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Abstract

M-theory compactified on non-compact singular Calabi-Yau threefolds is a fertile environ-

ment for both physical and mathematical considerations: on the one hand, by dimensional

reduction on the threefolds, it gives rise to five-dimensional superconformal field theories

(SCFTs), in the spirit of geometric engineering; on the other side, the dynamics of M2-

branes wrapped on the extra dimensions encodes topological data of the threefolds, such as

their Gopakumar-Vafa (GV) invariants.

In this work, we tackle the analysis of M-theory on Calabi-Yau threefolds exhibiting

terminal isolated singularities, namely spaces admitting a crepant resolution where only

complex-dimension one (at most) exceptional loci appear. This implies that the 5d SCFT

arising from M-theory has rank 0, i.e. a trivial Coulomb branch, and possibly a non-trivial

Higgs branch. Furthermore, all threefolds enjoying this property can be described in the

framework of ADE singularity theory.

Operating in this setting, we establish a clear-cut relationship between the M-theory

compactification space and a complex scalar field, transforming in the adjoint of an appro-

priate ADE algebra, that captures the properties of the five-dimensional Higgs branch, as

well as the information concerning the GV invariants of the corresponding threefold.

Thanks to this method, that possesses a natural interpretation in Type IIA in the A

and D Lie algebra cases, we classify Higgs branches and GV invariants in a wide variety of

M-theory compactifications, constructing explicit examples of simple flops of all lengths, and

systematizing the analysis of the quasi-homogeneous compound Du Val threefolds. Besides,

the tools we develop naturally offer a scaffolding upon which to study the role of T-brane

backgrounds in the M-theory context, also lending themselves to complementary interpreta-

tions based on the tachyon condensation formalism.
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Introduction

String theory as a multi-purpose tool

Since its inception during the seventies as an attempt to describe strong interactions, string

theory has entirely reshaped the world of theoretical physics research, sparkling a series of

developments, spanning from applications to condensed matter physics to the opening of new

mathematical programs, that are still to be fully understood. The first turning point in the

long history of string theory came with the “first superstring revolution” in the mid-eighties,

when Green and Schwarz showed [1] that heterotic string theory is devoid of anomalies. This

fact, combined with the natural emergence of a spin-2 particle from the quantization of the

string, attracted a huge amount of interest, in the hope that string theory could provide

the first coherent account of a theory of quantum gravity. The necessary ingredients needed

for this pursuit, though, were provided in the course of the “second superstring revolution”,

that rocked the field in the mid-nineties. In a seminal paper [2], Witten argued that the five

variants of string theory living in ten spacetime dimensions, namely Type I string theory,

Type IIA and IIB, and the heterotic SO(32) and E8 × E8 string theories, were nothing

but facets of a deeper theory, that came to be known as M-theory, connected by a web of

dualities. Shortly after, Polchinski introduced [3] new kinds of entities into the picture of

string theory, realizing that extended objects, dubbed D-branes, naturally arose as the end-

points of strings, obtained imposing suitable boundary conditions on the strings equations

of motion. D-branes, along with their counterparts in M-theory, have wildly broadened the

theoretical power of string theory, fostering great advancements in the quest for a consistent

string theory model, that should be able to reproduce the features of the Universe in all

its observable (up to our present experimental precision) nuances, including the Standard

model, BSM particle physics such as neutrino masses and dark matter, and the cosmological

constant. The ultimate objective of this ongoing research program, also known as string

phenomenology, is to find the correct string theory vacuum displaying the desired charac-

teristics: to this end, constructions such as the KKLT and the LVS proposals, that make

full use of the tools offered by string theory, such as brane-constructions and flux-based

techniques for moduli stabilization, have been put forward with promising results, although

no completely satisfactory model has been found, yet. This is also due to the mind-boggling

amount of string theory vacua, that has hampered the attempts to control them, and to

the tight consistency constraints imposed by string theory. Furthermore, in the recent years

the Swampland program has furnished sharper tools to circumscribe the viable landscape of

7



effective theories that uplift to consistent theories of quantum gravity4, providing non-trivial

checks and narrowing the research spectrum.

The quest for a fully detailed, consistent and predictive model of the Universe in a string

theory setting follows the philosophical fil rouge that goes from the first steps of Galileo

and Newton in explaining the dynamics of common objects and the Solar system, to the

extreme-precision measurements and discoveries of new particles in accelerators during the

late twentieth century, in an ever-increasing search for a unifying theory of Nature.

String theory, though, is not only a magnificent environment in which to undertake this

task: in the last forty years, with an accelerating pattern in the last couple of decades, string

theory has proven itself to be a multi-faceted tool, lying at the intersection of mathematics

and physics, capable of seeding fruitful theoretical advancements in both realms. It is in

the context of this more ample understanding of string theory that this thesis draws its

motivations.

On the one hand, string theory has a long history of fostering unanticipated developments

in pure mathematics, such as the application of topological quantum field theory to knot

invariants [5] and the inception of mirror symmetry [6,7], to name but two chief examples. In

this perspective, since the mid-nineties, thanks to the work of Gopakumar and Vafa [8–10],

string theory and M-theory have lied at the crossroads of an ambitious program of classifica-

tion of topological invariants of Calabi-Yau threefolds: making use of the topological string

theory A-model and its M-theory translation, it was realized that invariants counting holo-

morphic maps from a Riemann surface to some homology class in a Calabi-Yau threefold,

known as Gromov-Witten (GW) invariants, could be reformulated from a physical perspec-

tive as the counting of M2-brane BPS states wrapping those very same homology classes.

The latter constitute the Gopakumar-Vafa (GV) invariants, that have played a relevant role

in the physics literature, as they encode non-perturbative corrections in the effective theories

arising from string compactifications. Their integrality, as opposed to the rationality of the

GW invariants, has been conjectured also in relation to their physical interpretation as a

BPS count, but has been proven in full generality only in the genus-0 case [11]. In turn,

it is thought that the Gromov-Witten formulation is equivalent to the Donaldson-Thomas

(DT) theory, that counts invariants of moduli space of sheaves on a Calabi-Yau threefold, in

what is known as the MNOP conjecture5. Analogously, the Gopakumar-Vafa data can be

converted in sheaf-theoretic language introducing the Pandharipande-Thomas (PT) invari-

ants, that count the so-called “stable pairs” of Calabi-Yau threefolds. All in all, the web of

(conjectured) relationships between invariants of Calabi-Yau threefolds can be organized as

follows6:

4It should be noted, though, that the application of the Swampland program goes also beyond the realm
of string theory. See e.g. the review work by [4].

5Shorthand for Maulik-Nekrasov-Okounkov-Pandharipande conjecture.
6For a review of these relationships see e.g. [12].
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GW

(Holomorphic maps)

MNOP conjecture←−−−−−−−−−−−−−−−→ DT

(Moduli spaces of sheaves)xy xy
GV

(BPS states)
←−−−−−−−−−−−−−→ PT

(Stable pairs)

Figure 1: Correspondences between invariants of Calabi-Yau threefolds.

String theory has provided invaluable tools to investigate the correspondences in Figure

1, as well as to directly compute the respective invariants: in this thesis, while keeping in

mind this convoluted web of dualities, we will stick to the analysis of the lower-left corner,

namely of GV invariants.

In a complementary fashion with respect to its mathematical repercussions, the highly-

structured geometrical underpinnings of string theory have provided unexpected ways to

study and classify the general properties of quantum field theories (QFTs), which appear

ubiquitously in the description of Nature, from particle physics to condensed matter the-

ory. A comprehensive analysis of the properties of QFTs is, at present, lacking. Despite

this, the subject has undergone huge progress in the course of the last decades, especially in

the class of supersymmetric QFTs, thanks to substantial advancements in the understand-

ing of strongly-coupled phenomena, the realization that the realm of theories admitting a

Lagrangian formulation is extremely limited, and the complete overhaul of the concept of

symmetry, with the introduction of higher-form symmetries, higher-group structures and

non-invertible symmetries. Such theoretical achievements are deeply interconnected, and

string theory has provided a framework to elucidate their properties, as well as to produce

new predictions. In particular, string theory has furnished recipes to explicitly construct

quantum field theories that are in some cases inaccessible from a purely field-theoretic per-

spective, employing the power of the extra dimensions in the non-compact limit, where

gravity decouples. This program, that relates the properties of QFTs to the features of

string theory on a singular compactification space, earned the name of geometric engineer-

ing, and was initiated by Katz, Klemm and Vafa in a series of seminal papers [13, 14], that

employed string dualities to study N = 2 and N = 1 QFTs in four spacetime dimensions. In

particular, the study of 4d N = 2 QFTs has undergone huge improvement since then, follow-

ing the organizing principles provided by 4d N = 2 Super-Conformal field theories (SCFTs)

and focusing on the analysis of their Coulomb and Higgs branches, as well as on the re-

lated RG flows. In such spirit, the introduction of Seiberg-Witten curves has renownedly

revolutionized the study of 4d N = 2 Coulomb branches [15, 16], later being given a string

theory interpretation, and wide classes of QFTs have been studied and classified employing
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the class S construction, involving M5-branes wrapped on a Riemann surface [17, 18], and

Type IIB setups on singular Calabi-Yau threefolds [19]. Such Type IIB based constructions

have also allowed to engineer large classes of strongly-coupled SCFTs admitting Coulomb

branch operators with fractional scaling dimensions, such as Argyres-Douglas theories7, that

were first studied from a gauge-theory perspective in [20,21].

The geometrical setups of string theory, besides, have enabled the probing of quantum

field theories in higher spacetime dimensions, such as 6d and 5d. In dimensions greater than

four, the Yang-Mills gauge coupling has negative mass dimension, and hence gauge theories

are non-renormalizable. At the infinite coupling limit, though, gauge theories in 6d and 5d

can flow to superconformal fixed points, that admit no marginal deformations in 5d and in

the 6d case with minimal supersymmetry. Turning on a mass deformation on the SCFT

point can trigger a RG flow to some weakly-coupled gauge theory in the IR: depending on

the specifics of the mass deformation, one can obtain different low-energy gauge theories

which are in some sense “dual” in the UV, as they are related to the same SCFT. In this

regard, string theory has set the table for a classification of 6d SCFTs with N = (2, 0) super-

symmetry from Type IIB on ADE singularities [22–24], and with N = (1, 0) supersymmetry

using a F-theory formulation [25–27].

The panorama on 5d SCFTs is somewhat more obscure. It has been conjectured that all

5d SCFTs arise from circle compactification of 6d SCFTs [28], but a systematic classification

is still absent. The origin of the subject dates back to the work of Seiberg, Morrison and

Intriligator [29–31], that showed phenomena of flavor symmetry enhancements in theories

with SU(2) gauge symmetry and a variable number of flavors, discovering the famous En

theories.

In general, there exist various approaches in dealing with 5d N = 1 SCFTs via stringy

constructions. Among the chief ones, 5-branes setups arranged as (p, q)-webs in Type IIB

string theory [32, 33] have allowed a direct analysis of the Coulomb and Higgs branches of

vast classes of 5d SCFTs, via the parameters encoded by the movement of the branes along

their transverse directions [34–43]. The SCFT limit is reached when all the components

of the web collapse, yielding the singular point. These setups can often be given a toric-

geometric interpretation, and more recently the introduction of generalized toric polygons

(GTP) has further expanded the subject [44–46].

A complementary approach to construct 5d SCFTs comes from the reduction of M-theory

on Calabi-Yau threefolds exhibiting a canonical singularity. There exists a beautiful dictio-

nary between the properties of the M-theory geometry and the moduli spaces of the 5d

SCFT: resolutions of the singularity correspond to the (extended8) Coulomb branch of the

theory, whereas deformations of the singularity encode its Higgs branch. Geometrically, di-

visors that shrink to a point through the blow-down dictate the gauge symmetry, and their

7We should note here that, recently, it has been proposed to define Argyres-Douglas theories precisely as
those theories with fractional scaling dimensions of the Coulomb branch operators.

8The extended Coulomb branch is defined including also mass deformations. We will return to its defini-
tion in the context of 5d SCFTs in Chapter 4.
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volume regulates the gauge-coupling. W-bosons arise from M2-branes wrapping P1’s that

are ruled over some curve contained in the exceptional divisors. Shrinking rigid curves corre-

spond to mass parameters, and M2-branes wrapping such curves give rise to hypermultiplets,

whose mass is controlled by the volume of the curve. The SCFT point is reached in the limit

of vanishing volume of all the exceptional divisors and curves. Employing this framework,

large swaths of the 5d SCFTs landscape have been explored, in the toric realm [47, 48], in

elliptically fibered cases or from circle reduction from 6d [28,49–57], and in a limited amount

of isolated hypersurface singularities (IHS) examples [58–61].

Recently, novel techniques have been added to the toolbox for the analysis of 5d SCFTs,

and in particular of their Higgs branch: through a chain of dualities from Type IIB theory

to Type IIA, it is possible to construct a magnetic quiver, interpreted as a quiver for a

3d N = 4 theory, whose Coulomb branch is isomorphic, save for some ungauging of U(1)

symmetries, to the Higgs branch of M-theory on a Calabi-Yau threefold with a canonical

singularity. Magnetic quivers [62–65] have paved the way for a more in-depth analysis of

the geometrical structure of the Higgs branches of 5d SCFTs [66–74]: it has been possible

to detail the symplectic foliation structure of the Higgs branches via a Hasse diagram [75],

whose “leaves” (i.e. points) represent different phases of the SCFT. The lines connecting

points in the Hasse diagrams, which are Slodowy (transverse) slices, can be associated to a

magnetic quiver, and represent theories coming from the Higgsing of the original SCFT.

Finally, the novel framework provided by generalized symmetries has offered additional

tools allowing a more thorough understanding of the structure of 5d SCFTs, constraining

their non-perturbative dynamics. In this regard, 5d SCFTs arising, e.g., from compactifica-

tions on generalized toric polygons and C3-orbifolds have been examined, also taking into

account their relationships between parent 6d theories and emerging higher-group struc-

tures [76–83].

This thesis

The work that constitutes the core of this thesis lies at the intersection of the two broad

research veins that we have briefly recalled, namely the mathematics program aiming at

the classification and computation of invariants of Calabi-Yau threefolds, and the peculiarly

physics-based quest for a deeper understanding of the structure of 5d N = 1 SCFTs. This

research area is enormous and we focus, of course, on a limited corner of the available space

of unsolved problems, that is nevertheless extremely rich.

In particular, we concentrate on rank-0 5d N = 1 SCFT engineered from M-theory on

singular Calabi-Yau threefolds, built as isolated hypersurface singularities, i.e. from equations

of the form:

F (x, y, z, w) = 0 ⊂ C4, (1)

where x, y, z, w are complex coordinates. Geometrically, rank-0 means that we are consider-

ing terminal singularities, i.e. singularities that admit at most complex curves in the crepant

resolution, and no exceptional divisor. Physically, this implies that the 5d SCFTs have an
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empty Coulomb branch, and possibly a non-trivial Higgs branch. This choice is, of course,

quite restrictive in the landscape of possible 5d N = 1 SCFTs, but as we will see it con-

versely provides extremely explicit computational tools, that will allow a direct inspection

of the Higgs branches of the theories of interest. A theorem by Reid [84] proves that all

the Calabi-Yau threefolds admitting terminal isolated singularities are of compound Du Val

type, namely they take the form:

f(x, y, z) + wg(x, y, z, w) = 0 ⊂ C4, (2)

where f(x, y, z) is a Du Val singularity, also known as ADE singularity. Notice that (2) is

a one-parameter deformation of the ADE singularity, namely a non-trivial fibration of an

ADE singularity over the plane Cw. These singularities are, except from sparse examples

such as the conifold, non-toric.

As a result, the natural environment to undertake the study of rank-0 5d SCFTs with

8 supercharges is that of M-theory compactified on compound Du Val isolated singularities,

namely one-parameter families of deformed ADE singularities. This is the setting we will

work on throughout the course of the thesis.

The study of these setups, though, is not exclusively motivated by the analysis of the

5d SCFTs that arise after the M-theory dimensional reduction, and draws its relevance also

from the investigation of the topological properties of the compactification threefolds, in the

form of their GV invariants: indeed, as we will sketch momentarily, there exists a one-to-

one correspondence between the GV invariants of a Calabi-Yau threefold with an isolated

compound Du Val singularity, and the Higgs branch of the 5d N = 1 SCFT engineered

from M-theory on that very same singularity. While for toric cases there exist systematic

methods such as the topological vertex [85], in the context of deformed ADE singularities

GV invariants have been computed only in a very limited selection of cases, mostly in the

mathematical literature [86–92].

In very broad brushes, we can schematically sum up the setup and the applications of

this thesis in the following picture:

M-theory
GV invariants of

cDV isolated singularities

rank-0 5d SCFTs Higgs branches

dim. red. on

cDV isolated singularities

In the rest of this work, then, we lay a bipartite objective:
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• Compute the Higgs branches of rank-0 5d N = 1 SCFTs arising from M-theory com-

pactifications on cDV isolated singularities.

• Compute the Gopakumar-Vafa (GV) invariants of Calabi-Yau threefolds built as cDV

isolated singularities.

As we have said, these tasks are two faces of the same coin, and we will explicitly build

the bridge between the mathematical and physical side of the story, yielding on the one

hand a new physical interpretation to the GV invariants, and on the other side a systematic

classification of rank-0 5d SCFT Higgs branches.

In order to tackle this set of problems, we introduce a new technique that allows ex-

tremely explicit computations. The gist of the strategy is to establish a correspondence

between cDV isolated singularities, built as a one-parameter deformation of an ADE singu-

larity of type g, and a complex scalar field Φ transforming in the adjoint of g. It is in this

sense that we will talk about this setup as the “adjoint Higgs method”, as all the relevant

data about the GV invariants of the threefold and the Higgs branch of the 5d SCFT arising

from compactification on the same threefold are encoded in such complex scalar field. Let

us briefly sketch how this comes about.

Consider M-theory compactified on an ADE singularity g: this gives rise to an effective

N = 1 theory in 7d, that contains three real scalars ϕ1, ϕ2, ϕ3 transforming in the adjoint

of g. We can combine two of them into a complex scalar field Φ = ϕ1 + iϕ2, that controls

the complex deformations of the ADE surface. If we switch on a position-dependent vev for

Φ, say ⟨Φ(w)⟩, where w is a complex coordinate, we are deforming the M-theory geometry,

namely we are adding a w-dependent deformation term to the ADE singularity (specifically,

the Casimirs of ⟨Φ(w)⟩ control the deformation). This yields precisely a cDV singularity of

the form (2). If the starting Du Val singularity is of A and D type, this has a very precise

meaning in the Type IIA dual picture: M-theory on A and D singularities is dual to Type

IIA with a stack of coincident D6-branes (on top of an orientifold plane, in the D case).

In this context, the scalar fields ϕ1, ϕ2, ϕ3 parametrize motion transverse to the branes, and

turning on a vev ⟨Φ(w)⟩ corresponds to a deformation of the brane-stack in the w direction,

yielding a setup of branes intersecting at9 w = 0.

We see then that there exists a correspondence between the deformed geometry, namely

the cDV singularity on which M-theory is compactified, and the Higgs vev ⟨Φ(w)⟩. This is

the key observation that enables all of our subsequent reasonings10.

Higgs vev ⟨Φ(w)⟩ ⇐⇒ cDV isolated singularity (3)

In order to study the Higgs branches of the 5d SCFTs arising from M-theory compacti-

9Modulo some shift along the w coordinate.
10As we will see in the following, this correspondence is not one-to-one. This will yield interesting physical

consequences, related to T-brane backgrounds.
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fication, we can consider fluctuations φ around the background ⟨Φ(w)⟩:

Φ(w) = ⟨Φ(w)⟩+ φ(w). (4)

Not all the fluctuations correspond to physical degrees of freedom, and they must first be

gauge-fixed using the 7d gauge symmetry: the zero-modes that survive the gauge-fixing and

that are localized on w = 0 are genuine five-dimensional degrees of freedom, and corre-

spond to hypermultiplets in the 5d SCFT. In the Type IIA picture (whenever available),

these are open string modes stretching between the D6-branes near the point w = 0. This

computation, after suitably embedding ⟨Φ(w)⟩ in an explicit matrix representation, can be

carried out with straightforward linear algebra methods, and further allows to pinpoint the

preserved symmetry is 5d, which is given by the stabilizer of ⟨Φ(w)⟩. Combining the data

about the hypermultiplets and the 5d symmetries, including their explicit action on the

hypermultiplets, one can completely characterize the Higgs branch of the 5d SCFT, as a

complex algebraic variety11.

This line of reasoning also naturally entails that we can extract information about the

GV invariants of the compactification threefold via the Higgs branch computation: indeed,

as we are dealing with cDV singularities, which are terminal, we can consider M2-branes

wrapping the exceptional curves inflated by the resolution12. These give rise to BPS states

that descend to hypermultiplets in 5d. On the other hand, the M2-brane BPS states counting

is precisely the kind of data that is encoded by the GV invariants theory of the Calabi-Yau

threefold. We reach a significant conclusion: the Higgs branch data (namely, the hypermul-

tiplets, the symmetries, and the charges under the symmetries) have a direct counterpart

in terms of the geometrical data of the M-theory threefold: the GV invariants correspond

to the number of hypermultiplets, the exceptional curves are in one-to-one correspondence

with the continuous preserved symmetries, and the degrees of the GV invariants regulate

the charges of the 5d hypers. In this fashion, we can characterize the GV invariants of cDV

threefolds that are largely unexplored from this perspective.

The preceding lines rapidly sum up the main physical and mathematical idea of this

work, whose fruits, though, are not as easy to reap. Given the interpretation of the Higgs

branch and GV data in terms of a “adjoint Higgs background” describing the corresponding

cDV singularity, in fact, one must sit down and write the Higgs background explicitly, if one

wishes to use it for actual computations. This proves to be a non-trivial task.

As a consequence, much of the technical content of this work lies in developing con-

crete techniques to build, given a cDV geometry, the associated Higgs background. The

cornerstone for this kind of task was laid by [93] and subsequently developed in [94], that

introduced the concept of T-branes, namely of Higgs profiles that are not trivially diagonal.

Using these ideas and employing the formalism of tachyon condensation, [95] dealt with

11Namely, one cannot obtain, solely employing this method, the metric on the Higgs branch.
12We will see, in addition, that M2-brane states at the singular point can be defined also in the absence

of crepant exceptional curves.
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some special cases of Du Val singularities taken from the A series, showing how to explicitly

relate the Higgs background ⟨Φ(w)⟩ to the M-theory geometry, namely to a cDV singularity.

Analogous results for D and E singularities, as well as for more involved cases in the A

series, were not, to our knowledge, present in the literature. In the course of this work, we

dealt with all the aforementioned cases, showing:

1. How to explicitly relate the M-theory geometry (a cDV singularity) to an adjoint Higgs

background, which in general is not diagonal, in all the ADE cases.

2. Employing the connection provided by 1, how to explicitly build the Higgs backgrounds

for large classes of cDV singularities.

Furthermore, the seminal work of [94] has huge repercussions for our choices of Higgs back-

grounds: we will see, indeed, that the correspondence between Higgs backgrounds and three-

fold geometries is not one-to-one, but that in general a single geometry is compatible with

many inequivalent backgrounds, in the precise sense that they yield a different physics in

5d. These take the name of T-brane backgrounds, and one must be extremely careful in dis-

tinguishing them, if one wishes to correctly reproduce the 5d field theory expectations, and

make contact with the existing literature in the few cases already present in the literature. As

a consequence, we will devote congruent space to T-brane backgrounds throughout the thesis.

From the purely technical point of view, we have accomplished tasks 1 and 2 heav-

ily relying on the theory of ADE Lie algebras: in particular, the nilpotent orbits and the

Slodowy slices through nilpotent orbits prove themselves to be the organizing principles for

the explicit construction of Higgs backgrounds. In addition, such tools naturally lead to an

interpretation of the Higgs backgrounds as related to the theory of Grothendieck-Springer

resolutions, which furnish an alternative to standard resolution techniques, and that further

yield useful byproducts, such as the versal deformations of ADE singularities in coordinates

adapted to a given partial simultaneous resolution.

In the Conclusions, we will analyze the results of this work in details; before that, we

sketch here the key take-aways:

• The Higgs branches of 5d SCFTs from M-theory on cDV isolated singularities are

composed of free hypers or of discrete gaugings of free hypers. The flavor symmetry

is dictated by the exceptional curves in the crepant resolution of the cDV isolated

singularities.

• The GV invariants of cDV isolated singularities are related to the Higgs branch data

from M-theory on the same singularities.

• We have explicitly computed the Higgs branch data (and thus, the corresponding

GV invariants) in large classes of cDV singularities, namely (in growing degree of

generality):
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- Relevant examples of cDV singularities (conifold, Reid’s pagodas, Brown-Wemyss’

singularity, Laufer’s singularity)

- Instances of simple flops of all lengths.

- All quasi-homogeneous cDV singularities. These comprise also singularities that

give rise to Argyres-Douglas theories of type (A, g), with g = A,D,E, in Type

IIB compactifications.

In the next section, we briefly summarize the general structure of the thesis.

Outline

The work is divided into two parts: in Part I, we introduce background material and we

progressively build towards the construction of explicit Higgs backgrounds associated to

threefold singularities.

In Part II, we concretely apply the tools developed in Part I in a wide array of classes.

Part I

We start in Chapter 1 with a brief introduction on ADE singularities, specifically

adapted to our purposes, and with no presumption of completeness. We recap the structure

of their resolutions and deformations, and review the concept of complete and partial simul-

taneous resolutions. We define compound Du Val (cDV) singularities.

In Chapter 2, we introduce some mathematical concepts that will be key in the rea-

sonings of later chapters: we set in the context of ADE Lie algebras, and introduce their

nilpotent orbits and Slodowy slices, exhibiting explicit examples. Thanks to these tools, we

then review the theory of Grothendieck-Springer resolutions of ADE singularities, providing

fully worked-out examples.

Chapter 3 is the technical core of the thesis, and we begin introducing physics into the

game. We briefly retrace the logical process behind M-theory compactifications, proceeding

gradually: we sketchily review M-theory on smooth manifolds, M-theory on K3 singularities,

and finally we start dealing with M-theory on one-parameter deformed ADE singularities,

namely cDV singularities. Introducing our original contributions, we show how the theory of

Springer resolutions can help us associate a Higgs background to a cDV singularity, taking

the conifold as the simplest working example. We then proceed in generalizing the strategy

to encompass all singularities of A, D and E type, writing down explicitly the connection

between the Higgs backgrounds and threefold equations, which is encoded in the Casimirs

of the Higgs backgrounds. We conclude explaining the gauge-theory role of the Higgs back-

grounds, and summing up the general recipe to construct them.
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Part II

In Chapter 4, we get to the gnosiological nutshell of the work: we recap the definition

of Gopakumar-Vafa (GV) invariants, and quickly review the main properties of 5d N = 1

SCFTs. We introduce simple threefold flops, that constitute the first class of examples we

wish to analyze. These are cDV singularities admitting a single exceptional curve in the

resolution: we first define them precisely, highlighting the physical meaning of their length.

Then, we get into the original work, showing how to extract the Higgs branch and the

GV data from the Higgs background, at first relying on the simple example of the conifold.

We then move on applying this technique to a few cases of simple flop examples from the

A and the D series, such as Reid’s pagodas, the Brown-Wemyss’ singularity and Laufer’s

singularity, comparing results with the existing literature. Then, we explain in full general-

ity how to explicitly construct Higgs backgrounds associated to simple flops, and introduce

a novel algorithm to compute the Higgs branch and GV data, that lends itself to an effi-

cient computer implementation. We thus exhibit concrete examples of flops of all lengths,

computing their GV invariants and the Higgs branch from M-theory compactified on them,

making contact, in some cases, with the existing literature. We conclude by going beyond

the formalism of simple flops, exihibiting non-simple flops and non-resolvable (in a crepant

fashion) singularities. This also yields the first simple examples of T-brane backgrounds.

In Chapter 5, we classify the Higgs branches (and consequently, the related GV in-

variants) of the rank-0 5d SCFTs arising from M-theory on all quasi-homogeneous cDV

singularities. We start by recalling the classification of quasi-homogeneous cDV singulari-

ties, and introduce a refinement of our construction of Higgs backgrounds, that allows us to

systematically build them for all the cases of interest, solely by looking at the cDV equation.

We then proceed in writing down Tables of results for the Higgs branch and GV data. We

conclude by analyzing the role of T-branes in this context.

In Chapter 6, we revisit the content of Chapter 4 from the perspective of tachyon con-

densation, that yields, in selected cases, more compact and efficient results. We conclude

by displaying some useful properties of determinantal varieties in the analysis of Laufer’s

singularity.

In the Conclusions, we summarize our construction of Higgs backgrounds associated to

cDV threefold isolated singularities, putting all the pieces together and providing a unitary

perspective. We conclude with some final remarks on the achieved results and future per-

spectives.

In Appendix A, we give a short review of the theory of ADE Lie algebras, focused

on the objectives of the main text. In Appendix B, we write down explicitly the defor-

mation parameters of the exceptional singularities E6, E7, E8 in terms of the Casimirs of

the Higgs background. In Appendix C and D, we give some additional details about the

Higgs branches of (A,A) singularities and the hierarchy of T-brane backgrounds in (A,D)

singularities, respectively.
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Original contributions

The original work of this thesis is distributed as follows: in Chapter 2, the fully worked-out

examples of Springer resolutions; in Chapter 3, the relationship between Springer resolutions

and Higgs backgrounds, as well as the connection between Higgs backgrounds and M-theory

geometry, namely everything from 3.3 on (except the M-theory uplift of the brane loci in

the A series); in Chapter 4, everything except the review sections about GV invariants, 5d

SCFTs and the definition of simple flops; the entirety of Chapters 5 and 6, except for the

brief introductory reviews about cDV singularities and tachyon condensation.

The work is for the most part based on a handful of published (or submitted, at the

present time) papers, that we report here for completeness. They have been realized in

collaboration with Roberto Valandro, Mario De Marco and Andrés Collinucci.

Published:

• A. Collinucci, A. Sangiovanni and R. Valandro, Genus zero Gopakumar-Vafa invariants

from open strings, JHEP 09 (2021), 059.

• A. Collinucci, M. De Marco, A. Sangiovanni and R. Valandro, Higgs branches of 5d

rank-zero theories from geometry, JHEP 10 (2021), 018.

• M. De Marco and A. Sangiovanni, Higgs branches of rank-0 5d theories from M-theory

on (Aj, Al) and (Ak, Dn) singularities, JHEP 03 (2022), 099.

Submitted for publication:

• A. Collinucci, M. De Marco, A. Sangiovanni and R. Valandro, Flops of any length,

Gopakumar-Vafa invariants, and 5d Higgs branches, arXiv:2204.10366.

• M. De Marco, A. Sangiovanni and R. Valandro, 5d Higgs branches from M-theory on

quasi-homogeneous cDV threefold singularities, arXiv:2205.01125.

We briefly add a “historical” note: this work started as a simple exercise in the the-

ory of Lie algebras, studying nilpotent orbits, Slodowy slices and Grothendieck-Springer

resolutions, trying to work out examples of the latter in a completely explicit fashion. Un-

expectedly, this led to construct the first Higgs backgrounds for cases in the D series, and

to the realization that zero-modes of fluctuations around the Higgs backgrounds encode GV

and Higgs branch data, inspiring the papers [96] and [97].

Subsequently, the attempt to generalize the technique in a systematic way allowed to

tackle M-theory geometric engineering on (A,A) and (A,D) singularities, producing [98].

The tools and the understanding needed to write this paper paved the way for the last steps,

that encompassed the generalization to exceptional singularities and all quasi-homogeneous

cDV singularities, whose analysis was finalized in [99] and [100].
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CHAPTER 1

Singularity theory

As was briefly mentioned in the Introduction, string theory on singular spaces is a rich and

diverse environment, yielding peculiar features that lie at the core of geometric engineering

of quantum field theories.

The overarching theme of this work is the analysis of the physical and mathematical

properties of M-theory compactifications on some classes of singular Calabi-Yau threefolds.

Defining and explaining what constitutes a singularity is therefore imperative to start

off, and in this chapter we will provide a short introduction to the topic without requiring

extreme mathematical rigor, focusing especially on the class of ADE singularities.

We start in Section 1.1 by reviewing the very definition of singular points, we introduce

ADE singularities in Section 1.2, their resolutions and deformations in Section 1.3, and we

conclude mentioning some basic facts about compound Du Val singularities (which will be

the main playground of this thesis) in Section 1.4.

1.1 Singularities in algebraic geometry

As a first, let us define our main objects of interest: algebraic varieties.

Def 1.1. An algebraic variety is a set X ⊂ Cn defined as the zero locus of some polyno-

mials Fi:

X := {(z1, ..., zn) | Fi(z1, ..., zn) = 0}

where (z1, ..., zn) are the coordinates on Cn. In the rest of this work we will be interested in

singular algebraic varieties, understood as:

Def 1.2. An irreducible algebraic variety X of dimension m is smooth at a point p if the

Jacobian matrix:

J =

(
∂Fi

∂zj

) ∣∣∣∣∣
p

has rank n−m.

Otherwise, the variety is said to be singular at p.
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Of course, singularities are not necessarily found on isolated points, but can appear on

generic subvarieties of X. In the remainder of this work, though, we will focus exclusively

on algebraic varieties that are singular only on isolated points.

Just to ground these definitions in intuition, an extremely trivial example of smooth

variety is the circle S1 embedded in R2:

F = 0 with F = x2 + y2 − 1 ∇F = 0⇒ (x, y) = (0, 0).

The gradient vanishes on the origin, that however does not belong to S1, that therefore is

smooth.

Figure 1.1: S1 ⊂ R2 is non-singular.

On the other hand, a trivial example of singular variety is given by the following self-

intersecting curve in R2:

F = 0 with F = y2 − x2(x+ 1),

where a direct computation shows that condition (1.2) is not satisfied at the origin, signalling

that it is a singular point.

Figure 1.2: An example of singular curve in R2.

In the next section we devote our attention to a specific class of singularities, known as

ADE singularities, that will be our work environment throughout all the following chapters.
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1.2 ADE singularities

As is known since the seminal work of Killing and Cartan [101–105], there exists an exhaus-

tive classification of simple Lie algebras, encompassing the so-called “classical algebras”1

An, Bn, Cn, Dn, as well as a bunch of “exceptional” algebras G2, F4, E6, E7, E8. The sub-

script indicates their rank. Each of these algebras can be put in one-to-one correspondence

with a Dynkin diagram, allowing us to swiftly recover the properties of the algebra itself.

For a lightning review of some basic Lie algebra concepts we refer to Appendix A.

In the following, we are interested in a subset of all simple Lie algebras, namely the ones

in correspondence with simply-laced Dynkin diagrams. These are the An, Dn, E6, E7, E8 al-

gebras, belonging to the homonymous ADE classification.

For convenience, we report their Dynkin diagrams in Figure 1.3, whose origin is briefly

recalled in Appendix A, and that we will profusely employ in the next analyses.

Figure 1.3: ADE Dynkin diagrams.

The ADE algebras play a crucial role for our discussion on singularities. There exists,

indeed, a specific class of singularities known as ADE singularities for reasons that will be

clear shortly. These constitute the work environment of all the following chapters, due to

their extreme versatility in the string theory framework.

The realization of their relevance in a physical context dates back to the work of McKay

[106], that discovered a surprising connection between the theory of Du Val orbifold singu-

larities and the representation theory of the algebras in the ADE classification, in what came

to be known as the McKay correspondence.

Du Val singularities [107] are isolated singularities in complex surfaces, that can be de-

fined as a quotient:

Du Val singularities: ↔ C2/Γ

1As is usual in the physics literature, we will often mix the notions of algebra and group, unless the
distinction becomes necessary.
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where Γ is a finite subgroup of SU(2).

This definition yields a natural classification of Du Val singularities in terms of the finite

subgroups of SU(2), which in turn are in correspondence with the algebras in the ADE

classification:

An = sl(n+ 1)

Dn = so(2n)

En = e(n)

(1.1)

where n is the rank of the algebra.

Du Val singularities can also be defined as hypersurfaces in C3, zero-loci of the polyno-

mials:

An : x2 + y2 + zn+1 = 0

Dn : x2 + zy2 + zn−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0

(1.2)

It can be shown that these surfaces are singular at the origin, and that their canonical bundle

is trivial, and so that they are local K3 surfaces.

In the next sections, we are going to get a hands-on understanding of the relationship

between the Dynkin diagrams in Figure 1.3 and the surfaces (1.2), introducing the concepts

of deformation and resolution of a singularity.

1.3 “Smoothing” singularities

Consider a surface in Cn with an isolated singularity: in the following paragraph we are

going to illustrate, in broad brushes, two ways of “smoothing” out the singular locus, either

by modifying its complex structure, deforming it, or by “substituting” the singular locus via

a birational map, resolving the singularity.

1.3.1 Deformations

As a first, we describe deformations, that act by modifying the complex structure of the

surface.

To give a more mathematically grounded idea of this concept, fix a general surface S

inside Cn, defined by the zero locus of a polynomial F :

S : F (z1, . . . , zn) = 0. (1.3)
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Now define the ring:

Rdef =
C[z1, ..., zn](
∂F
∂z1
, ..., ∂F

∂zn

) , (1.4)

and a basis (g1, ..., gk) of Rdef.

Then we say that the surface Sversal in Cn+k defined by:

Sversal : F +
k∑

i=1

µigi = 0, (1.5)

with µi some complex parameters is the semi-universal, or versal, deformation of the singu-

larity.

The parameters µi span the deformation space Def (S), and we can write the versal defor-

mation Sversal as a family of surfaces S ′ in Cn fibered over the deformation space Def (S) = Ck:

Sversal ⊂ Def (S)× Cn

↓
Def (S)

(1.6)

The fiber S ′ over a point of the deformation space Def (S) is a deformation of S in 1.3: it is

easy to verify, applying the definition 1.2, that for a generic point of Def (S) the surface S ′

is non-singular.

Moreover, the deformation space Def (S), where the coefficients µi live, is intimately

related to the Weyl theory of the corresponding ADE singularity.

Letting T be the Cartan subalgebra and W the Weyl group of the Lie algebra under

consideration, one can show that the deformation space is made up of variables that are

invariant under the action of the whole Weyl group, that is:

Def (S) = T /W . (1.7)

We could then rewrite (1.6) as:

Sversal ⊂ T /W × Cn

↓
T /W

(1.8)

Having set up this machinery, let us show an explicit example.

Take the simplest singularity in the ADE classification, namely the A1 = sl(2) case.

The surface S ⊂ C3 reads:

S : x2 + y2 + z2 = 0, (1.9)
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and has a unique isolated singularity at the origin.

A basis of Rdef is given by µ ∈ C. As a result, the versal deformation Sversal lives in:

Sversal ⊂ C× C3

↓
C

(1.10)

and the fiber explicitly reads:

S ′ : x2 + y2 + z2 = µ ⊂ C3, (1.11)

where µ is a constant. We can also immediately verify that, for generic µ ̸= 0, the deformed

A1 singularity in 1.11 is non-singular.

The total space of 1.10 is the versal deformation Sversal: it is a non-singular threefold and

it can be described as a family of deformed A1 singularities, fibered on the plane spanned

by µ, whose value precisely fixes the deformation. Explicitly, it is given by:

Sversal : x2 + y2 + z2 = µ ⊂ C4, (1.12)

where now µ is a coordinate.

1.3.2 Resolutions

Another independent way to smooth out the singularity on the origin of S is the resolution,

an operation that modifies the Kähler structure of the surface.

By resolving the singularity we effectively “remove” the singular point, replacing it with

an exceptional locus that either smooths the singularity, or replaces it with a “milder”

singular locus.

More precisely, a resolution of S with a singularity on a point p is a birational map π:

π : S̃ → S. (1.13)

The fact that π is birational means that it is an isomorphism on S \ p, and replaces the

singular point with:

π−1(p) = E, (1.14)

where E is called exceptional locus. In the rest of this work, we will focus on the case in

which the exceptional locus is a collection of P1’s.

There are plenty of ways to resolve singularities, and here we will briefly show a technique

based on matrix factorizations2. In the following chapter, however, we will devote our

2Matrix factorizations (MFs, for short) are a vast and deep topic (see e.g. [108] for the original reference,
and [109] for a physics-oriented review). In this work, however, we will just scratch the surface with some
basic applications.
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attention to the so-called Grothendieck-Springer resolutions, that will act as the inspirational

foundation for our physics considerations.

Consider, again, the singular surface (1.9) in C3. First, notice that it can be concisely

written (after an immediate change of coordinates x = u+v
2
, y = u−v

2i
) as:

detM = det

(
u z

z v

)
= uv − z2 = 0. (1.15)

Then, embed it into the space C3 × P1, subject to the constraint:(
u z

z v

)
·
(
s0
s1

)
= 0, (1.16)

where [s0, s1] ∈ P1.

Let us examine the solutions of (1.16):

• s0 = s1 = 0 is not allowed, as they are coordinates in a projective space.

• the only possibility is that the rank of M is non-maximal, that is uv − z2 = 0.

At this point, we have two possibilities:

• rkM = 1, meaning that (u, v, z) ̸= (0, 0, 0). This implies that there exists a unique

[s0, s1] that solves the equation.

• rkM = 0, that is we are on top of the origin (u, v, z) = (0, 0, 0). In this case, all

[s0, s1] ∈ P1 satisfy the constraint.

We can see, as a result, that each point different from the origin corresponds to a single

point in P1, and that on the other hand the origin, the former singular point, has now been

substituted by the whole P1.

This is an example of a birational equivalence: the starting singular surface is isomorphic

to the resolved one, apart from the singular point, that has been substituted by a sphere.

A similar procedure can be carried out to resolve all the ADE singularities in the clas-

sification (1.2): in this way, it can be proven that the resolution of the ADE singularities

is a birational map that substitutes the singular point with a collection of complex curves

isomorphic to P1, intersecting with a pattern given by the Dynkin diagram pertaining to the

corresponding ADE algebra.

In the next section we see how to use both the tools of the deformation and of the reso-

lution, constructing simultaneous resolutions.

1.3.3 Simultaneous resolutions of deformed families

Let us go back to the deformed family (1.12): for a generic non-zero µ the family is a smooth

threefold. However, the fiber on top of the point µ = 0 (i.e. the central fiber) is still singular,
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and so we might want to be able to resolve it. It turns out that a resolution of the central

fiber exists, but that it cannot be “glued” in a smooth fashion with the rest of the family

(1.12) [110].

What we want to do, instead, is perform a simultaneous resolution of Sversal, meaning an

operation that, when restricted to the central fiber, reduces to the standard resolution.

In order to achieve this result we must recall the fact that the deformation space Def (S)

is spanned by parameters that are invariant under the action of the Weyl group associated

to the ADE singularity (1.7). In our A1 case, we can write the explicit action of W on the

Cartan subalgebra T , described by a single variable t:

W : t→ −t. (1.17)

We must then have µ = t2, as the complex variable µ in Sversal is Weyl-invariant, that is:

µ ∈ T /W .

As a result, we can perform a base change, pulling back from the coordinate µ to its

covering space spanned by t, which is Weyl-covariant:

ϕ : D̃ef(S)→ Def(S) : t 7→ µ = t2. (1.18)

Applying this map to the family Sversal we get:

S̃versal : x2 + y2 + z2 = t2, (1.19)

which is nothing but the famous equation of the conifold, which is singular at the origin.

Finally using the form (1.19) we can simultaneously resolve the deformed A1 family,

obtaining a smooth surface in T × C3.

This can be done rewriting the conifold using the formalism of matrix factorizations, as

previously shown for the non-deformed A1 case:

detM = det

(
u z + t

z − t v

)
= uv − z2 + t2 = 0. (1.20)

and then embedding it into C4 × P1, subject to the condition:(
u z + t

z − t v

)
·
(
s0
s1

)
= 0. (1.21)

Reasoning along the lines of the non-deformed A1 case, it is easily shown that equation (1.21)

describes a surface that is birationally equivalent to the conifold, except for the singular point

that has been substituted by a P1, smoothing out the singularity.
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Diagramatically, this reads as:

ZT
π−→ S̃versal → Sversal

↘ ↓ ↓
T ϕ→ T /W

(1.22)

where the map π : ZT → S̃versal is the complete simultaneous resolution of the deformed A1

family.

Let us recap the operations we have performed so far:

• Consider the A1 singular surface S, defined in equation (1.9).

• Deform the singularity, generating the family Sversal, and pull it back on the covering

space dictated by the action of the Weyl group, obtaining the deformed A1 singularity

S̃versal in Weyl covariant coordinates.

• Simultaneously resolve the family S̃versal, which is singular.

• The end result is a family ZT , that is birationally equivalent to S̃versal: on every point

different than the origin of D̃ef(S)×C3 they are isomorphic, while the origin has been

superseded by a P1, smoothing out the singularity of the central fiber.

ZT → S̃versal is the complete simultaneous resolution of the deformed family, meaning

that all the singularities in the family (even in the fibers) have been smoothed out.

The reasoning outlined above is general and can be applied to all the ADE singularities,

and we now retrace the above mentioned steps for the general cases.

First, we start from the singular surfaces in C3 defined in (1.2).

Then we write down the versal deformation of the singularities in terms of Weyl-invariant

coordinates µi, defined on T /W . This produces the deformed families:

An : x2 + y2 + zn+1 +
n+1∑
i=2

σiz
n+1−i = 0

Dn : x2 + y2z + zn−1 +
n−1∑
i=1

δ2iz
n−1−i + 2δ̃ny = 0

E6 : x2 + y3 + z4 + ϵ2yz
2 + ϵ5yz + ϵ6z

2 + ϵ8y + ϵ9z + ϵ12 = 0

E7 : x2 + y3 + yz3 + ϵ̃2y
2z + ϵ̃6y

2 + ϵ̃8yz + ϵ̃10z
2 + ϵ̃12y + ϵ14z + ϵ̃18 = 0

E8 : x2 + y3 + z5 + ϵ̂2yz
3 + ϵ̂8yz

2 + ϵ12z
3 + ϵ̂14yz + ϵ̂18z

2 + ϵ̂20y + ϵ̂24z + ϵ̂30 = 0

(1.23)

where we have specified the coordinates µi with distinct names for every A,D,E class (using

σi for A, δi, δ̃i for D and ϵ, ϵ̃, ϵ̂ for E). The deformed families (1.23) admit no simultaneous

resolution.

Now we can take the pull back of the deformation parameters from T /W to the covering
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space T . In this way we can write the generic deformation for each ADE case:

An : x2 + y2 +
n+1∏
i=1

(z + ti) = 0
n+1∑
i=1

ti = 0

Dn : x2 + y2z +

∏n
i=1 (z + t2i )−

∏n
i=1 t

2
i

z
+ 2

n∏
i=1

tiy = 0

E6 : x2 + y3 + z4 + ϵ2yz
2 + ϵ5yz + ϵ6z

2 + ϵ8y + ϵ9z + ϵ12 = 0

E7 : x2 + y3 + yz3 + ϵ̃2y
2z + ϵ̃6y

2 + ϵ̃8yz + ϵ̃10z
2 + ϵ̃12y + ϵ14z + ϵ̃18 = 0

E8 : x2 + y3 + z5 + ϵ̂2yz
3 + ϵ̂8yz

2 + ϵ12z
3 + ϵ̂14yz + ϵ̂18z

2 + ϵ̂20y + ϵ̂24z + ϵ̂30 = 0

(1.24)

where the ti are coordinates on the covering space T = D̃ef(S) and now the ϵi, ϵ̃i, ϵ̂i are func-

tions of the ti [111]. Analogously to the conifold case, the deformed families (1.24), defined

on the deformation space T , admit a complete simultaneous resolution, namely a resolution

that on the central fiber inflates all the nodes in the corresponding ADE Lie algebra.

Let us take a closer look to the structure of the deformed ADE families: it can be shown

that, if all the tis are different from zero, the surfaces (1.24) admit n non-trivial spheres

S2
i , arranged via their intersection form in the same fashion as the structure of the Dynkin

diagram of the corresponding singularity.

In addition, we can relate the volume of such spheres to the deformation parameters ti
in the Cartan subalgebra. In general, the volume Vi of the sphere S

2
i is given by the integral

of the holomorphic 2-form Ω:

αi =

∫
S2
i

Ω, (1.25)

where we have used the symbols αi to explicitly state the correspondence between the spheres

(and their volumes) and the simple roots of the corresponding Lie algebra, as their intersec-

tion pattern is exactly the same and is given by the Dynkin diagram.

The relationship between the volumes and the deformation parameters is then given by3

An : αi = ti − ti+1 i = 1, . . . , n

Dn : αi = ti − ti+1 i = 1, . . . , n− 1 and αn = tn−1 + tn

En : αi = ti − ti+1 i = 1, . . . , n− 1 and αn = −t1 − t2 − t3

(1.26)

It is critical to note that the Weyl group acts on the root system accordingly to the Lie

algebra, inducing in turn an action on the Weyl-covariant deformation parameters ti of the

Cartan subalgebra.

Moreover, it is evident that when all the tis vanish, so do the volumes of the spheres cor-

responding to the simple roots, thus obtaining a singular space. It is precisely on this point

3In the following we will interchangeably use, when no confusion might arise, the terms “root”, “node”,
“sphere”, keeping in mind the correspondence between roots, Dynkin diagrams and inflated spheres in the
simultaneous resolution.
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that the machinery of the simultaneous resolution comes into play: by looking at the diagram

(1.22) we notice that ZT is isomorphic to S̃versal on every point where all the tis are generic:

on the other hand, if all the tis are null, ZT inflates a bunch of 2-cycles arranged exactly

as the Dynkin diagram of the corresponding ADE. We should notice, though, a difference

with respect to the basic A1 case that acted as a template: for some carefully chosen values

of the parameters ti there could be other points, or even curves, where subsingularities of

the whole ADE singularity under consideration appear. For example, there are A1 singular

points inside the versal deformation of the A3 singularity turning up on some loci in the

space spanned by the tis. What is relevant, in the end, is that the simultaneous resolution

takes care of all of these singularities, smoothing them out.

In this way the families (1.24) are in fact simultaneously resolved on all of their points,

origin and subsingular points included, leaving no room for other 2-cycles (meaning that the

deformation, for the points different from the origin, the resolution, for the origin, and a

combination of the two for the subsingular points have “inflated” all the possible non-trivial

two-spheres). We remark that this was possible because we have expressed the deformed

families in terms of the Weyl-covariant coordinates.

1.3.4 Partial simultaneous resolutions

Pulling back the deformed ADE families of rank n from T /W to T is not the only allowed

choice to obtain a simultaneous resolution. In fact, we can perform a base change and pick

a set of n deformation parameters ϱi belonging to the quotient T /W ′, with W ′ a subgroup

of the whole Weyl group, producing a (n+ 2)-dimensional hypersurface admitting a partial

simultaneous resolution, where only the 2-cycles corresponding to roots that are invariant

with respect to W ′ get inflated.

Let us clarify this statement with an example: consider the A3 singular surface, whose

complete simultaneous resolution would yield three spheres intersecting in the shape of the

A3 Dynkin diagram. Say, though, that we want to only admit the resolution of the central

sphere, corresponding to root α2. In order to achieve this, we must express the deformed

A3 family in coordinates that are invariant under the subgroupW ′ that acts on the external

roots. Explicitly, W ′ acts as the permutations S2 × S2 on the parameters (t1, t2) and (t3, t4)

respectively. Defining the symmetric polynomials:

σi(z1, ..., zn) =
∑

j1,...,ji distinct

zj1 · ... · zji , (1.27)

we find that the W ′-invariant deformation space of the A3 family is spanned by the coordi-

nates:

σi(t1, t2) and σ̃i(t3, t4) (1.28)

which are nothing but the symmetric polynomials of degree i = 1, 2 in the parameters (t1, t2)

and (t3, t4). Moreover, the condition
∑n+1

i=1 ti = 0 valid for the An deformations enforces
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σ1 = −σ̃1. Passing from the parameters ti in (1.24) to the new coordinates σi, σ̃i we get the

hypersurface:

deformed A3 : x2 + y2 +
(
z2 + σ1z + σ2

) (
z2 + σ̃1z + σ̃2

)
= 0, (1.29)

which is an example of a flop of length 1, with which we will deal in closer detail later on.

The deformed A3 family (1.29) admits only the resolution of the central node of the

corresponding Dynkin diagram, be it on the origin of the deformation space or appearing

in a subsingularity. This happens because we have explicitly written the family in term

of coordinates that are Weyl-invariant under W ′ generated by the external roots. Had we

chosen a different W ′, we would have found a different allowed simultaneous resolution. In

later chapters, we will see this concretely, showing why there might be obstructions that

allow to write the equation of the family only in the shape (1.29) and not in the form (1.24),

that would yield a complete simultaneous resolution, as it is written in term of coordinates

in T .
It is in this sense that we talk of partial simultaneous resolution: in the central fiber we

have only inflated the 2-cycle related to the central root. The fact that we have not resolved

the external nodes of the A3 Dynkin diagram generates a leftover A1 × A1 singularity4.

Pictorially, we can represent the resolved fiber on the origin using a colored Dynkin diagram,

where dark dots correspond to resolved 2-cycles, and the white ones to shrunk ones:

Figure 1.4: Partial resolution of A3.

In general, given a deformed ADE family expressed in terms of Weyl-invariant parameters

T /W , the family corresponding to some partial simultaneous resolution can be obtained by

pulling back T /W to T /W ′, withW ′ the Weyl group generated by the nodes of the Dynkin

diagram that are not being resolved by the partial simultaneous resolution. This happens

according to the diagram:

ZT /W ′
π−→ Ŝversal → Sversal

↘ ↓ ↓
T /W ′ ϕ→ T /W

, (1.30)

where ZT /W ′ → Ŝversal is the partial simultaneous resolution of the deformed ADE family,

which is written in terms of coordinates ϱi parametrizing T /W ′.

Let us sum up the possible base changes we have introduced so far: we have first writ-

ten the versal deformation of the ADE singularities in terms of coordinates µi ∈ T /W ,

4This is a general feature of partial simultaneous resolutions: there is a leftover singularity in the central
fiber given by the Dynkin nodes that have not been resolved.
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producing (n+ 2)-dimensional non-singular hypersurfaces. Performing a base change to the

coordinates ti ∈ T produces (n+2)-dimensional singular hypersurfaces admitting a complete

simultaneous resolution, while picking an intermediate choice with coordinates ϱi ∈ T /W ′

produces a partial simultaneous resolution. In Figure 1.5, we summarize the possible base

changes that can be done at the level of the (n+ 2)-dimensional family. Schematically, this

reads:

T −→ T /W ′ −→ T /W

1) ti 7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ µi(tj)

2) ti 7−−−−−−−−→ ϱi(tj)

3) ϱi 7−−−−−−−−→ µi(ϱj)

Figure 1.5: Three possible base changes: 1) from T to T /W, 2) from T to T /W ′, 3) from T /W ′

to T /W.

