
On Selection of Standing Wave at Small Energy in the 1D
Cubic Schrödinger Equation with a Trapping Potential

Scipio Cuccagna1 , Masaya Maeda2

1 Department of Mathematics and Geosciences, University of Trieste, via Valerio 12/1, 34127 Trieste, Italy.
E-mail: scuccagna@units.it

2 Department of Mathematics and Informatics, Graduate School of Science, Chiba University, Chiba
263-8522, Japan. E-mail: maeda@math.s.chiba-u.ac.jp

Received: 15 September 2021 / Accepted: 27 July 2022
Published online: 5 September 2022 – © The Author(s), under exclusive licence to Springer-Verlag GmbH
Germany, part of Springer Nature 2022

Abstract: Combining virial inequalities by Kowalczyk, Martel and Munoz and Kowal-
czyk, Martel, Munoz and Van Den Bosch with our theory on how to derive nonlinear
induced dissipation on discrete modes, and in particular the notion of Refined Profile,
we show how to extend the theory by Kowalczyk, Martel, Munoz and Van Den Bosch
to the case when there is a large number of discrete modes in the cubic NLS with a
trapping potential which is associated to a repulsive potential by a series of Darboux
transformations. Even though, by its non translation invariance, our model avoids some
of the difficulties related to the effect that translation has on virial inequalities of the
kink stability problem for wave equations, it still is a classical model and it retains some
of the main difficulties.

1. Introduction

In this paper,we consider the cubic nonlinear Schrödinger equation (NLS)with potential,

i∂t u = −∂2x u + Vu + |u|2u, (t, x) ∈ R
1+1, (1.1)

where the potential V satisfies

V ∈ S(R, R) (Schwartz functions), |V (x)| + |V ′(x)| ≤ Ce−a0|x | for some C, a0 > 0,
(1.2)

and we assume that for σd(H), which is the set of discrete spectrum of H := −∂2x + V ,
we have

σd(H) = {ω j | j = 1, · · · , N }, ω1 < · · · < ωN < 0, N ≥ 2. (1.3)
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Remark 1.1. It is well known that σd(H) is finite. Our assumption is that H has more
than two eigenvalues. The case N = 0 has been treated by Naumkin [48], by Germain et
al. [25], by Delort [19] and by Chen–Pusateri [8]. See also Masaki et al. [41] along with
[12] for the case of a repulsive δ potential. The case N = 1 in the case of an attractive
δ potential with rather general nonlinear terms, which include as a special case also the
cubic nonlinearity, is treated in [12]. The case of a generic potential with N = 1, hence
a less stringent hypothesis than Assumption 1.13 below, is discussed in Chen [7]. In this
paper we focus only on the case N ≥ 2, which is more delicate than the cases N = 0, 1.

Remark 1.2. In the sequel we will often use the notation ḟ = ∂t f and f ′ = ∂x f . We
also use the notation a � b, which means that there exists C > 0 s.t. a ≤ Cb with C
not depending on important quantities. We also write a ∼ b if a � b and b � a, and
a �α b if a ≤ Cαb with the implicit constant Cα depending on α. Finally, a ∼α b will
mean a �α b and b �α a.

The aim of this paper is to study the long time behavior of small solutions of (1.1).
Here, we recall that from the energy

E(u) := 1

2

∫
R

(
|∂xu|2 + V |u|2 + 1

2
|u|4
)

dx (1.4)

and mass

Q(u) := 1

2

∫
R

|u|2 dx (1.5)

conservation, if we have u0 ∈ H1, then

‖u(t)‖H1 � ‖u0‖H1 . (1.6)

Thus, global well-posedness of small solutions is trivial. In this paper, we seek a more
precise understanding of the asymptotic behavior of u(t). By elementary bifurcation
argument, under appropriate hypotheses there exist N families of standingwave solutions
(i.e. solutions with the form u(t, x) = eiωtφ(x)) bifurcating from the eigenvalues of
H . That is, there exist φ j [z](x) = zφ j (x) + O(|z|3) and ω j (|z|2) = ω j + O(|z|2)
( j = 1, · · · , N ) for small z ∈ C s.t. e−iω j (|z|2)tφ j [z](x) are standing wave solutions
of (1.1). In the linear case (i∂t u = Hu), by the superposition principle, there also exist
quasi-periodic solutions which are given by the sum of standing waves. However, it was
shown that in the 3D case with smooth nonlinearity (corresponding to the 1D case with
the nonlinearity |u|2u replaced by g(|u|2)u with g ∈ C∞ and g(0) = g′(0) = 0, e.g.
|u|4u), the solutions locally converge to the orbit of one single standing wave (selection
of standing waves) and therefore there exist no quasi-periodic solution, see [11] and
the references therein. Thus, even though the short time dynamics of small solutions
of linear Schrödinger equation and NLS are similar, in 3D the long time dynamics are
completely different. The aim of this paper is to prove a similar result also for 1D cubic
NLS (1.1), under an additional hypothesis on the potential, see §1.1.2. This is more
difficult than the 3D case because of the fact that |u|2u is a long range nonlinearity in
1D and by the weakness of linear dispersion in 1D. The main idea in this paper consists
in a combined use of the dispersion theory of Kowalczyk, Martel and Munoz [29], from
which we draw extensively, with the notion of Refined Profiles we introduced in [10]
and which we discuss now, before stating the main result.
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1.1. Set up. For a ∈ R and 〈x〉 := √
1 + x2, we set

‖u‖Xa := ‖ea〈x〉u‖X , for X = Hs, L p and a := 2−1
√|ωN |, (1.7)

�s := Hs
a , (1.8)

where we make the convention that, when we write L p, Hs or other analogous spaces
like L2,s below, they are L p(R), Hs(R), etc.

For any s ∈ R, we will use also other weighted spaces, defined by the norm

‖u‖L2,s := ‖ 〈x〉s u‖L2(R). (1.9)

We will consider repeatedly several Bochner spaces of the form L p(I, X), with
p ∈ [1,∞], I ⊆ R an interval and X a Banach space, see [5, Chapter 1], with norms

‖u‖L p(I,X) := ‖‖u‖X‖L p(I ). (1.10)

In particular, we will use spaces like X = �̃, introduced in (3.1), and X = Xa like in
(1.7).

We recall that all eigenvalues of H are simple. We pick φ j such that ‖φ j‖L2 = 1,

R-valued eigenfunctions of H associated with ω j . Since φ
(n)
j ∼n e−

√|ω j ||x |, we have
φ j ∈ ∩s>0�

s for all j = 1, · · · , N .

1.1.1. Refined profile and Fermi Golden Rule assumption One of the keys is the notion
of refined profile introduced in [10]. We set

ω = (ω1, · · · , ωN ). (1.11)

For the discrete spectrum σd(−∂2x + V ), we assume the following.

Assumption 1.3. For m := (m1, · · · ,mN ) ∈ Z
N \ {0}, m · ω =∑N

j=1m jω j �= 0.

Remark 1.4. In reality we need Assumption 1.3 for a restricted and finite set of indexes.

In the following, for x = (x1, · · · , xN ) ∈ XN , for X = Z, R, C we write ‖x‖ :=
‖x‖1 =∑N

j=1 |x j |. We consider the sets of multi–indexes

NR:={m ∈ Z
N |

N∑
j=1

m j = 1, m · ω < 0}, R:={m ∈ Z
N |

N∑
j=1

m j = 1, m · ω>0}.

(1.12)

By Assumption 1.3, we have {m ∈ Z
N | ∑N

j=1m j = 1} = NR ∪ R. Furthermore, we
set

Rmin := {m ∈ R | � ∃n ∈ R s.t. n ≺ m}, (1.13)

where

n ≺ m ⇔ n � m and ‖n‖ < ‖m‖,
n � m ⇔ ∀ j = 1, · · · , N , |n j | ≤ |m j |.

Related to Rmin are the sets I and NR1, defined by

I := {m ∈ R ∪ NR | ∃n ∈ Rmin s.t. n ≺ m}, NR1 := NR \ I. (1.14)
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Remark 1.5. The set I will be the collection of negligible multi–indexes, in the sense
that for n ∈ I,

|zn| ≤ ‖z‖
∑

m∈Rmin

|zm| for ‖z‖ ≤ 1,

where zn is defined right below. Here R stands for resonant, while NR stands for non
resonant. The most significant elements of NR are those of NR1. The corresponding
monomials zm for m ∈ NR1 are eliminated and do not appear in the key equation (1.20)
by a, rather elementary, normal forms argument, while the zm for m ∈ NR∩ I are small
remainder terms, absorbed inRrp[z] and easy to bound in the course of the proof.

For z ∈ C
N , we set

zm :=
N∏
j=1

z
(m j )

j , z
(m j )

j :=
{
z
m j
j if m j ≥ 0,

z j−m j if m j < 0.
(1.15)

We inductively define Gm for m ∈ Rmin ∪ NR1 by Gm = 0 if ‖m‖ ≤ 1 and

Gm =
∑

m1,m2,m3∈NR1,

m1−m2+m3=m, ‖m1‖+‖m2‖+‖m3‖=‖m‖

φ̃m1 φ̃m2 φ̃m3, (1.16)

where

φ̃m =

⎧⎪⎨
⎪⎩
0, m = 0
φ j , m = e j := (δ j1, · · · , δ j N ),

−(H − m · ω)−1Gm, ‖m‖ ≥ 2
(1.17)

Example 1.6. We give the first few Gm for the case N = 2. When m ∈ Rmin ∪NR1 and
‖m‖ = 3, we have m = (2,−1) or (−1, 2) and

G(2,−1) = φ2
1φ2, G(−1,2) = φ1φ

2
2 .

When m ∈ Rmin ∪ NR1 and ‖m‖ = 5, we have m = (3,−2) or (−2, 3) and

G(3,−2) = −2φ1φ2(H − (2ω1 − ω2))
−1
(
φ2
1φ2

)
− φ2

1(H − (−ω1 + 2ω2))
−1(φ1φ

2
2),

G(−2,3) = −2φ1φ2(H − (−ω1 + 2ω2))
−1
(
φ1φ

2
2

)
− φ2

2(H − (2ω1 − ω2))
−1(φ2

1φ2),

By the inductive definition, we have the following.

Lemma 1.7. For m ∈ Rmin ∪ NR1 the Gm are R-valued.

Proof. If ‖m‖ ≤ 1, then the statement is obvious because we have chose φ j ’ to be
R-valued. Next, for m ∈ Rmin∪NR1, we assume that for all n ∈ NR1 with ‖n‖ < ‖m‖,
Gn is R-valued. Then, from (1.17), φ̃n is R-valued and by (1.16), Gm is also R-valued.

��
An important assumption, related to the Fermi Golden Rule (FGR), is the following.



On Selection of Standing Wave at Small Energy 1139

Assumption 1.8. We assume that for all m ∈ Rmin,

∑
±

|Ĝm
(±√

ω · m
) | > 0,

where Ĝm is the distorted Fourier transform of Gm associated to the operator H , see
[60].

For a Banach space X and x ∈ X , r > 0, we set

BX (x, r) := {y ∈ X | ‖y − x‖X < r}. (1.18)

For F ∈ C1(BCN (0, δ), X), z ∈ BCN (0, δ) and w ∈ C
N , we set DzF(z)w :=

d
ds

∣∣
s=0 F(z + sw).

The following is proved in [10].

Proposition 1.9 (Refined profile). For any s > 0, there exists δs > 0 s.t. there exists
φ[·] ∈ C∞(BCN (0, δs),�s) of the form

φ[z] =
∑

m∈NR1

zmφ̃m where φ̃m ∈ �s for all s, (1.19)

� ∈ C∞(BCN (0, δs), R
N ) and Rrp[·] ∈ C∞(BCN (0, δs),�s) s.t.

−iDzφ[z] (i� (z)z) = Hφ[z] + |φ[z]|2φ[z] −
∑

m∈Rmin

zmGm −Rrp[z], (1.20)

and φ[0] = 0, Dzφ[0]e j = φ j , D2
z φ[0] = 0, � (0) = ω, φ[eiθ z] = eiθφ[z], � (z) =

� (|z1|2, · · · , |zN |2),

‖Rrp[z]‖�s �s ‖z‖2
∑

m∈Rmin

|zm|, (1.21)

and � (z)z := (
1(z)z1, · · · ,
N (z)zN ).

��
Remark 1.10. The Refined Profile generalizes the notion of standing waves, which are
generated from the Refined Profile setting

φ j (z j ) := φ(z je j ) for z j ∈ BC(0, δs) and e j = (δ1 j , ..., δN j ), with δ jk

the Kronecker delta.

It represents an effective way to represent the discrete component because it provides a
modulation u = φ[z]+η of the solution u, where in the equation of the continuous mode
η, see (2.5) below, there are no monomials zm with m ∈ NR1. It plays an analogous role
to that of Fraiman’s like ansatz in papers like Merle and Raphael [45] where it allows to
bypass normal forms arguments in the course of the analysis of the Fermi Golden Rules.
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1.1.2. The repulsivity hypothesis In order to use the dispersion theory of Kowalczyk et
al. [27–30] we need the following, inspired by a more general notion in [30].

Definition 1.11. Let V be a potential like in (1.2). We say that V is repulsive if V is not
identically zero and xV ′(x) ≤ 0 for all x ∈ R.

Obviously the above notion, framed in terms of the origin, could be reframed with
respect to any other x0 ∈ R, but we can always normalize by translation so that x0 = 0.

Crucial in the theory in Kowalczyk et al. [29,30] is a mechanism of addition or
subtraction of eigenvalues which can be traced to Darboux. Kowalczyk et al. [29,30]
treat some very special situations and refer to the theory in Sect. 3.2–3.3 in Chang–
Gustafson–Nakanishi–Tsai [6]. In reality, a systematic and quite general treatment of
this topic is in Sect. 3 Deift–Truwobitz [16], to which we refer for the following, where
we impose much stricter hypotheses than in [16].

Proposition 1.12. Let W ∈ S(R, R) s.t σd(−∂2x + W ) �= ∅. Let ψ be the ground state
(positive eigenfunction) of −∂2x + W and set AW = 1

ψ
∂x (ψ ·). Then, there exists W1 ∈

S(R, R) s.t.

AW A∗
W = −∂2x +W − ω, A∗

W AW = −∂2x +W1 − ω,

where ω = min σd(−∂2x +W ). Further, we have σd(−∂2x +W1) = σd(−∂2x +W ) \ {ω}.
Using Proposition 1.12, we inductively define Vj ∈ S(R, R) ( j = 1, · · · , N + 1) by

1. V1 := V , H1 := −∂2x + V1, ψ1 = φ1 and A1 = AV1 .
2. Given Vk , we define

Ak := AVk and Hk+1 := −∂2x + Vk+1 := A∗
k Ak + ωk . (1.22)

From Proposition 1.12, we have

σd(Hk) = {ω j | j = k, · · · , N }, k = 1, · · · , N , and σd(HN+1) = ∅.

If ψk is the ground state of Hk and Ak = 1
ψk

∂x (ψk ·) then, from
A∗
j H j = A∗

j (A j A
∗
j + ω j ) = (A∗

j A j + ω j )A
∗
j = Hj+1A

∗
j , (1.23)

we have the conjugation relation

A∗H1 = HN+1A∗, (1.24)

where

A = A1 · · · AN and A∗ = A∗
N · · · A∗

1. (1.25)

The crucial assumption to implement the theory in Kowalczyk et al. [29,30] and to
overcome the strength of the cubic nonlinearity in 1D is the following.

Assumption 1.13. VN+1 is a repulsive potential in the sense of Definition 1.11.

Remark 1.14. By reverting the transformation given in Proposition 1.12, starting from
any repulsive potential, for any N , one can construct a potentialV satisfyingAssumptions
1.3 and 1.13.
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1.2. Main theorem. We are now in the position to state the main theorem of this paper.

Theorem 1.15. Assume (1.2)–(1.3) and Assumptions 1.3, 1.8 and 1.13. Then for any
ε > 0 and a > 0 there exists δ0 > 0 s.t. for all u0 ∈ H1 with ‖u0‖H1 := δ < δ0 there
are z ∈ C1(R, C

N ), and η ∈ C(R, H1) s.t.

‖z‖W 1,∞(R) + ‖η‖L∞(R,H1) � δ, (1.26)

with, for all t ≥ 0,

u(t) = φ[z(t)] + η(t). (1.27)

Moreover, we have for I = [0,∞)

‖ż + i� (z)z‖L2(I ) +
∑

m∈Rmin

‖zm‖L2(I ) + ‖η‖L2(I,H1−a)
≤ ε. (1.28)

Finally, there exists j (u0) ∈ {1, · · · , N } and ρ+(u0) ≥ 0 such that

lim
t→∞ |zk(t)| =

{
0 k �= j (u0),
ρ+(u0) k = j (u0).

(1.29)

Remark 1.16. The fact that in the paper the cubic term is defocusing plays no role in our
proof. Theorem 1.2 holds also with a focusing cubic term. Obviously, inverting time we
conclude that (1.28) holds for I = R. Notice also that it is not possible to prove decay
rates because all the estimates need necessarily to be invariant by translation in time.
Hence, all the literature which proves a rate of decay in time needs to take initial data in
spaces smaller than H1(R).

The novel difficulties in Theorem 1.15 come from the cubic nonlinearity, which in
dimension 1 is long range. For quintic or higher power, but always smooth, nonlinearities,
which are short range, then the theory in [9–11,46] can be applied.

Assumption 1.13 is very important in the theory developed by Kowalczyk et al. in
[29,30]. Here we are able to generalize their ideas thanks to the theory by Deift and
Trubowitz [16, Sect. 3], which treats in great generality the transformations considered
in Chang et al. [6]. It is then possible to develop the two virial inequalities of Kowalczyk
et al. in [29] in the presence of general discrete spectra and to combine the theory of
dispersion in [29]with the theory of nonlinear dissipation of the discretemodes in [9,10].
The latter was initiated by Buslaev and Perelman [4], was then considered by Soffer and
Weinstein [51] and generalized in papers like [11]. The approach in [9,10], to which
we refer for a more detailed discussion on this point, is far simpler than the previous
literature, thanks to the notion of Refined Profile.

Recently, there has been a considerable interest on the asymptotic stability of patterns
for dispersive equations with inhomogeneities and with long range nonlinearities in 1D,
especially in view of the analysis of kinks of appropriate wave equations.

