)
−→ 0

into two short exact sequences. The second fact is a straightforward computation. 	


2.2 Minimal free resolutions

Let A = R/I be an Artinian graded K -algebra. It is well known that it has a minimal graded
free R-resolution of the following type:

0 −→ Fn+1 −→ Fn −→ · · · −→ Fi −→ · · · −→ F1 −→ R −→ A −→ 0

where

Fi = ⊕ j R(− j)β
R
i j (A)

and the graded Betti numbers βR
i j (A) of A over R are defined as usual as the integers

βR
i j (A) = dimK [TorRi (A, K )] j .

These homological invariants are ourmain focus and indeed our goal in Sect. 5 is to determine
the graded Betti numbers βR

i j (AF ) of an Artinian Gorenstein algebra AF associated to a
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Perazzo 3-fold F in P
4 with termwise minimal Hilbert function. It is important to point out

that the graded Betti numbers of an Artinian graded algebra A determine its graded Poincaré
series. In fact, the graded Poincaré series of A over R is the generating function

PR
A (t, s) =

∑

i, j

βR
i j (A)t i s j .

If R is regular, then the Poincaré series is in fact a polynomial.

2.3 Perazzo hypersurfaces

The simplest counterexample to Hesse’s claim, i. e. a formwith vanishing hessian which does
not define a cone, is XU 2 + YUV + ZV 2. This example was extended to a class of cubic
counterexamples in all dimensions by Perazzo in [17].

Definition 2.2 A Perazzo hypersurface X = V (F) ⊂ P
N is the hypersurface defined by a

Perazzo form

F = X0 p0 + X1 p1 + · · · + Xn pn + G ∈ K [X0, . . . , Xn,U1 . . . ,Um]d
where n,m ≥ 2, N = n + m, pi ∈ K [U1, . . . ,Um]d−1 are algebraically dependent but
linearly independent, and G ∈ K [U1, . . . ,Um]d .

The Artinian Gorenstein algebra AF associated to a Perazzo polynomial will be called
Perazzo algebra.

The fact that the pi ’s are algebraically dependent implies hessF = 0, while the linear
independence assures that V (F) is not a cone.

We note that, to allow the linear independence of p0, . . . , pn , we must assume

n + 1 ≤
(
d + m − 2

m − 1

)
. (2)

If equality holds in (2) p0, . . . , pn form a basis of K [U1, . . . ,Um]d−1; in this case AF is
called a full Perazzo algebra. Full Perazzo algebras were studied in [4] and [2]. On the other
hand, to guarantee the algebraic dependence for a general choice of p0, . . . , pn we make the
assumption that n ≥ m.

The following lemma plays a key role in the induction step used in the proof of our main
results (Theorem 3.8 and Theorem 5.4).

Lemma 2.3 Let F = X0 p0 + X1 p1 + · · · + Xn pn + G be a Perazzo form of degree d and
let AF be the associated Artinian Gorenstein algebra. Assume n + 1 ≤ (d+m−3

m−1

)
. Then, for

a general linear form � ∈ AF , the polynomial � ◦ F defines a Perazzo form of degree d − 1.

Proof We can write � = a0X0+a1X1+ . . . an Xn +b1U1+· · ·+bmUm for some coefficients
ai , b j ∈ K not all zero. Then we can exhibit the action of � on F as

� ◦ F = X0 p̃0 + · · · + Xn p̃n +
(
a0 p0 + · · · + an pn + b1

∂G

∂U1
+ · · · + bm

∂G

∂Um

)

with

p̃0 = b1
∂ p0
∂U1

+ · · · + bm
∂ p0
∂Um

, . . . , p̃n = b1
∂ pn
∂U1

+ · · · + bm
∂ pn
∂Um

.
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The form � ◦ F has degree d − 1. It remains to prove that the polynomials p̃0, . . . , p̃n are
linearly independent, for a general choice of �.

Let �′ = b1U1 + · · · + bmUm and consider the map

φb : K [U1, . . . ,Um]d−1 → K [U1, . . . ,Um]d−2,

given by p �→ �′ ◦ p. The fact that the (d − 1)−th powers of linear forms span
K [U1, . . . ,Um]d−1 [13, Corollary 3.2], and similarly for K [U1, . . . ,Um]d−2, implies that
φb is surjective. Therefore its kernel has dimension

(m+d−3
m−2

)
. Now let W = 〈p0, . . . , pn〉.

Since the pi are linearly independent,W has dimension n+1. It does not fill the whole space
K [U1, . . . ,Um]d−1, because n + 1 <

(m+d−2
m−1

)
. Using again that the (d − 1)−th powers of

linear forms span K [U1, . . . ,Um]d−1 and because of the assumption n + 1 ≤ (m+d−3
m−1

)
, we

deduce that there is an open dense set B in Km such that for any (b1, . . . , bm) ∈ B, the vector
space ker φb misses W . So, for any such m-tuple (b1, . . . , bm), the map

�′ : W → �′ ◦ W

is an isomorphism, and therefore p̃0, . . . , p̃n are linearly independent. 	