1.4 Compound Du Val threefolds

In the course of this work, we will be exclusively interested in analyzing threefolds built as

one-parameter deformations of ADE singularities: to obtain such objects, we can consider a

family of deformed ADE singularities, fibered over T /W , T /W ′ or T , and impose a depen-

dence of the deformation parameters on a single complex coordinate w ∈ Cw. We further

require5 that the deformation vanishes on top of w = 0, meaning that the fiber on w = 0

reduces to the standard Du Val singularity. Taking a look at (1.24), it is easy to realize

that such requirements impose that these one-parameter deformed ADE singularities take

the form:

x2 + Pg(y, z) + wg(x, y, z, w) = 0 (1.31)

5In almost all cases: in Section 4.6.3, we will analyze Laufer’s singularity, that does not satisfy this
property. Still, it is possible to rewrite Laufer’s singularity to satisfy this framework, although in a form
that is less suitable for the analysis of Chapter 4.
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with g an arbitrary polynomial, and where Pg classifies the ADE singularity:

PAn = y2 + zn+1

PDn = zy2 + zn−1

PE6 = y3 + z4

PE7 = y3 + yz3

PE8 = y3 + z5

(1.32)

Singularities of the form (1.31) are called compound Du Val (cDV) singularities. These will

be the form of all the singularities we will deal with in the following chapters. A crucial

property of cDV singularities that we will use in the following is the fact, proven by [84], that

all Gorenstein threefold isolated terminal singularities are of cDV form. Here, by “terminal”,

we mean that the singularity either admits no crepant resolution, or admits a small crepant

resolution (namely, a crepant resolution that inflates only one-dimensional complex curves).
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CHAPTER 2

Nilpotent orbits theory of ADE Lie algebras

In this chapter we review the mathematical underpinnings of the theory of nilpotent orbits

of ADE Lie algebras, examining some key concepts, such as Slodowy slices through nilpotent

orbits, that will be widely employed in the rest of the work. This is the subject of Section

2.1.

In addition, the introduction of the nilpotent orbits formalism naturally leads to a new

method to resolve ADE singularities, known as the Grothendieck-Springer (or just Springer,

for conciseness) resolutions.

The usefulness of Springer resolutions comes in the fact that they will inspire our treat-

ment of Higgs fields to deal with threefolds arising from deformed ADE singularities, dictat-

ing how such Higgs fields can be explicitly constructed1. Although it is possible to inspect

the physics without any reference to Springer resolutions, as we will mainly do in the fol-

lowing, we think that it is instructive, to more thoroughly understand the reasoning behind

those constructions, as well as to infer some of their properties, to start where all of this

work began, i.e. from Springer resolutions.

In addition, Springer resolutions furnish a natural way to construct explicitly deformed

ADE families related to complete or partial simultaneous resolutions, mapping the versal

deformation depending on parameters in T /W to some quotient T /W ′ admitting a simul-

taneous resolution.

In this perspective, in Section 2.2 we review the general theory for complete Springer

simultaneous resolutions, providing simple working examples for both the A and the D se-

ries (thus adding a slight contribution to the already existing mathematical literature, which

is perfectly rigorous but oftentimes lacks concrete instances of the main concepts). Then,

in Section 2.3 we focus our attention on partial Springer simultaneous resolutions, again

considering simple cases in the A and D series, highlighting the connections to the deformed

ADE singularities introduced in Chapter 1.

Main references for this chapter are the classic book by Collingwood and McGovern [112],

1As of now, this must be taken with a grain of salt: Springer resolutions are a useful tool to identify
Higgs backgrounds, although we have no rigorous proof of the procedure. On the other hand, we will show
in Chapter 3 a logically independent way, based on field-theoretic arguments, to get to the same results in
an alternative fashion.
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along with crystal clear lectures by Henderson [113] and Yun [114]. For Springer resolutions,

we also refer to the original work of Springer [115], and its generalization to the Grothendieck-

Springer resolution in [116] and [117].

As we have mentioned, we start by recapping the main tenets of the nilpotent orbits

formalism of Lie algebra elements.

2.1 Nilpotent orbits and Slodowy slices of ADE Lie

algebras

2.1.1 The nilpotent cone

Consider a Lie algebra g, and a faithful representation:

ρ : g 7→ End(V ), (2.1)

with V some finite dimensional vector space. Then we say that an element x ∈ g is nilpotent

if and only if ρ(x) is a nilpotent endomorphism of x. If ρ(x) is a matrix representation

endowed with the usual matrix product, this simply means that ρ(x)k = 0 for some finite k.

As the next basic step we define the action of the adjoint group Gad, defined as the

exponentiation of the Lie algebra g, on g itself seen as a vector space. Given an element

g ∈ g and G ∈ Gad such action reads:

g −→ G · g ·G−1 ∈ g. (2.2)

The action of the adjoint group defines the adjoint orbits, each orbit being a set of elements

in g up to the conjugation (2.2).

Furthermore, given a nilpotent element x, we define the nilpotent orbit through x as the

set of elements connected to x by the adjoint action:

Ox = Gad · x = {G · x ·G−1 | G ∈ Gad}. (2.3)

The union of all nilpotent orbits or, equivalently, the set of all nilpotent elements, con-

stitutes the nilpotent cone N of the Lie algebra g.

We can now define the adjoint quotient map χ that associates an element x ∈ g with n

polynomials in x, invariant under Gad:

χ : g→ Cn : x 7→ (χ1(x), · · · , χn(x)), (2.4)

with n the rank of the Lie algebra g. The polynomials χ are related to the Casimirs2 of g,

which are in turn in correspondence with the traces of powers of x.

2Here we call “Casimirs” of g of rank n a set of n independent polynomials built from elements of g that
are invariant under the action of the Weyl group W of g. For further details, we refer to Appendix A.
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The fibers of this map are:

χ−1(u) = {x ∈ g | χ1(x) = u1, · · · , χn(x) = un} , (2.5)

with u = (u1, . . . , un) ∈ Cn. Roughly speaking we can interpret the fiber χ−1(u) as all the

elements in g with coefficients {ui, i = 1, . . . , n} in the characteristic polynomial (this is

precisely so in the sl(n) case, while some generalizations apply in the D and E algebras,

as we will see in later chapters). It follows immediately that N = χ−1(0), because all the

coefficients vanish for nilpotent elements.

We now state a relevant theorem by Kostant, that allows us to investigate the structure

of the nilpotent cone:

Prop 2.1. (Kostant) For any u ∈ Cn, the fiber χ−1(u):

• consists of finitely many adjoint orbits (only one for generic u),
• contains a unique dense orbit, and is hence irreducible,
• has codimension n in g, and is hence a complete intersection,

where by irreducible we mean that the fiber cannot be written as the union of more than

one algebraic variety.

It follows that the nilpotent cone N = χ−1(0) is a finite union of nilpotent orbits, with

a unique dense orbit that we call Oreg, the principal (or regular) nilpotent orbit. The trivial

null orbit {0}, instead, is the one of minimal dimension and is represented by the null element

in g. There exists a partial order ≤ for the nilpotent orbits, defined by stating that O′ ≤ O
if O′ ⊆ O, where O indicates the closure of O. It is immediate to show that the regular

(null) nilpotent orbit is at the top (bottom) of this partial ordering.

Other relevant orbits, that will be useful in the following, are the subregular nilpotent

orbit Osubreg and the minimal nilpotent orbit Omin. They satisfy:

Osubreg < Oreg with no other O such that Osubreg < O < Oreg,

{0} < Omin with no other O such that {0} < O < Omin.
(2.6)

Summing up, the dimensions of the aforementioned nilpotent orbits are:

Orbit Dimension

Oreg dim(g)− rank(g)

Osubreg dim(g)− rank(g)− 2

Omin a

(2.7)

with a the number of positive roots in g not orthogonal (w.r.t. the usual scalar product

defined through the Killing form, as detailed in Appendix A) to the highest root of g.

Let us immediately give a concrete example of all these constructs.

Consider the Lie algebra A3 = sl(4) in its standard matrix representation. Then, it can
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be shown that the regular, subregular and minimal nilpotent orbits can be represented by

the elements:

xreg =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 , dim(Oreg) = 12,

xsubreg =


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 , dim(Osubreg) = 10,

xmin =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , dim(Omin) = 6.

(2.8)

It is evident from this example that there is some kind of relationship between nilpotent

orbits and the structure of Jordan decompositions. In the following subsection we will make

this connection precise, sketchily following the review work of [112].

2.1.2 Nilpotent orbits classification

In this section we want to briefly outline an efficient way to classify nilpotent orbits of a

generic ADE Lie algebra g. For simplicity, we will heavily rely on the matrix representations

of the A and D series, while details for the exceptional cases will be given in later chapters.

The starting point is a theorem by Jacobson and Morozov, connecting a generic nilpotent

element x with its so-called standard triple:

Prop 2.2. (Jacobson-Morozov) Given a non-vanishing nilpotent element x ∈ g, there

exists a standard triple whose nilpositive element is x,

where a standard triple is defined as a triple {x, y, H} of elements in g, respectively called

nilpositive, nilnegative and Cartan element, satisfying the relations of the su(2) algebra:

[x, y] = H, [H, x] = 2x, [H, y] = −2y. (2.9)

It can be shown that each inequivalent standard triple (equivalence being defined by conju-

gation under Gad) is in correspondence with a distinct nilpotent orbit. Furthermore, as we

will see in Appendix A, we can decompose every element in g as a sum of the Cartan and

root generators. In turn, considering the An and Dn cases, it can be proven that standard

triples are in correspondence with (possibly only some) partitions of n + 1 and 2n respec-

tively. This happens in the following way: each partition of n+1 or 2n dictates, via a precise
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dictionary, which root generators must be switched on to build the nilpositive element x and

which Cartans must be turned on in H, thus completely constraining the standard triple.

On the practical side, the classification of nilpotent orbits for the A and D series goes as:

• Choose a Lie algebra g from the An and Dn series.

• Choose one of the allowed partitions of n+1 (for the An case) or 2n (for the Dn case).

This choice identifies the nilpotent orbit.

• Associate to the chosen partition, using the dictionary, the corresponding root and

Cartan generators.

• Sum all the above root generators together, obtaining the nilpositive element x, and

all the Cartan generators, obtaining H. x is the canonical representative of the chosen

nilpotent orbit.

Let us start illustrating this procedure in the An series, which yields a straightforward con-

struction.

2.1.3 An nilpotent orbit classification

It can be shown, using the properties of the Jordan decomposition (for details and proof

of these constructions we again refer to [112]), that nilpotent orbits in the An series are

classified by all the partitions of n + 1. A generic partition of n + 1 into k parts can be

labeled as:

d = [d1, d2, . . . , dk], with d1 + d2 + . . .+ dk = n+ 1. (2.10)

We want now to understand which root and Cartan generators must be switched on to build

x and H respectively, i.e. to build a standard triple associated to the nilpotent orbit. The

dictionary between the partitions and the root and Cartan generators is as follows (modulo

Weyl transformations on the root system):

x =


Jd1 0 0 . . . 0

0 Jd2 0 . . . 0
...

...
...
. . .

...

0 0 0 . . . Jdk

 ,

H =


hd1 0 0 . . . 0

0 hd2 0 . . . 0
...

...
...
. . .

...

0 0 0 . . . hdk

 ,

(2.11)
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where Jdi are Jordan blocks of size di, and hdi are blocks of the kind:

hdi =


di − 1 0 0 . . . 0

0 di − 3 0 . . . 0
...

...
...
. . .

...

0 0 0 . . . −di + 1

 . (2.12)

We see that in order to build x, the dictionary basically prescribes to add a Jordan block

of size di for every chunk di of the partition, yielding a very simple and intuitive rule3. We

emphasize, as we will make extensive use of this fact when tackling Springer resolutions,

that the 1 entries in the Jordan blocks of x correspond to the generators of the simple roots

of An, as detailed in Appendix A. Moreover, once we have chosen a partition d and built

representatives x and H of the standard triple, also the nilnegative element y is fixed by the

su(2) algebra (2.9).

Finally, we can explicitly give the partitions corresponding to the principal, subregular and

minimal nilpotent orbit in a Lie algebra An:

Orbit Partition

Oreg [n+ 1]

Osubreg [n, 1]

Omin [2, 1n−1]

(2.13)

Let us illustrate the above construction with a concrete example: consider the algebra

A3 = sl(4). There are 5 distinct partitions of 4, and therefore there are 5 distinct nilpotent

orbits:

O[4] O[3,1] O[22] O[2,12] O[14], (2.14)

where we have used exponents as shorthand for a repeated number. Focusing on, say,

partition [2, 2], we can build explicit representatives x and H of the standard triple:

x =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , H =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , (2.15)

where we explicitly see that the partition [2, 2] has given rise to two Jordan blocks of size 2.

Having settled the An case, we can now quickly review how the story goes in the Dn series,

providing some explicit examples.

3Switching the order of Jordan blocks corresponds to a Weyl transformation on the root system, and the
order of blocks in H changes accordingly.
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2.1.4 Dn nilpotent orbit classification

As we have done in the previous subsection, we would like to have an easy way to classify

nilpotent orbits in the Dn = so(2n) series, connecting partitions of 2n to nilpotent orbits

and standard triples. A slight complication, though, immediately arises: not all partitions

of 2n label nilpotent orbits of so(2n). A partition:

d = [d1, d2, . . . , dk], with d1 + d2 + . . .+ dk = 2n, (2.16)

is a “good” partition of 2n, meaning that it labels a nilpotent orbit, if and only if its even

parts enter the partition with even multiplicity4. As a result, for the so(2n) cases we can

always subdivide partitions into chunks of the kind:

{u, u} for any u, {2s+ 1, 2t+ 1} for any s, t, (2.17)

where we take s > t as a labeling convention.

Having specified the allowed partitions, we can state the dictionary connecting them to

explicit standard triples of so(2n) made up of canonical representatives of the respective

nilpotent orbit. Though surely tedious, the dictionary between partition chunks and root

generators goes as:

• for chunks of type {u, u} choose a block of consecutive indices {m + 1, . . . ,m + u}.
Then the root generators associated to this chunk are:

{em+1 − em+2, . . . , em+u−1 − em+u}

• for chunks of type {2s+1, 2t+1} choose a block of consecutive indices {m+1, . . . ,m+

s+ t+ 1}. The root generators associated to this chunk are:

{em+1 − em+2, . . . , em+s − em+s+1, em+s + em+s+1, . . . , em+s+t + em+s+t+1}

To explicitly build the nilpositive element x of the standard triple, one has to subdivide the

chosen partitions into chunks of the above kinds, find which root generators are attached to

each chunk, and finally sum all such root generators, yielding x. As regards H, the story

goes almost exactly as in the An case: first, one orders the chunks in partition d according

to the construction of x. Then the cartan element H in the standard basis of so(2n) is made

of blocks of the following form, one for each chunk:

H =

(
D 0

0 −D

)
, (2.18)

4A subtlety, that we will never use in practical applications, arises for very even partitions, i.e. partitions
made up of only even parts: in such cases, each partition labels two different nilpotent orbits.
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with D a diagonal matrix given by:

D =


di − 1 0 0 . . . 0

0 di − 3 0 . . . 0
...

...
...
. . .

...

0 0 0 . . . −di + 1

 . (2.19)

As the last piece of useful data, we give the explicit partitions for the principal, subregular

and minimal nilpotent orbits of Dn:

Orbit Partition

Oreg [2n− 1, 1]

Osubreg [2n− 3, 3]

Omin [22, 12n−4]

(2.20)

In order to get a grasp on this seemingly abstruse construction, let us show an explicit ex-

ample.

Consider D4, the simplest non-trivial algebra in the Dn series different from An cases.

We now know that nilpotent orbits of D4 are labelled by partitions of 2 × 4 = 8 in which

even parts appear even times (or do not appear at all). The allowed nilpotent orbits are

then:

O[7,1] O[5,3] O[5,13] OI
[42] OII

[42] O[32,12]

O[3,22,1] O[3,15] OI
[24] OII

[24] O[22,14] O[18]

, (2.21)

where the superscripts I and II label the two orbits corresponding to very even partitions,

according to footnote (4).

Now we want to write an explicit standard triple for such orbits. Given its importance

in later chapters, we choose the O[7,1] nilpotent orbit, i.e. the principal orbit. Notice that

the partition [7, 1] is made up of only one chunk of the type {2s+ 1, 2t+ 1}. Therefore, the
dictionary between partitions and root and Cartan generators listed above tells us that the

chunk [7, 1] is associated to the root generators (choosing m = 0 as the starting point for

counting indices):

{e1 − e2, e2 − e3, e3 − e4, e3 + e4}. (2.22)

Taking a look at the explicit presentation of root generators in Appendix A we can imme-

diately construct the nilpositive element x of the standard triple: summing all these root
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generators we get5:

x[7,1] =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0


. (2.24)

As regards the Cartan element H of the standard triple, we proceed as outlined above. There

is only one chunk in the partition, namely [7, 1], and as a result we find that H is given by:

H[7,1] =



6 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −6 0 0 0

0 0 0 0 0 −4 0 0

0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 0


. (2.25)

It is easy to see that, given x and H, there exists a nilnegative element y that completes the

standard triple of the nilpotent orbit [7, 1] closing the su(2) algebra (2.9).

Having given an explicit recipe for computing nilpotent orbits and standard triples for

the An and Dn series, we can move on and continue our path towards a concrete hands-on

treatment of Springer resolutions. In the next section we deal with another key ingredient

for this task, the so-called Slodowy slices.

2.1.5 Slodowy slices

The Jacobson-Morozov theorem (2.2) associates to every nilpotent element x in g a standard

triple spanning a su(2) algebra. Restating the theorem in a slightly different fashion helps

us define the Slodowy slice.

5Here, we are representing matrices M of D4 in the standard basis of so(2n) that we define in detail in
Appendix A: {

M =

(
Z1 Z2

Z3 −Zt
1

)
| Z2, Z3 antisymmetric

}
. (2.23)
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Prop 2.3. (Jacobson-Morozov, revisited) Given a non-vanishing nilpotent element x ∈
N , there exists a nilpotent element y ∈ N , such that they satisfy a su(2) algebra:

[[x, y], x] = 2x, [[x, y], y] = −2y. (2.26)

y belongs to the nilpotent orbit Ox passing through x, and although the choice of y is not

unique it can be proven that, given a y′ ̸= y satisfying (2.3), it is connected to y by a Gad

transformation that leaves x unchanged.

We can now define the Slodowy slice Sx through x as:

Sx = {z ∈ g | [z− x, y] = 0}, (2.27)

where again a different choice for y changes the Slodowy slice only up to aGad action. Thanks

to a theorem by Kostant and Slodowy, the Slodowy slice can be thought as a subspace of g

transverse to the nilpotent orbit Ox passing through x, whose dimension is hence given by

dim(Sx) = dim(g)− dim(Ox). (2.28)

Pictorially, we can think of the geometrical setup in g described so far, with the Slodowy

slice transversally intersecting the orbit Ox ⊂ N , as:

Figure 2.1: Intersection between Slodowy slice and nilpotent cone.

Having introduced Slodowy slices, we are finally in the correct place to establish the main

theorem of this chapter, that will allow us to perform complete and partial resolutions of

ADE singularities. It is due to Brieskorn [118], and reads:
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Prop 2.4. (Brieskorn) Given an algebra g in the ADE classification, and an element x

belonging to the subregular nilpotent orbit of g, the intersection of the Slodowy slice through

x and the nilpotent cone is isomorphic to the ADE singularity related to g, i.e.

Ssubreg ∩N ∼= C2/Γ, (2.29)

with Γ the subgroup of SU(2) identifying the ADE Lie algebra.

Moreover, the family given by the intersection of the Slodowy slice through x with the fiber of

the quotient adjoint map (2.5) is isomorphic to the versal deformation of the corresponding

ADE singularity, namely:

Ssubreg ∩ χ−1(u) ∼= versal def of C2/Γ. (2.30)

Let us clarify the meaning of the theorem by giving some intuition. What the isomor-

phism (2.29) is telling us is that we can describe an ADE singularity with a formalism relying

solely on nilpotent orbits inside the corresponding Lie algebra: taking a look at Figure 2.1,

the ADE singular surface is represented by the red curve, which is precisely the intersection

of the Slodowy slice through x with the fiber χ−1(0) of the quotient adjoint map correspond-

ing to vanishing Casimirs of the algebra, i.e. the nilpotent cone N = χ−1(0). In this view,

the nilpotent element x itself is in correspondence with the singular point, that is the origin

in the algebraic definition of the ADE surface (1.2). In addition, taking the intersection

of the Slodowy slice with a generic fiber χ−1(u) of the quotient adjoint map, namely going

outside the nilpotent cone and roaming through the Slodowy slice, we get a deformed ADE

singularity6. Varying u, one gets a family of deformed ADE singularities over T /W .

What we want to do next is exploit the formalism developed up to now to simultaneously

resolve, be it completely or partially, the deformed families Ssubreg ∩ χ−1(u). As a bonus,

Springer resolutions will also allow to naturally define deformed ADE families corresponding

to complete and partial simultaneous resolutions.

In the next section we give the general recipe for complete resolutions, and then imme-

diately delve into explicit examples.

2.2 Complete Springer resolutions

As previously hinted, we can employ the tools furnished by Slodowy slices to perform a

simultaneous complete resolution of the family Ssubreg ∩ χ−1(u) parameterized by the coor-

dinates ui, with the special case {ui = 0 ∀i} being the undeformed singularity, i.e. simply

C2/Γ. In this section, we are letting u vary along Cn = T /W , and hence we are considering

the full versal deformation of the ADE singularity.

The technique allowing us to perform such a task is the Grothendieck-Springer simulta-

neous resolution, that plays with the following ingredients:

6This implies that the parameters ui are related by an invertible change of coordinates to the versal
deformation parameters µi introduced in Chapter 1.
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• Elements x ∈ Ssubreg ∩ χ−1(u).

• Borel subalgebras b (for a quick recap of Borel subalgebras aimed at our purposes, see

Appendix A).

• The closed subvariety B of g formed by all Borel subalgebras.

Putting all these pieces together, the resolution is given by the projection map:

π : ˜Ssubreg ∩ χ−1(u)→ Ssubreg ∩ χ−1(u), (2.31)

where we have:
˜Ssubreg ∩ χ−1(u) = {(x, b) ∈ Ssubreg × B | x ∈ b}. (2.32)

Intuitively speaking, the resolution consists in associating to each element x ∈ Ssubreg ∩
χ−1(u) the variety of Borel subalgebras that contain x itself. This means that the fiber over

x, the Springer fiber, is:

π−1(x) = {Borel subalgebras containing x}. (2.33)

From a diagrammatic point of view, the resolution goes as follows (with T the Cartan

subalgebra and W the Weyl group of g):

˜Ssubreg ∩ χ−1(u) Ssubreg ∩ χ−1(u)

T T /W

π

ϕ χ

p

, (2.34)

where ϕ is a map extracting the eigenvalues of an element of the Lie algebra g and expanding

them in a basis of the Cartan subalgebra T , χ is the adjoint quotient map defined in (3.86),

i.e. the map extracting the Casimirs of an element in g, and p is a map from the Cartan

subalgebra T to the invariant coordinates on T /W .

Notice that the resolved space ˜Ssubreg ∩ χ−1(u) is mapped to the full Cartan subalgebra,

whereas the starting family Ssubreg ∩ χ−1(u) is mapped to the Cartan subalgebra quotiented

by the full Weyl group. In practice this means that the resolved ADE singularity will be

written in terms of Weyl covariant coordinates if we look at ˜Ssubreg ∩ χ−1(u), whereas the

projection to Ssubreg ∩ χ−1(u) is expressed with Weyl invariant coordinates, exactly as we

have seen in the course of Chapter 1.

The fundamental technical step needed in order to perform concrete computations is the

correspondence, valid if we restrict to the An case (we will deal with the Dn case in due

time), between the variety B spanned by Borel subalgebras and the set of complete flags F ,
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defined as:

F :=
{
0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ Cn+1 | dimVi = i

}
. (2.35)

The idea of the Springer resolution is then to define the fiber of the resolution map π−1(x)

as the variety of flags that are preserved by x ∈ Ssubreg ∩ χ−1(u) itself, where x acts on each

space composing a flag as a matrix in the fundamental representation. In other words, the

Springer fibers are:

π−1(x) = {Flags preserved by x}. (2.36)

Summing up the procedure we have outlined so far, in order to find the simultaneous

resolution of Ssubreg ∩ χ−1(u) we should go through the following (completely mechanical)

steps:

• Consider an ADE Lie algebra g, compute its subregular nilpotent orbit and choose a

specific element x belonging to the orbit.

• Compute the Slodowy slice Ssubreg through x.

• Write the intersection of the Slodowy slice with the fibers of the adjoint quotient map

Ssubreg ∩ χ−1(u).

• For each element x of Ssubreg ∩χ−1(u), find all the complete flags in F preserved by x,

that is the complete flags such that x(Vi) ⊆ Vi, ∀i.
On the nilpotent cone N this last relation becomes x(Vi) ⊆ Vi−1, ∀i. For each x, call

f the set of flags that it preserves.

• The simultaneous resolution of the ADE singularity of type g is then given by the map

(2.31), with:
˜Ssubreg ∩ χ−1(u) = {(x, f) ∈ Ssubreg ×F}. (2.37)

Although apparently rather involved, the above strategy to infer the simultaneous resolution

of an ADE singularity is computationally straightforward. In order to concretely ground

these ideas, we show an explicit example, considering the A2 Lie algebra.

2.2.1 Complete Springer resolution of A2

The first ingredient we need is the subregular nilpotent orbit of A2: taking a look at ta-

ble (2.13) we see that Osubreg is in correspondence with the partition [2, 1] which can be

represented by the element:

x =

 0 1 0

0 0 0

0 0 0

 . (2.38)
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A suitable y satisfying (2.9) can hence be chosen as:

y =

 0 0 0

1 0 0

0 0 0

 . (2.39)

Performing a straightforward linear algebra computation, the Slodowy slice Ssubreg through

x turns out to be given by the matrices:

Ssubreg =


 a 1 0

b a c

d 0 −2a

 ∣∣∣∣∣ a, b, c, d ∈ C

 . (2.40)

The computation of the characteristic polynomial of the matrices in Ssubreg gives (calling u1
and u2 the coefficients of the polynomial, which are also the Casimirs of Ssubreg):

u1 = 3a2 + b,

u2 = 2a(b− a2) + cd.
(2.41)

If we restrict to the nilpotent cone, that is to χ−1(0), we find:

Ssubreg ∩N =


 a 1 0

−3a2 a c

d 0 −2a

∣∣∣∣∣ 8a3 = cd

 , (2.42)

where we notice that the constraint equation 8a3 = cd is exactly the A2 singular surface, as

expected from theorem (2.4).

If, on the other hand, we take ui ̸= 0 we get:

Ssubreg ∩ χ−1(u) =


 a 1 0

b a c

d 0 −2a

 ∣∣∣∣∣ 8a3 − cd− 2au1 + u2 = 0

 , (2.43)

with the constraint equation being the semiuniversal deformation of the A2 singularity, the

coordinates u1 and u2 representing the Weyl-invariant parameters deformation living on

T /W .

We are now interested in performing a simultaneous complete resolution in the general

case Ssubreg ∩ χ−1(u). It is convenient, for a more intuitive understanding of the struc-

ture of the Springer fibers, to subdivide the analysis according to the region of the space

Ssubreg ∩ χ−1(u) we are considering.
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• ui ̸= 0 ∀i
The matrices in (2.40) possess 3 distinct eigenvectors (i.e. vectors spanning subspaces

preserved by the action of (2.40)) v1, v2, v3, functions of a, b, c, d.

We would like to build flags of the kind (2.35) out of these vectors. As we will

also see for more involved cases, it is more convenient to use the Jordan form of the

matrix in order to compute the preserved flags (noting that we could reconstruct the

original preserved flags conjugating by the action of some element in Gad). In this case

the Jordan form is nothing but a diagonal matrix with the eigenvalues as entries, and

with the vectors of the canonical basis e1, e2, e3 as eigenvectors. It is clear that the

spaces spanned by some combination of them satisfy x(Vi) ⊆ Vi, ∀i. As a result, all

the possible invariant subspaces we can build using e1, e2, e3 are:

1− dim : < e1 > , < e2 > , < e3 >

2− dim : < e1, e2 > , < e1, e3 > , < e2, e3 >

3− dim : C3

(2.44)

Clearly, given a choice of a 1-dim subspace, we have two options for a 2-dim

subspace such that V1 ⊂ V2, so we obtain a total of 3× 2× 1 = 3! combinations, with

each combination being a different flag.

We have shown, as a result, that if all the ui differ from 0, each point x in g

corresponds to 6 points in the Springer fiber.

We can readily notice that the deformed surface (2.43), expressed as a function

of the deformation parameters ui ∈ T /W , which are the Casimirs of Ssubreg, can be

rewritten in terms of its eigenvalues, which in general are Weyl-covariant, and thus are

coordinates on T .

In order to do so we stick to the case of generic uis, so that we can diagonalize the

matrices of the Slowody slice (2.43). Calling the eigenvalues ξ1, ξ2, ξ3 we can write: a 1 0

b a c

d 0 −2a

 ∼
 ξ1 0 0

0 ξ2 0

0 0 ξ3

 with ξ1 + ξ2 + ξ3 = 0. (2.45)

This is exactly equivalent to choosing a flag of the kind:

F = {0 ⊂ < v1 > ⊂ < v1, v2 > ⊂ < v1, v2, v3 > = C3}, (2.46)

provided that v1, v2, v3 are the eigenvectors relative to the eigenvalues ξ1, ξ2, ξ3 respec-

tively.

We can now express the Casimirs ui in terms of the eigenvalues ξi, obtaining:

u1 = ξ21 + ξ22 + ξ1ξ2,

u2 = −ξ1ξ2(ξ1 + ξ2).
(2.47)
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Once inserted back into the expression (2.43) of the versal deformation of A2, the

relations (2.47) yield the usual presentation (1.24) in terms of coordinates on T , once
we substitute ξi ↔ ti.

This is a remarkable point: we have seen that the Springer resolution, employing

the tool of Slodowy slices, offers a natural way to map the deformed A2 family fibered

on T /W to the family on T , with a completely automatic computation. This feature

recurs in all deformed ADE cases, and works also in the case of partial simultaneous

resolutions, as we will see momentarily.

• ui = 0 ∀i and (a, b, c, d) ̸= (0, 0, 0, 0)

This choice equals going on top of the nilpotent cone, but outside of the origin

(which is the A2 singular point). In this region we can put the matrices (2.42) in the

following Jordan form:  0 1 0

0 0 1

0 0 0

 , (2.48)

which preserves the single flag:

F = {0 ⊂ < e1 > ⊂ < e1, e2 > ⊂ C3}. (2.49)

We see then that the Springer fiber over the nilpotent cone is composed of a single point.

• ui = 0 ∀i and (a, b, c, d) = (0, 0, 0, 0)

We are on top of the singular point. The matrix (2.40) corresponding to this point is:

x =

 0 1 0

0 0 0

0 0 0

 . (2.50)

In the canonical basis we have Ker(x) =< e1, e3 > and Im(x) =< e1 >.

We can then see that we get two possible flags:

F1 = {< αe1 + βe3 > ⊂ Ker(x) ⊂ C3},
F2 = {Im(x) ⊂ < e1, αe2 + βe3 > ⊂ C3},

(2.51)

with α and β some complex parameters. Therefore, these two families of flags corre-

spond to two P1’s, and their intersection is:

F1 ∩ F2 = {< e1 > ⊂ < e1, e3 > ⊂ C3}, (2.52)

which is a single point. In other words, we have obtained two 2-spheres intersecting at

one point, exactly as expected for the resolution of the A2 singularity.
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• We conclude the analysis of the Springer fibers by studying a class of A1 subsingulari-

ties in the A2 deformation, thus showing that the Grothendieck-Springer resolution is

indeed a complete simultaneous resolution, where all the singular fibers of the deformed

family are smoothed out.

We recall that the generic deformation for a A2 singularity can also be written as

(1.24):

(2a+ t1)(2a+ t2)(2a+ t3)− cd = 0 with t1 + t2 + t3 = 0, (2.53)

where t1 and t2 are the deformation parameters. We now consider specific slices of the

deformation space, giving rise to A1 subsingularities. The conditions to be imposed on

the tis turn out to be:

(A) t1 = t2 ≡ t, (B) t1 = −2t2 ≡ −2t, (C) t2 = −2t1 ≡ −2t, (2.54)

where all the choices are related by the action of the Weyl group on the parameters ti.

It is relevant to recall that, for a generic value of the tis in the deformed surface

(2.53), there are three (not independent) 2-cycles with non-zero volume, representing

the simple roots αi of the A2 algebra and the other positive roots7. The volumes αi of

these spheres can be written accordingly to equation (1.26):

αi = ti − ti+1, with
3∑

i=1

ti = 0. (2.55)

As a result the three cases (2.54) correspond to shrinking the volumes of one of the

positive roots, thus leaving only one inflated sphere (because the other two become

trivially coincident), representing the remaining A1 algebra. The volumes of the three

roots are:

(A)


α1 = 0

α2 = 3t

α1 + α2 = 3t

(B)


α1 = −3t
α2 = 0

α1 + α2 = −3t
(C)


α1 = 3t

α2 = −3t
α1 + α2 = 0

(2.56)

Inserting the constraints (2.54) in the deformed surface (2.53) we find in all the three

cases:

8a3 − 6at2 − 2t3 − cd = 0. (2.57)

Comparing this equation with (2.43) we note that the Casimirs of the Slodowy slice

7In the case of A2 the positive roots are α1, α2, α1 + α2.
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u1 and u2 depend on the deformation parameters ti, and should satisfy:{
u1 = 3t2

u2 = −2t3
=⇒

{
3a2 + b = 3t2

2a(b− a2) + cd = −2t3
. (2.58)

Moreover, noticing that the surface (2.57) is singular at the point (a, c, d) = (− t
2
, 0, 0),

and using the relations (2.58) we should find constraints on b, c, d, which turn out to

be:

c = d = 0, b = 9a2. (2.59)

In this way we have obtained the subregion of the Slodowy slice of A2 (2.40) whose

elements are A1 singular points, because their Casimirs satisfy (2.58):

SA1
subreg =


 a 1 0

9a2 a 0

0 0 −2a

 ∣∣∣∣∣ a ∈ C

 . (2.60)

These matrices have three non-zero eigenvalues, two of which are equal:

Eigenvalues: (−2a,−2a, 4a). (2.61)

They correspond to three distinct eigenvectors:

v1 =

0

0

1

 , v2 =

− 1
3a

1

0

 , v3 =

 1
3a

1

0

 . (2.62)

We can therefore diagonalize SA1
subreg, putting them in the form:

SA1
subreg ∼

 −2a 0 0

0 −2a 0

0 0 4a

 , (2.63)

with eigenvectors e1, e2, e3 in the canonical basis.

With these vectors we can build only three families of flags that are preserved by

the diagonal matrices (2.63):

F1 = {0 ⊂ < αe1 + βe2 > ⊂ < e1, e2 > ⊂ C3},
F2 = {0 ⊂ < e3 > ⊂ < e3, αe1 + βe2 > ⊂ C3},
F3 = {0 ⊂ < αe1 + βe2 > ⊂ < αe1 + βe2, e3 > ⊂ C3}.

(2.64)

These flags corresponds to three non-intersecting P1’s, each copy representing one of

the Weyl-related cases (2.54):
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This is in exact correspondence with what we expected from the analysis of the volumes of

the roots in (2.56): choosing the Casimirs ui of the Slodowy slice in such a way to produce an

algebraic equation exhibiting subsingularities, automatically triggers a Springer simultane-

ous resolution smoothing out the very same subsingularities. We see then that there exists

a close relationship between Casimirs of the Slodowy and allowed Springer simultaneous

resolution: the eigenvalues of the Slodowy slice (2.63) are in one-to-one correspondence with

the deformation parameters (2.54) living in T that define the subsingularities; in turn, the

eigenvalues of the Slodowy slice completely predict the Springer simultaneous resolution, via

the flags preserved by the form (2.63). This relationship will be a key fact in constructing

adjoint Higgses corresponding to threefolds built as deformed ADE singularities, as we will

see in Chapter 3.

Summary

Summing up the results of this first example, the Grothendieck-Springer simultaneous reso-

lution for the family Ssubreg ∩ χ−1(u) has yielded the following results:

• For all ui ̸= 0, i.e. on a generic point of the deformed A2 family, the Springer fiber

contains 3! = 6 distinct points, consistently with the number of elements in the full

Weyl group of A2.

• For all ui = 0 and (a, b, c, d) ̸= (0, 0, 0, 0), i.e. on top of the nilpotent cone, correspond-

ing to the undeformed A2 singularity, the Springer fiber contains a single point.

• For all ui = 0 and (a, b, c, d) = (0, 0, 0, 0), i.e. on the singular fiber of the deformed A2

family, the Springer fiber contains two P1’s intersecting at a single point.

• Finally, on the A1 singular points of the form (2.60) the fiber contains three non-

intersecting copies of a P1, related by the action of the Weyl group.

The multiplicity of the Springer fibers is in perfect agreement with the diagram (2.34), that

tells us that the resolved fibers will depend on Weyl covariant coordinates living in T , and
will be related to each other by Weyl transformations.
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The structure of the complete simultaneous resolutions can finally be intuitively repre-

sented graphically, highlighting the content of the Springer fibers:

Figure 2.2: Content of the Springer fibers in the complete resolution of the A2 singularity.

We conclude this section underlining the aspects of the Grothendieck-Springer resolutions

that will be relevant for the physics of theories geometrically engineered by ADE singularities:

in our example we have examined in great detail the complete resolution of the A2 deformed

family. In order to do so, we have associated to each element of the family the complete flags

that it preserves, which are in correspondence with the Borel subalgebras of A2. As reviewed

in Appendix A, Borel subalgebras can be decomposed into the sum of a Cartan subalgebra

h, which is nothing but a diagonal Levi subalgebra L, and some nilpotent subalgebra n. In

general, a Levi subalgebra L is defined by a choice of simple roots Θ, and is generated by:

L = h⊕ ⟨Θ⟩, (2.65)

where ⟨Θ⟩ are the roots (that can be both positive and negative) generated by the set Θ.

For further details on this definition we refer to Appendix A.

In our A2 example we can decompose b as a sum of the trivial Levi subalgebra L = h

and some nilpotent part:

b =

 ∗ ∗ ∗0 ∗ ∗
0 0 ∗

 =

 ∗ 0 0

0 ∗ 0

0 0 ∗


︸ ︷︷ ︸

L

+

 0 ∗ ∗
0 0 ∗
0 0 0


︸ ︷︷ ︸

n

. (2.66)
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This decomposition is not casual: notice that a generic element of the A2 deformed family

can always be put in a diagonal form with distinct eigenvalues, according to the equivalence

(2.45). This is possible because we have not constrained in any way the deformation pa-

rameters, thus allowing a complete simultaneous resolution. Such diagonal form precisely

corresponds to the shape of the Levi subalgebra L contained in the Springer fibers. As a

result, we see that the following chain of correspondences holds:

generic x ∈ A2-deformed family ←→

 ξ1 0 0

0 ξ2 0

0 0 ξ3


︸ ︷︷ ︸
diagonalized matrix

←→

 ∗ 0 0

0 ∗ 0

0 0 ∗


︸ ︷︷ ︸

Levi subalgebra in the Springer fiber

The coordinates ξi, which are the Casimirs of the diagonal blocks of the Levi on the r.h.s.

(in the following, we will call them partial Casimirs), span the Cartan subalgebra T , and
this is why the family written in terms of the ξi admits a complete simultaneous resolution.

This is the central fact that will inspire our physical constructions in the ensuing chapters:

performing a complete resolution constrains the shape of the Levi subalgebra in the Springer

fibers, which comes equipped with its Casimirs, and we will show that this in turn fixes

the structure of the Higgs field that geometrically engineers 5d theories arising from the

compactification of M-theory on an ADE deformed singularity. We further argue that this

equivalence holds for all kind of resolutions: partial simultaneous resolutions correspond to

larger Levi subalgebras, and thus to different structures of the Higgs field.

Before getting into the details of partial Springer resolutions and fully explain the details

of the general construction, we now briefly show a last example of complete resolution, taking

into account the subtleties given by the Dn series.

2.2.2 Complete Springer resolution of D4

To set the stage for the analysis of the complete simultaneous Springer resolution of a

singularity in the Dn series, let us consider the simplest non trivial example, given by D4.

As for the A2 case, the recipe to resolve the singularity is simple: first we find the Slodowy

slice passing through an element of the subregular nilpotent orbit of D4, then intersect the

Slodowy slice with the fibers of the adjoint quotient map, producing the D4 deformed family,

and finally we compute the Borel subalgebras containing each point of the family, thus finding

the fibers of the resolution. Keeping in mind such steps, let us briefly show the main points

of the computation, with specific attention devoted to the computation of preserved flags,

which is the point differing from the An case.

Taking a look at table (2.20) the subregular nilpotent orbit of D4 ≡ so(8) corresponds to

the partition [5, 3]. Following the dictionary outlined in section (2.1.4) we immediately find

the following canonical representative x for the subregular orbit, along with its companion
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y satisfying the usual su(2) commutation relations:

x =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 −1 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0


, y =



0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

0 4 0 2 0 0 0 0

−2 0 0 0 0 0 0 0

0 0 0 0 0 −4 0 2

0 0 −2 0 0 0 −4 0

0 2 0 −2 0 0 0 0

0 0 2 0 0 0 −2 0


.

(2.67)
The Slodowy slice through x then is:

Ssubreg =



0 1 0 0 0 0 0 0

b1 0 1 0 0 0 1 0

b2 b3 0 b4 0 −1 0 1

−2b1+2b3−b4 0 0 0 0 0 −1 0

0 b5 b2 b6 0 −b1 −b2 2b1−2b3+b4
−b5 0 −2b1+ 5b3

3 −
b4
3 −b2 −1 0 −b3 0

−b2 2b1− 5b3
3 + b4

3 0 b1− 4b3
3 −

b4
3 0 −1 0 0

−b6 b2 −b1+ 4b3
3 + b4

3 0 0 0 −b4 0


,

(2.68)

where the bis are complex parameters.

The Lie algebra so(8) possesses 4 Casimir invariants, given by8:

ui = Tr(S i
subreg) for i = 2, 4, 6, ũ4 = Pfaff(Ssubreg). (2.69)

Computing them explicitly and putting ourselves on top of the nilpotent cone (that is, where

all the ui = 0) we find that the intersection of the Slodowy slice with the nilpotent cone

yields the canonical presentation (1.2) of the D4 singularity:

Ssubreg∩N =
{
matrices in Ssubreg | 81b22−500b3

(
2b23+b4b3−b24

)
= 0
}
, (2.70)

where by a trivial translation and renaming we obtain the form (1.2):

81b22−500b3
(
2b23+b4b3−b24

)
∼ x2+zy2−z3 = 0. (2.71)

The completely deformed D4 family (1.23), on the other hand, is obtained by letting

the uis be non-vanishing. After appropriate rescalings and renamings, the final (admittingly

ugly) result is:

Ssubreg∩χ−1(u) = {matrices in Ssubreg | P (x, y, z, ui) = 0} , (2.72)

8For further details on the Casimir invariants, we refer to Appendix A.
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with:

P (x, y, z, ui) =

= x2+zy2−z3−z2
(
2

3
√
2 32/3u2

)
+z

(
−3 3

√
3

2
u22−6 22/3

3
√
3u4+144 22/3

3
√
3ũ4

)
+

y

(
−6 22/3

3
√
3u4+3

3

√
3

2
u22−48 22/3

3
√
3ũ4

)
+
(
−15u32+108u2u4+288u2ũ4−192u6

)
.

(2.73)

Using this expression it is then possible to explicitly relate the parameters ui with the usual

deformation parameters δ2i, δ̃4 of the D4 deformed family (1.23).

At this point we have all the material needed in order to perform the complete simultane-

ous Springer resolution: in the last step we have to find the Borel subalgebra that contains

each point of the deformed family, i.e. each matrix of Ssubreg∩χ−1(u), which will be then

identified with the Springer fibers. As we did in the An case, for ease of computation we

would like to relate the Borel variety B formed by the Borel subalgebras of Dn with some

kind of flag variety F , encoding the flags that are preserved, in some to be defined sense, by

the elements of Ssubreg∩χ−1(u).

It turns out that the flags we are looking for in the Dn case must be isotropic flags, that

assume the form:

F = {0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Vn ⊂ V ⊥
n−1 ⊂ . . . ⊂ V ⊥

1 ⊂ C2n} with Vn = V ⊥
n ,

(2.74)

where perpendicularity is defined with respect to the following quadratic form q and bilinear

product B(v, w), where v, w are vectors in C2n:

q =

(
0 1n×n

1n×n 0

)
, B(v, w) =

1

2
(q(v+w)−q(v)−q(w)) . (2.75)

Specifying to the D4 case at hand, in order to build the Springer fibers we must look for

preserved flags of the kind:

F = {0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ V ⊥
3 ⊂ V ⊥

2 ⊂ V ⊥
1 ⊂ C8} with V4 = V ⊥

4 (2.76)

Using the presentation (2.68) we find the following flags, depending on the examined point

of the deformed family:

• On a generic point of the deformed family (2.68), that is for arbitrary deformation

parameters ui, we find 8 eigenvectors:

v1, v2, v3, v4, v5, v6, v7, v8. (2.77)
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They are all orthogonal with respect to each other, except:

(v1, v2)

(v3, v6)

(v4, v5)

(v7, v8)

(2.78)

So we can build the following number of flags:

# of flags : 8×6×4×2 = 384, (2.79)

where we notice that 384 is exactly twice the order of the Weyl group of D4, which is

192.

Why do we find twice the number of flags that we would expect from a complete

resolution of a D4 singularity? The reason is that, following [119] and [112], the D4

group acts transitively on the flags, except when a flag contains a maximal isotropic

subspace of dimension half the total dimension of the complex space (i.e. subspaces of

dimension 4, in our case). In such cases there are two distinct orbits, that are linked

by a transformation with negative determinant (for example, a series of reflections in

non-isotropic vectors).

As a result, in the case of the complete resolution, that involves complete isotropic

flags, we always have a doubling of the number of flags9.

Finally, if we want to understand whether two flags involving maximal isotropic sub-

spaces W and W ′ belong to the same orbit we should compute the codimension of

their intersection W∩W ′ inside W and W ′: if this codimension is even they belong to

the same orbit, and viceversa if the codimension is odd.

• On top of the nilpotent cone, namely on the D4 singular surface, we can reason exactly

as in the preceding paragraph, finding only a single preserved flag.

• On the origin of the deformed D4 family, namely on the point corresponding to the

singular fiber, we find 8 families of flags, each isomorphic to a P1 subdivided into two

9We should additionally notice that this fact is connected to the presence of two possible nilpotent orbits
for very even partitions in the Dn cases. In D4, indeed, we have the nilpotent orbits OI

[4,4] and O
II
[4,4].
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sets intersecting exactly in the shape of the D4 Dynkin diagram, as anticipated:

F1 = {0 ⊂ < αe1+βe4 > ⊂ < e1, e4 > ⊂ < e1, e2, e4 > ⊂ < e1, e2, e3, e4 > ⊂
< e1, e2, e3, e4, e7 > ⊂ < e1, e2, e3, e4, e6, e7 > ⊂ < e1, e2, e3, e4, e6, e7, βe5−αe8 > ⊂ C8},
F2 = {0 ⊂ < e1 > ⊂ < e1, αe2+βe4 > ⊂ < e1, e2, e4 > ⊂ < e1, e2, e3, e4 > ⊂
< e1, e2, e3, e4, e7 > ⊂ < e1, e2, e3, e4, e7, βe6−αe8 > ⊂ < e1, e2, e3, e4, e6, e7, e8 > ⊂ C8},
F3 = {0 ⊂ < e1 > ⊂ < e1, e2 > ⊂ < e1, e2, αe3+βe4 > ⊂ < e1, e2, e3, e4 > ⊂
< e1, e2, e3, e4, βe7−αe8 > ⊂ < e1, e2, e3, e4, e7, e8 > ⊂ < e1, e2, e3, e4, e6, e7, e8 > ⊂ C8},
F4 = {0 ⊂< e1 >⊂< e1, e2−e4 >⊂< e1, e2−e4, αe7+βe2 >⊂ < e1, e2−e4, αe7+βe2, αe3−β(e6+e8) > ⊂
< e1, e2, α(e6+e8)−βe3, e4, e7 > ⊂ < e1, e2, e3, e4, e6+e8, e7 > ⊂ < e1, e2, e3, e4, e6, e7, e8 > ⊂ C8},
F5 = {0 ⊂ < αe1+βe4 > ⊂ < e1, e4 > ⊂ < e1, e2, e4 > ⊂ < e1, e2, e4, e7 > ⊂
< e1, e2, e3, e4, e7 > ⊂ < e1, e2, e3, e4, e6, e7 > ⊂ < e1, e2, e3, e4, e6, e7, βe5−αe8 > ⊂ C8},
F6 = {0 ⊂ < e1 > ⊂ < e1, αe2+βe4 > ⊂ < e1, e2, e4 > ⊂ < e1, e2, e4, e7 > ⊂
< e1, e2, e3, e4, e7 > ⊂ < e1, e2, e3, e4, e7, βe6−αe8 > ⊂ < e1, e2, e3, e4, e6, e7, e8 > ⊂ C8},
F7 = {0 ⊂ < e1 > ⊂ < e1, e2 > ⊂ < e1, e2, αe3+βe4 > ⊂ < e1, e2, αe3+βe4, βe7−αe8 > ⊂
< e1, e2, e3, e4, βe7−αe8 > ⊂ < e1, e2, e3, e4, e7, e8 > ⊂ < e1, e2, e3, e4, e6, e7, e8 > ⊂ C8},
F8 = {0 ⊂ < e1 > ⊂ < e1, e2−e4 > ⊂ < e1, e2−e4, αe7+βe2 > ⊂ < e1, e2, e4, e7 > ⊂
< e1, e2, α(e6+e8)−βe3, e4, e7 > ⊂ < e1, e2, e3, e4, e6+e8, e7 > ⊂ < e1, e2, e3, e4, e6, e7, e8 > ⊂ C8}.

Their intersection pattern can be explicitly computed, yielding two copies of the D4

Dynkin diagram:

Again, the fact that we have two sets of spheres intersecting in the shape of the D4 Dynkin

diagram is due to the fact that the flags preserve an isotropic subspace of dimension half

that of the total complex space C8, thus doubling the counting.

Having settled the discussion for the Springer complete simultaneous resolution of both

An andDn cases, we can finally concentrate our attention to partial simultaneous resolutions,

which can be thought of as particular cases of complete Springer resolutions, and that will

be the actual tool massively employed in the following more physically-oriented chapters.
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2.3 Partial Springer resolutions

In this section, we focus our efforts onto partial Springer simultaneous resolutions, that in-

volve as key ingredients the so-called parabolic subalgebras of a Lie algebra g. For a quick

reminder of how parabolic subalgebras of an ADE Lie algebra arise, we refer to Appendix

A. Here we concentrate exclusively on their practical applications.

Parabolic subalgebras p of a Lie algebra g can be sketchily defined as those subalgebras

that contain a Borel subalgebra b. Practically speaking, each parabolic subalgebra is related

to a choice of positive roots Θ ∈ ∆simple roots (with ∆simple roots the set of all simple roots

of g). The corresponding parabolic subalgebra pΘ can be built taking the Cartan and root

generators of the standard Borel subalgebra and adding the generators of all the roots (both

positive and negative) generated by Θ.

In the case of the sl(n) algebras the standard Borel subalgebra is represented in the

fundamental representation by the upper triangular matrices, and the generators associated

to the simple roots αi = ei−ei+1 are represented by the matrices Xi,i+1 defined in Appendix

A. Parabolic subalgebras are built by adding these matrices (depending on what choice of

the simple roots we make) to the Borel subalgebra, as we will show in a concrete example

in Section 2.3.1.

The commutative diagram encoding the partial resolution is very similar to the one of

the complete Springer resolution (2.34):

Ssubreg∩χ−1(u)
∧

Ssubreg∩χ−1(u)

T /W ′ T /W

π

ϕP χ

p

. (2.80)

Differently from the complete resolution case, ϕP is a map that takes an element in g and

extracts its W ′-invariant partial Casimirs, with W ′ the Weyl group corresponding to the

simple roots belonging to Θ.

As we have seen in the case of complete resolutions, Borel subalgebras are in one-to-one

correspondence with complete flags, that is flags that possess a subspace for each complex

dimension between 0 and n, because these are exactly the flags preserved by the action of

the Borel subalgebra.

Analogously, the variety of parabolic subalgebras is in one-to-one correspondence with

the set of partial flags, which are flags “lacking” one or more dimensions in the flag, meaning

that there is no subspace of that dimension preserved by the parabolic subalgebra.

A partial Springer resolution of an ADE singularity can therefore be performed along the

same routes as a complete resolution, provided that one makes the substitutions:

Borel subalgebras←→ Parabolic subalgebras

Complete flags←→ Partial flags
(2.81)
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As a result, the recipe to explicitly compute the partial simultaneous resolution of an ADE

singularity can be performed as follows:

• Consider an ADE Lie algebra g, compute its subregular nilpotent orbit and choose a

specific element x belonging to the orbit.

• Compute the Slodowy slice Ssubreg through x.

• Write the intersection of the Slodowy slice with the fibers of the adjoint quotient map

Ssubreg∩χ−1(u).

• Choose a set Θ of simple roots in g: the roots that are not generated by Θ will

correspond to the resolved 2-cycles in the partial simultaneous resolution.

• Identify the parabolic subalgebra corresponding to the choice of the roots, and com-

pute which subspace-dimensions are not present in the partial flags preserved by the

parabolic subalgebra. Call P the set of partial flags with these dimensions missing.

• For each element x of Ssubreg∩χ−1(u), find all the partial flags in P preserved by x,

that is the partial flags such that x(Vi) ⊆ Vi, ∀i.
On the nilpotent cone N this last relation becomes x(Vi) ⊆ Vi−1, ∀i. For each x, call

p the set of flags that it preserves.

• The simultaneous resolution of the ADE singularity of type g is then given by the map

π in (2.80), with:

Ssubreg∩χ−1(u)
∧

= {(x, p) ∈ Ssubreg×P}. (2.82)

In this recipe, we have used the word “choose” referring to the set of simple roots Θ that

dictate the pattern of 2-cycles that will arise after the resolution: it is paramount to notice

that a “choice” is possible only in the case of an ADE singularity deformed with generic

parameters ui. In the more concrete and informative cases of the following chapters, we will

make constrained choices of the deformation parameters, that will automatically also fix the

choice of Θ.

Having set up the machinery for partial Springer resolutions, we can proceed in showing

two explicit examples, once again picking simple cases in the An and Dn series.

2.3.1 Partial Springer resolution of A2

In this section, we examine the partial Springer resolution of the deformed A2 family, com-

pleting the work started in section (2.2.1) with the complete resolution.

The main ingrendient in a partial Springer resolution is the choice of simple roots Θ, that

determines the parabolic subalgebras that constitute the Springer fibers. It is easy, employ-

ing the rules of Appendix A, to classify all parabolic subalgebras of A2 (in compliance with

the notation of [112] we indicate with a ∗ the non vanishing entries in the matrices):
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Θ Parabolic subalgebra

α1

∗ ∗ ∗∗ ∗ ∗
0 0 ∗



α2

∗ ∗ ∗0 ∗ ∗
0 ∗ ∗



α1, α2

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗


As an example of partial simultaneous resolution let us choose the parabolic subalgebra

associated to Θ = α1: it is easily shown that this subalgebra does not admit any invariant

1-dim subspace. As a result the partial flags we must be looking for, in order to obtain the

partial resolution, should “skip” the 1-dim subspace. In other words the partial flags Pα1

are of the form:

Pα1 = {0 ⊂ V2 ⊂ C3}. (2.83)

A similar reasoning goes for the parabolic subalgebra related to Θ = α2, except that in

this case there is no 2-dim subspace:

Pα2 = {0 ⊂ V1 ⊂ C3}. (2.84)

Recalling that, in order to build the fibers of the resolution, for each element x in the

Slodowy slice we should have x(Vi) ⊆ Vi ∀i, we obtain for each root a family of partial flags

isomorphic to P1 on the origin of the A2 deformed family where x has the form (2.38):

Pα1 = {0 ⊂ < e1, αe2+βe3 > ⊂ C3},
Pα2 = {0 ⊂ < αe1+βe3 > ⊂ C3}.