Kowalczyk et al. showed that a framework based on virial inequalities is very suitable
and provides a very penetrating grasp of these problems, starting with their partial proof
in [27] of the asymptotic stability of the kinks of the φ4 model, with other insightful
contributions in papers like [29,30]. See also thework ofAlammari and Snelson [1,2,50]
and ofMartinez for long range Schrödinger and Hartree equations [39] and for Zakharov
systems [40] in one dimension.
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Quite different set ups from that of Kowalczyk et al. are in [8,24,25,41,48], in the
absence of discrete modes. See also the series [32–37] and [54]. Recently Chen [7]
considered the case of our NLS (1.1) with one eigenvalue mode, that is N = 1, without
the repulsivity Assumption 1.13 while the book by Delort and Masmoudi [20] looked
at the φ4 model for long times but not asymptotically. The methods employed in all
these works need yet to be tested in the case where there are more than one discrete
modes, which potentially will slow the decay, see Gang Zhou and Sigal [22], creating
additional difficulties. For the literature which uses dispersive estimates in the context
of short range nonlinearities, the case N = 2 is significantly more complicated than the
case N = 1, see Soffer and Weinstein [52], the series by Tsai and Yau [55–58] and, for
special situations with N > 2, Nakanishi et al. [47]. This seems to be related to the need
of using different weighted norms as the solution evolves through different stages. More
general spectra than the special ones in these references are likely to complicate this
kind of analysis. Obviously long range nonlinearities will add further complications.

Our main contribution in this paper involves the use of the notion of Refined Profile,
which is significant only in the case of two or more eigenvalues, and so is not relevant
to the problem considered in Chen [7] (where however, if the potential is repulsive after
a Darboux transformation, the virial inequality argument provides an alternative proof
of dispersion). As we show, the Refined Profile notion allows to avoid normal forms
arguments and the search of canonical coordinates. As we have shown also elsewhere in
[10] and expecially in [9], we provide a very simple alternative to [55–58], [52] and to
the more general [11]. The additional complication here, compared to [9,10] is the long
range nonlinearity, which does not allow to treat dispersion with a simple perturbation
argument.

To prove dispersion we follow the framework of the virial inequalities of Kowalczyk
et al. [29] which, while subtle, is simple and robust and, as a consequence, is shown
here to apply easily in contexts with complicated spectra. Unfortunately, an important
limitation is the repulsivity Assumption 1.13. Kowalczyk et al. [30] discuss how to avoid
it in some cases, but we do not consider here the analogous situations. Our NLS problem
is in some respect simpler than kink problems because virial inequalities like in [30],
which involve three distinct functionals, are more complicated than the single one that
suffices here.

For alternative proofs of dispersion, we notice that a rather simple framework is due
to Ze Li [31], but the argument does not apply to the cubic nonlinearity and it too, needs
to be tested in the presence of eigenvalues. Similar limitations are true for [15].We do not
discuss here the nonlinear Steepest Descent method of Deift and Zhou initiated in [17],
which has been used extensively for integrable systems but for non integrable systems,
to our knowledge, only in [18]. There is a large literature on PDEmethods in the context
of integrable systems. Here we mention only the recent paper on kinks of sine-Gordon
by Lührmann and Schlag [38] and the paper on the black soliton for defocusing cubic
NLS by Gravejat and Smets [23].

In the context of stability problems of ground states of the NLS, virial inequalities
were introduced by Merle and Raphael [42–45]. The papers by Kowalczyk et al. [27,
29,30] developed further applications of virial inequalities in stability problems. In this
paper we show that the theory can be applied in a relatively elementary fashion also in
the presence of any number N ≥ 2 of eigenvalues. The case N = 1 with Assumption
1.13 should be analogous to [29]. An analogue of Soffer and Weinstein [51], or of the
more general [3], with Assumption 1.13, should hold in 1D for real valued solutions
of the Nonlinear Klein Gordon with a quadratic nonlinearity, using arguments similar
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to the ones of this paper, which should simplify greatly [3,51] with the use of Refined
Profiles. The same should hold for an analogue of [13] for the unitary invariant NLKG
in 1D where there are small complex valued standing waves.

2. Modulation Coordinate and Transformed Problem

In this section we write the equation in modulation coordinates and consider the trans-
formed problem induced by the conjugation relation (1.24).We start from themodulation
coordinate. First of all, let

(u, v) :=
∫
R

uv dx, 〈u, v〉 := � (u, v) , (2.1)

and set

Pd :=
N∑
j=1

(·, φ j
)
φ j , Pc := 1− Pd. (2.2)

Then, the space PcL2 is the continuous space w.r.t. H . Recalling the refined profile
φ[z] from Proposition 1.9, we introduce the following analogue of nonlinear continuous
space of Gustafson, Nakanishi and Tsai [26],

Hc[z] := {v ∈ L2 | ∀̃z ∈ C
N , 〈iv, Dzφ[z]̃z〉 = 0}. (2.3)

The modulation coordinates are given by decomposing u as follows.

Lemma 2.1. There exist δ > 0 and z ∈ C∞(B�−1(0, δ), C
N ) s.t. η(u) := u−φ[z(u)] ∈

Hc[z(u)]. Further, we have
‖z(u)‖ + ‖η(u)‖H1 ∼ ‖u‖H1 . (2.4)

Proof. The proof is standard, so we omit it. ��
In the following we write z = z(u) and η = η(u). Notice that the bound (1.26) is a
straightforward consequence ofMass andEnergy conservation,which imply ‖u‖H1 � δ,
and of (2.4).

Substituting u = φ[z] + η in (1.1) and using (1.20), we obtain

i∂tη + iDzφ[z] (ż + i� (z)z) = H [z]η +
∑
Rmin

zmGm +Rrp[z] + F[z, η] + |η|2η, (2.5)

where H [z] := H + L[z],
L[z] := 2|φ[z]|2 + φ[z]2C, with the complex conjugation operator Cu = u and

(2.6)

F[z, η] := 2φ[z]|η|2 + φ[z]η2. (2.7)

Following Gustafson, Nakanishi and Tsai [26], we can construct an inverse of Pc on
Hc[z].
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Lemma 2.2. There exists δ > 0 s.t. there exists {a j A} j=1,··· ,N ,A=R,I ∈ C∞(BCN (0,δ), �
1)

s.t.

‖a j A(z)‖�1 � ‖z‖2, j = 1, · · · , N , A = R, I (2.8)

and

R[z] := Id −
N∑
j=1

(〈·, a jR(z)
〉
φ j +

〈·, a jI(z)
〉
iφ j
)
, (2.9)

satisfies R[z]Pc|Hc[z] = Id|Hc[z], PcR[z]|PcL2 = Id|PcL2 .

Proof. The proof, which we skip, is an analogue of that in [11], which in turn generalizes
the one in [26]. ��

We set η̃ := Pcη. Then, by Lemma 2.2 we have η = R[z]̃η and furthermore, from
the estimate (2.8), we have

‖η‖Hs
a
∼ ‖η̃‖Hs

a
, (2.10)

for s = 0, 1 and |a| ≤ a1. Applying Pc to (2.5), we obtain

i∂t η̃ =H η̃ +
∑

m∈Rmin

zmPcGm +Rη̃, (2.11)

where

Rη̃ = Pc
(
−iDzφ[z] (ż + i� (z)z) +Rrp[z] + F[z, η] + L[z]η + |η|2η

)
. (2.12)

The rest of this section is framed like in [29].
We will consider constants A, B, ε > 0 satisfying

log(δ−1) � log(ε−1) � A � B2 � B � exp
(
ε−1
)
� 1. (2.13)

We will denote by oε(1) constants depending on ε such that

oε(1)
ε→0+−−−→ 0. (2.14)

For the twovirial inequalities,wewill use the approximations in [29] of 2−1 〈i (1/2 + x∂x )
u(t), u(t)〉, which is the quantized analogue of the form 2−1x ·ξ for a finite dimensional
hamiltonian system ẋ = ∇ξ E and ξ̇ = −∇x E with energy 2−1|ξ |2 + V (x) (recall that
d
dt (2

−1x · ξ) = |ξ |2 − x · ∇V (x) where, if V is repulsive as in Definition 1.11, then
x · ξ is strictly increasing for all t : this simple classical argument explains the heuristics
around the notion of Virial Inequalities).
The first virial inequality, Sect. 4, involves a truncation of the function x outside an
interval of size∼ A−1 around 0. The fact that the initial potentialV = V1 is obviously not
repulsive, makes necessary another virial inequality. This involves applying the operator
A∗ to (2.11), see (1.25), in order to exploit the conjugation (1.24), which transforms H1
into the repulsive operator HN+1. However, to offset the loss of regularity due to A∗,
which is a differential operator of order N , it is necessary to use a regularization and
consider

T := 〈iε∂x 〉−N A∗, (2.15)
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for ε > 0. However, this does not work either, because symmetries of the nonlinear term
Pc(|η|2η), used to get estimates like (4.18) below, do not hold any more. This is why
the argument considers χ ∈ C∞

c (R, R) such that

xχ ′(x) ≤ 0 and 1|x |≤1 ≤ χ ≤ 1|x |≤2, (2.16)

and χC := χ(·/C) for C > 0. Then multiplying equation (2.11) by χB2 , obtaining

i∂t (χB2 η̃) =H(χB2 η̃) +
(
2χ ′

B2∂x + χ ′′
B2

)
η̃ +

∑
m∈Rmin

zmχB2 PcGm + χB2Rη̃, (2.17)

setting

v := T χB2 η̃, (2.18)

and applying T to (2.17), we obtain

i∂tv = HN+1v +
∑

m∈Rmin

zmG̃m +Rv, (2.19)

where

G̃m := T χB2 PcGm, (2.20)

Rv := T χB2Rη̃ + 〈iε∂x 〉−N [VN+1, 〈iε∂x 〉N ]v + T
(
2χ ′

B2∂x + χ ′′
B2

)
η̃. (2.21)

Here it is possible to apply the second virial inequality, which involves a truncation of
x in an interval centered in 0 of size∼ B. The technical fact that A � B2 is required to
work out the argument, see also [29].

3. The Continuation Argument

Theproof of (1.28) inTheorem1.15 is bymeans of a continuation argument. In particular,
we will show the following.

Proposition 3.1. There exists a δ0 = δ0(ε) s.t. if (1.28) holds for I = [0, T ] for some
T > 0 and for δ ∈ (0, δ0) then in fact for I = [0, T ] inequality (1.28) holds for ε

replaced by ε/2.

By completely routine arguments, which we skip, it is possible to show that Propo-
sition 3.1 implies (1.28) with I = [0,∞). We reformulate the continuation argument.
Let a > 0 be the one given in Theorem 1.15. Without loss of generality we can assume
a ≤ 2−1 min(a0, a1) where a0 is given in (1.2) and a1 is given in (1.8). We introduce
the following norm,

‖ f ‖2
�̃
=
〈(
−∂2x + sech2

(ax
10

))
f, f
〉
∼ ‖ f ‖2

Ḣ1 + ‖ f ‖2
L2
− a
10

. (3.1)

For C = A, B, we set

ζC (x) := exp

(
−|x |

C
(1− χ(x))

)
. (3.2)

We consider the main variables in [29], given by

w := ζAη̃ and ξ := χB2ζBv . (3.3)

We will prove the following continuation argument.
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Proposition 3.2. For any small ε > 0 there exists a δ0 = δ0(ε) s.t. if in I = [0, T ] we
have

‖ż + i� (z)z‖L2(I ) +
∑

m∈Rmin

‖zm‖L2(I ) + ‖ξ‖L2(I,�̃) + ‖w‖L2(I,�̃) ≤ ε (3.4)

then for δ ∈ (0, δ0) inequality (3.4) holds for ε replaced by oδ(1)ε where oδ(1)
δ→0+−−−→ 0.

Notice that Proposition 3.2 implies Proposition 3.1. In the following, we always assume
the assumptions of the claim of Proposition 3.2.

In complete analogy to [29], we consider two virial estimates, one forw and the other
for ξ . The first is based directly on the equation for η̃, (2.11).

Proposition 3.3 (Virial estimate for η̃). We have

‖w′‖L2(I,L2) � A1/2δ + ‖w‖L2(I,L2
− a
10

) +
∑

m∈Rmin

‖zm‖L2(I ) + ε2. (3.5)

The second virial estimate, involves the transformed problem (2.19).

Proposition 3.4 (Virial estimate for v). Let A � B2. We have

‖ξ‖L2(I,�̃) � Bε−N δ +
∑

m∈Rmin

‖zm‖L2(I ) + oε(1)
(
‖w‖L2(I,�̃) + ‖ż + i� (z)z‖L2(I )

)
.

(3.6)

The term ż + i
(z)z can be controlled in term of the zm, for m ∈ Rmin.

Proposition 3.5. We have

‖ż + i
(z)z‖L2(I ) �
∑

m∈Rmin

‖zm‖L2(I ) + δ2ε. (3.7)

To bound the zm, for m ∈ Rmin, we will use the Fermi Golden Rule.

Proposition 3.6 (FGR estimate). We have

∑
m∈Rmin

‖zm‖L2(I ) � ε−N B2+2τ δ + B− 1
2 ε + ε2. (3.8)

In Sect. 4 we prove Proposition 3.3. In Sect. 6 we prove Proposition 3.4. Sections
4–6 are very close to [29]. Section 9 is the analogue of [29, Sect. 5.1]. The proofs of
Propositions 3.5 and 3.6 are very similar to the discussion in [9]. As is in [4,51] andmany
other papers, most referenced in [11], at some point the continuous mode, in fact in this
paper the variable v, needs to be decomposed in a part which resonates with the discrete
mode z and a remainder which is supposed to be very small, and which we denote by
g, see (8.6). To bound g we use Kato smoothing estimates, as in the previous literature.
So, for example, Lemmas 8.3 and 8.4 are a typical tool, see [4,51] or the references in
[11]. Some attention is needed in the use of the weights, to guarantee that some of the
terms, i.e. the term in (8.24), are small. Finally, in Sect. 12, we prove the last sentence
of Theorem 1.15.
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4. Proof of Proposition 3.3

In this section, we prove the 1st virial estimate Proposition 3.3, which is a consequence
of the estimate of the time derivative of the following functional,

I (̃η) := 1

2
〈̃η, iSAη̃〉 , (4.1)

where the anti-symmetric operator SA is defined by

SA := ϕ′
A

2
+ ϕA∂x , where ϕA(x) =

∫ x

0
ζ 2
A(y) dy. (4.2)

Proposition 3.3 is a direct consequence of the following estimate

Proposition 4.1 (1st virial estimate in differential form). Under the assumptions of
Proposition 3.1, for sufficiently small δ > 0 we have

d

dt
I (̃η) +

1

2
‖w′‖2L2 � ‖w‖2

L2
− a
10

+
∑

m∈Rmin

|zm|2 + δ2‖ż + i� (z)z‖2. (4.3)

We first prove Proposition 3.3 from Proposition 4.1.

Proof of Proposition 3.3. We have |I (̃η)| � A‖η̃‖2
H1 � Aδ2. Thus, integrating (4.3)

over [0, T ], we obtain (3.5). ��
The rest of this section is devoted for the proof of Proposition 4.1. First, from (2.11),

we have

d

dt
I (̃η) = −〈i∂t η̃, SAη̃〉

= − 〈H η̃, SAη̃〉 −
∑

m∈Rmin

〈
zmPcGm, SAη̃

〉− 〈Rη̃, SAη̃
〉
. (4.4)

We will compute each terms in (4.4)

Lemma 4.2. We have

〈H η̃, SAη̃〉 =
〈(

−∂2x −
ϕA

2ζ 2
A

V ′
)

w,w

〉
+

1

2A
〈V0w,w〉 , (4.5)

where

V0(x) :=
(

χ ′′|x | + 2χ ′ x
|x |
)

. (4.6)

Proof. By direct computation, we have

〈H η̃, SAη̃〉 = 〈ϕ′
A∂x η̃, ∂x η̃

〉− 1

4

〈
ϕ′′′
A η̃, η̃

〉− 1

2

〈̃
η, ϕAV

′η̃
〉
. (4.7)

Following Lemma 1 of [29], we have

〈
ϕ′
A∂x η̃, ∂x η̃

〉 = 〈w′, w′〉 +
〈
ζ ′′
A

ζA
w,w

〉
, (4.8)
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and

−1

4

〈
ϕ′′′
A η̃, η̃

〉 = −1

2

〈(
ζ ′′
A

ζA
+

(
ζ ′
A

ζA

)2
)

w,w

〉
, (4.9)

so that

〈
ϕ′
A∂x η̃, ∂x η̃

〉− 1

4

〈
ϕ′′′
A η̃, η̃

〉 = 〈−∂2xw,w
〉
+
1

2

〈(
ζ ′′
A

ζA
−
(

ζ ′
A

ζA

)2
)

w,w

〉
. (4.10)

Substituting w = ζAη̃ also in
〈̃
η, ϕAV ′η̃

〉
and using the identity

A

(
ζ ′′
A

ζA
−
(

ζ ′
A

ζA

)2
)
= χ ′′(x)|x | + 2χ ′(x) x

|x | = V0(x), (4.11)

we obtain (4.5). ��
Lemma 4.3. We have ∣∣〈zmPcGm, SAη̃

〉∣∣ � |zm|‖w‖L2
− a
10

. (4.12)

Proof. Since ‖ζ−1
A SAPcGm‖L2

a
10

� 1, the conclusion is obvious. ��

Lemma 4.4. We have

| 〈Rη̃, SAη̃
〉 | � δ2

⎛
⎝
⎛
⎝ ∑

m∈Rmin

|zm| + ‖ż + i� (z)z‖
⎞
⎠ ‖w‖L2

− a
10

+ ‖w‖2
L2
− a

10

⎞
⎠ + δ2/3‖w′‖2L2 .