2.4 Lefschetz properties

Definition 2.4 Let A = R/I = ⊕d
i=0 Ai be a graded Artinian K -algebra. We say that A

has the weak Lefschetz property (WLP, for short) if there is a linear form � ∈ A1 such that,
for all integers i ≥ 0, the multiplication map

×� : Ai −→ Ai+1

has maximal rank, i. e. it is injective or surjective. In this case, the linear form � is called a
weak Lefschetz element of A. We say that A fails the WLP in degree j if for a general form
� ∈ A1, the map ×� : A j−1 −→ A j does not have maximal rank.

We say that A has the strong Lefschetz property (SLP, for short) if there is a linear form
� ∈ A1 such that, for all integers i ≥ 0 and k ≥ 1, the multiplication map

×�k : Ai −→ Ai+k

has maximal rank. Such an element � is called a strong Lefschetz element of A.

It is easy to prove that the h-vector (h0, h1, . . . , hd) of any graded Artinian K -algebra
having the SLP or the WLP is unimodal, i.e. there exists an index k such that h0 ≤ h1 ≤
· · · ≤ hk ≥ hk+1 ≥ · · · ≥ hd .

Let AF be an Artinian Gorenstein algebra associated to a Perazzo hypersurface of degree
d ≥ 5 in P4. Recall that by [5, Theorem 4.3] the algebra AF has the weak Lefschetz property
if the Hilbert function of AF is the termwise minimal one, namely (1, 5, 6, . . . , 6, 5, 1).
Furthermore, in [5, Proposition 3.7] and [5, Theorem 4.1] it is proved that the maximal
possible Hilbert function is

hi =

⎧
⎪⎨

⎪⎩

4i + 1 for 1 ≤ i ≤ d+1
4

d + 2 for d+1
4 < i ≤ d

2

symmetry

(3)

and that any algebra AF with Hilbert function as in (3) fails the WLP. As a complete classifi-
cation of Artinian Gorenstein algebras associated to Perazzo hypersurfaces of degree d ≥ 5
in P

4 with the weak Lefschetz property we have the following result.
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Theorem 2.5 Let AF be anArtinianGorenstein algebra associated to aPerazzo hypersurface
V (F) ⊂ P

4 of degree d ≥ 5. Let (h0, h1, . . . , hd) be its h-vector. The algebra AF has the
WLP if and only if #{i | hi = d + 2} ≤ 1.

Proof See [1, Theorem 3.11]. 	


3 Maximal Hilbert function of a Perazzo algebra

In this section we determine the maximal h-vector hmax = hmax (AF ) of a Perazzo algebra
AF for any given m, n, d , extending the results obtained in the case n = m = 2 in [5] and
[1]; and m = 2 and n ≥ 2 in [16]. Let d be the degree of the Macaulay dual generator F of
AF . We will see that, differently from the case m = 2, for m ≥ 3 and d � 0 hmax is not
always unimodal.

Let F be a Perazzo form as in Definition 2.2:

F = X0 p0 + X1 p1 + · · · + Xn pn + G ∈ Sd = K [X0, . . . , Xn,U1 . . . ,Um]d ,
with p0, . . . , pn algebraically dependent but linearly independent.

We will use the following notations: for i = 0, . . . , n

pi =
∑

|λ|=d−1

(
d − 1

λ

)
piλU

λ (4)

where λ = (λ1, . . . , λm) is a multi-index, |λ| = λ1 + · · · + λm ,
(d−1

λ

) = (d−1)!
λ1!...λm ! is the

multinomial coefficient, and Uλ = Uλ1
1 . . .Uλm

m .
Then, for any multi-index γ = (γ1, . . . , γm) such that |γ | ≤ d − 1, the partial derivative

∂ |γ | pi
∂Uγ of pi with respect to γ is equal to

(d − 1)(d − 2) . . . (d − 1 − |γ |)
∑

|μ|=d−1−|γ |

(
d − 1 − |γ |

μ

)
piμ+γU

μ.

Similarly we put G = ∑
|λ|=d

(d
λ

)
GλUλ.

This notation will be useful to compute the h-vector of AF , which is equivalent to com-
puting the dimension of AnnR(F)i for i = 0, . . . , [ d2 ].

Proposition 3.1 Let i ≤ [ d2 ] be an integer number. Let h = (h0, . . . , hd) be the h-vector of
the Perazzo algebra AF . Then hi is equal to the rank of the matrix containing in the columns
the coefficients of the partial derivatives of F of order i .

Proof We put R = K [x0, . . . , xnu1, . . . , um]. We observe that h1 = n + m + 1. From now
on we assume i ≥ 2. Since hi = dim(AF )i = dim[R/AnnR(F)]i , we need to determine
the polynomials φ of Ri such that φ ◦ F = 0. Being F linear in x0, . . . , xn , all polynomials
φ ∈ Ri of degree at least 2 in x0, . . . , xn clearly belong to AnnR(F)i . So assume that φ has
degree ≤ 1 in x0, . . . , xn . We can write

φ = x0
∑

|μ|=i−1

α0
μu

μ + x1
∑

|μ|=i−1

α1
μu

μ + · · · +
∑

|ν|=i

βνu
ν .
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Imposing φ ◦ F = 0 we get:

∑

|μ|=i−1

α0
μ

∂ |μ| p0
∂Uμ

+
∑

|μ|=i−1

α1
μ

∂ |μ| p1
∂Uμ

+ · · · + X0

∑

|ν|=i

βν

∂ |ν| p0
∂Uμ

+ · · · +
∑

|ν|=i

βν

∂ |ν|G
∂U ν

= 0.

