
Computational Optimization and Applications (2024) 89:247–278
https://doi.org/10.1007/s10589-024-00580-w

A non-monotone trust-region method with noisy oracles
and additional sampling

Nataša Krejić1 · Nataša Krklec Jerinkić1 · Ángeles Martínez3 ·
Mahsa Yousefi2,3

Received: 7 August 2023 / Accepted: 6 May 2024 / Published online: 31 May 2024
© The Author(s) 2024

Abstract
In this work, we introduce a novel stochastic second-order method, within the
framework of a non-monotone trust-region approach, for solving the unconstrained,
nonlinear, and non-convex optimization problems arising in the training of deep neu-
ral networks. The proposed algorithm makes use of subsampling strategies that yield
noisy approximations of the finite sum objective function and its gradient. We intro-
duce an adaptive sample size strategy based on inexpensive additional sampling to
control the resulting approximation error. Depending on the estimated progress of the
algorithm, this can yield sample size scenarios ranging frommini-batch to full sample
functions. We provide convergence analysis for all possible scenarios and show that
the proposed method achieves almost sure convergence under standard assumptions
for the trust-region framework.We report numerical experiments showing that the pro-
posed algorithm outperforms its state-of-the-art counterpart in deep neural network
training for image classification and regression tasks while requiring a significantly
smaller number of gradient evaluations.

Keywords Stochastic optimization · Second-order methods · Non-monotone
trust-region · Quasi-Newton · Deep neural networks training · Adaptive sampling

B Mahsa Yousefi
mahsa.yousefi@unifi.it; mahsa.yousefi@phd.units.it

Nataša Krejić
natasak@uns.ac.rs

Nataša Krklec Jerinkić
natasa.krklec@dmi.uns.ac.rs

Ángeles Martínez
amartinez@units.it

1 Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4,
Novi Sad 21000, Serbia

2 Department of Industrial Engineering (DIEF), University of Florence, Viale Morgagni 40/44,
50134 Florence, Italy

3 Department of Mathematics, Informatics, and Geosciences, University of Trieste, Via Alfonso
Valerio 12/1, 34127 Trieste, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-024-00580-w&domain=pdf
http://orcid.org/0000-0003-3348-7233
http://orcid.org/0000-0001-5195-9295
http://orcid.org/0000-0003-4826-1114
http://orcid.org/0000-0002-2937-9654

248 N. Krejić et al.

Mathematics Subject Classification 90C30 · 90C06 · 90C53 · 90C90 · 65K05

1 Introduction

Deep learning (DL) as a leading technique of machine learning (ML) has attracted
much attention and become one of the most popular directions of research. DL
approaches have been applied to solve many large-scale problems in different fields
by training deep neural networks (DNNs) over large available datasets. Let N =
{1, 2, . . . , N } be the index set of the training dataset {(xi , yi)}Ni=1 with N = |N |
sample pairs including input xi ∈ R

d and target yi ∈ R
C . DL problems are often

formulated as unconstrained optimization problems with an empirical risk function,
in which a parametric function ĥ(xi ; ·) : Rd −→ R

C is found such that the prediction
errors are minimized. More precisely, we obtain the following problem

min
w∈Rn

f (w) � 1

N

N∑

i=1

fi (w), (1)

where w ∈ R
n is the vector of trainable parameters and fi (w) � L(yi , ĥ(xi ;w))

with a relevant loss function L(·) measuring the prediction error between the target
yi and the network’s output ĥ(xi ;w). The DL problem (1) is large-scale, highly non-
linear, and often non-convex, and thus it is not straightforward to apply traditional
(deterministic) optimization algorithms like steepest descent or Newton-type meth-
ods. Recently, much effort has been devoted to the development of DL optimization
algorithms. Popular DL optimization methods can be divided into two general cate-
gories, first-order methods using gradient information, e.g. steepest gradient descent,
and (higher-) second-order methods using also curvature information, e.g. Newton
methods [1]. On the other hand, since the full (training) sample size N in (1) is usually
excessively large for a deterministic approach, these optimizers are further adapted
to use subsampling strategies that aim to reduce computational costs. Subsampling
strategies employ sample average approximations of the function and its gradient as
follows

fNk (w) = 1

Nk

∑

i∈Nk

fi (w), ∇ fNk (w) = 1

Nk

∑

i∈Nk

∇ fi (w), (2)

where Nk ⊆ N represents a subset of the full (training) sample set at iteration k and
Nk is the subsample size, i.e., Nk = |Nk |.

In this work, we propose a second-order trust-region (TR) algorithm [2] adapted
to the stochastic framework where the step and the candidate point for the next iter-
ate are obtained using subsampled function values and subsampled gradients (2).
The quadratic TR models are constructed by using Hessian approximations, without
imposing a positive definiteness assumption, as the true Hessian in DL problems may
not be positive definite due to their non-convex nature. Moreover, having in mind that
we work with noisy approximations (2), imposing a strict decrease might be unnec-

123

A non-monotone trust-region 249

essary. Thus, we employ a non-monotone trust-region (NTR) approach; see e.g. [3]
or references therein. Unlike the classical TR, our decision on acceptance of the trial
point is not based only on the agreement between the model and the approximate
objective function decrease, but on the independent subsampled function. This "con-
trol" function which is formed through additional sampling, similar to one proposed
in [4] for the line search framework, also has a role in controlling the sample average
approximation error by adaptively choosing the sample size. Depending on the esti-
mated progress of our algorithm, this can yield sample size scenarios ranging from
mini-batch to full sample functions. We provide convergence analysis for all possible
scenarios and show that the proposed method achieves almost sure convergence under
standard assumptions for the TR framework such as Lipschitz-continuous gradients
and bounded Hessian approximations.

Literature review. Stochastic first-order methods such as stochastic gradient
descent (SGD) method [5, 6], and its variance-reduced [7–10] and adaptive [11, 12]
variants have beenwidely used inmanyMLandDLapplications likely because of their
proven efficiency in practice. However, due to the use of only gradient information,
these methods comewith several issues like, for instance, relatively slow convergence,
high sensitivity to the hyper-parameters, stagnation at high training loss [13], diffi-
culty in escaping saddle points, and suffering from ill-conditioning [14]. To cope with
some of these issues, there are some attractive alternatives as well as their stochastic
variants aimed at incorporating second-order information, e.g. Hessian-Free methods
[15–20] which find an estimation of the Newton direction by (subsampled) Hessian-
vector products without directly calculating the (subsampled) Hessian matrix, and
limited memory Quasi-Newton methods which construct some approximations of the
true Hessian only by using gradient information. Furthermore, algorithms based on
Quasi-Newton methods have been the subject of many research efforts both in convex
(see e.g. [21, 22] and references therein) and non-convex settings (see e.g. [23–25] and
references therein), or [26, 27] where the advantage of modern computational archi-
tectures and parallelization for evaluating the full objective function and its derivatives
is employed. In almost all these articles, the Quasi-Newton Hessian approximation
used is BFGS or limited memory BFGS (L-BFGS) with positive definiteness prop-
erty, which is often considered in the line-search framework except e.g. [28, 29]. A
disadvantage of using BFGS may occur when it tries to approximate the true Hessian
of a non-convex objective function in DL optimization. We refer to [30] as one of
the earliest works in which the limited memory Quasi-Newton update SR1 (L-SR1)
allowing for indefinite Hessian approximation was used in a trust-region framework
with a periodical progressive overlap batching.

The potential usefulness of non-monotonicity may be traced back to [31] where a
non-monotone line-search technique was proposed for the Newton method to relax
some standard line-search conditions and to avoid slow convergence of a determinis-
tic method. Similarly, the idea of non-monotonicity exploited for trust-region could
be dated back to [32] and later e.g. [3, 33] for a general unconstrained minimization
problem. This idea was also used for solving problems such as (1) in a stochastic set-
ting; in [34], a class of algorithms was proposed that uses non-monotone line-search
rules fitting a variable sample scheme at each iteration. In [35], a non-monotone trust-
region algorithm using fixed-size subsampling batches was proposed for solving (1).

123

250 N. Krejić et al.

Recently, in [36] a noise-tolerant TR algorithmhas been proposed at the time ofwriting
this paper, in which both the numerator and the denominator of the TR reduction ratio
are relaxed. The convergence analysis presented in [36] is based on the assumption
that errors in function and gradient evaluations are bounded and do not diminish as the
iterates approach the solution. In [37] the authors derive high probability complexity
bounds for first- and second-order trust-region methods with noisy oracles, where the
targeted vicinity of the solution depends on the quality of the stochastic estimates of
the objective function and its gradient. They analyze modified trust-region algorithms
that utilize stochastic zeroth-order oracles both in the bounded noise case and the inde-
pendent subexponential noise case. Inspired by [35], in this work, we introduce a new
second-order method in a subsampled non-monotone trust-region (NTR) approach,
which works well with any Hessian approximation and employs an adaptive subsam-
pling scheme. The foundation of our method differs from that of [36, 37]. Our method
is based on an additional sampling strategy helping to control the non-martingale error
due to the dependence between the non-monotone TR radius and the search direction.
To the best of our knowledge, there are only a few approaches using additional sam-
pling; see [4, 38, 39]. The rule that we apply in our method mainly corresponds to
that presented in [4] where it is used in a line-search framework and plays a role in
deciding whether to switch from the line-search to a predefined step size sequence or
not. We adapted this strategy to the TR framework and used it to control the sample
size in our method. It is worth pointing out that the additional sampling can be arbi-
trarily small, i.e. the sample size can even be 1, and hence, it does not increase the
computational cost significantly. Adaptive sample size strategies can be also found
in other works, for instance, a type of adaptive subsampling strategy was applied for
the STORM algorithm [40, 41] which is also a second-order method in a standard TR
framework. A different strategy using inexact restoration was proposed in [42] for a
first-order standard TR approach. The variable size subsampling is not restricted to
TR frameworks, see e.g. [25] where a progressive subsampling was considered for a
line-search method.