(2.85)

Pα1 corresponds to the partial simultaneous resolution where we have resolved only the 2-

cycle corresponding to α2, and viceversa for Pα2 .

Furthermore, if we pick the parabolic subalgebra corresponding to both α1 and α2 we

find that no subspace of C3 is left unchanged: as a result no 2-cycle is resolved, and so we

have effectively no resolution.

Finally, for generic ui, namely outside the nilpotent cone, we can perform the computation

as follows. We have shown that in the complete resolution we obtain 3! = 6 distinct points,
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corresponding to the flags:

F1 = {0 ⊂ < e1 > ⊂ < e1, e2 > ⊂ C3},
F2 = {0 ⊂ < e1 > ⊂ < e1, e3 > ⊂ C3},
F3 = {0 ⊂ < e2 > ⊂ < e1, e2 > ⊂ C3},
F4 = {0 ⊂ < e2 > ⊂ < e2, e3 > ⊂ C3},
F5 = {0 ⊂ < e3 > ⊂ < e2, e3 > ⊂ C3},
F6 = {0 ⊂ < e3 > ⊂ < e1, e3 > ⊂ C3}.

(2.86)

Once we pass to the partial resolution corresponding, for example, to the root α1 ∈ Θ (the

other case is completely analogous), only 3 flags remain:

F1 = {0 ⊂ < e1, e2 > ⊂ C3},
F2 = {0 ⊂ < e1, e3 > ⊂ C3},
F3 = {0 ⊂ < e2, e3 > ⊂ C3}.

(2.87)

The ratio behind this change in the preserved flags is clear when comparing the com-

mutative diagrams of the partial (2.80) and complete (2.34) resolution: while the com-

pletely resolved A2 family gets mapped to the full Cartan subalgebra T , thus getting

|W| = |S3| = 3! = 6 points, for the partial resolution the map goes to the quotiented

Cartan subalgebra T /W ′, with W ′ = S2, that leaves only 3 points.

We would finally like to relate the total Casimirs of the Slodowy slice ui ∈ T /W appear-

ing in (2.43) with coordinates adapted to the partial Springer simultaneous resolution we

are performing, namely we want to find the map from T /W to T /W ′, where W ′ is dictated

by the partial resolution. To this end, we:

• Consider the maximal Levi subalgebra contained in the parabolic subalgebra associ-

ated to the roots in Θ. For example, choosing α1 ∈ Θ, the suitable subalgebra is the

boxed one:

∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


 = A1⊕⟨α∗

2⟩

(2.88)

where the A1 addend refers to the non-resolved α1 node, and ⟨α∗
2⟩ is the U(1) generated

by the resolved node α2.

• Compute the Casimir invariants of the simple and Cartan addends in the Levi subal-
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gebra on a generic point of the Slodowy slice, that for generic ui can be diagonalized:

ξ1 0 0

0 ξ2 0

0 0 ξ3




(2.89)

• These invariants under W ′ will provide new coordinates parameterizing the deformed

surface corresponding to a partial resolution in which only the roots not belonging to

Θ are blown-up. If we chose α1 ∈ Θ we would obtain:{
ξ1

ξ2
⇒

{
σ1 = ξ1+ξ2

σ2 = ξ1ξ2

ξ3 ⇒ σ̃1 = ξ3 = −σ1

(2.90)

In this case the versal deformation (2.43) rearranges as:

8a3+2a(−σ2
1+σ2)−σ1σ2 = 0, (2.91)

where σ1 and σ2 are invariant coordinates with respect to the Weyl group W ′. By

construction, equation (2.91) is a deformed A2 family admitting only the partial si-

multaneous resolution of the node corresponding to the root α2. We have thus shown

that the formalism of the Springer resolution, computing the Casimirs of the simple

addends in the Levi subalgebra, naturally reproduces the deformed A2 family, mapping

from T /W to T /W ′.

Let us conclude the analysis of partial Springer resolutions by examining the D4 case.

2.3.2 Partial Springer resolution of D4

In this section, we briefly show how to perform a partial simultaneous Springer resolution

of the deformed D4 family where only the central node gets resolved. The motivation to

perform such a computation will become crystal clear in the following chapters, where we

will profusely employ the results of this section.

Once again, the starting point is the choice of simple roots Θ, that correspond to 2-cycles

that will not be resolved in the Springer fiber. Considering the D4 Dynkin diagram:
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we pick:

Θ = {α1, α3, α4}, (2.92)

so that only the central node will be resolved by the partial resolution. Now we have to

compute the parabolic subalgebra pΘ corresponding to the choice (2.92).

The most general Borel subalgebra of D4 reads:

b =



∗ ∗ ∗ ∗ 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ 0 ∗ ∗
0 0 ∗ ∗ ∗ ∗ 0 ∗
0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 ∗ 0 0 0

0 0 0 0 ∗ ∗ 0 0

0 0 0 0 ∗ ∗ ∗ 0

0 0 0 0 ∗ ∗ ∗ ∗


. (2.93)

In order to compute pΘ we have to add to the Borel subalgebra b all the matrix representatives

corresponding to the roots generated by the external nodes α1, α3, α4 ∈ Θ (2.93). Picking

the appropriate matrix representatives with the aid of Appendix A the result is:

pΘ =



∗ ∗ ∗ ∗ 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 0 ∗ ∗
0 0 ∗ ∗ ∗ ∗ 0 ∗
0 0 ∗ ∗ ∗ ∗ ∗ 0

0 0 0 0 ∗ ∗ 0 0

0 0 0 0 ∗ ∗ 0 0

0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 ∗ ∗ ∗ ∗


. (2.94)

It is easy to show that the matrices in pΘ preserve only partial flags of the form:

F = {0 ⊂ V2 ⊂ V6 ⊂ C8}. (2.95)

We notice that these flags do not contain a maximal isotropic subspace (i.e. a V4), and so we

do not expect to find the doubling of flags that we have observed in 2.2.2, according to [119].

Indeed a short computation shows that there is a unique family of partial flags of the

form (2.95) that is preserved on the origin of the Slodowy slice (2.68), namely on the point

possessing a singular D4 fiber:

Fcentral node = {0 ⊂ < e1, αe2+βe4 > ⊂ < e1, e2, e3, e4, e7, βe6−αe8 > ⊂ C8}. (2.96)

Geometrically, this flag, that is isomorphic to P1, corresponds to the central node that is

resolved by the partial resolution.
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Instead, on a generic point of the Slodowy slice outside the origin, we get a total of:

# of flags :
8×6
2

= 24, (2.97)

that exactly corresponds to the quotients of the cardinality of the full Weyl group and the

Weyl group generated by the roots that are not being resolved by the partial resolution:

24 =
|W|
|W ′|

=
|W|

|S2×S2×S2|
. (2.98)

Finally, as in the case of the A2 deformed family, one would like to be able to reconstruct

the algebraic expression of the D4 deformed family allowing the resolution of the central

node, defined in (1.24), by computing the Casimirs of appropriate simple addends in the

Levi subalgebra corresponding to pΘ. The Levi subalgebra in question reads:

LΘ =



∗ ∗ 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0

0 0 ∗ ∗ 0 0 0 ∗
0 0 ∗ ∗ 0 0 ∗ 0

0 0 0 0 ∗ ∗ 0 0

0 0 0 0 ∗ ∗ 0 0

0 0 0 ∗ 0 0 ∗ ∗
0 0 ∗ 0 0 0 ∗ ∗


= A1⊕A1⊕A1⊕⟨α∗

2⟩, (2.99)

where the A1 addends refer to the external nodes, while ⟨α∗
2⟩ corresponds to the resolved

central node.

With this knowledge, we can rewrite the Levi subalgebra (2.99) in a more explicit form:

LΘ =



d+k b1 0 0 0 0 0 0

b2 d−k 0 0 0 0 0 0

0 0 f+c b3 0 0 0 b5
0 0 b4 f−c 0 0 −b5 0

0 0 0 0 −d−k −b2 0 0

0 0 0 0 −b1 −d+k 0 0

0 0 0 b6 0 0 −f−c −b4
0 0 −b6 0 0 0 −b3 −f+c


. (2.100)
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The advantage of such a generic decomposition is that it displays the Casimirs of the Levi

subalgebra (2.99) in a manifest way. It is easy to show that indeed such Casimirs are:

c1 = k2+b1b2

c3 = c2+b3b4

c4 = f 2+b5b6

c2 = d

, (2.101)

and that they are related to the Casimirs of the full matrix LΘ by:

u2 = Tr(L2
Θ) = 4c1+4c2+4c3+4c4

u4 = Tr(L4
Θ) = 4c21+4c22+4c23+4c24+24c1c4+24c2c3

u6 = Tr(L6
Θ) = 4c31+4c32+4c33+4c34+60c21c4+60c22c3+60c23c2+60c24c1

ũ4 = Pfaff(LΘ) = c1c2−c1c3−c2c4+c3c4

(2.102)

By diagonalizing the Levi subalgebra (for generic ui) in the shape:

Ldiag
Θ =



ξ1 0 0 0 0 0 0 0

0 ξ2 0 0 0 0 0 0

0 0 ξ3 0 0 0 0 0

0 0 0 ξ4 0 0 0 0

0 0 0 0 −ξ1 0 0 0

0 0 0 0 0 −ξ2 0 0

0 0 0 0 0 0 −ξ3 0

0 0 0 0 0 0 0 −ξ4


, (2.103)

it is immediate to exhibit the relationship between the Casimirs (2.101) and theW ′-invariant

deformation parameters in the D4 deformed family (1.24). In the case we are considering,

namely the resolution of the central node, a choice of coordinates depending on the ξi that

are invariant under the Weyl group W ′ generated by the external nodes is:

σ1 = ξ1+ξ2, σ2 = ξ1ξ2

σ̃1 = ξ3+ξ4, σ̃2 = ξ3ξ4
(2.104)

We can then show that:

c1 =
σ2
1

4
−σ2

c3 =
σ̃2
1

4
−σ̃2

c4 =
σ̃2
1

4

c2 =
σ1
2

, (2.105)
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thus completing the bridge between the Springer resolution and the theory of deformed

singularities in the D4 case.

2.3.3 Remark: constructing ADE families admitting arbitrary par-

tial simultaneous resolutions

In the few examples we have presented in the preceding sections, we have considered versal

deformations of ADE singularities, defined as the intersection of the Slodowy slice through

the subregular nilpotent orbit with the fibers of the adjoint quotient map:

versal deformation of ADE : Ssubreg∩χ−1(u), (2.106)

where the u = (u1, . . . , un) parametrize T /W .

We have recalled that if we wish to construct a family admitting some partial resolution

dictated by the Weyl subgroup W ′, we have to consider the flags preserved by the Slodowy

slice in correspondence with some parabolic subalgebra, predicted by W ′. Parabolic subal-

gebras are, in turn, in one to one correspondence with Levi subalgebras. This amounts to

changing coordinates from T /W to T /W ′. Generically, the Levi subalgebra will be the sum

of simple addends Lh and of generators H in the Cartan subalgebra:

L =
⊕
h

Lh⊕H. (2.107)

The key point of our analysis is that the Springer resolution automatically provides the

change of coordinates from T /W to T /W ′: we have shown that computing the Casimirs of

the Slodowy slice relative to the simple and Cartan addends of the Levi subalgebra (2.107)

corresponding to the Springer resolution automatically furnishes coordinates adapted to

T /W ′.

This turns out to be particularly useful for the case of the exceptional singularities, in

which explicitly building families corresponding to a given partial resolution T /W ′, e.g.

employing the tools of [111], can be a rather cumbersome and time-consuming computation.

We show how this works in Appendix B.
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CHAPTER 3

M-theory geometric engineering

In the course of this chapter we finally reap the physical implications of the mathematical

tools that have been introduced in Chapter 1 and 2.

The arena for our considerations is constituted by M-theory placed on top of Calabi-

Yau threefolds, built from one-parameter families of deformed ADE singularities, of the

form (1.23). Before dealing with the analysis of such intricate cases, we adopt a gradual

perspective and proceed through a step by step approach:

• First, in Section 3.1 we quickly describe the theories arising from the compactification

of M-theory on a smooth Calabi-Yau threefold. This will allow us to motivate the need

for singular Calabi-Yau’s in order to obtain interesting physical phenomena.

• Then, in Section 3.2 we proceed in briefly reviewing how to characterize M-theory on

top of singular K3 surfaces, that can be described locally by the ADE singularities

(1.2), producing seven-dimensional gauge theories, extracting the corresponding IIA

description in terms of stacks of D6-branes and O6−-planes, whenever possible.

• Finally, in Section 3.3 we fiber the K3 surfaces over a complex line in a non-trivial fash-

ion, yielding the one-parameter deformed ADE families (Calabi-Yau threefolds) that

are the backbone of our M-theory constructions. Making use of the M-theory/Type

IIA duality, we flesh out the details of the corresponding D6-brane at angles and O6−-

plane system (whenever possible) in terms of a Higgs field valued in the adjoint of the

gauge group, highlighting the role of Slodowy slices and Springer resolutions. Of chief

interest for our discussions will be the five-dimensional theories that arise from the

modes localized at the intersections of the D6-branes.

In later chapters we will systematically draw the consequences of these M-theory se-

tups, in particular computing the Gopakumar-Vafa invariants of the examined CY

threefolds, and studying the Higgs branches of the 5d theories arising from M-theory

geometric engineering.
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3.1 M-theory on smooth CY threefolds

As a baby step towards the analysis of 5d theories geometrically engineered by M-theory

on deformed ADE singularities, let us start from the simpler setup of M-theory on top

of a smooth Calabi-Yau threefold, that has been examined in detail shortly after the very

discovery of M-theory [120].

At low energies, M-theory is described by 11-dimensional supergravity, which is only

made up of the supergravity multiplet, with bosonic components:

gMN graviton
with: M,N,R = 1,. . . ,11

CMNR ≡ C3 3-form gauge field
. (3.1)

The three-form gauge field is related to a four-form field strength G4 by G4 = dC3, and

satisfies the equations of motion:

d∗G4 =
1

2
G4∧G4. (3.2)

We can now consider the compactification of 11d supergravity on a generic smooth com-

pact manifold M6 (large compared to the Planck scale) characterized by the Hodge numbers

h1,1 and h2,1.

Using Kaluza-Klein reduction on the metric and the three-form gauge field it can be

shown [120] that the effective theory in five dimensions is a N = 1 theory made up of a

supergravity multiplet, h1,1−1 abelian gauge fields, as well as h2,1+1 hypermultiplets un-

charged under the abelian gauge fields. We briefly recall that in five dimensions the (bosonic

component of the) N = 1 vector multiplet is made of a real scalar and a spin-1 field, while

the hypermultiplets contain a doublet of complex scalars (charged under the R-symmetry).

Introducing the index µ = 1, . . . , 5 and the vielbein index a the field content of 11d su-

pergravity dimensionally reduced to 5d can be summed up as follows (omitting the fermionic

fields):

Supergravity multiplet: (Aµ, e
a
µ)

h1,1−1 vector multiplets: (ϕA, AA
µ ) A = 1, . . . , h1,1−1

h2,1+1 hypermultiplets: (ϕm) m = 1, . . . , 2(h2,1+1)

(3.3)

The resulting N = 1 theory in five dimensions is rather uninteresting from a physical point

of view: it features a bunch of abelian gauge fields AA
µ , along with some uncharged com-

plex scalar fields ϕm. On the other hand the Standard Model and, more generally, more

compelling quantum field theories, feature non-abelian gauge fields, as well as charged light

particles. The absence of these selling points in the context of M-theory compactified on a

smooth threefold requires a change of setting, and motivates taking into account singular

manifolds.
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3.2 M-theory on singular K3 surfaces

In this paragraph we start introducing singular manifolds into the game of M-theory com-

pactifications: we consider placing M-theory on top of a K3 surface with isolated point-like

ADE singularities, and examine the 7d low-energy description of this theory by means of the

duality with Type IIA. To this end, we follow the pedagogical expositions of [121,122].

The most relevant novelties of this setup originate near the singularity, where we will see

that new degrees of freedom, related to non-abelian gauge symmetries, arise [123, 124]. As

a consequence, for our purposes we can focus on a local patch near the singularity of the

K3 surface. This can be achieved by taking an infinite volume limit, such that gravity gets

decoupled from the theory: this means that we are considering a non-compact K3 surface,

and that we can concentrate exclusively on the gauge symmetry sector appearing at the

singularity.

One of the main tools used to analyze M-theory on local K3 surfaces displaying ADE

singularities is the M-theory/Type IIA duality, that we briefly review in the next section.

For the sake of clarity, we focus on singularities from the A series, although the discussion

can be generalized to encompass also the D cases.

3.2.1 M-theory/Type IIA duality

As is known since the pioneering work of [2], the non-perturbative limit of Type IIA string

theory is given by M-theory, that at low-energies is well approximated by 11d supergravity.

In particular, M-theory compactified on a circle is dual to Type IIA, where the size of the

circle regulates the string coupling gs. We can summarize this correspondence with the

following diagram:

M-theory 11d SUGRA

Type IIA 10d SUGRA

low-energy limit

small gs KK reduction on S1

low-energy limit

In order to see the relationship between M-theory and Type IIA explicitly, we can write

the 11d metric as follows:

ds211 = e−2φ/3ds210+e
4φ/3

(
dx11+CMdx

M
)2
, (3.4)

where x11 is the direction along the circle. If the S1 is fibered over the 10d spacetime one

has a non-trivial connection CM . e
4φ
3 is the size of the S1. In the dual language, φ is the

dilaton field, and CM is the Type IIA 1-form with 10-dimensional index M = 1, . . . , 10.

Furthermore, we see that any object that satisfies the Type IIA equations of motion

involving the dilaton, the Type IIA 1-form and the 10d metric must uplift in M-theory to

pure geometry, as they all appear in the 11d SUGRA metric (3.4).

This is precisely the case for D6-branes1: they are a solution of the 10d e.o.m. and act as

1As well as for O6-planes, though for the moment we will not be concerned with them.
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a source for the dilaton, the 1-form and the metric. Consequently, a flat D6-brane embedded

in Type IIA with flat 10d spacetime uplifts in M-theory to a pure geometric background,

given by the direct product of flat 7d spacetime and a Taub-NUT space [125]:

ds211 = ds2R6,1︸ ︷︷ ︸
flat space

+Hdr⃗2+H−1
(
dx11+j⃗ ·dr⃗

)2
︸ ︷︷ ︸

Taub-NUT

with: ∇×j⃗ = −∇H, eφ = H−3/4, H = 1+
1

2

R

|r⃗|
, R = gs

√
α′.

(3.5)

The point r⃗ = (r1, r2, r3) = 0 is the center of the Taub-NUT space, and corresponds in Type

IIA to the location of the D6-brane in the three directions transverse to its worldvolume.

The Taub-NUT space is a non-compact 2 complex-dimensional space endowed with SU(2)

holonomy, implying that it is also hyper-Kähler. Indeed, j⃗ = (j1, j2, j3) appearing in (3.5)

is the vector of the three Kähler forms of the Taub-NUT. Moreover, the Taub-NUT can be

described as a C∗-fibration, the fiber being parametrized by r3 along with the circle described

by x11, that naturally defines a S1-fibration over R3, spanned by r⃗ = (r1, r2, r3) with the S1

fiber shrinking to zero size precisely on r⃗ = 0: this signals the presence of a defect, namely the

D6-brane. Furthermore, the Taub-NUT space is smooth, provided that x11 has periodicity

2πR (with R a constant), which equals the statement that it is the coordinate parametrizing

the S1-fiber. The fact that the Taub-NUT is a S1-fibration is the key observation allowing

us to pass from M-theory to type IIA, as the S1 plays the role of the M-theory circle of (3.4).

From the physical standpoint, the size of the S1 regulates the string coupling gs.

More generally, a setup of n+1 parallel and non-coincident D6-branes uplifts in M-theory

to a purely geometric background, described by a multi-center Taub-NUT space [126,127]:

ds211 = ds2R6,1︸ ︷︷ ︸
flat space

+Hdr⃗2+H−1
(
dx11+j⃗ ·dr⃗

)2
︸ ︷︷ ︸

multi-center Taub-NUT

with: ∇×j⃗ = −∇H eφ = H−3/4 H = 1+
1

2

n+1∑
i=1

R

|r⃗−r⃗i|
R = gs

√
α′.

(3.6)

The multi-center Taub-NUT retains the properties of its single-center cousin: it is a smooth

2 complex-dimensional hyper-Kähler space with SU(2) holonomy, that can be described as a

S1-fibration over R3. The S1-fiber degenerates on the n+1 points r⃗ = r⃗i (also called centers),

that pinpoint the D6-brane locations.

From the homological point of view, the multi-center Taub-NUT admits n non-trivial

compact 2-cycles αi, i = 1, . . . n, as can be seen in the following way: consider a path along

the R3 base connecting two of the centers, say r⃗i and r⃗j, i ̸= j. The S1-fiber on the extreme

points of the path has zero size, whereas it acquires a non-vanishing radius in the interior of

the path: we see then that the path in the base times the fiber is topologically equivalent to

a 2-sphere. In this fashion, one can build n(n+1)
2

spheres, of which only n are inequivalent.
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Furthermore, these 2-spheres can be chosen in such a way as to intersect in the shape of the

An Dynkin diagram, with the nodes of the Dynkin diagram corresponding to the spheres,

and the connecting lines to the intersection points.

Consider now collapsing the centers r⃗i on the same value r⃗: the resulting space is not

smooth anymore, but develops a An singularity. The way to see this is that the coordinate

x11, to retain its 2πR periodicity after the collapse of the centers, must be modded by Zn+1,

precisely in the same way as C2/Zn+1 produces a An singularity, thanks to the McKay cor-

respondence reviewed in Chapter 1. On the Type IIA side, this equals superimposing the

D6-branes on top of each other. In the next section, we will see that this gives rise to a

U(n+1) gauge group generated by the stack of branes. This also elucidates the correspon-

dence between M-theory on An singularities and the resulting effective theory, that exhibits

precisely a non-abelian SU(n+1) gauge group.

In this picture, resolving the singularity means moving the centers of the Taub-NUT

along the same direction r3 in the C∗-fiber: this produces a set of n 2-spheres, arranged as

the An Dynkin diagram, entirely contained in the C∗-fiber. If all the points r⃗i are collinear,

this can be obtained by fixing the hyper-Kähler metric, and using the SO(3) rotating the

three Kähler forms to choose a complex structure such that all the centers are along r3. More-

over, we see that these spheres have zero holomorphic volume (because the non-vanishing

holmorphic 2-form Ω, of Hodge type (1, 1), has only one leg along the fiber). On the other

hand, if all the points r⃗i are on a plane, we can tune the complex structure in a way that

separates the centers along the plane R2 spanned by (r1, r2) producing the deformation of

the An singularity; this generates n 2-spheres with one leg along R2 and one leg along the

C∗-fiber, with non-vanishing holomorphic volume. Resolution and deformation of the An

singularities have a direct counterpart in Type IIA, that we examine in the next section.

3.2.2 M-theory on ADE singularities

Our aim is to review the physics of M-theory compactified on local K3 surfaces displaying

the ADE singularities classified in (1.2). In the preceding section, we have established a

correspondence between M-theory on a n+1-center Taub-NUT space and Type IIA with

n+1 parallel non-coincident D6-branes. When the centers of the Taub-NUT collapse on the

same point, a An singularity arises, corresponding in Type IIA to the D6-branes moving on

top of each other. We would like to extract the physical content of these setups.

As was mentioned above, the Taub-NUT space features n non-trivial compact 2-cycles,

that give rise to n normalizable harmonic 2-forms ωi, i = 1, . . . , n, via Poincaré duality. In

addition, the Taub-NUT sports an additional normalizable harmonic 2-form ω0. The Taub-

NUT is a ALF space, that in the limit R → ∞ becomes asymptotic at infinity to the ALE

space described by the C2/Zn+1 singularity [128].

Consider now the smooth phase, in which all the centers are separated. As we are working

in a low-energy regime where gravity is decoupled, thanks to the fact that the singular K3

surface is non-compact, the only perturbative objects we have to consider are modes coming
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from the M-theory 3-form C3, the Kähler form J and the holomorphic 2-form Ω along the

normalizable 2-forms ωi. We can thus dimensionally reduce C3 on the 2-forms ωi, i = 0, . . . n:

C3 =
n∑

i=0

Ai∧ωi, (3.7)

where Ai are U(1) gauge bosons depending only on the coordinates of the R6,1 orthogonal to

the Taub-NUT. Thus, reducing C3 on the Taub-NUT space yields n+1 U(1) massless gauge

fields in 7d. On the type IIA side, which is made up of n+1 D6-branes lying on R6,1 and

located on the centers r⃗i in the transverse directions, the Ai correspond to the worldvolume

U(1)’s of D6-branes. A combination of these U(1)’s can be taken as the center of mass U(1)

of the D6-brane system. From a group-theoretic perspective, the n U(1) gauge fields with

non-trivial action are turned on along the Cartan generators of the An algebra, whereas

A0 corresponds to the center of mass U(1). The reduction of Kähler and the holomorphic

2-forms gives, respectively, real scalars ξi and complex scalars ζi, that are geometric moduli

controlling the volume of the 2-spheres, and that end up with the Ai in the 7d vector

multiplets.

On the non-perturbative side, we must also take into account the presence of M2-branes

in the M-theory description. In the Taub-NUT space with generic r⃗i, the M2-branes can

wrap the corresponding 2-spheres: it can be proven [129] that the resulting particles in the

7d theory on R6,1 have the correct quantum numbers to be massive vector bosons, the mass

being proportional to the volume of the 2-spheres. Recalling that the intersection pattern

of the 2-spheres is dictated by the An Dynkin diagram, we see that the M2-branes can

wrap all the 2-cycles αi, or combinations thereof, that are 2-spheres filling all the entries in

the An root system2. M2-branes wrapping the 2-spheres with opposite orientation encode

opposite roots in the root system. Such M2-branes are of course charged under C3, and as a

consequence the massive vectors are also charged under the U(1)n+1 generators, in the right

way to correspond to the leftover An-algebra generators, as we now explain.

The charges with respect to the Cartan generators can be explicitly computed as the

integral of the Poincaré dual 2-form ωi corresponding to the Cartan generator over the

2-cycle wrapped by the M2-brane (say βj, with βj ∈ ∆, the root system of An):

qij =

∫
βj

ωi =

∫
Taub-NUT

αi ·βj. (3.8)

If we restrict the charge computation to the cycles dual to simple roots we find:

qij =

∫
αj

ωi =

∫
Taub-NUT

αi ·αj = −Aij, (3.9)

which is the Cartan matrix of the An Lie algebra, that encodes the weights of the adjoint

2This happens because the αi are 2-spheres, and a combination αi+αj is a 2-sphere in the K3 if αi+αj

is a root of An.
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representation of An. We see then that the charges of the states arising from M2-branes

wrapping the exceptional P1’s correspond to weight vectors in the adjoint representation,

and thus are compatible with the structure of the An Lie algebra. The fact that M2-branes

with opposite orientations play the role of opposite roots is a consequence of the fact that

they possess opposite weight vectors.

The Cartan generators obtained from the reduction of C3 and the M2-brane states, that

correspond to the root system of An, fill the adjoint representation of the An Lie algebra:

dim(An) =

C3 reduction︷ ︸︸ ︷
n︸︷︷︸

Cartan

+

M2-brane states︷︸︸︷
|∆|︸︷︷︸
roots

. (3.10)

In the 7d N = 1 effective theory arising from M-theory on the Taub-NUT space, if we

focus on a local patch containing its centers, we find a set of n massless vector fields Ai

corresponding to the Cartan generators, as well as |∆| massive W-bosons arising from the

M2-brane states. The fact that they are massive is a consequence of the non-zero volume of

the wrapped 2-spheres in the multi-center Taub-NUT.

In the singular limit, in which the volumes of the 2-spheres shrink to zero, the W-bosons

become massless and the gauge group in 7d enhances to the full non-abelian SU(n+1). This

is precisely what is observed in Type IIA, as we are now going to review.

3.2.3 The Type IIA perspective and the M-theory uplift

Let us now examine the physics from the Type IIA perspective.

The generators arising from the reduction of C3 descend to strings with both ends on the

same D6-brane, while the M2-branes wrapped on the 2-spheres in the Taub-NUT geometry

descend, by compactification on the M-theory circle, to strings stretching between different

D6-branes as in Figure 3.1.

Figure 3.1: M2-branes wrapped on the M-theory circle descend to strings in Type IIA. The end-
points of the strings are points in M-theory where the S1-fiber collapses.

The first are massless, whereas the latter possess a mass which is proportional to the

distance between the D6-branes.
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In Type IIA, the singular limit is taken by coalescing the n+1 D6-branes located on the

points r⃗i into a single stack. Here, the W-bosons given by strings stretching between branes

become massless, and the full SU(n+1) symmetry is realized3.

Pictorially, we can represent the singular limit as in Figure 3.2.

Figure 3.2: D6-brane configuration in type IIA: resolved and singular phases.

In this setting the movement of the D6-brane stack in the directions r⃗ = (r1, r2, r3) trans-

verse to its worldvolume are parameterized by three real scalars in the adjoint representation

ϕi, with i = 1, 2, 3, which are the lowest components of the vector multiplets related to the

D6-branes. Picking an appropriate choice of complex structure, we can conjure up two of

these real scalars into a single adjoint-valued complex scalar field:

Φ = ϕ1+iϕ2. (3.11)

Φ parameterizes the configuration of the D6-branes along a complex direction, say z. Picto-

rially, we have:

R6,1 Cz ϕ3

D6 × · ·

Table 3.1: IIA setup dual to M-th. on R6,1×ADE.

Switching on a diagonal and constant vev for Φ and ϕ3 separates the branes along the

3More precisely, this would yield a U(n+1) gauge group, although the overall center of mass U(1) can
always be decoupled, leaving only SU(n+1).
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transverse directions, Higgsing the group U(n+1) to U(1)n+1:

Φ =


v1

v2
. . .

vn+1

 , ϕ3 =


ṽ1

ṽ2
. . .

ṽn+1

 : U(n+1)→ U(1)n+1, (3.12)

where the vi ∈ C and ṽi ∈ R are constants. This process has a direct counterpart in the multi-

center Taub-NUT geometry we have previously examined: switching on a constant vev for

Φ equals separating the centers along a plane R2 that does not contain the C∗-fiber, spanned

by r3 and the S1, thus corresponding to a deformation of the An singularity. Conversely, a

constant vev for ϕ3, which is a real scalar, translates into separating the centers along the

real line parametrized by r3, contained in the C∗-fiber, resolving the singularity.

The brane locus ∆ along the z direction can be computed as the zero locus of the

characteristic polynomial of Φ, namely ∆(z) = 0, with:

∆(z) = (z−v1)·. . .·(z−vn+1), (3.13)

that clearly shows the separation of the branes along z. In the case of An singularities, the M-

theory uplift of the D6-brane locus (3.13) can be understood highlighting the structure of the

deformed A family as a C∗-fibration. Let us immediately clarify this statement, considering

the A1 singularity. Its defining equation reads:

x2+y2 = z2. (3.14)

M-theory reduced on (3.14) gives a 7d N = 1 theory with gauge group SU(2). Let us

now make the connection between M-theory and type IIA manifest. Making the change of

coordinates x = u+iv, y = u−iv, we get:

uv = z2. (3.15)

The above equation admits various C∗ ∼= S1×R actions. For our purposes, we choose the

one that acts only on the u and v coordinates, namely:

C∗-action : (u, v, z)→ (λu, λ−1v, z). (3.16)

We see then that (3.15) can be interpreted as C∗-fibration4. The S1 inside the C∗ plays the

role of the M-theory circle.

By the M-theory/Type IIA duality, the locus where the C∗-fiber degenerates, that is

when uv = 0, is precisely the D6-brane locus:

∆ = z2. (3.17)

4Indeed, fixing z and considering the equation uv = const precisely highlights the C∗-fiber.
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Notice that we could write the A1 singularity (3.14) as:

uv = det(z1−Φ), (3.18)

where in this case Φ is trivial because the D6-branes are coincident (namely, Φ is the 2×2
null matrix). Turning on a non-trivial diagonal constant vev for Φ we would get:

∆(z) = (z−v)(z+v), (3.19)

that ends up in M-theory as:

uv = z2−v2 = z2+k, (3.20)

where we have renamed k ≡ −v2, as v is just a constant. Notice that (3.20) is non-singular,

which is expected as by turning on a vev we are separating the branes, deforming the A1

singularity.

Summing up the well-known results of this section, we have briefly reviewed how M-

theory placed on top of a K3 surface locally modeled by an ADE singularity gives rise to a

7d N = 1 theory with gauge group given by the singularity on the K35.

In the next section, we focus on M-theory compactified on Calabi-Yau threefolds of a

special kind, namely built as one-parameter deformations of the ADE singularities we have

considered up to now.

3.3 M-theory on deformed ADE singularities

In the course of this section, we lay down the basic construction that constitutes the core of

the present work. The arena hosting our reasoning is M-theory compactified on a Calabi-

Yau threefold displaying an isolated singularity, and giving rise to an effective theory in five

spacetime dimensions. We focus on a specific class of Calabi-Yau threefolds: we pick the

deformed ADE singularities reviewed in (1.23), and choose a dependence of the deformation

parameters on a single complex variable w, in such a way that the resulting hypersurface

is singular at a point. Let us make the simplest of examples, writing down the equation of

the conifold. It is a deformation of the A1 singularity lying in C4, where the deformation

parameters (1.24) have been chosen as t1 = −t2 = w:

Conifold: x2+y2+z2︸ ︷︷ ︸
A1 sing

= w2︸︷︷︸
def

⊂ C4. (3.21)

Notice that for fixed w we obtain a deformed non-singular A1 singularity. This can be

straightforwardly generalized to all the other classes of deformed ADE singularities, and

hence we see that our compactification spaces can be interpreted as one-parameter families

of deformed ADE singularities, the parameter being w. These kinds of singular spaces are

5We have shown this explicitly in the A case, although the result holds also for the D and E series.
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isolated hypersurface singularities (IHS), i.e. they are expressed by a hypersurface equation

in some complex ambient space (in our case, C4), and possess a point-like singularity, that

can be conventionally put at the origin of the ambient space. IHS have been investigated

from multiple angles in the recent physical literature, focusing on M-theory and Type IIB

compactifications and studying the resulting lower-dimensional effective theories in 5d and 4d

(see e.g. [58–61,130,131] for a few recent examples). We stress that, although one-parameter

families of deformed ADE singularities constitute only a tiny subset of all possible IHS, they

display a wide range of phenomena of both physical and mathematical interest.

It is widely believed [58] that M-theory placed on top of a singular one-parameter family of

ADE singularities gives rise to aN = 1 five-dimensional superconformal field theory (SCFT).

The field theoretic data of the 5d SCFTs is by construction related to the geometrical

properties of the compactification space that originates them. As a result, if one finds a way

to study the physical content of the five-dimensional theories, non-trivial information about

the threefold singularity can be retrieved, furnishing a physical counterpart to mathematical

features of interest in their own terms. For our intents, we will see how 5d SCFTs arising

from deformed ADE singularities encode in a natural fashion the so-called Gopakumar-Vafa

(GV) invariants of the compactification threefolds. In the remainder of this work we focus

on the context:

M-theory geometric engineering

5d SCFTs

dim. red. on singular

one-parameter deformed ADE singularity

Figure 3.3: Schematic context of the work.

We aim at accomplishing two interconnected objectives:

1. Give a physics-grounded method to classify Gopakumar-Vafa invariants of non-compact

Calabi-Yau threefolds with isolated singularities, built as one-parameter families of

ADE singularities.

2. Study 5d SCFTs (in particular, extract their Higgs branch) arising from M-theory

engineered on one-parameter families of deformed ADE singularities, exhibiting an

isolated singularity.

In this respect, the main tool that will allow us to deal with problems 1 and 2 is the fact that

we will be able to associate to every one-parameter deformed ADE singularity a Higgs field

background valued in the adjoint of the corresponding Lie algebra, that completely encodes

the physics that we are interested in.

Before dealing with the details of the mathematical definition of GV invariants and the

features of 5d SCFTs, to which we will come in the following chapters, we devote the rest
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of this chapter to fleshing out the common method that will allow us to tackle the two

aforementioned key problems, seeing how the techniques based on Slodowy slices and on the

Springer resolution outlined in Chapter 2 furnish a guiding principle in constructing explicit

Higgs backgrounds. In the following sections we tackle this task in an ordered fashion, going

through the A,D,E cases separately, and summing up our results at the end of the chapter.

3.4 M-theory on deformed An singularities

In Section 3.2, we have reviewed how M-theory placed on top of ADE singularities gives rise

to a N = 1 theory in 7d with gauge group corresponding to the ADE type. In this and the

subsequent sections, we go further and show how to describe a setup arising from M-theory

on one-parameter deformed ADE singularities, as defined at the beginning of Section 3.3.

We tackle this task both in the deformed An and Dn singularities, that admit a low-energy

description in type IIA in terms of D6-branes and O6−-planes, and in the deformed E6, E7, E8

cases, that are intrinsically non-perturbative and admit no brane counterpart in Type IIA.

Let us start from the most accessible cases, namely the deformed An singularities.

3.4.1 M-theory on deformed An singularities: the type IIA setup

Consider the D6-brane setup described in Section 3.2.3. There, we have reviewed how

turning on a constant vev for the scalars describing motion transverse to the D6-brane stack

separates the branes and Higgses the 7d gauge group.

A completely different dynamics can instead be produced if the Higgs scalars Φ and ϕ3

acquire a vev that varies along the brane world-volume. To fix ideas, suppose that we turn

on a dependence of the vevs on a complex parameter w, that spans two real directions along

the brane worldvolume. In such a case, the vev Φ(w) separates the branes putting them at

angles, and intersections among different branes can arise, depending on the specific tuning

of the vev. We can rewrite (3.13) as:

∆(z, w) = (z−v1(w))·. . .·(z−vn+1(w)). (3.22)

The D6-branes now fill a common flat R4,1 spacetime, and can intersect in the extra dimen-

sions:

R4,1 Cw|Cz R
D6 × 2 dimR ·

Table 3.2: IIA setup with D6-branes at angles.

Let us see how this works in a simple example involving the A1 singularity. We consider

turning on a vev Φ(w) that depends on a complex coordinate w on the D6-brane worldvolume.
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Let us switch on the simplest of such vevs:

Φ(w) =

(
w 0

0 −w

)
. (3.23)

The brane locus gets modified and becomes:

∆(z, w) = (z−w)(z+w). (3.24)

This is a type IIA statement. Its M-theory counterpart can be understood recalling, from

Section 3.2.3, that the M-theory geometry in the An cases is a C∗-fibration, with the D6-

brane location dictating its degeneracy locus.

Turning on brane worldvolume-dependent vevs we are modifying the compactification

space of M-theory, which is no more merely a An singularity. More precisely, a non-trivial

Φ(w) deforms the An singularity and produces a threefold, adding terms dependent on the

parameter w. Uplifting the brane locus to M-theory, we obtain:

uv = (z−w)(z+w) = z2−w2, (3.25)

that is singular at (u, v, z, w) = (0, 0, 0, 0), because now no invertible redefinition of w is

possible. Going back to the variables x and y it is immediate to see that (3.25) is precisely

the equation of the conifold.

This is the key point that builds a bridge between M-theory and type IIA:

M-theory placed on top of a one-parameter deformed An singularity descends to a setup

of D6-branes at angles in Type IIA: the M-theory geometry is a C∗-fibration that degenerates

above the D6-brane locus ∆ = 0. Explicitly, the relation is given by:

IIA brane locus: ∆(z, w) = 0 ←→ M-th. geometry: uv = ∆(z, w) = det(z1−Φ(w)) ,
(3.26)

where the C∗-action leaves z and w unaffected:

C∗-action : (u, v, z, w)→ (λu, λ−1v, z, w). (3.27)

In addition, notice that the M-theory geometry in (3.26) depends on the Casimirs of the

Higgs background Φ(w), via its characteristic polynomial. We pick the following canonical

choices of the Casimirs of a Higgs background Φ(w) living in the An algebra:

An

ki = Tr(Φi+1), i = 1, . . . , n
(3.28)

Relation (3.26) allows us to rewrite M-theory on a one-parameter family of deformed ADE

singularities in terms of the Higgsing of a N = 1 supersymmetric 7d gauge theory. As we

will see, this statement can also be extended to the D series (admitting a Type IIA dual)

and to the E6, E7, E8 cases, that have no Type IIA counterpart.
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3.4.2 Higgs vs geometry: T-branes

In the example of the previous section we have seen how the conifold, which is a deformation

of a A1 singularity, arises as the M-theory uplift of a D6-brane configuration with brane locus

∆ = z2−w2, that can be encoded by a Higgs field Φ(w) dependent on the brane-worldvolume

coordinates. There is, however, a subtlety that will prove crucial in more involved examples.

Notice that in equation (3.26) the characteristic polynomial of Φ(w), which is a matrix in the

adjoint of An, appears on the right hand side. It is a known mathematical fact, though, that

the characteristic polynomial of a matrix does not completely fix the entries of the matrix.

For example, in the conifold we could have chosen the following Higgs Φ(w), different from

(3.23), but that possesses the same characteristic polynomial:

Φ(w) =

(
0 1

w2 0

)
. (3.29)

It is therefore clear that both (3.23) and (3.29), despite being different (although, in this

simple case, we could simply diagonalize (3.29) and put it into the form (3.23)), give rise to

the same M-theory geometry. Let us clarify what we precisely mean by “different”: when

we switch on a vev Φ(w), the SU(2) stack of branes6 gets deformed into two branes, located

along the loci z−w = 0 and z+w = 0. This breaks the 7d gauge group into the stabilizer of

the Higgs vev Φ(w):

7d gauge group G
turn on Φ(w)−−−−−−−→ G·Φ(w)·G−1 = Φ(w). (3.30)

Notice that for w ̸= 0 (3.23) breaks G = SU(2) to U(1), and that instead (3.29), as w varies

over the base of the fibration, completely breaks G = SU(2). Moreover, on top of w = 0

(3.23) preserves the whole SU(2), whereas (3.29), thanks to its constant entry, breaks all

the SU(2). It is in this sense that the two Higgses we have considered are not physically

equivalent.

Of course this is no new phenomenon, and the peculiar upper-triangular shape of (3.29)

on w = 0 has earned this kind of Higgses the name “T-branes”, originated in [93], popu-

larized in [94] and subsequently studied in a deluge of work [95, 109, 132–148]. In general,

T-branes are bound states of branes that, despite giving rise to the same geometry in the M-

theory dual as their diagonal Higgs cousins, encode a different physics. It is in this sense that

T-branes add information to a D6-brane configuration, that therefore cannot be considered

as a mere geometrical feature. In other words, the same M-theory geometry (or, equivalently,

Type IIA brane locus), is in general compatible with many different brane configurations,

yielding inequivalent physics. Therefore, in order to fully specify the physical content of a

theory, one has first to fix the geometry, and then a T-brane background, be it trivial (in

the case of diagonal Higgs) or non-trivial.

6We neglect the center of mass U(1), as it is never broken by the scalar vevs.
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3.4.3 Springer resolutions come into play

The reasoning of the previous section sparks some immediate questions: given an M-theory

geometry, which (if any) T-brane states are allowed? Is there a guiding principle to deter-

mine them? It turns out that the theory of Springer resolutions, introduced in Chapter 2,

provides systematic answers to these questions. Let us see how this comes about, going once

again back to the conifold.

In the preceding lines, we have built the conifold as a deformed A1 singularity, written

as the M-theory uplift of the brane locus ∆(z, w) = z2−w2. We have also shown that such

brane locus is compatible with two inequivalent choices of Higgses, (3.23) and (3.29). We

have noticed this point by guesswork, as the conifold is a very simple geometry, but, in order

to face much more generic cases, it is desirable to have a more grounded guiding principle.

In order to find a possible recipe for the construction of the Higgs backgrounds (3.23) and

(3.29), consider the complete and partial Springer resolutions of the A1 singularity, whose

formalism has been introduced in Chapter 2.

Let us briefly recall how Springer resolutions work summing up in a flash the content of

Chapter 2: given an ADE singularity, pick an element x in the subregular nilpotent orbit

of the algebra, and consider the Slodowy slice passing through x. Then, the intersection

of the Slodowy slice with the adjoint quotient map (that parametrizes the Casimirs of the

Slodowy slice) gives back the versal deformation of the chosen ADE singularity. To perform

a complete simultaneous resolution, one can consider the versal deformation point by point

(recalling that every point is an element in the Lie algebra): the fiber of the resolution map is

given by all the Borel subalgebras that contain the base point itself. Carrying out this com-

putation for all the points of the versal deformation, one obtains the whole preimage of the

resolution map, and therefore the complete simultaneous resolution of the deformed family.

If, on the other hand, one wishes to perform a partial simultaneous resolution, the fibers are

made up of all the parabolic subalgebras of a certain conjugacy class that contain the base

point. The conjugacy class is chosen according to the sought-after partial resolution, and

implies a choice of simple roots Θ, corresponding to the nodes of the ADE Dynkin diagram

that are not being resolved. Finally, in Chapter 2 we have also seen how choosing a complete

or partial resolution fixes a choice of coordinates that are invariant under the Weyl group

W ′ corresponding to the nodes that are not resolved, by using the block-diagonal decompo-

sition of the Levi subalgebra contained in the Borel or parabolic subalgebras involved in the

Springer resolution: this furnishes the pull-back map from the standard versal deformation

coordinates appearing in the Casimirs of the Slodowy slice (which are invariant under the

whole Weyl group W , indicated with ui in Chapter 2) and the correct invariant coordinates

underW ′, that we call ϱi. Notice that in the case of the complete resolution we haveW ′ = ∅
and the “invariant coordinates” are precisely the ti in the versal deformations (1.24), which

encode the volumes of the inflated P1’s via (1.26).
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Deformed A1 example

After this quick recap of the Springer resolution machinery, we can look at what happens

when we try to apply it at the A1 singularity, skipping all the unnecessary details (for the

complete formalism, we refer to Chapter 2): assume that we picked up an element in the

subregular nilpotent orbit of the algebra A1, and that we have built the Slodowy slice passing

through it. Intersecting it with the adjoint quotient map, we correctly recover the versal

deformation of A1:

x2+y2 = z2+u, (3.31)

where u is the sole independent Casimir of the Slodowy slice. To perform a simultaneous

complete resolution of the family, one has to find, point by point on the deformed family,

all the Borel subalgebras containing the chosen point, seen as an element of the Lie algebra.

In the case of A1, the Borel subalgebras take the shape (for a review of Borel and Levi

subalgebras, we refer to Appendix A):

b =

(
∗ ∗
0 ∗

)
. (3.32)

As shown in Appendix A, Borel subalgebras b can always be decomposed into a sum of the

Cartan subalgebra h and a nilpotent part n = [b, b]:

b = h⊕n. (3.33)

In the case of A1, h is simply given by the (traceless) diagonal elements, and it is the trivial

Levi subalgebra corresponding to the choice of simple roots Θ = ∅ (recalling from Chapter 2

that Θ is made up of the roots corresponding to nodes in the Dynkin diagram that are not

being resolved):

h =

(
∗ 0

0 ∗

)
. (3.34)

The shape of (3.34) is the same as the one of the Higgs background for the conifold (3.23),

but for now we could consider this fact as a mere coincidence. Also notice that (3.34) tells

us which are the correct invariant coordinates when performing the complete simultaneous

resolution. In this case we are resolving the only inflatable 2-cycle in the A1 singularity, and

therefore W ′ = ∅. Calling w the invariant coordinate under W ′, that appears in the entries

of (3.34), we can connect it with the Casimir of the A1 algebra that appears in (3.31):

h =

(
w 0

0 −w

)
⇒ Casimir of h ∝ u = w2, (3.35)

where the Casimir of h has been computed as Casimir = Tr(h·h). Substituting the expression
of the Casimir u into the versal deformation of A1 (3.31) we immediately recover the equation

of the conifold. What happens if, on the other hand, we choose to perform a partial Springer

resolution, i.e. for the A1 case a “resolution” where no node is resolved?
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For such a case, the theory of Springer resolution tells us that we have to pick the subset

of simple roots that are not being resolved, which is trivially:

Θ = α, (3.36)

where α is the only simple root of A1. Then, the fibers of the resolution are given by the

elements of the Slodowy slice contained in the parabolic subalgebras p built from Θ, which

are:

pΘ = LΘ =

(
∗ ∗
∗ ∗

)
, (3.37)

which is just the A1 algebra. We have also highlighted the fact that pΘ coincides with the

associated Levi subalgebra LΘ (recall that the parabolic subalgebra pΘ contains the standard

Borel subalgebra b, as well as all the roots ⟨Θ⟩ generated by the choice of simple roots Θ,

while the Levi subalgebra LΘ contains only the roots in ⟨Θ⟩. Hence, for the A1 case pΘ and

LΘ coincide).

Notice that in the case (3.37) the invariant coordinate under W ′, which is Z2, is given

by the Casimir of LΘ, which is the Casimir u of the A1 algebra. As a result, this choice of

partial resolution exactly corresponds to the deformed family (3.31), which is non-singular

and therefore does not admit any inflatable P1. What is of chief interest for our physical

discussion, is that the shape of the Levi subalgebra (3.37) resembles the non-diagonal Higgs

background (3.29). We can see, indeed, that we could rewrite (3.29) as:

Φ =

(
0 1

w2 0

)
=

(
0 1

u 0

)
, (3.38)

where we notice that the only independent Casimir of Φ is precisely u, the invariant coordi-

nate predicted by the partial Springer resolution. We remark that (3.38) is holomorphically

diagonalizable outside w ̸= 0, and thus can be put in the form (3.35), thus going back to

the choice of Levi (3.34). This cannot be done for all w, but only for w ̸= 0: it is in this

sense that (3.35) and (3.38) are indeed “different”. Hence, if we wish to embed a Higgs

background in (3.37), and not in one of its subalgebras, we must stick to the form (3.38).

Nevertheless, holomorphic diagonalization will not be possible in general, as we will see in

the analysis of the next chapters.

3.4.4 Higgs backgrounds and Springer resolutions in An cases

Let us summarize what we have found so far, employing the tool of Springer resolutions

and the theory of Weyl-invariant coordinates: given a one-parameter deformation of an An

Lie algebra, there seems to be a correspondence between the subalgebra in which the Higgs

background that encodes the M-theory uplift of the D6-brane locus lives, and the Levi subal-

gebra corresponding to a complete or partial resolution. We have defined Levi subalgebras in

(2.65), with additional details in Appendix A. This is consistent with the analysis of Springer
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resolutions in Chapter 2: there, given a An singularity, we have shown a correspondence be-

tween the eigenvalues of the Slodowy slice Ssubreg through its subregular nilpotent orbit, and

the Springer resolution. In the present context, by turning on a w-dependent vev for Φ we

are deforming the An singularity, which is equivalent to fixing some non-vanishing Casimirs

for Ssubreg. Finally, fixing the Casimirs predicts the corresponding Springer resolution. All

in all, we have a correspondence:

Casimirs of Ssubreg ←→ Casimirs of Φxy xy
Springer resolution ←→ Levi subalgebra containing Φ

(3.39)

As of now we have exclusively dealt with the case of the conifold, but another point

strikes the attention: the Higgs in the case of the complete Springer resolution preserves

a single U(1) outside the origin, whereas the Higgs corresponding to the partial Springer

resolution completely breaks the group. This indicates that the number of preserved U(1)’s

is in correspondence with the number of resolved nodes. This is of course no coincidence from

the quantum field theory perspective, as we will see in Section 3.7 that the Kähler parameter

of the resolution precisely appears in the vector multiplet of the preserved 7d gauge group.

Furthermore, the Levi subalgebra associated to the Springer resolution dictates which are the

correct invariant coordinates with which to write the deformed family. We can schematically

rearrange the information we have gathered so far in the conifold case:

Higgs background Levi subalgebra Resolution

Φ =

(
w 0

0 −w

) (
∗ 0

0 ∗

)
1 resolved node

(U(1) preserved)

Φ =

(
0 1

w2 0

) (
∗ ∗
∗ ∗

)
No resolution

(no U(1) preserved)

(3.40)

We must stress, at this point, that the example of the conifold has some limitations: we

have seen, indeed, that the defining equation of the conifold can be obtained directly as the

M-theory uplift of a D6-brane locus described by a diagonal holomorphic Higgs background

(3.23). Therefore, it may seem artificial (although completely consistent) to introduce the

possibility of non-diagonal Higgs backgrounds, such as (3.29), yielding no resolution, whereas

it is well known that the conifold admits a simultaneous resolution of the node of the A1

algebra from which it arises. It may be the case, though, that for some deformations of ADE

singularities no diagonal holomorphic Higgs background exists. In other words, for some M-

theory geometries there might not exist a corresponding D6-brane locus that can be obtained

as the characteristic polynomial (in the deformed An cases) of a diagonal holomorphic Higgs
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background, the only option being furnished by a non-diagonal one7. As the authors of [94]

remark, one may well try and diagonalize such non-diagonal Higgs, at the cost of introducing

non-holomorphic eigenvalues on the diagonal. This points to the fact that a non-monodromic

behaviour has been introduced, considerably complicating the field theory analysis.

It is in this context that the work presented in the following chapters offers new ways to

look at the kind of geometries that cannot be obtained from diagonal Higgses: we will show

how, given such a geometry, the theory of Springer resolutions can play the role of guiding

principle to explicitly construct a holomorphic, not necessarily diagonal, Higgs background

Φ(w), with which concrete computations can be performed. This is, although, no trivial task,

and we will see how each letter in the ADE classification displays different hurdles. While

the deformed An cases are quite straightforward, also thanks to the amount of work already

present in the literature, a description for deformed D and E series is, to our knowledge,

completely lacking. In the next pages, we will first show how to construct Higgs backgrounds

for D6-brane loci of the deformed Dn singularities, employing an O6−-plane inducing an

orientifold projection, and how to explicitly build their M-theory uplift. The E6, E7, E8

cases, instead, do not admit a perturbative description in type IIA in terms of a system of

D6-branes and O6−-planes, and different methods to extract their M-theory uplift must be

devised.

Before dealing with the above-mentioned cases, in the next section we delve deeper into

the properties of the Higgs background Φ(w).

3.4.5 The field-theoretic construction of Higgs backgrounds

In the preceding sections, we have introduced the complex scalar field Φ(w), controlling the

deformations of a stack of D6-branes along two real transverse directions. Moreover, we have

seen in (3.26) that the Casimirs of such Higgs background are related to the explicit shape

of the M-theory geometry, which is a deformed An singularity.