(5)

This gives rise to a homogeneous linear system of equations in the unknowns α0
μ, α1

μ, . . . , βν ,
with |μ| = i − 1, |ν| = i . The equations of the system are obtained equaling to zero the
coefficients of themonomials of degree d−i inU1, . . . ,Um and in X0, . . . , Xn,U1, . . . ,Um .
Being char K = 0, in view of notation (4), it follows that, up to a non-zero constant, the
coefficients of the unknowns are precisely the coefficients of the partial derivatives of F of
order i . The theorem is proved. 	

Proposition 3.2 The maximal h-vector of a Perazzo algebra AF , for fixed m, n, d satisfying
(2), is hmax = (h0, . . . , hd) with

hi = min{αi + βi , αi + γi }
for any 0 ≤ i ≤ [ d2 ], where

αi =
(
m + i − 1

m − 1

)
, βi =

(
d + m − i − 1

m − 1

)
and γi = (n + 1)

(
m + i − 2

m − 1

)
.

Proof It follows from a result of Iarrobino, that we recall in Lemma 3.3. Let F be a Perazzo
polynomial as in Definition 2.2 and assume that p0, . . . , pn,G are general. Let us compute
the h-vector of AF . In view of Proposition 3.1, for any i , 1 ≤ i ≤ [ d2 ], we have

hi = dim(AF )i

= dim〈 ∂ i F

∂Xi0
0 . . . ∂Xin

n ∂Uin+1
1 . . . ∂Uin+m

m

| i0 + · · · + in+m = i〉

where i j ≥ 0 for j = 0, . . . , n+m.Being p0, . . . , pn general, this is equal to dim A+dim B
where

A = 〈 ∂ i−1 p0

∂U j1
1 . . . ∂U jm

m

, . . . ,
∂ i−1 pn

∂U j1
1 . . . ∂U jm

m

| j1 + · · · + jm = i − 1, jr ≥ 0〉 ,

B = 〈 ∂ i F

∂U j1
1 . . . ∂U jm

m

| j1 + · · · + jm = i, jr ≥ 0〉 =

= 〈
n∑

j=0

X j
∂ i p j

∂U j1
1 . . . ∂U jm

m

+ ∂ i G

∂U j1
1 . . . ∂U jm

m

| j1 + · · · + jm = i, jr ≥ 0〉.

From Lemma 3.3 we get

dim A = min

{
(n + 1)

(
m + i − 2

m − 1

)
,

(
d + m − i − 1

m − 1

) }
= min{βi , γi },

dim B =
(
m + i − 1

m − 1

)
= αi ,

which proves the thesis. 	
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Lemma 3.3 Let F1, . . . , Fr ∈ K [y0, . . . , ys] be a set of r general forms of fixed degree d.
Then, for any positive integer number i ≤ d,

〈 ∂ i F1

∂ yi00 . . . ∂ yiss
, . . . ,

∂ i Fr

∂ yi00 . . . ∂ yiss
| i0 + . . . is = i, i j ≥ 0〉

is a K -vector space of dimension

min

{
r

(
i + s

s

)
,

(
d + s − i

s

) }
. (6)

Proof It follows from [13, Proposition 3.4]. 	

We explicitly note that Lemma 3.3 implies that hmax is term-wise maximal. We also note

that Proposition 3.2 extends Proposition 3.7 in [5] and Theorem 3.5 in [16] which refer to
the case m = 2.

We observe that α0 + γ0 = 1 and α0 + β0 = 1 + (d+m−1
m−1

)
so h0 = 1, as expected.

Moreover α1 + γ1 = m + n + 1 and α1 +β1 = m + (d+m−2
m−1

)
, so h1 = α1 + γ1, and β1 = γ1

if and only if n + 1 = (d+m−1
m−1

)
which means that AF is a full Perazzo algebra.

From now on we will use the notation s := [ d2 ] so that d = 2s if it is even, and d = 2s+1
if it is odd.

We want to study the unimodality of hmax . Note that in the range 0 ≤ i ≤ s, αi , γi
are strictly increasing functions of i , independent of d , while βi is strictly decreasing and
depends on d .

Lemma 3.4 For any i , 0 ≤ i ≤ s, αi + γi is a strictly increasing function of i , while αi + βi
is a strictly decreasing function of i .

Proof The first assertion is clear because both αi and γi are strictly increasing. To prove the
second one, let i ≤ s − 1. We have:

(αi + βi ) − (αi+1 + βi+1)

= (βi − βi+1) − (αi+1 − αi )

= (d+m−i−1
m−1

) − (d+m−i−2
m−1

) − (
(m+i
m−1

) − (m+i−1
m−1

)
)

= (d+m−i−2
m−2

) − (m+i−1
m−2

)
> 0.

(7)

Indeed from the hypothesis i ≤ s − 1 it follows d − 2i − 1 > 0, that is equivalent to
d + m − i − 2 > m + i − 1. 	


ThemaximalHilbert vector of a Perazzo algebrawithm = 2, n ≥ 2 and d ≥ 3 is unimodal
(see [1, Theorem 3.6] for the case n = 2 and [16, Theorem 4.12] for the case n ≥ 2). The
result is no longer true for m > 2 and in next theorem we will determine when the maximal
Hilbert vector of a Perazzo algebra with fixed m, n, d and m ≥ 3 is unimodal.