Notation. Throughout this paper, vectors and matrices are respectively written in
lowercase and uppercase letters unless otherwise specified in the context. The symbol
� is used to define a new variable.N andRn denote the set of natural numbers and the
real coordinate space of dimension n, respectively. The set of positive real numbers
and non-negative integers are denoted byR+ andN0, respectively. Subscripts indicate
the elements of a sequence. For a random variable X , the mathematical expectation of
X and the conditional expectation of X given the σ -algebraF are respectively denoted
by E(X) and E(X |F). The Euclidean vector norm and the corresponding matrix norm
are denoted by ‖.‖, while the cardinality of a set or the absolute value of a number is
indicated by |.|. Finally, "a.s" abbreviates the expression "almost surely".

Outline of the paper. In Sect. 2, we describe the algorithm and all the neces-
sary ingredients. In Sect. 3, we state the assumptions and provide an almost sure
convergence analysis of the proposed method. Section4 is devoted to the numerical
evaluation of a specific version of the proposed algorithm that makes use of an L-SR1
update and a simple sampling rule; we make a comparison with the state-of-the-art
method STORM [40, 41] to show the effectiveness of the proposedmethod for training

123

A non-monotone trust-region 251

DNNs in classification and regression tasks. A comparison with the popular first-order
method ADAM [12] is also presented. Some conclusions are drawn in Sect. 5.

2 The algorithm

Within this section, we describe the proposed method called ASNTR (Adaptive Sub-
sampleNon-monotone Trust-Region). At iteration k, given the current iterationwk , we
form a quadratic model based on the subsampled function (2), with gk � ∇ fNk (wk)

and an arbitrary Hessian approximation Bk satisfying

‖Bk‖ ≤ L, (3)

for some L > 0 and solve the common TR subproblem to obtain the relevant direction

pk � arg min
p∈Rn

Qk(p) � 1

2
pT Bk p + gTk p s.t. ‖p‖2 ≤ δk, (4)

for some TR radius δk > 0. We assume that at least some fraction of the Cauchy
decrease is obtained, i.e., the direction satisfies

Qk(pk) ≤ − c

2
‖gk‖min

{
δk,

‖gk‖
‖Bk‖

}
, (5)

for some c ∈ (0, 1]. This is a standard assumption in TR and it is not restrictive
even in the stochastic framework. In the classical deterministic TR approach, the trial
point wt = wk + pk acceptance is based on the agreement between the decrease
in the function and that of its quadratic model. However, since we are dealing with
noisy approximations (2), we modify the acceptance strategy as follows. Motivated
by the study in [35], we propose a non-monotone TR (NTR) framework instead of the
standard TR one because we do not want to impose a strict decrease in the approximate
function. Therefore, we define the relevant ratio as follows

ρNk � fNk (wt) − rNk

Qk(pk)
, (6)

where

rNk � fNk (wk) + tkδk, tk > 0, (7)

and

∞∑

k=0

tk ≤ t < ∞. (8)

The sequence {tk} is a summable sequence of positive numbers and one can define it
in different ways to control the level of non-monotonicity in each iteration. Different

123

252 N. Krejić et al.

choices of {tk} lead to different upper bounds of its sum which we denote by t . We
allow Nk to be chosen arbitrarily in ASNTR. However, even if we impose uniform
sampling with replacement to N such that it yields an unbiased estimator fNk (wk)

of the objective function at wk , the dependence between Nk and wt may produce a
biased estimator fNk (wt) of f (wt). This is becauseNk directly affects the TR model
Qk(p) through the approximate gradient gk = ∇ fNk (wk) and thus pk also depends
on the choice ofNk . Thus, wt = wk + pk is also dependent onNk . To overcome this
difficulty, we apply an additional sampling strategy [4]. To this end, at every iteration
at which Nk < N , we choose another independent subsample set represented by the
index set Dk ⊂ N of size Dk = |Dk | < N and calculate fDk (wk), fDk (wt) and
ḡk � ∇ fDk (wk) (see lines 5–6 of the ASNTR algorithm). There are no theoretical
requirements on the size of Dk , and hence, the additional sampling might be done
cheaply, i.e. with a modest number of additional samples. In fact, in our experiments,
we set Dk = 1 for all k. Furthermore, in the spirit of TR, we define a linear model as
Lk(v) � vT ḡk, and consider another agreement measure defined as follows

ρDk � fDk (wt) − rDk

Lk(−ḡk)
, (9)

where

rDk � fDk (wk) + δk t̃k, t̃k > 0, (10)

and

∞∑

k=0

t̃k ≤ t̃ < ∞. (11)

We assume that {t̃k} is a summable sequence of positive numbers and that t̃ is an
upper bound of the sum of {t̃k}. Therefore, t̃ is controllable through the choice of
{t̃k}. Notice that choosing a greater t̃k yields more chances for the trial point wt to
be accepted. The denominator in (9) is the linear model computed along the negative
gradient ḡk and thus it is negative. Therefore, the condition ρDk ≥ ν corresponds
to Armijo-like condition for the function fDk , similar to one in [4] i.e., fDk (wt) ≤
fDk (wk) − ν‖∇ fDk (wk)‖2 + δk t̃k . If Nk < N , the trial point is accepted only if both
ρNk and ρDk are bounded away from zero; otherwise, if the full sample is used, the
decision ismade by ρNk solely as in deterministic NTR (see lines 23–35 of theASNTR
algorithm). The rationale behind this is the following: we double-checked that the trial
point obtained employing fNk is acceptable alsowith respect to another approximation
of the objective function fDk . Notice that Dk is chosen with replacement, uniformly
and randomly from N , independently from the choice of Nk , and after the trial point
wt is already determined. Therefore, conditionally on σ -algebra generated by all the
previous choices of N j , j = 1, ..., k and D j , j = 1, ..., k − 1, the approximation
fDk (wt) is an unbiased estimator of f (wt).
Another role of ρDk is to control the sample size. If the obtained trial point wt

yields an uncontrolled increase in fDk in a sense that ρDk < ν, i.e., fDk (wt) >

123

A non-monotone trust-region 253

fDk (wk) − ν‖∇ fDk (wk)‖2 + δk t̃k , we conclude that we need a better approximation
of the objective function andwe increase the sample size Nk by choosing a new sample
set Nk for the next iteration. Roughly speaking, an uncontrolled increase in fDk is
possible if the approximate function fDk is very different from fNk given that the
search direction is computed for fNk . The sample can also be increased if we are too
close to a stationary point of the approximate function fNk . This is stated in line 7 of
ASNTR, where h represents an SAA error estimate given by

h(Nk) � N − Nk

N
.

The algorithm can also keep the same sample size (see lines 14 and 16 of the
ASNTR algorithm). Keeping the same sample Nk in line 14 corresponds to the case
where the trial point is acceptable with respect to fDk , but we do not have a decrease
in fNk . In that case, the (non-monotone) TR radius (δk) is decreased (see line 37 of
ASNTR). Otherwise, we allow the algorithm in line 16 to choose a new sample of the
current size and exploit some new data points. The strategy for updating the sample
size is described in lines 7–19 of the ASNTR algorithm.

Notice that the sample size cannot be decreased, and if the full sample is reached
it is kept until the end of the procedure. Moreover, it should be noted that ASNTR
provides complete freedom in terms of the increment in the sample size as well as
the choice of samples Nk . This leaves enough space for different sampling strategies
within the algorithm. As we already mentioned, mostly depending on the problem,
ASNTR can result in a mini-batch strategy, but it can also yield an increasing sample
size procedure.

The TR radius is updated within lines 36–42 of ASNTR. We follow a common
update strategy for TR approaches. It is completely based on fNk since it is related
to the error of the quadratic model, and not to the SAA error which we control by
additional sampling. Thus, if the ρNk is small we decrease the trust-region size (see
lines 36–37 of ASNTR). Otherwise, the trust-region is either enlarged or kept the same
(see lines 38–42 of ASNTR). Notice that the additional condition that relates the norm
of the search direction pk and the current trust-region size δk does not play any role in
the theoretical analysis but it is important in practical implementation. We need some
predetermined hyper-parameters for ASNTR, which are established in the algorithm’s
initial line according to ones outlined in relevant references (e.g. [1, 30]), and to meet
the assumptions underlying the convergence analysis.

3 Convergence analysis

We make the following standard assumption for the TR framework needed to prove
the a.s. convergence result of ASNTR.

Assumption 1 The functions fi , i = 1, ..., N are bounded from below and twice
continuously-differentiable with L-Lipschitz-continuous gradients.

123

254 N. Krejić et al.

Algorithm 1 ASNTR

1: Initialization: Choose N0 ⊆ N . Set k = 0, {tk } ∈ R
∞+ satisfying (8), {t̃k } ∈ R

∞+ satisfying (11), δ0

and δmax ∈ (0, ∞), ε ∈ [0, 1
2), ν ∈ (0, 1/4), 0 < τ1 ≤ 0.5 < τ2 < 1 < τ3, 0 < η < η2 ≤ 3/4, and

η1 ∈ (η, η2).
2: Given fNk

(wk), gk and Bk satisfying (3), solve (4) for pk such that (5) holds, and define the trial iterate
wt = wk + pk .

3: Given fNk
(wt), compute ρNk

using (6).
4: if Nk < N then
5: Choose Dk ⊂ N randomly and uniformly, with replacement.
6: Given fDk

(wk), ∇ fDk
(wk), and fDk

(wt), compute ρDk
using (9).