(4.13)

Proof. We will estimate the contribution of each term inRη̃, see (2.12). First, since, by
Dzφ[0]̃z = φ · z̃

‖PcDzφ[z]̃z‖�1 = ‖Pc (Dzφ[z] − Dzφ[0]) z̃‖�1 � δ2‖̃z‖, (4.14)

we have

| 〈Pc (−iDzφ[z] (ż + i� (z)z)) , SAη̃〉 | � δ2‖ż + i� (z)z‖‖w‖L2
− a
10

. (4.15)

Next, from (1.21), we have

| 〈PcRrp[z], SAη̃
〉 | � δ2

∑
m∈Rmin

|zm|‖w‖L2
− a
10

. (4.16)

We next estimate the contribution of Pc
(
F[z, η] + L[z]η + |η|2η). First, since Pc =

1− Pd and ‖Pd SAη̃‖�1 � ‖w‖L2
− a
10

, we have

|
〈
Pd
(
F[z, η] + L[z]η + |η|2η

)
, SAη̃

〉
| � ‖F[z, η] + L[z]η + |η|2η‖�−1‖w‖L2

− a
10

� δ2‖w‖2
L2
− a
10

. (4.17)
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Next, by elementary integration by parts we have

〈
|̃η|2η̃, SAη̃

〉
= 2−1

〈
|̃η|4, ϕ′

A

〉
+ 2−2

〈(
|̃η|4
)′

, ϕA

〉
= 4−1

〈
|̃η|4, ζ 2

A

〉

and by [29] and (1.26), see also Lemma 2.7 [12], we have

|
〈
|̃η|2η̃, SAη̃

〉
| � δ2/3‖w′‖2L2 . (4.18)

For the remaining terms, by η = η̃ + η̃1 with η̃1 = (R[z] − 1)̃η, we can expand

F[z, η] + L[z]η + |η|2η − |̃η|2η̃ = v0η̃1 + v1η̃1 + v2η̃ + v3η̃ + v4η̃
2 + v5 |̃η|2, where

v0 = 2|φ[z]|2 + 2φ[z]η̃1 + φ[z]η̃1 + |η̃1|2, v1 = φ[z]2, v2 = 2|φ[z]|2
+ 2φ[z]η̃1 + φ[z]η̃1 + 2|η̃1|,

v3 = φ[z]2 + 2φ[z]η̃1 + η̃1
2, v4 = φ[z] + η̃1, v5 = 2φ[z] + η̃1. (4.19)

By Lemma 2.2, we have ‖η̃1‖�1 � ‖w‖L2
− a
10

and

‖v j‖�1 � δ2 for j = 0, 1, 2, 3 and ‖v j‖�1 � δ for j = 4, 5. (4.20)

Thus, we have

| 〈v0η̃1 + v1η̃1, SAη̃
〉 | � ‖v0η̃1 + v1η̃1‖L2

a
5

‖w‖L2
− a
10

� δ2‖w‖2
L2
− a
10

, (4.21)

|
〈
v2η̃ + v3η̃ + v4η̃

2 + v5 |̃η|2, ϕ′
Aη̃
〉
| � δ2‖w‖2

L2
− a
10

, (4.22)

and

∣∣〈(v2 + v4η̃ + v5η̃
)
η̃, ϕA∂x η̃

〉∣∣ = 1

2

∣∣∣∣
∫

ζ−2
A ∂x

(
ϕA
(
v2 + v4η̃ + v5η̃

)) |w|2
∣∣∣∣ � δ2‖w‖2

L2
− a

10

,

(4.23)

| 〈v3η̃, ϕA∂x η̃
〉 | = 1

2

∣∣∣∣
∫

ζ−2
A ∂x (ϕAv3) w2

∣∣∣∣ � δ2‖w‖2
L2
− a

10

. (4.24)

Combining (4.17), (4.18), (4.21), (4.22), (4.23) and (4.24) we obtain

|
〈
F[z, η] + L[z]η + |η|2η − |̃η|2η̃, SAη̃

〉
| � δ2‖w‖2

L2
− a
10

+ δ2/3‖w′‖L2 . (4.25)

Therefore, from (4.15), (4.16) and (4.25) we have the conclusion. ��
Proof of Proposition 4.1. By (4.4), Lemmas 4.2, 4.3 and 4.4 we obtain the estimate (4.3)
for sufficiently small δ > 0 and large A, satisfying (2.13). ��

Before proving Proposition 3.4 we need some technical preliminaries, which we state
in Sect. 5.
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5. Technical Estimates

In this section, we collect estimates used in the sequel of the paper.

Lemma 5.1. Let U ≥ 0 be a non–zero potential U ∈ L1(R, R). Then there exists a
constant CU > 0 such that for any function 0 ≤ W such that 〈x〉W ∈ L1(R) then

〈W f, f 〉 ≤ CU‖ 〈x〉W‖L1(R)

〈
(−∂2x +U ) f, f

〉
. (5.1)

In particular, for a > 0 the constant in the norm ‖ · ‖�̃ in (3.1), there exists a constant
C(a) > 0 such that

〈W f, f 〉 ≤ C(a)‖ 〈x〉W‖L1(R)‖ f ‖2�̃ . (5.2)

Proof. Let J be a compact interval where IU := ∫J U (x)dx > 0. Let then x0 ∈ J s.t.

| f (x0)|2 ≤ I−1
U

∫
J
| f (x)|2U (x)dx .

Then,

| f (x)| ≤ |x − x0| 12 ‖ f ′‖L2(R) + | f (x0)| ≤ |x − x0| 12 ‖ f ′‖L2(R) + I−1/2
U 〈U f, f 〉 12 .

Taking second power and multiplying by W it is easy to conclude the following, which
after integration yields (5.1),

W (x)| f (x)|2 ≤ CU 〈x〉W (x)
〈
(−∂2x +U ) f, f

〉
where CU = 2

(
1 + |x0| + I−1

U

)
.

��
A direct consequence of Lemma 5.1 is the following. Recall A � B2 � B � a−1,

with a like in the previous lemma.

Corollary 5.2. We have

‖η̃‖L2
− a
10

+ ‖w‖L2
− a
20

� ‖w‖�̃ and ‖ζ−1
B ξ‖L2

− a
10

� ‖ξ‖�̃ .

We will use the following standard fact.

Lemma 5.3. Consider a 0 order Pseudodifferential Operator (�DO)

p(x, i∂x ) f (x) =
∫
R2

e−ik(x−y) p(x, k) f (y)dkdy (5.3)

with symbol p(x, k) such that

|∂α
x ∂

β
k p(x, k)| ≤ Cαβ 〈k〉−β for all (x, k) ∈ R

2 and for all (α, β). (5.4)

Then, for any m ∈ R and for any ε ∈ (0, 1]
‖ 〈εx〉−m p(εx, i∂x ) f ‖L2(R) ≤ Cm‖ 〈εx〉−m f ‖L2(R) for all f ∈ L2(R), (5.5)

where each constantCm depends onfinitelymanyof the constantsCαβ and is independent
from ε ∈ (0, 1].



On Selection of Standing Wave at Small Energy 1151

Proof (sketch). We write

p(εx, i∂x ) f (x) = P1 f + P2 f

Pj f (x) =
∫
R2

eik(x−x ′) p(εx, k)χ j
(
x − x ′

)
f (x ′)dkdx ′, (5.6)

with χ1 ∈ C∞
c (R, [0, 1]) a cutoff with χ1 = 1 near 0 and with χ2 := 1− χ1. Then

‖ (〈εx〉−m P1 〈εx〉m
) 〈εx〉−m f ‖L2(R) � ‖ 〈εx〉−m f ‖L2(R),

because 〈εx〉−m P1
〈
εx ′
〉m is a �DO with symbol

p(εx, k)χ1
(
x − x ′

) 〈εx〉−m 〈εx ′〉m ∈ S01,0,0(R × R × R),

see Definition 3.5 p. 43 [59], with, for fixed constants Cαα′β ,
∣∣∣∂α

x ∂α′
x ′ ∂

β
k

(
p(εx, k)χ1

(
x − x ′

) 〈εx〉−m 〈εx ′〉m)
∣∣∣ ≤ Cαα′β 〈k〉−β ,

for all (α, α′, β, x, x ′, k) and all ε ∈ (0, 1]. Then, by the theory in Ch. II [59], this
�DO defines an operator from L2(R) into itself whose norm can be bounded in terms of
finitely many of the Cαα′β , and so has a finite upper bound independent from ε ∈ (0, 1].
We also have, integrating by parts with respect to k in (5.6) for j = 2,

‖ 〈εx〉−m P2 f ‖L2(R) �
∥∥∥∥〈εx〉−m

∫
R

〈
x − x ′

〉−10−m | f (x ′)|dx ′
∥∥∥∥
L2(R)

�
∥∥∥∥
∫
R

〈
x − x ′

〉−10 〈
εx ′
〉−m | f (x ′)|dx ′

∥∥∥∥
L2(R)

≤ ‖ 〈x〉−10 ‖L1(R)‖ 〈εx〉−m f ‖L2(R),

where the last inequality follows from Young’s inequality for convolutions, and all the
constants are independent from ε ∈ (0, 1]. ��

Following [29] we will will use a regularizing operator 〈iε∂x 〉−N , with ε > 0 a small
constant. We will use the following lemma.

Lemma 5.4. Consider a Schwartz function V ∈ S(R, C). Then, for any L ∈ N ∪ {0}
there exists a constant CL s.t. we have for all ε ∈ (0, 1]

‖ 〈iε∂x 〉−N [V, 〈iε∂x 〉N ]‖L2,−L (R)→L2,L (R) ≤ CLε, (5.7)

where L2,s(R) is defined in (1.9).

Proof. Let us consider case L = 0,
∥∥∥〈iε∂x 〉−N

[
V, 〈iε∂x 〉N

]∥∥∥
L2(R)→L2(R)

� ε. (5.8)

Taking Fourier transform, it is equivalent to prove the above L2 → L2 bound for the
operator

∫
R

H(k, �) f (�)d� with H(k, �) = 〈εk〉−N V̂(k − �)
(
〈εk〉N − 〈ε�〉N

)
.
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Multiplying numerator and denominator by 〈εk〉N+〈ε�〉N weobtain H(k, �) = εH̃(k, �)

H̃(k, �) = 〈εk〉−N V̂(k − �)(k − �)
P(εk, ε�)

〈εk〉N + 〈ε�〉N
where P is a 2N − 1 degree polynomial. It is elementary that the integral operator
with integral kernel H̃(k, �) is uniformly bounded in ε from L p(R) to itself, for any
p ∈ [1,∞], by Young’s inequality, see Theorem 0.3.1 [53]. Indeed, it is enough to
prove that there exists a constant C > 0 independent from small ε > 0 s.t.

sup
k∈R

∫
R

|H̃(k, �)|d� < C, (5.9)

since by symmetry a similar bound can be proved interchanging the role of k and �.
Now, for M ≥ N + 1, we have for fixed k∫

R

|H̃(k, �)|d� �
∫
|�|∈

[ |k|
2 ,2|k|

] 〈εk〉−N 〈k − �〉−M
(
〈εk〉N−1 + 〈ε�〉N−1

)
d�

+
∫
|�|�∈

[ |k|
2 ,2|k|

] 〈εk〉−N 〈k − �〉−M
(
〈εk〉N−1 + 〈ε�〉N−1

)
d�.

The first integral can be bounded above, for appropriateCN , by the elementary inequality

CN

∫
|�|∈

[ |k|
2 ,2|k|

] 〈εk〉−1 〈k − �〉−M d� ≤ CN

∫
R

〈�〉−M d� = CN‖ 〈x〉−M ‖L1(R),

while the second can be bounded above by

2
∫
|�|≤ |k|

2

〈εk〉−N 〈εk〉N−1

〈�〉M d� + 2
∫
|�|≥2|k|

〈ε�〉N−1

〈�〉M

≤ 4
∫
R

〈�〉N−1−M d� = 4‖ 〈x〉−M−1+N ‖L1(R),

with all the constants independent from ε > 0. This completes the case L = 0.
Let us consider now the case with L ≥ 1. From the proof in the case L = 0, we have

〈iε∂x 〉−N [V, 〈iε∂x 〉N ]v = ε

∫
R

K 0(x, y)v(y)dy

where for σ ≥ 0 we set

K σ (x, y) =
∫
R2

eixk−iy� 〈εk〉−N−σ V̂(k − �)(k − �)
P(εk, ε�)

〈εk〉N + 〈ε�〉N dkd�. (5.10)

Notice that the integral is absolutely convergent for σ > 0. Let us consider case σ > 0.
When |x | ≥ 1, integrating by parts we have, up to constants which we ignore,

K σ (x, y) = 1

x L
K σ
1,0(x, y) with K σ

a,b(x, y) =
∫
R

eixk−iy� H̃a,b(k, �)dkd� with

H̃σ
a,b(k, �) = (∂L

k )a(∂L
� )b

(
〈εk〉−N−σ V̂(k − �)(k − �)

P(εk, ε�)

〈εk〉N + 〈ε�〉N
)

,
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where H̃σ
a,b(k, �) for a, b ∈ {0, 1} has the properties of H̃(k, �). Then, for χ0 ∈

C∞
c (R, [0, 1]) with χ0 = 1 near 0 and χ1 = 1 − χ0 and ignoring irrelevant constants,

we have

K σ (x, y) =
∑

a,b=0,1

χa(x)χb(y)x
−aL y−bL K σ

a,b(x, y).

Then, for fb(y) = χb(y)y−bL f (y),∥∥∥∥〈x〉L
∫

K σ (x, y) f (y)dy

∥∥∥∥
L2(R)

≤
∑

a,b=0,1

∥∥∥〈x〉L x−aLχa(x)

∫
K σ
a,b(x, y)χb(y)y

−bL f (y)dy

∥∥∥∥
L2(R)

≤
∑

a,b=0,1

∥∥∥∥
∫

K σ
a,b(x, y)χb(y)y

−bL f (y)dy

∥∥∥∥
L2(R)

≤
∑

a,b=0,1

∥∥∥∥
∫

H̃σ
a,b(k, �) f̂b(�)d�

∥∥∥∥
L2(R)

≤ CL

∑
b=0,1

‖ fb‖L2(R) � CL‖ 〈x〉−L f ‖L2(R),

where the constants in the last line are uniform on σ by the argument used to prove

(5.9). Since, furthermore, for a sequence σn → 0 then
∫
R
K σn (x, y) f (y)dy

n→+∞−−−−→∫
R
K 0(x, y) f (y)dy point–wise for f ∈ C0

c (R), we can assume, by the Fatou lemma
and by the density of C0

c (R) in L2,−L(R),
∥∥∥∥〈x〉L

∫
K 0(x, y) f (y)dy

∥∥∥∥
L2(R)

≤ CL‖ 〈x〉−L f ‖L2(R) for all f ∈ L2,−L(R).

This yields (5.12) and ends the proof of Lemma 5.4. ��
We will need in Appendix A a variation of Lemma 5.4.

Lemma 5.5. Suppose that the function V in Lemma 5.4 has the additional property that
for M ≥ N + 1 its Fourier transform satisfies

|V̂(k1 + ik2)| ≤ CM 〈k1〉−M−1 for all (k1, k2) ∈ R × [b, b] and (5.11)

V̂ ∈ C0(R × [−b, b]) ∩ H(R × (−b, b)),

with H(�) the set of holomorphic functions in an open subset� ⊆ C and with a number
b > 0. Then

‖ 〈iε∂x 〉−N [V, 〈iε∂x 〉N ]eb〈y〉‖L2(R)→L2(R) ≤ Cbε. (5.12)

Proof. Formula (5.10) continues to hold for all σ ∈ (0, 1], as a path integral

K σ (x, y) = ey�2
∫
R2

eixk1−iy�1 〈εk〉−N−σ V̂(k − �)(k − �)
P(εk, ε�)

〈εk〉N + 〈ε�〉N dk1d�1

(5.13)
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with k2 = 0 and |�2| ≤ b. Then, adjusting to the sign of y, we conclude that

|K σ (x, y)| ≤ e−|y|b
∣∣∣∣
∫
R2

eixk1−iy�1 〈εk〉−N−σ V̂(k − �)(k − �)
P(εk, ε�)

〈εk〉N + 〈ε�〉N dk1d�1

∣∣∣∣ .
This implies

∥∥∥∥
∫

K σ (x, y)e|y|be−|y|b f (y)dy

∥∥∥∥
L2(R)

≤ Cb‖e−|x |b f ‖L2(R).

Like in the proof of Lemma 5.4 we can take the limit σ → 0+ obtaining (5.12). ��
We next give estimates on the operator T .

Lemma 5.6. There exist constants C0 and CN such that for ε > small enough we have

‖T ‖L2→L2 ≤ C0ε
−N and ‖T ‖�N→�0 ≤ CN . (5.14)

Furthermore, let Kε(x, y) ∈ D′(R × R) be the Schwartz kernel of T . Then, we have

|Kε(x, y)| ≤ C0e
− |x−y|

3ε for all x, y with |x − y| ≥ 1. (5.15)

Proof. First, for T1 = 〈i∂x 〉−N A∗, we have

‖T ‖L2→L2 ≤ ‖ 〈iε∂x 〉−N 〈i∂x 〉N ‖L2→L2‖T1‖L2→L2 .

Since ‖ 〈iε∂x 〉−N 〈∂x 〉N ‖L2→L2 = ‖ 〈εk〉−N 〈k〉N ‖L∞(R) � ε−N and ‖T1‖L2→L2 � 1
because T1 is a degree 0 �DO, we have the first inequality in (5.14).
It is enough to prove (5.15) for operators 〈iε∂x 〉−N (i∂x )m for 0 ≤ m ≤ N , which, up to
irrelevant constant factors, are convolutions, for x �= 0 by the generalized integrals

Kε(x) =
∫
R

eixk1
kn1(

1 + ε2k21
)N/2 dk1 = e−xk2

∫
R

eixk1
(k1 + ik2)n(

1− ε2k22 + ε2k21 + 2ε2ik1k2
)N/2 dk1,

which are well defined for |k2| ≤ 2−1ε−1. For |x | ≥ 1 and if k2 = 2−1ε−1sign(x), it
is elementary to show, by standard arguments with cutoffs and integration by parts, that

the above is � e−
|x |
3ε , yielding (5.15).

We turn now to the second inequality in (5.14). We have, for functions bn(x) bounded
with all their derivatives,

‖T f ‖�0 = ‖T̃
(
ea〈x〉

N∑
n=0

bn∂
n
x f

)
‖L2 where T̃ := ea〈x〉 〈iε∂x 〉−N e−a〈x〉.

For T̃ (x, y) the integral kernel of T̃ , we have, for m(k) = 〈k〉−N and for m∨ its inverse
Fourier transform, using (5.15) we obtain

|T̃ (x, y)| = |T̃ (x, y)|χ[0,1](|x − y|) + |T̃ (x, y)|χ[1,∞)(|x − y|)
� ε−1m∨

(
x − y

ε

)
χ[0,1](|x − y|) + e−

|x−y|
3ε ea〈x〉e−a〈y〉

� ε−1m∨
(
x − y

ε

)
χ[0,1](|x − y|) + e−

|x−y|
4ε
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for ε > 0 small enough. This implies, from Young’s inequality, [53, Theorem 0.3.1],
that

‖T f ‖�0 � ‖ea〈x〉
N∑

n=0

bn∂
n
x f ‖L2 � ‖ f ‖�N ,

yielding the 2nd inequality in (5.14). ��
The following technical estimates are related to analogous ones in Sect. 4.4 [29].