In this section we flesh out some properties of the Higgs background Φ(w), showing how to

dictate its shape, that must be compatible with the M-theory geometry, via gauge-theoretic

arguments. This approach is complementary to the Springer resolution perspective, and we

will use it profusely in the next chapters.

Recall that in the type IIA side, motion transverse to the D6-brane stack is parametrized

by three scalars ϕi, i = 1, 2, 3, where the first two get rearranged in the Higgs background

Φ = ϕ1+iϕ2 whose vev defines the singular geometry. The vev for Φ need not necessarily be

diagonal, namely in general we allow:

[ϕ1, ϕ2] ̸= 0 ⇒
[
Φ,Φ†] ̸= 0. (3.41)

Physically, this amounts to switching on a non-vanishing background flux F2 along Cw, in

the direction
[
Φ,Φ†] of the algebra, which is along the Cartan subalgebra.

Giving a vev to the last scalar field ϕ3, instead, corresponds to resolving the singularity,

7Indeed, in the following chapters we will mostly encounter examples of this kind.
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as its eigenvalues are the Kähler parameters that encode the volumes of the resolved 2-cycles:

as we will later see in more detail, its modes end up in the 7d vector multiplet that contains

the gauge bosons that survive the breaking induced by Φ. This fact can be expressed by the

D-term relation between Φ and ϕ3:

[Φ, ϕ3] = 0. (3.42)

Equation (3.42) tells us that if we switch on a vev for ϕ3 along the Cartan generators dual

to the simple roots that we wish to resolve, that we define as8

H = ⟨α∗
1, . . . , α

∗
f⟩ (3.43)

then the Higgs background Φ must live in the subalgebra commuting with ϕ3. This means

that:

Φ(w) ∈ L =
⊕
h

Lh⊕H, (3.44)

where L is a Levi subalgebra and Lh are simple Lie algebras.

In the example of the conifold, this implies that if we pick ϕ3 along the Cartan generator

dual to the only root in the A1 system, namely H = ⟨α∗⟩:

ϕ3 =

(
1 0

0 −1

)
, (3.45)

we end up with a Higgs background Φ of the form:

Φ =

(
∗ 0

0 ∗

)
. (3.46)

If, instead, we pick ϕ3 to be trivially null, we find:

Φ =

(
∗ ∗
∗ ∗

)
. (3.47)

Notice that the two choices for the Higgs background reproduce the ones we found using

the Springer resolution in Section 3.4.4. As a result, we see that there is a correspondence

between the roots that are not being resolved, that we called Θ in the formalism of Springer

resolutions, and the Cartan generators switched on in ϕ3, dual to the roots Θ. It is obvious

then that we have:

Θ = ∆simple roots\Θ,

where ∆simple roots is the set of simple roots of A1.

8The αi are the simple roots of the considered ADE algebra. The α∗
i can be operatively defined as those

Cartan generators orthogonal to all the simple roots except αi. They can be readily computed using the
explicit matrix representations of simple roots detailed in Appendix A.
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3.4.6 Higgs backgrounds for An cases: summary

Let us recap the key takeaways from the discussion of the previous sections:

• We have started from M-theory on one-parameter deformed An singularities, described

in the dual Type IIA picture by a setup of D6-branes intersecting at angles.

• The motion transverse to the D6-branes is controlled by three scalars ϕ1, ϕ2, ϕ3: we

have conjured up two of them into the complex scalar Φ(w) = ϕ1+iϕ2. This complex

scalar plays the role of the Higgs backround, and its Casimirs regulate the D6-brane

locus, and hence also the M-theory geometry, via (3.26). This enables us to establish

a correspondence between a given M-theory geometry and a Higgs background.

• Such correspondence, though, is not one-to-one, as there can be many different Higgs

backgrounds yielding the same M-theory geometry. These multiple choices are known

as T-brane backgrounds. In the following, given a one-parameter deformed An sin-

gularity, we will always associate to it (except when explicitly specified) the Higgs

background that breaks the 7d gauge symmetry in the least brutal way, namely the

Higgs background that inflates the maximal amount of nodes in the corresponding An

Dynkin diagram.

• The guide to build such Higgs backgrounds is provided by the theory of Springer

resolutions and the field-theoretic arguments of Section 3.4.5.

In conclusion, in the next page we gather in a schematic way all the information we need

to build Higgs backgrounds in the deformed An cases, a task that we will systematically

undertake in later chapters.
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Consider a threefold X, built as a one-parameter deformation of a An singularity. In M-

theory, we can always rewrite this geometry as:

uv = ∆(z, w) = det(z1−Φ(w)), (3.48)

where w is the deformation parameter. Φ(w) is the holomorphic Higgs background, not

necessarily diagonal, whose characteristic polynomial (that depends on its Casimirs) defines

the brane locus ∆(z, w) = 0 on the Type IIA side.

Given the maximal allowed simultaneous resolution admitted by X (namely, the resolution

inflating the largest amount of nodes), consider the Cartan generators dual to the resolved

roots, defined as:

H = ⟨α∗
1, . . . , α

∗
f⟩. (3.49)

The minimal subalgebra containing a holomorphic vev for the Higgs background Φ(w) is

then:

L =
⊕
h

Lh⊕H, (3.50)

with Lh simple Lie algebras. Generically, the Higgs background can also be embedded into

larger subalgebras containing L: these will correspond to T-brane states.

Finally, (3.48) depends on the Casimirs of Φ. For generic An cases, we pick the following

canonical choices of the Casimirs of a Higgs background Φ living in the An algebra:

An

ki = Tr(Φi+1), i = 1, . . . , n
(3.51)

In the following chapters we will dive into reaping the full results from these guiding

principles, examining a variety of different cases involving deformed An singularities.

We are now ready to complete the program of analyizing all the one-parameter deformed

ADE singularities, dealing with the D and the E cases.

3.5 M-theory on deformed Dn singularities

In this section, we tackle the case of one-parameter families of deformed Dn singularities,

expanding the recipe based on Springer resolutions presented in the deformed An examples.

Before dealing with the M-theory uplift, let us start from the Type IIA side: a setup made

up only of D6-branes is not sufficient to reproduce the features of deformed Dn singularities,

and we must introduce O6−-planes into the picture. This is not unexpected, as orientifold

planes are known to generate Dn groups on stacks of D6-branes. We take the D6-branes to

live on the target space X2 = C2[ξ, w], where w will end up being the deformation parameter

in the M-theory uplift of the Dn brane locus. This means that the D6-branes fill the flat

five-dimensional spacetime and span a curve inside C2[ξ, w]. Consider now an orientifold
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action on C2[ξ, w], acting as:

σ : (ξ, w) −→ (−ξ, w) . (3.52)

This leaves the divisor ξ = 0 invariant. On the worldsheet, the action is Ωp(−1)FL , where Ωp

is the worldsheet parity and FL is the space-time fermion number in the left-moving sector.

As we did in the An cases, we wish to describe the full CY threefold X in M-theory, which

is explicitly defined as a one-parameter deformation of a Dn singularity, as a C∗-fibration

over the brane locus of Type IIA. More precisely, as we have introduced an orientifold action

exchanging the sign of the coordinate ξ, the CY threefold will be defined as a Z2-quotient of

a C∗-fibration. We can sum up this construction in a commutative diagram:

X X

X2 X2

Z2

C∗ C∗

Z2

, (3.53)

where X2 is a double cover of X2 (which is isomorphic to C2), in which the orientifold action

exchanges the sign of ξ. We can describe explicitly the Z2-quotient as:

πZ2 :X2 −→ C2 (3.54)

(ξ, w) 7→ (z := ξ2, w) . (3.55)

This means that we can describe X2 redundantly as a hypersurface:

X2 := C[ξ, w, z]/(ξ2−z), (3.56)

where we have explicitly quotiented by the orientifold-invariant relation ξ2 = z.

3.5.1 M-theory uplift of deformed Dn singularities

We can now analyze how this setup translates into the M-theory language. In M-theory,

Ωp(−1)FL acts as the inversion on the M-theory circle S1. As in the An case, the M-theory

circle belongs to the C∗ = R×S1 fiber in the C∗-fibration X over X2. The general structure

of a C∗-fibration can be written as:

uv = K, (3.57)

for some polynomial K. Given this form, the circle inversion is tantamount to the exchange

u↔ v. As a consequence, we expect that the most general M-theory geometry X before the

Z2-quotient is represented by the equation:

(x+iξy)(x−iξy) = P (ξ2, w)−2yQ(ξ2, w) ⊂ C[x, y, ξ, w], (3.58)
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where we define u = (x+iξy) and v = (x−iξy) in order to correctly reproduce the circle

inversion under the orientifold action. The factor of 2 in front of Q(ξ2, w) is conventional,

and its usefulness will become momentarily clear. Implementing the Z2-quotient encoded by

the relation (3.56) we finally find the CY threefold X expressed as a C∗-fibration:

x2+zy2−P (z, w)+2yQ(z, w) = 0 ⊂ C[x, y, z, w]. (3.59)

Proceeding analogously to the deformed An cases, we can look for the D6-brane locus by

inspecting where the C∗-fiber in (3.59) degenerates. This can be done by computing the

discriminant of zy2−P (z, w)+2Q(z, w)y with respect to y, yielding:

∆(z, w) = Q(z, w)2+zP (z, w). (3.60)

We immediately see that on top of a point (z, w) satisfying ∆(z, w) = 0 the expression for

X becomes the difference of two squares:

x2+zy20 = 0, (3.61)

for some y0, that on the double cover where ξ2 = z becomes of the form uv = 0, which is

precisely the degeneration of a C∗-fibration, as we have seen in the An cases.

As of now, we have solely described the C∗-structure of the CY threefold encoding one-

parameter deformed Dn singularities, describing the D6-brane locus in presence of a O6−-

plane, but we have not dealt yet with the the connection between the M-theory geometry

and the Higgs background Φ(w) describing the motion transverse to the D6-branes. Let us

now address this issue, always keeping in mind the An case as a template.

In a fashion analogous to Section 3.4, M-theory placed on top of aDn singularity gives rise

to a N = 1 7d theory with gauge group SO(2n), accounted for in Type IIA by a stack of D6-

branes on top of an orientifold plane9. The three scalars ϕ1, ϕ2, ϕ3 parametrizing directions

transverse to the branes are arranged in a complex scalar Φ = ϕ1+iϕ2 and a real scalar ϕ3,

as in the An case. The deformation of the Dn singularity is encoded by a non-trivial vev for

Φ(w), dependent on a complex parameter w that spans the brane worldvolume in the extra

dimensions. The connection between the properties of Φ(w) and the explicit D6-brane locus,

as well as its M-theory uplift, is slightly more involved in comparison to the An case. More

specifically, given a Higgs background Φ(w) the D6-brane locus in the double cover X2 can

be obtained as:

∆(ξ2, w) = det(ξ+Φ(w)). (3.62)

Tracking the locus through the M-theory uplift, we end up with the double cover X of the

9More rigorously, we only know for certain that the gauge algebra in 7d is so(2n). In order to precisely
fix the group, one should carefully consider the possible choices allowed by the global structure of the
compactification space [76,149]. We will return to this ambiguity in Chapter 4.
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CY threefold, which depends on the characteristic polynomial of Φ, as well as its Pfaffian:

x2+ξ2y2−det(ξ1+Φ(w))−Pfaff2(Φ(w))

ξ2
+2y Pfaff(Φ(w)) = 0. (3.63)

Notice that this expression is analogous to (3.58), with the due identifications:

P (ξ2, w) =
det(ξ1+Φ(w))−Pfaff2(Φ(w))

ξ2
, Q(ξ2, w) = Pfaff(Φ(w)). (3.64)

We stress that, although not at first sight, P (ξ2, w) is devoid of poles, as the subtraction

of Pfaff2(Φ(w)) eliminates any term not proportional to ξ2. Performing the Z2-quotient we

obtain the full expression for the CY threefold X:

x2+zy2−
√

det(z1+Φ2)−Pfaff2(Φ)

z
+2y Pfaff(Φ) = 0, (3.65)

which is once again devoid of poles.

The remarkable point, that connects the Dn case to the An case, is that the threefold

equation depends exclusively on the Casimirs of Φ, via its characteristic polynomial and

Pfaffian. Our canonical choice for the Casimirs of Φ ∈ Dn is as follows:

Dn

k̃i = Tr(Φ2i), i = 1, . . . , n−1
k̃n = Pfaff(Φ)

(3.66)

At this point, we have at our disposal the explicit structure of the C∗-fibration, as well

as the full expression for the M-theory geometry of a deformed Dn singularity in terms of

the Type IIA Higgs background Φ(w). The last ingredient we need to start and do actual

computations is a hands-on recipe for building Higgs backgrounds explicitly: as in the An

cases, the blueprint for this task is given by the complete and partial Springer simultaneous

resolutions.

In order to see how this works in practice, let us fix ideas working on the simplest Dn

case, namely a one-parameter deformed D4 singularity.

3.5.2 Springer resolutions of D4: the Brown-Wemyss singularity

Let us consider a singular hypersurface in C4 that has been extensively studied in the math-

ematical community [92], trying to employ the machinery of Springer resolution to garner

some phyisical intuition.

The defining equation of the Brown-Wemyss singularity10 reads:

x2+zy2−(z−w)
(
zw2+(z−w)2

)
= 0 ⊂ C4. (3.67)

10In later chapters, we will give more details about such singularity, including its physical repercussions.
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It is easy to check that it is a deformed D4 singularity and that it admits a unique isolated

singularity of D4 type at the origin. Our aim is to build a Higgs background Φ such that it

reproduces equation (3.67), via the formula (3.65) that relates the shape of the Higgs with

the explicit threefold equation.

In principle, in order to perform this construction letting Springer resolutions be the

guide, one should try and look for a Higgs background in the most constrained Levi subal-

gebra of D4 = so(8), which is made up only of the Cartan generators and corresponds to a

complete resolution of the singularity. If no holomorphic Higgs of such shape can be found,

it means that a complete resolution is obstructed by the choice of the specific w-deformation

of D4 that yields the Brown-Wemyss threefold, and that therefore one should look next to a

slightly bigger Levi subalgebra, namely one involving a choice of a simple root, besides the

Cartan generators. The procedure then runs until a suitable Higgs has been found: the Levi

subalgebra in which it resides predicts the allowed partial resolution.

In the Brown-Wemyss singularity case, it turns out that the minimal Levi subalgebra

that contains an holomorphic Higgs reproducing (3.67) is the one given by the choice:

Θ = {α1, α3, α4}, (3.68)

recalling that α2 is the central root of the D4 Dynkin diagram (see Figure 3.4 for some

graphical intuition). This means that the maximal resolution allowed by the Brown-Wemyss

singularity inflates exclusively the central node of the D4 singularity at the origin.

Figure 3.4: Partial resolution of the Brown-Wemyss threefold: only the central node can be
resolved.

Translating this information into a constraint on the shape of the Higgs field, we find

that Φ should be of the following form, that we have encountered in Section 2.3.2:

L =



∗ ∗ 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0

0 0 ∗ ∗ 0 0 0 ∗
0 0 ∗ ∗ 0 0 ∗ 0

0 0 0 0 ∗ ∗ 0 0

0 0 0 0 ∗ ∗ 0 0

0 0 0 ∗ 0 0 ∗ ∗
0 0 ∗ 0 0 0 ∗ ∗


, (3.69)
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where the ∗ entries satisfy the usual conditions of the algebra so(8) and where we can notice

that all the roots generated by the set Θ have been switched on.

The result (3.69) could have been equivalently obtained as follows: consider the maximal

allowed resolution of the Brown-Wemyss threefold, inflating only the central node of the D4

Dynkin diagram. In the language of Section 3.4.5, this means taking a choice:

H = ⟨α∗
2⟩, (3.70)

with α2 the trivalent root of D4. As a consequence, the Higgs background should live in the

commutant of H, which takes precisely the form (3.69).

The form (3.69) is the farthest that the Springer resolution can bring us: from here on, we

must tune the ∗ entries so as to recover the Brown-Wemyss threefold by means of equation

(3.65). An easy try and test shows that the correct form reads:

Φ =



0 1 0 0 0 0 0 0

−w −w 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 −w
4

0 0 0 −1 0

0 0 0 0 0 w 0 0

0 0 0 0 −1 w 0 0

0 0 0 w
4

0 0 0 w
4

0 0 −w
4

0 0 0 −1 0


. (3.71)

Finally, inserting (3.71) into (3.65) immediately yields the expected Brown-Wemyss three-

fold (3.67).

A quick computation shows that the only continuous group preserved by Φ is a single

U(1), signaling, exactly as in the An cases, that a partial resolution inflating only a single

node is allowed by the shape of Φ.

We should also note that, as it happened for the An cases, this is not the only allowed

Higgs background that correctly encodes the Brown-Wemyss equations: indeed less natu-

ral Higgses, residing in larger Levi subalgebras, may exist and give rise to (3.67) via their

Casimirs: these are additional T-brane backgrounds. All these extra Higgses, though, live

in Levi subalgebras that correspond to a partial resolution with less resolved nodes with

respect to the choice (3.71). In later chapters we will give a physical interpretation also to

this kind of Higgs backgrounds.

Before summarizing the main takeaways of this section, let us check explicitly the relation-

ship between the threefold equation of the deformed D4 singularities admitting a resolution

of the central node and the Casimirs of the Higgs background Φ. In this perspective, we recall

that we have already encountered the shape (3.69) of the Levi subalgebra in equation (2.99),
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during the analysis of Springer resolutions. In that section we showed how the Casimirs

of the full matrix (3.69) are related to the partial Casimirs of the sl(2)⊕sl(2)⊕sl(2)⊕u(1)
algebra, where the sl(2) factors correspond to the non-resolved nodes, and the u(1) term

accounts for the resolution of the central node. In this way, we see that the equation that

defines the threefold (3.65) depends on the Casimirs of Φ(w), and thus also on the partial

Casimirs related to the specific resolution pattern, that is fixed by the allowed choice of

Springer resolution.

We will encounter many more examples of this line of reasoning in the following chapters,

allowing an explicit connection between the Weyl theory of the singularity and the structure

of the Higgs background.

We can at last conclude this section on deformed Dn singularities with a summary of our

finds:

Consider a threefold X, built as a one-parameter deformation of a Dn singularity. In M-

theory, we can always rewrite this geometry as:

x2+zy2−
√

det(z1+Φ(w)2)−Pfaff2(Φ(w))

z
+2y Pfaff(Φ(w)) = 0, (3.72)

where w is the deformation parameter. Φ(w) is the holomorphic Higgs background, not

necessarily diagonal, whose characteristic polynomial (that depends on its Casimirs) defines

the brane locus ∆(z, w) = 0 on the Type IIA side.

Given the maximal allowed simultaneous resolution admitted by X (namely, the resolution

inflating the largest amount of nodes), consider the Cartan generators dual to the resolved

roots, defined as:

H = ⟨α∗
1, . . . , α

∗
f⟩. (3.73)

The minimal subalgebra containing a holomorphic vev for the Higgs background Φ(w) is

then:

L =
⊕
h

Lh⊕H, (3.74)

with Lh simple Lie algebras. Generically, the Higgs background can also be embedded into

larger subalgebras containing L: these will correspond to T-brane states.

Our canonical choice of Casimirs for Φ ∈ Dn reads:

Dn

k̃i = Tr(Φ2i), i = 1, . . . , n−1
k̃n = Pfaff(Φ)

(3.75)
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3.6 M-theory on deformed E6, E7, E8 singularities

In this section, we put under the magnifying lens the ADE singularities of exceptional type

E6, E7, E8, furnishing a description of the Higgs backgrounds associated to the threefolds

arising from their one-parameter deformations.

The first and most relevant difference with respect to the An and Dn cases is that one-

parameter families of exceptional singularities do not admit a perturbative description in

terms of D6-branes and orientifold planes. As a result, if we wish to introduce a Higgs

background field Φ describing our geometrical setup, it cannot physically correspond to the

displacement of some D6-branes. This can be seen directly from the M-theory geometry,

which in our cases reads:

E6 : x2+z4+y3+ϵ2(w)yz
2+ϵ5(w)yz+ϵ6(w)z

2+ϵ8(w)y+ϵ9(w)z+ϵ12(w) = 0

E7 : x2+y3+yz3+ϵ̃2(w)y
2z+ϵ̃6(w)y

2+ϵ̃8(w)yz+ϵ̃10(w)z
2+ϵ̃12(w)y+ϵ14(w)z+ϵ̃18(w) = 0

E8 : x2+y3+z5+ϵ̂2(w)yz
3+ϵ̂8(w)yz

2+ϵ12(w)z
3+ϵ̂14(w)yz+ϵ̂18(w)z

2+ϵ20(w)y+ϵ̂24(w)z+ϵ̂30(w) = 0

,

(3.76)

where we have explicitly introduced a dependence on the ϵ, ϵ̃, ϵ̂ deformation coefficients ap-

pearing in (1.24) on a complex parameter w.

The fact that only a non-perturbative description of such geometries is possible is re-

flected by the fact that the threefolds (3.76) do not admit a C∗-fibration, that constituted

the key tool allowing us to reduce M-theory on a S1 and build its Type IIA counterpart. Nev-

ertheless, the one-parameter families of E6, E7, E8 singularities admit an elliptic fibration,

and hence we can consider F-theory compactified on them: further reducing the resulting

6d theory on a circle, we end up with an effective theory in 5d. In this picture, the Higgs

background Φ(w) is the adjoint Higgs on the stack of non-perturbative 7-branes. Let us

rephrase this procedure in the M-theory language: M-theory on the E singularities gives rise

to a 7d N = 1 theory with E gauge group (up to subtleties on the global form), and this

theory possesses three adjoint scalars ϕ1, ϕ2, ϕ3. Combining two of them into the complex

scalar Φ = ϕ1+iϕ2 we build the Higgs background Φ(w) that describes a non-trivial fibration

of the starting E singularity on the Cw plane. From here we can proceed analogously as for

the A and D cases, with no reference to D6-branes or O6−-planes.

As a consequence of the fact that no C∗-fibration is available, we should recur to slightly

different methods, compared with the An and Dn cases, to relate Higgs backgrounds living

in the exceptional algebras and the corresponding threefold equations.

Let us outline the strategy to tackle such cases. Our first objective is to relate these

Higgs backgrounds to an explicit threefold equation of the form (3.76). We will show that

the punchline is that it is indeed possible to perform this task, and that there exists a

precise relationship between the Casimirs of the Higgs background Φ ∈ E6, E7, E8 and the

deformation parameters ϵ, ϵ̃, ϵ̂ in (3.76).

For our purposes in the following chapters, it is convenient to fix the representation in
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which Φ lives, namely the fundamental of E6 and the adjoint of E7 and E8:

E6 27

E7 133

E8 248

. (3.77)

We pick a choice of the Casimirs of Φ as [150,151]:

E6 ci = Tr(Φi) for i = 2, 5, 6, 8, 9, 12

E7 c̃i = Tr(Φi) for i = 2, 6, 8, 10, 12, 14, 18

E8 ĉi = Tr(Φi) for i = 2, 8, 12, 14, 18, 20, 24, 30

, (3.78)

where it is relevant to notice that the degrees of the Casimirs reflect the powers of the

volume parameters ti (1.26) appearing in them, that in turn correspond to the degrees

of the ϵi, ϵ̃i, ϵ̂i parameters in (3.76). The exact relationship between Casimirs and versal

deformation parameters is analyzed step-by-step in Appendix B, and the resulting threefold

equations can be written in the form:

E6 : x2+y3+z4+f6(z, y, ci(w)) = 0,

E7 : x2+y3+yz3+f7(z, y, c̃i(w)) = 0,

E8 : x2+y3+z5+f8(z, y, ĉi(w)) = 0.

(3.79)

where we notice the appearance of the Casimirs of the Higgs background Φ(w).

Once that the Higgs-threefold relationship is settled, we can proceed in employing the

theory of Springer resolutions to gather intel on the concrete shape of the Higgs backgrounds.

As in the An and Dn cases, once a resolution pattern is known, one can consider the Levi

subalgebra of E6, E7, E8 generated by the roots that are not being resolved, and embed the

Higgs background in that Levi subalgebra. This takes care of the resolution side of the story.

Then, a case-by-case tuning of the coefficients of the Levi subalgebra must be enforced in

order to produce the threefold equation that one wishes to study. Of course, this strategy

can also be reverse-engineered, using Springer resolutions to build a Higgs background with

some desired resolution pattern, and then computing the threefold that corresponds to such

a Higgs.

Due to the intricacy of the cases involving exceptional algebras, we refrain to show the

construction of Higgs backgrounds, leaving this work for Chapers 4 and 5. As we did in the

An and Dn cases, we quickly summarize the recipe to build explicit Higgs backgrounds in

the E6, E7, E8 cases:
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Consider a threefold X, built as a one-parameter deformation of a E6, E7, E8 singularity,

defined by the equations:

E6 : x2+y3+z4+ϵ2(w)yz
2+ϵ5(w)yz+ϵ6(w)z

2+ϵ8(w)y+ϵ9(w)z+ϵ12(w) = 0

E7 : x2+y3+yz3+ϵ̃2(w)y
2z+ϵ̃6(w)y

2+ϵ̃8(w)yz+ϵ̃10(w)z
2+ϵ̃12(w)y+ϵ14(w)z+ϵ̃18(w) = 0

E8 : x2+y3+z5+ϵ̂2(w)yz
3+ϵ̂8(w)yz

2+ϵ12(w)z
3+ϵ̂14(w)yz+ϵ̂18(w)z

2+ϵ20(w)y+ϵ̂24(w)z+ϵ̂30(w) = 0

,

(3.80)

where w is the deformation parameter.

In M-theory, we can always rewrite the deformation parameters ϵi, ϵ̃i, ϵ̂i of these geometries

in terms of the Casimirs of a Higgs background Φ(w) (as detailed in Appendix B), which is

not necessarily diagonal.

Given the maximal allowed simultaneous resolution admitted by X (namely, the resolution

inflating the largest amount of nodes), consider the Cartan generators dual to the resolved

roots, defined as:

H = ⟨α∗
1, . . . , α

∗
f⟩. (3.81)

The minimal subalgebra containing a holomorphic vev for the Higgs background Φ(w) is

then:

L =
⊕
h

Lh⊕H, (3.82)

with Lh simple Lie algebras. Generically, the Higgs background can also be embedded into

larger subalgebras containing L: these will correspond to T-brane states.

Our canonical choice of Casimirs for Φ ∈ E6, E7, E8 reads:

E6 ci = Tr(Φi) for i = 2, 5, 6, 8, 9, 12

E7 c̃i = Tr(Φi) for i = 2, 6, 8, 10, 12, 14, 18

E8 ĉi = Tr(Φi) for i = 2, 8, 12, 14, 18, 20, 24, 30

. (3.83)

3.7 M-theory on ADE singularities and the Higgs back-

ground Φ

Throughout the rest of this work, we consider M-theory on an ALE surface with an ADE

singularity, of the shape that we have fleshed out in the previous sections. In this section,

we reprise the content of Section 3.4.5 and state the general procedure that takes us from a

K3 with an ADE singularity to a one-parameter deformed ADE singularity yielding a theory

in five dimensions, via the Higgsing provided by the background Φ(w).

Consider a K3 with an ADE singularity: the fact that the compactification space is non-

compact assures that gravity is decoupled. As we have previously reviewed, the effective

theory in 7d is a SYM theory with three adjoint scalars and group G = A,D,E with N = 1

supersymmetry. One can break half of the supercharges by switching on a BPS vev for the
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scalar fields in the following way:

• Take the 7d spacetime to be R5×C. Call w the local coordinate on C.

• Choose two of the three real scalars and construct a complex scalar in the adjoint. We

then have the complex adjoint scalar Φ = ϕ1+iϕ2 and the real adjoint scalar ϕ3.

• Take a holomorphic w-dependent vev for Φ.

This breaks the Lorentz group to SO(4, 1), that acts by rotation on the extended R5. The 7d

gauge group is broken to the stabilizer of Φ. The 7d N = 1 vector multiplet was made up by

the gauge field AM (M = 0, 1, ..., 6) and the three scalars ϕi (i = 1, 2, 3); after giving a vev

to Φ, only a 5d N = 1 vector multiplet (Aµ, ϕ3) in the subalgebra H that commutes with

Φ survives (these vector multiplets still propagate in 7d, and are then seen as background

vector multiplets from the 5d point of view).

From the geometric point of view, we have deformed the ADE singularity; the deforma-

tion parameters are related to the Casimirs of Φ and depend on w: we have hence obtained

a threefold that is an ALE fibration over the plane Cw. The precise relationship between

the Casimirs of Φ and the M-theory uplift, that corresponds to the compactification three-

fold, has been elucidated in Sections 3.4.6, 3.5.2, 3.6, both in the cases with Type IIA dual

(A and D deformed singularities) and in the intrinsically non-perturbative cases (E6, E7, E8

deformed singularities).

Whenever the M-theory uplift can be described as a C∗-fibration, namely in the A and

D cases, we can build the Type IIA dual in terms of D6-branes, whose transverse directions

are parametrized by ϕ1, ϕ2, ϕ3. Hence Φ describes a deformation of the D6-brane stack along

the (z, w) directions:

R4,1 Cw|Cz ϕ3

D6 × 2 dimR ·
(3.84)

The vev of Φ should also satisfy some BPS equations, whose solutions preserve a 5d

Poincaré symmetry and half of the original supersymmetries. Hence we can describe the

spectrum after Higgsing in terms of N = 1, d = 5 supermultiplets:

• The massless deformations of Aµ (µ = 0, ..., 4) and of ϕ3 make up vector multiplets in

the adjoint of H. These are background vector multiplets from the 5d perspective, as

these fields propagate in 7d.

• Let us consider the massless deformations of Φ and A5, A6. As we will see in detail in

the next chapter, there are localized Φ-modes at w = 0 that organize in hypermultiplets

charged under H and that propagate in 5d. The massless deformations of A5, A6 are

alongH ⊆ T and sit together with zero modes of Φ in background (the fields propagate

in 7d) hypermultiplets that are neutral under H.
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The field ϕ3 in the background vector multiplet satisfies [ϕ3,Φ] = 0, as ϕ3 ∈ H. Recall

from Section 3.4.6 that in the 7d theory a vev for ϕ3 ∈ T corresponds geometrically to

blowing up the simple roots of the corresponding ADE algebra. Hence the fact that the 5d

ϕ3 lives in H ⊆ T tells us that only part of the simple roots can be blown up in the ALE

fibration over Cw (i.e. after Higgsing Φ). This is dual to the statement that the choice of

Levi subalgebra encodes which are the resolved roots, via the Springer resolution formalism.

Furthermore, the vev of the 5d ϕ3 gives the size of the exceptional P1’s of the simultaneous

resolution of the threefold. If the simple roots that are resolved in w = 0 are α1, . . . , αf ,

then

H = ⟨α∗
1, . . . , α

∗
f⟩, (3.85)

where the α∗
i are elements in some basis of the Cartan algebra T that is dual to the simple

roots.

From a physical perspective, the vev of ϕ3 gives rise to a mass term for the hypermulti-

plets in the five-dimensional theory.

In the next section, we recap the relationship between Higgs backgrounds and threefold

equations, built as one-parameter deformations of ADE singularities, revisiting part the

content of Sections 3.4.6, 3.5.2, 3.6 in a slightly different light.

3.8 The threefold equation from Φ and Slodowy slices

In the preceding sections, we have shown the correspondence between threefold equations, i.e.

the geometries on which M-theory is compactified, and the Higgs background obtained from

the adjoint fields that parametrize the deformations of the 7d theory built from M-theory

on the corresponding ADE singularity. In this section, we recap these results, reproducing

them using the formalism of Slodowy slices.

As a starting point, we consider the adjoint quotient map, introduced in (2.4), that

associates an element x of the ADE algebra g of rank n with n independent polynomials χi,

whose value gives a point in T /W :

χ : g→ T /W : x 7→ (χ1(x), · · · , χn(x)). (3.86)

The polynomials χi(x) are the Casimirs of g and are defined in the following way. By

choosing a representation of the Lie algebra g, x can be put in a matrix form. Its Casimirs

are then given by specific invariant polynomials of this matrix: for the A and D series, we

have seen that the canonical Casimirs of x are (with x a matrix in the fundamental/vector

representation):

An Dn

χA
i (x) = Tr(xi+1), i = 1, . . . , n χD

i (x) = Tr(x2i), i = 1, . . . , n−1
χD
n (x) = Pfaff(x)

(3.87)
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For the exceptional algebras En, one takes x in the following representations: 27 for E6, 133

for E7 and 248 for E8. One then defines the Casimirs of x as [150,151]:

E6 χE6
i (x) = Tr(xki) for ki = 2, 5, 6, 8, 9, 12

E7 χE7
i (x) = Tr(xki) for ki = 2, 6, 8, 10, 12, 14, 18

E8 χE8
i (x) = Tr(xki) for ki = 2, 8, 12, 14, 18, 20, 24, 30

, (3.88)

and i = 1, ..., n.

The crucial fact for us is the following (that we recall from Chapter 2):

Given an algebra g in the ADE classification, and an element x ∈ Osubreg, the intersection of

the Slodowy slice through x with the fiber of the adjoint quotient map (3.86) is isomorphic

to the versal deformation of the corresponding ADE singularity, namely:

Ssubreg∩χ−1(u) ∼= versal deformation of C2/ΓADE, (3.89)

where u is a point in T /W ≃ Cn with coordinates ui.

The isomorphism (3.89) is telling us that the coefficients of the monomials in the versal

deformation can be written in terms of the coordinates ui related to the polynomials χi.

We now want to describe the ALE families of deformed ADE singularities over Cw. We

have constructed them by the choice of a Higgs field Φ(w), that through its Casimirs is

telling us how the deformation is performed on top of each point of Cw. In other words, take

w ∈ Cw; to see which is the deformed ALE surface over w, we pick Φ(w) and compute its

Casimirs χi(Φ). Their values select a specific point u ∈ T /W and then a specific deformed

ALE surface (with precise volumes of the non-holomorphic spheres (2.55)). The equation of

the threefold is obtained imposing the relations

χi(Ssubreg) = χi(Φ(w)) , i = 1, ..., n, (3.90)

with χi(x) defined in (3.87) and (3.88), and substituting the resulting χi(Ssubreg) into the

expressions defining Ssubreg∩χ−1(χi(Ssubreg)).
In general, if we keep Φ(w) unspecified, (3.90) gives us the versal deformations of the

ADE singularity, with deformation parameters depending on the Casimirs of Φ. We have

worked out these relations for all the ADE algebras. For the An and Dn singularities, one

obtains (up to coordinate redefinition) the compact forms of Sections 3.4.6 and 3.5.2:

An : x2+y2+det(z1−Φ) = 0 (3.91)

and

Dn : x2+zy2−
√

det(z1+Φ2)−Pfaff2(Φ)

z
+2y Pfaff(Φ) = 0. (3.92)

For the En singularities the expression of the deformation parameters ϵi, ϵ̃i, ϵ̂i (appearing in

(1.24)) in terms of the Casimirs (3.88) are given in Appendix B.
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Hence, given a Higgs field Φ(w), one obtains the threefold equation by simply computing

its Casimirs and then inserting them into the relations (3.91) and (3.92) for the A and D

cases, or using the formulae in Appendix A for the E cases.

A3 example

Let us immediately clarify the definitions given so far with a simple example.

Consider the A3 Lie algebra, and a nilpotent element x lying in its subregular nilpotent

orbit. The element x and its Slodowy slice are

x =


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 , Ssubreg =



a 1 0 0

b a 1 0

c b a d

e 0 0 −3a


∣∣∣∣∣ a, b, c, d, e ∈ C

 . (3.93)

The Casimirs of the Slodowy slice read (3.93):

χ1(Ssubreg) = 6a2+2b,

χ2(Ssubreg) = −8a3+4ab+c, (3.94)

χ3(Ssubreg) = 21a4+6a2b+3ac+2b2+de.

We now compute Ssubreg∩χ−1(u):
6a2+2b = u1

−8a3+4ab+c = u2

21a4+6a2b+3ac+2b2+de = u3

⇒ −cd = (3a)4−u1(3a)2+u2(3a)−u3+
u21
2
, (3.95)

that is the usual presentation of the deformed A3 singularity: if we set u = c, v = −d, z = 3a,

we obtain

uv = z4−u1z2+u2z−u3+
u21
2

(3.96)

that matches (1.23) (up to an invertible redefinition of the coordinates in T /W).11

Now let us see the correspondence between Casimirs of the Levi and Casimirs of the

Higgs explicitly, producing a threefold equation.

Take the following Higgs field in A3:

Φ =


ϱ2 1

ϱ1 ϱ2

−ϱ2 1

ϱ3 −ϱ2

 , (3.97)

11The match works for σ2 = u1, σ3 = u2, σ4 = u3−u2
1/2.
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and compute its Casimirs:

χ1(Φ) = ϱ1+ϱ3+2ϱ22

χ2(Φ) = 2ϱ2(ϱ1−ϱ3) (3.98)

χ3(Φ) =
1

2
(ϱ1+ϱ3+2ϱ22)

2−(ϱ22−ϱ1)(ϱ22−ϱ3)

We substitute ui with χi(Φ) in (3.96), obtaining

uv =
(
(z+ϱ2)

2−ϱ1
) (

(z−ϱ2)2−ϱ3
)
. (3.99)

One can check that the same equation can be obtained using directly (3.91). Finally, choos-

ing a dependence of the ϱi = ϱi(w), we obtain the equation of a threefold, which is a

one-parameter deformation of the A3 singularity.

In the next section, we finally recap the general recipe, for all the ADE cases, to explicitly

build the Higgs backgrounds whose role we have examined so far.

3.9 Summary: the recipe to build Higgs backgrounds

Before driving towards the analysis of the physical relevance of the Higgs backgrounds we

have learnt to build, it is instructive to pause for a moment and review the general recipe,

for the An, Dn and E6, E7, E8 cases, to explicitly realize the Higgs backgrounds of interest.

There are two possible starting points: either we are in possession of a threefold equation

X that we aim to study, built as a one-parameter family of deformed ADE singularities (with

parameter w), or we are not. In the first case, the general recipe goes as:

• Suppose that the maximal resolution pattern12 of the threefold equation is known a

priori13.

• Given a resolution pattern inflating only the roots α1, . . . , αf of the corresponding

algebra g, construct the Levi subalgebra that corresponds to such resolution using the

Springer formalism. In general, the Levi subalgebra will be a sum of simple factors

and of elements in the Cartan, dual to the roots α1, . . . , αf :

L =
⊕
h

Lh⊕H, (3.100)

where Lh are simple Lie algebras. We now want to select a vev for Φ(w) that allows the

(simultaneous) resolution only of a choice of simple roots α1, . . . , αf of g. Rephrased

12I.e. the resolution inflating the maximal amount of unobstructed nodes in the corresponding ADE Dynkin
diagram.

13If the threefold is non-singular, we can still go on with the construction thinking of it as if it were
non-resolvable.
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in the field theory language of Section 3.4.5, Φ(w) must be compatible with switching

on a vev for ϕ3 along the subalgebra

H = ⟨α∗
1, ...α

∗
f⟩. (3.101)

Since [Φ(w), ϕ3] = 0, then Φ(w) must live in the commutant of H, that is precisely the

Levi subalgebra (3.100).14

Summing up, the choice of the blown up simple roots selects an abelian subalgebra

H ⊂ g. This defines a Levi subalgebra L ⊂ g, and Φ(w) should live in L, according to

the analysis based on Springer resolutions we have performed in the preceding sections:

Φ(w) ∈ L =
⊕
h

Lh⊕H (3.102)

with Lh simple Lie algebras.

• Build a Higgs background Φ(w) in the newly-found Levi subalgebra, and fine-tune its

coefficients in order to reproduce the threefold equation.

• The Casimir invariants of the Higgs field Φ(w) tell us how the ALE fiber is deformed,

according to the correspondence between Casimirs and threefold equation established

in Sections 3.4.6, 3.5.2, 3.6 for all the A,D,E cases.

• Caveat (1): in case the resolution pattern of the threefold is not known, a recursive

procedure must be employed: one attempts to build a Higgs background in the smallest

Levi subalgebra, namely the one corresponding to a complete resolution. If this is not

possible, a larger Levi subalgebra, corresponding to a partial resolution, is chosen,

and the algorithm runs until a holomorphic Higgs reproducing the threefold equation

is found. The Levi in which such Higgs lives determines the resolution pattern a

posteriori

• Caveat (2): we will see in Chapter 5 that in large classes of one-parameter deformed

ADE singularities, namely for quasi-homogeneous cDV singularities, a quicker and

more efficient way of extracting the Levi subalgebra (3.100) can be employed. In other

words, in those cases we will be able to glean the resolution pattern solely by looking at

the threefold equation. Furthermore, we will see how maximal subalgebras of (3.100)

enter into the game.

• Caveat (3): in general, the Higgs background is not unique, and T-brane backgrounds,

either with different choices of coefficients in the Higgs entries, or less resolved 2-cycles

(or a combination of the two phenomena) might be possible. In later chapters we will

14At the level of the effective 7d theory, the vev Φ(w) breaks the gauge algebra to its commutant H. It is
important that H is a subspace of the Cartan subalgebra of g. In fact, if the preserved algebra contained a
simple factor g′, the vev Φ(w) would not deform the ADE singularity completely, but the fiber over generic
w would have a singularity of type g′, i.e. X would have a non-isolated singularity.
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see how to explicitly deal with such backgrounds, learning how to distinguish them on

physical grounds.

On the other hand, we might wish to build a Higgs background encoding some physical

properties of particular interest, without starting from a pre-established threefold. In this

case, different techniques can be employed to build the Higgs background, but the core

reasoning remains the same: Springer resolutions dictate which is the shape of the Higgs

so as to achieve some resolution pattern. We shall see examples of such constructions in

Chapter 4.
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Part II



CHAPTER 4

GV invariants and 5d SCFTs from M-theory on simple

threefold flops

In the course of this chapter we start reaping the fruits of the machinery that has been

introduced in the course of the past pages. Our interest is devoted on a two-fold avenue:

• On the mathematical side, we are interested in computing the Gopakumar-Vafa (GV)

invariants of classes of non-toric threefolds displaying isolated singularities, built as

one-parameter families of ADE singularities.

• On the physical side, we aim at characterizing, as complex algebraic varieties, the Higgs

branches of the 5d superconformal field theories (SCFTs) geometrically engineered by

M-theory on the above-mentioned deformed ADE singularities.

The two aspects are better to be treated in an all-encompassing formalism, as they are

intimately related to the same physical counterpart, namely the counting of BPS M2-brane

states, as we will momentarily see. Schematically, we will proceed as follows:

(1) Fix a threefold X built as a one-parameter family of ADE singularities, and construct

the associated Higgs background, following the recipe of Section 3.9.

(2) Compute the five-dimensional localized fluctuations of the Higgs background, as well

as the unbroken flavor and gauge symmetries in 5d.

(3) Relate the above data to the GV invariants of the deformed family, and to the Higgs

branch content of the 5d SCFT arising from M-theory on X.

Point (1) has been extensively introduced in the previous chapter: we are hence left to

address point (2) and (3) explicitly. We will do this focusing on a class of deformed ADE

families, known as simple threefold flops.

The chapter is organized as follows: in Section 4.1 we briefly review the definition of

Gopakumar-Vafa invariants; in Section 4.2 we recap the most relevant properties of 5d

SCFTs from M-theory geometric engineering; in Section 4.3 we state the main physical

properties of the Higgs background Φ; in Section 4.4 we introduce the simple flops, namely
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the main singularities we will deal with in this chapter. In Section 4.5 and 4.6 we first show

how to compute localized 5d modes and preserved symmetries for simple flops in the A and

D series, characterizing their Higgs branch and GV invariants.

In 4.7 we pause and add some ingredients to the mix: we explain how we explicitly choose

Higgs backgrounds for simple flops of all lengths and we introduce a new and more efficient

algorithm to compute localized five-dimensional modes, corresponding to the GV and Higgs

branch data. This will make computations compact and completely auotmatizable, via a

Mathematica code. We then employ this procedure to analyze simple flops of lengths from

1 to 6 in Section 4.8, and conclude in Section 4.9 with some examples that go beyond the

flops environment.

4.1 Gopakumar-Vafa invariants

The definition of the Gopakumar-Vafa topological invariants, first introduced in [8–10], is

intimately related to the curve-counting problem in algebraic geometry, and in particular to

the theory of Gromov-Witten invariants. A crystal clear pedagogical summary of the topic,

approached from a physical perspective, is displayed e.g. in [152]. In this section, we quickly

review the definition of GV invariants, focusing on their physical origin.

Gromov-Witten (GW) invariants are topological invariants counting holomorphic maps

from a Riemann surface into a Calabi-Yau threefold target space. Such maps are not al-

ways easy to count, as their images are sometimes holomorphic curves in the target space,

but sometimes they correspond to points, or to multicovered curves. Mathematically, this

is translated into evaluating the properties of the moduli space of stable maps, from the

Riemann surface to homology classes in the Calabi-Yau threefold, with marked points1. In

general, GW invariants are rational numbers. In Figure 4.1 we sketch the geometrical setting

that we are reviewing.

Figure 4.1: GW invariants count holomorphic maps from a Riemann surface Σg of genus g to
homology classes β in a Calabi-Yau threefold X.

From the physical point of view, GW invariants possess a very precise meaning, as they

1Here, stability means that the automorphism group preserving the marked points is finite. For further
details we refer to [152].
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capture the non-perturbative part of the partition function of the topological string. Let us

briefly sketch how this comes about.

The topological A-model [153] is a simplified model of closed strings that counts holomor-

phic maps from the worldsheet into a Calabi-Yau threefold target space. It has a striking rele-

vance for physical considerations, as the A-model encodes corrections to the four-dimensional

low-energy theory arising from Type IIA compactifications on compact Calabi-Yau three-

folds. It can be shown [154] that the terms in the 4d effective action that are affected by the

contributions due to the topological string amplitudes involve the Riemann tensor and (2g−2
copies of) the field strength of the graviphoton, which appears as the lowest component of

the graviton multiplet. These terms take the form:∫
d4xFg(t)R

2
+F

2g−2
+ , (4.1)

where t = B+iJ is the complexified Kähler form, R+ is the self-dual part of the Riemann

tensor, and F+ is the self-dual part of the field strength of the graviphoton. Fg(t) is the genus

g amplitude computed from the topological string. One can prove that the full expression

for these terms, encompassing all non-perturbative contributions, is entirely characterized

by the topological string partition function F (t). Hence, after giving a vev F+ = gs to the

graviphoton field strength, with gs the string coupling, the expression (4.1) summed over

all-genus amplitudes takes the form: ∫
d4xR2

+F (t), (4.2)

where F (t) is the total free energy for the A-model topological string. Explicitly, it can be

written as a genus-sum of the form:

F (t) =
∑
g=0

Fg(t)g
2−2g
s . (4.3)

This sum splits

F (t) = Fp(t)+FGW (t) (4.4)

into a perturbative part Fp(t) and a worldsheet instanton part FGW (t). The perturbative

part is a cubic polynomial in t, and the non-perturbative part is a sum over exponentials.

We will come to their physical interpretation momentarily.

Now, let us define a basis

[ci] ∈ Hcpt
2 (X,Z) , (4.5)

for the second homology of the Calabi-Yau threefold X with compact support. A general

curve class can be written as β =
∑

i di[ci]; we can also expand t =
∑

i ti[ci]
∨ , where∫

ci
[cj]

∨ = δji . Defining a vector d = [d1, . . . , ds], we can write the non-perturbative sum as
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follows:

FGW (t) =
∑
g≥0

∑
d

N g
de

−d·t, (4.6)

where g is again the genus and d labels the classes in the threefold target space X. In

(4.6), N g
d is the Gromov-Witten invariant at degree d and genus g, which computes the

virtual dimension of the moduli space of holomorphic maps from the worldsheet into the

target space. As a result, the non-perturbative part of the topological string amplitude is

completely characterized by the Gromov-Witten invariants of the compactification threefold.

Now, we would like to restate the Gromov-Witten generating series (4.6), obtained from

the topological string, in terms of the physics of the 4d effective field theory obtained by the

reduction of Type IIA.

In order to do so, one recurs to the formulation of Gopakumar and Vafa, [8–10], in which

one looks not at the topological string, but at M-theory on the same CY threefold, employing

its duality to Type IIA string theory. The key observation is that the topological string

partition function (4.4) should be equivalently obtained from integrating out the degrees of

freedom of Type IIA string theory, in a suitable fashion. Thus, we should be able to retrace

the origin of the terms (4.1) from the 4d field theory perspective.

In this respect, notice that (4.1) is an amplitude involving graviton legs, as well as 2g−2
graviphoton legs. In order to properly evaluate it, we should consider loop contributions

from all the particles that are charged under the graviphoton. Such particles are precisely

accounted for by D2-branes in the full Type IIA string theory.

These D2-branes may be wrapped on some curve of the Calabi-Yau threefold in the class

β ∈ Hcpt
2 (X,Z), or may wrap a trivial class. After a careful computation, one can show

that unwrapped D2-branes and massless modes take care of reproducing the perturbative

part of (4.4). We are most interested, though, on the non-perturbative contribution, due to

wrapped D2-branes. These correspond to BPS states in the four-dimensional effective field

theory, with mass given by the integral of the Kähler form J over the wrapped class β:

m =
1

gs

∫
β

J. (4.7)

Being BPS, their charge q under the graviphoton equals their mass, namely q = m.

In M-theory, the D2-branes translate into wrapped M2-branes: actually, to every M2-

brane there corresponds an infinite number of D2-branes, labelled by their momentum along

the M-theory circle.

Resumming the contributions of the BPS states from D2-branes wrapped on the curve

β, one can compute explicitly the amplitudes in (4.1) at all loops, and rewrite the Gromov-

Witten generating function as a series depending on the BPS spectrum. This equals rear-

ranging the non-perturbative part of the topological string free energy into an object that
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counts curves in the target space. Explicitly, (4.6) is recast into the form:

FGV (t, gs) =
∞∑
k=1

∞∑
g=0

∑
d

ng
d

k
(2 sin(kgs/2))

2g−2e−kd·t , (4.8)

where k is related to the momentum of the wrapped D2-branes along the M-theory circle.

The function (4.8) now has a dependence on gs. Formally we have the equivalence:

FGV (t, gs) = FGW (t, gs) . (4.9)

In (4.8), we are summing over homology classes β ∈ Hcpct
2 (X,Z) with compact support,

i.e. over degrees d ∈ Z, and genera g. In addition, the degree represents a multiplicity of

a homology class. The numbers ng
β ≡ ng

d are the Gopakumar-Vafa invariants, which are

conjectured to be integers (and proven to be such in the genus 0 case [11]), in contrast with

the rational Gromov-Witten invariants. Here, g denotes the genus of the curve in the class

d: this is not the genus of the Riemann surface Σg in the definition of the Gromov-Witten

invariants2.

All in all, we have reviewed the established GV/GW relationship:

GW (rational) ←→ GV (integers) (4.10)

Despite numerous attempts throughout the years, and great progress fostered by the connec-

tion of the theory of Gopakumar and Vafa to the properties of moduli spaces of sheaves in

the PT/GV correspondence, a fully satisfactory mathematical formulation of GV invariants

is, at present, lacking [12].

Nevertheless, from the physical viewpoint the integrality conjecture for GV invariants

stands on reasonably firm ground, as it stems from the fact that, as we have seen in M-

theory, these integers are counting BPS states that are realized as M2-branes wrapping

holomorphic curves, that correspond to the D2-brane BPS states in Type IIA. Notice that

β runs over all classes, and can therefore also run over multiples of a generator of H2, i.e.

possess a degree d with entries higher than 1. Those are interpreted as bound states of

coincident M2-branes wrapping a curve. In the course of this work we will explicitly see the

appearance of these bound states, as well as their physical meaning.

Each M2-state wrapping a holomorphic curve gives rise to a single particle state in

the 5d effective field theory. In order to deduce what kind of super-multiplet describes

such a particle, we refer to Witten’s analysis, [129], which extracts the spin of the lowest

component of the superfield by studying the moduli space of the holomorphic curve. The

upshot for the purposes of this work is that a rigid curve gives rise to a hypermultiplet in

the 5d theory arising from dimensional reduction of M-theory on a threefold singularity.

By “rigid”, we mean either a curve with a negative normal bundle, or one with some higher

2Unfortunately, this slight abuse of notation is vastly employed in the literature. More rigorously, we

should denote Ng
d the GW invariants, and ng′

d the GV invariants, where g and g′ refer to the domain and
the image curve (in the map Σg −→ β ∈ H2), respectively.

111



order obstruction, such that its moduli space is a point. We will study situations with normal

bundles O(−1)⊕O(−1) ,O(0)⊕O(−2) and O(1)⊕O(−3). In all cases, the curves will be

rigid, so we will only have hypermultiplet content in our 5d theories.

The fact that the M2-brane BPS states, which are counted by GV invariants, give rise to

hypermultiplets in 5d, is the key fact that allows us to investigate the Higgs branches of the

5d SCFTs arising from M-theory on one-parameter families of deformed ADE singularities.

In the next section, we briefly recap the main properties that are relevant for our analysis.

4.2 5d SCFTs from singular threefolds: a lightning re-

view

One of the key advancements in geometric engineering of the recent years is the realiza-

tion that M-theory placed on top of a threefold with an isolated singularity gives rise to a

superconformal field theory (SCFT) in five spacetime dimensions with N = 1 supersymme-

try [29–31]. This is a remarkable statement, as it provides a way to investigate 5d SCFTs,

which are generically challenging to study from a purely field-theoretic perspective. Further-

more, this is precisely the setting we are working in, as we are considering the dimensional

reduction of M-theory on one-parameter singular families of deformed ADE singularities,

that constitute a subclass of singular threefolds3.

In general, in five spacetime dimensions the superconformal algebra with 8 supercharges

is made up of the conformal group SO(2, 5), the R-symmetry group SU(2)R, and a possible

additional global symmetry group. As we briefly reviewed in Section 3.1, in five dimen-

sions the lowest component of vector multiplets is made up of a real scalar, while the lowest

components of hypermultiplets consist of a doublet of complex scalars, which are exchanged

under SU(2)R.

As we have seen in Section 3.2, M-theory on a singular K3 surface gives rise to a N = 1

theory with ADE gauge group in 7d. Analogously, M-theory on a singular threefold X can

generate a 5d theory with ADE gauge group, and possibly some flavor symmetry. As a re-

sult, in general we might have to consider a 5d SCFT with both vector and hypermultiplets.

Whenever we set to zero the vevs of the hypermultiplets, leaving only the real scalars of

the vector multiplets switched on, we are probing the so-called Coulomb Branch of the 5d

SCFT. On a generic point of the Coulomb Branch, the gauge group G is higgsed to a collec-

tion of abelian gauge factors U(1)r, with r being the rank of G, and the SU(2)R symmetry

is preserved.

On the other hand, if the real scalars in the vector multiplets are fixed to zero, letting

the complex scalars in the hypermultiplets vary, we are roaming across the Higgs branch of

the 5d SCFT, breaking the R-symmetry group SU(2)R.