7: if ‖gk‖ < εh(Nk) then
8: Increase Nk to Nk+1 and chooseNk+1.
9: else
10: if ρDk

< ν then
11: Increase Nk to Nk+1 and choose Nk+1.
12: else
13: if ρNk

< η then
14: Set Nk+1 = Nk andNk+1 = Nk .
15: else
16: Set Nk+1 = Nk and choose Nk+1.
17: end if
18: end if
19: end if
20: else
21: Nk+1 = N
22: end if
23: if Nk < N then
24: if ρNk

≥ η and ρDk
≥ ν then

25: wk+1 = wt .
26: else
27: wk+1 = wk .
28: end if
29: else
30: if ρNk

≥ η then
31: wk+1 = wt .
32: else
33: wk+1 = wk .
34: end if
35: end if
36: if ρNk

< η1, then
37: δk+1 = τ1δk
38: else if ρNk

> η2 and ‖pk‖ ≥ τ2δk , then
39: δk+1 = min{τ3δk , δmax },
40: else
41: δk+1 = δk .
42: end if
43: if Some stopping conditions hold then
44: Stop training
45: else
46: Set k = k + 1 and go to step 2.
47: end if

123

A non-monotone trust-region 255

First, we prove an important lemma that will help us prove the main result, the a.s.
convergence of ASNTR. There are two possible scenarios depending on the size of
the sample sequence: (1) mini-batch scenario—where the subsampling is employed in
each iteration; (2) deterministic scenario—where the full sample is reached eventually.
We start the analysis by considering the first, mini-batch scenario. In Lemma 1, we
show that in this case there holdsρDk ≥ ν for any realization ofDk and all k sufficiently
large.

Let us denote by D+
k the subset of all possible outcomes of Dk at iteration k that

satisfy ρDk ≥ ν, i.e.,

D+
k = {Dk ⊂ N | fDk (wt) ≤ fDk (wk) − ν‖∇ fDk (wk)‖2 + δk t̃k}. (12)

Notice that ifDk ∈ D+
k and ρNk ≥ η thenwk+1 = wt . On the other hand, ifDk ∈ D+

k
and ρNk < η then wk+1 = wk . Finally, if Dk ∈ D−

k , where

D−
k = {Dk ⊂ N | fDk (wt) > fDk (wk) − ν‖∇ fDk (wk)‖2 + δk t̃k}, (13)

we have againwk+1 = wk . Notice thatD−
k = ∅ if and only if ρDk ≥ ν for all possible

realizations of Dk .

Lemma 1 Suppose that Assumption 1 holds. If Nk < N for all k ∈ N, then a.s. there
exists k1 ∈ N such that ρDk ≥ ν for all k ≥ k1 and for all possible realizations Dk .

Proof Assume that Nk < N for all k ∈ N. So, there exists some N̄ < N and k0 ∈ N

such that Nk = N̄ for all k ≥ k0. Now, let us use the notation as in (12)–(13) and
assume that there exists an infinite subsequence of iterations K ⊆ N, such thatD−

k �= ∅
for all k ∈ K . SinceDk is chosen randomly and uniformly with replacement from the
finite set N and Dk ≤ N − 1, we know that each Dk has only finitely many possible
outcomes. More precisely, we conclude that S(Dk) ≤ S̄ := (2N − 2)!/((N − 1)!)2
where the upper bound comes from the combinatorics of unordered sampling with
replacement1. Therefore, there exists p ∈ (0, 1) such that P(Dk ∈ D−

k) ≥ p, i.e.,

P(Dk ∈ D+
k) ≤ 1 − p =: p̄ < 1 for all k ∈ K . So,

P(Dk ∈ D+
k , k ∈ K) ≤

∏

k∈K
p̄ = 0.

Therefore, a.s. there exists an iteration k ≥ k1 such that ρDk < ν and the sample
size is increased, which is in contradiction with Nk = N̄ for all k large enough. This
completes the proof. �

Next, we prove that the mini-batch scenario implies a non-monotone type of
decrease for all k large enough.

1 When Dk = N − 1, which is its maximal size, we choose N − 1 element from the set of N numbers
with replacement. Then, there are

(N−1+N−1
N−1

)
different unordered subsamples, i.e., (2N −2)!/((N −1)!)2

possible choices for Dk .

123

256 N. Krejić et al.

Lemma 2 Suppose that Assumption 1 is satisfied and
Nk < N for all k ∈ N. Then a.s.

f (wt) ≤ f (wk) − ν‖∇ f (wk)‖2 + δk t̃k,

holds for all k ≥ k1, where k1 is as in Lemma 1.

Proof Lemma 1 implies that ρDk ≥ ν, i.e.,

fDk (wt) ≤ fDk (wk) − ν‖∇ fDk (wk)‖2 + δk t̃k, (14)

for all k ≥ k1 and for all possible realizations of Dk a.s.. Since the sampling of Dk is
with replacement, notice that this further yields

fi (wt) ≤ fi (wk) − ν‖∇ fi (wk)‖2 + δk t̃k, (15)

for all i ∈ N and all k ≥ k1 a.s.. Indeed, if there exists i ∈ N such that (15) is
violated, then (14) is violated for at least one possible realization of Dk , namely, for
Dk = {i, i, ..., i}. Thus, a.s. for all k ≥ k1 there holds

f (wt) = 1

N

N∑

i=1

fi (wt) ≤ 1

N

N∑

i=1

(fi (wk) − ν‖∇ fi (wk)‖2 + δk t̃k)

= f (wk) − ν
1

N

N∑

i=1

‖∇ fi (wk)‖2 + δk t̃k

≤ f (wk) − ν‖∇ f (wk)‖2 + δk t̃k, (16)

where the last inequality comes from the fact that ‖ · ‖2 is convex and therefore

‖∇ f (wk)‖2 =
∥∥∥∥∥
1

N

N∑

i=1

∇ fi (wk)

∥∥∥∥∥

2

≤ 1

N

N∑

i=1

‖∇ fi (wk)‖2.

�
Now, let us prove that starting from some finite but random iteration, the sequence

of iterates generated byASNTR belongs to a level set of the original objective function
f a.s.. This level set is also random since it depends on the sample path.2

Lemma 3 Suppose that Assumption 1 holds. Then a.s.

f (wk̃+k) ≤ f (wk̃) + δmax max{t, t̃}, k = 0, 1, . . .

2 The sample path or, more precisely, the realization of the sequence of iterates generated by the algorithm,
{wk }k∈N, depends on realization of stochastic factors within the algorithm. In our case, stochasticity comes
from the random choices of subsamples Nk and Dk in each particular iteration k.

123

A non-monotone trust-region 257

where k̃ is some finite random number, t and t̃ correspond to those in (8) and (11)
respectively.

Proof Let us consider both scenarios, mini-batch and deterministic separately. In the
mini-batch case, when Nk < N for each k, Lemma 2 implies that a.s.

f (wt) ≤ f (wk) − ν‖∇ f (wk)‖2 + δk t̃k ≤ f (wk) + δk t̃k,

holds for all k ≥ k1, where k1 is as in Lemma 1. Since wk+1 = wt or wk+1 = wk ,
there a.s.

f (wk+1) ≤ f (wk) + δk t̃k,

holds for all k ≥ k1. So, the summability of {t̃k} (11) and the fact that δk ≤ δmax for
all k together imply that the statement of this lemma holds with k̃ = k1.

Assume now that N is achieved at some finite iteration, i.e., there exists a finite
iteration k2 such that Nk = N for all k ≥ k2. Thus, the trial point for all k ≥ k2
is accepted if and only if ρNk ≥ η. This implies that for all k ≥ k2 we either have
f (wk+1) = f (wk) or

f (wk+1) ≤ f (wk) + δk tk − ηc

2
‖gk‖min

{
δk,

‖gk‖
‖Bk‖

}
≤ f (wk) + δmax tk, (17)

where ‖gk‖ = ‖∇ f (wk)‖ in this scenario. Thus, using the summability of {tk} in (8)
we obtain the result with k̃ = k2. �

In order to prove the main convergence result, we assume that the expected value
of f (wk̃) is uniformly bounded.

Assumption 2 There exists a constant C > 0 such that E(| f (wk̃)|) ≤ C , where k̃ is
as in Lemma 3 and the expectation is taken over all possible sample paths.

This assumption, together with the result of Lemma 3, implies that a.s. the sequence
{ f (wk)}k≥k̃ is uniformly bounded in expectation. Moreover, the Assumption 2 also
implies that E(| f (wk̃)| | A) ≤ C1, where A represents the subset of all possible
outcomes (sample paths) such that the full sample is reached eventually and C1 is
some positive constant. To see this, observe that the following holds

P(A)E(| f (wk̃)||A)≤ P(A)E(| f (wk̃)||A)+P(Ā)E(| f (wk̃)|| Ā)=E(| f (wk̃)|) ≤ C,

where Ā represents all possible sample paths that remain in the mini-batch scenario.
Thus, we obtain

EA(| f (wk̃)|) := E(| f (wk̃)| | A) ≤ C/P(A) =: C1.

Similarly, there exists a constant C2 > 0 such that

E Ā(| f (wk̃)|) := E(| f (wk̃)| | Ā) ≤ C/P(Ā) =: C2.

123

258 N. Krejić et al.

Notice that Assumption 2 is satisfied under the assumption of bounded iterates
({wk}k∈N ⊂ Ḡ, where Ḡ is a compact subset of Rn) which is fairly common in a
stochastic optimization framework.

Theorem 1 Suppose that Assumption 1 and Assumption 2 hold. Then the sequence
{wk} generated by ASNTR algorithm satisfies

lim inf
k→∞ ‖∇ f (wk)‖ = 0 a.s.