Lemma 5.7. We have

‖w‖L2(|x |≤2B2) � B2‖w‖�̃ for any w, (5.16)

‖ξ‖2
�̃

�
〈
(−∂2x − 2−2χ2

B2xV
′
N+1)ξ, ξ

〉
� ‖ξ‖2

�̃
for any ξ, (5.17)

‖v‖L2(R) � ε−N B2‖w‖�̃ , (5.18)

‖v′‖L2(R) � ε−N‖w‖�̃ , (5.19)

‖ 〈x〉−M v‖H1(R) � ‖ξ‖�̃ + ε−N 〈B〉−M+3 ‖w‖�̃ for M ∈ N, M ≥ 4. (5.20)

Proof. The proof of (5.16)–(5.17) is exactly the same in Lemma 4 [29] and is a conse-
quence of Lemma 5.1. Now we consider, still following [29], the proof of (5.18), which
is rather immediate. Indeed, by (5.14), (5.16) and A � B2, we have

‖v‖L2(R) � ε−N‖χB2 η̃‖L2(R) � ε−N
∥∥∥∥χB2

ζA
w

∥∥∥∥
L2(R)

� ε−N B2‖w‖�̃ . (5.21)

More complicated is the proof of (5.19). We have

v′ = T
(
χB2 η̃

)′ + 〈iε∂x 〉−N [∂x ,A∗]χB2 η̃. (5.22)

To bound the first term in the right hand side, we use the inequality

|(χB2 η̃)′| =
∣∣∣∣
(

χB2

ζA
w

)′∣∣∣∣ ≤
∣∣∣∣χB2

ζA
w′
∣∣∣∣ +
∣∣∣∣
(

χB2

ζA

)′
w

∣∣∣∣ �
∣∣w′∣∣ + B−2|w|χ|x |≤2B2 ,

where we used A � B2. Then

‖T (χB2 η̃
)′ ‖L2(R) � ε−N‖ (χB2 η̃

)′ ‖L2(R) � ε−N
(
‖w′‖L2(R) + B−2‖w‖L2(|x |≤2B2)

)
(5.23)

� ε−N‖w‖�̃

by (5.16). To bound the second term in the right hand side in (5.22), we use formula

[∂x ,A∗] =
N∑
j=1

N−1− j∏
i=0

A∗
N−i

(
logψ j

)′′ j−1∏
i=1

A∗
j−i .

with the convention
∏l

i=0 Bi = B0 ◦ ... ◦ Bl . Then we have∥∥∥∥∥∥〈iε∂x 〉
−N

N−1− j∏
i=0

A∗
N−i

(
logψ j

)′′ j−1∏
i=1

A∗
j−iχB2η

∥∥∥∥∥∥
L2(R)
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= ε
3
2−N

∥∥∥∥∥∥
〈
i∂y
〉−N

N−1− j∏
i=0

ψN−i (εy)◦

∂y ◦ 1

ψN−i (εy)

(
logψ j

)′′
(εy)

j−1∏
i=1

ψ j−i (εy) ◦ ∂y ◦ 1

ψ j−i (εy)
χB2(εy)η(εy)

∥∥∥∥∥∥
L2(R)

.

(5.24)

Now write the operator inside the last term as

P
〈
i∂y
〉− j+1 (logψ j

)′′
(εy)

j−1∏
i=1

ψ j−i (εy) ◦ ∂y ◦ 1

ψ j−i (εy)
χB2(εy), where

P := 〈i∂y 〉−N
N−1− j∏
i=0

ψN−i (εy)∂y ◦ 1

ψN−i (εy)

〈
i∂y
〉 j−1

.

We have ‖P‖L2→L2 � 1. Then the term in (5.24) is

� ε
3
2−N

∥∥∥∥∥∥
(
logψ j

)′′
(εy)

〈
i∂y
〉− j+1

j−1∏
i=1

ψ j−i (εy) ◦ ∂y ◦ 1

ψ j−i (εy)
χB2(εy)η(εy)

∥∥∥∥∥∥
L2(R)

+ ε
3
2−N

∥∥∥〈i∂y 〉− j+1
[(
logψ j

)′′
(εy),

〈
∂y
〉 j−1

]

〈
i∂y
〉− j+1

j−1∏
i=1

ψ j−i (εy) ◦ ∂y ◦ 1

ψ j−i (εy)
χB2(εy)η(εy)

∥∥∥∥∥∥
L2(R)

. (5.25)

By Lemma 5.1 and A � B2, the term in the first line is

� ε
3
2−N

∥∥∥〈εy〉−3 χB(εy)η(εy)
∥∥∥
L2(R)

= ε1−N
∥∥∥∥〈x〉−3 χB2

ζA
w

∥∥∥∥
L2(R)

� ε1−N ‖w‖�̃ .

By Lemmas 5.1, 5.3 and 5.4, the term in the last two lines of (5.25) is

≤ ε j−N

∥∥∥∥∥∥〈iε∂x 〉
− j+1

[(
logψ j

)′′
, 〈iε∂x 〉 j−1

]
〈iε∂x 〉− j+1

j−1∏
i=1

ψ j−i ◦ ∂x ◦ 1

ψ j−i
χB2η

∥∥∥∥∥∥
L2,3(R)

� ε j+1−N

∥∥∥∥∥∥〈x〉
−3 〈iε∂x 〉− j+1

j−1∏
i=1

ψ j−i ◦ ∂x ◦ 1

ψ j−i
χB2η

∥∥∥∥∥∥
L2(R)

= ε5/2−N

∥∥∥∥∥∥〈εy〉
−3 〈i∂y 〉− j+1

j−1∏
i=1

ψ j−i (εy) ◦ ∂y ◦ 1

ψ j−i (εy)
χB2 (εy)η(εy)

∥∥∥∥∥∥
L2(R)

� ε5/2−N
∥∥〈εy〉−3 χB2 (εy)η(εy)

∥∥
L2(R)

= ε2−N
∥∥〈x〉−3 χB2η

∥∥
L2(R)

� ε2−N‖w‖�̃ .

This completes the proof of (5.19).
We finally consider the proof of (5.20). We have

‖ 〈x〉−M v‖H1(R) ≤ ‖ 〈x〉−M χBξ‖H1(R) + ‖ 〈x〉−M (1− χB) v‖H1(R)
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� ‖ξ‖�̃ + 〈B〉−M+3 ‖ 〈x〉−3 v‖H1(R), (5.26)

where we used Lemma 5.1. To evaluate the last term, we observe, introducing x = εy,
that

〈x〉−3 (T f )(x) = (−1)N 〈εy〉−3 ε−N 〈i∂y 〉−N
N−1∏
i=0

ψN−i (εy) ◦ ∂y ◦ 1

ψN−i (εy)
( f (ε·))(y)

= 〈εy〉−3 ε−N p(εy, i∂y)( f (ε·))(y)).
Then, we can apply Lemma 5.3, concluding that

‖ 〈x〉−3 T f ‖L2
x
= ε

1
2−N‖ 〈εy〉−3 p(εy, i∂y)( f (ε·))(y))‖L2

y

� ε
1
2−N‖ 〈εy〉−3 f (εy)‖L2

y
� ε−N‖ 〈x〉−3 f ‖L2

x
. (5.27)

By v = T χB2 η̃, Lemma 5.1 and A � B2, this by implies

B−M+3‖ 〈x〉−3 T χB2 η̃‖L2(R) � B−M+3ε−N
∥∥∥∥〈x〉−3 χB2

ζA
ζAη̃

∥∥∥∥
L2(R)

� B−M+3ε−N‖ 〈x〉−3 w‖L2(R) � B−M+3ε−N‖w‖�̃ . (5.28)

Next,
(
〈x〉−3 T

(
χB2 η̃

))′ = (〈x〉−3
)′
T
(
χB2 η̃

)
+ [∂x , T ] (χB2 η̃

)
+ 〈x〉−3 T

(
χB2 η̃

)′
.

(5.29)

Since
(〈x〉−3)′ ∼ 〈x〉−4, the first term in the right can be treated like (5.27). The second

term in the right hand side of (5.29) coincides with the second term in the right in (5.22).
So we conclude, using Lemma 5.1 and (5.16),

〈B〉−M+3 ‖ (〈x〉−3 T χB2 η̃
)′ ‖L2(R) � 〈B〉−M+3 ε−N

(
‖w‖�̃ +

∥∥∥∥〈x〉−3
(

χB2

ζA
w

)′∥∥∥∥
L2(R)

)

� 〈B〉−M+3 ε−N

(
‖w‖�̃ + ‖ 〈x〉−3 w′‖L2(R) +

∥∥∥∥〈x〉−3
(

χB2

ζA

)′
w

∥∥∥∥
L2(|x |≤2B2)

)

� 〈B〉−M+3 ε−N‖w‖�̃ . (5.30)

Entering (5.28)–(5.30) in (5.26), we obtain (5.20). ��

6. Proof of Proposition 3.4

For the proof of the 2nd virial estimate Proposition 3.4, we use the following functional,

J (v) := 1

2

〈
v, iS̃Bv

〉
, (6.1)

where the anti-symmetric operator S̃B is defined by

S̃B := ψ ′
B

2
+ ψB∂x , ψB(x) := χ2

B2(x)ϕB(x). (6.2)
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Then, by the equation of v in (2.19), we have

d

dt
J (v) = − 〈HN+1v, S̃Bv

〉− 〈Rv, S̃Bv
〉− ∑

m∈Rmin

〈
zmG̃m, S̃Bv

〉
(6.3)

where by remainder formulas (2.12) and (2.21), we have

〈
Rv, S̃Bv

〉 =
7∑
j=1

〈
Rv j , S̃Bv

〉
, (6.4)

with

Rv1 = −iT χB2 PcDzφ[z] (ż + i� (z)z) , (6.5)

Rv2 = T χB2 PcRrp[z], (6.6)

Rv3 = T χB2 Pc
(
2φ[z]|η|2 + φ[z]η2

)
, (6.7)

Rv4 = T χB2 Pc|η|2η, (6.8)

Rv5 = T χB2 PcL[z]η, (6.9)

Rv6 = 〈εi∂x 〉−N [VN+1, 〈εi∂x 〉N ]v, (6.10)

Rv7 = T
(
2χ ′

B2∂x + χ ′′
B2

)
η̃. (6.11)

Proposition 3.4 follows from the following three lemmas.

Lemma 6.1. We have

〈
HN+1v, S̃Bv

〉 ≥ 2−1
〈
−ξ ′′ − 1

2
χ2
B2xV

′
N+1ξ, ξ

〉
+ B−1/2O

(
‖ξ‖2

�̃
+ ‖w‖2

�̃

)
. (6.12)

Proof. Like in Lemma 4.2 the l.h.s. of (6.12) equals

〈
HN+1v, S̃Bv

〉 = 〈ψ ′
Bv′, v′

〉− 1

4

〈
ψ ′′′

B v, v
〉− 1

2

〈
v,ψBV

′
N+1v

〉
. (6.13)

For the 1st and 2nd term in the right hand side of (6.13), we have

〈
ψ ′

Bv′, v′
〉− 1

4

〈
ψ ′′′

B v, v
〉 = 〈χ2

B2ζ
2
Bv′, v′

〉
− 1

4

〈
χ2
B2

(
ζ 2
B

)′′
v, v

〉

+

〈(
χ2
B2

)′
ϕBv′, v′

〉
− 1

4

〈(
(χ2

B2)
′′′ϕB + 3

(
χB2
)′′

ζ 2
B + 3(χB2)′(ζ 2

B)′
)

v, v
〉
. (6.14)

By Lemma 5.7, the last term of (6.14) can by bounded as

|
〈(

(χ2
B2)

′′′ϕB + 3
(
χB2
)′′

ζ 2
B + 3(χB2)′(ζ 2

B)′
)

v, v
〉
|

�
(
B−5 + B−4e−2B + B−4e−B

)
B4ε−2N‖w‖2

�̃
� B−1/2‖w‖2

�̃
.

For the 1st term of the 2nd line of (6.14), we have
〈∣∣∣(χ2

B2)
′ϕB

∣∣∣ , |v′|2
〉
� B−1‖v′‖2L2(|x |≤2B2)

� ε−2N B−1‖w‖2
�̃

.
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We consider now the 1st and 2nd term of (6.14). Using χB2ζBv′ = ∂xξ − χB2ζ ′
Bv −

χ ′
B2ζBv, we have

〈
χ2
B2ζ

2
Bv′, v′

〉
− 1

4

〈
χ2
B2

(
ζ 2
B

)′′
v, v

〉
= 〈−ξ ′′, ξ

〉
+

1

2B
〈V0ξ, ξ 〉

+ 2
〈
ξ ′, χ ′

B2ζBv
〉− 2

〈
ζ ′
Bξ, χ ′

B2v
〉
+
〈
χ ′
B2ζBv, χ ′

B2ζBv
〉
. (6.15)

The 2nd line of (6.15) can be bounded as

| 〈ξ ′, χ ′
B2ζBv

〉 | � B−2B4e−B‖ξ‖�̃‖w‖�̃ � B−1‖ξ‖�̃‖w‖�̃,

| 〈ζ ′
Bξ, χ ′

B2v
〉 | � B−2B8e−B‖ 〈x〉−3 ξ‖L2ε−N‖w‖�̃ � B−1‖ξ‖�̃‖w‖�̃, (6.16)

| 〈χ ′
B2ζBv, χ ′

B2ζBv
〉 | � B−2e−B B4‖w‖2

�̃
� B−1‖w‖2

�̃
,

where we have used ‖ζ ′
Bξ‖L2 � B‖ξ‖�̃ by (5.1).

Summing up, we obtain

〈
HN+1v, S̃Bv

〉 =
〈
−ξ ′′ + 1

2B
V0ξ − 2−1ψBζ−2

B V ′
N+1ξ, ξ

〉
+ B−1/2O

(
‖ξ‖2

�̃
+ ‖w‖2

�̃

)

≥ 〈(−∂2x − 2−1χ2
B2 xV

′
N+1)ξ, ξ

〉
+

1

2B
〈V0ξ, ξ〉 + B−1/2O

(
‖ξ‖2

�̃
+ ‖w‖2

�̃

)
,

where, like in Lemma 3 in [29], since ϕB (x)
ζ 2B (x)

≥ x for x ≥ 0, for B large enough, by

Lemma 5.1,
〈
(−∂2x − 2−1χ2

B2xV
′
N+1)ξ, ξ

〉
≥ B−1 〈V0ξ, ξ 〉 .

So
〈
−ξ ′′ + 1

2B
V0ξ − 2−1ψBζ−2

B V ′
N+1ξ, ξ

〉
≥ 2−1

〈
−ξ ′′ − 2−1χ2

B2xV
′
N+1ξ, ξ

〉
.

��
Lemma 6.2. We have

∑
j=1,2

| 〈Rv j , S̃Bv
〉 | � ε−N Bδ2

(‖w‖�̃ + ‖ξ‖�̃

)
⎛
⎝ ∑

m∈Rmin

|zm| + ‖ż + i� (z)z‖
⎞
⎠ ,

(6.17)∑
j=3,4,5

| 〈Rv j , S̃Bv
〉 | � ε−N B3δ2‖w‖�̃

(‖w‖�̃ + ‖ξ‖�̃

) ; (6.18)

| 〈Rv6, S̃Bv
〉 | � ε

(
‖ξ‖2

�̃
+ ‖w‖2

�̃

)
; (6.19)

| 〈Rv7, S̃Bv
〉 | � ε−N B−1‖w‖�̃

(‖w‖�̃ + ‖ξ‖�̃

)
. (6.20)

Proof. First we claim

‖S̃Bv‖L2 � ε−N B‖w‖�̃ + B‖ξ‖�̃ . (6.21)
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The proof of (6.21) is like in [29]. By (5.19) and ‖ψB‖L∞ � B we have

‖S̃Bv‖L2 � ‖ψ ′
Bv‖L2 + ‖ψBv′‖L2 � ‖ψ ′

Bv‖L2 + ε−N B‖w‖�̃ .

Next, we have

|ψ ′
B | = |2χ ′

B2χB2ϕB + χ2
B2ζ

2
B | � B−1χB2 + χ2

B2ζ
2
B . (6.22)

Then

B−1‖v‖L2 � Bε−N B‖w‖�̃

by (5.18), by Lemma 5.1 we have

‖χ2
B2ζ

2
Bv‖L2 = ‖χB2ζBξ‖L2 �

√‖ 〈x〉χB2ζB‖L1‖ξ‖�̃ ∼ B‖ξ‖�̃

and, finally,

‖χ2
B2ϕBv′‖L2 � B‖v′‖L2 � Bε−N‖w‖�̃

by (5.19), so that so that we get (6.21).
We have ‖PcDzφ[z]‖L2 = O(‖z‖2) by Proposition 1.9. Then, using (5.18)–(5.19) and
‖ψB‖L∞ � B, we have

∑
j=1,2

| 〈Rv j , S̃Bv
〉 | �

∑
j=1,2

‖Rv j‖L2‖S̃Bv‖L2 �
∑
j=1,2

‖Rv j‖L2

(
ε−N B‖w‖�̃ + B‖ξ‖�̃

)

� ε−N Bδ2
(‖w‖�̃ + ‖ξ‖�̃

)
⎛
⎝ ∑

m∈Rmin

|zm| + ‖ż + i� (z)z‖
⎞
⎠ .

We claim
∑

j=3,4,5

| 〈Rv j , S̃Bv
〉 | �

∑
j=3,4,5

‖Rv j‖L2

(
ε−N B‖w‖�̃ + B‖ξ‖�̃

)

� ε−N B
(
‖z‖‖η‖H1 + B2‖η‖2H1 + ‖z‖2

)
‖w‖�̃

(‖w‖�̃ + ‖ξ‖�̃

)
. (6.23)

We have for example, using Lemma 2.2 and inequality (5.16),

‖T χB2 Pc|η|2η‖L2 � ε−N
(
‖Pc|η|2 (R[z] − 1) η̃‖L2 + ‖χB2 Pc|η|2η̃‖L2

)

� ε−N
(
‖z‖2‖η‖2L∞‖η̃‖L2−a

+ ‖Pd |η|2η̃‖L2 + ‖χB2 |η|2η̃‖L2

)

� ε−N
(
δ2‖z‖2‖w‖�̃ + ‖η‖2L∞‖η̃‖L2−a

+ ‖χB2 |η|2w‖L2

)

� ε−N
((

‖z‖2 + ‖η‖2H1

)
‖w‖�̃ + ‖η‖2H1‖w‖L2(|x |≤2B2)

)

� ε−N
(
‖z‖2 + B2‖η‖2H1

)
‖w‖�̃,

with better the bounds for the other terms in the r.h.s. of (6.23).
Using Lemma 5.4, (5.20) and (6.22) we obtain (6.19):

| 〈Rvη6, S̃Bv
〉 |
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�
(
‖ψ ′

B‖L∞‖ 〈x〉−10 v‖L2 + ‖ 〈x〉−10 ψB‖L∞‖ 〈x〉−10 v′‖L2

)
‖ 〈x〉20 〈iε∂x 〉−N

[VN+1, 〈iε∂x 〉N ]v‖L2

� ε‖ 〈x〉−10 v‖2H1 � ε
(
‖ξ‖2

�̃
+ ‖w‖2

�̃

)
.