These moduli spaces have a neat interpretation in terms of the geometry of the singular

3For a precise definition of the so-called “canonical” singularities, that include our cases, we refer to [58].
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threefold X, defined as a hypersurface equation in C4:

F (x, y, z, w) = 0 ⊂ C4 (4.11)

on which M-theory is being reduced. In particular, the Coulomb Branch is in correspon-

dence with the resolutions of the singularity, whereas the Higgs branch is encoded by the

deformation theory of the singularity:

Extended Coulomb Branch ↔ Resolutions of X ≡ Xres

Higgs branch ↔ Deformations of X ≡ Xdef,
(4.12)

where we have introduced the Extended Coulomb Branch, that comprises also the mass

deformations encoding the flavor symmetries. Let us delve deeper into the geometrical

features of the resolutions and deformations of X, examining their physical counterpart.

The structure of Xres dictates the gauge and flavor symmetries in the underlying five-

dimensional field theory. In particular, the exceptional divisors give rise to abelian gauge

fields in the effective theory describing the Coulomb Branch. In general, for threefolds with

an isolated singularity, we can write down the fiber of the singular point via its pre-image

through the resolution map π:

π−1(0) =
r⋃

i=1

Si, (4.13)

where the Si are a set of r exceptional divisors. By reducing the M-theory 3-form C3 on the

Poincaré duals of such divisors we find r massless abelian gauge bosons in five dimensions,

yielding an effective description of the Coulomb Branch, on top of a generic value of the

moduli, as a rank r U(1)r abelian theory. In addition, the resolution can also inflate a

bunch of f 2-cycles, dual to non-compact divisors arising from the resolution, that reduce

to non-Cartier divisors after the blow-down. Reduction of C3 on the duals of such non-

compact divisors generates vectors that do not propagate in five dimensions, due to the

non-compactness of the divisor. As a consequence, these are interpreted as the bosons

associated to flavor symmetries in five dimensions.

Summing up, we can write down the main cohomological objects of interest for the

resolved singularity Xres [29–31,59,155,156]:

H1(Xres,R) = 0 H3(Xres,R) = b3

H2(Xres,R) = r+f H4(Xres,R) = r
, (4.14)

where we have indicated that in general there can be b3 non-trivial 3-cycles (although they

will never appear in the cases under our scrutiny).

Keeping in mind these general features of threefold resolutions, in the following we will be

exclusuively concerned with rank-zero theories, namely threefolds whose crepant resolution

inflates no exceptional divisor (i.e. r = 0), but possibly produces exceptional complex curves

(that is, f ≥ 0). In these cases, we speak of “small resolution”. Working in this context,
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we expect that M-theory on such threefolds will produce five-dimensional theories with a

trivial Coulomb Branch, and in general a non-trivial Higgs branch, subject to some flavor

symmetries, depending on the value of f .

In particular, the Higgs branch of a 5d SCFT is a hyper-Kähler cone, characterized by its

quaternionic dimension dH. As the Higgs branch moduli are the scalars in the hypermulti-

plets of the theory, we see that the dimension counting is sensible, as every 5d hypermultiplet

contributes to the Higgs branch with two complex scalars, yielding a moduli space of quater-

nionic dimension.

As we have previously mentioned, the Higgs branch is geometrically encoded in the de-

formations of the singular threefold. In particular, the smooth deformed threefold Xdef

possesses a number of three-spheres S3
i , with i = 1, . . . µ, where µ is Milnor number of the

threefold, which is the dimension of the coordinate ring:

µ = dim
C[x, y, z, w]

(∂xF, ∂yF, ∂zF, ∂wF )
(4.15)

and that can be computed with standard methods [130]. One can then compute periods

of the nowhere-vanishing holomorphic 3-form of the CY threefold Ω3 on such three-spheres,

obtaining a scalar in five spacetime dimensions:

qi =

∫
S3
i

Ω3. (4.16)

Not all these scalars, though, are moduli of the 5d Higgs branch: only the ones corresponding

to independent dynamical complex structure moduli, i.e. to normalizable deformations, span

the Higgs branch. In particular, µ comprises both f unpaired compact 3-cycles (where f is

the number of exceptional complex curves in Xres), as well as 2r̂ paired compact 3-cycles,

namely:

µ = 2r̂+f. (4.17)

Physically speaking, only r̂ hypers corresponding to paired deformations are actual Higgs

branch moduli, and hence the Higgs branch quaternionic dimension reads [19,130,157]:

dH = r̂+f. (4.18)

This coincides with the expected number of hypermultiplets in five dimensions. Besides, this

can also be rewritten as a function of the Milnor number and of the number f of 2-cycles

inflated by the small resolution:

dH =
µ+f

2
. (4.19)

In the next section we flesh out the physical details of our M-theory setups yielding rank-

0 SCFTs in 5d, emphasizing the role of the Higgs field Φ that we have explored in Chapter

3.
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4.3 The physical meaning of Φ

In the following sections, we will tackle the study of M-theory reduced on Calabi-Yau three-

folds built as one-parameter families of deformed ADE singularities. As we have seen, this

kind of setup geometrically engineers 5d theories. In particular, we will see that the singu-

larity structure determines the spectrum of the 5d theory, and specifically its Higgs branch:

• The flavor group is given by the small resolution U(1)’s, corresponding to the f 2-cycles

inflated by the resolution (one would get a simple group factor G when allowing non-

isolated singularities and if one has a G-type singularity along a curve). Physically,

this is the continuous symmetry left unbroken by the vev of Φ.

• The gauge group is given by compact divisors: in the setup we are considering this

never happens. One would need a more severe degeneration of the ALE surface at the

origin (e.g. the ALE surface should split into several components, while in our cases

the ALE surface just develops a singularity). On the other hand, there can be discrete

gaugings coming from the stabilizer of Φ.

• As we reviewed in Section 4.1, M2-branes wrapping the exceptional curves, which are

rigid, give rise to hypermultiplets in 5d dimensions, charged under the flavor group.

The number of hypermultiplets of charges (d1, ..., df ) under the U(1)
f flavor symmetry

is the genus 0 GV invariant of degrees (d1, ..., df ). Pictorially, we have the correspon-

dences:

Genus 0 GV invariants ⇔ # of hypermultiplets in 5d

Degrees of GV invariants ⇔ flavor charges of hypermultiplets

Putting all this information together, namely identifying the number of hypermultiplets, the

flavor and discrete groups, as well as their explicit actions on the hypermultiplets, we can

completely characterize the Higgs branches of the 5d theory under consideration, as complex

algebraic varieties. This is the physical core of this work, to which we will dedicate most of

the subsequent efforts.

In this regard, all the heavy machinery we introduced in the previous chapters, relying

on Slodowy slices and Springer resolutions, was needed in order to explicitly build a Higgs

background Φ for all the cases of ADE deformed singularities, allowing us to extract the

aforementioned physical observables.

In the next sections, we will concretely employ this technique in the case of simple three-

fold flops, a large class of deformed ADE families exhibiting interesting physical properties,

that we introduce in the next pages.
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4.4 Higgs branch and GV invariants: simple flops

One-parameter deformations of ADE surfaces with an isolated singularity admitting a small

crepant simultaneous resolution blowing up a single P1 are known as simple threefold flops.

In the language of Section 4.2, we have only an exceptional rigid complex curve, and so:

r = 0, f = 1. (4.20)

Hence, M-theory on simple threefold flops geometrically engineers rank-0 5d N = 1 SCFTs

with U(1) flavor group (and possibly some discrete gauging group, as we will see later).

Simple flops appear ubiquitously both in the physical and mathematical literature [87–

92,158–160], and encode all the properties of more general deformed ADE singularities that

we will encounter in this work. They are classified by the length invariant, that we will

momentarily define.

For these reasons, they constitute the protagonists of the next sections, that, as we have

delineated at the beginning of this chapter, have as main objectives:

• The characterization of the GV invariants of simple threefold flops of all lengths.

• The computation of the Higgs branch of 5d N = 1 SCFTs arising from M-theory

geometric engineering on simple threefold flops of all lengths.

Let us start by reviewing some additional details about the classification of simple flops.

4.4.1 Simple flops and their length

The fact that simple flops admit only a partial simultaneous resolution inflating a single P1

means, as a consequence of the Weyl theory introduced in Chapter 1, that we can write

them as deformed ADE singularities with the deformations parametrized by coordinates

ϱi ∈ T /W ′. W ′ is the Weyl group generated by all the roots that are not inflated by the

small simultaneous resolution, corresponding to the white nodes in Figure 4.2, and choosing

a dependence ϱi(w) produces a threefold. As a consequence, the simple threefold flops can

generically be written as a hypersurface of the form:

F (x, y, z, ϱ1(w), ..., ϱn(w)) = 0, (4.21)

where F (x, y, z, ϱ1, ..., ϱn) = 0 is the defining equation of the (n+2)-dimensional family built

as the versal deformation of an ADE singularity (n is the rank of the ADE algebra). In the

language of Section 3.4.5, in order to produce a simultaneous resolution inflating a single

node (namely, a simple flop) we must switch on a vev for ϕ3 along:

H = ⟨α∗
c⟩, (4.22)
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where α∗
c is the resolved node.

From a mathematical point of view, threefold simple flops can be classified according to

a variety of invariants.

The first, and coarsest, invariant that can be associated to a simple flop is the normal

bundle NP1 to the exceptional P1. Laufer [161] showed that NP1 can be only of three types:

O(−1)⊕O(−1), O(0)⊕O(−2), O(1)⊕O(−3). (4.23)

The conifold (3.25) is the only example admitting a small resolution inflating an exceptional

P1 with normal bundle NP1 = O(−1)⊕O(−1). The Reid’s pagodas [162], that we will

analyze momentarily, locally classify all cases with NP1 = O(0)⊕O(−2). Finally, all the

other simple flops inflate a P1 with normal bundle NP1 = O(1)⊕O(−3). Although useful,

the normal bundle is not a sufficiently refined invariant to distinguish the different physical

properties of the simple flops that we are going to scrutinize.

A rich classification of simple flops can be obtained employing the so-called length invari-

ant, first introduced in [163]. Consider a singular deformed ADE singularity X and a small

simultaneous resolution inflating a single P1, given by the map π:

Y
π−→ X with: π−1(p) = P1, (4.24)

where p is the singular point of X. Then, we can define the length of a flop as an invariant

related to a multiplicity that can be attributed to the exceptional P1. If, e.g., one pulls back

the skyscraper sheaf corresponding to the singular point of the conifold w.r.t. the blow-down

map, one will get the structure sheaf of the exceptional curve:

π∗(Op) = OP1 , (4.25)

where the length l is the multiplicity of OP1 (namely, in the case of the conifold, l = 1).

It was proven (see [111]) that the length of a simple flop can only assume discrete values

ranging from 1 to 6, and that examples of any length indeed exist, i.e. there are cases in

which the pull-back of the skyscraper sheaf reads:

π∗(Op) = O⊕l
P1 with l = 1, . . . , 6. (4.26)

Even though the above definition may appear rather obscure, the length has a very concrete

physical meaning: as we will see later, when we geometrically engineer 5d SCFTs from M-

theory on simple threefold flops described as deformed ADE singularities, we find that the

length of the simple flop is nothing but the maximal flavor charge of the 5d hypermultiplets

arising from M2 branes wrapped on the exceptional P1.

From a Lie-algebraic point of view, the length of a simple flop corresponds to the dual

Coxeter label of the node of the Dynkin diagram that is being resolved by the small si-
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Figure 4.2: ADE Dynkin diagrams and dual Coxeter labels of the nodes.

multaneous resolution. Given an ADE algebra g of rank n, a set of simple roots αi, with

i = 1, . . . n, and the highest root θ, the dual Coxeter label of a node is the multiplicity of the

corresponding simple root in the decomposition of the highest root. In other words, given a

node corresponding to a simple root αi0 and the decomposition of the highest root

θ = qα1α1+. . .+qαi0
αi0+. . .+qαnαn (4.27)

then qαi0
is the dual Coxeter label of the node. As we will use this fact extensively in the

explicit constructions of simple threefold flops of length up to 6, it is useful to report the

Dynkin diagrams of all the ADE cases, along with the dual Coxeter labels of their nodes

in Figure 4.2, where we have highlighted in black the nodes that are being resolved in the

simple threefold flops that we will analyze in the following sections.

The classification of simple threefold flops based on the length can be further refined

introducing the Gopakumar-Vafa (GV) invariants [8–10]. These invariants can be used to

distinguish between simple flops of the same length4.

We will see that the flavor charges in the 5d SCFT from M-theory on the simple flops

correspond to the degrees of the GV invariants of the simple flops, namely:

ng=0
d = # 5d hypers with charge d under the flavor group generated by the resolved node,

(4.28)

4Even though we will not use this notion in this thesis, it is worth mentioning an even subtler invariant
that can be associated to a simple flop, namely its contraction algebra. It has been proven [92] that there
exist simple flops with the same normal bundle, same length, same Gopakumar-Vafa invariants and different
contraction algebra. Physically, the contraction algebra can be understood, for example, as describing the
quiver relations of the theory on a D3 brane in type IIB probing the singularity, and explicit constructions
of contraction algebras at all lengths can be found in [91].
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where d labels the class of the resolved curve of the simple flop.

As the charges are related to the dual Coxeter labels, we have a web of correspondences:

Length ←−−−−−−−−−→ Maximal flavor charge in 5dxy xy
GV invariants ←−−−−−−−−−→ dual Coxeter labels

Figure 4.3: Correspondences between invariants of flops, physical flavor charges and Lie algebra
labels.

We will explicitly witness these phenomena in the explicit computations of the next

sections.

We start in the upcoming section by looking at how to carry out the zero-mode compu-

tation, as well as the identification of the preserved flavor group in 5d, in all details, starting

from the example of the conifold.

4.5 Simple flops of length 1

4.5.1 The conifold example

In this section, we introduce the simplest possible example of simple flop, computing the

Higgs branch of the 5d theory engineered by M-theory on the conifold. We will also see how

this equals computing the GV invariants of the conifold singularity.

We define the conifold as the following hypersurface in C4 (of the form (4.21)):

uv = z2−w2 ⊂ C4[u, v, z, w] . (4.29)

As we have seen, it is a one-parameter family (with parameter w) of deformed A1 Du Val

singularities.

The conifold admits one normalizable deformation

uv = z2−w2+µ , with µ ∈ C . (4.30)

This mode sits in H3(X,C), where X is the threefold defined in (4.30). After deforming, a

3-sphere A is created, and the dual non-compact 3-cycle B intersects A at a point. In terms

of the holomorphic 3-form Ω3, we can think of the value of µ as the period

µ :=

∫
A

Ω3 . (4.31)
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In terms of Poincaré dual 3-forms α and β, we have that∫
X

α∧β = 1. (4.32)

The supergravity C3-field can thus be reduced along these forms as

C3 = aα+bβ , (4.33)

where (a, b) form a pair of real Wilson lines for the 3-form. We can now combine all four real

degrees of freedom (µ, a, b) into a single five-dimensional hypermultiplet. The Higgs branch

for this theory is a single-centered Taub-Nut space, of quaternionic dimension one:

MHB = TN1
∼= H . (4.34)

This is a special case of the multi-centered hyper-Kähler Taub-NUT space we have already

encountered in the study of stacks of D6-branes. Here this space describes a branch of the

moduli space.

Let us see how this result comes about using our techniques employing the duality be-

tween M-theory on C∗-fibered threefolds and IIA string theory in the presence of D6-branes.

In this case, the uv = . . . form of our hypersurface shows us that the conifold is indeed

C∗-fibered, and that the circle in C∗ ∼= R×S1 collapses wherever the r.h.s. vanishes, i.e. over

the reducible locus

D6−locus : (z−w)(z+w) = 0 . (4.35)

As we have seen in Section 3.4.6, the M-theory uplift is given by a C∗-fibration that collapses

over the spectral curve of Φ as follows:

uv = det
(
z12−Φ

)
= z2 . (4.36)

In this case, the geometry is that of a local K3 with an A1-singularity times a complex plane

generated by w. This describes 7d N = 1 SYM. Now consider switching on the following

position-dependent vev for the Higgs background Φ:

Φ =

(
w 0

0 −w

)
, (4.37)

where we have chosen it to lie along the Cartan subalgebra, i.e. the Levi subalgebra corre-

sponding to the simultaneous Springer resolution of the only node of the A1 Dynkin diagram.

In the approach of Section 3.9, we are switching on a vev for ϕ3 along the algebra:

H = ⟨α∗⟩, (4.38)

where α is the only root of A1. This implies, according to the principles outlined in Section
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3.9, that we must switch on a vev for Φ along the Levi subalgebra

L = ⟨α∗⟩ = H, (4.39)

which is precisely the case for (4.37).

The vev (4.37) breaks SU(2) 7→ U(1), although the group enhances back to SU(2) at

the origin (w, z) = (0, 0). Explicitly, the 5d flavor group is given by the stabilizer of Φ, and

reads:

G5d =

(
λ 0

0 λ−1

)
. (4.40)

Now we have two intersecting branes, and the M-theory geometry is given by the threefold:

uv = z2−w2 ⊂ C4 . (4.41)

As a consequence, supersymmetry is broken to eight supercharges. In order to compute the

hypermultiplets in the 5d theory, we use the linearized equations of motion in holomorphic

gauge for the fluctuation field φ of the Higgs, as explained in the seven-brane case in [94]:

∂φ = 0 φ ∼ φ+[Φ, g] , (4.42)

where g are complexified matrices in A1, i.e. g ∈ sl(2).

Equation (4.42) is the key formula that allows us to find localized zero-modes in a system-

atic, and purely linearly-algebraic, way. Physically, it is telling us that the 5d hypermultiplets

can be computed as the zero-modes of fluctuations of the Higgs background Φ(w), that are

localized near z = w = 0 after the gauge fixing, i.e. that are genuinely five-dimensional.

Whenever a Type IIA interpretation is available (namely, in the A and D cases, as we will

see) such zero-modes correspond to open string states stretching between the D6-branes.

Going back to the computation, and parametrizing both the fluctuation and gauge pa-

rameter as follows:

φ =

(
φ0 φ+

φ− −φ0

)
, g = 1

2

(
g0 g+

g− −g0

)
, (4.43)

we deduce that

φ ∼ φ+w

(
0 g+

−g− 0

)
. (4.44)

This tells us a few things. First, that we can have 7d fluctuations given by φ0. Most

importantly, that the fluctuations φ± are defined up to any multiple of w. This means that

they are localized on the (w, z) = (0, 0) locus, and are therefore genuinely 5d dynamical

fields:

φ± ∈ C[w]/(w) ∼= C . (4.45)

It is also immediate to check that φ+ and φ− have charge ±1 under the flavor group (4.40).
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As a result, we checked that the Higgs branch of the conifold is:

MHB = C2. (4.46)

We can also see this explicitly from the deformation theory of the conifold singularity: the

pair (φ+, φ−) forms a free hypermultiplet, as expected. If we switch on a vev for this pair,

namely:

Φ(w)→ Φ(w) =

(
w φ+

φ− −w

)
, (4.47)

then the M-theory geometry deforms as follows:

uv = z2−w2−φ+φ− . (4.48)

Therefore, we see that there is a projection from the full hypermultiplet moduli space onto

the complex structure moduli space of the conifold

π : (φ+, φ−) −→ µ := φ+φ− . (4.49)

This map defines the Higgs branch as a C∗-fibration over the complex structure moduli space,

whereby the fibers contain the data about the C3 Wilson lines. From the brane perspective

this is understood from the fact that there is an action

(φ+, φ−) 7→ (λφ+, λ
−1φ−) , (4.50)

where λ is a parameter in the complexified flavor group U(1)C
∼= C∗. So, if we recombine

the two D6-branes, we will get a single brane in the shape of a throat (diffeomorphic to a

cylinder), as it can be seen from the right hand side of (4.48). One can then define two Wil-

son lines for the worldvolume gauge field: one along the compact 1-cycle, and one along the

non-compact 1-cycle. This uplifts in M-theory to the two Wilson lines of the supergravity

C3 form on the S3, and its dual non-compact 3-cycle.

The Higgs branch computation we have carried out has also a topological meaning for

the conifold hypersurface, as counting open string states between the D6-branes uplifts in

M-theory to counting BPS states coming from M2-branes wrapped on the exceptional 2-

cycle, which are nothing but the genus 0 GV invariants. As a result, we have reproduced

the result [86] that the GV invariant of the conifold is:

ng=0
d=1 = 1 . (4.51)

It is of genus 0 because we are wrapping 2-cycles isomorphic to P1, and of degree 1 because

of the charge of the hypermultiplets under the flavor group.

Notice that there is a correspondence between the flavor charge of the hyper under (4.40),

which is 1, the length of the simple flop corresponding the conifold, the degree of the conifold
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GV invariant and the dual Coxeter label of the A1 Dynkin diagram (all equal to 1), as we

anticipated in Figure 4.3.

4.5.2 More general deformed An singularities

The conifold presented in the previous section is a particular example of a family of A-type

ALE spaces, parametrized by the parameter w. At w = 0 the equation (4.29) describes

an ALE surface with a A1 singularity at the origin; at generic value of w the singularity is

deformed.

Let us generalize it to an An−1 type ALE family. In Chapter 1 we have seen that the

generic An−1 singularity has the form:

uv = zn . (4.52)

Its versal deformation is

uv = zn+
n∑

i=2

(−1)iσizn−i . (4.53)

This space is a fibration with fiber given by the (deformed) An−1 surface and base the space

T /W of gauge invariant coordinates σi (i = 2, ..., n)5 on the Lie algebra sl(n), where T is the

Cartan subalgebra and W the Weyl group. The space (4.53) is non-singular. However, as

we reviewed in Chapter 1, by making a base change, one can obtain a singular space whose

resolution blows up a subset of the roots of the central ALE fiber.

For generic n, making a base change from T /W to T , hence obtaining the expression in

equation (1.24), resolves all the simple roots of An−1 in the central fiber. One can also make

a partial simultaneous resolution in which the base change maps the base T /W to T /W ′,

where W ′ ⊂ W . In this case, the resolution of the family blows up the roots that are left

invariant by W ′, in the central fiber. The base of the fibration is now parametrized by the

n−1 W ′ invariants, that we call ϱi (i = 1, ..., n−1).
In this section, we wish to construct a variety with a small resolution blowing up a single

P1, namely a simple flop. To this end, one chooses a Weyl subgroupW ′ that leaves only one

simple root of the An−1 root system invariant.

The M-theory threefolds are obtained from these families by making the invariant coor-

dinates ϱi depend (linearly)6 on the parameter w.

From the Springer resolution perspective, this means switching on a vev for the Higgs

background Φ in the Levi subalgebra corresponding to the simultaneous resolution of only

one of the roots, say αc. In the field-theory language, this implies turning on a vev for ϕ3,

5The invariant σi is the i-th elementary symmetric polynomial in the eigenvalues of an element of the Lie
algebra.

6Other dependences are indeed possible. However, we will stick to linear in order to avoid creating further
singularities in the resulting threefolds.
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with [Φ, ϕ3] = 0, along the Cartan corresponding to the resolved root, i.e.

H = ⟨α∗
c⟩. (4.54)

As we have seen in Section 3.4.5, a vev for ϕ3 corresponds to the resolution of the singularity of

the family in M-theory, that is the resolution of the roots of the ALE fiber left invariant byW ′,

compatibly with the Springer resolution picture. Hence, the generic field Φ corresponding

to a given partial simultaneous resolution is an element of the Lie algebra that commutes

with the Cartan generators dual to the resolvable roots of the central fiber.

Let us exhibit a concrete example, taking into consideration the Dynkin diagram of An−1:

say that we want a simultaneous resolution of the simple root αc (1 ≤ c ≤ n−1). Then ϕ3

must live along the Cartan

ϕ3 ∝

(
1
c
1c 0

0 − 1
n−c

1n−c

)
, (4.55)

and the generic Φ relative to the simultaneous resolution of αc must live in the Levi subal-

gebra that commutes with ⟨α∗
c⟩:

L = Ac−1⊕An−c−1⊕⟨α∗
c⟩. (4.56)

Explicitly, it will be of the form:

Φ =

(
Φc×c 0

0 Φ(n−c)×(n−c)

)
∈ sl(n). (4.57)

The Casimirs of such Higgs field are the ϱi (i = 1, ..., n−1) W ′-invariant coordinates, where

W ′ is the Weyl subgroup that leaves the simple root αc invariant. For the moment, we take

each block to be in the shape of a reconstructible Higgs (following the nomenclature of [94])7,

that can be written (up to a gauge transformation) in a canonical form that depends directly

on the “partial” Casimirs ϱ̂i. In particular, for a u(m) block we have [94]:

Φm×m =



0 1 0 · · · 0

0 0 1 0 0
... 0

. . .
. . . 0

0 0 0 0 1

(−1)m−1ϱ̂m (−1)m−2ϱ̂m−1 · · · −ϱ̂2 0


(4.58)

with ϱ̂j (j = 2, ...,m) the Casimirs of Φm×m. The Casimirs ϱi (i = 1, ..., n−1) of the block-

diagonal total Φ are given by the collection of ϱ̂j’s of each block and the Casimir ρ̂ related

to the Cartan ⟨α∗
c⟩. Consequently, the total Casimirs σi’s can be written as functions of the

7This choice is by no means necessary, and simply ensures that no terminal singularities remain after the
partial simultaneous resolution of the singularity.
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partial Casimirs ϱi’s.

Given the total Φ, whose entries depend on the Casimirs σi, we have shown that the

M-theory uplift that describes the family equation (4.53) is produced by:

uv = det (z1n−Φ) . (4.59)

When we make the choice σi = σi(w), we obtain the equation of a threefold. It is of the

form of a C∗-fibration. The D6-brane locus is then given by

∆D6 ≡ det (z1n−Φ(w)) = 0. (4.60)

In the next section, we specialize the mode computation to a particularly relevant class

of threefold hypersurface singularities, known as Reid’s pagodas [162].

4.5.3 Reid’s pagodas

Reid’s pagodas are a class of singular CY threefolds that admit simple flops, meaning that

only one exceptional P1 is produced. It is defined as the following hypersurface:

uv = z2k−w2 ⊂ C4[u, v, z, w] . (4.61)

This geometry admits k normalizable deformations, and hence we expect the Higgs branch to

be quaternionic k-dimensional. However, it is very difficult to explicitly construct the Higgs

branch starting from this threefold data. We know from the supergravity analysis, that it is

given by a (C∗)k-fibration over Ck, whereby the base corresponds to complex structure moduli

deformations, and the fiber corresponds to periods of C3 on the various 3-cycles created by

the deformations. But getting the global data of this variety is not straightforward.

Let us apply what we have learnt in the preceding sections. The threefold (4.61) is an

ALE family that is singular at the origin, where the ALE fiber develops an A2k−1 singularity.

Resolving the singularity blows up one exceptional P1, i.e. we have a simple flop. The root

of the singular central fiber that is simultaneously resolved is8 αk. We then have:

H = ⟨α∗
k⟩. (4.62)

This M-theory background is reduced in IIA to a system of 2k D6-branes Higgsed by a Φ of

the form (4.57) with n = 2k and c = k. The W ′-invariant Casimirs are:

ϱi =


ϱ̂
(1)
i , i = 2, . . . , k

ϱ̂
(2)
i , i = 2, . . . , k

ρ̂

, (4.63)

8In the convention that α1 is the left root in the Dynkin diagram of A2k−1, α2 is the next one and so on.
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where the superscripts refer to the Casimirs of the two blocks in (4.57), and ρ̂ is the Casimir

of the Cartan. Moreover, to obtain (4.61) one makes the choice

ρ̂ = ϱ̂
(1)
j = ϱ̂

(2)
j = 0 for j = 2, ..., k−1 and ϱ̂

(1)
k = −ϱ̂(2)k = w.

Hence

Φ =

(
J+ 0

0 J−

)
, where J± :=


0 1

. . .

1

±w . . . 0


k

. (4.64)

J± is the k×k Jordan block plus (±w) in the (k, 1)-entry.

The D6-branes live on a divisor in C2 given by:

det(z ·12k−Φ) ≡ z2k−w2 = (zk+w)(zk−w) = 0 . (4.65)

Notice that this is again reducible, like for the conifold. However, the two components do

not intersect transversely, so the open string spectrum will not be obvious.

The first thing we want to study is the effective gauge group in five dimensions. We will

see that it is a discrete group. Our background vev breaks the original seven-dimensional

worldvolume SU(2k) gauge symmetry to a subgroup. Here we assume that before switching

on the vev (4.64), the M-theory background is a A2k−1 ALE space, leading to a seven-

dimensional gauge theory with SU(2k) group. In other words the dual type IIA string

coupling has been sent to infinity. With a different choice of discrete data one may start

with the gauge group SU(2k)/Z2k and obtain a different preserved group9.

Choosing SU(2k) for the global form, we find that the preserved group is given by the

following 2k×2k matrices(
eiα1 1k 0

0 eiα2 1k

)
∈ U(1)1×U(1)2 with α1+α2 =

2πn

k
n = 0, 1, ..., k−1 .

(4.66)

Therefore, our background Higgses as follows:

SU(2k) −→ U(1)×Zk . (4.67)

It is generated by a continuous U(1) subgroup (n = 0) and a Zk subgroup, that we can take

to be

Zk :

(
e2πin/k ·1k

1k

)
, n = 0, . . . , k−1 . (4.68)

9See [76,149] for a clear exposition of these choices, and [164,165] for the seminal work.
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Had we chosen SU(2k)/Z2k for the global form, we would have simply obtained the Higgsing:

SU(2k)/Z2k −→ U(1), (4.69)

and no discrete group.

So far, we have discussed the seven-dimensional perspective, and the product (4.67),

obtained with the SU(2k) global form, is the gauge group. In order to deduce the five-

dimensional flavor and gauge symmetries, we proceed in two steps: first we compactify all

directions transverse to the matter locus on a torus. This yields a 5d theory with gauge

group U(1)×Zk. Now we take a decompactification limit. This will ungauge the continuous

U(1) factor as the volume tends to infinity. The discrete part, however, having no gauge

coupling, will remain gauged from the 5d perspective. To summarize:

U(1)gauge×(Zk)gauge −→ U(1)flavor×(Zk)gauge . (4.70)

Here, one might wonder, whether the full flavor group could be bigger. However, since the

IIA setup is built entirely with D-branes, where all flavor (ungauged) groups are derived

from the open string picture, we claim that the above group captures the full flavor group.

Now we wish to understand the Higgs branch. This consists in all possible deformations of

the background Higgs field, modulo linearized gauge transformations

φ ∼ φ+[Φ, g] , (4.71)

for any broken generator g ∈ sl(2k). Let us write g and φ in the block form

g =

(
α β

γ δ

)
, φ =

(
φα φβ

φγ φδ

)
(4.72)

where each block is a k×k matrix and Trα = Trδ = 0. Then

[Φ, g] =

(
[J+, α] J+β−βJ−

J−γ−γJ+ [J−, δ]

)
. (4.73)

We see that, due to the block-diagonal form of the Higgs vev, α only affects the φα block of

φ, β only φβ, etc. This means that, in the computation of the deformations, we can work

out each block individually.

Let us do it explicitly for k = 1. We have

φα ∼ φα+

(
α21−α12w −2α11

2α11w −α21+α12w

)
. (4.74)
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We can use α11, α21 to fix the first line to zero:

φα ∼

(
0 0

φα
21 φα

22

)
+

(
0 0

φα
12w φα

11

)
. (4.75)

We see that we do not have further freedom to localize the second line, hence we do not

obtain localized modes from this block. The same is true for the block related to δ. Instead,

localized modes come from the off-diagonal blocks. Let us consider the block φβ and let us

define its entries in the following convenient way

φβ =

(
φβ
L+φ

β
R φβ

12

φβ
21 −φβ

L+φ
β
R

)
. (4.76)

Let us see how much we can gauge fix

φβ ∼

(
φβ
L+φ

β
R φβ

12

φβ
21 −φβ

L+φ
β
R

)
+

(
β21+β12w β22−β11
(β22+β11)w −β21+β12w

)
. (4.77)

We see that we can fix to zero φβ
12 and φβ

L by respectively choosing (β22−β11) and β21,

obtaining

φβ ∼

(
φβ
R 0

φβ
21 φβ

R

)
+

(
β12w 0

(β22+β11)w β12w

)
. (4.78)

We then obtain the two modes localized on the ideal (w), i.e.

φβ
R, φ

β
21 ∈ C[w]/(w) ∼= C. (4.79)

These modes have charge +1 with respect to the U(1) flavor symmetry. Analogously we

obtain two modes with U(1) charge −1 from the block φγ.10

For generic k we have the same pattern. After gauge fixing we are left with k constant

modes in the charge +1 block φβ

φβ ∼



φβ
k 0 0 0 0 0
...

...

φβ
3 . . . . . . φβ

k 0 0

φβ
2 φβ

3 . . . . . . φβ
k 0

φβ
1 φβ

2 φβ
3 . . . . . . φβ

k


(4.80)

with entries φβ
j ∈ C[w]/(w) ∼= C (j = 1, ..., k). Analogously, we get k constant modes in the

10As done for the conifold, one can switch on a vev for the localized modes. The deformed threefold is
then uv = det (z14−Φ(w)−φ). This provides the projection map from the Higgs branch to the deformation
space of the Pagoda with k = 2.
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charge −1 block φγ. This gives a total of k hypermultiplets.

In order to fully characterize the structure of the Higgs branch, however, we have to take

into account the discrete gauge group we found in (4.67). More specifically, let us see how

the Zk discrete gauge group acts on our zero-modes:

Zk :

(
0 φβ

φγ 0

)
7→

(
0 e2πni/kφβ

e−2πni/kφγ 0

)
. (4.81)

We can conclude that the Reid’s pagoda of degree k has a k-dimensional Higgs branch with

the following orbifold geometry:

MHB = Hk/Zk . (4.82)

This generalizes the result found in [59]11, and agrees with the dimension counting of formula

(4.19). The flavor symmetry of this theory will be the 7d gauge symmetry modulo the discrete

5d gauge group, so in this case:

Gflavor = U(1)/Zk . (4.83)

Note that, even though there are k hypermultiplets, the flavor symmetry is of rank one.

This implies that we can only switch on one real mass, if we are to think of real masses as

background vev’s in the usual way. The fact that only one real mass is available perfectly

matches the fact that the corresponding M-theory threefold only admits a simple flop, i.e.

only a single curve is inflated by the simultaneous resolution12.

Finally, the outcome of the Higgs branch computation perfectly matches the known result

that Reid’s pagodas have the following GV invariants [86,89]:

ng=0
d=1 = k , (4.84)

and zero for all other classes and genera, where the degree d = 1 is in correspondence with

the fact that the hypermultiplets in the Higgs branch have charge 1 under the flavor U(1),

and that all the dual Coxeter labels of the An Dynkin diagrams are equal to 1.

This also implies that any simple flop constructed as a deformation of a singularity from

the A series admits hypers in 5d with charge at most 1.

11Notice that this happens only when we send the string coupling to infinity (ALE fibration in M-theory)
and we make a specific choice for the discrete data at the boundary.

12On the other hand, we could have expected the usual Sp(2k) symmetry enjoyed by k hypers. There
might be some obstructions in the metric of the Higgs branch that prevent this symmetry to manifest itself,
or some other unknown phenomenon restricting the allowed symmetry (that, we remark, is compatible with
the presence of only one mass parameter in the theory). At present, the definitive interpretation of this fact
is, to our knowledge, still to be fleshed out.
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4.6 Simple flops of length 2

4.6.1 Families of Dn-surfaces

In this section we discuss threefolds that are one-parameter families ofDn-type ALE surfaces.

As before, we call this parameter w. At the origin of the parameter space the surface

develops a Dn singularity, while on generic points this singularity is fully deformed. These

examples were developed from the matrix factorizations viewpoint in [90] and from the

Non-Commutative-Crepant-Resolution (NCCR) viewpoint in [91].

We focus on singularities that admit only a partial resolution, inflating a single P1 corre-

sponding to the central node of the Dn Dynkin diagram. These are also known as a simple

flops of length 2, as the dual Coxeter label of the central node in the D series is precisely

equal to 2, as can be seen in Figure 4.2.

In order to exhibit such a property, the family should have a point-like singularity at

w = 0. The resolution of such a singularity restricted to the central fiber should be the

standard resolution of the trivalent node in the Dynkin diagram of Dn.

To construct these threefolds explicitly one proceeds exactly as we did for the deformed

An singularities: one starts with the complete family of Dn-type ALE surfaces over the space

T /W :

x2+y2z+zn−1+
n−1∑
i=1

δ2iz
n−1−i+2δ̃ny = 0. (4.85)

This (n+2)-dimensional family (n-dimensional base plus 2-dimensional fiber) is non-singular

even though the fiber at the origin has a Dn-singularity.

We now want to simultaneously resolve only the trivalent node of the Dynkin diagram

of Dn, in order to generate a flop of length two [90]. To do this, one takes W ′ the Weyl

subgroup corresponding to all the other simple roots [111, 159]. These generate a An−3⊕
A1⊕A1 subalgebra of Dn and the corresponding Weyl subgroup is Sn−2×Z2×Z2. This

subalgebra corresponds to the breaking of13 SO(2n) to U(n−2)×SO(4), that would be

produced by a Higgs ϕ3 along the Cartan generator dual to the trivalent root. The Weyl

invariant coordinates are the Casimirs σi (i = 1, ..., n−2) of U(n−2) and the Casimirs ϖ1

and ϖ2 of SO(4).

Now, to obtain a threefold with a flop of length two one just needs to take the W ′ in-

variants to depend (linearly) on the parameter w, in such a way that at w = 0 all of them

vanish, i.e., now σi = σi(w) and ϖ1,2 = ϖ1,2(w).

The IIA setups that engineer these flops of length two involve not only D6-branes, but

also O6−-planes. These are defined such that a stack of n D6/image-D6 pairs lie on top of

the O6−-plane and carry a SO(2n) gauge group. The adjoint scalar fields ϕi (i = 1, 2, 3) are

therefore anti-symmetric 2n×2n matrices. It will be more convenient, however, to work in

13Later, we will mention again a subtlety in the choice of the global form of the 7d gauge group.
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a basis of so(2n) such that the Higgs has the following block diagonal structure:

ϕi =

(
Z1 Z2

Z3 −Zt
1

)
, with Zt

2 = −Z2 , Z
t
3 = −Z3 . (4.86)

In this basis the matrices G of SO(2n) are such that

G·Q·Gt = Q where Q =

(
0 1n

1n 0

)
. (4.87)

The M-theory threefold is an ALE fibration, where the fibration is generated by w-

dependent deformations of the fiber. The (simultaneous) resolution is given by a constant

vev for ϕ3 along the Cartan dual to the (simultaneously) resolved roots, namely:

H = ⟨α∗
c⟩, (4.88)

with αc the trivalent node of Dn. In the Springer resolution formalism, this is equivalent to

turning on a Higgs field in the Levi subalgebra corresponding to the non-resolved roots, i.e.

all apart from the trivalent node, as we did in the D4 case in Section 2.3.2:

L = An−3⊕A1⊕A1⊕⟨α∗
c⟩, (4.89)

Since [Φ, ϕ3] = 0, Φ should live in the adjoint representation of U(n−2)×SO(4) ⊂ SO(2n).

The Higgs field is then the following 2n×2n matrix (in the basis (4.86))

Φ =


ΦU(n−2)

a b

−Φt
U(n−2)

c −at

 (4.90)

where the block ΦSO(4) =

(
a b

c −at

)
, with b, c antisymmetric 2×2 matrices, is a field in the

adjoint of SO(4), while ΦU(n−2) is in the adjoint of U(n−2).
The fields ΦSO(4) and ΦU(n−2) depend on the Casimirs of the corresponding groups; in par-

ticular ϖ2 = Pfaff(ΦSO(4)) and ϖ1 =
1
2
TrΦ2

SO(4)+2ϖ2 for the SO(4) block, and σ1, . . . , σn−2

for the U(n−2) block. We have seen in Section 3.5.2 that the M-theory threefold can be

expressed in terms of the IIA Higgs field as:

x2+zy2−
√

det(z1+Φ2)−ϖ2
2σ

2
n−2

z
+2ϖ2σn−2y = 0. (4.91)

We have also seen that this is a C∗-fibration, in which the C∗-fiber degenerates over the
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D6-brane locus (given by the discriminant of the quadric in y):

∆D6 ≡
√

det(z1+Φ2) = 0. (4.92)

The O6−-plane locus is at z = 0 (where the coefficient of y2 vanishes). The type IIA target

space is a double cover of the base of the C∗-fibration, that can be given by the equation

ξ2 = z.

For the following, it is more convenient to exchange rows and columns to bring Φ into

the form

Φ =


ΦU(n−2)

−Φt
U(n−2)

0

ΦSO(4)

 . (4.93)

In this basis, the elements g of the algebra so(2n) satisfy:

gQ+Qgt = 0, with Q =


0 1n−2

1n−2 0

0 12

12 0

 . (4.94)

Each block can be written (by a gauge transformation) in a canonical form, where the

entries directly depend on the Casimirs. In particular, for the U(n−2) block we have the

form (4.58). For the SO(4) block, one can use that so(4) = su(2)⊕su(2) to obtain the

canonical form

ΦSO(4) =


0 1 0 −ϖ1

4

ϖ1

4
−ϖ2 0 ϖ1

4
0

0 1 0 ϖ2−ϖ1

4

−1 0 −1 0

 , (4.95)

where the Casimirs of the two SU(2) are ϖ1

4
and ϖ2−ϖ1

4
.

4.6.2 Brown-Wemyss threefold

In this section we focus our attention on a one-parameter family of deformed D4 singularities,

i.e. n = 4, characterizing its GV invariants, as well as the Higgs branch of the 5d theory

obtained by compactifying M-theory upon the singularity. Moreover we will set ϖ2 = 0.

When this happens the family takes the simple form

x2+zy2−
(
zσ2

1+(z−σ2)2
)
(z+ϖ1) = 0. (4.96)

The threefold is defined by the following w-dependence of the Casimirs of U(2)×SO(4):

σ1 = −w , σ2 = w , ϖ1 = −w , ϖ2 = 0. (4.97)
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Plugging these into (4.96), one obtains the hypersurface

x2+zy2−(z−w)
(
zw2+(z−w)2

)
= 0. (4.98)

This threefold was introduced in [92]. It is singular at the origin, where the ALE fiber

develops a D4 singularity. The total space admits a small resolution with a flop of length

two. This leads to a U(1) flavor symmetry in 5d.14 This threefold has Milnor number 11

and, according to formula (4.19), the number of normalizable deformations is 6, and hence

we expect a 6-dimensional Higgs branch.

In IIA we start with a stack of 8 D6-branes at the orientifold location z = 0 and we

switch on a background Higgs (which is identically, modulo exchange of rows and columns,

to the example we provided in (3.71)):

Φ =



0 1 0 0 0 0 0 0

−w −w 0 0 0 0 0 0

0 0 0 w 0 0 0 0

0 0 −1 w 0 0 0 0

0 0 0 0 0 1 0 w
4

0 0 0 0 −w
4

0 −w
4

0

0 0 0 0 0 1 0 w
4

0 0 0 0 −1 0 −1 0


. (4.99)

If we choose SO(8) as the global form of the 7d gauge group, the group that stabilizes

the Higgs field Φ is isomorphic to U(1)×Z2:

G5d =



eiα 0 0 0 0 0 0 0

0 eiα 0 0 0 0 0 0

0 0 e−iα 0 0 0 0 0

0 0 0 e−iα 0 0 0 0

0 0 0 0

0 0 0 0 ϱ

0 0 0 0

0 0 0 0


, (4.100)

14See [160,166] for an explicit resolution of these geometries by quiver techniques with a focus on the U(1)
symmetry and its charges.
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where α is a phase and ϱ lives in the Z2 ⊂ O(4) generated by

ϱ =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (4.101)

We then have a continuous abelian group, that is seen as a flavor group in the 5d theory,

times a discrete gauge group.

On the other hand, if we had started from SO(8)/Z2 in 7d, namely with the simply

connected gauge group associated to the so(8) algebra modulo its center, we would have

obtained just U(1) as the stabilizer of Φ. This is the same ambiguity we have encountered

in the case of Reid’s pagodas of Section 4.5.3.

We now compute the Higgs branch. As for the examples in Section 4.5.3, this consists in

the deformations φ of the background Higgs, modulo linearized SO(8) gauge transformations:

φ ∼ φ+[Φ, g]. (4.102)

The commutator [Φ, g] can be written in the block form

[Φ, g] =



B2×2 Au
2×2 C2×4

Ad
2×2 −Bt

2×2 D2×4

D4×2 C4×2 −B4×4



, (4.103)

where C2×4 is completely determined by C4×2 (analogously for the D-blocks). Due to the

block-diagonal form of the Higgs (4.99), each block of [Φ, g] depends only on the entries of

g in the same block.

Let us proceed now block by block. We start with

B2×2 =

(
g21+g12w −g11+g22+g12w

−(g11+g21−g22)w −g21−g12w

)
.

Using g21 and the combination g11−g22 we can fix to zero the corresponding entries φ11 and
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φ12 in the fluctuation of the Higgs. We are then left with:

φ2×2 ∼

(
0 0

φ21 φ22

)
︸ ︷︷ ︸

φ2×2

+

(
0 0

−w(φ12−φ11) φ11

)
︸ ︷︷ ︸

B2×2

. (4.104)

As a result we see that φ21 and φ22 are not constrained, and so they are not dynamical in

5d.

The other relevant diagonal block

B4×4 =

 g58+g65+
1
4
(g56−g76)w g66−g55 0 − 1

4
(g55+g66)w

1
4
(g66−g55)w g58−g65+

1
4
(−g56−g76)w

1
4
(g55+g66)w 0

0 g55+g66 −g58−g65+
1
4
(g76−g56)w

1
4
(g55−g66)w

−g55−g66 0 g55−g66 −g58+g65+
1
4
(g56+g76)w


does not generate localized modes as well. In fact, using the combinations (g66−g55), (g66+
g55), (g58−g65) and (g58+g65) we can set to zero, for example, the entries φ55, φ56, φ66 and

φ76, remaining with:

φ4×4 ∼


0 0 0 φ58

φ65 0 −φ58 0

0 0 0 φ78

0 0 0 0


︸ ︷︷ ︸

φ4×4

+


0 0 0 −wφ76

4
wφ56

4
0 wφ76

4
0

0 0 0 −wφ56

4

0 0 0 0


︸ ︷︷ ︸

B4×4

. (4.105)

The first localized mode comes when we consider Au
2×2. The gauge equivalence is

φu
2×2 ∼

(
0 φ14

−φ14 0

)
︸ ︷︷ ︸

φu
2×2

+

(
0 −wg14

wg14 0

)
︸ ︷︷ ︸

Au
2×2

. (4.106)

We immediately see that φ14 is localized on the ideal (w), giving:

φ14 ∈ C[w]/(w) ∼= C (4.107)

and so it corresponds to 1 localized 5d mode. We note that this mode has charge +2 with

respect to the flavor U(1) in (4.100).

The block Ad
2×2 acts analogously to Au

2×2 and it yields a localized mode with charge −2
with respect to the flavor U(1).
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Let us come to the block C4×2. The gauge equivalence is:

φ4×2 ∼


φ53 φ54

φ63 φ64

φ73 φ74

φ83 φ84


︸ ︷︷ ︸

φ4×2

+


−g18−g27− g16w

4

(
g17+g27− g26

4

)
w−g28

1
4
(g15+g17)w−g28 1

4
(4g18+g25+g27+4g28)w

−g18−g25− g16w
4

(
g15+g25− g26

4

)
w−g28

g15+g17−g26 g25+g27+(g16+g26)w


︸ ︷︷ ︸

C4×2

. (4.108)

Almost all the entries in φ corresponding to this block can be gauge-fixed to zero, except

φ64 and two linear combinations of φ54, φ63, φ64. After having fixed all the other entries to

zero, we have:

φ54 ∼ φ54+w
2
(
−g16

2
− g26

2

)
+w

(
g17−

g26
4

+
φ53

2
−φ73

2
−φ84

2

)
−g28

φ63 ∼ φ63+
1

4
w(g26−φ83)−g28

φ64 ∼ φ64+
g26w

2

4
+
1

4
w(4g28+2φ53+2φ73+φ84)

φ74 ∼ φ74+w
2
(
−g16

2
− g26

2

)
+w

(
−g17+

3g26
4
−φ53

2
+
φ73

2
−φ83−

φ84

2

)
−g28

To make the computation easier and without loss of generality, we redefine φ54, φ63 and φ74

as

φ54 = ψ1−ψ2 , φ63 = ψ3 , φ74 = ψ1+ψ2 . (4.109)

Using the gauge freedom given by g28 we can set ψ3 to zero, remaining with:15

φ64 ∼ φ64+
g26w

2

2

ψ1 ∼ ψ1+
1

4
w2(−2g16−2g26)

ψ2 ∼ ψ2+
1

4
w(2g26−4g17)

(4.110)

We immediately see that φ64 is localized on the ideal (w2), yielding:

φ64 ∈ C[w]/(w2) ∼= C2 . (4.111)

On the other hand, we see that:

ψ1 ∈ C[w]/(w2) ∼= C2

ψ2 ∈ C[w]/(w) ∼= C
(4.112)

We then have a total of 5 localized modes with charge +1 under the U(1) in (4.100).

15And discarding the dependence on the other φij , that are not free parameters.
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The block D4×2 works like C4×2 and gives 5 localized modes with charge −1 with respect

to the U(1) in (4.100).

Summing up, we obtain a 5d N = 1 theory with six hypermultiplets (the modes with

opposite charge pair up into a hyper):

• 1 hyper of charge 2:16 (
Q0

Q̃0

)
=

(
φ14

φ41

)

• 5 hypers of charge 1:(
Q1

Q̃1

)
=

(
φ
(1)
64

φ
(1)
28

)
,

(
Q2

Q̃2

)
=

(
φ
(2)
64

φ
(2)
28

)
,

(
Q3

Q̃3

)
=

(
ψ

(1)
1

ψ̃
(1)
1

)
,

(
Q4

Q̃4

)
=

(
ψ

(2)
1

ψ̃
(2)
1

)
,

(
Q5

Q̃5

)
=

(
ψ2

ψ̃2

)
.

The Higgs branch will then be H6 modded out by the discrete gauge symmetry Z2.

Let us analyze the action of the discrete group on the zero modes we have just found.

• The charge-2 hyper (Q0, Q̃0) is unaffected by the Z2.

• The non-trivial action occurs on the charge-1 hypers. The gauge fixed φ4×2 block is

φ4×2 =


0 ψ1−ψ2

0 φ64

0 ψ1+ψ2

0 0

 . (4.113)

The generator ϱ changes sign to all the modes, thus

ϱ :

(
Qi

Q̃i

)
7→ −

(
Qi

Q̃i

)
i = 1, ..., 5.

We finally claim that M-theory on the threefold (4.98) leads to a 5d theory with Higgs

branch17

MHB = H×H5/Z2, (4.114)

16The existence of a charge-2 state localized at the origin of threefolds admitting flops of length two was
already predicted in [160].

17Modulo the ambiguity in the choice of the global form of the 7d gauge group, that can erase the discrete
gauging.

137



where the Z2 inverts the coordinates. The flavor symmetry is the 7d gauge symmetry, i.e.

Gflavor = U(1). (4.115)

In this case, we do not have to mod the U(1) by the discrete symmetry, since the Z2 factor

acts differently on the U(1)-charged zero modes (there is no element of U(1) that acts on all

the modes equally to an element of Z2).

To conclude, notice that our findings are in agreement with the known results that the

Brown-Wemyss threefolds have the following GV invariants [92]:

ng=0
d=2 = 1 , ng=0

d=1 = 5 , (4.116)

and zero for all other classes and genera. In this regard, the relevant point to stress is that

the degree 2 GV invariant corresponds to the hypers of charge 2 under the flavor group

generated by the resolution, and to the fact that the dual Coxeter label of the central node

in the D4 Dynkin diagram is equal to 2.

We see here a new feature, that did not appear in the deformed An cases: the fact that

the length of the flop is higher than 1 predicts that the maximal flavor charge is higher

than 1, but does not forbid also lower-charge hypers. Indeed, in our case we have found one

charge-2 hyper, along with five charge-1 hypers. We will see this phenomenon recur in all

higher-length flops, and we notice that the fact that all the allowed charges are realized by

some hyper might be suggestive of relationships with some Swampland conjectures, such as

the Completeness hypothesis [167], and the related BPS completeness hypothesis18.

4.6.3 Laufer’s threefold

We now generalize the computation done in the previous section to a famous flop of length

two, first discovered by Laufer [161]. It is given by the following hypersurface:

x2+zy2−t
(
t2+z2k+1

)
= 0 with k ≥ 1. (4.117)

By making the change of variable t = w−z, one can put this threefold in the form of a D2k+3

family with19

σ2k+1 = w, σ2k−1 = 1, σi ̸=2k±1 = 0, ϖ1 = −w, ϖ2 = 0. (4.118)

The form of the Higgs field is like in (4.93) with n = 2k+3. The SO(4) block is identical to

the one for the Brown-Wemyss threefold (see (4.99)). The U(2k+1) block is given by (4.58)

with the Casimirs defined in (4.118) (modulo a relabeling ϱ̂i → σi). Notice that for k = 1,

the Casimir σ2k−1 is along the Cartan subalgebra.

The preserved group is again the diagonal U(1) of the U(2k+1) block times the Z2

18We refer to e.g. [168] for a review of these concepts.
19The fact that σ2k−1 = 1 makes the singularity of the ALE fiber at the origin be D2k+2.

138



generated by (4.101).

The computation of the zero modes proceeds analogous to what done in Section 4.6.2.

Now the linearized gauge variation of the deformation φ is

[Φ, g] =



B(2k+1)×(2k+1) Au
(2k+1)×(2k+1) C(2k+1)×4

Ad
(2k+1)×(2k+1) −Bt

(2k+1)×(2k+1) D(2k+1)×4

D4×(2k+1) C4×(2k+1) −B4×4



. (4.119)

For the zero modes, one again checks if the various blocks of [Φ, g] localize any mode in 5d.

We find:

• B(2k+1)×(2k+1) and B4×4 do not localize any modes.

• Au
(2k+1)×(2k+1) localizes one entry φ2 as:

φ2 ∈ C[w]/(wk) ∼= Ck, (4.120)

thus yielding k charge 2 localized modes. The same goes for Ad
(2k+1)×(2k+1), from which

we obtain k modes φ̃2 of charge −2.

• C4×(2k+1) localizes three entries with the same pattern as in the Brown-Wemyss case,

namely:

φ1 ∈ C[w]/(wk+1) ∼= Ck+1

ψ1 ∈ C[w]/(wk+1) ∼= Ck+1

ψ2 ∈ C[w]/(w) ∼= C

, (4.121)

obtaining a total of 2k+3 charge 1 localized modes. D4×(2k+1) gives the same matter

content as C4×(2k+1), but with charge −1.

Summarizing, the spectrum is given as follows:

• k hypers of charge 2: (
Qi

Q̃i

)
=

(
φ
(i)
2

φ̃
(i)
2

)
i = 1, ..., k ;
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• 2k+3 hypers of charge 1:(
Qi+k

Q̃i+k

)
=

(
φ
(i)
1

φ̃
(i)
1

)
,

(
Qi+2k+1

Q̃i+2k+1

)
=

(
ψ

(i)
1

ψ̃
(i)
1

)
i = 1, ..., k+1, and

(
Q3k+3

Q̃3k+3

)
=

(
ψ2

ψ̃2

)
.

Like for the Brown-Wemyss’ case the discrete group in (4.101) acts in the following way:

• The charge 2 hypers are unaffected by the Z2 discrete symmetry.