Proof Let us consider two different scenarios, namely, Nk = N for all k large enough,
and Nk < N for all k. Let us start with the first one in which Nk = N for all k ≥ k̃,
where k̃ is random but finite. In this case, ASNTR reduces to the non-monotone
deterministic trust-region algorithm applied on f . By L-Lipschitz continuity of ∇ f ,
we obtain

| f (wk + pk) − f (wk) − ∇T f (wk)pk | ≤ L

2
‖pk‖2. (18)

Now, let us denote ρk � ρNk and assume that ‖∇ f (wk)‖ ≥ ε > 0 for all k ≥ k̃.
Then,

|ρk − 1| = | f (wk + pk) − f (wk) − δk tk − ∇T f (wk)pk − 0.5pTk Bk pk |
|Qk(pk)|

≤ 0.5L‖pk‖2 + δk tk + 0.5L‖pk‖2
0.5c‖gk‖min{δk, ‖gk‖

‖Bk‖ }

≤ L‖pk‖2 + δk tk
0.5cεmin{δk, ε

L } , (19)

where ‖gk‖ = ‖∇ f (wk)‖ in this scenario. Let us define δ̃ = εc
20L . Without loss of

generality, given that the sequence {tk} is summable and hence tk → 0 (see (8)), we
can assume that tk ≤ L δ̃ for all k ≥ k̃. Observe now the iterations k for k > k̃. If
δk ≤ δ̃, then δk+1 ≥ δk . This is due to the fact that

|ρk − 1| ≤ Lδ2k + δk tk
0.5cεδk

≤ 2L

0.5cε
δ̃= 2L

0.5cε

εc

20L
= 1

5
<

1

4
, (20)

i.e., ρk > 3
4 ≥ η2 which implies that the NTR radius is not decreased; see lines 36–42

in ASNTR. Further, there exists δ̂ > 0 such that δk ≥ δ̂ for all k ≥ k̃. Moreover, for
all k ≥ k̃, the assumption ρk < η, where η < η1, would yield a contradiction since
it would imply limk→∞ δk = 0. Therefore, there must exist an infinite set K ⊆ N as
K = {k ≥ k̃ | ρk ≥ η}. For all k ∈ K , we have

f (wk+1)≤ f (wk)+δk tk− c

8
‖gk‖min

{
δk,

‖gk‖
‖Bk‖

}
≤ f (wk)+δmax tk− c

8
εmin{δ̂, ε

L
}.

123

A non-monotone trust-region 259

Now, let c̄ � c
8εmin{δ̂, ε

L }. Since tk tends to zero, we have δmax tk ≤ c̄
2 for all k large

enough. Without loss of generality, we can say that this holds for all k ∈ K , rewriting
K = {k j } j∈N0 , we have

f (wk j+1) ≤ f (wk j) − c̄

2
.

Since wk+1 = wk for all k ≥ k̃ and k /∈ K , i.e. when ρk < η, we obtain

f (wk j+1) ≤ f (wk j) − c̄

2
.

Thus we obtain for all j ∈ N0

f (wk j) ≤ f (wk0) − j
c̄

2
≤ f (wk̃) + δmax max{t, t̃} − j

c̄

2
, (21)

where the last inequality is due to Lemma 3. Furthermore, applying the expectation
to both sides of (21) and using Assumption 2 we get

EA(f (wk j)) ≤ C1 + δmax max{t, t̃} − j
c̄

2
. (22)

Letting j tend to infinity in (22), we obtain lim j→∞ EA(f (wk j)) = −∞, which
is in contradiction with the assumption of f being bounded from below. Therefore,
‖∇ f (wk)‖ ≥ ε > 0 for all k ≥ k̃ can not be true, so we conclude that

lim inf
k→∞ ‖∇ f (wk)‖ = 0.

Now let us consider the mini-batch scenario, i.e., Nk < N for all k, i.e., the sample
size is increased only finitely many times. According to Lemma 1 and lines 7–8 of the
algorithm, the currently considered scenario implies the existence of a finite k̃1 such
that

Nk = Ñ , ‖gk‖ ≥ εh(Nk) � εÑ > 0 and ρDk ≥ ν, (23)

for all k ≥ k̃1 and some Ñ < N a.s. Now, let us prove that there exists an infinite
subset of iterations K̃ ⊆ N such that ρk ≥ η for all k ∈ K̃ , i.e., the trial point wt is
accepted infinitelymany times. Assume a contrary, i.e., there exists some finite k̃2 such
that ρk < η for all k ≥ k̃2. Since η < η1, this further implies that limk→∞ δk = 0;
see lines 36 and 37 in Algorithm 1. Moreover, line 13 of Algorithm 1 implies that the
sample does not change, meaning that there exists Ñ ⊂ N such that Nk = Ñ for all
k ≥ k̃3 � max{k̃1, k̃2}. By L-Lipschitz continuity of ∇ fÑ , we obtain

| fÑ (wk + pk) − fÑ (wk) − ∇T fÑ (wk)pk | ≤ L

2
‖pk‖2. (24)

123

260 N. Krejić et al.

For every k ≥ k̃3, then we have

|ρk − 1| = | fÑ (wk + pk) − fÑ (wk) − δk tk − ∇T fÑ (wk)pk − 0.5pTk Bk pk |
|Qk(pk)|

≤ 0.5L‖pk‖2 + δk tk + 0.5L‖pk‖2
0.5c‖gk‖min{δk, ‖gk‖

‖Bk‖ }

≤ Lδ2k + δk tk
0.5cεÑ min{δk, ε

L } . (25)

Since limk→∞ δk = 0, there exists k̃4 such that for all k ≥ k̃4 we obtain

|ρk − 1| ≤ Lδ2k + δk tk
0.5cεÑ δk

= Lδk + tk
0.5cεÑ

.

Due to the fact that tk tends to zero, we obtain that limk→∞ ρk = 1 which is in
contradiction with ρk < η < 1/4. Thus, we conclude that there must exist K̃ ⊆ N

such that ρk ≥ η for all k ∈ K̃ . Let us define K1 � K̃ ∩ {k̃1, k̃1 + 1, . . .}. Notice that
we have ρDk ≥ ν and ρk ≥ η for all k ∈ K1. Thus, due to Lemma 2, a.s. the following
holds for all k ∈ K1

f (wk+1) = f (wt) ≤ f (wk) − ν‖∇ f (wk)‖2 + δk t̃k,

≤ f (wk) − ν‖∇ f (wk)‖2 + δmax t̃k .
(26)

Notice that wk+1 = wk in all other iterations k ≥ k̃1 and k /∈ K1. Rewriting
K1 = {k j } j∈N0 , for all j ∈ N0, we obtain

f (wk j+1) = f (wk j+1) ≤ f (wk j) − ν‖∇ f (wk j)‖2 + δmax t̃k j .

Then, due to the summability of the sequeence {t̃k} in (11), and Lemma 3, the following
holds a.s. for any s ∈ N0

f (wks+1) ≤ f (wk0) − ν

s∑

j=0

‖∇ f (wk j)‖2 + δmax t̃

≤ f (wk̃) + δmax max{t, t̃} − ν

s∑

j=0

‖∇ f (wk j)‖2 + δmax t̃ .

(27)

Now, applying the expectation to both sides of the second inequality in (27), using
Assumption 2 which implies E Ā(| f (wk̃)|) ≤ C2, and the boundedness of f from
below, letting s tend to infinity yields

∞∑

j=0

E Ā(‖∇ f (wk j)‖2) < ∞.

123

A non-monotone trust-region 261

Moreover, the following holds as a consequence of an extended version of Markov’s
inequality with the specific choice of the nonnegative function
(y) = y2 nonde-
creasing on y ≥ 0: for any ε > 0

PĀ(‖∇ f (wk j)‖ ≥ ε) ≤ E Ā(
(‖∇ f (wk j)‖))

(ε)

= E Ā(‖∇ f (wk j)‖2)
ε2

.

Therefore, we have

∞∑

j=0

PĀ(‖∇ f (wk j)‖ ≥ ε) < ∞.

Finally, Borel-Cantelli Lemma implies that (in the current scenario) almost surely
lim j→∞ ‖∇ f (wk j)‖ = 0. Combining all together, the result follows as in both sce-
narios we have at least

lim inf
k→∞ ‖∇ f (wk)‖ = 0 a.s.

�
Finally, we analyze the convergence rate of the proposed algorithm for a restricted

class of problems stated in the following theorem.

Theorem 2 Suppose that the assumptions of Theorem 1 hold and that ν < L/2.
Moreover, suppose that f is m-strongly convex and the sequence {t̃k} converges to
zero R-linearly. If Nk < N for all k ∈ N, then the sequence {wk}k∈K1 with K1 as in
(26) converges to the unique minimizer w∗ of f R-linearly in the mean squared sense.

Proof Considering the mini-batch scenario in the proof of the previous theorem, we
obtain

f (wk j+1) ≤ f (wk j) − ν‖∇ f (wk j)‖2 + δmax t̃k j ,

for all j ∈ N a.s.. Moreover, the strong convexity of f implies

f (wk j+1) − f (w∗) ≤ f (wk j) − f (w∗) − ν
2

L
(f (wk j) − f (w∗)) + δmax t̃k j ,

for all j ∈ N a.s.. Now, applying the expectation and defining e j := E Ā(f (wk j) −
f (w∗)), from the previous inequality we obtain

e j+1 ≤ θe j + ε j ,

where ε j := δmax t̃k j and θ := 1 − 2ν/L ∈ (0, 1) according to the assumption on ν

that is ν ∈ (0, 1/4). Since the previous inequality holds for each j , we conclude via
induction that for all j ∈ N there holds

e j ≤ θ j e0 + s j ,

123

262 N. Krejić et al.

where s j := δmax
∑ j

i=1 θ i−1ε j−i . Notice that {ε j } converges to zero R-linearly
according to the assumption on t̃k . This further implies that s j converges to zero
R-linearly (see Lemma 4.2 in [34]). Thus, we conclude that {e j } converges to zero
R-linearly. Finally, since the strong convexity also implies

m

2
E Ā(‖wk j − w∗‖2) ≤ e j ,

we obtain the result. �

4 Numerical experiments

In this section, we provide some experimental results to make a comparison between
ASNTR and STORM (as Algorithm 5 in [41]). We examine the performance of both
algorithms for training DNNs in two types of problems: (i) Regression with synthetic
DIGITS dataset and (ii) Classification with MNIST and CIFAR10 datasets. 3

We also provide additional results to give more insights into the behavior of the
ASNTR algorithm, especially concerning the sampling strategy. All experiments were
conducted with the MATLAB DL toolbox on an Ubuntu 20.04.4 LTS (64-bit) Linux
server VMware with 20GB memory using a VGPU NVIDIA A100D-20C.