Finally, the proof of (6.20) is the same as in [29]. We write

| 〈Rv7, S̃Bv
〉 | � ε−N (‖χ ′

B2 η̃
′‖L2 + ‖χ ′′

B2 η̃‖L2
) (‖ψ ′

Bv‖L2 + ‖ψBv′‖L2
)
. (6.24)

We claim

‖χ ′
B2 η̃

′‖L2 + ‖χ ′′
B2 η̃‖L2 � B−2‖w‖�̃ . (6.25)

Indeed from w = ζAη̃ we have

w′ = ζ ′
Aη̃ + ζAη̃′,

so, for |x | ≤ A,

|η′| � A−1|η| + |w′| = A−1ζ−1
A |w| + |w′|.

By A � B2 and (5.16), we have

‖χ ′
B η̃′‖L2 � B−2‖η̃′‖L2(B2≤|x |≤2B2)

� B−2
(
‖w′‖L2(R) + B−2‖w‖L2(B2≤|x |≤2B2)

)
� B−2‖w‖�̃

and the following

‖χ ′′
B2 η̃‖L2 � B−4‖η̃‖L2(B2≤|x |≤2B2) � B−4‖w‖L2(|x |≤2B2) � B−2‖w‖�̃ .

The next step is to prove the following, which with (6.25) yields (6.20),

‖ψ ′
Bv‖L2 + ‖ψBv′‖L2 � Bε−N‖w‖�̃ + B‖ξ‖�̃ . (6.26)

From ξ = χ2
B2ζBv, we have by (5.18), (5.1) and (6.22),

‖ψ ′
Bv‖L2 � B−1‖v‖L2 + ‖ζBξ‖L2 � Bε−N‖w‖�̃ + B‖ξ‖�̃ .

Using (5.19) and |ψB | � B, we get the following, which completes the proof of (6.26),

‖ψBv′‖L2 � B‖v′‖L2 � ε−N B‖w‖�̃ .

��
Lemma 6.3. We have

∣∣〈zmG̃m, S̃Bv
〉∣∣ � |zm|

(
‖ξ‖�̃ + e−B/2‖w‖�̃

)
. (6.27)
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Proof. We have∣∣〈zmG̃m, ψ ′
Bv + 2ψBv′

〉∣∣
�
∣∣∣∣
〈
zmG̃m,

(
χ2
B2

)′
ϕBv

〉∣∣∣∣ +
∣∣∣
〈
zmG̃m, χ2

B2ζ
2
Bv
〉∣∣∣ + ∣∣〈zmG̃m, ψBv′

〉∣∣ . (6.28)

We now we examine the three terms in line (6.28). Using (5.18), |ϕB | ≤ B, 1|x |≤1 ≤
χ ≤ 1|x |≤2 and χB2 := χ(B−2·), we get∣∣∣∣

〈
zmG̃m,

(
χ2
B2

)′
ϕBv

〉∣∣∣∣ � B−1|zm‖G̃m‖L2(B2≤|x |≤2B2)‖v‖L2

� ε−N B|zm|‖G̃m‖L2(B2≤|x |≤2B2)‖w‖�̃

Now we claim ‖G̃m‖L2(B2≤|x |≤2B2) ≤ e−B , so that ε−N Be−B ≤ e−B/2. To prove our
claim we split

‖G̃m‖L2(B2≤|x |≤2B2) ≤ ‖T 1|x |≤B2/2χB2 PcGm‖L2(B2≤|x |≤2B2)

+ ‖T 1|x |≥B2/2χB2 PcGm‖L2 .

Using (5.15) we have

‖T 1|x |≤B2/2χB2 PcGm‖L2(B2≤|x |≤2B2) ≤ e−3B‖Gm‖L2 ≤ e−2B

while

‖T 1|x |≥B2/2χB2 PcGm‖L2 � ε−N‖1|x |≥B2/2PcGm‖L2 ≤ ε−Ne−3B ≤ e−2B .

Next, we consider the 2nd term in (6.28). Using (5.14) and (5.20)∣∣∣
〈
〈x〉20 zmG̃m, χ2

B2ζ
2
B 〈x〉−20 v

〉∣∣∣ ≤ |zm| ‖T χB2 PcGm‖�0‖ 〈x〉−20 v‖L2

� |zm| ‖χB2 PcGm‖�N

(
‖ξ‖�̃ + 〈B〉−10 ‖w‖�̃

)
� |zm|

(
‖ξ‖�̃ + 〈B〉−10 ‖w‖�̃

)
.

Finally, we consider the last term in line (6.28). Like in the estimate of J2 in Sect. 4.4
[29], from

ξ ′ = χB2ζBv′ +
(
χB2ζB

)′
v

we obtain

|χB2ζBv′| � |ξ ′| + | (χB2ζB
)′

v| � |ξ ′| + B−1|χB2ζBv| + B−2|χ[B2≤|x |≤2B2]ζBv|,
so that

|χ2
B2ζBv′| � |ξ ′| + B−1|ξ |.

Then, using (5.19) and the above estimates, we have
∣∣〈zmG̃m, ψBv′

〉∣∣ ≤
∣∣∣
〈
zmψBζ−1

B G̃m, χ2
B2ζBv′

〉∣∣∣ +
∣∣∣
〈
zmψBζ−1

B G̃m,
(
1− χ2

B2

)
ζBv′

〉∣∣∣
�
∣∣∣
〈
zmψB |G̃m|, |ξ ′| + B−1|ξ |

〉∣∣∣ + |zm|‖
(
1− χ2

B2

)
ψBG̃m‖L2‖v′‖L2

� |zm|
(
‖ξ ′‖L2 + B−1‖ξ‖�̃ + e−Bε−N‖w‖�̃

)
.

��
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Proof of Proposition 3.4. Using (6.3), Lemmas 6.1–6.3 and (2.13)

d

dt
J (v) = − 〈HN+1v, S̃Bv

〉− 〈Rv, S̃Bv
〉− ∑

m∈Rmin

〈
zmG̃m, S̃Bv

〉

� −
〈
−ξ ′′ − 1

4
χ2
B2 xV

′
N+1ξ, ξ

〉

+
∑

m∈Rmin

|zm|
(
‖ξ‖�̃ + e−B/2‖w‖�̃

)
+ oε(1)

(
‖ξ‖2

�̃
+ ‖w‖2

�̃
+ ‖ż + i� (z)z‖2

)

� −‖ξ‖2
�̃
+
∑

m∈Rmin

|zm|2 + oε(1)
(
‖w‖2

�̃
+ ‖ż + i� (z)z‖2

)
,

so that integrating in time we obtain inequality (3.6) concluding the proof of Proposition
3.4. ��

Our next task is to estimate the discrete modes, that is the contributions from z. While
so far in the paper we have drawn from Kowalczyk, Martel and Munoz [29], we now
start drawing from [9].

7. Proof of Proposition 3.5

Proposition 3.5 is an immediate consequence of the following lemma which is taken
from [9].

Lemma 7.1. Under the assumption of Proposition 3.1, we have

ż j + i
 j (|z|2)z j = −i
∑

m∈Rmin

zm 〈Gm, φ j
〉
+ r j (z, η), (7.1)

where r j (z, η) satisfies

‖r j (z, η)‖L2(I ) � δ2ε.

Proof. The proof is in [9], but for completeness we reproduce it here. Recall that φ[z]
satisfies identically equation (1.20). Furthermore, differentiating (1.20) w.r.t. z in any
given direction z̃ ∈ C

N , we obtain

H [z]Dzφ[z]̃z = iD2
z φ[z](−i� (|z|2)z, z̃) + iDzφ[z]

(
Dz(−i� (|z|2)z)̃z

)
(7.2)

+
∑

m∈Rmin

Dz(zm )̃zGm + DzRrp(z)̃z,

with H [z] defined under (2.5). By η ∈ Hc[z] we obtain the orthogonality relation

〈iη̇, Dzφ[z]̃z〉 = −
〈
iη, D2

z φ[z](ż, z̃)
〉
.

By applying the inner product 〈η, ·〉 to equation (7.2), we have

〈H [z]η, Dzφ(z)̃z〉 =
〈
iη, D2

z φ(z)(� (|z|2)z, z̃)
〉
+
∑

m∈Rmin

〈
η,
(
Dz
(
zm) z̃

)
Gm
〉

+
〈
η, DzRrp(z)̃z

〉
,
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where we exploited the selfadjointness of H [z] and the orthogonality in Lemma 2.1.
Thus, applying 〈·, Dzφ(z)̃z〉 to equation (2.5) for η and using the last two equalities, we
obtain

〈
iDzφ(z)(ż + i� (|z|2)z), Dzφ(z)̃z

〉 = 〈iη, D2
z φ(z)

(
ż + i� (|z|2)z, z̃

)〉
+
〈
η, DzRrp[z]̃z

〉

+
∑

m∈Rmin

〈
η,
(
Dz
(
zm) z̃

)
Gm
〉
+

〈 ∑
m∈Rmin

zmGm +Rrp[z], Dzφ(z)̃z

〉

+
〈
F(z, η) + |η|2η, Dzφ[z]̃z

〉
. (7.3)

First since Dzφ[0]̃z = z̃ · φ, we have
〈
iDzφ[z](ż + i� (|z|2)z), Dzφ(z)̃z

〉
=

N∑
j=1

�(i(ż j + i
 j (|z|2)z j )̃z j ) + r(z, z̃), (7.4)

where

r(z, z̃) =
〈
i (Dzφ(z) − Dzφ(0)) (ż + i� (|z|2)z), Dzφ(z)̃z

〉
(7.5)

+
〈
iDzφ(0)(ż + i� (|z|2)z), (Dzφ(z) − Dzφ(0)) z̃

〉
.

Since ‖Dzφ(z) − Dzφ(0)‖L2 � |z|2 � δ2 by Proposition 1.9 and inequality (1.26), by
assumption (3.4) we have

‖r(z, z̃)‖L2(I ) � δ2ε for all z̃ = e1, ie1, · · · , eN , ieN . (7.6)

Setting

r̃(z, z̃, η) :=
〈
iη, D2

z φ(z)
(

ż + i� (|z|2)z, z̃
)〉

+
〈
η, DzRrp(z)̃z

〉

+
∑

m∈Rmin

〈
η,
(
Dz
(
zm) z̃

)
Gm
〉

(7.7)

+
∑

m∈Rmin

〈
zmGm, (Dzφ(z) − Dzφ(0)) z̃

〉
+
〈
Rrp(z), Dzφ(z)̃z

〉
+ 〈F(z, η), Dzφ(z)̃z〉 ,

by by assumption (3.4) we have we have

‖̃r(z, z̃, η)‖L2(I ) � δ2ε for all z̃ = e1, ie1, · · · , eN , ieN . (7.8)

Therefore, since Dφ(0)ike j = ikφ j (k = 0, 1), we have

−Im
(
∂t z j + i
 j (|z|2)z j

)
=

∑
m∈Rmin

〈
zmGm, φ j

〉− r(z, e j ) + r̃(z, e j , η),

Re
(
∂t z j + i
 j (|z|2)z j

)
=

∑
m∈Rmin

〈
zmGm, iφ j

〉− r(z, ie j ) + r̃(z, ie j , η).

Since Gm and φ j are R-valued (see Lemma 1.7), we have

ż j + i
 j (|z|2)z j = −i
∑

m

〈
Gm, φ j

〉
zm − r(z, ie j ) + ir(z, e j ) + r̃(z, ie j , η) − ĩr(z, e j , η).

Therefore, from (7.6) and (7.8), we have the conclusion with r j (z, η) = −r(z, ie j ) +
ir(z, e j ) + r̃(z, ie j , η) − ĩr(z, e j , η). ��
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Our next task, is to examine the terms zm. We need to show that these terms satisfy

zm t→+∞−−−−→ 0, that is they are damped by nonlinear interaction with the radiation terms.
In order to do so, we expand the variable v, defined in (2.19), in a part resonating with
the discrete modes z, which will yield the damping, and a remainder which we denote
by g.

8. Smoothing Estimate for g

In analogy to [4,11,51] and a large literature, we will introduce and bound an auxiliary
variable, g here. It appears to be impossible to bound g or analogues of g by means of
virial type inequalities.Wewill use insteadKato–smoothing, as in [4,11,51]. Fortunately,
the fact that the cubic nonlinearity is long range is immaterial, thanks to the cutoff χB2

in front of |η|2η in the equation of v.
The following is elementary and the proof is skipped.

Lemma 8.1. 0 is neither an eigenvalue nor a resonance for the operator HN+1.

��
We recall that we have the kernel for x < y, with an analogous formula for x > y,

RHN+1(z)(x, y) =
T (

√
z)

2i
√
z

f−(x,
√
z) f+(y,

√
z) = T (

√
z)

2i
√
z
ei
√
z(x−y)m−(x,

√
z)m+(y,

√
z),

(8.1)

where the Jost functions f±(x,
√
z) = e±i

√
zxm±(x,

√
z) solve (−� + VN+1) u = zu

with

lim
x→+∞m+(x,

√
z) = 1 = lim

x→−∞m−(x,
√
z).

These functions satisfy, see Lemma 1 p. 130 [16],

|m±(x,
√
z) − 1| ≤ C1〈max{0,∓x}〉〈√z〉−1

∣∣∣∣
∫ ±∞

x
〈y〉|VN+1(y)|dy

∣∣∣∣ (8.2)

|m±(x, k) − 1| ≤ 〈√z
〉−1
∣∣∣∣
∫ ±∞

x
|VN+1(y)|dy

∣∣∣∣ exp
(〈√

z
〉−1
∣∣∣∣
∫ ±∞

x
|VN+1(y)|dy

∣∣∣∣
)

,

(8.3)

while, by Lemma 8.1, T (k) = αk(1+o(1)) near k = 0 for some α ∈ R, see [60, formula
(2.45)], and T (k) = 1 + O(1/k) for k → ∞ and T ∈ C0(R), see Theorem 1 [16].

Looking at the equation for v, (2.19), we introduce the functions

ρm := −R+
HN+1

(ω · m)G̃m, (8.4)

which solve

(HN+1 − ω · m)ρm = −G̃m (8.5)

and we set

g = v + Z(z) where Z(z) := −
∑

m∈Rmin

zmρm, (8.6)
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which is analogous the expansion of
−→
h in p. 86 in Buslaev and Perelman [4] or also to

the formula under (4.5) in Merle and Raphael [45]. An elementary computation yields

i∂t g = HN+1g −
∑

m∈Rmin

(
i∂t
(
zm)− ω · m zm) ρm +Rv

or, equivalently,

g(t) = e−it HN+1v(0) +
∑

m∈Rmin

zm(0)e−it HN+1R+
HN+1

(ω · m)G̃m (8.7)

−
∑

m∈Rmin

i
∫ t

0
e−i(t−t ′)HN+1

(
∂t
(
zm) + iω · m zm) ρmdt ′ (8.8)

− i
∫ t

0
e−i(t−t ′)HN+1T

(
2χ ′

B2∂x + χ ′′
B2

)
η̃dt ′ (8.9)

− i
∫ t

0
e−i(t−t ′)HN+1

(
〈iε∂x 〉−N [VN+1, 〈iε∂x 〉N ]v + T χB2Rη̃

)
. (8.10)

We will prove the following, where we use the weighted spaces defined in (1.9).

Proposition 8.2. For S > 4 There exist constants c0 > 0 and C(C0) such that

‖g‖L2(I,L2,−S(R)) � ε−N B2+2τ δ + εε + ε2. (8.11)

To prove Proposition 8.2 we will need to bound one by one the terms in (8.7)–(8.10) in
various lemmas.

Lemma8.1 implies that HN+1 is ageneric operator, and that in particular the following
Kato smoothing holds, which is sufficient for our purposes. The proof is standard, is
similar for example to Lemma 3.3 [14] and we skip it.

Lemma 8.3. For any S > 3/2 there exists a fixed c(S) s.t.

‖ 〈x〉−S e−iHN+1t f ‖L2(R2) ≤ c(S)‖ f ‖L2(R) for all f ∈ L2(R). (8.12)

��
Lemma 8.3, inequality (5.18), the definition ofw in (3.3), Lemma 2.2, theModulation

Lemma 2.1 and the conservation of mass and of energy yield

‖e−it HN+1v(0)‖L2(R,L2,−S(R)) � ‖v(0)‖L2 � ε−N B2‖w(0)‖�̃ � ε−N B2‖η̃(0)‖H1

� ε−N B2‖η(0)‖H1 � ε−N B2‖u0‖H1 ≤ ε−N B2δ.

(8.13)

Next, we have the following lemma, which is standard in this theory, see [4,11,51].

Lemma 8.4. Let � be a finite subset of (0,∞) and let S > 4. Then there exists a fixed
c(S,�) s.t. for every t ≥ 0 and λ ∈ �

‖e−iHN+1t R+
HN+1

(λ) f ‖L2,−S(R) ≤ c(S,�)〈t〉− 3
2 ‖ f ‖L2,S(R) for all f ∈ L2,S(R).