• The charge 1 hypers transform under ϱ as

ϱ :

(
Qi

Q̃i

)
7→ −

(
Qi

Q̃i

)
i = k+1, ..., 3k+3.

The Higgs branch of M-theory on Laufer’s threefold is then

MHB = Hk× H2k+3/Z2, (4.122)

where the Z2 inverts the coordinates. Like in the previous example, the flavor group is

Gflavor = U(1), and the discrete group might disappear with a different choice of the global

form of the 7d gauge group.

Finally, the GV invariants corresponding to Laufer’s flop read, matching [86,89]:

ng=0
d=2 = k , ng=0

d=1 = 2k+3 , (4.123)

and zero for all other classes and genera.

4.7 Interlude: Higgs backgrounds for general simple

flops and a new computational algorithm

Until now, we have analyzed “renowned” simple flops already present in the literature, each

time writing down the Higgs background corresponding to the singularity. In this section,

we invert the perspective, and seek to find a generalized framework to build, ab initio, Higgs

backgrounds associated to simple flops of all lengths, without recurring to pre-packaged

threefold equations.

To this end, we need to build Higgs backgrounds related to the resolution patterns ex-

hibited in Figure 4.2, where only the black nodes are resolved. The corresponding threefolds

we are looking for have then the structure of an ALE fibration over the complex plane Cw

and they will be defined by an equation of the kind displayed in (4.21), depending on the

partial Casimirs ϱi(w) ∈ T /W ′. Here, we choose the dependence ϱi(w) to be linear, in order
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to avoid creating further singularities in the resulting threefolds. We will restrict on building

threefolds X that have isolated singularities, admitting only a small resolution.

In the following we are going to show how to build a threefold family of deformed ADE

surfaces by starting from the requirement that the ALE fibration over Cw presents a specific

partial simultaneous resolution, i.e. a choice of a single simple root, say αc. This will precisely

produce a threefold simple flop. As we will see, this method can actually produce in principle

the full ADE family over T /W ′.

4.7.1 The Higgs field from the simultaneous resolution

Our objective is to explicitly construct a vev for Φ that allows the (simultaneous) resolution

at the origin only of a choice of a unique simple root αc of g. From the 7d gauge theory

perspective, we are turning on a vev for ϕ3 along the subalgebra

H = ⟨α∗
c⟩. (4.124)

Given that [Φ, ϕ3] = 0, then Φ must live in the commutant of H, which is a Levi subalgebra

L, of the form (3.100). As we are choosing to blow up a single simple root, this means that

the Higgs background should live in the Levi subalgebra defined by (4.124):

L =
⊕
h

Lh⊕H (4.125)

with Lh simple Lie algebras. We take Φ to be a generic element of L. This is precisely

equivalent to switching on a vev for Φ along the Levi subalgebra that corresponds to the

partial Springer resolution of the root αc, as we have seen in Chapter 2.

The Casimir invariants of the Higgs field Φ tell us how the ALE fiber is deformed. Since

at the origin of Cw the fiber presents the full ADE singularity, we expect that all the Casimir

invariants of Φ vanish at w = 0. This means that at w = 0 the Higgs field should be a

non-zero nilpotent element of L. In particular, when restricted on each summand Lh of the

Levi subalgebra, Φ must be in the corresponding principal nilpotent orbit, if we do not want

terminal singularities after the simultaneous resolution.

We call the Higgs at the origin X+. The generic Higgs field has then the following form

Φ = X++w Y (4.126)

where Y ∈ L can in principle depend on w; in this chapter we mainly consider cases with

constant Y .

The Higgs field Φ must deform the singularity outside the origin. At least in a neigh-

borhood of w = 0, we demand that the ALE fiber does not develop any singularity. This

happens when Φ restricted on each summand of L is a non-zero semisimple element of that

summand. For Lh = Am−1, the generic form of Φ, up to gauge transformations is in the form

of a reconstructible Higgs [94], that we have recalled in (4.58). As we did there, we call ϱ̂j
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(j = 2, ...,m) the Casimirs of Φ|Am−1 (we called them the partial Casimirs of g). There are

analogous canonical forms when the summand is a different Lie algebra: we will explicitly

build them in the following, by embedding the form (4.58) into the D and E algebras.

Collecting the Casimirs ϱ̂j’s for each summand Lh and the coefficient deformations ρ̂

along H one obtains the set of invariant coordinates ϱi that span the base of the family with

simultaneous partial resolution. The total Casimirs µi of Φ (that appear as coefficients of

the deforming monomials in the versal deformation of the ADE singularity) can be written

as functions of the ϱi’s. Notice that by formulae like (4.58), we give Φ as a function of the

partial Casimirs ϱi. The choice of a dependence of ϱi on w produces a threefold.

In Section 4.5.2 we followed this road for the An singularities, that is in the case µi = σi,

reproducing flops of length 1 such as Reid’s pagodas. Here, we aim at a more general pur-

pose, wishing to build flops of all lengths.

Summing up, the change of basis from the non-resolved family to the family admitting a

simple flop reads:

Total Casimirs µi −→ partial Casimirs ϱi = (ϱ̂i, ρ̂) (4.127)

We finally notice that the ADE Lie Algebra g can be decomposed into representations of

the Levi subalgebra:

g = L⊕... =
⊕
p

RL
p , (4.128)

where the irreps RL
p include the terms in the decomposition (4.125). This will turn out useful

in the following.

4.7.2 The threefold equation from Φ

We are going to build Higgs backgrounds corresponding to simple flops by switching on a

non-trivial vev along the An subalgebras corresponding to the white nodes in Figure 4.2. In

order to obtain the equations of the threefolds corresponding to these Higgs backgrounds,

we recur to the expressions, valid in all the A, D, E6, E7, E8 cases, displayed in Section

3.8. The computation is readily performed: we plug in the explicit expression of the Higgs

background, written in term of the partial Casimirs ϱi(w), into the formulas (3.91), (3.92) or

the expressions in Appendix B, depending on which ADE algebra we are considering. The

result gives the explicit threefold equation, as a fibration of an ADE singularity over Cw.

If, instead, we keep the ϱi as full-fledged coordinates, we obtain a (n+2)-dimensional de-

formed family admitting a simultaneous resolution of the node αc. This is no trivial task to

perform with the standard methods of [111]. Our technique makes it completely automatic

and easily computable.

In the next section, we introduce a new method to compute the localized 5d modes arising

from M-theory on these simple flops, and correspondingly the GV invariants of the latter,
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in an algorithmic fashion.

4.7.3 A new algorithm to compute zero-modes

We have seen in Section 4.5 that the Higgs branch data and the GV invariants related

to simple threefold flops can be computed as zero-modes of fluctuations around the Higgs

background Φ(w). Here we show a more efficient and general method to compute these

zero-modes in a way that can be easily implemented in a Mathematica code.

Given a vev for Φ, the zero modes are the deformation φ ∈ g of the Higgs field up to the

(linearized) gauge transformations

δgφ = [Φ, g] with g ∈ g. (4.129)

We take Φ = X++w Y as explained at page 141, where X+ ∈ L is in the principal

nilpotent orbit of each Lh. We need to work out which components of the deformation φ

can be set to zero by a gauge transformation (4.129). One then tries to solve the equation

φ+δgφ = 0 , with δgφ = [X++w Y, g] (4.130)

with unknown g ∈ g. As we have seen, at special points in Cw, there can be components

of φ that cannot be gauge-fixed to zero: these directions in the Lie algebra g support zero

modes.

Since the irreducible representations RL of L are invariant under the action of Φ, we im-

plement the decomposition (4.128) and we solve the equation (4.130) in each representation

RL at a time, where now g, φ ∈ RL ⊂ g. We can write more explicitly the representation

RL of L = H⊕L1⊕L2⊕... as

RL =
(
RL1 , RL2 , ...

)
q1,...,qf

(4.131)

where RLh is an irreducible representation of the simple summand Lh and (q1, ..., qf ) are the

charges under the U(1)f group generated by H. If there are n 5d modes in the representation

RL, there will be other n 5d modes in the conjugate representation R̄L; together these

generate n massless hypermultiplets in the 5d theory localized at the singularity. By using

the correspondence (4.28), we can then say that the GV invariant with degrees (q1, ..., qf ) is

ng=0
q1,...,qf

= 1
2
·# localized zero-modes from RL⊕R̄L (4.132)

with RL =
(
RL1 , RL2 , ...

)
q1,...,qf

.

Let us describe our algorithm to compute the number and the charges of zero modes.

For each representation RL of L with dimension dR, we choose a basis e1, ..., edR of RL. In
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this basis, the equation (4.130) becomes

(A+wB)ρ = −ϕ (4.133)

where ρ and ϕ are the dR-column vectors of coefficients of g and φ in the given basis and A,B

are the constant dR×dR matrices representing the linear operators X+ and Y respectively.

If A+wB is invertible, then there exists a vector ρ (i.e. a g ∈ RL) that completely gauge

fixes φ ∈ RL to zero at generic w. At the values of w where the rank of A+wB decreases,

there will be vectors ϕ that cannot be set to zero, leaving a zero mode localized at that

points.

With the chosen X+, we immediately see that such a special point is (by construction)

the origin w = 0. Here the matrix A+wB reduces to the nilpotent matrix A, that has

non-trivial kernel.20 In the following we only use the fact that A has rank r < dR; hence,

our conclusions are valid also when A is not necessarily nilpotent. What we are going to say

of course applies also for a nilpotent A.

We choose the basis e1, ..., edR of RL such that A is in the Jordan form. If the rank of A

is r, we then have dR−r rows of zeros and dR−r columns of zeros. We can rearrange rows

and columns such that A takes the block diagonal form

A =

(
Au 0r×(dR−r)

0(dR−r)×r 0(dR−r)×(dR−r)

)
, with Au invertible. (4.134)

Doing the same operations on B, we obtain

B =

(
Bu Br

Bl Bd

)
. (4.135)

The equations (4.133) now read{
(Au+wBu)ρu+wBrρd = −ϕu

wBlρu+wBdρd = −ϕd

(4.136)

Since (Au+wBu) is invertible (at least in the vicinity of w = 0), from the first set of equations

we see that we can always gauge fix the ϕu components to zero,21 by setting

ρu = −(Au+wBu)
−1 (ϕu+wBrρd) . (4.137)

Substituting in the second set of equations we obtain

w
[
Bd−wBl(Au+wBu)

−1Br

]
ρd = −ϕd+wBl(Au+wBu)

−1ϕu . (4.138)

20In particular, the kernel is spanned by the vectors |j, j⟩, when writing RL in terms of sl(2) representations,
where sl(2) is generated by the Jacobson-Morozov standard triple associated with X+.

21These correspond to all states except |j,−j⟩.
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We see that the components ϕd cannot be fixed identically to zero: at w = 0 there can be

a remnant, i.e. a localized mode. Said differently, the best we can do is to cancel from ϕd

its dependence on w, leaving a constant entry (instead of a generic polynomial in w). This

is possible for all components of ϕd only when the matrix Bd has maximal rank, i.e. rank

equal to dR−r. In this case, the number of zero modes is

# = dR−r,

because each component of ϕd has now a constant entry, i.e. one degree of freedom.

If Bd is not invertible, we can iterate what we have done so far, in the following way.

Let us define for simplicity ρ′ ≡ ρd, ϕ
′
tot ≡ ϕd−wBl(Au+wBu)

−1ϕu, A
′ ≡ Bd and B′ ≡

−Bl(Au+wBu)
−1Br. We can decompose ϕ′

tot = ϕ′
0+wϕ

′, where ϕ′
0 is ϕ′

tot evaluated at

w = 0. We can then rewrite the equation (4.138) as

(A′+wB′)ρ′ = −ϕ′ . (4.139)

This has the same form as (4.133), so we can again change the basis such that A′ ≡ Bd is in

the Jordan form and write the equations in this basis. We will obtain a set of equations in the

form (4.136) where we have to substitute (A,B)u,l,r,d → (A′, B′)u,l,r,d and (ρ,ϕ)→ (ρ′,ϕ′).

The matrix A′ will now have rank r′ < dR−r. There will then be r′ components of ϕ′ that

can be gauge fixed to zero; we correspondingly have r′ zero modes along the corresponding

components of ϕd. If the matrix B′
d has maximal rank (i.e. dR−r−r′), then the other

dR−r−r′ components of ϕd will be of the form a+bw and hence each hosts two zero modes.

In this case the number of zero modes is

# = r′+2(dR−r−r′). (4.140)

On the other hand, if B′
d has rank r

′′ < dR−r−r′, then we have to iterate once more the

algorithm above and, provided B′′
d has maximal rank (i.e. dR−r−r′−r′′) we obtain

# = r′+2r′′+3(dR−r−r′−r′′).

We now have the factor “3” because the dR−r−r′−r′′ directions of ϕd are of the form

a+bw+cw2, i.e. they host three zero modes each.

In conclusion, let us assume that the algorithm stops at the N -th step and let us call r(k)

the rank of the matrix A at the step k, then the number of zero modes is

#zero modes =
N∑
k=0

k r(k) with
N∑
k=0

r(k) = dR (4.141)

where r(0) = r.

If there are other values of w, say w = w0, where the rank of A+wB is not maximal, one

can shift w 7→ w+w0 ending out with the same situation as above, where the new A is now
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A+w0B. Applying the algorithm that we have just outlined, one computes the zero modes

localized at w = w0. In this case the matrix at w = w0 is not necessarily nilpotent.

Notice that this algorithm could never end. This is the case for example when the A+wB

matrix is identically zero at one step. The corresponding directions of φ cannot be gauge

fixed at any order in w, leaving a zero mode that lives in 7d.

In conclusion, in this section we have shown that one can reduce the problem of finding

the zero modes to a simple exercise in linear algebra. These computations are algorithmic

and can be done by a calculator in a reasonable amount of time. In [99] we describe the im-

plementation of the algorithm in Mathematica, that we used for our computations, providing

ancillary files containing the code.

4.8 Simple flops of length l = 1, . . . 6: general construc-

tion

In the following, we apply the method discussed in Section 4.7 to construct threefolds with

a simple flop. The threefold will be obtained from a family of deformed ADE singularities in

which only the black node in Figure 4.2 is simultaneously resolved. In (4.124), we have called

it αc. The subalgebra H is then generated by α∗
c , i.e. H = ⟨α∗

c⟩, and the Higgs field will

correspondingly be chosen in the commutant L of H, i.e. the Levi subalgebra corresponding

to the chosen partial simultaneous resolution (4.125). From Figure 4.2, we see that the

simple summands Lh of L are all of A-type. The Higgs Φ restricted on these spaces is then

of the form (4.58), and collecting the ϱ̂’s from each summand Lh gives the partial Casimirs

ϱi’s that parametrize the base T /W ′. The threefold is obtained by setting ϱi = ϱi(w).

We will construct threefolds with different values of length from 1 to 6, recalling the cor-

respondence of the length with the dual Coxeter label of the resolved node. Thus, building

simple flops with resolution patterns as in Figure 4.2, we realize all possible lengths.

For each manifold we give the Higgs field Φ that produces the desired simple flop three-

fold X. This allows us to build the 5d theory realized from reducing M-theory on X. In

particular the flavor group will always be the U(1) group generated by α∗
c . The number of

hypermultiplets and their charges under the U(1) flavor group, namely the GV invariants of

X and their degrees, will be derived by counting the zero modes of Φ.

From a physical perspective, as we have seen profusely in the preceding sections, GV

invariants count 5d hypermultiplets arising from M-theory geometrically engineered on the

simple threefold flops, and their degree corresponds to the flavor charges of such hypermul-

tiplets: the maximal flavor charge is given by the length of the flop, which is equal to the

dual Coxeter label of the node αc in the corresponding Dynkin diagram.

We will explicitly check these points in our concrete examples.
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4.8.1 Simple flop with length 1

With the new algorithm in our hands, we can now tackle the general simple flops of length

1, built as a deformed A singularity, outlined in Section 4.5.2.

We start from the Lie algebra An−1, and require only the resolution of the simple root

αc. Consequently, we have H = ⟨α∗
c⟩. Its commutant is given by (4.56), that we reproduce

here for convenience:

L = Ac−1⊕An−c−1⊕⟨α∗
c⟩. (4.142)

The Higgs field at w = 0 is (in the principal nilpotent orbit when restricted on the simple

summands of L, namely in the reconstructible form):

X+ = Eα1+· · ·+Eαc−1+Eαc+1+· · ·+Eαn−1 , (4.143)

where the Eαi
are the Lie algebra generators defined in Appendix A. We choose the w-

dependence of the partial Casimirs such that the Higgs restricted on each block is22

Φ|Ac−1 =



0 1 0 · · · 0
0 0 1 0 0
... 0

. . .
. . . 0

0 0 0 0 1

w 0 · · · 0 0


and Φ|An−c−1 =



0 1 0 · · · 0
0 0 1 0 0
... 0

. . .
. . . 0

0 0 0 0 1

−w 0 · · · 0 0


. (4.144)

This means that

Y = E−α1−α2−...−αc−1−E−αc+1−αc+2−...−α2n−1 . (4.145)

The equation of the threefolds is read form (3.91), by using the chosen Φ = X++w Y :

u v = (zc−w)(zn−c+w). (4.146)

When n = 2k is even and c = k, we have the Reid Pagoda of degree k analyzed in Section

4.5.3.

For generic n and c, we perform the zero-mode counting by decomposing the An−1 into

representations of the Levi subalgebra (4.142). Explicitly, the decomposition reads:

An−1 = (c2−1,1)0⊕(1, (n−c)2−1)0⊕(1,1)0⊕(c,n−c)+⊕(c̄,n−c)− , (4.147)

where the two entries in brackets refer to the Ac−1 and An−c−1 representations, respectively,

and the subscript is the U(1) charge.

The first three representations host 7d modes, but no localized one. Let us concentrate

22A different choice would only complicate the equation of the threefold, without changing its salient
features.
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on the charged representation (c,n−c)+ of dimension c(n−c). With the choice c ≥ n
2
,

we have c ≥ n−c. The matrix corresponding to X+ in this representation has kernel with

dimension equal to n−c, then in our algorithm r = (c−1)(n−c). With a bit of work, one

can check that Bd has rank n−c = dR−r, that gives then n−c modes localized at w = 0

with charge +1 with respect to the flavor U(1). The other charge representation hosts again

n−c modes localized at w = 0 and with charge −1. In total we then have n−c charged

hypermultiplets, i.e. the GV invariant is

ng=0
1 = n−c. (4.148)

When n = 2k and c = k, we obtain k hypers, that is the result we have found for the

Reid’s pagodas in Section 4.5.3, i.e. ng=0
1 = k.

4.8.2 Simple flop with length 2

In this section we generalize the Brown-Wemyss and Laufer examples examined in Section

4.6, considering a family of flops of length 2 arising from a D4 singularity deformed over the

Cw plane. The threefold is singular at the origin (where the fiber exhibits a D4 singularity)

and can only be partially resolved inflating a P1 corresponding to the central root of the D4

Dynkin diagram. As we can see from Figure 4.2 the central node has dual Coxeter label

equal to 2, and thus its resolution yields a flop of length 2. In Figure 4.4 we show our

conventions for the labeling of the simple roots.

Figure 4.4: D4 Dynkin diagram.

Since we wish to blow up only the central node, we have H = ⟨α∗
2⟩. The Levi subalgebra

L commuting with H is:

L = A
(1)
1 ⊕A

(3)
1 ⊕A

(4)
1 ⊕⟨α∗

2⟩, (4.149)

where the A1 algebras correspond to the white “tails” in picture 4.4, generated by the roots

α1, α3 and α4 respectively.
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Following the prescription (4.58) for each A1 summand we have

Φ|
A

(i)
1

=

(
0 1

ϱi 0

)
= Eαi

+ϱiE−αi
i = 1, 3, 4, (4.150)

where ϱi (i = 1, 3, 4) is the Casimir of the sl(2) algebra A
(i)
1 . Moreover Φ can have a

component along α∗
2 with coefficient ϱ2. Although not necessary for the employment of our

machinery, we report for the sake of visual clarity the explicit matrix form of the adjoint

Higgs field corresponding to the choice (4.149), employing the standard basis of [112]:

Φ =



ϱ2 1 0 0 0 0 0 0

ϱ1 ϱ2 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 ϱ3 0 0 0 −1 0

0 0 0 0 −ϱ2 −ϱ1 0 0

0 0 0 0 −1 −ϱ2 0 0

0 0 0 −ϱ4 0 0 0 −ϱ3
0 0 ϱ4 0 0 0 −1 0


. (4.151)

The threefold is found by imposing

ϱi(w) = w ci(w) for i = 1, 2, 3, 4, (4.152)

where we take the ci(w)’s such that ci(0) ̸= 0. Later we will simply choose the ci(w)’s to be

constant in w.

The Higgs at the origin is then

X+ = Eα1+Eα3+Eα4 , (4.153)

while Y is

Y = c1E−α1+c3E−α3+c4E−α4+c2⟨α∗
2⟩. (4.154)

The threefold equation is simply obtained by taking the choice (4.152) and the expression

of Φ (4.151) and plugging them into the formula (3.92):23

x2+zy2−z3+w2z
[
c21+c

2
3+c

2
4+4c1c3+4c1c4−2c3c4−2c22w(c1−2c3−2c4)+c42w2

]
+

−2w3
[
c1
(
c23+c

2
4+c1c3+c1c4−2c3c4

)
+c22w

(
c23+c

2
4−2c1c3−2c1c4−2c3c4

)
+c42w

2(c3+c4)
]
+

−2wz2
(
c1+c3+c4+c

2
2w
)
+2w2y(c3−c4)

(
c1−c22w

)
= 0.

23Notice that the threefold expression is not invariant under the exchange of c1, c3 and c4, which are
the Casimirs of the three A1 tails: this can be overcome by a change of variables. In any case, the mode
localization proceeds in a way that is invariant under the exchange of c1, c3, c4.
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Let’s consider what happens when one of the ci’s vanishes. If c2 = 0, the preserved gauge

group after Higgsing is SU(2) instead of U(1). This says that the ALE fiber has an A1

singularity for all values of w, i.e. the threefold has a non-isolated singularity. If ci = 0 with

i = 1, 3, 4, then the preserved group is still U(1). However, the threefold equation has an A1

singularity for generic w ∈ Cw: in fact, the threefold equation is the same one would obtain

by taking Φ|
A

(i)
1

identically zero (the equation is insensitive to the “1” in (4.150)). Such a

nilpotent vev for the Higgs field is called a T-brane [94].

Since we want to consider isolated singularities (with a simple flop), avoiding T-brane

configurations, we will take ci ̸= 0 ∀i.

Zero modes. We now analyze the 5d zero modes arising from M-theory reduced on the

flop of length 2 defined by (4.152). We keep the ci’s as generic constants.

As in the case of the flops of length 1, the first step consists in determining the decom-

position of the algebra g = D4 into irreps of the Levi subalgebra (4.149), obtaining:

D4 = (3,1,1)0⊕(1,3,1)0⊕(1,1,3)0⊕(2,2,2)1⊕(2,2,2)−1⊕(1,1,1)2⊕(1,1,1)−2,

(4.155)

where the numbers in parenthesis refer to representations of the three A1 factors, and the

subscript is the charge w.r.t. the Cartan ⟨α∗
2⟩. Let us examine the zero-mode content of the

Levi representations in (4.155) one by one:

(3,1,1)0: in this representation, the operatorX+ can be represented in the basis {−Eα1 ,
1
2
H1,

1
2
E−α1}

as:

A(3,1,1)0 =


0 1 0

0 0 1

0 0 0

 . (4.156)

It is easy to show that this representation does not host any localized 5d zero mode.

The same holds for the representations (1,3,1)0 and (1,1,3)0.

(1,1,1)2: X+ is represented by a 1-dimensional matrix that, in the basis Eα1+2α2+α3+α4 ,

reads

A(1,1,1)2 = (0) . (4.157)

We also have:

B(1,1,1)2 = 2c2. (4.158)

As a result we find that B has maximal rank, i.e. 1, and so we obtain one localized 5d

zero-mode with U(1) charge 2. Analogously, the representation (1,1,1)−2 yields one

5d zero-mode of U(1) charge −2.

(2,2,2)1: X+, once put in Jordan form in an appropriate basis24, is represented as the

24The basis explicitly reads: {−Eα1+α2−Eα2+α3 , Eα1+α2+α4−Eα2+α3+α4 ,
2Eα1+α2

3 +
Eα2+α3

3 +
Eα2+α4

3 ,− 1
3Eα1+α2+α3

− 1
3Eα1+α2+α4

+ 2
3Eα2+α3+α4

,−6Eα2
,−2Eα1+α2

+2Eα2+α3
+2Eα2+α4

, Eα1+α2+α3
+
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8-dimensional matrix

A(2,2,2)1 =



0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0


, (4.159)

which has rank r = 5. Using the same basis for Y we get:

B(2,2,2)1 =



c2 0 0 0 6c4−6c3 0 0 0

c1−c3+c4 c2
2(c3−c4)

3
0 0 2c4−2c3 0 0

0 0 c2 0 −6(c1+c3−2c4) 0 0 0

2(c1−c3) 0 −c1+5c3−c4
3

c2 0 −2(c1+c3−2c4) 0 0

0 0 0 0 ρ 0 0 0

0 0 0 0 c1+c3+c4 c2 0 0
c3−c1

3
0 2c1−c3−c4

9
0 0 4(c1+c3+c4)

3
c2 0

0 c3−c1 0 2c1−c3−c4
3

0 0 c1+c3+c4 c2


. (4.160)

Let us pause for a moment and use the results just found to prove that there are other

isolated singularities in the threefold. In fact, these correspond to values of w where

5d localized modes appear. This happens in the representation under study when the

rank of A(2,2,2)1+wB(2,2,2)1 drops. Its determinant explicitly reads:

det(A(2,2,2)1+wB(2,2,2)1) = w4
[
(c21+c

2
3+c

2
4−2c1c3−2c1c4−2c3c4)2+

−4c22w(c31+c33+c34−c21c3−c21c4−c23c1−c23c4−c24c1−c24c3+10c1c3c4)+

+2c42w
2(3c21+3c23+3c24+2c1c3+2c1c4+2c3c4)−4c62w3(c1+c3+c4)+c

8
2w

4
]
.

(4.161)

It turns out that for generic ci’s the rank of A(2,2,2)1+wB(2,2,2)1 drops on top of w = 0,

as well as on further four distinct points with non-zero w. It can be checked that these

additional points correspond to conifold singularities far from the origin. In addition,

if the condition

c21+c
2
3+c

2
4−2c1c3−2c1c4−2c3c4 = 0 (4.162)

is satisfied, one of the additional singularities collides onto the origin: in this case, the

rank of A(2,2,2)1+wB(2,2,2)1 drops on w = 0 as well as on three additional points outside

the origin. This signals the appearance of further localized modes at w = 0, coming

from the conifold singularity that has collided onto the origin. We will explicitly check

this claim momentarily, deriving again condition (4.162).

Eα1+α2+α4
+Eα2+α3+α4

, Eα1+α2+α3+α4
}.
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Rearranging rows and columns to get to the form (4.134) we obtain:

Bu =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 c2 0 0

0 0 4(c1+c3+c4)
3

c2 0



Br =



c2 0 6c4−6c3
0 c2 −6(c1+c3−2c4)
0 0 c2

0 0 c1+c3+c4
c3−c1

3
2c1−c3−c4

9
0



Bl =


c2 0 2c4−2c3 0 0

0 c2 −2(c1+c3−2c4) 0 0

c3−c1 2c1−c3−c4
3

0 c1+c3+c4 c2



Bd =


c1−c3+c4 2(c3−c4)

3
0

2(c1−c3) −c1+5c3−c4
3

0

0 0 0



(4.163)

Notice that the rank of Bd, which is surely non-maximal, depends on the precise choice

of the partial Casimirs. It drops to one when its determinant is equal to zero. This

happens when

c21+c
2
3+c

2
4−2c1c3−2c1c4−2c3c4 = 0. (4.164)

Let us first examine the case in which the ci’s are generic constants, i.e. Bd has rank

2. Afterwards we take a look at the case where Bd has rank 1. Notice that Bd cannot

have rank zero, otherwise c1 = c3 = c4 = 0, that we excluded.

• Let’s take generic ci’s such that c21+c
2
3+c

2
4−2c1c3−2c1c4−2c3c4 ̸= 0. Renaming

A′ ≡ Bd and B′ ≡ −Bl(Au+wBu)
−1Br we can use equation (4.139) to rerun the

algorithm. A′ is already in a form with a 2×2 invertible block and all other ele-

ments equal to zero, i.e. r′ = 2. We can then immediately read B′
d by computing

the (33) element of B′. It is

B′
d = 3

(
c21+c

2
3+c

2
4−2c1c3−2c1c4−2c3c4

)
+
10

3
wc22(c1+c3+c4)−c42w2, (4.165)

that has rank 1. As a result, according to (4.140), we find that the total number

of zero modes is:

# = r′+2(dR−r−r′) = 2+2(8−5−2) = 4, (4.166)

where we recall that dR is the dimension of the representation, r is the rank of
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(4.159) and r′ is the rank of A′. The zero-modes have charge +1 with respect to

the U(1) generator.

Analogously, we find 4 localized zero-modes with charge −1 in the (2,2,2)−1

representation.

• When the ci’s fulfill (4.164), the rank of Bd drops to 1. This produces a change

in the zero-mode counting. We can parametrize a solution of (4.164) in terms of

two parameters q1, q4 as:

c1 = q21, c3 = (q1+εq4)
2, c4 = q24 (4.167)

where ε can take the values ±1. Now we have

A′ =


2q1q4

2
3
q1(q1+2εq4) 0

−2q4(q4+2εq1)
2
3
(2q21+5εq1q4+2q24) 0

0 0 0

 , (4.168)

When q21+εq1q4+q
2
4 ̸= 0, the 2×2 matrix is diagonalizable with the non-zero

eigenvalue equal to 4
3
(q21+εq1q4+q

2
4). The corresponding B′

d is

B′
d =

(
c22 −12c2q1q4(q1+εq4)

q21+εq1q4+q24

4c2q1q4(q1+εq4) 0

)
. (4.169)

This matrix has rank less than two only when one of the ci’s vanishes (and con-

sequently the other two are equal to each other), that we excluded.

When q21+εq1q4+q
2
4 = 0 (i.e. all the eigenvalues vanish) the 2×2 matrix has still

rank 1 and the corresponding B′
d is also forced to have rank 2 (for non-vanishing

ci’s).

We can finally count the localized zero-modes using formula (4.140), finding:

# = r′+2(dR−r−r′) = 1+2(8−5−1) = 5. (4.170)

Notice that, with respect to the case (4.166) in which the Casimirs were totally

generic, we have found an enhancement in the number of modes on a specific locus

in the space of the partial Casimirs. This is the same locus where one conifold

singularity that was at w ̸= 0 collides onto the origin.

The representation (2,2,2)−1 gives us further 5 zero-modes of charge −1.

Let us summarize our findings for the modes localized at w = 0 for the simple flop of

length 2 and partial Casimirs given by ϱi(w) = w ci, with ci constants.

• For generic values of ci’s, we get:

- 8 modes with charge ±1,
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- 2 modes with charge ±2.

In terms of the GV invariants, this means

ng=0
1 = 4 and ng=0

2 = 1. (4.171)

• For ci’s satisfying the constraint (4.164), we get:

- 10 modes with charge ±1,

- 2 modes with charge ±2.

In terms of the GV invariants, this means

ng=0
1 = 5 and ng=0

2 = 1. (4.172)

For the other (non-zero) values of w where there are localized modes, we have conifold sin-

gularities and the flop is therefore not of length two: in fact, at these values of w the D4 is

still deformed to a smaller singularity of A-type.

As usual, we can translate from the GV language to the Higgs branch data, noticing that

(4.171) predicts that M-theory on this flop of length 2 geometrically engineers a rank-0 5d

N = 1 SCFT with a U(1) flavor group, 4 hypers of charge 1 and 1 hyper of charge 2 under

this group. The enhancement (4.172) simply adds a hyper of charge 1 to the Higgs branch.

If we pick the choice SO(8)/Z2 for the global form of the 7d gauge group, we find no discrete

group in 5d.

Non-constant ci’s. For simplicity, we have analyzed cases when the partial Casimirs ϱi
are just a constant ci multiplied by w. Of course, one can also let ci depend on w and rerun

the algorithm.

One can in particular find the dependence of the ci(w)’s such that the threefold X has

only one isolated singularity at the origin. An easy solution is when

c1 = 4a+b2w, c2 = b, c3 = c4 = a. (4.173)

One can check that for this choice the determinant (4.161) is equal to −256a3b2w5, i.e. it

vanishes only at w = 0. The corresponding threefold has ng=0
1 = 5 and ng=0

2 = 1. For

a = −1/4 and b = 1/2 one actually recovers the Brown-Wemyss threefold [92] in the form

that appeared in Section 4.6.2 (that has the expected GV invariants). Notice, moreover,

that the GV invariants match the one of the Laufer singularity of Section 6.3.2, that is also

a flop of length25 2.

25As argued in [92], the Brown-Wemyss and the Laufer singularity possess the same GV invariants, but
are distinguished by their contraction algebra.
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4.8.3 Simple flop with length 3

In this section we engineer a threefold X with a simple flop of length three. Analogously

to the previous sections, we are going to define a suitable Higgs field, valued in the E6 Lie

algebra, that generates a family of deformed E6 surfaces with an E6 singularity at w = 0.

The resolution of the isolated singularity in the threefold X will blow-up only the trivalent

node of the E6 Dynkin diagram (see Figure 4.2). To achieve this result, we pick the following

Levi subalgebra

L = A
(1,2)
2 ⊕A(4,5)

2 ⊕A(6)
1 ⊕⟨α∗

3⟩, (4.174)

where the factors A
(i,j)
2 are associated, as subalgebras, to the roots αi, αj of the E6 Dynkin

diagram (we follow the labels in Figure 4.5) and A
(6)
1 is the algebra associated to the root

α6.

Figure 4.5: E6 Dynkin diagram, with the root blown up in the length three flop colored in black.

Again, we pick X+ ≡ Φ|w=0 to be an element of the principal nilpotent orbit of each

simple factor of L. The partial Casimirs relative to L are the total Casimirs of each simple

factor of (4.174), plus the coefficient along the Cartan element ⟨α∗
3⟩. I.e. the generic Φ will

be such that26

Φ|
A

(i,j)
2

=


0 1 0

0 0 1

ϱ
(i,j)
3 ϱ

(i,j)
2 0

 = Eαi
+Eαj

+ϱ
(i,j)
2 E−αj

+ϱ
(i,j)
3 [E−αj

, E−αi
], i < j, (4.175)

Φ|
A

(6)
1

=

(
0 1

ϱ
(6)
2 0

)
= Eα6+ϱ

(6)
2 E−α6 and Φ|⟨α∗

3⟩ = ϱ
(3)
1 ⟨α∗

3⟩.

26To match the conventions of Section 1.3.4, one takes {ϱi| i = 1, ..., 6} = {ϱ(3)1 , ϱ
(6)
2 }∪{ϱ

(i,j)
3 , ϱ

(i,j)
2 | (i, j) =

(1, 2), (4, 5)}.
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We now explicitly construct a threefold, by making the choice

ϱ
(3)
1 = w c3

ϱ
(6)
2 = w c6

ϱ
(1,2)
2 = 0

ϱ
(4,5)
2 = 0

ϱ
(1,2)
3 = w c12

ϱ
(4,5)
3 = w c45

(4.176)

with c3, c6, c12, c45 constant numbers.

By plugging this choice into the Higgs field vev Φ, and following the procedure described

in Section 4.7.2, one obtains the threefold as an hypersurface of (x, y, z, w) ∈ C4.

As an example, if we pick c3 = 0, c6 = −3, c12 = 1, c45 = −1, one gets the following

threefold, which is singular at the origin (as well as at other three points with non-zero w):

x2+y3+z4+
27w6

32
+18w5+

(
12w3− 27w4

16

)
y+2

(
w2− 9w3

8

)
z2+3wyz2 = 0. (4.177)

Via a change of coordinates, this exactly coincides with the length 3 threefold explicitly

presented by [91].

Zero modes. We now proceed (with the same procedure of the previous sections) to

the mode counting. The branching of the adjoint representation 78 of E6 w.r.t L in (4.174)

is given by27

78 = (8,1,1)0⊕(1,8,1)0⊕(1,1,3)0⊕(1,1,2)3⊕(1,1,2)−3⊕(1,1,1)0⊕
⊕(3,3,2)1⊕(3,3,1)−2⊕(3,3,2)−1⊕(3,3,1)2 , (4.178)

where the subscripts denote the charges under ⟨α∗
3⟩.

For the E-cases the explicit computations done for length one and two become convoluted.

We present here only the results. A Mathematica routine, presented in [99], that implements

the algorithm described in Section 4.7.3, can be used to check the results. Running this

code for a generic choice of the parameters c6, c3, c12, c45, we obtained, for each irreducible

representation appearing in (4.178), the 5d modes shown in Table 4.1. In the table, we also

write how many elements of the given representation support a mode localized in C[w]/(wk),

for each k; we find that k ≤ 2. We get a total of 20 5d modes:

• one hyper with charge three, inside (1,1,2)3⊕(1,1,2)−3;

• three hypers with charge two inside (3,3,1)2⊕(3,3,1)−2;

27It can be better understood starting from the one of the maximal subalgebra A
(1,2)
2 ⊕A(4,5)

2 ⊕A′
2 (with

A′
2 containing Eα6

): 78 = (8,1,1)⊕(1,8,1)⊕(1,1,8)⊕(3,3,3)⊕(3,3,3). One then selects the subalgebra

A
(6)
1 ⊂ A′

2, and correspondingly branches each term of the sum.
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RL C[w]/(w) C[w]/(w2) #zeromodes

(8,1,1)0 0 0 0

(1,8,1)0 0 0 0

(1,1,3)0 0 0 0

(1,1,1)0 0 0 0

(3,3,2)1 4 1 6

(3,3,2)−1 4 1 6

(3,3,1)2 3 0 3

(3,3,1)−2 3 0 3

(1,1,2)3 1 0 1

(1,1,2)−3 1 0 1

Table 4.1: 5d modes for E6 length three simple flop.

• six hypers with charge one inside (3,3,2)1⊕(3,3,2)−1.

In terms of the GV invariants, one then reads

ng=0
1 = 6 , ng=0

2 = 3 and ng=0
3 = 1, (4.179)

which perfectly coincides with the results of [91]. Notice that the maximal flavor charge is

equal to the length of the flop and to the dual Coxeter label of the resolved node.

In addition, M-theory on this simple flop of length 3 geometrically engineers a rank-0 5d

N = 1 SCFT with Higgs branch data encoded in (4.179), with the usual correspondences.

No discrete group is present if we pick the simply connected form of the E6 group, modded

by its center Z3. Notice that all the charges from 1 to 3 are realized.

We can finally check whether there are special choices of the parameters c12, c45, c6, c3 for

which the number of 5d modes localized at w = 0 enhances. A necessary condition for the

enhancement of the number of modes is that the rank of the matrix Bd drops for a special

choice of the partial Casimirs. By explicit computation, we find that the rank drops when

c12 = c45 or c6 = 0. However, these choices would create a non-isolated singularity.

4.8.4 Simple flop with length 4

In the following section we engineer, by means of a Higgs field Φ valued in the E7 Lie

algebra, a flop of length four. By looking at the dual Coxeter labels of the E7 Dynkin

diagram in Figure 4.2, we see that the simultaneous resolution should involve the trivalent

node. Analogously to the previous examples, this means that we have to pick the Higgs field
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in the Levi subalgebra

L ≡ A
(4,5,6)
3 ⊕A(1,2)

2 ⊕A(7)
1 ⊕⟨α∗

3⟩, (4.180)

where the superscripts refer to the roots of the E7 Dynkin diagram numbered as in the

Figure 4.6, and α3 is the trivalent root of E7.

Figure 4.6: E7 Dynkin diagram, with the root blown up in the length four flop colored in black.

Analogously to the E6 case, we choose the Higgs field as follows:

Φ|⟨α∗
3⟩ = c3w⟨α∗

3⟩ (4.181)

and

Φ|
A

(7)
1

=

 0 1

c7w 0

 = Eα7+c7wE−α7 ,

Φ|
A

(1,2)
2

=


0 1 0

0 0 1

c12w 0 0

 = Eα1+Eα2+c12w [E−α1 , E−α2 ],

Φ|
A

(4,5,6)
3

=



0 1 0 0

0 0 1 0

0 0 0 1

c456w 0 0 0


= Eα4+Eα5+Eα6+c456w

[
[E−α4 , E−α5 ], E−α6

]
.

The corresponding threefold is a hypersurface in C4, that is a family of deformed E7 singu-

larities over Cw. To make the equation of the threefold more readable, we set the parameters

to specific values, picking c3 = 0, c7 = 3, c12 =
1
2
, c456 = −1

2
, obtaining

x2−y3+yz3+3wy2z+y2
81w2

16
−yzw

2

12
+z2

5w3

8
−y w

3

108
+z

w4

3
+
w5

144
= 0. (4.182)

where we neglected terms of high degree, irrelevant for the singularity at w = 0.
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Zero modes. We now proceed with the modes counting. We will again perform the

gauge-fixing separately in each irreducible representation of the branching of the adjoint

representation 133 of E7 under the subalgebra L:28

133 = (15,1,1)0⊕(1,8,1)0⊕(1,1,3)0⊕(1,1,1)0⊕
(4,3,2)−1⊕(4,3,2)1⊕(6,3,1)−2⊕(6,3,1)2⊕
(4,1,2)−3⊕(4,1,2)3⊕(1,3,1)−4⊕(1,3,1)4. (4.183)

Running the Mathematica routine described in [99], we find the results displayed in table

4.2. As in the E6 case, there are no five-dimensional modes localized in C[w]/(wk), with

k > 2. In total, we find 28 modes localized at w = 0:

RL C[w]/(w) C[w]/(w2) #zeromodes

(15,1,1)0 0 0 0

(1,8,1)0 0 0 0

(1,1,3)0 0 0 0

(1,1,1)0 0 0 0

(4,3,2)−1 6 0 6

(4,3,2)1 6 0 6

(6,3,1)−2 3 1 5

(6,3,1)2 3 1 5

(4,1,2)−3 2 0 2

(4,1,2)3 2 0 2

(1,3,1)−4 1 0 1

(1,3,1)4 1 0 1

Table 4.2: five-dimensional modes for E7 length four simple flop.

• one hyper with charge four, inside (1,3,1)−4⊕(1,3,1)4;

• two hypers with charge three inside (4,1,2)−3⊕(4,1,2)3;

• five hypers with charge two inside (6,3,1)−2⊕(6,3,1)2.

• six hypers with charge one inside (4,3,2)−1⊕(4,3,2)1.

28The first entry of each summand is a representation of A
(4,5,6)
3 , the second one is a representation of

A
(1,2)
2 , and the third on a representation of A

(7)
1 . The subscript is the charge under ⟨α∗

3⟩.
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In terms of the GV invariants, one then reads

ng=0
1 = 6 , ng=0

2 = 5 , ng=0
3 = 2 and ng=0

4 = 1, (4.184)

where again we notice the correspondence between the maximal degree of the GV invariants

and the length of the flop.

The Higgs branch data of the 5d SCFT engineered by M-theory on the simple flop of

length 4 can be read directly from (4.184). As in all the preceding cases, no discrete group

is present when we take as global form E7 modded by its center Z2, and all the charges from

1 to 4 are realized by some hypermultiplet.

Finally, we find (as in the E6 case) that no particular choice of the constants ci can

enhance the number of zero modes at w = 0 (without generating non-isolated singularities).

4.8.5 Simple flop with length 5

A flop with length 5 is obtained from an E8 family over Cw. The node that should be

simultaneously resolved at w = 0 is depicted in Figure 4.7.

Figure 4.7: E8 Dynkin diagram, with the root blown up in the length five flop colored in black.

We then have H = ⟨α∗
4⟩ and

L = A
(5,6,7)
3 ⊕A(1,2,3,8)

4 ⊕⟨α∗
4⟩. (4.185)

We make the simple choice

Φ|⟨α∗
4⟩ = c4w ⟨α∗

4⟩

Φ|
A

(5,6,7)
3

=


0 1 0 0

0 0 1 0

0 0 0 1

c567w 0 0 0

 = Eα5+Eα6+Eα7+c567w [[E−α5 , E−α6 ], E−α7 ]

Φ|
A

(1,2,3,8)
4

=


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

c1238w 0 0 0 0

 = Eα1+Eα2+Eα3+Eα8−c1238w
[[
[E−α1 , E−α2 ], E−α3

]
, E−α8

]

with constant c’s. We obtain our threefold as a hypersurface in C4. To make the equation
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RL C[w]/(w) C[w]/(w2) #zeromodes

(1,24)0 0 0 0

(15,1)0 0 0 0

(1,1)0 0 0 0

(4,10)1 6 1 8

(4,10)−1 6 1 8

(6,5)2 6 0 6

(6,5)−2 6 0 6

(4,5)3 4 0 4

(4,5)−3 4 0 4

(1,10)4 2 0 2

(1,10)−4 2 0 2

(4,1)5 1 0 1

(4,1)−5 1 0 1

Table 4.3: five-dimensional modes for E8 length five simple flop.

more readable, we pick explicit values for the parameters, setting c4 = 0, c567 = 1, c1238 = −1:

x2+y3+z5+w7+
w6

864
− 23w5z

36
−w

4y

48
− 187w4z2

36
− 13

3
w3yz− 2w3z3

27
− 1

3
w2yz2 = 0. (4.186)

Zero modes. We can explicitly perform the branching of the adjoint representation 248

of E8 under the chosen L:29

248 = (1,24)0⊕(15,1)0⊕(1,1)0⊕
(4,10)1⊕(4,10)−1⊕(6,5)2⊕(6,5)−2⊕
(4,5)3⊕(4,5)−3⊕(1,10)4⊕(1,10)−4⊕
(4,1)5⊕(4,1)−5. (4.187)

The result of the zero mode counting is displayed in Table 4.3. There are no modes localized

in C[w]/(wk), with k > 2. We find 48 modes localized at w = 0:

• one hyper with charge five, inside (4,1)5⊕(4,1)−5;

• two hyper with charge four, inside (1,10)4⊕(1,10)−4;

29The first number denotes the dimension of the representation of A
(5,6,7)
3 , the second under A

(1,2,3,8)
4 and

the subscript is the charge under the Cartan α∗
4.
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• four hypers with charge three inside (4,5)3⊕(4,5)−3;

• six hypers with charge two inside (6,5)2⊕(6,5)−2;

• eight hypers with charge one inside (4,10)1⊕(4,10)−1.

In terms of the GV invariants, one obtains

ng=0
1 = 8 , ng=0

2 = 6 , ng=0
3 = 4 , ng=0

4 = 2 and ng=0
5 = 1. (4.188)

Suitably translating the GV invariants into the Higgs branch data of M-theory on the simple

flop of length 5, we find hypers with charges defined by (4.188). Taking the simply connected

E8 group modded by its (trivial) center we obtain no discrete group. All the charges from 1

to 5 are realized.

Again, we notice that we can not enhance the number of zero-modes at w = 0 without

generating a non-isolated singularity.

4.8.6 Simple flop with length 6

In this section we conclude our analysis of simple flops by dealing with the highest length

case, i.e. a flop of length 6 arising from a E8 singularity deformed over the plane Cw. We

choose the Higgs Φ ∈ E8 in such a way to resolve only the central node of the E8 Dynkin

diagram as depicted in Figure 4.8.

Figure 4.8: E8 Dynkin diagram, with the root blown up in the length six flop colored in black.

According to the principles outlined in previous sections, the Higgs field resolving the

central node must lie in the Levi subalgebra defined by:

L = A
(4,5,6,7)
4 ⊕A(1,2)

2 ⊕A(8)
1 ⊕⟨α∗

3⟩, (4.189)

where as usual the upper indices label the simple roots. Again we choose Φ of the following
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form:

Φ|A4
(4,5,6,7) =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

c4567w 0 0 0 0

 = Eα4+Eα5+Eα6+Eα7−c4567w [[[E−α1 , E−α2 ] , E−α3 ] , E−α4 ] ,

Φ|A2
(1,2) =

 0 1 0

0 0 1

c12w 0 0

 = Eα1+Eα2+c12w [E−α1 , E−α2 ] ,

Φ|A1
(8) =

(
0 1

c8w 0

)
= Eα8+c8w E−α8 ,

Φ|⟨α∗
3⟩ = c3w ⟨α∗

3⟩.
(4.190)

To make the equation more readily understandable, we set the parameters to a specific

value c3 = 0, c8 = 1, c12 = −1, c4567 = 1. In this way we obtain the threefold

x2+y3+z5−wyz3−w
4

48
y+

w6

864
− 7w2

2
yz2− 23w4

20
yz− 11w3

12
z3− 17w4

24
z2+

47w6

240
z = 0, (4.191)

where we neglected terms of high degree, irrelevant for the singularity at w = 0.

Zero modes. We perform the mode counting explicitly, independently for each irre-

ducible representation arising from the adjoint 248 of E8, branched under the Levi subalge-

bra (4.189). The decomposition reads:

248 = (24,1,1)0⊕(1,8,1)0⊕(1,1,3)0⊕(1,1,1)0 ⊕
(5,3,2)1⊕(5,3,2)−1⊕(10,3,1)2⊕(10,3,1)−2 ⊕
(10,1,2)3⊕(10,1,2)−3⊕(5,3,1)4⊕(5,3,1)−4 ⊕
(1,3,2)5⊕(1,3,2)−5⊕(5,1,1)6⊕(5,1,1)−6

(4.192)

Applying the Mathematica routine presented in [99], we find the zero modes in Table 4.4.

We find a total of 44 localized modes:

• one hyper with charge six, inside (5,1,1)6⊕(5,1,1)−6;

• two hypers with charge five, inside (1,3,2)5⊕(1,3,2)−5;

• three hypers with charge four, inside (5,3,1)4⊕(5,3,1)−4;

• four hypers with charge three inside (10,1,2)3⊕(10,1,2)−3;
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RL C[w]/(w) C[w]/(w2) #zeromodes

(24,1,1)0 0 0 0

(1,8,1)0 0 0 0

(1,1,3)0 0 0 0

(1,1,1)0 0 0 0

(5,3,2)1 6 0 6

(5,3,2)−1 6 0 6

(10,3,1)2 6 0 6

(10,3,1)−2 6 0 6

(10,1,2)3 4 0 4

(10,1,2)−3 4 0 4

(5,3,1)4 3 0 3

(5,3,1)−4 3 0 3

(1,3,2)5 2 0 2

(1,3,2)−5 2 0 2

(5,1,1)6 1 0 1

(5,1,1)−6 1 0 1

.

Table 4.4: Five-dimensional modes for E8 length six simple flop.

• six hypers with charge two inside (10,3,1)2⊕(10,3,1)−2;

• six hypers with charge one inside (5,3,2)1⊕(5,3,2)−1.

In terms of the GV invariants, one then reads

ng=0
1 = 6, ng=0

2 = 6, ng=0
3 = 4, ng=0

4 = 3, ng=0
5 = 2 and ng=0

6 = 1.

The Higgs branch data corresponding to M-theory on the simple flop of length 6 is immedi-

ately deduced from (4.193). Analogously to the lower-length cases, we see no discrete group,

and all the charges from 1 to 6 are realized.

Finally, analyzing the rank of the matrix Bd, we find that no enhancement in the number

of localized modes at w = 0 is feasible without generating a non-isolated singularity.
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4.9 Beyond simple flops

In light of the applications of the next chapter, in this last section we start going outside of

the environment provided by simple threefold flops. Namely, we start considering singular

threefolds that can be expressed as deformed ADE singularities admitting more than one

inflated P1 (also called non-simple flops), or no crepant resolution at all.

Given the simplicity of the setups30, we compute zero-modes in the standard way intro-

duced in (4.5), making the exposition more transparent.

4.9.1 Generalized conifold

In this section we present an easy example of non-simple flop, i.e. an isolated singularity

whose exceptional locus is a collection of P1’s. This threefold is a deformation of A2 and is

given by the equation

x2+y2 = z3−w2z, (4.193)

and was dubbed “generalized conifold” in [158]. Since it is a A2-family, the corresponding

IIA Higgs field lives in the adjoint of SU(3). It is given by

Φ =

 0 0 0

0 −w 0

0 0 w

 . (4.194)

Notice that this equals switching on a vev for ϕ3 along:

H = ⟨α∗
1, α

∗
2⟩, (4.195)

where α1 and α2 are the two simple roots of A2. Geometrically, this amounts to the simul-

taneous resolution of both the nodes of the A2 Dynkin diagram.

As for the Reid’s pagodas (that were also An-families) we recover the hypersurface (4.193)

computing:

uv = det(z1−Φ) = z3−w2z. (4.196)

The group preserving the above Higgs is:

G5d =

 eiα 0 0

0 eiβ 0

0 0 eiγ

 with α+β+γ = 0 mod 2π, (4.197)

where we have decoupled the diagonal center of mass U(1).

In order to find the possible zero modes we must mod the fluctuations φ of the Higgs by:

φ ∼ φ+[Φ, g], (4.198)

30These are all special subcases of the singularities we will treat more systematically in Chapter 5.
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with g a generic element of sl(3).

A direct computation shows that:

φ ∼

 φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33


︸ ︷︷ ︸

φ

+

 0 g12w −g13w
−g21w 0 −2g23w
g31w 2g32w 0


︸ ︷︷ ︸

[Φ,g]

. (4.199)

We then see that φ11, φ22 and φ33 cannot be fixed, and so do not give rise to localized modes

in 5d. On the other hand, note that using the gauge freedom we can set:

φ12, φ13, φ23 ∈ C[w]/(w) ∼= C (4.200)

so that we obtain 3 localized modes. The same goes for φ21, φ31 and φ32, that give rise to

other 3 modes.

It is immediate to obtain the charges of the modes under the three dependent U(1)’s in

(4.197):

UφU−1 =

 0 ei(α−β)φ12 ei(α−γ)φ13

e−i(α−β)φ21 0 ei(β−γ)φ23

e−i(α−γ)φ31 e−i(β−γ)φ32 0

 . (4.201)

There is no discrete gauge symmetry and then the Higgs branch is simply given by three

free hypermultiplets. Hence, the Higgs branch is simply:

MHB = H3 , (4.202)

with flavor symmetry

Gflavor = U(1)2 . (4.203)

Finally, the GV invariants of (4.193) read:

ng=0
d=1 = 3. (4.204)

4.9.2 Non-resolvable threefolds and T-branes

In this section, we analyze threefolds that admit no crepant simultaneous resolution.

We start with the class of threefolds given by the equation

x2+y2 = z2k+1−w2. (4.205)

These are A2k-families and then admit a description in IIA in terms of a non-zero vev for a

Higgs field living on a SU(2k+1) stack of D6-branes.

Let us describe in more detail the simplest case, i.e. k = 1:

x2+y2 = z3−w2 . (4.206)
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This manifold was studied in [169] in the context of F-theory, where the authors showed that

there is matter localized at the singularity, even though such isolated singularity does not

admit a crepant small resolution. It admits however a non-Kähler resolution, as anticipated

in [170].

Here we confirm the existence of one localized hyper. The characteristic polynomial is

now singular, hence the field Φ does not take the form (4.58) of a reconstructible Higgs.