Theorem 3.5 Let hmax be the maximal Hilbert vector of a Perazzo algebra with fixed m, n, d,
m ≥ 3. Let s = [ d2 ]. Then hmax is unimodal if and only

(1) γs−1 < βs−1, and
(2) αs−1 + γs−1 ≤ αs + βs .

Proof Wewill use repeatedlyLemma3.4.Assumefirst that conditions (1) and (2) are satisfied.
From (1) it follows that hs−1 = αs−1 + γs−1. We consider now hs : if hs = αs + γs , then
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hmax is unimodal by Lemma 3.4; if hs = αs + βs , the unimodality of hmax follows from
Lemma 3.4 and condition (2).

Assume now that hmax is unimodal. We observe that, by Lemma 3.4, the existence of
i ≤ s − 1 such that βi ≤ γi is equivalent to βs−1 ≤ γs−1. Therefore if, by contradiction
βs−1 ≤ γs−1, then there exists i ≤ s − 1 such that hi = αi + βi , i.e. βi ≤ γi . Being
αi + βi ≤ αi + γi , using Lemma 3.4 we get

αi+1 + βi+1 < αi + βi ≤ αi + γi < αi+1 + γi+1.

Therefore hi+1 = αi+1 + βi+1 and hi+1 < hi = αi + βi with i + 1 ≤ s: this contradicts
the unimodality of hmax . So condition (1) is satisfied. It implies that hs−1 = αs−1 + γs−1.
Finally, from hs−1 ≤ hs it is immediate to deduce condition (2). 	


Nowwewant to translate the conditions (1) and (2) ofTheorem3.5 in inequalities involving
n,m, d , with m ≥ 3. We have to discute separately the cases d even and d odd.

Condition (1), d = 2s even.
γs−1 < βs−1 is equivalent to

(
s + m

m − 1

)
> (n + 1)

(
s + m − 3

m − 1

)
.

This reduces to the inequality

ns3 − 3(m − 1)s2 − 3[(m − 1)2 + n]s − m(m − 1)(m − 2) < 0.

Looking at the signs of the coefficients of the powers of s, from Descartes’ rule of signs we
deduce that the associated equation of degree 3 in the unknown s has at most one real positive
solution s̄1. Therefore Condition (1) is never satisfied for s large enough.

Condition (1), d = 2s + 1 odd.
γs−1 < βs−1 is equivalent to

(
s + m + 1

m − 1

)
> (n + 1)

(
s + m − 3

m − 1

)
.

This reduces to the inequality of degree 4

ns4 + 2(n − 2m + 2)s3 − (n + 1 + 6m2 − 6m − 1)s2 −
(2n + 2 + 4m3 − 6m2 − 2m + 2)s − (m + 1)m(m − 1)(m − 2) < 0.

Again from Descartes’ rule of signs we get that the associated equation has at most one
positive solution s̄2, and we conclude as in the even case that Condition (1) is never satisfied
for s large enough.

Condition (2), d = 2s even. The condition αs−1 + γs−1 ≤ αs + βs translates in an
inequality of degree 2 in s, of the form

ns2 − (3m + n − 3)s − 2(m − 1)(m − 2) ≤ 0.

We conclude as in the previous cases.
Condition (2), d = 2s + 1 odd. This time we get an inequality of degree 3 in s with at

most one positive solution:

ns3 − 4(m − 1)s2 − (4m2 − 8m + 4 + n)s − (m + 1)(m − 1)(m − 2) ≤ 0

and we conclude as in the previous cases.
Note that, even if we do not get explicit bounds on s, we can summarize our computations

in the following Theorem.
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Theorem 3.6 The maximal Hilbert vector of a Perazzo algebra with fixed n ≥ m ≥ 3 is not
unimodal for d large enough.

Proof It follows from the discussion after Theorem 3.5. 	

Example 3.7 Case (2) in Theorem 3.5 can fail as the following examples show. For d even
we take: n = 7, m = 4, d = 6, s = 3, hmax = (1, 12, 42, 40, 42, 12, 1); h2 = α2 + γ2,
α2 +β2 = 10+ (9

3

)
, h3 = α3 +β3, α3 + γ3 = 100. An example with d odd is the following:

n = 13, m = 3, d = 5, s = 2, hmax = (1, 17, 16, 17, 1); h2 = α2 + β2 and α2 + γ2 = 48.

We want to study now if Perazzo algebras with maximal h-vector have the WLP. In the
special case m = n = 2 this problem has been solved in the negative in [5], and in the case
m = 2 and n ≥ 2 in [16].

As recalled in Sect. 2.4, it is well known that the h-vector of an Artinian graded algebra
with the WLP is unimodal. We want to prove that for arbitrary n,m, even if the h-vector is
unimodal, the Perazzo algebras with maximal h-vector fail the Weak Lefschetz Property.

Theorem 3.8 Let AF be a Perazzo algebra with maximal h-vector for fixed m, n, d with
n ≥ m ≥ 2 and d ≥ 6. Then AF fails the WLP.