4.1 Experimental configuration

All three image datasets are divided into training and testing sets including N and N̂
samples, respectively, and whose pixels in the range [0, 255] are divided by 255 so
that the pixel intensity range is bounded in [0, 1] (zero–one rescaling). To define the
initialized networks and training loops of both algorithms, we have applied dlarray
and dlnetwork MATLAB objects.4 The networks’ parameters in w ∈ R

n are ini-
tialized by the Glorot (Xavier) initializer [43] and zeros for respectively weights and
biases of convolutional layers as well as ones and zeros respectively for scale and
offset variables of batch normalization layers. Table 1 describes the hyper-parameters
applied in both algorithms.

Table 1 Hyper-parameters

STORM

δ0 = 1, δmax = 10, l = 30, η1 = 10−4, η2 = 10−3, γ = 2

ASNTR

δ0 = 1, δmax = 10, l = 30, η = ν = 10−4, η1 = 0.1, η2 = 0.75, τ1 = 0.5, τ2 = 0.8,τ3 = 2

3 Available online: https://www.kaggle.com/datasets/hojjatk/mnist-dataset (MNIST) https://www.
mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html (DIGITS and CIFAR10).
4 AMATLAB-based tutorial on implementing custom loops for training a deep neural network is available
here: http://doi.org/10.13140/RG.2.2.33008.94720/2.

123

https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html
http://doi.org/10.13140/RG.2.2.33008.94720/2

A non-monotone trust-region 263

SinceASNTRandSTORMallow the use of anyHessian approximations, the under-
lying quadratic model can be constructed by exploiting a Quasi-Newton update for
Bk . Quasi-Newton updates aim at constructing Hessian approximations using only
gradient information and thus incorporating second-order information without com-
puting and storing the true Hessian matrix. We have considered the Limited Memory
SymmetricRank one (L-SR1) update formula to generate Bk rather than other widely
used alternatives such as limited memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS). The L-SR1 updates might better navigate the pathological saddle points
present in the non-convex optimization found in DL applications. Given B0 = γk I at
iteration k, and curvature pair (sk, yk) = (wt − wk, gt − gk) where gk � ∇ fNk (wk)

and gt � ∇ fNk (wt) provided that (yk − Bksk)T sk �= 0, the SR1 updates are obtained
as follows

Bk+1 = Bk + (yk − Bksk)(yk − Bksk)T

(yk − Bksk)T sk
, k = 0, 1, (28)

Using two limited memory storage matrices Sk and Yk with at most l � n columns for
storing the recent l pairs

{
s j , y j

}
j ∈ {1, . . . , l}, the compact form of L-SR1 updates

can be written as

Bk = B0 + kMk
T
k , k = 1, 2, , . . . , (29)

where

k = Yk − B0Sk, Mk = (Dk + Lk + LT
k − STk B0Sk)

−1

withmatrices Lk and Dk which respectively are the strictly lower triangular part and the
diagonal part of STk Yk ; see [1]. Regarding the selection of the variable multiplier γk in
B0, we refer to the initialization strategy proposed in [30]. Given the quadratic model
Qk(p) using L-SR1 in ASNTR and STORM, we have used an efficient algorithm
called OBS [44], exploiting the structure of the L-SR1 matrix (29) and the Sherman-
Morrison-Woodbury formula for inversions to obtain pk .

We have randomly (without replacement) chosen the index subset Nk ⊆
{1, 2, . . . , N } to generate a mini-batch of size Nk for computing the required quan-
tities, i.e., subsampled functions and gradients. Given N0 = d + 1 where d is the
dimension of a single input sample xi ∈ R

d , we have adopted the linearly increased
sampling rule that Nk = min(N ,max(100k+ N0, � 1

δk
2 �) for STORM as in [41] while

we have exploited the simple following sampling rule for ASNTR when the increase
is necessary

Nk+1 = �1.01Nk�, (30)

otherwise Nk+1 = Nk . Using the non-monotone TR framework in our algorithm, we
set tk = C1

(k+1)1.1
and t̃k = C2

(k+1)1.1
for some C1,C2 > 0 in (7) and (10), respectively.

We have also selected Dk with cardinality 1 at every single iteration in ASNTR.

123

264 N. Krejić et al.

In our implementations, each algorithm was run with 5 different initial random
seeds. The criteria of both algorithms’ performance (accuracy and loss) are compared
against the number of gradient calls (Ng) during the training phase. The algorithms
were terminated when Ng reached the determined budget of the gradient evaluations
(Nmax

g). Each network is trained by ASNTR and STORM; then the trained network
is used for the prediction of the testing dataset. Notice that the training loss and
accuracy are the subsampled function’s value and the number of correct predictions
in percentage with respect to the given mini-batch.

4.2 Classification problems

To solve an image classification problem for images with unknown classes/labels,
we need to seek an optimal classification model by using a C-class training dataset
{(xi , yi)Ni=1} with an image xi ∈ R

d and its one-hot encoded label yi ∈ R
C . To

this end, the generic DL problem (1) is minimized, where its single loss function
fi = L(yi , h(xi ; .)) is softmax cross-entropy as follows

fi (w) = −
C∑

k=1

(yi)k log(h(xi ;w))k, i = 1, . . . , N . (31)

In (31), the output h(xi ;w) is a prediction provided by aDNNwhose last layer includes
the softmax function. For this classification task, we have considered two types of
networks, the LeNet-like network with a shallow structure inspired by LeNet-5
[48], and the modern residual network ResNet-20 [46] with a deep structure. See
Table 2 for the network’s architectures. We have also considered the two most popular
benchmarks; the MNIST dataset [49] with 7× 104 samples of handwritten gray-scale
digit images of 28 × 28 pixels and the CIFAR10 dataset [50] with 6 × 104 RGB
images of 32 × 32 pixels, both in 10 categories. Every single image of MNIST and
CIFAR10 datasets is defined as a 3-D numeric array xi ∈ R

d where d = 28 × 28 × 1
and d = 32 × 32 × 3, respectively. Moreover, every single label yi must be converted
into a one-hot encoded label as yi ∈ R

C , where C = 10. In both datasets, N̂ = 104

images are set aside as testing sets, and the remaining N images are set as training
sets. Besides the zero–one rescaling, we implemented z-score normalization to have
zero mean and unit variance. Precisely, all N training images undergo normalization
by subtracting the mean (an h × w × c array) and dividing by the standard deviation
(an h×w × c array) of training images as an array of size h×w × c× N . Here, h, w,
and c denote the height, width, and number of channels of the images, respectively,
while N represents the total number of images. Test data are also normalized using
the same parameters as in the training data.5

Figures 1, 2, 3 and 4 show the variations, the mean and standard error obtained
from 5 separate runs, of the aforementioned measures for both train and test datasets
of ASNTR with C2 = 1, 102, 108 in ρDk , and C1 = 1 in ρNk within fixed budgets of
gradient evaluations Nmax

g = 6×105 for MNIST and Nmax
g = 9×106 for CIFAR10.

5 Mathematically, we have already denoted the i−th image of dimension d as xi ∈ R
d where d = h×w×c.

123

A non-monotone trust-region 265

Table 2 Architectures of the networks

Regression

(Conv(3 × 3@8, 1, same)/BN/ReLU/AvgPool(2 × 2, 2, 0))

(Conv(3 × 3@16, 1, same)/BN/ReLU/AvgPool(2 × 2, 2, 0))

CNN-Rn (Conv(3 × 3@32, 1, same)/BN/ReLU)

(Conv(3 × 3@32, 1, same)/BN/ReLU/DropOut(0.2))

FC(1)

Classification

(Conv(3 × 3@16, 1, 1)/BN/ReLU)

B1

{
(Conv(3 × 3@16, 1, 1)/BN/ReLU)

(Conv(3 × 3@16, 1, 1)/BN) + addition(1)/ReLU

B2

{
(Conv(3 × 3@16, 1, 1)/BN/ReLU)

(Conv(3 × 3@16, 1, 1)/BN) + addition(1)/ReLU

B3

{
(Conv(3 × 3@16, 1, 1)/BN/ReLU)

(Conv(3 × 3@16, 1, 1)/BN) + addition(1)/ReLU

B1

⎧
⎪⎪⎨

⎪⎪⎩

(Conv(3 × 3@32, 2, 1)/BN/ReLU)

(Conv(3 × 3@32, 1, 1)/BN)

(Conv(1 × 1@32, 2, 0)/BN) + addition(2)/ReLU

ResNet-20 B2

{
(Conv(3 × 3@32, 1, 1)/BN/ReLU)

(Conv(3 × 3@32, 1, 1)/BN) + addition(1)/ReLU

B3

{
(Conv(3 × 3@32, 1, 1)/BN/ReLU)

(Conv(3 × 3@32, 1, 1)/BN) + addition(1)/ReLU

B1

⎧
⎪⎪⎨

⎪⎪⎩

(Conv(3 × 3@64, 2, 1)/BN/ReLU)

(Conv(3 × 3@64, 1, 1)/BN)

(Conv(1 × 1@64, 2, 0)/BN) + addition(2)/ReLU

B2

{
(Conv(3 × 3@64, 1, 1)/BN/ReLU)