(8.14)
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Proof (sketch). This lemma is similar to Proposition 2.2 [51]. We will consider case
t ≥ 1, while we skip the simpler case t ∈ [0, 1].
Consider� ⊂ (a, b)with [a, b] ⊂ R+. Let g ∈ C∞ ((a/2,+∞), [0, 1]) such that g ≡ 1
in [a,+∞). Let g1 ∈ C∞

c (R, [0, 1]) with g1 = 1− g in R+. Next we consider

‖ 〈x〉−S e−iHN+1t R+
HN+1

(λ)g1 (HN+1) f ‖L2(R)

� ‖ 〈x〉−S+2 e−iHN+1t R+
HN+1

(λ)g1 (HN+1) f ‖L∞(R)

� t−
3
2 ‖ 〈x〉 R+

HN+1
(λ)g1 (HN+1) f ‖L1(R)

� t−
3
2 ‖ 〈x〉2 R+

HN+1
(λ)g1 (HN+1) f ‖L2(R) � t−

3
2 ‖ 〈x〉2 f ‖L2(R)

whereweusedTheorem3.1 [49] andLemma5.3, since R+
HN+1

(λ)g1 (HN+1) = g2 (HN+1),
with g2 ∈ C∞

c (R, R), is a 0 order �DO with symbols satisfying the inequalities (5.4)
uniformly as λ takes finitely many values. Here we used Theorem 8.7 in Dimassi and
Sjöstrand [21].
Next we consider

〈x〉−Sg (HN+1) e
−iHN+1t R+

HN+1
(λ)〈y〉−S

= lim
σ→0+

e−iλt 〈x〉−S
∫ +∞

t
e−i(HN+1−λ−iσ)sg (HN+1) ds〈y〉−S . (8.15)

Using the distorted plane wavesψ(x, k) associated to HN+1, see (1.9) [60], we can write
the following integral kernel, ignoring irrelevant constants,

〈x〉−S
(
e−i(HN+1−λ−iσ)sg (HN+1)

)
(x, y)〈y〉−S

= 〈x〉−S〈y〉−S
∫
R+

e−i(k2−λ−iσ)s−ik(x−y)g
(
k2
)
m+(x, k)m+(y, k)dk

+ 〈x〉−S〈y〉−S
∫
R−

e−i(k2−λ−iσ)s−ik(x−y)g
(
k2
)
m−(x,−k)m−(y,−k)dk.

(8.16)

Take for example the first term in the right hand side of (8.16). Then, from i
2ks

d
dk e

−ik2s =
e−ik2s and taking the limit σ → 0+, we can write it as

〈x〉−S〈y〉−S
∫
R+

e−i(k2−λ)s
(
− d

dk

i

2ks

)3 (
e−ik(x−y)g

(
k2
)
m+(x, k)m+(y, k)

)
dk,

which, using for instance the bounds on the k derivatives of m± in Lemma 2.1 [25], is
absolutely integrable in k (g is constant outside a bounded interval) and is bounded in
absolute value by

� 〈x〉−S+3〈y〉−S+3s−3.

Integrating in [t,∞)we obtain an upper bound∼ 〈x〉−S+3〈y〉−S+3t−2 for integral kernel
of the operator of the corresponding part in (8.16), which gives an upper bound of t−2

in the corresponding contribution in (8.14). So we get the desired result for t ≥ 1. ��
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Lemma 8.4, (2.20), (2.15) imply that
∑

m∈Rmin

|zm(0)|‖e−it HN+1ρm‖L2(R,L2,−S(R)) �
∑

m∈Rmin

|zm(0)|‖G̃m‖L2,S(R)

� δ2‖ 〈x〉S 〈iε∂x 〉−N 〈x〉−S ‖L2(R)→L2(R) sup
m∈Rmin

‖ 〈x〉S A∗χB2Gm‖L2(R) � δ2,

(8.17)

where we used the fact that T := 〈x〉S 〈iε∂x 〉−N 〈x〉−S has integral kernel

T (x, y) = ε−1 〈x〉S 〈y〉−S f
(
ε−1(x − y)

)
, where f̂ (k) = 〈k〉−N (8.18)

where f is a continuous rapidly decreasing function, so that it is easy to see that Young’s
inequality, see [53, Theorem 0.3.1], gives ‖T ‖L2→L2 � 1 uniformly in ε ∈ (0, 1].

Notice that in this way we gave a bound on the contribution of the terms in the right
hand side in (8.7) to (8.11) .
It is easy to bound the contribution to (8.11) of the term (8.8). Indeed, using the identity

(
Dzzm) (iωz) = im · ω zm , where ωz := (ω1z1, · · · , ωN zN ), (8.19)

we have

∂t
(
zm) + iω · mzm = Dzzm (∂tz + ωz) = Dzzm

(
ż + i� (|z|2)z

)

+ Dzzmi
(
ω − � (|z|2)

)
z

= Dzzm
(

ż + i� (|z|2)z
)
+ im ·

(
ω − � (|z|2)

)
zm.

From this and Lemma 8.4 and the bound ‖G̃m‖L2,S(R) � 1 in (8.17) we obtain

∑
m∈Rmin

‖
∫ t

0
e−i(t−t ′)HN+1

(
∂t
(
zm) + iω · mzm) ρm‖L2(I,L2,−S(R))

� δ2
∑

m∈Rmin

(
‖ż + i� (|z|2)z‖L2(I,) + ‖zm‖L2(I,)

)
‖G̃m‖L2,S(R) � δ2ε. (8.20)

Nowwe look at the contribution to (8.11) of the term (8.9).Wewill need the following
result about the Limiting Absorption Principle. The following is related to Lemma 5.7
[14].

Lemma 8.5. For S > 5/2 and τ > 1/2 we have

sup
z∈R

‖R±
HN+1

(z)‖L2,τ (R)→L2,−S(R) < ∞. (8.21)

Proof. It is equivalent to show sup
z∈R

‖ 〈x〉−S R±
HN+1

(z) 〈y〉−τ ‖L2(R)→L2(R) < ∞. We will

consider only the + case. We consider the square of the Hilbert–Schmidt norm
∫
R

dx 〈x〉−2S
∫
R

|R+
HN+1

(x, y, z)|2 〈y〉−2τ dy =
∫
R

dx 〈x〉−2S
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∫ x

−∞
|R+

HN+1
(x, y, z)|2 〈y〉−2τ dy

+
∫
R

dx 〈x〉−2S
∫ +∞

x
|R+

HN+1
(x, y, z)|2 〈y〉−2τ dy.

Wewill bound only the second term in the right hand side: for the first term the argument
is similar. Recalling formula (8.1), we have to bound∣∣∣∣T (

√
z)

2i
√
z

∣∣∣∣
∫
x<y

〈x〉−2S |m−(x,
√
z)m+(y,

√
z)|2 〈y〉−2τ dxdy

�
∫
x<y

〈x〉−2S 〈y〉−2τ (1 + max (x, 0) + max (−y, 0))2 dxdy,

where we used the bound (8.2). Now, in the last integral we can distinguish the region
|y| � |x |, where the corresponding contribution can be bounded by∫

R2
〈x〉−2(S−2) 〈y〉−2τ dxdy < ∞ for S > 5/2 and τ > 1/2,

and the region |y| � |x |, where we have the same bound, because x < y and |y| � |x |
imply that y > 0, and hence max (−y, 0) = 0. ��

We will also need the following formulas that we take from Mizumachi [46, Lemma
4.5] and to which we refer for the proof.

Lemma 8.6. Let for g ∈ S(R × R, C)

U (t, x) = 1√
2π i

∫
R

e−iλt
(
R−
HN+1

(λ) + R+
HN+1

(λ)
)
F−1
t g(λ, ·)dλ,

where F−1
t is the inverse Fourier transform in t. Then

2
∫ t

0
e−i(t−t ′)HN+1g(t ′)dt ′ = U (t, x) −

∫
R−

e−i(t−t ′)HN+1g(t ′)dt ′

+
∫
R+

e−i(t−t ′)HN+1g(t ′)dt ′. (8.22)

��
The last two lemmas give us the following smoothing estimate.

Lemma 8.7. For S > 5/2 and τ > 1/2 there exists a constant C(S, τ ) such that we
have ∥∥∥∥

∫ t

0
e−i(t−t ′)HN+1g(t ′)dt ′

∥∥∥∥
L2(R,L2,−S(R))

≤ C(S, τ )‖g‖L2(R,L2,τ (R)). (8.23)

Proof. We can use formula (8.22) and bound U , with the bound on the last two terms
in the right hand side of (8.22) similar. So we have, taking Fourier transform in t ,

‖U‖L2
t L2,−S ≤ 2 sup

±
‖R±

HN+1
(λ)ĝ(λ, ·)‖L2

λL
2,−S

≤ 2 sup
±

sup
λ∈R

‖R±
HN+1

(λ)‖L2,τ→L2,−S‖ĝ(λ, x)‖L2,τ L2
λ

� ‖g‖L2
t L2,τ .

Notice that, while Lemma 8.6 is stated for g ∈ S(R×R, C), the estimate (8.23) extends
to all g ∈ L2(R, L2,τ (R)) by density. ��
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Remark 8.8. The above is basically Lemma 3.4 [14], which in turn is based on an ar-
gument in [46]. Unfortunately Lemma 3.4 [14] has a mistake, which however can be
corrected using Lemma 8.6, as we did here.

We now examine the term in (8.9). By Lemma 8.7 we have

‖
∫ t

0
e−i(t−t ′)HN+1T

(
2χ ′

B2∂x + χ ′′
B2

)
η̃dt ′‖L2(I,L2,−S(R))

� ‖T (2χ ′
B2∂x + χ ′′

B2

)
η̃‖L2(I,L2,τ (R)).

In order to bound the right hand side we expand

T
(
2χ ′

B2∂x + χ ′′
B2

)
η̃ = T

(
2χ ′

B2∂x + χ ′′
B2

)
w
(
ζ−1
A − 1

)
− 2T χ ′

B2ζ
−2
A ζ ′

Aw

+ T
(
2χ ′

B2∂x + χ ′′
B2

)
w.

By |χ ′
B2ζ

−2
A ζ ′

A| � A−1|χ ′
B2 | and 1|x |≤2B2 |ζ−1

A − 1| � 1|x |≤2B2
B2

A , both of which are
small, themain term is the one in the last line, which is the only one we discuss explicitly,
because the others are similar, simpler and smaller. We decompose

T
(
2χ ′

B2∂x + χ ′′
B2

)
w = I + II where I := 12−1B2≤|x |≤3B2T

(
2χ ′

B2∂x + χ ′′
B2

)
w,

II := 1{|x |≤2−1B2}∪{|x |≥3B2}T . (8.24)

By Lemmas 5.1 and 5.6, we have

‖ 〈x〉τ I‖L2(I,L2(R)) = ‖ 〈x〉τ 12−1B2≤|x |≤3B2T
(
2χ ′

B2∂x + χ ′′
B2

)
w‖L2(I,L2(R))

� B2τ‖T (2χ ′
B2∂x + χ ′′

B2

)
w‖L2(I,L2(R)) � ε−N B2τ‖2χ ′

B2w
′ + χ ′′

B2w‖L2(I,L2(R))

� ε−N B2τ−2‖w′‖L2(I,L2(R)) + ε−N B2τ−4‖1B2≤|x |≤2B2w‖L2(I,L2(R))

� ε−N B2τ−2‖w‖L2(I,�̃) + ε−N B2τ−4‖ 〈x〉 1B2≤|x |≤2B2‖
1
2
L1(R)

‖w‖L2(I,�̃)

� ε−N B2τ−2‖w‖L2(I,�̃) ≤ B− 1
2 ε. (8.25)

By Lemma 5.6 we have

‖ 〈x〉τ II‖L2(R) � ‖ 〈x〉τ 1{|x |≤2−1B2}∪{|x |≥3B2}
∫

e−
|x−y|
2ε
(
2χ ′

B2w
′ + χ ′′

B2w
) ‖L2(R)

� e−B2‖K (〈y〉τ (2χ ′
B2w

′ + χ ′′
B2w

)) ‖L2(R),

where the operator K f = ∫ K(x, y) f (y)dy has integral kernel

K(x, y) = 〈x〉τ e−|x−y| 〈y〉−τ .

Since we have

‖K‖2L2(R)→L2(R)
≤ ‖K(·, ·)‖2L2(R×R)

< +∞,

by the bounds implicit in (8.25), we have

‖ 〈x〉τ II‖L2(I,L2(R)) � e−B2‖ 〈x〉τ (2χ ′
B2w

′ + χ ′′
B2w

) ‖L2(I,L2(R))
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� e−B2
B2τ‖ (2χ ′

B2w
′ + χ ′′

B2w
) ‖L2(I,L2(R)) � e−B2/2ε. (8.26)

We next consider the terms in (8.10), starting with

‖ 〈x〉−S
∫ t

0
e−i(t−t ′)HN+1 〈iε∂x 〉−N [VN+1, 〈iε∂x 〉N ]v‖L2(I,L2(R))

� ‖ 〈x〉τ 〈iε∂x 〉−N [VN+1, 〈iε∂x 〉N ]v‖L2(I,L2(R))

� ε‖ 〈x〉−100 v‖L2(I,L2(R)) � ε
(
‖ξ‖L2(I,�̃) + B−1‖ξ‖L2(I,�̃)

)
� εε, (8.27)

where we used Lemma 5.12 in the first inequality in the last line, and (5.20) for the
second inequality.
We now consider remaining contributions of (8.10) to (8.11). To start with, by Lemma
8.3 we have

‖ 〈x〉−S
∫ t

0
e−i(t−t ′)HN+1T χB2Rη̃dt

′‖L2(I,L2(R)) � ‖ 〈x〉τ T χB2Rη̃‖L2(I,L2(R)).

The right hand side il less than I + I I where

I = ‖1|x |≤3B2 〈x〉τ T χB2Rη̃‖L2(I,L2(R))

I I = ‖1|x |≥3B2 〈x〉τ T χB2Rη̃‖L2(I,L2(R))

We have

I � B2τ (I1 + I2)

I1 = ‖Pc
(−iDzφ[z] (ż + i� (z)z) +Rrp[z] + F[z, η] + L[z]η) ‖L2(I,L2(R))

I2 = ‖χB2 Pc|η|2η‖L2(I,L2(R)).

By ‖PcDzφ[z]‖�̃ = O
(‖z‖2) because of Dzφ[0]̃z = φ · z̃ for any z̃ ∈ C

N , it is easy to
conclude

I1 � δ2ε.

We have

I2 � ‖χB2 |η|2η‖L2(I,L2(R)) + ‖χB2 Pd |η|2η‖L2(I,L2(R))

�
N∑
j=1

‖ 〈x〉τ χB2φ j (|η|2η, φ j )‖L2(I,L2(R)) + ‖η‖2L∞(R,H1(R))
‖w‖L2(I,L2(|x |≤2B2))

�
N∑
j=1

‖η‖2L∞(R,H1(R))
‖w‖L2(I,�̃) + B2‖η‖2L∞(R,H1(R))

‖w‖L2(I,�̃)

� B2‖η‖2L∞(R,H1(R))
‖w‖L2(I,�̃) � B2δ2ε.

So we conclude

I � B2τ+2δ2ε. (8.28)
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Turning to the analysis of I I , we have

I I � ‖1|x |≥3B2 〈x〉τ T 〈x〉−τ 1|x |≤2B2‖L2(R)→L2(R)‖ 〈x〉τ χB2Rη̃‖L2(I,L2(R))

� ‖ 〈x〉τ χB2Rη̃‖L2(I,L2(R)) � B2τ+2δ2ε (8.29)

by an analysis similar to the operator K above and to the analysis of I .
Taken together, (8.13), (8.17), (8.20), (8.26)–(8.29) yield Proposition 8.2, and so its

proof is completed. ��
Before the proof of Propositions 3.2 and 3.6 we need an analogue of the coercivity

results in Sect. 5 [29].

9. Coercivity Results

Our main aim is to prove the following.

Proposition 9.1. We have

‖w‖L2
− a
10

� ‖ξ‖�̃ + e−
B
20 ‖w′‖L2 . (9.1)

Before proving Proposition 9.1 we consider the following partial inversion of (2.18),
which is our analogue of Formula (62) in [29].

Lemma 9.2. We have

Pc
(
χB2 η̃

) =
N∏
j=1

RH (ω j )PcA 〈iε∂x 〉N v. (9.2)

Proof. We first claim

AA∗ = A1 ◦ · · · ◦ AN ◦ A∗
N ◦ · · · ◦ A∗

1 =
N∏
j=1

(H − ω j ). (9.3)

Then, using (9.3), from (2.15) and (2.18) we have

N∏
j=1

RH (ω j )Pc A1 ◦ · · · ◦ AN 〈iε∂x 〉N v

=
N∏
j=1

RH (ω j )Pc A1 ◦ · · · ◦ AN ◦ A∗
N ◦ · · · ◦ A∗

1χB2 η̃

=
N∏
j=1

RH (ω j )Pc

N∏
j=1

(H − ω j )χB2 η̃ = Pc
(
χB2 η̃

)
.

Thus, it remains to prove (9.3). First, from (1.22), we have

AN ◦ A∗
N = HN − ωN .
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For 2 ≤ j ≤ N , we assume (notice that the Schrödinger operator Hj is fixed)

A j ◦ · · · ◦ AN ◦ A∗
N ◦ · · · A∗

j =
N∏

k= j

(Hj − ωk).

Then, by

A j−1(Hj − ωk) = A j−1(A
∗
j−1A j−1 + ω j−1 − ωk) = (A j−1A

∗
j−1 + ω j−1 − ωk)A j−1

= (Hj−1 − ωk)A j−1,

we have

A j−1 ◦ · · · ◦ AN ◦ A∗
N ◦ · · · A∗

j−1 = A j−1

N∏
k= j

(Hj − ωk)A
∗
j−1

=
N∏

k= j

(Hj−1 − ωk)A j−1 ◦ A∗
j−1

=
N∏

k= j

(Hj−1 − ωk) (Hj−1 − ω j−1) =
N∏

k= j−1

(Hj−1 − ωk).

Therefore, we have (9.3) by induction. ��
The proof of Lemma 9.3 is postponed to Appendix A.

Lemma 9.3. We have ‖∏N
j=1 RH (ω j )PcA 〈iε∂x 〉N ‖L2

− a
20

→L2
− a
10

� 1 uniformly for 0 <

ε ≤ 1.

��
We continue this section, assuming Lemma 9.3.

Lemma 9.4. We have

‖χB2 η̃‖L2
− a
10

� ‖v‖L2
− a
20

+ e−B‖η̃‖L2
− a
10

.

Proof. First,

‖χB2 η̃‖L2
− a
10

≤ ‖e− a
10 〈x〉Pc(χB2 η̃)‖L2 + ‖e− a

10 〈x〉Pd
(
χB2 η̃

) ‖L2 . (9.4)

Then, by Lemmas 9.2 and 9.3, we have

‖e− a
10 〈x〉Pc(χB2 η̃)‖L2 � ‖v‖L2

− a
20

. (9.5)

On the other hand, from Pd η̃ = 0 and (2.2), we have

Pd(χB2 η̃) =
N∑
j=1

(χB2 η̃, φ j )φ j =
N∑
j=1

(̃η,
(
χB2 − 1

)
φ j )φ j .