Proof For the case m = 2 the reader can look at [5, 16]. Let m ≥ 3. Let h = (h0, . . . , hd)
be the h-vector of AF . If h is not unimodal, then the thesis trivially follows. So we assume
that h is unimodal.

Take � a general linear form and consider the exact sequence appearing in Proposition 2.1:

0 → (A�◦F )(−1) → AF → AF/(�) → 0. (8)

Since h is unimodalwe know fromTheorem3.5 that γs−1 < βd
s−1 andαs+βd

s ≥ αs−1+γs−1.
Since βi depends on d , we keep track of it using the above notation.

We now discuss separately the cases d odd and d even.
Assume first that d = 2s + 1 is odd. We observe that, from the assumption n ≥ m, it

follows βd
s < γs ; indeed βd

s = (m+s
m−1

)
and γs = (n + 1)

(m+s−2
m−1

)
, so a simple computation

shows that βd
s < γs is equivalent to s > m−1

n .
Therefore the h-vector of AF is

(α0 + γ0, α1 + γ1, . . . , αs−1 + γs−1, αs + βd
s , αs + βd

s , αs−1 + γs−1, . . . , α0 + γ0).

If AF has the WLP then the h-vector of A�◦F will be

(α0 + γ0, α1 + γ1, . . . , αs−1 + γs−1, αs + βd
s , αs−1 + γs−1, . . . , α1 + γ1, α0 + γ0).

But αs + βd
s > αs + βd−1

s . This is a contradiction because � ◦ F is a Perazzo polynomial
of degree d − 1 by Lemma 2.3: the condition n + 1 ≤ (m+d−3

m−1

)
is satisfied, otherwise a

simple computation shows that βd
s−1 ≤ γs−1, which implies that h is not unimodal in view

of Theorem 3.5.
Let now d = 2s even. The h-vector of AF is

(α0 + γ0, α1 + γ1, . . . , αs−1 + γs−1, hs, αs−1 + γs−1, . . . , α0 + γ0).

If AF has the WLP then the h-vector of A�◦F will be

(α0 + γ0, α1 + γ1, . . . , αs−1 + γs−1, αs−1 + γs−1, . . . , α1 + γ1, α0 + γ0),

which implies that βd−1
s−1 = γs−1. But �◦F has odd degree 2 s−1 and is a Perazzo polynomial

as in the previous case, hence βd−1
s−1 < γs−1: a contradiction. 	
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4 Minimal Hilbert function of a Perazzo algebra

In this section we will compute the minimal h-vector of all Perazzo algebras with fixed
m, n, d , extending the results obtained in [5, 16] for m = 2. We will use Proposition 3.1
saying that, in the h-vector of the Perazzo algebra AF , hi is equal to the rank of the matrix
containing in the columns the coefficients of the partial derivatives of F of order i . So first
of all we will give a precise description of this matrix.

Proposition 4.1 Thematrix of the linear system defined in (5) to compute hi has the following
form

⎛

⎝
0 | Ni

− − − | − − −
Mi−1 | �i

⎞

⎠ (9)

where:

Mi−1 = (C0
i−1 C

1
i−1 . . .Cn

i−1),

Ni =

⎛

⎜⎜⎜⎝

C0
i

C1
i
...

Cn
i ,

⎞

⎟⎟⎟⎠ ,

Ck
i , �i are the catalecticant matrices for pk , k = 0, . . . , n and G defined as follows (see

[14], Definition 1.3):

Ck
i = (pkδ+η)|δ|=i,|η|=d−1−i and �i = (Gδ+η)|δ|=i,|η|=d−i .

Proof It follows from the expression of F and the assumption that K has characteristic zero.
	


We keep using the following notation introduced in Sect. 3:

αi =
(
m + i − 1

m − 1

)
, βi =

(
d + m − i − 1

m − 1

)
.

Theorem 4.2 Let m, n, d be fixed with n ≥ m ≥ 2. Then the minimal h-vector of the Perazzo
algebras AF , with F polynomial of degree d as in Definition 12, is hmin = (h0, . . . , hd),
where for 1 ≤ i ≤ d

2

hi = min{2(n + 1), αi + n + 1, αi + βi }. (10)

Proof In view of Propositions 3.1 and 4.1, we have to look for the Perazzo polynomials F
such that the rank of the matrix (9) is minimal for any index i = 1, . . . , [ d2 ]. Therefore we
can assume G = 0, so that, for any i , hi = rank Mi−1 + rank Ni .

The minimal possible rank of each catalecticant matrix Ck
i−1 or Ck

i is 1. Therefore the

minimum between the number n+ 1 of catalecticant blocks of Mi−1 and βi = (m+d−i−1
m−1

) =
dim K [U1, . . . ,Um]d−i is a lower bound for the rank of Mi−1 for any i ≥ 1.

Similarly a lower bound for the rank of Ni is the minimum between the number of its
columns, that is

(m+i−1
m−1

) = αi , and n + 1 that is the number of its catalecticant blocks.
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So we get the following lower bound:

hi ≥ min { n + 1, βi } + min { n + 1, αi } .

Since i ≤ d − i in our range i ≤ d
2 , we get

hi ≥ min { 2(n + 1), n + 1 + αi , αi + βi } .