(Conv(3 × 3@64, 1, 1)/BN) + addition(1)/ReLU

B3

{
(Conv(3 × 3@64, 1, 1)/BN/ReLU)

(Conv(3 × 3@64, 1, 1)/BN) + addition(1)/gAvgPool/ReLU)

FC(C/Sof tmax)

Classification

(Conv(5 × 5@20, 1, 0)/ReLU/Max Pool(2 × 2, 2, 0))

LeNet-like (Conv(5 × 5@50, 1, 0)/ReLU/Max Pool(2 × 2, 2, 0))

FC(500/ReLU)

FC(C/Sof tmax)

TABLE’S NOTES:See [45, 46] for more details about the different layers in a deep neural network. The compound
(Conv(5×5@32, 1, 2)/BN/ReLu/Max Pool(2×2, 1, 0))) indicates a simple convolutional network (ConvNet) including
a convolutional layer (Conv) using 32 filters of size 5 × 5, stride 1, padding 2, followed by a batch normalization layer
(BN), a nonlinear activation function (ReLu) and, finally, a 2-D max-pooling layer with a channel of size 2 × 2, stride 1
and padding 0. The syntax FC(C/Sof tmax) denotes a layer of C fully connected neurons followed by the so f tmax layer.
Moreover, (AvgPool), (gAvg.Pool), and (DropOut) refer to the 2D average-pooling, global average-pooling, and drop-
out layers, respectively. The syntax addition(1)/ReLu indicates the existence of an identity shortcut with functionality
such that the output of a given block, say B1 (or B2 or B3), is directly fed to the addition layer and then to the ReLu layer
while addition(2)/ReLu in a block shows the existence of a projection shortcut with functionality such that the output
from the two first ConvNets is added to the output of the third ConvNet and then the output is passed through the ReLu
layer. An open-source implementation of the ResNet-20 and LeNet-like networks described above as components
in Matlab programs of algorithms presented in [47] is available on https://github.com/MATHinDL/sL_QN_TR/)

123

https://github.com/MATHinDL/sL_QN_TR/

266 N. Krejić et al.

Fig. 1 The accuracy variations of STORM and ASNTR on MNIST

Fig. 2 The accuracy variations of STORM and ASNTR on CIFAR10

These figures demonstrate that ASNTR achieves higher training and testing accu-
racy than STORM in all considered values of C2 except in Fig. 2 with C2 = 1 by
which ASNTR can be comparable with STORM. Nevertheless, ASNTR is capable of
achieving higher accuracy (lower loss) with fewer Ng in comparison with STORM.
Moreover, these figures indicate the robustness of ASNTR for larger values of C2
meaning higher rates of non-monotonicity.

4.3 Regression problem

This example shows how to fit a regression model using a neural network to be able
to predict the angles of rotation of handwritten digits which is useful for optical

123

A non-monotone trust-region 267

Fig. 3 The loss variation of STORM and ASNTR on MNIST

Fig. 4 The loss variation of STORM and ASNTR on CIFAR10

character recognition. To find an optimal regression model, the generic problem (1) is
minimized, where fi = L(yi , h(xi ; .)) with a predicted output h(xi ;w) is half-mean-
squared error as follows

fi (w) = −1

2
(yi − h(xi ;w))2, i = 1, . . . , N . (32)

In this regression example, we have considered a convolutional neural network (CNN)
with an architecture named CNN-Rn as indicated in Table 2. We have also used the
DIGITS dataset containing 10× 103 synthetic images with 28× 28 pixels as well as
their angles (in degrees) by which each image is rotated. Every single image is defined
as a 3-D numeric array xi ∈ R

d where d = 28 × 28 × 1. Moreover, the response

123

268 N. Krejić et al.

Fig. 5 The accuracy variations of STORM and ASNTR on DIGITS

Fig. 6 The loss variation of STORM and ASNTR on DIGITS

yi (the rotation angle in degrees) is approximately uniformly distributed between
−45◦ and 45◦. Each training and testing dataset has the same number of images
(N = N̂ = 5 × 103). Besides zero–one rescaling, we have also applied zero-center
normalization to have zero mean. The problem (1) with single loss function (32) is
solved forw ∈ R

n where n = 16, 881 usingCNN-Rn for DIGITS. In this experiment,
the accuracy is the number of predictions in percentage within an acceptable error
margin (threshold) that we have set to be 10 degrees.

Figures 5 and 6 show training accuracy and loss, and testing accuracy and loss
variations of ASNTR for DIGITS dataset with three values of C2 within a fixed
budget of gradient evaluations Nmax

g = 2 × 106. These figures also illuminate how
resilient ASNTR is for the highest value of C2. Despite several challenges in the early

123

A non-monotone trust-region 269

Fig. 7 Tracking subsampling in ASNTR

stages of the training phase with C2 = 1 and C2 = 102, ASNTR can overcome them
and achieve accuracy levels comparable to those of the STORM algorithm.

123

270 N. Krejić et al.

Fig. 8 Batch size progress with initial rng(42)

4.4 Additional results

We present two additional figures (Figs. 7 and 8) containing further details regarding
our proposed algorithm, ASNTR, with C2 = 1, 102, 108 in ρDk and C1 = 1 in ρNk .
More specifically, these results aim to give useful insights concerning the sampling
behavior of ASNTR. Let S1 and S2 indicate the iterations of ASNTR at which steps 7
and 10, respectively, are executed using the increasing sampling rule (30). When the
cardinality of the sample set is not changed, i.e., Nk+1 = Nk , let S3 and S0 show the
iterations at which new samples through step 15 and current samples through step 13

123

A non-monotone trust-region 271

are selected. We also define variable S4 representing the iteration of ASNTR at which
all available samples (Nk = N) are needed for computing the required quantities.

Figure 7a shows the (average) contributions of the aforementioned sampling types in
ASNTR running with five different initial random generators for MNIST, CIFAR10,
and DIGITSwith respectively predetermined Nmax

g = 0.6×106, 9×106 and 2×106;
however, considering only a specific initial seed, e.g. rng(42), Fig. 7b–d indicate
when/where each of these sampling types is utilized in ASNTR. Obviously, the con-
tribution rate of S3 is influenced by S2, where ASNTR has to increase the batch size if
ρDk < ν. In fact, the largerC2 in ρDk results in the higher portion of S3 and the smaller
portion of S2. Moreover, using a large value of C2, there is no need to increase the
current batch size unless the current iterate approaches a stationary point of the current
approximate function. This, in turn, leads to increasing the portion of S1, which usu-
ally happens at the end of the training stage. In addition, we have also found that the
value of C2 in t̃k plays an important role in the robustness of our proposed algorithm
as observed in Figs. 1 to 6; in other words, the higher the C2, the more robust ASNTR
is. These mentioned observations, more specifically, can be followed for every single
dataset as below:

• MNIST: according to Fig. 7a, the portion of the sampling type S3 is larger than
the others. This means many new batches without an increase in the batch size are
applied in ASNTR during training; i.e., the proposed algorithm can train a network
with fewer samples, and thus fewer gradient evaluations. Nevertheless, ASNTR
with different values of C2 in ρDk increases the size of the mini-batches in some
of its iterations; see the portions of S1 and S2 in Fig. 7a or their scatters in Fig. 7b.
We should note that the sampling type S1 occurs almost at the end of the training
phase where the algorithm tends to be close to a stationary point of the current
approximate function; Fig. 7b shows this fact.

• CIFAR10: according to Fig. 7a, the portion of the sampling type S3 is still large.
Unlike MNIST, the sampling type S1 rarely occurs during the training phase. On
the other hand, a large portion of the increase of the sample size through S2 may
com- pensate for the lack of sufficiently accurate functions and gradients required
in ASNTR. These points are also illustrated in Fig. 7c, which shows how ASNTR
successfully trained theResNet-20modelwithout frequently enlarging the sam-
ple sizes. For both the MNIST and CIFAR10 problems, S3 as the predominant
type corresponds to C2 = 108.

• DIGITS: according to Fig. 7a, we observe that the main sampling types are S2
and S4. As the portion of S2 increases, the portion of S3 decreases and the highest
portion of S3 corresponds to the largest value ofC2. This pattern is similar to what
is seen in theMNIST and CIFAR10 datasets. However, in the case of DIGITS, the
portion of S4 is higher. This higher portion of S4 in DIGITSmay be attributed to
the smaller number of samples in this dataset (N = 5000), which causes ASNTR
to quickly encompass all the samples after a few iterations. Notably, the sampling
type S4 occurs towards the end of the training phase, as shown in Fig. 7d.

Figure 8 compares the progression of batch size growth in both ASNTR and
STORM. In contrast to the STORM algorithm, ASNTR increases the batch size only
when necessary, which can reduce the computational costs of gradient evaluations.

123

272 N. Krejić et al.

Fig. 9 Comparison of ASNTR vs. tuned ADAM (first row), and vs. untuned ADAM (second row) on
MNIST for training LeNet-like with rng(42)

This is considered a significant advantage of ASNTR over STORM. However, accord-
ing to this figure, the proposed algorithm needs fewer samples than STORM during
the initial phase of the training task, but it requires more samples toward the end.
Nevertheless, we should notice that the increase in batch size that happened at the
end of the training phase is determined either by S1 or by S4 (see Figs. 7b and d). In
our experiments, we have observed that ASNTR does not use very large Nmax

g , as it
typically achieves the required training accuracy.