Then, since ‖e a
10 〈x〉(χB2 − 1)φ j‖L2 � e−(a1− a

10 )B
2 � e−B , we have

‖e− a
10 〈x〉Pd

(
χB2 η̃

) ‖L2 � e−B‖η̃‖L2
− a
10

. (9.6)

By (9.4), (9.5) and (9.6) we have the conclusion. ��
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Proof of Proposition 9.1. First we split

‖w‖L2
− a
10

≤ ‖χB2w‖L2
− a
10

+ ‖(1− χB2)e−
a
10 〈x〉w‖L2 . (9.7)

For the 2nd term of r.h.s. of (9.7), using Corollary 5.2, we have

‖(1− χB2)e−
a
10 〈x〉w‖L2 ≤ ‖(1− χB2)e−

a
20 ‖L∞‖e− a

20 〈x〉w‖L2 � e−
aB2
20 ‖w‖�̃ . (9.8)

For the 1st term of the r.h.s. of (9.7), by ‖ζA‖L∞ ≤ 1 and Lemma 9.4,

‖χB2w‖L2
− a
10

≤ ‖χB2e−
a
10 〈x〉η̃‖L2 � ‖v‖L2

− a
20

+ e−B‖η̃‖L2
− a
10

� ‖χBv‖L2
− a
20

+ ‖ (1− χB) v‖L2
− a
20

+ e−B‖ζ−1
A e−

a
20 〈x〉‖L∞‖e− a

20 〈x〉w‖L2 (9.9)

From A � a−1 and Corollary 5.2, the 3rd term of line (9.9) can be bounded as

e−B‖ζ−1
A e−

a
20 〈x〉‖L∞‖e− a

20 〈x〉w‖L2 � e−B‖w‖�̃ . (9.10)

For the 2nd term of line (9.9), by Lemma 5.7,

‖ (1− χB) v‖L2
− a
20

≤ ‖e− a
20 〈x〉(1− χB)‖L∞‖v‖L2 � e−

B
20 ε−N B2‖w‖�̃ . (9.11)

Finally, for the 1st term of line (9.9), by the definition of ζB in (3.2), see also the definition
of χ in (2.16), and of ξ in (3.3), we have

‖χBv‖L2
− a
20

≤ ‖ζ−1
B ‖L∞(|x |≤2B‖χBζBv‖L2

− a
20

= ‖ζ−1
B ‖L∞(|x |≤2B‖ξ‖L2

− a
20

� ‖ξ‖L2
− a
20

� ‖ξ‖�̃, (9.12)

where in the last inequality we applied Lemma 5.1. Collecting the estimates (9.8), (9.10),
(9.11) and (9.12) we have the conclusion. ��

10. Proof of Proposition 3.6: Fermi Golden Rule

We substitute z̃ = i� (|z|2)z in (7.3) and we make various simplifications. The first, by
〈 f, i f 〉 = 0 the left hand side of (7.3) can be rewritten as〈

iDzφ[z](ż + i� (|z|2)z), Dzφ[z]i� (|z|2)z
〉
=
〈
iDzφ[z]ż, Dzφ[z]i� (|z|2)z

〉
. (10.1)

Next, we consider the 2nd term in the 2nd line of (7.3), which we rewrite as〈 ∑
m∈Rmin

zmGm +Rrp[z], Dzφ[z]i� (|z|2)z
〉

=
〈 ∑

m∈Rmin

zmGm +Rrp[z], Dzφ[z]
(

ż + i� (|z|2)z
)〉

−
〈 ∑

m∈Rmin

zmGm +Rrp[z], Dzφ[z]ż
〉

. (10.2)
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The term in the 1st line of the r.h.s. of (10.2) can be written as
〈 ∑

m∈Rmin

zmGm, Dzφ[0]
(

ż + i� (|z|2)z
)〉

+ R1(z), (10.3)

where

R1(z) =
〈 ∑

m∈Rmin

zmGm, (Dzφ[z] − Dzφ[0])
(

ż + i� (|z|2)z
)〉

+
〈
Rrp[z], Dzφ[z]

(
ż + i� (|z|2)z

)〉
,

by (1.21), inequalities (1.26) and (3.4), Proposition 3.5 and ‖Dzφ[z] − Dzφ[0]‖H1 =
O(‖z‖2) by (1.19), satisfies

∫ T

0
|R1(z(t))| dt � δ2ε2. (10.4)

Using the stationary Refined Profile equation (1.20), the last line of (10.2) can be written
as

−
〈
Hφ[z] + |φ[z]|2φ[z], Dzφ[z]ż

〉
+
〈
Dzφ(z)(i� (|z|2))z, iDzφ[z]ż

〉
. (10.5)

Notice that the 2nd term of (10.5) coincides with the right hand side of (10.1), which
lies in the left hand side of (7.3), so that the two cancel each other. On the other hand,
we have

〈
Hφ[z] + |φ[z]|2φ[z], Dzφ[z]ż

〉
= d

dt
E(φ[z]). (10.6)

Therefore, from (7.3) with z̃ = i� (|z|2)z, (10.1), (10.2), (10.3), (10.5) and (10.6), we
have

d

dt
E(φ[z]) −

∑
m∈Rmin

m · ω 〈η, izmGm
〉 = ∑

m∈Rmin

〈
zmGm, Dzφ[0]

(
ż + i� (|z|2)z

)〉

+ R2(z, η), (10.7)

where

R2(z, η) = R1(z) +
〈
iη, D2

z φ[z]
(

ż + i� (|z|2)z, i� (|z|2)z
)〉

+
〈
η, DzRrp[z]i� (|z|2)z

〉

+
∑

m∈Rmin

(� (|z|2) − ω)
〈
η, zmGm

〉
+
〈
L[z]η + F(z, η) + |η|2η, Dzφ[z]i� (|z|2)z

〉

(10.8)

satisfies ∫
I
|R2(z(t), η(t))| dt � δ2ε2. (10.9)

We consider the first term in the right hand side of (10.7). By (1.19) we have
Dzφ[0]̃z = φ · z̃, this term is the left hand side of (10.10) below.
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Lemma 10.1. We have
∑

m∈Rmin

〈
zmGm,φ ·

(
ż + i� (|z|2)z

)〉
= ∂t A1(z) + R4(z, η) (10.10)

where:

A1(z) =
∑

m,n∈Rmin
m �=n

N∑
j=1

1

(n − m) · ωRe(zmzn)gm, j gn, j , (10.11)

for gm, j :=
〈
Gm, φ j

〉
;

R4(z, η) = R3(z) +
∑

m,n∈Rmin

N∑
j=1

〈
zmGm, r j (z, η)φ j

〉
where (10.12)

R3(z) =
∑

m,n∈Rmin
m �=n

N∑
j=1

Re
(
irn,m(z)

)
gm, j gn, j for (10.13)

rn,m(z) = − (m − n) · (� (|z|2) − ω
)

(m − n) · ω znzm

+
i

(m − n) · ω
(
Dz(zn)(ż + i� (|z|2z))zm + znDz(zm)((ż + i� (|z|2z)))

)
; (10.14)

we have ∫
I
|R4(z(t), η(t))| dt � δ2ε2. (10.15)

Proof. The left hand side of (10.10) equals

∑
m,n∈Rmin

N∑
j=1

〈
zmGm, φ j

(−izngn, j + r j (z, η)
)〉

=
∑

m,n∈Rmin
m �=n

N∑
j=1

Re
(
izmzn

)
gm, j gn, j +

∑
m,n∈Rmin

N∑
j=1

〈
zmGm, r j (z, η)φ j

〉
,

used the fact that
〈
zmGm,−izmφ j

〉 = 0 due to φ j and Gm being R valued, see [10].
Since (m − n) · ω �= 0 for m �= n by Assumption 1.3, we have

znzm = 1

i((m − n) · ω)
∂t (znzm) + rn,m(z), (10.16)

with rn,m(z) given by (10.14) and satisfying
∫
I
|rm,n(z)| dt � δ2ε2. (10.17)
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We have

∑
m,n∈Rmin

m �=n

N∑
j=1

Re
(
izmzn

)
gm, j gn, j = ∂t A1(z) + R3(z).

for A1(z) and R3(z) defined above. Finally (10.15) is straightforward. ��
We focus now on (10.7).

Lemma 10.2. There exists a constant �0 > 0 such that
∑

m∈Rmin

m · ω 〈η, izmGm
〉 ≤ −�0

∑
m∈Rmin

|zm|2 + E1 + E2 + E3, (10.18)

where for some constants cm,n the term E1 is of the form

E1 =
∑

m,n∈Rmin
m �=n

cm,nznzm,

E2 =
∑

m∈Rmin

ω · m

〈
izm 〈iε∂x 〉N A∗

N∏
j=1

RH (ω j )PcGm, g

〉
,

|E3| ≤ oε(1)

⎛
⎝ ∑

m∈Rmin

|zm|2 + ‖w‖2
�̃

⎞
⎠ .

Proof. First of all, notice that

η = Pcη + Pd(R[z] − 1)Pcη,

where the following term can be absorbed in E3,∣∣〈iω · mzmGm, Pd(R[z] − 1)Pcη
〉∣∣ � δ|zm|‖w‖�̃

Now we consider
〈
iω · mzmGm, Pcη

〉 = 〈iω · mzmGm, PcχB2η
〉
+
〈
iω · mzmGm, Pc

(
1− χB2

)
η
〉
.

Then, by (9.2) we have

〈
iω · mzmGm, PcχB2η

〉 =
〈
iω · mzmGm,

N∏
j=1

RH (ω j )PcA 〈iε∂x 〉N v

〉

=
∑

m∈Rmin

ω · m|zm|2
〈
iGm,

N∏
j=1

RH (ω j )PcA 〈iε∂x 〉N ρm

〉
(10.19)

+
∑

m∈Rmin

ω · m

〈
izmGm,

N∏
j=1

RH (ω j )PcA 〈iε∂x 〉N g

〉
(10.20)
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+
∑

m,n∈Rmin
m �=n

ω · m

〈
izmGm, zn

N∏
j=1

RH (ω j )PcA 〈iε∂x 〉N ρn

〉
. (10.21)

Obviously the remainder term in line (10.20) can be absorbed in E2 and the remainder
term in line (10.21) can be absorbed in E1. We now examine the main term, in the line
(10.19). We have
〈
iGm,

N∏
j=1

RH (ω j )PcA 〈iε∂x 〉N ρm

〉

= −
〈
i 〈iε∂x 〉N A∗

N∏
j=1

RH (ω j )PcGm, R+
HN+1

(ω · m) 〈iε∂x 〉−N A∗χB2Gm

〉

= −
〈
iA∗

N∏
j=1

RH (ω j )PcGm, R+
HN+1

(ω · m)A∗χB2Gm

〉
(10.22)

−
〈
i 〈iε∂x 〉N A∗

N∏
j=1

RH (ω j )PcGm,
[
R+
HN+1

(ω · m), 〈iε∂x 〉−N
]
A∗χB2Gm

〉
,

(10.23)

where we see now that the quantity in (10.23) is a oε(1) and its contribution to (10.18)
can be absorbed in E3. Indeed the quantity in (10.23) can be bounded by the product
A B, where

A = ‖ 〈iε∂x 〉N A∗
N∏
j=1

RH (ω j )PcGm‖L2,� and

B = ‖R+
HN+1

(ω · m)
[
VN+1, 〈iε∂x 〉−N

]
R+
HN+1

(ω · m)A∗χB2Gm‖L2,−� ,

for � ≥ 2. We have

B ≤‖R+
HN+1

(ω · m)‖2L2,�→L2,−�‖ 〈iε∂x 〉−N
[
VN+1, 〈iε∂x 〉N

]
‖L2,−�→L2,�

× ‖ 〈iε∂x 〉−N ‖L2,−�→L2,−�‖A∗χB2Gm‖L2,� � ε,

where the ε comes from the commutator term in the first line, by Lemma 5.4, while
the other terms are uniformly bounded, with ‖ 〈iε∂x 〉−N ‖L2,−�→L2,−� � 1 uniformly in
ε ∈ (0, 1], because we have an operator like in (8.18). On the other hand, uniformly in
ε ∈ (0, 1], we have

A ≤‖ 〈iε∂x 〉N 〈i∂x 〉−2N ‖L2,�→L2,�‖ 〈i∂x 〉2N A∗
N∏
j=1

RH (ω j )PcGm‖L2,� � 1.

We consider the main term (10.22). Essentially by (1.24), it equals

−
〈
iA∗

N∏
j=1

RH (ω j )PcGm,A∗R+
H (ω · m)χB2Gm

〉
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= −
〈
iAA∗

N∏
j=1

RH (ω j )PcGm, R+
H (ω · m)χB2Gm

〉
= − 〈iPcGm, R+

H (ω · m)χB2Gm
〉
,

where we used (9.3). By the Limit Absorption Principle and the Sokhotski–Plemelj
Formula, the last term equals

− 〈iPcGm, R+
H (ω · m)Gm

〉
+
〈
iPcGm, R+

H (ω · m)
(
1− χB2

)
Gm
〉

= −π 〈PcGm, δ(H − ω · m)Gm〉 (10.24)

+
〈
iPcGm, R+

H (ω · m)
(
1− χB2

)
Gm
〉
, (10.25)

where the quantity (10.25) is of the form O(B−1) and so also of the form oε(1) and
the corresponding contribution to (10.18) can be absorbed in E3. Finally, by elementary
computation we have

− π 〈PcGm, δ(H − ω · m)Gm〉 = − π

2
√

ω · m

(∣∣Ĝm(
√

ω · m)
∣∣2 + ∣∣Ĝm(−√

ω · m)
∣∣2) < 0,

(10.26)

where Ĝm is the distorted Fourier transform associated to the operator H and where the
inequality follows from Assumption 1.8. The corresponding contribution to (10.18) can
be absorbed in the first term in the right hand side. ��
Lemma 10.3. For a constant CV,�0 > 0 we have
∫
I
E1dt � δ2ε2, (10.27)

∫
I
E2dt ≤ 2−1�0

∑
m∈Rmin

‖zm‖2L2(I ) + CV,�0

(
ε−N B4+4τ δ2 + B−1ε2 + ε4

)
, (10.28)

∫
I
E3dt � oε(1)ε

2. (10.29)

Proof. Inequality (10.29) is straightforward and so is (10.27), thanks to (10.16) and
(10.17).
Turning to (10.28), we have, for constants C ′

V,�0
> 0 and CV,�0 > 0,

∫
I
E3 dt � 2−1�0

∑
m∈Rmin

‖zm‖2L2(I )

+ C ′
V,�0

‖g‖2L2(I,L2,−S(R))
sup

m∈Rmin

‖ 〈iε∂x 〉N A∗
N∏
j=1

RH (ω j )PcGm‖L2,−S(R)

≤ 2−1�0

∑
m∈Rmin

‖zm‖2L2(I ) + CV,�0

(
ε−N B4+4τ δ2 + B−1ε2 + ε4

)
.

��
Conclusion of the proof of Proposition 3.6. From (10.7), (10.10) and (10.18), we have

d

dt
E(φ[z]) =

∑
m∈Rmin

m · ω 〈η, izmGm
〉
+ ∂t A1(z) + R4(z, η) + R2(z, η)
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≤ −�0

∑
m∈Rmin

|zm|2 + E1 + E2 + E3 + ∂t A1(z) + R4(z, η) + R2(z, η). (10.30)

So, integrating and using (10.9), (10.15) and Lemma 10.3, we have

2−1�0

∑
m∈Rmin

‖zm‖2L2(I ) ≤ (A1(z) − E(φ[z]))]T0 +
∫
I
(|R2(z, η)| + |R4(z, η)|) dt

+ CV,�0

(
ε−N B2+2τ δ2 + B−1ε2 + ε4

)
.

From (A1(z) − E(φ[z]))]T0 = O(δ2), we conclude
∑

m∈Rmin

‖zm‖2L2(I ) � ε−N B4+4τ δ2 + B−1ε2 + ε4.

This completes the proof of Proposition 3.6.

11. Proof of Proposition 3.2

By (3.8) and by the relation between A, B, ε, ε and δ in (2.13), we have
∑

m∈Rmin

‖zm‖L2(I ) � ε−N B2+2τ δ + B− 1
2 ε + ε2 � oε(1)ε. (11.1)

Inserting this in (3.7) we obtain

‖ż + i
(z)z‖L2 �
∑

m∈Rmin

‖zm‖L2 + δ2ε � oε(1)ε. (11.2)

By (3.5), (9.1) and (11.2)

‖w′‖L2L2 � A1/2δ + ‖w‖L2L2
− a
10

+
∑

m∈Rmin

‖zm‖L2 + ε2 � oε(1)ε + ‖ξ‖�̃ + oε(1)‖w′‖L2L2 ,

so that

‖w′‖L2L2 � oε(1)ε + ‖ξ‖�̃ . (11.3)

By (3.6), (9.1), (11.1)–(11.3)

‖ξ‖L2�̃ � Bε−N δ +
∑

m∈Rmin

‖zm‖L2 + oε(1)
(‖w‖L2�̃ + ‖ż + i� (z)z‖L2

)

� oε(1)ε + oε(1)‖ξ‖�̃

which implies

‖ξ‖L2�̃ � oε(1)ε, (11.4)

which fed in (11.3) yields

‖w′‖L2L2 � oε(1)ε. (11.5)
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Obviously, (11.1), (11.2), (11.4), (11.5) and (9.1) imply

‖ż + i� (z)z‖L2(I ) +
∑

m∈Rmin

‖zm‖L2(I ) + ‖ξ‖L2(I,�̃) + ‖w‖L2(I,�̃) ≤ oε(1)ε. (11.6)

In the above discussion we can take ε = ε(δ) with ε(δ)
δ→0+−−−→ 0, so that for the upper

bound in (11.6) we have oε(1)ε = oδ(1)ε and the conclusion of of Proposition 3.2 is
true. ��

12. Proof of (1.29)

Up to here, we have proved (1.26) and (1.28). It remains to prove (1.29).

Proof of (1.29). By the equality in the 1st line of (10.30) and (1.28), we have d
dt

(E(φ[z]) − A1(z)) ∈ L1(R+). Furthermore, E(φ[z]) − A1(z) ∈ L∞(R+), by (1.26).