To conclude the proof, we exhibit an example of a Perazzo algebra with h-vector as
in (10). We observe that all the catalecticant matrices of the polynomial Ld , where L is
a linear form, have rank 1. Therefore, in view of [13, Corollary 3.2] it is enough to take
F = X0L

d−1
0 + · · · + XnLd−1

n , where L0, . . . , Ln ∈ K [U1, . . . ,Um]1 are general linear
forms. 	

Form = 2 formula (10) gives the expression of theminimumh-vector found in [5, Proposition
2.8] and [16, Theorem 3.4].

In [1, 5, 16] it was proved that in the casem = 2 the minimal h-vector of Perazzo algebras
is always unimodal and that the Perazzo algebras with minimal h-vector have the Weak
Lefschetz Property provided that d ≥ 2n. This does not always happen in the general case,
as next example shows that hmin can be non unimodal for some integers n,m, d .

Example 4.3 Let m = 3, n = 9, d = 4. These are the invariants of the famous Stanley’s
example [19], whose h-vector is (1, 13, 12, 13, 1): it is clearly non unimodal and it is minimal
for these invariants (see [4]); it corresponds to a full Perazzo algebra.

Theorem 4.4 The minimal h-vector of Perazzo algebras with invariants n ≥ m > 2 is
unimodal if and only if n + 1 ≤ βs−1, where s = [ d2 ].
Proof Theorem 4.2 implies that, given n,m, d , for any 1 ≤ i ≤ s with s = [ d2 ]:
(1) if n + 1 ≤ αi ≤ βi , then hi = 2(n + 1);
(2) if αi < n + 1 ≤ βi , then hi = n + 1 + αi , which is an increasing function of i ;
(3) if n + 1 > βi , then hi = αi + βi , which is a decreasing function of i depending also on

d .

It follows that hmin is unimodal if and only if hs−1 is not of the form (3). This proves the
Theorem. 	


We are now able to prove that theWeak Lefschetz Property holds for the Perazzo algebras
with minimal h-vector, provided it satisfies the condition that n + 1 ≤ βs , which implies
unimodality.

Theorem 4.5 Let AF be a Perazzo algebra with minimal h-vector for fixed m, n, d with
n ≥ m ≥ 3. Assume that the h-vector of AF is unimodal and that n+1 ≤ βs , where s = [ d2 ].
Then AF has the WLP.

Proof To prove that AF has theWLP it is enough to check that, for a general linear form �, the
multiplication map×� : (AF )s−1 → (AF )s is injective. If by contradiction it is not injective,
then using Proposition 2.1 and Lemma 2.3, we get that dim(A�◦F )s−1 < dim(AF )s−1. But
our assumption on n,m, d implies that the component of index s−1 of the minimal h-vector
is the same for degrees d and d − 1. This contradicts the minimality of the h-vector of AF . 	

Note that if d is odd, then the condition n + 1 ≤ βs means that the h-vector of A�◦F is
unimodal.

We characterize now the integers n,m, d such that the Perazzo algebras with these invari-
ants have all the same Hilbert function, i.e. the maximal and the minimal h-vector coincide.
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Proposition 4.6 Let n,m, d be positive integers with n ≥ m ≥ 2, n + 1 ≤ (d+m−2
m−1

)
. Then

the Perazzo algebras with these invariants have hmin = hmax if and only if
(
d + m − 3

m − 1

)
≤ n + 1. (11)

Proof We will prove that Eq.11 is equivalent to hi,min = hi,max = αi + βi for any index i .
We will then exclude the possibility that h2,min = h2,max �= α2 + β2.

Since αi + βi is a decreasing function of i , the first assertion is equivalent to h2,min =
h2,max = α2+β2.But h2,min = α2+β2 if and only if

(m+d−3
m−1

) ≤ n+1 and h2,max = α2+β2

if and only if
(m+d−3

m−1

) ≤ (n + 1)m, which proves our claim.
We assume now by contradiction that h2,min = h2,max �= α2 + β2. This means that

h2,max = α2 + γ2 < α2 + β2, and h2,min = min{2n + 2, n + 1 + (m+1
2

)} < α2 + β2. If

n+1 ≤ (m+1
2

)
, then 2n+2 = (m+1

2

)+(n+1)mwhich is equivalent to (n+1)(2−m) = (m+1
2

)
,

but this is impossible becausem ≥ 2. If n+1 ≥ (m+1
2

)
, thenwewould have n+1 = (n+1)m:

contradiction. 	

Remark 4.7 Perazzo algebras with hmin = hmax clearly include full Perazzo algebras. It
has been conjectured in [2, Conjecture 2.6] that the h-vectors of full Perazzo algebras are
minimal among the h-vectors of all Artinian Gorenstein algebras with the same degree and
codimension. This conjecture has been proved for d = 4 and m = 3, 4, 5 in [4], and for any
degree and m = 3 in [2].

5 Minimal free resolution of a Perazzo algebra

In this section, we determine the minimal free resolution of an Artinian Gorenstein algebra
corresponding to a Perazzo threefold of P4 with termwise minimal Hilbert function, i. e. of
the following type (1, 5, 6, . . . , 6, 5, 1).

Whenwe deal with Perazzo hypersurfaces inP4, we use the notations S = K [X , Y , Z ,U ,

V ] and R = K [x, y, z, u, v]. We have

F = Xp0 + Y p1 + Zp2 + G where p0, p1, p2,G ∈ K [U , V ] (12)

and any choice of p0, p1, p2 will be algebraically dependent.
An explicit classification of the possible dual generators F of degree d ≥ 5 defining a

Perazzo threefold with termwise minimal Hilbert function is given in [5, Theorem 5.4]. We
state a slightly rephrased version of this result.