4.5 Comparison with ADAM

We have compared the proposed stochastic second-order method (ASNTR) with a
popular efficient first-order optimizer, i.e., Adaptive Moment Estimation (ADAM)
[12] used in DL. We have implemented ADAM using MATLAB built-in function
adamupdate in customized training loops. It’s widely recognized that this opti-
mizer is highly sensitive to the value of its hyper-parameters including the learning
rate, αk , the gradient decay factor, β1, the squared gradient decay factor, β2, a small
constant to prevent division by zero, ε, and batch size. Users should be aware of
the hyper-parameter choices and invest time in tuning them using techniques such
as grid search. In our experiments, we set β1 = 0.9, β2 = 0.999, and ε = 10−8,
respectively, and focus our tuning effort on learning rate and batch size. The speci-
fied choices for tuning the learning rate were αk = α with α taking values from the
set {10−4, 10−3, 10−2}, and the corresponding values for batch size were Nk = bs

123

A non-monotone trust-region 273

where bs varied within {128, 256, 784} for both MNIST and DIGITS, and within
{128, 256, 3072} for CIFAR10.

The best hyper-parameters were those that yielded the highest testing accuracy
within a fixed budget of gradient evaluations. In all experiments, the optimal perfor-
mance with Adam was consistently achieved using α = 10−3 and bs = 128. These
settings were employed with ADAM in Figs. 9,10 and 11 (first rows) for comparison
purposes against ASNTR with C2 = 108 demonstrated in Figs. 1 to 6. As these fig-
ures show, the tuned ADAM could produce the highest accuracy and lowest loss with
fewer gradient evaluations in comparison with ASNTR. The common observation of
rapid initial improvement achieved by ADAM, followed by a drastic slowdown, is
well understood in practice for some first-order methods (see, e.g., [13]). First-order
methods such as ADAM are computationally less expensive per iteration compared
to second-order methods such as ASNTR, as they only involve the computation of
one gradient compared to two gradients. Moreover, as already mentioned the initial
sample size for ASNTR was set as N0 = d + 1 where d = 784 for both MNIST
and DIGITS and d = 3072 for CIFAR10. By initially employing such large batch
sizes against an obtained optimal batch size for ADAM, i.e., Nk = 128, there are
only a small number of updated iterates (wk) during training with both second-order
methods within the fixed budget of gradient evaluations. Therefore, allowing ASNTR
to train networks within a larger number of gradient evaluations helps it to eventually
achieve a higher level of accuracy while this cannot help ADAM. Note that we have
performed this analysis between the tuned ADAM (Nk = 128, and αk = 10−3) and
ASNTR, where tuning the hyper-parameters of ADAM incurs significant time costs.
When ADAM is used with suboptimal hyper-parameters, its sensitivity becomes evi-
dent, as illustrated in Figs. 9,10 and 11 (second rows) where batch size Nk = d + 1
and different learning rates are considered. As these figures show, for a challenging
problem such as CIFAR10 classification, ADAMmay not achieve a lower loss value
than ASNTR, even when employing an optimal learning rate (α = 10−2). Neither for
the other challenging problem DIGITS ADAM could produce higher testing Accu-
racy than ASNTR. All the results shown in the three figures were obtained using the
same seed for the random number generator (rng(42)). Moreover, due to awkward
oscillations in Loss and Accuracy obtained by ADAM in CIFAR10 and DIGITS
classification problems, we have imposed a filter using movmean MATLAB built-
in function (moving mean with a window of length c) in Figs. 10 and 11; in our
experiments c = 30.

5 Conclusion

In this work, we have presented ASNTR, a second-order non-monotone trust-region
method that employs an adaptive subsampling strategy. We have incorporated addi-
tional sampling into the TR framework to control the noise and overcome issues in
the convergence analysis coming from biased estimators. Depending on the estimated
progress of the algorithm, this can yield different scenarios ranging from mini-batch
to full sample functions. We provide convergence analysis for all possible scenarios
and show that the proposed method achieves almost sure convergence under standard

123

274 N. Krejić et al.

Fig. 10 Comparison of ASNTR vs. tuned ADAM (first row), and vs. untuned ADAM (second row) on
CIFAR10 for training ResNet-20 with rng(42)

Fig. 11 Comparison of ASNTR vs. tuned ADAM (first row), and vs. untuned ADAM (second row) on
DIGITS for training CNN-Rn with rng(42)

123

A non-monotone trust-region 275

assumptions for the TR framework. The experiments in deep neural network train-
ing for both image classification and regression show the efficiency of the proposed
method. In comparison to the state-of-the-art second-order method STORM, ASNTR
achieves higher testing accuracy with a fixed budget of gradient evaluations. How-
ever, our experiments show that the popular first-order method, tuned ADAM using
its optimal hyper-parameters, can produce higher accuracy than ASNTR with fixed
and fewer gradient computations if one does not count the effort needed for tuning
the parameters. As expected, ASNTR is more robust and performs better than ADAM
with suboptimal parameters. Future work on ASNTR could include more specified
sample size updates and Hessian approximation strategies.

Acknowledgements We are grateful to the two anonymous referees whose constructive comments helped
us to improve the paper. The work of NK and NKJ was supported by the Science Fund of the Republic
of Serbia, Grant no. 7359, Project LASCADO. AM and MY gratefully acknowledge the support of the
INdAM-GNCS Project CUP_E53C22001930001. The work of AM was carried out within the PNRR
research activities of the consortium iNEST (Interconnected North-Est Innovation Ecosystem) funded by
the European Union Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione
4 Componente 2, Investimento 1.5 - D.D. 1058 23/06/2022, ECS_00000043). This manuscript reflects
only the Authors’ views and opinions, neither the European Union nor the European Commission can be
considered responsible for them.

Funding Open access funding provided byUniversità degli Studi di Firenzewithin the CRUI-CAREAgree-
ment.

Data availability The datasets utilized in this research, DIGITS, MNIST, and CIFAR-10, are publicly
accessible and commonly employed benchmarks in the field of Machine Learning and Deep Learning, see
https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html, https://www.kaggle.
com/datasets/hojjatk/mnist-dataset and [49, 50].

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York, NY (2006). https://doi.org/10.
1007/978-0-387-40065-5

2. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-RegionMethods. SIAM, Philadelphia, PA (2000). https://
doi.org/10.1137/1.9780898719857

3. Ahookhosh, M., Amini, K., Peyghami, M.R.: A non-monotone trust-region line search method for
large-scale unconstrained optimization. Appl. Math. Model. 36(1), 478–487 (2012). https://doi.org/
10.1016/j.apm.2011.07.021

123

https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1016/j.apm.2011.07.021
https://doi.org/10.1016/j.apm.2011.07.021

276 N. Krejić et al.

4. Di Serafino, D., Krejić, N., Krklec Jerinkić, N., Viola, M.: LSOS: line-search second-order stochastic
optimization methods for nonconvex finite sums. Math. Comput. 92(341), 1273–1299 (2023). https://
doi.org/10.1090/mcom/3802

5. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951).
https://doi.org/10.1214/aoms/1177729586

6. Bottou, L., LeCun, Y.: Large scale online learning. In: Advances in Neural Information Processing
Systems, vol. 16, pp. 217–224 (2004). Available at: https://proceedings.neurips.cc/paper_files/paper/
2003

7. Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for
non-strongly convex composite objectives. In: Advances in Neural Information Processing Systems,
pp. 1646–1654 (2014). Available at: https://proceedings.neurips.cc/paper_files/paper/2014

8. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction.
In: Advances in Neural Information Processing Systems, vol. 26, pp. 315–323 (2013). Available at:
https://proceedings.neurips.cc/paper_files/paper/2013

9. Schmidt,M., Le Roux, N., Bach, F.:Minimizing finite sumswith the stochastic average gradient.Math.
Program. 162(1–2), 83–112 (2017). https://doi.org/10.1007/s10107-016-1030-6

10. Nguyen, L.M., Liu, J., Scheinberg, K., Takáč, M.: SARAH: A novel method for machine learning
problems using stochastic recursive gradient. In: International Conference on Machine Learning, pp.
2613–2621 (2017). PMLR. Available at: https://proceedings.mlr.press/v70/

11. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res. 12(7) (2011). Available at: https://www.jmlr.org/papers/v12/

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference
on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015). Available at: http://
arxiv.org/abs/1412.6980

13. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM
Rev. 60(2), 223–311 (2018). https://doi.org/10.1137/16M1080173

14. Kylasa, S., Roosta, F., Mahoney, M.W., Grama, A.: GPU accelerated sub-sampled Newton’s method
for convex classification problems. In: Proceedings of the 2019 SIAM International Conference on
Data Mining, pp. 702–710 (2019). https://doi.org/10.1137/1.9781611975673.79 . SIAM

15. Martens, J.: Deep learning viaHessian-free optimization. In: Proceedings of the 27th International Con-
ference on Machine Learning, pp. 735–742 (2010). Available at: https://www.icml2010.org/abstracts.
html

16. Martens, J., Sutskever, I.: Training deep and recurrent networks with Hessian-free optimization. In:
Neural Networks: Tricks of the Trade, pp. 479–535. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35289-8_27

17. Bollapragada, R., Byrd, R.H., Nocedal, J.: Exact and inexact subsampled Newton methods for opti-
mization. IMA J. Numer. Anal. 39(2), 545–578 (2019). https://doi.org/10.1093/imanum/dry009

18. Xu, P., Roosta, F., Mahoney, M.W.: Second-order optimization for non-convex machine learning: An
empirical study. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp.
199–207 (2020). https://doi.org/10.1137/1.9781611976236.23 . SIAM

19. Martens, J., Grosse, R.: Optimizing neural networks with Kronecker-factored approximate curvature.
In: International Conference onMachine Learning, pp. 2408–2417 (2015). PMLR.Available at: https://
proceedings.mlr.press/v37/

20. Goldfarb, D., Ren, Y., Bahamou, A.: Practical quasi-newtonmethods for training deep neural networks.
In: Advances in Neural Information Processing Systems, vol. 33, pp. 2386–2396 (2020). Available at:
https://proceedings.neurips.cc/paper_files/paper/2020