However we can work out the form of Φ that deforms the SU(3) stack to (4.206):

Φ =

 0 w 0

0 0 w

1 0 0

 . (4.207)

In order to find the zero-modes in the fluctuation matrix φ we have to mod out by gauge

equivalences:

φ ∼ φ+[Φ, g] (4.208)

where g ∈ sl(3).

Doing so, we find that all the entries in φ can be fixed to zero or are not localized on any

ideal, except for:

φ12 ∼ φ12+w(g22−g33) φ23 ∼ φ23−w(g22−g33)
φ22 ∼ φ22+w(g32−g21) φ33 ∼ φ33−w(g32−g21)

(4.209)

We note that φ12 and φ23 depend on the same parameter, as φ22 and φ33 do. As a conse-

quence, we can choose to localize the first two (say φ12 and φ22) in 5d, while the other stay

non-dynamical. Acting in this way we get:

φ12, φ22 ∈ C[w]/(w) ∼= C (4.210)

thus giving us 1+1 = 2 modes in total. Since there is no discrete gauge symmetry left by

the Higgs vev, the Higgs branch is given by one free hypermultiplet.

This computation is easily generalized to a generic k. The Higgs field is now

Φ =

 w 0

0 w

12k−1

 . (4.211)

The computation of the localized zero modes proceeds with the same steps done with k = 1.

The Higgs branch is now given by k free hypermultiplets. This result confirms what

found with different method in [59].

x2+y2 = z2k+1−w2 ←→ k free hypers (4.212)
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The corresponding GV invariant can hence be read off as:

ng=0
d=0 = k. (4.213)

Note that we are in this way defining Gopakumar-Vafa invariants for singular varieties with-

out any reference to a small resolution, since the variety is not small-resolvable in Kähler

way. In this perspective, we can dub them “degree 0” GV invariants, as they do not corre-

spond in 5d to hypers charged under any U(1), simply because there is no such group.

As we have previously mentioned, different choices of the Higgs field can be made, corre-

sponding to inequivalent T-brane backgrounds (putting the 1’s and w’s in different entries)

that would generate a smaller spectrum, and therefore a lower-dimensional Higgs branch.

In this regard, let us examine a simple example of a geometry that admits three possible

Higgs branches, depending on the choice of T-brane data. Take the hypersurface given by

x2+y2 = z5−w2 . (4.214)

Again, this is a singular hypersurface that does not admit a crepant Kähler resolution.

Nevertheless, it does admit a fiberwise reduction to IIA string theory with D6-branes, albeit

with D6-branes that wrap singular Riemann surfaces. For the Higgs background, we see the

following three possible choices, each giving rise to a different hypermultiplet spectrum:

Φ2 =


0 w 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 w

1 0 0 0 0

 ⇒ 2 free hypers

Φ1 =


0 w 0 0 0

0 0 w 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

 ⇒ 1 free hyper

Φ0 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

w2 0 0 0 0

 ⇒ 0 free hypers

In all three cases, there is no discrete gauging, so we just have free hypermultiplets. We

refer to these different choices as T-brane data, as they consist in inherently non-abelian

168



information that does not alter the M-theory geometry, but nevertheless has a severe impact

on the effective physics.

T-brane phenomena are not restricted to non-resolvable threefolds, but invest all the

deformed ADE singularities we have studied so far: we will have much more to say on the

impact of T-branes on Higgs branch spectra in the following chapter.

4.9.3 Partially resolvable singularities

We finally consider a class of threefolds that are a straightforward generalization of (4.206):

x2+y2 = z(z2k+1−w2). (4.215)

These spaces can be partially resolved by taking(
u z

z2k+1−w2 v

)
·
(
s

t

)
= 0 , (4.216)

where [s : t] are the homogeneous coordinates of the exceptional P1. However, the resolution

still possesses a terminal singularity. Hence one expects hypers coming from M2-branes

wrapping the exceptional P1 and hypers coming from the terminal singularity. Moreover, we

expect a continuous U(1) flavor symmetry from the non-Cartier divisor related to the small

resolution (like in all the previous cases where a small resolution was possible).

Again we study in detail only the case k = 1. The Higgs field whose characteristic

polynomial reproduces (4.215) is

Φ =


0 0 0 0

0 0 w 0

0 0 0 w

0 1 0 0

 . (4.217)

where notice that the theory of Springer resolutions correctly predicts a resolution of a single

node (the first of the A3 chain). The Higgs field fluctuations φ are given modulo linearized

gauge transformation:

φ ∼ φ+[Φ, g] with g ∈ sl(4). (4.218)

Explicitly we get:

φ ∼


φ11 φ12 φ13 φ14

φ21 φ22 φ23 φ24

φ31 φ32 φ33 φ34

φ41 φ42 φ43 φ44


︸ ︷︷ ︸

φ

+


0 g14 g12w g13w

−g31w g24−g32w (g22−g33)w (g23−g34)w
−g41w g34−g42w (g32−g43)w (g33−g44)w
−g21 g44−g22 g42w−g23 g43w−g24


︸ ︷︷ ︸

[Φ,g]

.

Using the gauge redundancy we can set φ12, φ41, φ42, φ43, φ44 and φ32 to zero.
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We are then left with:

φ ∼


φ11 0 φ13 φ14

φ21 φ22 φ23 φ24

φ31 0 φ33 φ34

0 0 0 0


︸ ︷︷ ︸

φ

+


0 0 g12w g13w

−g31w (g43−g32)w (g44−g33)w 0

−g41w 0 −(g43−g32)w −(g44−g33)w
0 0 0 0


︸ ︷︷ ︸

[Φ,g]

.

We see that φ11 and φ24 are unconstrained, and that the pairs (φ22, φ33) and (φ23, φ34)

depend on the same parameters, so that we can gauge-fix only a linear combination for

each pair. As a result (making a choice for the gauge-fixing), in total we get 6 modes, or

equivalently 3 hypers:

φ13, φ14, φ21, φ31 ∈ C[w]/(w) ∼= C and φ22, φ23 ∈ C[w]/(w) ∼= C. (4.219)

The subgroup of SU(4) preserving Φ as in (4.217) is given by matrices

G5d =

 e−3iα 0

0 eiα13

 . (4.220)

A direct computation shows that the modes φ13, φ14, φ21, φ31 are charged under the U(1),

whereas φ22, φ23 are not. Summing up, we get 2 charged hypers and 1 uncharged hyper.

In the generic k case we still have a U(1) flavor and the modes are organized (as in the

k = 1 case) as follows:  0 charged1×(2k+1)

charged(2k+1)×1 uncharged(2k+1)×(2k+1)

 (4.221)

We obtain 2 charged hypers along with k uncharged hypers. Since there is no discrete

gauge symmetry, the Higgs branch is given by k+2 free hypermultiplets.

x2+y2 = z(z2k+1−w2). ←→ 2 charged hypers +k uncharged hypers (4.222)

The corresponding GV invariants are (stressing again that the “degree 0” GV invariants

are so far only formally defined, as they have no known mathematical counterpart):

ng=0
d=0 = k, ng=0

d=1 = 2. (4.223)
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CHAPTER 5

M-theory on quasi-homogeneous cDV singularities

In this chapter, we proceed with the systematic application of the techniques we have devel-

oped so far, with a clear-cut objective in mind: we wish to analyze the 5d effective theories

arising from M-theory on quasi-homogeneous compound Du Val (cDV) singularities, in all

cases. In turn, in light of the correspondence between Higgs branch data and the GV invari-

ant theory, this is equivalent to classifying the GV invariants of all quasi-homogeneous cDV

singular threefolds1.

This prospect will bring us way beyond the realm of simple flops we have explored so

far, as quasi-homogeneous cDV singularities can exhibit a wide variety of crepant resolution

patterns, admitting none, one, or more than one inflated P1’s2. Namely, following Section

4.2, we have:

r = 0, f ≥ 0. (5.1)

Hence, quasi-homogeneous cDV singularities engineer rank-0 5d N = 1 SCFTs.

We start by recapping the properties of the Higgs background Φ in Section 5.1, with

specific attention devoted to the preserved discrete symmetries; we go along introducing a

systematic method to extract the Higgs background associated to a given quasi-homogeneous

cDV singularity in Section 5.2, and we finally employ this knowledge in Section 5.3 to write

down the Higgs branches of all the 5d SCFTs coming from M-theory on quasi-homogeneous

cDV singularities. As always, the number of hypermultiplets and their flavor charges intrin-

sically encode the GV invariants of the corresponding cDV singularities.

Before this, we briefly review the classification of the singularities that we are interested

in.

1As a consequence, in order to simplify the exposition, we will not repeat the correspondence each time.
The GV invariants can always be recovered from the Higgs branch data in the standard way outlined in
Chapter 4.

2Still, we will see that the exceptional P1’s never intersect each other, thus giving rise only to U(1)f flavor
groups in five dimensions.

171



In Chapter 1 we have introduced cDV singularities as hypersurfaces in C4 of the form:

F (x, y, z, w) : x2+Pg(y, z)+wg(x, y, z, w) = 0 (5.2)

where Pg classifies ADE singularities as in (1.32). In this chapter, we focus on quasi-

homogeneous cDV singularities, i.e. hypersurfaces of the form (5.2) admitting a specific

C∗-action. This means that there exists a choice of weights qi for the coordinates (x, y, z, w),

where i = x, y, z, w, such that:

F (λqxx, λqyy, λqzz, λqww) = λF (x, y, z, w), with qi ̸= 0. (5.3)

Now, let us consider as an example the following hypersurfaces:

Pg′(x,w)+Pg(y, z) = 0 (5.4)

with g′, g two ADE algebras. It is known that reducing type IIB string theory on such

threefolds, one obtains Argyres-Douglas theory of type (g′, g) [171].

If one restricts to the case g′ = An, one obtains a notable subclass of cDV singularities,

known as (A, g) hypersurfaces3:

x2+Pg(y, z)+w
n+1 = 0. (5.5)

We notice that the first two terms reconstruct the ADE singularity of type g in (1.2), while

the last term can be interpreted as a deformation of this singularity. Hence the equation

(5.5) describes a family of deformed g-singularities, fibered over a complex plane Cw. This

is precisely the setting in which our techniques can be applied.

The threefolds (5.5) belong to the class of quasi-homogeneous compound Du Val threefold

singularities. There exists an exhaustive classification of quasi-homogeneous cDV singulari-

ties, computed in [131], that we recall in Table (5.1), where we also make explicit the algebra

g for the (A, g) threefolds. Notice that also the threefolds that are not of (A, g) type are

one-parameter families of deformed ADE singularities, which is precisely the requirement we

need to employ our machinery.

We aim at completely classifying the Higgs branches of M-theory on the cDV singularities

(5.1), proceeding as in the previous chapters. We will see, though, that each class in the

ADE classification presents different obstacles, and we will introduce suitable refinements of

our techniques whenever necessary.

For the explicit computations regarding the Higgs branches, we will recur to the algorithm

presented in Chapter 4. In the next section, we refine our strategy to explicitly compute

Higgs backgrounds, showing how to extract them directly from the quasi-homogeneous cDV

singularity equation.

3These give rise, upon compactification of Type IIB on them, to the (A, g) Argyres-Douglas theories.
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ADE Label Singularity
Non-vanishing

deformation parameter

A (Ak−1, AN−1) x2+y2+zk+wN = 0 µk = wN

A
(k−1)
k−1 [N ] x2+y2+zk+wNz = 0 µk−1 = wN

D (AN−1, Dk) x2+zy2+zk−1+wN = 0 µ2k−2 = wN

D
(k)
k [N ] x2+zy2+zk−1+wNy = 0 µ̃k = wN

E6 (AN−1, E6) x2+y3+z4+wN = 0 µ12 = wN

E
(9)
6 [N ] x2+y3+z4+wNz = 0 µ9 = wN

E
(8)
6 [N ] x2+y3+z4+wNy = 0 µ8 = wN

E7 (AN−1, E7) x2+y3+yz3+wN = 0 µ18 = wN

E
(14)
7 [N ] x2+y3+yz3+wNz = 0 µ14 = wN

E8 (AN−1, E8) x2+y3+z5+wN = 0 µ30 = wN

E
(24)
8 [N ] x2+y3+z5+wNz = 0 µ24 = wN

E
(20)
8 [N ] x2+y3+z5+wNy = 0 µ20 = wN

Table 5.1: Quasi-homogeneous cDV singularities as ADE families.

5.1 The Higgs background Φ

5.1.1 Maximal subalgebras

In Section 3.9, we have recapped how a Higgs background Φ(w) for a one-parameter deformed

singular ADE family living in a Levi subalgebra of an ADE algebra g

L =
⊕
h

Lh⊕H, (5.6)

yields a resolution of the corresponding singularity that is dictated by the commutant H of

Φ(w):

H = ⟨α∗
1, . . . , α

∗
f⟩. (5.7)

In this chapter we introduce a refinement to this statement, that will prove essential to

correctly deal with the five-dimensional discrete symmetries of the SCFTs arising from M-

theory on quasi-homogeneous compound Du Val singularities.

Recall that L in (5.6) is a direct sum of H with a semi-simple Lie algebra, i.e. L =

Lsemi−simp⊕H. In order for a Higgs background to break to H, it is enough that Φ(w)
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belongs toM =Msemi−simp⊕H, whereMsemi−simp is a maximal subalgebra of Lsemi−simp of

maximal rank4. We can then write

Φ ∈M ≡
⊕
h

Mh⊕H, (5.8)

whereMh are simple Lie algebras.

In the preceding chapters we have neglected this subtlety, as it was not needed to deal

with the examples examined up to this point5.

To sum up, we have the relations

simult.resol. : α1, ..., αf ↔ H = ⟨α∗
1, ...α

∗
f⟩ ↔ L. (5.9)

We can summarize these data in the Dynkin diagram of g: we color in black the nodes

corresponding to roots belonging to H (namely, they are the nodes that get blown-up by the

simultaneous resolution). Then the semi-simple part Lsemi−simp of the corresponding Levi

subalgebra is given by the Dynkin diagram colored in white. Hence, a coloring of the nodes

of the Dynkin diagram completely and univocally fixes a Levi subalgebra L = Lsemi−simp⊕H.
Given the Levi L, one can look for maximal subalgebras of the form (5.8), employing the

usual technique based on extended Dynkin diagrams. A Φ(w) producing a fibration with

the given simultaneous resolution must belong to one of these maximal subalgebras.

Figure 5.1: A4
1⊕A2 subalgebra of D7.

Let us see a simple example of this framework: take the Dynkin diagram of the Lie algebra

D7 and color one node αc in black as in Figure 5.1. We immediately read L = D4⊕A2⊕⟨α∗
c⟩

from the white nodes. D4 has a maximal subalgebra A⊕4
1 , that we can extract pictorially as

in Figure 5.1. If we want Φ to produce a threefold with a simultaneous resolution of only

the root αc, then either Φ ∈M = L or Φ ∈M = A4
1⊕A2⊕⟨α∗

c⟩.

4This is true because the Cartan subalgebra of Lsemi−simp coincides with the Cartan subalgebra of
Msemi−simp, as it is a maximal subalgebra of maximal rank.

5Moreover, notice that the fact that Φ can reside in a maximal subalgebra (5.8) of L is a fact that is
not captured by the Springer resolution formalism that we have employed so far, as it exclusively deals with
Levi subalgebras related to partial or complete flags.
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5.1.2 The threefold equation and 5d modes from the Higgs back-

ground

As we have declared at the beginning of the chapter, we aim at studying the 5d Higgs

branches from M-theory on all the compound Du Val singularities: to this end, we must

associate to every geometry a corresponding Higgs background. In order to carry out this

task, we recur to the tools we have introduced in the preceding chapters, namely:

1. We connect Higgs backgrounds and threefold equations via the explicit relations pre-

sented in Section 3.8, that relate the Casimirs of Φ(w) to the deformation parameters

of the ADE singularities.

2. We compute the localized 5d modes via the algorithm devised in Section 4.7.3, which

lends itself to an efficient computer-based implementation. In order to apply the al-

gorithm in light of the refinements of the preceding section, we slightly modify the

decomposition (4.128), branching the algebra g with respect to the maximal subalge-

braM containing Φ:

g =
⊕
p

RM
p . (5.10)

As regards the mode-counting, we add here some details about a case that we will recur-

rently encounter in the following. Consider two Higgs fields Φ and Φ̂ related as

Φ̂ = wjΦ, (5.11)

and with Φ(0) ̸= 0, while Φ̂ has a zero of order j at w = 0.

We can compute the zero modes of Φ̂, knowing the zero modes of Φ: the compo-

nents of the deformation φ that were gauge fixed to zero by Φ, now host zero modes in

C[w]/(wj). Components that hosted localized modes in C[w]/(wk), now support zero modes

in C[w]/(wj+k). We further note that the Casimir invariants of Φ and Φ̂ are related by

Tr
(
(Φ̂)i

)
= Tr ((wjΦ)i) = wi·jTr ((Φ)i).

These simple facts will permit us to reproduce the Higgs fields of all the quasi-homogeneous

cDV, first identifying a finite set of Higgs field profiles, and then producing all the other Higgs

fields multiplying them by an appropriate power of w.

In the next sections, we will exhibit a way to automatically perform point 1, namely

associate a Higgs background to a given threefold equation, which in general is quite tricky,

as we have mentioned in Section 3.9.

Before that, we devote the next few lines to fleshing out how the symmetry group of the

5d SCFT can be extracted from the Higgs background, with particular attention focused on

the discrete symmetries.
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5.1.3 The symmetry group

The 7d theory before the Higgsing has gauge group G, whose Lie algebra is g. Since all

fields are in the adjoint representation of g, the non-trivial acting group is the quotient of

the simply connected group associated to g modulo its center6. We take such a quotient as

our 7d group G.

Switching on the vev for Φ(w) on one side breaks G and on the other side generates zero

modes localized at w = 0, that are charged under the preserved symmetry group. Such a

symmetry group is StabG(Φ) ⊂ G, with

StabG(Φ) ≡
{
U ∈ G s.t. UΦU−1 = Φ

}
. (5.12)

Our Higgs field Φ engineers a threefold family that (simultaneously) resolves the roots

α1, ..., αf . This is realized by letting H (defined in (5.7)) commute with Φ. The commutant

of H is the Levi subalgebra L associated with the choice of the roots α1, ..., αf . If the Higgs

field Φ is a generic element of L, then StabG(Φ) = U(1)f (generated by H).
Such U(1)f group, namely the symmetry preserved by Φ ∈ L, is nothing but the five-

dimensional flavor group, acting via its adjoint representation on the hypermultiplets coming

from the deformation φ. The explicit flavor charges of the hypermultiplets can be readily

computed employing the irrep decomposition (4.128), that naturally regroups hypers of the

same charge into the same irrep. In general, if we only have one U(1) factor, associated

to a simple root αi, then the flavor charges can acquire values only up to the dual Coxeter

label of the node αi in the Dynkin diagram of the considered 7d algebra, as we have seen in

Chapter 4. If, instead, StabG(Φ) = U(1)f with f > 1, this is not valid anymore.

As we have said, generically we have

Φ ∈M, with M =
⊕
h

Mh⊕H (5.13)

whereM is a maximal subalgebra of L. IfM⊂ L, the preserved group will be bigger than

U(1)f and it will develop a discrete group part.

To explain how this works, we consider a simple example (that will appear often in the

threefolds studied in the following). We take

L = D4 and M = A⊕4
1 .

The Dynkin diagram of D4 with its dual Coxeter labels, along with its A⊕4
1 subalgebra, is

depicted in Figure 5.2. The A⊕4
1 maximal subalgebra is generated by adding the external

node of the extended D4 Dynkin diagram and removing the central one.

6As we have previously recalled, there actually is an ambiguity in choosing the global group of the 7d
theory [76, 149, 164, 165]. Taking the minimal choice, as we are doing, one captures the non-trivial discrete
symmetries that come solely from Higgsing. Different choices would enlarge the discrete symmetries with
elements of the center of the group.
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Figure 5.2: A⊕4
1 subalgebra of D4.

There are transformations of7 GL that preserve all the elements ofM = A⊕4
1 (while they

break L = D4). In this case there is one such element: it is generated by the Cartan α∗
2,

i.e. the dual of the root that should be removed from the D4 extended Dynkin diagram to

obtain the Dynkin diagram of A⊕4
1 .8 The element that is in the stabilizer of Φ ∈ M = A⊕4

1

is

γ = exp

[
2πi

qα2

α∗
2

]
, (5.14)

where qαi
is the dual Coxeter label of the simple root αi, and where γ ∈ G acts on the

adjoint representation. In our case, we read qα2 = 2 (see Figure 5.2). In particular, we have

γ ·Eαi
= e

2πi
2

0Eαi
= Eαi

for i = 1, 3, 4, γ ·Eα2 = e
2πi
2

1Eα2 = −Eα2 , (5.15)

and

γ ·Eαθ
= e

2πi
2

(−2)Eαθ
= Eαθ

, (5.16)

where αθ is the (minus the) highest root corresponding to the extended node. Note that the

Lie algebra element Eα2 is not preserved by γ.

We see that it is crucial for preserving a maximal subalgebra that the coefficient in front

of α∗
2 in γ is 2πi

qα2
and not any other number. The discrete group generated by γ in (5.14) is

isomorphic to Z2.

Let us generalize this to an example that is a bit more involved, i.e.

L = D6 and M = A⊕6
1 .

In this case we proceed by steps, following the inclusions D6 ⊃ D4⊕A⊕2
1 ⊃ A⊕4

1 ⊕A⊕2
1 = A⊕6

1 ,

depicted in Figure 5.3. In the first step, we remove a node with dual Coxeter label equal to

2. We are then left with the final step in which we embed A⊕4
1 into D4: again we remove a

node of D4 Dynkin diagram with label equal to 2. We conclude that the discrete group is

Z2
2.

7Given a subalgebra L ⊂ g, we call GL the subgroup of G, whose Lie algebra is L.
8In Heterotic string theory on T 3, this element is known as a discrete Wilson line.
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Figure 5.3: A⊕6
1 subalgebra of D6.

It is then easy to generalize to a generic case. Say that a simple summand of L has

a maximal subalgebra, obtained by subsequently removing nodes with dual Coxeter labels

qαi1
, ..., qαik

. Then the stabilizer of Φ will include the discrete group

Zqαi1
×...×Zqαik

.

Doing this for all simple summands of L, we obtain the full discrete symmetry ΓΦ. The full

symmetry group is then

StabG(Φ) = U(1)f×ΓΦ . (5.17)

Since we know how the generators of this group act on the Lie algebra g, we can easily derive

the charges under StabG(Φ) of the deformations φ in RM, i.e. of the 5d hypermultiplets.

The symmetry group (5.17) is the 7d gauge group that survives the Higgsing. In order

to deduce the 5d flavor and gauge symmetries we can proceed as in Chapter 4: we consider

the 7d space as a decompactification limit from 5d times a 2-torus. Before the limit, (5.17)

is a 5d gauge group; the decompactification limit will ungauge the continuous factor as its

gauge coupling vanishes. The discrete part, having no gauge coupling, remains gauged in

5d.

Explicit example: (A2, D4) singularity and discrete groups

Let us visualize how it works in an explicit example. We can consider the (A2, D4) singularity:

x2+zy2+z3+w3 = 0, (x, y, w, z) ∈ C4. (5.18)

The threefold can be described as a family of D4 ADE singularities deformed by the param-

eter w. The Higgs field is taken in the maximal subalgebra of D4, i.e. M = D2⊕D2
∼= A4

1.

From what we said above, it is immediate to find out

Stab(Φ)G = Z2 . (5.19)

We now see how this discrete group acts on the 5d hypermultiplets. We first branch g = D4
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underM:

D4 = A
(I)
1 ⊕A

(II)
1 ⊕A(III)

1 ⊕A(IV )
1 ⊕(2,2,2,2) =M⊕(2,2,2,2). (5.20)

We then see how γ in (5.14) acts on the elements of (2,2,2,2). The generators ofD4 appearing

in this representation of M are related to roots that are linear combination of the simple

roots where α2 appears with coefficient 1. This immediately tells us that all elements of

(2,2,2,2) get a −1 factor when we act with γ.

This can be easily generalized to any choice of Φ ∈M ⊂ g with g = A,D,E.

5.2 The Higgs vev from the threefold equation

Our question is now: given a CY equation like (5.5), what is the Higgs field that can generate

it? The answer to this question is crucial in order to tackle the dynamics of M-theory on

the quasi-homogeneous cDV singularities in Table 5.1.

With this objective in mind, we proceed as follows: given a cDV singularity, built as an

ADE singularity with some deformation parameters µi(w) ∈ T /W switched on, we wish to

perform a change of basis and rewrite the deformation terms with respect to a set of partial

Casimirs ϱi(w) ∈ T /W ′, as we have explained in full generality in Section 1.3.4. This will

allow us to build a Higgs background encoding the physics of the 5d SCFT in an explicit

manner.

We can hence describe the base change in the following way:

1. we first go from T /W to T /W ′, by putting µi = µi(ϱ1, ..., ϱn) (where n is the rank of

the considered Lie algebra);

2. we then allow a holomorphic dependence ϱi = ϱi(w) that makes all µi = 0, except the

constant deformation that must take the form µ(ϱi(w)) = wN .

Of course this is not unique: several choices ofW ′ ⊂ W produce the same threefold (5.5), by

taking the proper expressions for ϱi(w). As we will see in detail below, the different choices of

W ′ correspond to different T-brane backgrounds associated with the same singular threefold

in M-theory. The presence of a T-brane can obstruct the resolution of some roots [94, 133],

enlarging the subgroupW ′. In order to have a geometry without T-branes, we will make the

following choice: we consider the smallest choice of W ′ that reproduces the equation (5.5)

(that is not necessarily the trivial subgroup). This corresponds to a family over T /W ′ with

the biggest possible number of resolved simple roots in the simultaneous resolution. From

this perspective, the threefold is naturally embedded into the family over T /W ′ by choosing

a one-dimensional subspace parametrized by Cw. This means that the threefold will inherit

the partial simultaneous resolution associated toW ′: both in the family and in the threefold

the blown up roots will be, say α1, ..., αf . This immediately tells us that the commutant of

Φ is H in (5.7). The choice ofW ′ selects a maximal subalgebraM of the commutant L of H
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(see (5.8)), whose Casimirs are invariant underW ′ and are then good coordinates on T /W ′.

An element Φ ∈M ⊆ L can be written as

Φ =
∑
h

Φh+

f∑
a=1

ϱa1α
∗
a (5.21)

where Φh is an element ofMh. Collecting the degree-j Casimir invariants ϱhj of Φh inMh,

together with the coefficients ϱa1 , one obtains the invariant coordinates ϱi on the base T /W ′.

5.2.1 From the threefold equation to the partial Casimirs ϱi(w)

Now, we proceed as follows: we start from the equation of a threefold in Table 5.1. We derive

what is the minimal W ′ such that the partial Casimirs ϱi can be taken as holomorphic

(homogeneous) functions of w, in a way that produces the CY equation by taking µi =

µi(ϱ(w)). This will tell us what is the w-dependence of the Casimirs ϱhj of each Φh and

the w-dependence of the coefficients ϱa. Finally, we will look for Higgs fields Φ(w) ∈ M,

holomorphic in w, that have the given w-dependence for their partial Casimirs.9

In particular, to reproduce the threefolds in Table 5.1, we want to determine which

holomorphic functions ϱIj (w), with I = (h, a) make all deformation parameters vanish except

one of degree M , that is

µM(ϱ(w)) = wN . (5.22)

We stress that µM(ϱ(w)) is a homogeneous polynomial in w of degree N .

Both the µM and the ϱIj can be written as homogeneous polynomials in the ti ∈ T of

degree, respectively, M and j. This implies that µM(ϱ) will be a weighted homogeneous

polynomial in the coordinates ϱIj ’s of degree M , where the coordinate ϱIj has weight j. This,

together with (5.22), implies that ϱIj (w) is a homogeneous function of w with degree j N
M

, i.e.

ϱIj (w) = cIj w
jN
M . (5.23)

Now:

• Since we require that ϱIj (w) is holomorphic, the partial Casimirs that give a non-zero

contribution (i.e. cIj ̸= 0) are those with j such that

j N

M
∈ Z>0 . (5.24)

• Moreover, we want to pick the smallest W ′ that allows holomorphic functions ϱIj (w)

compatible with (5.22). Small W ′ correspond to subalgebras M with several simple

summands with small rank. This subalgebra then yields the smallest degree partial

Casimirs that realize (5.24), for given M,N .

9Fixing the w-dependence of the partial Casimir invariants does not give a unique choice for a holomorphic
element ofM.
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Choosing the threefold in Table 5.1 determines M (see the last column of the table). For

each value of N , we look for the minimal value of j that satisfies (5.24). Say that M has nM

divisors q1, ..., qnM
, where q1 = 1 and qnM

= M . Then N can always be written in a unique

way as

N =
p

qα
M mod M , (5.25)

with qα a divisor of M , p < qα and (p, qα) coprime. The condition (5.24) becomes then

j p

qα
∈ Z>0 , (5.26)

and the minimal value of j fulfilling it is j = qα.

Given N , only ϱIj with j a multiple of qα can be non zero. In other words, cIj = 0

when j ̸= mqα with m ∈ Z. Because of homogeneity, this implies also that µi(ϱ) = 0 with

i ̸= mqα. We are then left with the following equations with unknown cIj (j = mqα): µmqα(c) = 0 mqα < M

µM(c) = 1
(5.27)

(where we have factored out the powers in w). In order to have a non-trivial solution, one

requires that all cIj with j = mqα be non-zero10.

Let us see how we can use this information to extract the subalgebraM corresponding

to a given choice of (AN−1, g). We describe this in a simple example, i.e. (AN−1, D4). The

D4 algebra has four Casimirs: µ2, µ4, µ̃4 and µ6. Hence M = 6. There are four divisors of 6:

qα ∈ {1, 2, 3, 6}.

We now see which (minimal) degree can take the partial Casimirs and then what is the

choice of the minimal subalgebraM (minimal W ′). Let us vary N :

For N = 0 mod 6 (qα = 1), the minimal degree is j = 1. We look for a subalgebra M
with all four partial Casimirs of degree 1. This is the smallest possible choice, i.e.

the Cartan subalgebra of D4. In this case, all four roots of D4 are blown up in the

simultaneous resolution.

For N = 3 mod 6 (qα = 2), the minimal degree is j = 2. There is actually a subalgebra

of D4 with four partial Casimirs of degree 2, i.e. M = A⊕4
1 .11 M is now a maximal

10Otherwise the system of homogeneous equations in the first row of (5.27) will force all cIj ’s to vanish.

We notice that the number of holomorphic ρIj has to be equal to the number of all the µmqα , µM . If that
was not the case, the system (5.27) would be overconstrained, and a solution would not be guaranteed to
exist.

11Notice that all cI2’s must be non-zero; otherwise, if one vanished, the equations µ2 = µ4 = µ̃4 = 0 would
force all the others cI2’s to be zero as well as µ6.
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subalgebra of D4; correspondingly, there is no resolution at the origin of the family,

hence the singularity is terminal.

For N = 2, 4 mod 6 (qα = 3), the minimal degree for the non-zero partial Casimir is

j = 3. Due to the rank of D4, we can have at most one partial Casimir of degree

3. Moreover, µ2 must depend on partial Casimirs of degree lower than 3, that must

vanish identically (otherwise they would be non-holomorphic, due to (5.24)). We have

M = A2⊕⟨α∗
3, α

∗
4⟩. Only the partial Casimirs of the semi-simple part of M, that is

A2, are non-vanishing. In this case, the roots α3 and α4 of D4 are blown up in the

partial simultaneous resolution.

For N = 1, 5 mod 6 (qα = 6), the minimal degree for a non-vanishing partial Casimir is

j = 6, hence in this caseM = D4 with all Casimirs equal to zero, except the maximal

degree one. For N = 1 the manifold is non-singular, while for N = 5 there is a terminal

singularity at the origin of the family.

As one can note in the presented example, the simple algebrasMh inM are all of the

same type for a given value of N . This actually happens for all the cases we study in this

chapter. The reason is the following: we look for partial Casimirs with the lowest possible

degree, realizing µM = wN . If one degree is allowed, we take as many partial Casimirs with

that degree as we are allowed. Small degree partial Casimirs correspond to small subalgebras

Mh, hence we finish with as many summands of a given small algebra as we can.

5.2.2 From the partial Casimirs ϱi(w) to the Higgs field Φ(w)

Now that we have the w-dependence of the ϱIj ’s, we need to take a Higgs field inM, whose

partial Casimirs have that dependence. In general, there are several choices for Φh(w) (see

(5.21)) with given ϱhj (w). Each choice produces a different number of zero modes. We decide

to look for the Higgs field Φ that localizes the maximal number of zero modes and breaks

the 7d gauge symmetry in the least disruptive way, and we interpret the others as T-brane

deformations of Φ, i.e. deformations that kill a number of modes, or destroy a preserved

symmetry, without touching the threefold singularity (we come to this point in Section 5.5).

With this choice, we pick up the Higgs field that leads to the same number of zero modes

that are counted by the normalized complex structure deformations of the CY, as reviewed

in Section 4.2.

Let us first describe what is the structure of the Higgs field. At w = 0 the fiber of the

one-parameter g-family must develop a full g-type singularity. This means that Φ(0) must

be a nilpotent element ofM (as all its Casimirs should vanish), that we take in its canonical

form (recapped in Section 2.1.2 for the A and D algebras; for the E algebras, we will give a

few details momentarily). Now, Φ(w) must be a deformation of the nilpotent element Φ(0),

with deformation proportional to w and belonging to M. The way to do it in a way that

goes into a transverse direction to the nilpotent orbit (that includes Φ(0)) is dictated by

taking Φh in the Slodowy slice in Mh passing through Φh(0). We have reviewed Slodowy
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slices in Section 2.1.5. What is important here is that this allows to have canonical forms for

the Higgs field inM, that are not equivalent by gauge transformations. The Higgs field will

then be given as the sum of some simple root generators of g multiplied by 1 and of other

generators (inM) multiplied by powers of w.

Here, a remark on the exceptional singularities is required: in Chapter 2 we have seen how

to explicitly construct nilpotent orbits (and, consequently, Slodowy slices through them) for

the singularities in the A and D series. For the E6, E7, E8 cases, the classification of nilpo-

tent orbits (which can be found e.g. in [112]) has been derived in the work of Bala and

Carter [172,173], and does not rely on partitions. Nevertheless, representatives correspond-

ing to each nilpotent orbit can be explicitly constructed, as displayed in [174]. In order to

construct our Higgs backgrounds as elements in the Slodowy slice through some nilpotent

orbit of E6, E7, E8, we make vast use of these tools.

Let us consider now Φ,Φ′ ∈M with the same expressions for ϱIj , but such that Φ(0) and

Φ′(0) belong to two different nilpotent orbits. Then, they produce a different number of zero

modes: the one whose nilpotent orbit at the origin is smaller has a bigger number of zero

modes. Roughly speaking, if at the origin the orbit is bigger, one has a larger number of ‘1’s

in the canonical form of the Higgs; these gauge fix to zero a bigger number of Lie algebra

components in the deformation φ. We put this observation on more rigorous grounds in

Appendix C and Appendix D.

If the power of w in the partial Casimirs ϱIj is high, the minimal orbit at the origin

reproducing the required w-dependence will be the trivial one. In these cases, the Higgs field

that leads to the maximum number of zero modes is such that

Φ = wkΦ̂ , (5.28)

with Φ̂(0) a non-trivial nilpotent element ofM. Knowing the zero modes of Φ̂, one is able

to find the zero modes of Φ.

Let us explain how we pick the right choice of Φ with given ϱIj (w), by using the (AN−1, D4)

example.

For N = 1,M = D4, ϱ6 = µ6 = w. Φ(0) is in the maximal nilpotent orbit of D4 and its

expression at generic w is dictated by the w-dependence of the Casimir:

Φ = Eα1+Eα2+Eα3+Eα4+
w

4
E−α1−2α2−α3−α4 . (5.29)

For N = 2,M = A2⊕⟨α∗
3, α

∗
4⟩. The only non-zero partial Casimir is the degree 3 Casimir

of A2: ϱ3 = w. The Higgs field is now

Φ = ΦA2 with ΦA2 =

0 1 0

0 0 1

w 0 0

 = Eα1+Eα2+wE−α1−α2 . (5.30)
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For N = 3, M = A⊕4
1 , ϱh2 = chw (h = 1, ..., 4), with ch solving (5.27). The form of the

Higgs field with these partial Casimirs is unique:

Φ =
4∑

h=1

Φh with Φh =

(
0 1

chw 0

)
= Eαh+chwE−αh , (5.31)

where αh is the root of the subalgebra Ah
1 .

For N = 4, M = A2⊕⟨α∗
3, α

∗
4⟩. Now, differently from the N = 2 case, the only non-zero

partial Casimir of degree 3 is quadratic in w: ϱ3 = w2. In this case we have two

possible Higgs fields that are consistent with this, i.e. Φ = ΦA2 with

either ΦA2 =

 0 1 0

0 0 1

w2 0 0

 or ΦA2 =

0 1 0

0 0 w

w 0 0

 . (5.32)

At the origin w = 0, the left one is in the maximal nilpotent orbit while the right one

is in the minimal one. Hence we expect that choosing the right one will give us the

bigger number of zero modes. Indeed this happens, as it can be easily verified by an

explicit computation.

For N = 5, M = D4, ϱ6 = µ6 = w5, the Higgs field is of the same shape as the N = 1

case, with some coefficients proportional to w:

Φ = Eα1+w

(
Eα2+Eα3+Eα4+

1

4
E−α1−2α2−α3−α4

)
. (5.33)

For N = 6,M = H, ϱa1 = caw (a = 1, ..., 4). Φ is forced to be of the form

Φ = c1wα∗
1+c

2wα∗
2+c

3wα∗
3+c

4wα∗
4 . (5.34)

Let us see some cases where we go up with the power N of w in µ6:

For N = 8, we obtain the same algebra as for N = 2, i.e. M = A2⊕⟨α∗
3, α

∗
4⟩. Now, the only

non-zero partial Casimir of degree 3 of A2 takes the following w-dependence ϱ3 = w4.

The minimal nilpotent orbit at the origin compatible with this partial Casimir is now

the trivial one. The Higgs field giving the maximal number of zero modes is

Φ = ΦA2 with ΦA2 = w

0 1 0

0 0 1

w 0 0

 = wEα1+wEα2+w
2E−α1−α2 . (5.35)

For N = 9, we obtain the same algebra as for N = 3, i.e. M = A⊕4
1 . The Higgs field
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giving the maximal number of zero modes is

Φ =
4∑

h=1

Φh with Φh = w

(
0 1

chw 0

)
= wEαh+chw2E−αh . (5.36)

The same can be done for the cases N = 7, 10, 11, 12, where the Higgs contributing most

to the zero modes is the one with N−6 multiplied by w. In general, the Higgs fields given

above for N = 1, ..., 6 are enough to write the Higgs field for any N : If N = n+6k, with

n ∈ {1, ..., 6}, the Higgs field is Φ = wkΦ(n), where Φ(n) is the Higgs field for N = n.

This is actually true for all the cDV singularities in Table 5.1:

Given M and N as above, one needs to find the Higgs fields Φ(n) for N = n, with

n ∈ {1, ...,M}. The Higgs field for N = n+kM is then Φ = wkΦ(n).

This is remarkably convenient also from the physical point of view, as the Higgs background

Φ encodes all the 5d physics, meaning the localized hypers and their charges under the flavor

and discrete symmetries. What the statement in italics is telling us is that, given a quasi-

homogeneous cDV singularity built as an ADE singularity with a µM = wN deformation

term, we need to know only the Higgs backgrounds for N up to M : all the rest can be

obtained simply by multiplying these Higgs backgrounds by some power of w. The 5d mode

counting changes as explained at the end of Section 5.1.2, the symmetries act in the same

way on the (now possibly increased) modes, and the Higgs branch content varies accordingly,

so that no new computation must be performed.

5.3 5d Higgs branches from quasi-homogeneous cDV

singularities

In this section we exhibit the complete classification of the 5d theories arising from M-theory

on quasi-homogeneous cDV singularities.

First, given a quasi-homogeneous cDV singularity, we must find the minimal subalgebra

M in which a Higgs background Φ can reside, compatibly with the threefold equation (see

Section 5.2.1). Then, we find the Higgs field that produces the maximal number of modes

following Section 5.2.2 (checking that it is consistent with the Higgs branch dimension given

by the normalizable complex structure deformations, as in formula (4.19)). Once we have

the Higgs field Φ, we can compute the 5d continuous flavor group, the discrete gauge group

and the charges of the hypermultiplets under these groups.

We proceed metodically through all the cases in Table 5.1, adding some details on an

alternative method to analyze the A-cases in Appendix C.
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5.3.1 Quasi-homogeneous cDV singularities of A type

Two quasi-homogeneous cDV singularities of A type exist: the (AN−1, AM−1) and the

A
(M)
M [N ]. Their defining equations are

(AM−1, AN−1) : x2+y2+zM+wN = 0, (5.37)

A
(M)
M [N ] : x2+y2+z ·(zM+wN) = 0. (5.38)

The non-vanishing deformation parameters are, in both cases, µM(w) = wN . The equa-

tion (5.37) is a AM−1 family, while (5.38) is a AM family. In Appendix C we analyze the

(AM−1, AN−1) singularities fleshing out all the details.

Employing the results from the Appendix, or equivalently the technique adopted in Sec-

tion 5.2, it is easy to see that the analysis of the A
(M)
M [N ] singularities can be fully traced

back to the (AM−1, AN−1) singularities: in particular one can see that the Higgs field in the

AM family is living in a AM−1 subalgebra and that both spaces are produced by the same

choice of Φ ∈ AM−1. The Higgs fields for the (A,A) threefolds are exhibited in Appendix C

and can be used also for the A
(M)
M [N ] singularities. In general (and for some suitable choice

of basis for the Cartan subalgebra), we find hypers of charge at most 1, as the dual Coxeter

labels of the nodes of the A Dynkin diagrams are all equal to 1, see Figure 5.4.

Figure 5.4: Dual Coxeter labels for the A series.

In Table 5.2, we report the results for both the (Ak−1, AN−1) and the A
(k)
k [N ] singularities,

rewriting them in full generality as (Amp−1, Amq−1) and A
(mp)
mp [mq] singularities, respectively,

and with p and q coprime, p ≥ q. We give the resolution pattern, the corresponding flavor

group, the number of charged hypers and the number of uncharged ones. The latter are a

signal of a leftover non-resolvable singularity. The flavor groups are respectively U(1)m−1 and

U(1)m = U(1)×U(1)m−1, where in the latter case the factor U(1)m−1 is contained in a Amp−1

subalgebra, as we have mentioned above. The flavor charges can be succintly understood as

follows, in some basis of the Cartan subalgebra12: for the (Amp−1, Amq−1) cases, there are pq

hypers charged in the bifundamental of every possible pair of U(1)’s, as well as m (p−1)(q−1)
2

uncharged hypers. For the A
(mp)
mp [mq] cases, there are pq hypers charged in the bifundamental

of every possible pair of U(1)’s in the U(1)m−1 factor contained in the Amp−1 subalgebra, q

hypers charged bifundamentally under every possible pair formed by the U(1) outside the

Amp−1 subalgebra and a U(1) ∈ U(1)m−1, and finally there are m (p−1)(q−1)
2

uncharged hypers.

12For further details, we refer to the much more in-depth analysis of Appendix C.
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Singularity Resolution pattern
Flavor
group

Hypers Total hypers

(Amp−1, Amq−1) U(1)m−1 Charged: pqm(m−1)
2

Uncharged: m (p−1)(q−1)
2

1
2
m(p(mq−1)−q+1)

A
(mp)
mp [mq] U(1)m

Charged: pqm(m−1)
2

+mq

Uncharged: m (p−1)(q−1)
2

1
2
m(p(mq−1)−q+1)+mq

Table 5.2: Higgs branch data for quasi-homogeneous cDV singularities of A type.

5.3.2 Quasi-homogeneous cDV singularities of D type

There exist two quasi-homogeneous cDV singularities arising from one-parameter deforma-

tions of D singularities: the (AN−1, Dm+1) and the D
(m)
m [N ]. Their defining equations read

(AN−1, Dm+1) : x2+zy2+zm+wN = 0, (5.39)

D(m)
m [N ] : x2+zy2+zm−1+ywN = 0. (5.40)

In the two cases, the non-vanishing deformation parameter is µM = wN , that is the maximal

degree one for the first case (M = 2m), while for the second case it is the always present

n-degree deformation parameter of Dn (M = m).

Employing the methods of the preceding sections, we can work out the Higgs branch of

all the (A,D) and the D
(m)
m [N ] singularities.

As they are useful to identify the flavor charges of the hypermultiplets whenever a single

node is resolved, in Figure 5.5 we report the dual Coxeter labels of the nodes of the Dynkin

diagrams in the D series.

Figure 5.5: Dual Coxeter labels for the D series.

We notice that, in full generality, all the (A2km−1, Dm+1) and the D
(m)
m [km] are completely

resolvable, because in that case N = kM ; this means, following Section 5.2, that qα = 1 and

the minimal degree for the partial Casimirs is j = 1, i.e.M is the Cartan subalgebra of g.

In Table 5.3 and Table 5.4 we report the results for the Higgs branch data, respectively,

of the (AN−1, D4), (AN−1, D7) and D
(4)
4 [N ], D

(5)
5 [N ], D

(6)
6 [N ] cases, specifying the flavor and

discrete charges of the hypermultiplets. Other deformed Dn examples can be treated anal-

ogously. For a slightly different approach, employing the Type IIA picture and the explicit

D6-brane locus, and producing extended Tables of Higgs branches, we refer to [98].
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Singularity Resolution pattern M Symmetry
group Hypers

Total
hypers

(AN−1, D4)

N = 6n :
T U(1)4

12n

Charges: root system of D4
12n

N = 2n
n ̸= 3j

: A2 U(1)a×U(1)b
(qa, qb) = (2, 0) : n

(qa, qb) = (1, 1) : 2n

(qa, qb) = (0, 0) : n−1

4n−1

N = 3n
n ̸= 2j

: A⊕4
1 Z2

qZ2 ̸= 0 : 4n

qZ2 = 0 : 2(n−1)
2(3n−1)

N ̸= 2n, 3n :
D4 ∅ 2(N−1) 2(N−1)

(AN−1, D7)

N = 12n : T U(1)7
42n

Charges: root system of D7
42n

N = 6n
n ̸= 2j

: A⊕6
1 U(1)a×Z(b)

2 ×Z(c)
2

(qa, qb, qc) = (1, 0, 0) : 2n

(qa, qb, qc) = (1, 0, 1) : 2n

(qa, qb, qc) = (1, 1, 0) : 2n

(qa, qb, qc) = (0, 1, 1) : n−1

(qa, qb, qc) = (0, 1, 0) : n−1

(qa, qb, qc) = (0, 0, 1) : n−1

(qa, qb, qc) = (0, 0, 0) : 12n

3(7n−1)

N = 3n
n ̸= 2j

: D4⊕A3 Z2
qZ2 ̸= 0 : 6n

qZ2 = 0 : 9n−7
2

21n−7
2

N = 4n
n ̸= 3j

: A2⊕A2 U(1)a×U(1)b×U(1)c

(qa, qb, qc) = (0, 2, 0) : n

(qa, qb, qc) = (0, 0, 2) : n

(qa, qb, qc) = (0, 1, 1) : 6n

(qa, qb, qc) = (1, 1, 0) : 2n

(qa, qb, qc) = (1, 0, 1) : 2n

(qa, qb, qc) = (0, 0, 0) : 2(n−1)

2(7n−1)

N = 2n
n ̸= 2j, 3j

: D6 U(1)
q = 1 : 5n−3

q = 0 : 2n
7n−3

N ̸= 2n, 3n : D7 ∅ 7(N−1)
2

7(N−1)
2

Table 5.3: Higgs branch data for quasi-homogeneous cDV singularities of (AN−1, D4) and (AN−1, D7) type.
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Singularity Resolution pattern M Symmetry
group Hypers

Total
hypers

D
(4)
4 [N ]

N = 4n :
T U(1)4

12n

Charges: root system of D4
12n

N = 2(2n−1) : A⊕4
1 Z2

qZ2 ̸= 0 : 4(2n−1)

qZ2 = 0 : 4(n−1)
4(3n−2)

N ̸= 4n, 4n−2 :
D4 ∅ 3N−2 3N−2

D
(5)
5 [N ]

N = 5n :
T U(1)5

20n
Charges: root system of D5

20n

N ̸= 5n :
A4 U(1)

q = 1 : 2N

q = 0 : 2(N−1)
2(2N−1)

D
(6)
6 [N ]

N = 6n :
T U(1)6

30n
Charges: root system of D6

30n

N = 2n
n ̸= 3j

: A2⊕A2 U(1)a×U(1)b

(qa, qb) = (2, 0) : n

(qa, qb) = (0, 2) : n

(qa, qb) = (1, 1) : 6n

(qa, qb) = (0, 0) : 2(n−1)

2(5n−1)

N = 6n−3 :
A⊕6

1 Z2
2

qZ2 ̸= 0 : 12(2n−1)

qZ2 = 0 : 6(n−1)
6(5n−3)

N ̸= 2n, 6n−3 :
D6 ∅ 5N−3 5N−3

Table 5.4: Higgs branch data for quasi-homogeneous cDV singularities of D
(4)
4 [N ], D

(5)
5 [N ], D

(6)
6 [N ] type.
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5.3.3 Quasi-homogeneous cDV singularities of E6, E7, E8 type

In this section, we focus on the deformed E6, E7, E8 cases, looking for the minimal sub-

algebras containing the Higgs backgrounds reproducing a given quasi-homogeneous cDV

singularity of E6, E7, E8 type.

As they are useful to identify the flavor charges, we report the dual Coxeter labels for

the E6, E7, E8 Dynkin diagrams in Figure 5.6.

Figure 5.6: Dual Coxeter labels for the E series.

To illustrate how we get our results, we explicitly go through the (AN−1, E6) and the

E
(14)
7 [N ] cases. We sum up the results for all the cases in Tables 5.5, 5.6, 5.7, 5.8, 5.9, 5.10.

(A,E6) singularities

Let us start by showing how this works in the (AN−1, E6) class, employing the techniques of

Section 5.2. The (AN−1, E6) threefolds are expressed as:

x2+y3+z4︸ ︷︷ ︸
E6 sing

+ wN︸︷︷︸
def

= 0. (5.41)

Notice that the only non-vanishing deformation parameter is:

µ12(w) = wN . (5.42)

The other (vanishing) deformation parameters are µ2, µ5, µ6, µ8, µ9. Eq. (5.42) tells us that

M = 12, according to the notation of Section 5.2. There are six divisors of 12:

qα ∈ {1, 2, 3, 4, 6, 12}. (5.43)

Now, we must look for the minimal degrees that the candidate partial Casimirs can acquire,

thus forecasting the minimal subalgebra in which Φ can be contained. AsM = 12, the mini-

mal subalgebras will recur with periodicity 12, namely the minimal subalgebra corresponding

to the Higgs describing the (Ak, E6) singularity coincides with the one of (Ak+12, E6). Let

us proceed case by case:

For N = 5, 7, 10, 11 mod 12 (qα = 12), the minimal degree is j = 12. This means that

M = E6, with all Casimirs equal to zero, except the maximal degree one. This implies
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that no resolution is possible.

For N = 2 mod 12 (qα = 6), the candidate minimal degree is j = 6. This tells us that

the only c’s that can be non-vanishing are cI6 and cI12, according to the notation of

Section 5.2. To solve the system (5.27) where only µ6, µ12 appear, we need at least two

Casimirs of degree 6, but this is not possible because of the rank of E6
13. This implies

that no resolution is possible, and that the correct minimal subalgebra is M = E6

with all Casimirs equal to zero, except the maximal degree one.

For N = 3, 9 mod 12 (qα = 4), the minimal degree for the non-vanishing partial Casimirs

is j = 4. To solve system (5.27), we have to set two parameters (µ8 and µ12), and thus

we need at least two partial Casimirs of degree 4. They are provided by M = D4.

This implies that the two external nodes of the E6 Dynkin diagram get inflated, as can

be seen in Figure 5.7.

Figure 5.7: D4 subalgebra in the N = 3, 9 case.

This yields 5d hypers with charge 1 under the flavor groups corresponding to the

resolved nodes, as they have dual Coxeter label equal to 1, as well as uncharged hypers.

For N = 4, 8 mod 12 (qα = 3), the minimal degree for the non-zero partial Casimirs

is j = 3. System (5.27) tells us that we need at least three Casimirs of degree 3 to

extract a solution and fix the deformation parameters µ6, µ9, µ12. Indeed, the sub-

algebra M = A2⊕A2⊕A2 gives us the correct partial Casimirs. This choice pro-

duces no simultaneous resolution of the deformed family. Furthermore, the fact that

Φ ∈ M = A2⊕A2⊕A2 signals that in this case we have a non trivial StabG(Φ) = Z3,

that reflects in a discrete-gauging of the hypermultiplets of the five-dimensional SCFT.

The actual discrete group Z3 comes because the maximal subalgebra A⊕3
2 of E6 is ob-

tained removing the trivalent node from the extended Dynkin diagram of E6, that has

dual Coxeter number equal to 3 (see Section 5.1.3), as depicted in Figure 5.8.

13For example, one could have two degree 6 Casimirs usingM = A5⊕A5, orM = D6, but these cannot
be embedded into E6.
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Figure 5.8: A⊕3
2 subalgebra in the N = 4, 8 case.

For N = 6 mod 12 (qα = 2), the minimal degree for the non-zero partial Casimirs is j = 2.

According to the system (5.27), we have to set the µ2, µ6, µ8 parameters to zero, as

well as µ12 = w6. This requires four partial Casimirs of minimal degree 2. It turns out

that there exists a unique subalgebra of E6 doing the work, i.e. A1⊕A1⊕A1⊕A1. We

then haveM = A⊕4
1 ⊕H, with H generated by the two external nodes in the Dynkin

diagram of E6. The Higgs field take values in the semi-simple part ofM. This choice

yields the resolution of the two external nodes with Coxeter label 1 of the E6 Dynkin

diagram, and produces a Z2 discrete group in 5d (since L = D4 and A
⊕4
1 is its maximal

subalgebra, see Section 5.1.3), as depicted in Figure 5.9.

Figure 5.9: A⊕4
1 subalgebra in the N = 6 case.

For N = 12 mod 12 (qα = 1), the minimal degree for the non-zero partial Casimirs is j = 1.

Then M is the Cartan subalgebra of E6. As a result, all the simple roots of E6 are

blown up in the simultaneous resolution. The flavor charges of the 5d hypermultiplets

are given, in some basis, by the root system of the E6 algebra14.

14In general, for all the completely resolvable cases of Tables (5.5) and (5.6), the flavor charges are given
by the roots of the corresponding algebra.
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E
(14)
7 [N ] singularities

The E
(14)
7 [N ] singularities are expressed as deformed Du Val E7 singularities:

x2+y3+yz3+zwN = 0. (5.44)

Notice that the only non-zero deformation parameter is

µ14(w) = wN . (5.45)

The other (vanishing) deformation parameters are µ2, µ6, µ8, µ10, µ12, µ18. From (5.45), we

read M = 14. Its divisors are:

qα ∈ {1, 2, 7, 14}. (5.46)

With this in hand, we can start looking for the minimal degrees of candidate partial Casimirs,

pinpointing the minimal subalgebra of E7 containing Φ for a given E
(14)
7 [N ]. As in the

previous section, we expect that the subalgebra corresponding to E
(14)
7 [N ] is equal to the

one of E
(14)
7 [N+14], given the degree 14 deformation parameter that is switched on.