Lemma 5.1 Let F ∈ K [X , Y , Z ,U , V ] be a Perazzo form such that the algebra AF has
minimalHilbert function (1, 5, 6, 6, . . . , 6, 5, 1). Then the dual generator F can be expressed
as

(i) XUd−1 + YUd−2V + ZUd−3V 2,
(ii) XUd−1 + YUd−2V + ZV d−1, or
(iii) XUd−1 + Y (U + λV )d−1 + ZV d−1 with λ ∈ K ∗

after a linear change of variables.

Proof By [5, Theorem 5.4], there are three classes of forms up to a linear change of variables.
In the first case, F can be written as

F = XUd−1 + YUd−2V + ZUd−3V 2 + aUd + bUd−1V + cUd−2V
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= (X + aU )Ud−1 + (Y + bU )Ud−2V + (Z + cU )Ud−3V 2

for a, b, c ∈ K . A further linear change of variables gives the case (i). The other cases are
obtained in the same manner. 	


We know by [5, Theorem 4.3] that, in all the three cases of Lemma 5.1, AF has the WLP
which allows us to prove the following key lemma.

Lemma 5.2 Let AF be an Artinian Gorenstein algebra associated to a Perazzo threefold
X = V (F) of P4 of degree d ≥ 5 and with termwise minimal Hilbert function. Let � ∈ AF

be a general linear form and set B = AF/(�). We have:

βR
i j (B) := [Tor Ri (B, K )] j = 0 for j > i + 2.

Proof By [5, Theorem 4.3] the algebra AF has the WLP which implies that the h-vector of
B is (1, 4, 1) and the socle degree of B is 2, i.e. reg(B) = 2. Therefore, the minimal graded
free resolution of B as R-module has the following shape:

0 →
R(−6)β

R
56(B)

⊕
R(−7)β

R
57(B)

→
R(−5)β

R
45(B)

⊕
R(−6)β

R
46(B)

→
R(−4)β

R
34(B)

⊕
R(−5)β

R
35(B)

→

R(−3)β
R
23(B)

⊕
R(−4)β

R
24(B)

→

R(−1)
⊕

R(−2)9

⊕
R(−3)β

R
13(B)

→ R → B → 0

and we conclude that βR
i j := [Tor Ri (B, K )] j = 0 for j > i + 2 which proves what we want.

	

Example 5.3 UsingMacaulay2 [10], we have computed the Betti table of Artinian Gorenstein
algebras AF associated to all 3 possible types of Perazzo threefolds F of P4 with termwise
minimal Hilbert function and degree 5 ≤ d ≤ 8 (see Lemma 5.1),

+-----------------------+
| 0 1 2 3 4 5|
|total: 1 14 35 35 14 1|
| 0: 1 . . . . .|
| 1: . 9 17 12 3 .|
| 2: . 1 3 3 1 .|
| 3: . 1 3 3 1 .|
| 4: . 3 12 17 9 .|
| 5: . . . . . 1|
+-----------------------+

+-----------------------+
| 0 1 2 3 4 5|
|total: 1 14 35 35 14 1|
| 0: 1 . . . . .|
| 1: . 9 17 12 3 .|
| 2: . 1 3 3 1 .|
| 3: . . . . . .|
| 4: . 1 3 3 1 .|
| 5: . 3 12 17 9 .|
| 6: . . . . . 1|
+-----------------------+
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+-----------------------+
| 0 1 2 3 4 5|
|total: 1 14 35 35 14 1|
| 0: 1 . . . . .|
| 1: . 9 17 12 3 .|
| 2: . 1 3 3 1 .|
| 3: . . . . . .|
| 4: . . . . . .|
| 5: . 1 3 3 1 .|
| 6: . 3 12 17 9 .|
| 7: . . . . . 1|
+-----------------------+

+-----------------------+
| 0 1 2 3 4 5|
|total: 1 14 35 35 14 1|
| 0: 1 . . . . .|
| 1: . 9 17 12 3 .|
| 2: . 1 3 3 1 .|
| 3: . . . . . .|
| 4: . . . . . .|
| 5: . . . . . .|
| 6: . 1 3 3 1 .|
| 7: . 3 12 17 9 .|
| 8: . . . . . 1|
+-----------------------+

Theorem 5.4 Let AF be an Artinian Gorenstein algebra associated to a Perazzo threefold
X = V (F) of P4 of degree d ≥ 5 and with minimal Hilbert function. The Betti diagram of
AF looks like

+-----------------------+
| 0 1 2 3 4 5|
|total: 1 14 35 35 14 1|
| 0: 1 . . . . .|
| 1: . 9 17 12 3 .|
| 2: . 1 3 3 1 .|
| 3: . . . . . .|
| .:. . . . . .|
| d-3: . . . . . .|
| d-2: . 1 3 3 1 .|
| d-1: . 3 12 17 9 .|
| d: . . . . . 1|
+-----------------------+

Proof We proceed by induction on d . For 5 ≤ d ≤ 8 the result is true (see Example 5.3).
Assume deg(F) = d + 1 ≥ 9. Let � ∈ AF be a general linear form and consider the exact
sequence:

0 −→ A�◦F −→ AF −→ B = AF/(�) −→ 0 (13)

which gives us the long exact sequence

· · · −→ [Tor Ri+1(B, K )] j −→ [Tor Ri (A�◦F (−1), K )] j −→ [Tor Ri (AF , K )] j
−→ [Tor Ri (B, K )] j −→ · · · .
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Using Lemma 5.2, we get that for any j > i + 3 we have:

βR
i j−1(A�◦F ) = [Tor Ri (A�◦F , K )] j−1

= [Tor Ri (A�◦F (−1), K )] j
= [Tor Ri (AF , K )] j
= βR

i j (AF ).