21. Mokhtari, A., Ribeiro, A.: Global convergence of online limited memory BFGS. J. Mach. Learn. Res.
16(1), 3151–3181 (2015)

22. Gower, R., Goldfarb, D., Richtárik, P.: Stochastic block BFGS: Squeezing more curvature out of data.
In: International Conference onMachine Learning, pp. 1869–1878 (2016). PMLR.Available at: https://
proceedings.mlr.press/v48/

23. Wang, X., Ma, S., Goldfarb, D., Liu, W.: Stochastic quasi-Newton methods for nonconvex stochastic
optimization. SIAM J. Optim. 27(2), 927–956 (2017). https://doi.org/10.1137/15M1053141

24. Berahas, A.S., Takáč,M.: A robust multi-batch L-BFGSmethod formachine learning. Optim.Methods
Softw. 35(1), 191–219 (2020). https://doi.org/10.1080/10556788.2019.1658107

123

https://doi.org/10.1090/mcom/3802
https://doi.org/10.1090/mcom/3802
https://doi.org/10.1214/aoms/1177729586
https://proceedings.neurips.cc/paper_files/paper/2003
https://proceedings.neurips.cc/paper_files/paper/2003
https://proceedings.neurips.cc/paper_files/paper/2014
https://proceedings.neurips.cc/paper_files/paper/2013
https://doi.org/10.1007/s10107-016-1030-6
https://proceedings.mlr.press/v70/
https://www.jmlr.org/papers/v12/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/1.9781611975673.79
https://www.icml2010.org/abstracts.html
https://www.icml2010.org/abstracts.html
https://doi.org/10.1007/978-3-642-35289-8_27
https://doi.org/10.1007/978-3-642-35289-8_27
https://doi.org/10.1093/imanum/dry009
https://doi.org/10.1137/1.9781611976236.23
https://proceedings.mlr.press/v37/
https://proceedings.mlr.press/v37/
https://proceedings.neurips.cc/paper_files/paper/2020
https://proceedings.mlr.press/v48/
https://proceedings.mlr.press/v48/
https://doi.org/10.1137/15M1053141
https://doi.org/10.1080/10556788.2019.1658107

A non-monotone trust-region 277

25. Bollapragada, R., Nocedal, J., Mudigere, D., Shi, H.-J., Tang, P.T.P.: A progressive batching L-BFGS
method for machine learning. In: International Conference onMachine Learning, pp. 620–629 (2018).
PMLR. Available at: https://proceedings.mlr.press/v80/

26. Jahani, M., Nazari, M., Rusakov, S., Berahas, A.S., Takáč, M.: Scaling up quasi-newton algorithms:
communication efficient distributed SR1. In:Machine Learning, Optimization, andData Science. LOD
2020. Lecture Notes in Computer Science, vol. 12565, pp. 41–54. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64583-0_5

27. Berahas, A.S., Jahani, M., Richtárik, P., Takáč, M.: Quasi-newton methods for machine learning:
forget the past, just sample. Optim. Methods Softw. 37(5), 1668–1704 (2022). https://doi.org/10.1080/
10556788.2021.1977806

28. Rafati, J., Marcia, R.F.: Improving L-BFGS initialization for trust-region methods in deep learning.
In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp.
501–508 (2018). https://doi.org/10.1109/ICMLA.2018.00081 . IEEE

29. Yousefi, M., Martínez Calomardo, Á.: A stochastic modified limited memory BFGS for training deep
neural networks. In: Intelligent Computing: Proceedings of the 2022 Computing Conference, Volume
2, pp. 9–28 (2022). Springer. https://doi.org/10.1007/978-3-031-10464-0_2

30. Erway, J.B., Griffin, J., Marcia, R.F., Omheni, R.: Trust-region algorithms for training responses:
machine learning methods using indefinite Hessian approximations. Optim. Methods Softw. 35(3),
460–487 (2020). https://doi.org/10.1080/10556788.2019.1624747

31. Grippo, L., Lampariello, F., Lucidi, S.: A non-monotone line search technique for Newton’s method.
SIAM J. Numer. Anal. 23(4), 707–716 (1986). https://doi.org/10.1137/0723046

32. Deng, N., Xiao, Y., Zhou, F.: Nonmonotonic trust-region algorithm. J. Optim. Theory Appl. 76(2),
259–285 (1993). https://doi.org/10.1007/BF00939608

33. Cui, Z., Wu, B., Qu, S.: Combining non-monotone conic trust-region and line search techniques for
unconstrained optimization. J. Comput. Appl. Math. 235(8), 2432–2441 (2011). https://doi.org/10.
1016/j.cam.2010.10.044

34. Krejić, N., Krklec Jerinkić, N.: Non-monotone line search methods with variable sample size. Numer.
Algor. 68(4), 711–739 (2015). https://doi.org/10.1007/s11075-014-9869-1

35. Yousefi, M., Martínez Calomardo, Á.: A stochastic nonmonotone trust-region training algorithm for
image classification. In: 2022 16th International Conference on Signal-Image Technology and Internet-
Based Systems (SITIS), pp. 522–529 (2022). IEEE. https://doi.org/10.1109/SITIS57111.2022.00084

36. Sun, S., Nocedal, J.: A trust-region method for noisy unconstrained optimization. Math. Program.
(2023). https://doi.org/10.1007/s10107-023-01941-9

37. Cao, L., Berahas, A.S., Scheinberg, K.: First- and second-order high probability complexity bounds
for trust-region methods with noisy oracles. Math. Program. (2023). https://doi.org/10.1007/s10107-
023-01999-5

38. Iusem, A.N., Jofré, A., Oliveira, R.I., Thompson, P.: Variance-based extra gradient methods with line
search for stochastic variational inequalities. SIAM J. Optim. 29(1), 175–206 (2019). https://doi.org/
10.1137/17M1144799

39. Krejić, N., Lužanin, Z., Ovcin, Z., Stojkovska, I.: Descent direction method with line search for
unconstrained optimization in noisy environment. Optim. Methods Softw. 30(6), 1164–1184 (2015).
https://doi.org/10.1080/10556788.2015.1025403

40. Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis of a stochastic
trust-region method via supermartingales. INFORMS J. Optim. 1(2), 92–119 (2019). https://doi.org/
10.1287/ijoo.2019.0016

41. Chen, R., Menickelly, M., Scheinberg, K.: Stochastic optimization using a trust-region method and
random models. Math. Program. 169(2), 447–487 (2018). https://doi.org/10.1007/s10107-017-1141-
8

42. Bellavia, S., Krejić, N., Morini, B., Rebegoldi, S.: A stochastic first-order trust-region method with
inexact restoration for finite-sum minimization. Comput. Optim. Appl. 84(1), 53–84 (2023). https://
doi.org/10.1007/s10589-022-00430-7

43. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks.
In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. JMLR
Workshop and Conference Proceedings, pp. 249–256 (2010). Available at: https://proceedings.mlr.
press/v9/

44. Brust, J., Erway, J.B., Marcia, R.F.: On solving L-SR1 trust-region subproblems. Comput. Optim.
Appl. 66(2), 245–266 (2017). https://doi.org/10.1007/s10589-016-9868-3

123

https://proceedings.mlr.press/v80/
https://doi.org/10.1007/978-3-030-64583-0_5
https://doi.org/10.1007/978-3-030-64583-0_5
https://doi.org/10.1080/10556788.2021.1977806
https://doi.org/10.1080/10556788.2021.1977806
https://doi.org/10.1109/ICMLA.2018.00081
https://doi.org/10.1007/978-3-031-10464-0_2
https://doi.org/10.1080/10556788.2019.1624747
https://doi.org/10.1137/0723046
https://doi.org/10.1007/BF00939608
https://doi.org/10.1016/j.cam.2010.10.044
https://doi.org/10.1016/j.cam.2010.10.044
https://doi.org/10.1007/s11075-014-9869-1
https://doi.org/10.1109/SITIS57111.2022.00084
https://doi.org/10.1007/s10107-023-01941-9
https://doi.org/10.1007/s10107-023-01999-5
https://doi.org/10.1007/s10107-023-01999-5
https://doi.org/10.1137/17M1144799
https://doi.org/10.1137/17M1144799
https://doi.org/10.1080/10556788.2015.1025403
https://doi.org/10.1287/ijoo.2019.0016
https://doi.org/10.1287/ijoo.2019.0016
https://doi.org/10.1007/s10107-017-1141-8
https://doi.org/10.1007/s10107-017-1141-8
https://doi.org/10.1007/s10589-022-00430-7
https://doi.org/10.1007/s10589-022-00430-7
https://proceedings.mlr.press/v9/
https://proceedings.mlr.press/v9/
https://doi.org/10.1007/s10589-016-9868-3

278 N. Krejić et al.

45. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA (2016)
46. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.
org/10.1109/CVPR.2016.90

47. Yousefi, M., Martínez, Á.: Deep neural networks training by stochastic quasi-newton trust-region
methods. Algorithms 16(10), 490 (2023). https://doi.org/10.3390/a16100490

48. LeCun,Y.,Bottou, L.,Bengio,Y.,Haffner, P.:Gradient-based learning applied to document recognition.
Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

49. LeCun, Y.: The MNIST Database of Handwritten Digits (1998). Available at: https://www.kaggle.
com/datasets/hojjatk/mnist-dataset

50. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009). Available at: https://api.
semanticscholar.org/CorpusID:18268744

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/a16100490
https://doi.org/10.1109/5.726791
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

	A non-monotone trust-region method with noisy oracles and additional sampling
	Abstract
	1 Introduction
	2 The algorithm
	3 Convergence analysis
	4 Numerical experiments
	4.1 Experimental configuration
	4.2 Classification problems
	4.3 Regression problem
	4.4 Additional results
	4.5 Comparison with ADAM

	5 Conclusion
	Acknowledgements
	References