Thus, lim
t→+∞ (E(φ[z]) − A1(z)) exists and is finite. We have A1(z)

t→+∞−−−−→ 0 by (1.26),

(1.28) and (10.11). This implies that lim
t→+∞ E(φ[z]) exists and is finite. Now, from (1.4)

and Proposition 1.9, we have

E(φ[z]) =
N∑
l=1

ωl |zl |2 + O(‖z‖4).

Thus, taking δ > 0 small enough, we have

1

2
|E(φ[z])| ≤

N∑
j=1

|ω j | |z j |2 ≤ 2|E(φ[z])|. (12.1)

Now, if lim
t→+∞ E(φ[z(t)]) = 0, we have |z j (t)| → 0 for all j = 1, · · · , N and we are

done. Thus, we can assume

lim
t→+∞ E(φ[z(t)]) = −c2, with c > 0. (12.2)

Notice that we have c � δ. From (12.1) and (12.2), there exists T1 > 0 s.t. for all t ≥ T1,
there exists at least one j (t) ∈ {1, · · · , N } s.t.

c√
4N |ω1| ≤ |z j (t)(t)|. (12.3)

Next, from (1.13) and (1.28), there exists M ∈ N s.t. for any j, k with j �= k we have
|z j zk |M ∈ L1(R). Further, by (1.26), we have (z j zk)M ∈ W 1,∞(R). Thus, we conclude

z j (t)zk(t)
t→+∞−−−−→ 0. (12.4)

In particular, there exists T2 ≥ T1 s.t. for all t ≥ T2 and all j, k = 1, · · · , N with j �= k,
we have

|z j (t)zk(t)| ≤ c2

8N |ω1| . (12.5)
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Combining (12.3) and (12.5), for t > T2 and k �= j (t), we have

|zk(t)| ≤ c

2
√
4N |ω1| .

Thus, we see that j satisfying (12.3) is unique. Moreover by continuity, we have j (t) =
j (T2) for all t ≥ T2. Going back to (12.4), we have

lim
t→+∞ zk(t) = 0, (12.6)

for all k �= j (T2). Finally, by (12.6)wehave
(
E(φ[z(t)]) − E(φ j (T2)[z j (T2)(t)])

) t→+∞−−−−→
0, which implies the convergence of E(φ j (T2)[z j (T2)(t)]). For small |z j (T2)|, the map
|z j (T2)| $→ E(φ j [z j (T2)]) is one to one with continuous inverse. Thus, lim

t→+∞ |z j (T2)(t)|
exists. ��
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A Appendix: Proof of Lemma 9.3

It is equivalent to show that there is a constant C > 0 such that for all v

∥∥∥∥∥∥sech
(ax
10

) N∏
j=1

RH (ω j )PcA 〈iε∂x 〉N v

∥∥∥∥∥∥
L2(R)

≤ C
∥∥∥sech

(ax
20

)
v

∥∥∥
L2(R)

. (A.1)

By (8.1), for x < y we have the formula

RH (z2)(x, y) = T (z)

2iz
f−(x, z) f+(y, z)

= 1

z2 + ω j

f−(x, i
√|ω j |) f+(y, i

√|ω j |)∫
R
f−(x ′, i

√|ω j |) f+(x ′, i
√|ω j |)dx ′

+ R̃H (z2)(x, y),

(A.2)
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where T (z)
2iz = 1

[ f+(x,z), f−(x,z)] , where in the denominator in the r.h.s. we have the Wron-

skian, where R̃H (z2)(x, y) is not singular in z = i
√|ω j |. On the other hand,

T (z) = Res(T, i
√|ω j |)

z − i
√|ω j |

+ T̃ (z),

with T̃ (z) non singular and with residue, see p. 146 [16],

Res(T, i
√|ω j |) = i

(∫
R

f−(x ′, i
√|ω j |) f+(x ′, i

√|ω j |)dx ′
)−1

.

It is elementary to conclude, comparing the terms in (A.2), that

R̃H (ω j )(x, y) = K j (x, y) + C(ω j )φ j (x)φ j (y) with

K j (x, y) = 1

2i
√|ω j |

∂z ( f−(x, z) f+(y, z))|z=i
√|ω j |∫

R
f−(x ′, i

√|ω j |) f+(x ′, i
√|ω j |)dx ′

. (A.3)

for some constantC(ω j ). For x > y we obtain the same formula, interchanging x and y.
Denoting by K j the operator with the kernel (A.3) for x < y and the formula obtained
from (A.3) interchanging x and y if x > y, we notice that

N∏
j=1

RH (ω j )Pc = K1...KN .

It is also easy to check, following the discussion in p. 134 [16], that there is a fixedC > 0

s.t. |K j (x, y)| ≤ C 〈x − y〉 e−
√|ω j ||x−y|. Then, for any value a ∈ [0,√|ωN |] we have

‖sech
(ax
10

) N∏
j=1

RH (ω j )PcA 〈iε∂x 〉N v‖L2

� ‖
N∏
j=1

RH (ω j )Pcsech
(ax
10

)
A 〈iε∂x 〉N v‖L2 .

We have

sech
(ax
10

)
A = PN (x, i∂x )sech

(ax
10

)
,

for an N–th order differential operator with smooth and bounded coefficients.
Next, we write

sech
(ax
10

)
〈iε∂x 〉N = 〈iε∂x 〉N sech

(ax
10

)
+ 〈iε∂x 〉N 〈iε∂x 〉−N

[
sech

(ax
10

)
, 〈iε∂x 〉N

]
,

so that∥∥∥∥∥∥sech
(ax
10

) N∏
j=1

RH (ω j )PcA 〈iε∂x 〉N v

∥∥∥∥∥∥
L2(R)
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�

∥∥∥∥∥∥
N∏
j=1

RH (ω j )PcPN (x, i∂x ) 〈iε∂x 〉N sech
(ax
10

)
v

∥∥∥∥∥∥
L2(R)

+

∥∥∥∥∥∥
N∏
j=1

RH (ω j )PcPN (x, i∂x ) 〈iε∂x 〉N 〈iε∂x 〉−N
[
sech

(ax
10

)
, 〈iε∂x 〉N

]
v

∥∥∥∥∥∥
L2(R)

=: I + I I.

We have

I ≤
∥∥∥∥∥∥

N∏
j=1

RH (ω j )PcPN (x, i∂x ) 〈iε∂x 〉N
∥∥∥∥∥∥
L2→L2

∥∥∥sech
(ax
10

)
v

∥∥∥
L2(R)

≤ C
∥∥∥sech

(ax
10

)
v

∥∥∥
L2(R)

with a fixed constant C independent from ε ∈ (0, 1). Next, we have

I I ≤
∥∥∥〈iε∂x 〉−N

[
sech

(ax
10

)
, 〈iε∂x 〉N

]
v

∥∥∥
L2(R)

≤ C
∥∥∥sech

(ax
20

)
v

∥∥∥
L2(R)

by Lemma 5.5, because
∫
e−ikx sech(x)dx = π sech

(
π
2 k
)
(which can be proved by an

elementary application of the Residue Theorem) so that in the strip k = k1 + ik2 with
|k2| ≤ b := a/20, then sech

(
π
2

10
a k
)
satisfies the estimates required on V̂ in (5.11).

This completes the proof of (A.1).

References

1. Alammari, M., Snelson, S.: On asymptotic stability for near-constant solutions of variable–coefficient
scalar field equations. arXiv:2104.13909

2. Alammari, M., Snelson, S.: Linear and orbital stability analysis for solitary-wave solutions of variable-
coefficient scalar field equations. J. Hyperbolic Differ. Equ. 19, 175–201 (2022)

3. Bambusi, D., Cuccagna, S.: On dispersion of small energy solutions to the nonlinear Klein Gordon
equation with a potential. Am. J. Math. 133(5), 1421–1468 (2011)

4. Buslaev, V., Perelman, G.: On the stability of solitary waves for nonlinear Schrödinger equations. In:
Uraltseva,N.N. (ed.)NonlinearEvolutionEquations. Translations: Series 2, vol. 164, pp. 75–98.American
Mathematical Society, Providence (1995)

5. Cazenave, T., Hareaux, A.: An Introduction to Semilinear Equations. Claredon Press, Oxford (1998)
6. Chang, S.M., Gustafson, S., Nakanishi, K., Tsai, T.P.: Spectra of linearized operators for NLS solitary

waves. SIAM J. Math. Anal. 39, 1070–1111 (2007/08)
7. Chen, G.: Long-time dynamics of small solutions to 1d cubic nonlinear Schrödinger equations with a

trapping potential, arXiv:1907.07115
8. Chen, G., Pusateri, F.: The 1d nonlinear Schrödinger equation with a weighted L1 potential.

arXiv:1912.10949
9. Cuccagna, S., Maeda, M.: A note on small data soliton selection for nonlinear Schrödinger equations

with potential. arXiv:2107.13878
10. Cuccagna, S., Maeda, M.: Coordinates at small energy and refined profiles for the nonlinear Schrödinger

equation. Ann. PDE 7 ,no. 2, Paper No. 16, 34 pp (2021)
11. Cuccagna, S., Maeda, M.: On small energy stabilization in the NLS with a trapping potential. Anal. PDE

8(6), 1289–1349 (2015)
12. Cuccagna, S., Maeda, M.: On stability of small solitons of the 1-D NLS with a trapping delta potential.

SIAM J. Math. Anal. 51(6), 4311–4331 (2019)
13. Cuccagna, S.,Maeda,M.,V. Phan, T.:On small energy stabilization in theNLKGwith a trapping potential.

Nonlinear Anal. 146, 32–58 (2016)

http://arxiv.org/abs/2104.13909
http://arxiv.org/abs/1907.07115
http://arxiv.org/abs/1912.10949
http://arxiv.org/abs/2107.13878


On Selection of Standing Wave at Small Energy 1185

14. Cuccagna, S., Tarulli, M.: On asymptotic stability of standing waves of discrete Schrödinger equation in
Z. SIAM J. Math. Anal. 41, 861–885 (2009)

15. Cuccagna, S., Visciglia, N., Georgiev, V.: Decay and scattering of small solutions of pure power NLS in
R with p > 3 and with a potential. Commun. Pure Appl. Math. 67, 957–981 (2014)

16. Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math. 32, 121–251 (1979)
17. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert Problems. Asymptotics

for the MKdV equation. Ann. Math. 137, 295–368 (1993)
18. Deift, P., Zhou, X.: Perturbation theory for infinite-dimensional integrable systems on the line. A case

study. Acta Math. 188, 163–262 (2002)
19. Delort, J.-M.: Modified scattering for odd solutions of cubic nonlinear Schrodinger equations with po-

tential in dimension one. preprint hal–01396705
20. Delort, J.-M., Masmoudi, N.: Long time Dispersive Estimates for perturbations of a kink solution of one

dimensional wave equations, preprint hal–02862414
21. Dimassi,M., Sjöstrand, J.: Spectral Asymptotics in the Semi-classical Limit. CambridgeUniversity Press,

Cambridge (1999)
22. Zhou, G., Sigal, I.M.: Relaxation of solitons in nonlinear Schrödinger equations with potential. Adv.

Math. 216, 443–490 (2007)
23. Gravejat, P., Smets, D.: Asymptotic stability of the black soliton for the Gross–Pitaevskii equation. Proc.

Lond. Math. Soc. 111, 305–353 (2015)
24. Germain, P., Pusateri, F.: Quadratic Klein-Gordon equations with a potential in one dimension.

arXiv:2006.15688
25. Germain, P., Pusateri, F., Rousset, F.: The Nonlinear Schrödinger equation with a potential in dimension

1. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 1477–1530 (2018)
26. Gustafson, S., Nakanishi, K., Tsai, T.P.: Asymptotic stability and completeness in the energy space for

nonlinear Schrödinger equations with small solitary waves. Int. Math. Res. Not. 2004(66), 3559–3584
(2004)

27. Kowalczyk, M., Martel, Y., Muñoz, C.: Kink dynamics in the φ4 model: asymptotic stability for odd
perturbations in the energy space. J. Am. Math. Soc. 30, 769–798 (2017)

28. Kowalczyk, M., Martel, Y., Muñoz, C.: Nonexistence of small, odd breathers for a class of nonlinear wave
equations. Lett. Math. Phys. 107, 921–931 (2017)

29. Kowalczyk, M., Martel, Y., Muñoz, C.: Soliton dynamics for the 1D NLKG equation with symmetry and
in the absence of internal modes. arXiv:1903.12460 (to appear in Jour. Eur. Math. Soc.)

30. Kowalczyk, M., Martel, Y., Muñoz, C., Van Den Bosch, H.: A sufficient condition for asymptotic stability
of kinks in general (1+1)-scalar field models. Ann. PDE 7, no. 1, Paper No. 10, 98 pp (2021)

31. Li, Z.: Asymptotic stability of solitons to 1D nonlinear Schrödinger equations in subcritical case. Front.
Math. China 15, 923–957 (2020)

32. Lindblad, H., Luhrmann, J., Schlag,W., Soffer, A.: Onmodified scattering for 1D quadraticKlein–Gordon
equations with non-generic potentials. arXiv:2012.15191

33. Lindblad, H., Lührmann, J., Soffer, A.: Decay and asymptotics for the one-dimensional Klein–Gordon
equation with variable coefficient cubic nonlinearities. SIAM J. Math. Anal. 52, 6379–6411 (2020)

34. Lindblad, H., Soffer, A.: A remark on asymptotic completeness for the critical nonlinear Klein–Gordon
equation. Lett. Math. Phys. 73, 249–258 (2005)

35. Lindblad, H., Soffer, A.: A remark on long range scattering for the nonlinear Klein–Gordon equation. J.
Hyperbolic Differ. Equ. 2, 77–89 (2005)

36. Lindblad, H., Soffer, A.: Scattering and small data completeness for the critical nonlinear Schrödinger
equation. Nonlinearity 19, 345–353 (2006)

37. Lindblad, H., Soffer, A.: Scattering for the Klein–Gordon equation with quadratic and variable coefficient
cubic nonlinearities. Trans. Am. Math. Soc. 367, 8861–8909 (2015)

38. Lührmann, J., Schlag, W.: Asymptotic stability of the sine-Gordon kink under odd perturbations.
arXiv:2106.09605

39. Martinez, M.: Decay of small odd solutions for long range Schrödinger and Hartree equations in one
dimension. Nonlinearity 33, 1156–1182 (2020)

40. Martinez, M.: On the decay problem for the Zakharov and Klein–Gordon–Zakharov systems in one
dimension. J. Evol. Equ. 21, 3733–3763 (2021)

41. Masaki, S.,Murphy, J., Segata, J.:Modified scattering for the one-dimensional cubic NLSwith a repulsive
delta potential. Int. Math. Res. Not. 24, 7577–7603 (2019)

42. Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear
Schrödinger equation. Ann. Math. 161, 157–222 (2005)

43. Merle, F., Raphael, P.: Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger
equation. Geom. Funct. Anal. 13, 591–642 (2003)

44. Merle, F., Raphael, P.: On universality and blow-up profile for L2- critical nonlinear Schrödinger equation.
Invent. Math. 156, 565–672 (2004)

http://arxiv.org/abs/2006.15688
http://arxiv.org/abs/1903.12460
http://arxiv.org/abs/2012.15191
http://arxiv.org/abs/2106.09605


1186 S. Cuccagna, M. Maeda

45. Merle, F., Raphael, P.:On a sharp lower bound on the blow-up rate for the L2 critical nonlinear Schrödinger
equation. J. Am. Math. Soc. 19, 37–90 (2006)

46. Mizumachi, T.: Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with
potential. J. Math. Kyoto Univ. 48(3), 471–497 (2008)

47. Nakanishi, K., Phan, T.V., Tsai, T.P.: Small solutions of nonlinear Schrödinger equations near first excited
states. J. Funct. Anal. 263, 703–781 (2012)

48. Naumkin, I.P.: Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a
potential. J. Math. Phys. 57, 051501 (2016)

49. Schlag, W.: Dispersive estimates for Schrödinger operators: a survey. In: Mathematical Aspects of Non-
linear Dispersive Equations, Annals of Mathematical Studies, 163. Princeton University Press, Princeton,
pp. 255–285 (2007)

50. Snelson, S.: Asymptotic stability for odd perturbations of the stationary kink in the variable-speed φ4

model. Trans. Am. Math. Soc. 370, 7437–7460 (2018)
51. Soffer, A., Weinstein, M.I.: Resonances, radiation damping and instability in Hamiltonian nonlinear wave

equations. Invent. Math. 136, 9–74 (1999)
52. Soffer, A., Weinstein, M.I.: Selection of the ground state for nonlinear Schrödinger equations. Rev. Math.

Phys. 16(8), 977–1071 (2004)
53. Sogge, C.: Fourier Integrals in Classical Analysis. Cambridge University Press, Cambridge (1993)
54. Sterbenz, J.: Dispersive decay for the 1D Klein–Gordon equation with variable coefficient nonlinearities.

Trans. Am. Math. Soc. 368, 2081–2113 (2016)
55. Tsai, T.P., Yau, H.T.: Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated

and radiation dominated solutions. Commun. Pure Appl. Math. 55, 153–216 (2002)
56. Tsai, T.P., Yau, H.T.: Relaxation of excited states in nonlinear Schrödinger equations. Int. Math. Res. Not.

31, 1629–1673 (2002)
57. Tsai, T.P., Yau, H.T.: Classification of asymptotic profiles for nonlinear Schrödinger equations with small

initial data. Adv. Theor. Math. Phys. 6, 107–139 (2002)
58. Tsai, T.P., Yau, H.T.: Stable directions for excited states of nonlinear Schrödinger equations. Commun.

PDE 27, 2363–2402 (2002)
59. Taylor, M.: Pseudo Differential Operators. Princeton University Press, Princeton (1981)

60. Weder, R.: L p − L p′ estimates for the Schrödinger equation on the line and Inverse Scattering for the
Nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)

Communicated by K. Nakanishi


	On Selection of Standing Wave at Small Energy in the 1D Cubic Schrödinger Equation with a Trapping Potential
	Abstract:
	1 Introduction
	1.1 Set up
	1.1.1 Refined profile and Fermi Golden Rule assumption
	1.1.2 The repulsivity hypothesis

	1.2 Main theorem

	2 Modulation Coordinate and Transformed Problem
	3 The Continuation Argument
	4 Proof of Proposition 3.3
	5 Technical Estimates 
	6 Proof of Proposition 3.4
	7 Proof of Proposition 3.5
	8 Smoothing Estimate for g
	9 Coercivity Results
	10 Proof of Proposition 3.6: Fermi Golden Rule
	11 Proof of Proposition 3.2 
	12 Proof of (1.29)
	Acknowledgements.
	References