(14)

By Lemma 2.3, A�◦F is an Artinian Gorenstein algebra associated to a Perazzo form � ◦ F
of degree d . Using the exact sequence (13) and the fact that AF has the WLP ( [5, Theorem
4.3]) we obtain that the Hilbert function of A�◦F is termwise minimal, i.e. A�◦F has Hilbert
function (1, 5, 6, 6, · · · , 6, 6, 5, 1). Therefore, by hypothesis of inductionwe knowall graded
Betti numbers of A�◦F and the equalities (14) give us:

1 = β1,d−1(A�◦F ) = β1,d(AF )

3 = β1,d(A�◦F ) = β1,d+1(AF )

0 = β1, j−1(A�◦F ) = β1, j (AF ) for d + j ≥ 5;

3 = β2,d(A�◦F ) = β2,d+1(AF )

12 = β2,d+1(A�◦F ) = β2,d+2(AF )

0 = β2, j−1(A�◦F ) = β2, j (AF ) for d + j ≥ 6;

3 = β3,d+1(A�◦F ) = β3,d+2(AF )

17 = β3,d+2(A�◦F ) = β3,d+3(AF )

0 = β3, j−1(A�◦F ) = β3, j (AF ) for d + j ≥ 7;

1 = β4,d+2(A�◦F ) = β4,d+3(AF )

9 = β4,d+3(A�◦F ) = β4,d+4(AF )

0 = β4, j−1(A�◦F ) = β4, j (AF ) for d + j ≥ 8.

Therefore, the Betti diagram of AF being deg(F) = d + 1 has the following shape (∗
means not yet determined and . means zero):

+-----------------------+
| 0 1 2 3 4 5|
|total: 1 14 35 35 14 1|
| 0: 1 . . . . .|
| 1: . * * * * .|
| 2: . * * * * .|
| 3: . * * * * .|
| 4:. * * * * .|
| 5:. . . . . .|
| .:. . . . . .|
| d-2: . . . . . .|
| d-1: . 1 3 3 1 .|
| d: . 3 12 17 9 .|
| d+1: . . . . . 1|
+-----------------------+

Using now the fact that the minimal graded free R-resolution of an Artinian Gorenstein
algebra AF is self dual we conclude what we want. 	
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6 Final remarks and open problems

We end this paper with a couple of concrete problems which naturally arise from our results
and we believe they deserve further consideration.

In Theorem 3.8 we prove that any Perazzo algebra AF with maximal h-vector for fixed
n ≥ m ≥ 2 and d ≥ 6 fails WLP while in Theorem 3.5 we determine all Perazzo algebras
with unimodal maximal h-vector for fixed n, m and d with m ≥ 3. The analogous results
for Perazzo algebras AF with minimal h-vector for fixed n, m and d with n ≥ m ≥ 3 are
obtained in Theorems 4.5 and 4.4.

For Perazzo algebras AF with intermediate h-vector both possibilities occur: there are
examples failing WLP and examples satisfying WLP as well as examples with unimodal
h-vector and examples with non-unimodal h-vector (see [5]). Therefore, the major ques-
tions/problems left open are the following two:

Problem 1 (i) To classify all Perazzo algebras AF with unimodal Hilbert function.
(ii) To classify all Perazzo algebras AF with WLP.

For a complete answer to Problem 1 for n = m = 2 the reader can look at [1] and [5] and
for n ≥ 2 and m = 2 at [16]. To our knowledge for all other values n ≥ m ≥ 3 no answer is
known.

In the last decades big effort has been made in understanding the minimal free resolution
(MFR, for short) of any artinian Gorenstein algebra. In 1977, Buchsbaum and Eisenbud
proved that any Gorenstein codimension 3 ideal is generated by the 2t × 2t pfaffians of a
skew symmetricmatrix of size (2t+1)×(2t+1) and this fact completely determines theMFR
of any Artinian Gorenstein algebra of codimension 3 (see [3, Theorem 2.1]). Nevertheless
for codimension ≥ 4 little is known apart from the selfduality (up to twist) of the MFR of
any Artinian Gorenstein algebra. Using our knowledge of Perazzo algebras we propose as
an intermediate step the following problem:

Problem 2 (i) To determine theMFRof any Perazzo algebrawithminimal (resp.maximal)
Hilbert function.

(ii) To determine the MFR of any full Perazzo algebra.
(iii) To determine the MFR of any Perazzo algebra.

The above problem is interesting per se but also because we believe that the WLP of
Perazzo algebras of any codimension c could be determined by their MFR.
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