For N = 1, 3, 5, 9, 11, 13 mod 14 (qα = 14), the minimal degree is j = 14. Consequently,

M = E7, with all Casimirs equal to zero except the maximal degree one. This entails

that no resolution is possible.

For N = 2, 4, 6, 8, 10, 12 mod 14 (qα = 7), the minimal degree for the partial Casimirs is

7. In order to solve system (5.27), namely to fix µ14, we need only one partial Casimir.

A degree 7 partial Casimir can be provided choosingM = A6⊕⟨α∗
7⟩, which naturally

lies inside E7. This implies that a single node of E7, with Coxeter label 2, gets inflated

by the allowed resolution (see Figure 5.10). This yields 5d hypers with charge 1 and

2, as well as uncharged hypers. The Higgs field Φ lives only in the semi-simple part of

M. See Figure 5.10.

Figure 5.10: A6 subalgebra in the N = 2, 4, 6, 8, 10, 12 case.

For N = 7 mod 14 (qα = 2), the minimal degree for the partial Casimirs is 2. According to

(5.27), we need seven distinct such Casimirs. It can be shown that indeed there exists

a choiceM = A⊕7
1 ∈ E7, that yields seven partial Casimirs of degree 2. This maximal

subalgebra can be found noticing the chain of maximal subalgebras E7 ⊃ A1⊕D6 ⊃
A1⊕A⊕2

1 ⊕D4 ⊃ A7
1, that is depicted in Figure 5.11.
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Figure 5.11: Maximal subalgebra in the N = 7 case.

The three steps in obtaining the maximal subalgebra A⊕7
1 of E7, where nodes with

Coxeter number equal to two are removed, tells us that we have the non trivial discrete

StabG(Φ) = Z3
2.

For N = 14 mod 14 (qα = 1), the minimal degree for the non-vanishing partial Casimirs

is j = 1. We need at least seven partial Casimirs to fix all the deformation parameters,

and hence we can pick as partial Casimirs the Casimirs of the Cartan subalgebra of E7.

In this way, we see that all the simple roots of E7 are blown-up in the simultaneous

resolution. The flavor charges of the 5d hypers can be written as the root system of

E7.

Other quasi-homogeneous cDV singularities of type E

Proceeding along the same path as the previous sections, we can readily find the minimal sub-

algebras containing the appropriate Higgs background Φ for each class of quasi-homogeneous

cDV singularities arising from deformed E6, E7, E8 singularities.

We sum up our results in Table 5.5, 5.6 and 5.7. In particular, we list:

• In the first column, the cDV singularity.

• In the second column, the maximal allowed simultaneous resolution (resolved nodes

are in black). This fixes the Levi subalgebra.

• In the third column, the flavor group of the 5d theory.

• In the fourth column, the number of five-dimensional hypers localized in 5d, and their

charges under the flavor symmetries.
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• In the fifth column, the total number of hypers, to be compared with the number

of normalizable complex structure deformations of the corresponding cDV singularity,

that can be computed with the tools reviewed in Section 4.2.

In Tables 5.8, 5.9, 5.10, we further classify the discrete symmetries preserved by the Higgs

background for all the quasi-homogeneous cDV singularities of E6, E7, E8 type, computed

in the same fashion as the explicit examples of the preceding sections. The content of the

columns reads:

• In the first column, the cDV singularity.

• In the second column, the maximal allowed simultaneous resolution (resolved nodes are

in black) corresponding to each sub-case. This fixes the Levi subalgebra L containing

Φ.

• In the third column, the minimal subalgebraM⊆ L containing Φ. If it is non-trivial,

this yields a discrete group in 5d.

• The discrete group preserved by Φ.
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Singularity Resolution pattern
Flavor
group

Hypers
Total
hypers

Deformed E6

(AN−1, E6)

N = 12n : U(1)6
36n

Charges: root system of E6
36n

N = 3n

n ̸= 4j
: U(1)a×U(1)b

(qa, qb) = (1, 0) : 2n

(qa, qb) = (0, 1) : 2n

(qa, qb) = (1, 1) : 2n

(qa, qb) = (0, 0) : 3n−2

9n−2

N ̸= 3n : ∅ 3N 3N

E
(8)
6 [N ]

N = 8n : U(1)6
36n

Charges: root system of E6
36n

N = 2n

n ̸= 4j
: U(1)a×U(1)b

(qa, qb) = (1, 0) : 2n

(qa, qb) = (0, 1) : 2n

(qa, qb) = (1, 1) : 2n

(qa, qb) = (0, 0) : 3n−2

9n−2

N = 2n+1 : U(1)
q = 1 : 4n+2

q = 0 : 5n
9n+2

E
(9)
6 [N ]

N = 9n : 36n 0 36n

N ̸= 9n : ∅ 4N−3 4N−3

Table 5.5: Higgs branch data for quasi-homogeneous cDV singularities of E6 type.
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Singularity Resolution pattern
Flavor
group

Hypers
Total
hypers

Deformed E7

(AN−1, E7)

N = 18n : U(1)7
63n

Charges: root system of E7

63n

N = 2n

n ̸= 9j
: U(1)

q = 1 : 3n

q = 0 : 4n−3
7n−3

N ̸= 2n : 0 7N
2

7N
2

E
(14)
7 [N ]

N = 14n : U(1)7
63n

Charges: root system of E7
63n

N = 2n

n ̸= 7j
: U(1)

q = 2 : n

q = 1 : 5n

q = 0 : 3n−3

9n−3

N ̸= 2n : 0 9N−7
2

9N−7
2

Table 5.6: Higgs branch data for quasi-homogeneous cDV singularities of E7 type.

Singularity Resolution pattern
Flavor
group

Hypers
Total
hypers

Deformed E8

(AN−1, E8)
N = 30n : U(1)8

120n

Charges: root system of E8
120n

N ̸= 30n : 0 4N 4N

E
(24)
8 [N ]

N = 24n : U(1)8
120n

Charges: root system of E8
120n

N ̸= 24n : 0 5N−4 5N−4

E
(20)
8 [N ]

N = 20n : U(1)8
120n

Charges: root system of E8
120n

N ̸= 20n : 0 6N−4 6N−4

Table 5.7: Higgs branch data for quasi-homogeneous cDV singularities of E8 type.
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Singularity Resolution pattern M Discrete group

Deformed E6

(AN−1, E6)

N = 12n : T ∅

N = 6n

n ̸= 2j
:

A⊕4
1 Z2

N = 3n

n ̸= 2j
:

D4 ∅

N = 4n

n ̸= 3j
:

A⊕3
2 Z3

N ̸= 3n, 4n : E6 ∅

E
(8)
6 [N ]

N = 8n : T ∅

N = 4n

n ̸= 2j
:

A⊕4
1 Z2

N = 2n

n ̸= 2j
:

D4 ∅

N = 2n+1 : D5 ∅

E
(9)
6 [N ]

N = 9n : T ∅

N = 3n

n ̸= 3j
:

A⊕3
2 Z3

N ̸= 3n : E6 ∅

Table 5.8: Minimal subalgebraM and discrete group for quasi-homogeneous cDV singularities of E6 type.
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Singularity Resolution pattern M Discrete group

Deformed E7

(AN−1, E7)

N = 18n : T ∅

N = 9n

n ̸= 2j
: A⊕7

1 Z3
2

N = 6n

n ̸= 3j
A⊕3

2 Z3

N = 2n+1

2n ̸= 9j−1 : E7 ∅

N = 2n

n ̸= 3j
: E6 ∅

E
(14)
7 [N ]

N = 14n : T ∅

N = 7n

n ̸= 2j
: A⊕7

1 Z3
2

N = 2n+1

2n ̸= 7j−1 : E7 ∅

N = 2n

n ̸= 7j
: A6 ∅

Table 5.9: Minimal subalgebraM and discrete group for quasi-homogeneous cDV singularities of E7 type.
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Singularity Resolution pattern M Discrete group

Deformed E8

(AN−1, E8)

N = 30n : T ∅

N = 6n

n ̸= 5j
:

A4⊕A4 Z5

N = 10n

n ̸= 3j
:

A⊕4
2 Z2

3

N = 15n

n ̸= 2j
:

A⊕8
1 Z4

2

N ̸= 6n, 10n, 15n : E8 ∅

E
(24)
8 [n]

N = 24n : T ∅

N = 12n

n ̸= 2j
:

A⊕8
1 Z4

2

N = 6n

n ̸= 2j
:

D4⊕D4 Z2
2

N = 3n

n ̸= 2j
:

D8 Z2

N = 8n

n ̸= 3j
:

A⊕4
2 Z2

3

N ̸= 3n, 8n : E8 ∅

E
(20)
8 [N ]

N = 20n : T ∅

N = 10n

n ̸= 2j
:

A⊕8
1 Z4

2

N = 5n

n ̸= 2j
:

D4⊕D4 Z2
2

N = 4n

n ̸= 5j
:

A4⊕A4 Z5

N ̸= 4n, 5n : E8 ∅

Table 5.10: Minimal subalgebraM and discrete group for quasi-homogeneous cDV singularities of E8 type.
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5.4 0-form discrete symmetries

Having completed the classification of the Higgs branches of M-theory reduced on all the

quasi-homogeneous cDV singularities, an observation is in order: consider a cDV singularity

obtained as a deformation of an ADE singularity of Type g. We have chosen as global form

of the 7d gauge group the simply connected group containing g modulo its center. With this

choice, one obtains a discrete group in 5d, arising from the stabilizer of the Higgs background

Φ(w), as we have displayed in the Tables.

Let us add some results for the (Ak, Dn) singularities: proceeding as in Section 5.1.3,

or as in [98], one promptly computes the discrete group in 5d, that for k = 1, . . . , 8 and

n = 4, . . . , 15 reads:

Gdiscrete D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

A1 0 0 0 0 0 0 0 0 0 0 0 0
A2 Z2 0 0 Z2 0 0 Z2 0 0 Z2 0 0
A3 0 Z2 0 0 0 Z2 0 0 0 Z2 0 0
A4 0 0 Z2

2 0 0 0 0 Z2
2 0 0 0 0

A5 0 0 0 Z2
2 0 0 0 0 0 Z2

2 0 0
A6 0 0 0 0 Z3

2 0 0 0 0 0 0 Z3
2

A7 0 0 0 0 0 Z3
2 0 0 0 0 0 0

A8 Z2 0 0 Z2 0 0 Z4
2 0 0 Z2 0 0

Table 5.11: Discrete gauge groups of (Ak, Dn) theories.

Here we notice the striking correspondence between Table 5.11 and the Table presented

in [59] for the 1-form symmetries of the 4d N = 2 theories arising from Type IIB on the

(Ak, Dn) singularities. This equality holds for all the quasi-homogeneous cDV singularities

that have been analyzed via magnetic quiver methods in Type IIB setups, i.e. the (A,A),

(A,D) and (A,E) cases [59,175,176].

Namely, we observe a one-to-one correspondence between the discrete 0-form symmetries

enjoyed by the 5d SCFTs from M-theory on quasi-homogeneous cDV singularities (that

are nothing but the discrete symmetries preserved by our Higgs backgrounds), and the

discrete 1-form symmetries of Type IIB on the same singularities (that can be extracted

e.g. computing the torsion of the singular threefolds at infinity). This is consistent with

the analysis of [59–61]: compactifying the 4d SCFT on a circle, the line operators charged

under the 1-form symmetry and wrapping the circle become point-like operators in 3d and,

correspondingly, the 1-form symmetry becomes a 0-form symmetry acting on the magnetic

quiver Coulomb branch; one then ends up with a 0-form symmetry acting on the 5d Higgs

branch.
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5.5 T-branes

The analysis performed in this chapter, other than allowing the classification of 5d theories

from M-theory on quasi-homogeneous cDV singularities, further elucidates the pivotal role

of T-branes for the physical description of such theories. In fact, in the preceding sections

we have always searched for a Higgs background in some ADE Lie algebra g, that maximizes

the number of hypermultiplets of the 5d theory, namely the dimension of the Higgs branch,

at the same time breaking the 7d gauge group in the least brutal way. These requirements

translate into imposing that the Higgs background Φ(w) lives in the minimal subalgebraM
of g that allows for a holomorphic dependence of its Casimir invariants on the deformation

parameter w. In Section 5.2, we have developed the machinery to satisfy this constraint for

all the quasi-homogeneous cDV singularities.

It must be stressed, though, that looking for the minimal subalgebra is a mere choice,

enabling comparisons and checks with other existing methods to extract the 5d Higgs branch,

but that it is by no means unique, nor necessary from a M-theory point of view. Indeed, in

general the Higgs background can be embedded into some larger subalgebraMT-brane ⊃M,

while generating the same threefold equation. This may yield:

1. Less localized modes and a smaller unbroken continuous symmetry in 5d.15

2. A smaller unbroken discrete symmetry in 5d.

3. A combination of 1 and 2.

In this regard, the most trivial choice one can pick is:

Φ ∈MT-brane = g, (5.47)

namely embedding the Higgs field in the whole algebra.16 This completely breaks the 7d

gauge group and does not produce any hypermultiplet in 5d.

Let us consider a trivial example for the (A1, A3) singularity, also called Reid’s pagoda

with k = 2, analyzed in 4.5.3. The Higgs background producing the maximal amount of

modes, as well as the expected U(1) flavor symmetry, lies in the algebra M = A1⊕A1⊕
⟨α∗

2⟩ ⊂ A3, and reads:

Φ =


0 1 0 0

w 0 0 0

0 0 0 1

0 0 −w 0

 . (5.48)

15In this case part of the resolution is obstructed, even though it would appear possible from the geometry.
16This can be naturally achieved recalling a theorem by Slodowy [177], that establishes a one-to-one

correspondence between the Slodowy slice through the principal nilpotent orbit of g and the coordinates
on T /W. Employing this fact one can, for all the quasi-homogeneous cDV singularities, pick as Higgs
background an element in the Slodowy slice through the principal nilpotent orbit of the corresponding g,
with appropriate coefficients. We will come back to this point momentarily.
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In this case, we could have also chosen the following Higgs background:

ΦT-brane =


0 1 0 0

0 0 1 0

0 0 0 1

w2 0 0 0

 . (5.49)

This background obviously reproduces the defining equation of the (A1, A3) singularity, via

(3.48), but breaks all the 7d gauge group (in contrast with a preserved U(1) in the case of

Φ in the minimal allowed subalgebraM), and does not localize any mode in 5d. This is an

example of phenomenon 1.

Furthermore, there can be T-brane cases preserving a smaller discrete group in 5d with

respect to their counterpart obtained from Φ in the minimal allowed subalgebraM. Let us

take a look again at the (A2, D4) example examined in Section 5.1.3, with Higgs background

living in the minimal allowed subalgebra:

Φ ∈M = A⊕4
1 . (5.50)

This choice yields:

• 4 hypers in 5d.

• A preserved Z2 discrete symmetry in 5d.

On the other hand, one could have also made the choice:

Φ ∈MT-brane = D4 = g, (5.51)

that explicitly reads:

ΦT-brane =



0 1 0 0 0 0 0 0

0 0 w 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 0 0 0 −1 0

0 −w
4

0 0 0 0 0 0
w
4

0 0 0 −1 0 0 0

0 0 0 0 0 −w 0 0

0 0 0 0 0 0 −1 0


. (5.52)

It is then easy to check that ΦT-brane produces:

• 4 hypers in 5d.

• No preserved discrete symmetry in 5d.
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The dimension of the Higgs branch is unaffected, but the discrete symmetry is broken: this

is the most simple example of phenomenon 2.

In full generality, one can easily construct Higgs backgrounds living in some subalgebra

MT-brane ⊃ M such that both phenomenon 1 and 2 arise. This fact entails that, given

a quasi-homogeneous cDV singularity17, a plethora of consistent 5d theories, with varying

dimension of the Higgs branch, as well as diverse flavor and discrete symmetries, are pos-

sible. Φ ∈ M is the choice producing the largest Higgs branch dimension, as well as the

smallest breaking of the 7d gauge group. This is another manifestation of the fact that the

geometry of the M-theory background does not uniquely fix the effective low dimensional

theory [94,95,109,133,135,139,141]. Intuitively one faces the possibilities depicted in Figure

5.12.

Figure 5.12: Allowed 5d theories from T-branes.

It would be extremely interesting to understand the counterpart of the 5d theories arising

from T-brane backgrounds in complementary approaches, such as the techniques relying on

magnetic quivers.

17We remark that T-brane states such as the ones described in the text may appear in all one-parameter
deformed ADE singularities.
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5.5.1 A few general remarks on T-brane backgrounds

In the previous section we have seen that T-brane backgrounds play a pivotal role in the

analysis of M-theory on quasi-homogeneous cDV singularities. They are, however, not re-

stricted to those cases, and can potentially arise in all one-parameter deformations of ADE

singularities, of which quasi-homogeneous cDV singularities are a subclass. Their ubiqui-

tousness makes one wish to find an organizing principle in the apparent chaos of T-brane

backgrounds, that can partially break the symmetry of the 5d theories, shrink the dimension

of the 5d Higgs branch (in some cases obstructing part of the simultaneous resolution), or

display both features at the same time. In Appendix D we propose a partial attempt to

classify T-brane backgrounds in quasi-homogeneous cDV singularities, relying on the con-

straining power of nilpotent orbits. We go along this task by building on a result introduced

in Appendix C, dubbed the codimension formula. We recap here the gist of the argument,

leaving the details for the aforementioned Appendices.

Quasi-homogeneous cDV singularities are ADE fibrations on Cw, that restrict to plain

Du Val singularities when evaluated on the origin of Cw. As a consequence, the Higgs back-

grounds corresponding to quasi-homogeneous cDV singularities are nilpotent when evaluated

on w = 0 (namely, their Casimirs vanish on w = 0), as on top of the origin they should not

modify the ADE geometry. As a consequence, we can employ the theory of ADE nilpotent

orbits to study the properties of the Higgs backgrounds. In Appendix C, we explain that a

Higgs background Φ(w) ∈ g such that Φ(0) belongs to some nilpotent orbit O0 of g admits

a number of Lie algebra elements nind supporting 5d modes (in general with multiplicities)

that is given by:

nind = codC (O0 ↪→ N ) , (5.53)

where N is the nilpotent cone defined in Section 2.1.1. (5.53) is the “codimension formula”,

and it is telling us that Higgs backgrounds that belong to different nilpotent orbits on w = 0

localize, in general, a different amount of 5d modes. In this way, we can understand which is

the Higgs background localizing the maximal amount of modes, that is the one reproducing

the dimension of the Higgs branch as intended in the literature, and organize the other

Higgs backgrounds, namely the T-brane backgrounds, according to the codimension of the

nilpotent orbit to which they belong on top of the origin. This yields a refinement of the

discussion presented in the previous section: as we have briefly mentioned in 5.2.2, even

Higgses belonging to the same M can localize a different amount of 5d modes, according

to the codimension formula. This means that, for every choice ofM orMT-brane in Figure

5.12, there is a further refinement, that allows multiple Higgses corresponding to the same

subalgebra, but yielding different 5d physics, as they belong to different nilpotent orbits on

top of w = 0. We provide an explicit example in Appendix C.

This framework also establishes a hierarchy of T-brane backgrounds, starting from the

one fixing the maximal amount of modes, and breaking the symmetry the least, to the one

with the least 5d modes and the smallest symmetry, which is the one with Φ ∈ M = g.
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As we have mentioned, it is always possible to realize this latter possibility, namely to

holomorphically embed a Higgs background in the whole algebra g: this is guaranteed by a

theorem by Slodowy [177], that proves a linear correspondence between the parameters of

the Slodowy slice through the principal nilpotent orbit of g and the Casimirs of g. In such

a way, one can always build a Higgs background in g with the desired Casimirs: in the A

series, this yields the reconstructible Higgs fields of [94]. For the D and E series, the theorem

by Slodowy naturally defines a notion of “reconstructible Higgs”.

Let us show a brief example in the D4 case. The reconstructible Higgs is built by turning

on a constant background along the principal nilpotent orbit of D4, built in (2.24), and

suitably fixing the parameters of the Slodowy slice through it. The end result reads (in the

usual basis of so(8) (2.23)):

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1
1
4
(2δ̃4−δ4) 0 − δ2

4
0 0 0 −1 0

0 δ6
4

0 1
4
(δ4+2δ̃4) 0 0 0 1

4
(δ4−2δ̃4)

− δ6
4

0 0 0 −1 0 0 0

0 0 0 δ2
4

0 −1 0 δ2
4

1
4
(−δ4−2δ̃4) 0 − δ2

4
0 0 0 −1 0


(5.54)

One can immediately check that the (3+4)-dimensional hypersurface equation arising from

(5.54) is:

x2+zy2+z3+δ2z
2+δ4z+δ6+2δ̃4y = 0, (5.55)

that exactly reproduces (1.23), which is written in term of the parameters δ, δ̃ ∈ T /W . This

is precisely what is expected by the reconstructible Higgs, as in the An case (4.58). Analo-

gous results can be obtained considering the Slodowy slices through the principal nilpotent

orbits of other Dn singularities, as well as for the E6, E7, E8 cases.

It turns out, furthermore, that also the nilpotent orbit to which the w-dependent part of

Φ(w) belongs plays a role in precisely defining the hierarchy of T-brane backgrounds, that

can be quite involved. We delve deeper into these ideas, providing precise definitions and

concrete examples, in Appendix D.

The results of that Appendix, combined with the analysis of 5.5, make it clear that the

T-brane hierarchy can be extremely rich, giving rise to a plethora of different Higgs back-

grounds encoding the same geometry, but a different amount of localized modes and unbroken

symmetries. Moreover, although we have performed our analysis in the quasi-homogeneous

cDV singularities, we expect that the appeareance of a variety of T-brane states holds true

in all the one-parameter deformations of ADE singularities, that is the setting in which the

“adjoint Higgs” method can be applied. This is reasonably grounded in the mathematical
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observation that the Casimirs of the Higgs background, that correspond to the M-theory

geometry, do not uniquely fix the Higgs background itself, which is an explicit matrix in

some representation.

As a result, we have shown that the M-theory geometry is not enough to characterize

a T-brane background, and that additional structure is needed: the choice of the Higgs

background is intrinsically ambiguous and additional non-geometric data, e.g. the orbits O0

and Ow in (D.4), must be specified for a full characterization of the spectrum and of the

preserved symmetries in 5d.
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CHAPTER 6

A complementary approach: the tachyon condensation

formalism

In this chapter, we revisit part of the content of Chapter 4 in a slightly different light:

instead of basing the analysis of one-parameter families of deformed ADE singularities on

the construction of a Higgs background in Type IIA, we resort to the tachyon condensation

formalism, first introduced in [178], that allows to perform computations yielding the GV

invariants and the hypermultiplet content of the rank-0 5d effective theories arising from

M-theory compactification in a quicker and more efficient way, in selected cases1. In such

a way, we can double-check the results we have already obtained from a similar, and yet

inequivalent, perspective.

In Section 6.1 we quickly review the general formalism of tachyon condensation in Type

IIA theory, following the approach of [95], in Section 6.2 we apply it to some deformed A

cases, while in Section 6.3 we examine deformed D cases, connecting in most instances with

the content of Chapter 4.

6.1 Tachyon condensation

Our objective is to explicitly build a setup of D6-branes with or without orientifolds in Type

IIA using the tachyon condensation formalism, as this will allow us to describe M-theory

compactifications on one-parameter families of An and Dn singularities. In this section, we

outline the general framework and exhibit its application to the conifold example.

In order to do this, we start with our target space Xtgt (in this case, Xtgt := C2), that

encompasses 4 of the 6 extra dimensions of Type IIA theory: we wish to describe D6-branes

on a holomorphic subvariety D ⊂ Xtgt, which may be reducible, equipped with a vector

bundle over D, that we will specify momentarily. The way to elucidate this setup is to start

with a pair of vector bundles Ẽ and E defined over all of Xtgt, and a linear bundle map

T : Ẽ −→ E (6.1)

1Unfortunately, the tachyon condensation perspective cannot be employed in the E6, E7, E8 cases, that
admit no Type IIA dual, and this limits its range of applications.
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referred to as the tachyon map. Here, E is interpreted as a stack of D8-branes wrapping all

of Xtgt, as well as the flat 4d spacetime, and Ẽ is a stack of anti-D8-branes. T is a matrix

that encodes a set of bifundamental strings going from the anti-D8’s to the D8’s.

If T acquires a vev, then we say that tachyon condensation is taking place, and we get

brane-anti-brane annihilation. If T is the identity matrix, then we have total annihilation,

and nothing remains. However, if T is a holomorphic matrix, it will typically have complex

codimension one loci where it fails to be invertible. At such points, annihilation does not

take place, and we are left with D6-branes. An intuitive representation of these phenomena

is depicted in Figure 6.1:

Figure 6.1: Tachyon condensation.

In mathematical terms, the cokernel of the map T defines an object with support over

the loci where T is not invertible. This is encoded via a short exact sequence as follows:

0 Ẽ E coker(T ) 0 ,T (6.2)

where coker(T ) is the cokernel of the map T , which is a sheaf with support only above the

D6-brane locus det(T ) = 0. From now on, we will not display exact sequences, but simply

the relevant part of the complexes. In this case, we will simply say that this D6-brane is

given by the two term complex:

Ẽ E .T (6.3)

Now we should consider the fact that there are gauge transformations on the D8 and the

anti-D8 stacks, which in turn act bifundamentally on the tachyon field:

Ẽ E =⇒ T GD8 ·T ·G−1

D8

T

GD8
GD8

(6.4)

The gauge symmetry on the D6-brane system is given by the subset of transformations
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(gD8, gD8) that leave the tachyon map T invariant.

Having defined D6-branes and their gauge symmetries, we are now in a position to discuss

the open string spectrum. Concretely it is defined as the vertical map δφ:

Ẽ E

Ẽ E

δφ

T

T

(6.5)

modulo gauge transformations. If we implement the transformations, it looks as follows:

Ẽ E

Ẽ E

gD8
δφ

T

gD8

T

(6.6)

The “fluctuation” field δφ is defined up to linearized gauge transformations as follows:

δφ ∼ δφ+T ·gD8+gD8 ·T . (6.7)

These are referred to as homotopies in mathematical language.

Depending on the situation, we can create coincident, intersecting, or so-called T-branes

with this technology. All three will give rise to different kinds of spectrum. Let us proceed

with our example step by step.

First, we build a pair of coincident D6-branes.

We start with two D8-anti-D8 pairs, and a tachyon map, as a two-term complex, as follows:

O⊕2 O⊕2 ,T (6.8)

with the choice T = z ·12, and O is the structure sheaf (trivial line bundle). The tachyon

fails to be invertible at z = 0. The gauge transformation pairs (gD8, gD8) that leave this

tachyon invariant must satisfy

gD8 = −gD8 , with gD8 ∈ sl(2)⊥ . (6.9)

Initially, we had a sl(2)⊕sl(2) gauge algebra, since there was a pair of D8-branes and a pair

of anti-D8-branes. The gauge transformation we just identified is one subalgebra sl(2)⊥.

The orthogonal one, defined by the diagonal embedding of sl(2)∆

gD8 = +gD8 , (6.10)
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gives us our transformation law for the δφ fluctuations as follows:

δφ ∼ δφ+T ·gD8+gD8 ·T = δφ+zg , (6.11)

with g ∼= 1
2
gD8 ∈ sl(2)∆. Here, δφ ∈ sl(2), so this equivalence tells us that we can eliminate

all dependence on z in the matter field. In other words

δφ ∈ sl(2)⊗C[z]/(z ·sl(2)) ∼= sl(2) . (6.12)

This means that this matter field is localized on the divisor z = 0, and is therefore a seven-

dimensional adjoint complex scalar on the worldvolume of the two D6-branes.

Now we consider switching on an angle between the two D6-branes. This means choosing

T =

(
z−w 0

0 z+w

)
. (6.13)

O⊕2 O⊕2

O⊕2 O⊕2

T

δφ
gD8 gD8

T

(6.14)

The choice of pair (gD8, gD8) that preserves the tachyon is

gD8 =

(
g 0

0 −g

)
, gD8 = −gD8 g ∈ uC(1) . (6.15)

This identifies a uC(1) ⊂ sl(2)⊥ ⊂ sl(2)⊕sl(2), where sl(2)⊥ is the “relative” linear combi-

nation defined earlier.

The broken generators for the (gD8, gD8) pair are then:

gD8 =

(
1
2
g a+
a− −1

2
g

)
, gD8 =

(
1
2
g b+
b− −1

2
g

)
. (6.16)

These induce the following gauge equivalence for the matter field δφ ≡
(
δφ0 δφ+

δφ− −δφ0

)

δφ ∼ δφ+

(
g(z−w) (a++b+)z+(a+−b+)w

(a−+b−)z+(b−−a−)w −g(z+w)

)
. (6.17)

We defined the fluctuation as traceless, since we are not interested in center of mass motion.

From this we learn that the δφ0 mode is localized in codimension one on the target space.

In other words, it’s a 7d field. On the other hand, the off-diagonal modes are localized in
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codimension two, and are hence legitimately dynamical from a 5d viewpoint:

δφ± ∈ C[z, w]/(z, w) ∼= C . (6.18)

The IIA interpretation is that we have two intersecting flat D6-branes, and there is one 5d

hypermultiplet (δφ+, δφ−), depicted by the following quiver:

D61 D62

δφ−

δφ+

(6.19)

Hence, there is a multiplicity one hypermultiplet of charge one w.r.t. the unbroken U(1)

flavor2 symmetry. In M-theory, this translates to the fact that, on the conifold, there is only

the genus zero, degree one GV invariant, and it is equal to one:

ng=0
d=1 = 1 . (6.20)

Of course, this result precisely coincides with the one obtained in Section 4.5.1.

6.2 Deformed An singularities

6.2.1 Reid’s pagodas

In this section, we revisit the computation for Reid’s pagodas, already explored in Section

4.5.3, from the point of view of tachyon condensation.

Let us describe the D6-brane setup corresponding to Reid’s pagodas from a IIA perspec-

tive as the following complex:

O⊕2 O⊕2 ,T (6.21)

with

T :=

(
zk−w 0

0 zk+w

)
. (6.22)

This corresponds to two intersecting D6-branes on the divisors zk±w = 0, respectively. Note,

however, that these two branes do not intersect transversely, but intersect at a multiplicity

k point. In terms of ideals, we write that

(zk−w, zk+w) = (zk, w), (6.23)

2This is a flavor symmetry for the 5d theory; it comes from a 7d gauge symmetry on the worldvolume of
the D6-branes.
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which is a “fat point” in C2. Hence, we have no right to expect the spectrum to be one-

dimensional, as instead happened in the conifold case. A first hint that this might be so

is the fact that the slightest deformation of either brane will split up the fat point into k

distinct points:

(zk−w+δ, zk+w) = (zk+δ, w) . (6.24)

Hence, we should anticipate k hypermultiplets of charge one under the flavor U(1). Let us

compute this with the techniques explained in the previous section.

We have again five broken sl(2) generators, meaning that they do not commute with the

tachyon:

gD8 =

(
1
2
g a+
a− −1

2
g

)
, gD8 =

(
1
2
g b+
b− −1

2
g

)
. (6.25)

Now we compute how these generators act as linearized gauged transformations on a fluctu-

ation field δφ ≡
(
δφ0 δφ+

δφ− −δφ0

)
:

δφ ∼ δφ+

(
g(zk−w) (a++b+)z

k+(a+−b+)w
(a−+b−)z

k+(b−−a−)w −g(zk+w)

)
. (6.26)

The δφ0 mode localizes to w±zk = 0, and is therefore a 7d field. From the 5d perspective,

it is non-dynamical. The bifundamental modes, on the other hand, localize on the ideal

(zk, w) . (6.27)

So we have that

δφ± ∈ C[z, w]/(zk, w) ∼= C[z]/(zk) . (6.28)

This ring can be regarded as a k-dimensional vector space

C[z]/(zk) ∼= Ck . (6.29)

Therefore, we conclude that there are k hypermultiplets of charge one. This matches the

result already recovered in Section 4.5.3:

ng=0
d=1 = k , (6.30)

and zero for all other classes and genera.

6.3 Deformed Dn singularities

In this section, we revisit the path through deformed Dn singularities, reviewing the Laufer

and Brown-Wemyss examples from the tachyon condensation vantage point, as well as ex-

hibiting a new addition, namely the Morrison-Pinkham threefold.
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6.3.1 Tachyon condensation with orientifolds

In order to connect one-parameter families of Dn singularities to IIA constructions, we will

need not only D6-branes, but also O6−-planes. O6-planes induce an orientifold projection,

that has been described in details in Section 3.5.

In addition, now we need to define the action of the orientifold projection on the tachyon.

We refer to [179] for general details. The upshot is that a tachyon complex

E
T−→ F (6.31)

must obey the following:

E ∼= F∨ and T = −σ∗(T t) . (6.32)

Consistency requires that left and right gauge transformations be related as follows:

T −→ G·T ·σ∗(Gt) . (6.33)

As we have seen in Section 3.5, the CY threefolds we are looking for are defined as

Z2-quotients of C∗-fibrations over the double-cover IIA geometry. The Z2-quotient is imple-

mented by the relation ξ2 = z.

From this perspective, all polynomials on the base space of the C∗-fibration can be split

into an orientifold even and an odd part: γ(ξ, w, z) = α(w, z)+ξβ(w, z). Any higher powers

in ξ can be eliminated with the hypersurface equation. Combining this with our condition

on the tachyon (6.32), we arrive at the following general ansatz:

T = A+ξS , with At = −A and St = S , (6.34)

where the entries of A and S are polynomials in C[w, z].
Let us now go to M-theory. Retracing the path followed in Section 3.5.1, we find that the

general geometry is a C∗-fibration degenerating on the D6-brane locus, of the form (3.59),

that we rewrite here for convenience:

x2+zy2−P (z, w)+2yQ(z, w) = 0 ⊂ C[x, y, z, w]. (6.35)

Let us now revisit Laufer’s and Brown-Wemyss’ examples through the lens of tachyon con-

densation.

6.3.2 Laufer’s examples

Laufer’s singularities read:

x2−zy2−w
(
w2−z2k+1

)
= 0 with k ≥ 1. (6.36)
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Consider the double cover given by ξ2 = z, where the orientifold involution is ξ 7→ −ξ. In

the double cover twofold, the D6-brane locus of Laufer’s singularities is given by:

w ξ2
(
ξ2k+1+w

) (
ξ2k+1−w

)
= 0 (6.37)

and is encoded by the complex

O⊕4 O⊕4 ,T (6.38)

where T is

T =


0 ξ2k+1+w 0 0

ξ2k+1−w 0 0 0

0 0 ξ 0

0 0 0 wξ

 . (6.39)

Its determinant correctly reproduces the brane locus (6.37). Notice that the form of the

matrix (6.39) is compatible with the orientifold invariance condition (6.34). One may object

that (6.37) suggests that there are five D6-branes (one invariant brane at w = 0, two branes

on top of the O6-plane and a pair of one brane and its orientifold image), and then one

would expect a 5×5 tachyon matrix. However there is no way to build a 5×5 matrix that

respects (6.34) and that reproduces (6.37). One entry of T must be ξw, which is interpreted

as a bound state of two branes (see [94, 95]).

The linearized D8/D8 gauge transformations acts on T as

T 7→ gD8 ·T+T ·σ∗gtD8 . (6.40)

where the orientifold invariance of the setup forces the relation GD8 = σ∗Gt
D8 at the group

level.

The surviving gauge symmetry is again given by the D8/D8 gauge transformations that

leave T invariant. In the present case we still have U(1) gauge symmetry, whose generator

is

gU(1) =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 . (6.41)

We are now ready to compute the spectrum of zero modes. The elements of the gl(4)

D8/D8 gauge symmetry that act non-trivially on T are given by

gD8 =
1

2


α11+ξβ11 α12+ξβ12 γ13 γ14
α21+ξβ21 α11−ξβ11 γ23 γ24

γ31 γ32 α33 α34+ξβ34
γ41 γ42 α43+ξβ43 α44

 (6.42)

where αij and βij are polynomials invariant under ξ 7→ −ξ, while γij are generic polynomials

in w, ξ.
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The fluctuation field δφ (that is a matrix with entries δφij) is found by modding out the

deformations that can be obtained by a linearized gauge transformation (6.40):

δφ ∼ δφ+gD8 ·T+T ·σ∗gtD8 ≡ δφ+δgT (6.43)

where we recall that σ∗ will force ξ 7→ −ξ.
Let us write δgT in a block-diagonal form (with 2×2 blocks):

δgT =

(
A B

C D

)
. (6.44)

Due to the block-diagonal form of the matrix T , the blocks A,D of δgT are affected only

by the corresponding 2×2 diagonal blocks of gD8. Moreover the off-diagonal blocks of δgT

are related by C = −σ∗Bt and depend only on the parameters appearing in the off-diagonal

blocks of gD8. Hence, we can study separately the blocks of δgT .

We now compute separately each block of δgT and we discuss which modes it can fix.

We start with the diagonal block A:

A =

(
2α12ξ

2k+1−2β12w ξ 2 (α11+β11ξ)
(
ξ2k+1+w

)
2 (α11−β11ξ)

(
ξ2k+1−w

)
2α21ξ

2k+1+2β21w ξ

)
. (6.45)

The modes δφ12 and δφ21 localize respectively on the D6-brane loci w+ξ2k+1 and w−ξ2k+1.

They are 7d fields that are non-dynamical in 5d. Due to the orientifold projection condition

(6.34), the bifundamental modes are of the form

δφ11 = ξδφA+ and δφ22 = ξδφA−

with δφA± polynomials that are invariant under ξ 7→ −ξ. The modes δφ11 and δφ22 localize

on the ideal

(wξ , ξ2k+1) (6.46)

and then

δφA± ∈ C[ξ, w]inv/(w, ξ2k) ∼= C[z, w]/(w, zk) ∼= C[z]/(zk) ∼= Ck . (6.47)

We then conclude that there are k hypermultiplets related to the up-left diagonal block of

δφ. They have charge 2 under the U(1) generated by (6.41), as it can be shown by taking

gU(1) ·δφ+δφ·gU(1). This can be understood by noticing that these modes come from strings

stretching from one U(1) brane to its image: they live in the symmetric representation of

the group on the brane, hence they have charge 2 under the U(1) group.

Let us move to the diagonal block D:

D =

(
2α33ξ (α34+β34ξ)wξ+(α43−β43ξ) ξ

(α34−β34ξ)wξ+(α43+β43ξ) ξ 2α44ξw

)
(6.48)
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Here we see that none of the modes δφ33, δφ34, δφ43, δφ44 are localized in 5d.

Finally we analyze the block B (the modes in the block C are the orientifold image of

the ones in B):

B =

(
γ13ξ+σ

∗γ32
(
w+ξ2k+1

)
γ14wξ+σ

∗γ42
(
w+ξ2k+1

)
γ23ξ−σ∗γ31

(
w−ξ2k+1

)
γ24wξ−σ∗γ41

(
w−ξ2k+1

) ) (6.49)

Here we remind that σ∗γij(ξ, w) = γij(−ξ, w).
Let us give a name to the different zero modes, related to their charge under the U(1)

symmetry (6.41):

δφ13 ≡ δφB+, δφ23 ≡ δφB−, δφ14 ≡ δφB′+, δφ24 ≡ δφB′−.

The modes δφB± localize on the ideal

(ξ , w±ξ2k+1) = (ξ , w), (6.50)

while the modes δφB′± localize on the ideal

(ξw , w±ξ2k+1) = (ξ2k+2 , w±ξ2k+1). (6.51)

Hence

δφB± ∈ C[ξ, w]/(ξ, w) ∼= C (6.52)

δφB′± ∈ C[ξ, w]/(ξ2k+2, w±ξ2k+1) ∼= C[ξ]/(ξ2k+2) ∼= C2k+2 (6.53)

We then conclude that there are 1+(2k+2) = 2k+3 hypermultiplets related to the off-

diagonal blocks of δφ. They have charge 1 under the U(1) symmetry generated by (6.41).

This is understood form the brane point of view from the fact that these modes live on the

intersection of the orientifold invariant branes with the U(1) brane: they are bifundamentals

of the intersecting branes, i.e. they have charge 1 under the U(1) of the second brane (the

first one is invariant and its group is projected out).

Summarizing, we obtained

• k modes (and k anti-modes) with charge 2.

• 2k+3 modes (and 2k+3 anti-modes) with charge 1.

This perfectly matches the results of Section 4.6.3.

6.3.3 Brown-Wemyss’ example

The brane locus for the Brown-Wemyss’ singularity (3.67) reads:

w ξ2
(
w−ξ(w−ξ2)

) (
w+ξ(w−ξ2)

)
= 0. (6.54)
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The corresponding tachyon matrix is

T =


0 ξ(ξ2−w)+w 0 0

ξ(ξ2−w)−w 0 0 0

0 0 ξ 0

0 0 0 wξ

 . (6.55)

Again, the U(1) gauge group on the D6-branes is given by (6.41). The zero mode com-

putation follows the steps seen in Section 6.3.2: We have one zero mode δφA± of charge two

localized on the ideal

(w , ξ2−w) = (w , ξ). (6.56)

Moreover we have one zero mode of charge one localized on

(ξ , w±ξ(ξ2−w)) = (ξ , w) (6.57)

and four zero modes of charge one localized on the ideal

(ξw , w±(ξ3−ξw)) = (ξ4 , w±ξ3). (6.58)

We see that we have found the same spectrum that we obtained in Laufer’s example with

k = 1. As noticed in [92], the GV invariants of this manifold coincide with those of Laufer’s

example. This was actually the point of [92], i.e. showing an example of two different varieties

with the same GV invariants; they conclude that GV do not determine flops.

6.3.4 Morrison-Pinkham example

A deformation of Laufer’s threefold with k = 1 was first discussed by [180]. Its defining

equation is

x2−zy2+(w+λz)
(
w2−z3

)
= 0. (6.59)

with λ a complex parameter. This threefold has a singularity with a flop of length 2 at

the origin (x = y = z = w = 0). There is moreover a conifold singularity at the point

x = y = z−λ2 = w+λ3 = 0.

The corresponding D6-brane locus and tachyon matrix are given by

(w+λξ2) ξ2
(
ξ3+w

) (
ξ3−w

)
= 0 (6.60)

and

T =


0 ξ3+w 0 0

ξ3−w 0 0 0

0 0 ξ 0

0 0 0 (w+λξ2)ξ

 . (6.61)

One invariant brane has been deformed with respect to Laufer. The gauge symmetry on the
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D6-branes is like in Laufer, i.e. the U(1) symmetry generated by (6.41) and living on the

brane/image-brane system.

The computation of the zero modes proceeds analogously to Laufer. The only significant

difference occurs in the block B of δgT : The modes δφB′± now localize on the ideal

(ξw+λξ3 , w±ξ3) = (ξ3(λ∓ξ) , w±ξ3). (6.62)

Hence, around ξ = w = 0 we have

δφB′± ∈ C[ξ, w]/(ξ3, w) ∼= C[ξ]/(ξ3) ∼= C3 , (6.63)

while around ξ = ±λ and w = −λ3

δφB′± ∈ C[ξ, w]/(ξ∓λ,w−λ3) ∼= C. (6.64)

All these modes have charge one with respect to the U(1) group living on the brane/image-

brane stack. There is also one mode at the origin with charge equal to two: this can be

derived with the same computation done in Laufer’s example, with k = 1.

The deformation from Laufer’s example (with k = 1) to Morrison-Pinkham’s example has

separated one conifold point from the singularity at the origin3. If we work in the completion

of the local ring of the singularity, meaning, we zoom in on the origin, then we essentially

move this conifold point infinitely far away. In that case, the GV invariants are

ng=0
d=2 = 1 , ng=0

d=1 = 4 , (6.65)

and zero for all other invariants.

In the next section, we take a brief detour and further analyze the structure of Laufer’s

singularity using matrix factorizations, showing how to completely deform it to a series of

conifold points, following in some sense the spirit of the Morrison-Pinkham flop.

6.3.5 Completely deformed Morrison-Park

In this section, we aim at further elucidating the structure of Laufer’s singularity, showing

how it can be deformed into a set of conifold-like singular points, each supporting one

hypermultiplet in 5d, or, in a dual language, giving one contribution to the GV computation.

Consider the class of Laufer singularities, defined by the equation4:

x2+yz2+w3+wz2k+1 = 0 (6.66)

3As we will see in the next section, one can further deform the threefold going to a singular threefold
with 1+5 conifold points.

4This differs from (4.117) by a trivial change of sign of w and z, done for later convenience.
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This hypersurface has only one isolated singularity at the origin, but there exists a defor-

mation that splits the original singularity into (k)+(2k+3) isolated conifold-like singularities.

Let us see how this comes about more precisely.

We consider Laufer’s singularity labelled by k as deformations of D2k+3 singularities, ad-

mitting only the resolution of the trivalent node. In this context, the deformation parameters

ϱi ∈ T /W ′ (with W ′ the Weyl group generated by all the roots except the trivalent one)

that totally deform the generalized Laufer singularities are (in the notation of Section 4.6):

D2k+3 :



ϖ1 = −w−c1+c2
ϖ2 = − c1

2

σ2k+1 = w

σ2k = 0

σ2k−1 = 1

σ2k−2 = c3

all other σ’s = 0

, (6.67)

where the subscript indicates the degree in the parameters of the Cartan subalgebra T , as
usual.

The hypersurface equation corresponding to (6.67) reads:

x2+y2z+wz2k+1+w3︸ ︷︷ ︸
Laufer

−
(
1

4
c21z

2k+c1wy+c2z
2k+1−c2w2

)
︸ ︷︷ ︸

Morrison−Park

+

+c23

(
−c

2
1z

2

4
−c2z3+wz3

)
+c3

(
1

2
c21z

k+1+2c2z
k+2−2wzk+2

)
= 0

, (6.68)

where setting c1 = c2 = c3 = 0 gives equation (6.66), whereas fixing c3 = 0 and k = 1

recovers the Morrison-Park hypersurface, studied in [181].

The hypersurface (6.68) can be interpreted as a determinantal variety, defined by requir-

ing that the matrix

M =


x+ c1

2
z
(
zk−1−c3

)
w y z

(
zk−1−c3

)
−w2+c2w+c1y x− c1

2
z
(
zk−1−c3

)
c2z
(
zk−1−c3

)
−wz

(
zk−1−c3

)
y

−yz z2
(
zk−1−c3

)
x+ c1

2
z
(
zk−1−c3

)
−w

c2z
2
(
zk−1−c3

)
−wz2

(
zk−1−c3

)
−yz w2−c2w−c1y x− c1

2
z
(
zk−1−c3

)


has rank equal or less than 2.

As we will exhibit momentarily, there are two classes of points where the rank ofM drops

further, signalling that they are singular points:

• There are 2k+3 points where the rank drops to 1.

• There are k points where the rank drops to 0.
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It can be shown that the rank of the matrix drops to 1 on the points that satisfy:x,minors2×2

 zk+1 y −w
y −w+c2 c1

2

−w c1
2

−zk

 = 0 (6.69)

which gives 2k+3 points. Notice that (6.69) is not a complete intersection.

On the other hand the rank of the matrix drops to 0 when:

x = y = w = 0, z(zk−1−c3) = 0, (6.70)

which gives k points (including the origin).

The two classes where the rank drops are A1 singular points (as can be easily seen by

“zooming” on the neighborhood of the points): we have succeded in completely deforming

Laufer’s singularity, “splitting” the singular points into (k)+(2k+3) points. The difference

in the rank drop ofM to 1 or to 0 signals precisely the fact that such singular points support

hypermultiplets of charge 1 and 2, respectively, under the usual flavor U(1) generated by the

resolved node of Laufer’s singularities. In the Gopakumar-Vafa language, points where the

rk(M) = 1 and rk(M) = 0 correspond to degree 1 and 2 GV invariants, respectively. This

correctly agrees with the results of section (4.6.3).
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Conclusions

A journey through M-theory on deformed ADE singu-

larities: Summary

In the course of this work, devoted to the analysis of M-theory on one-parameter families of

ADE singularities, we have employed a constructive approach, starting from a description of

the simplest Higgs backgrounds associated to deformed ADE singularities (such as the coni-

fold), and slowly building towards more intricate cases, such as the simple flops of Chapter

4 and the quasi-homogeneous compound Du Val singularities of Chapter 5.

In this section, we aim at distillating the technical results of this trip, by summarizing

its setting and organically systematizing the outcome of our step-by-step process, that has

grown in the preceding chapters: here, we display the final5 framework for the analysis of

M-theory on the one-parameter deformed ADE singularities employing the “adjoint Higgs”

technique, fleshing out its power and scope from the vantage point provided by being at the

end of the journey, with all the tools at disposal.

The general setting, as we have seen, is the following:

• M-theory on one-parameter families of deformed ADE singularities, with parameter

w. These include all the compound Du Val singularities, both quasi-homogeneous and

not quasi-homogeneous6.

To summarize, the “adjoint Higgs” method we have presented works for all ADE sin-

gularities deformed with constant or holomorphic w-dependent terms.

We have introduced the Higgs background Φ(w) as follows: M-theory on an ADE singularity

gives rise to a N = 1 7d theory with three real adjoint scalars ϕ1, ϕ2, ϕ3. Combining two of

them into Φ = ϕ1+iϕ2 we can describe deformations of the ADE singularity giving a vev to

Φ. A vev depending on one complex parameter w corresponds to the one-parameter families

of deformed ADE singularities we are considering.

The correspondence is made explicit by the computation of the Casimirs of Φ(w) (that is

taken to live in an explicit matrix representation) which are related to the threefold equation

5Final in the extremely limited sense of the work done by the author on the topic, of course.
6Provided that we switch on only the parameters of the versal deformation, with w-dependent coefficients.
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via:

An : x2+y2+det(z1−Φ) = 0

Dn : x2+zy2−
√

det(z1+Φ2)−Pfaff2(Φ)

z
+2y Pfaff(Φ) = 0

E6 : x2+z4+y3+ϵ2yz
2+ϵ5yz+ϵ6z

2+ϵ8y+ϵ9z+ϵ12 = 0

E7 : x2+y3+yz3+ϵ̃2y
2z+ϵ̃6y

2+ϵ̃8yz+ϵ̃10z
2+ϵ̃12y+ϵ̃14z+ϵ̃18 = 0

E8 : x2+y3+z5+ϵ̂2yz
3+ϵ̂8yz

2+ϵ̂12z
3+ϵ̂14yz+ϵ̂18z

2+ϵ̂20y+ϵ̂24z+ϵ̂30 = 0,

(6.71)

where the Casimirs ϵi, ϵ̃i, ϵ̂i depend on Φ(w) via the expressions in Appendix B.

This connection is the technical core of the work, and can be represented schematically

as:

Casimirs of Higgs background Φ(w) ←→ one-parameter families of

deformed ADE singularities
(6.72)

The relationship (6.72) can also be inferred using Slodowy slices, introduced in Chap-

ter 2 and employed in the construction of Higgs backgrounds in Chapter 4, 5 and 6. It

can be proven that Slodowy slices Ssubreg through subregular nilpotent orbits of the ADE

algebras encode the versal deformations of the very same ADE singularities, parameterized

by coordinates ui ∈ T /W , with T and W the Cartan subalgebra and the Weyl group of

the given ADE algebra, respectively. The ui are related to the Casimirs of the Slodowy

slice. Cutting the versal deformation with a choice ui = ui(w) produces a one-parameter

deformation of an ADE singularity. In this picture, the Casimirs of the Slodowy slice play

the role of the Casimirs of the Higgs background in (6.71). Slodowy slices, in turn, are the

tool at the core of Springer resolutions, which yield the partial (or complete) simultaneous

resolution corresponding to the threefold given by the explicit choice of Casimirs. We have

then a correspondence between the Higgs background and the Slodowy slice tools, that can

be depicted as follows:

Casimirs of Ssubreg ←→ Casimirs of Φ (6.73)

Physically, triggering a vev for Φ(w) higgses the 7d theory, yielding an effective theory in

five spacetime dimensions: this is the 5d N = 1 SCFT arising from M-theory on the one-

parameter deformed ADE singularity corresponding to the Higgs background7. Our objective

has been to study, using the information contained in the Higgs background:

• The Higgs branch of the 5d SCFT.

• The GV invariants of the compactification threefold.

7Here, we are considering deformed ADE families admitting an isolated singularity.

223



In Chapter 4, we have seen that the two tasks are intimately related, as the GV invariants

encode the number of hypermultiplets in the 5d Higgs branch, and their degrees correspond

to the flavor charges of the hypers. Concretely, the Higgs background encodes the Higgs

branch data as follows:

• Fluctuations around the Higgs background that cannot be gauge fixed to zero, and

that are localized on8 w = 0, are five-dimensional hypermultiplets.

• The preserved group G5d is given by the stabilizer of9 Φ(w). The charges of the hypers

under the symmetry are given by the adjoint action of G5d on the hypers.

Once the relationship between the Casimirs of Φ(w) and the threefold equation has been

established, the problem of writing down the explicit form of Φ(w) comes about. Unfortu-

nately, (6.72) is not sufficient to accomplish this task: linear-algebraically, the Casimirs do

not uniquely fix the form of the Higgs background matrix. Given a threefold, the possible

Higgs backgrounds with compatible Casimirs fall into two categories:

1. The Higgs background that breaks the 7d gauge group in the least brutal way, and

localizes the maximal amount of modes in 5d.

2. All other Higgs backgrounds.

In the course of the work, we have mostly focused on 1: namely, we have searched for the

Higgs vev Φ(w) leaving as much of the 7d symmetry unbroken as possible, and that yields

the Higgs branch of maximal dimension. In turn, this implies that such Higgs background

inflates the maximal number of nodes in the corresponding ADE Dynkin diagram. The

results obtained choosing this Higgs background agree, when an overlap is present, with other

approaches in the literature, both as regards the Higgs branches10 and the GV invariants11.

Given a threefold built as a one-parameter deformation of an ADE singularity g, finding

the correct subalgebraM of g in which the Higgs background satisfying 1 lives is a formidable

task. In general,M is of the form:

M =
⊕
h

Mh⊕H, (6.74)

where the Mh are simple addends and H is a sum of elements in the Cartan subalgebra:

the roots dual to these elements are inflated by the simultaneous resolution corresponding to

the given Higgs vev. The Casimirs of Φ(w) can then be expressed as functions of the partial

8In case after a suitable shift of the variable w.
9An ambiguity, due to the global structure of the theory, is present in the choice of the gauge group G7d

in 7d, that gives different outcomes for G5d. We have showed the different results due to this subtlety in
Chapter 4.

10As is the case for a few quasi-homogeneous deformed A singularities in [59], and the systematic analysis of
the (A,A), (A,D) and (A,E) singularities, examined from a magnetic quiver perspective, in [175] and [176].

11Computed for various examples of simple flops in [86, 89–92]. In general, our results for simple flops of
all lengths comply with the lower bounds on the GV invariants imposed by [182].
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Casimirs ofM, namely the Casimirs ϱi of its addends. The choice ofM automatically fixes

the stabilizer of Φ(w), including its discrete part:

StabG7d
(Φ(w)) ←→ minimalM containing Φ(w) (6.75)

In addition,M can be embedded in some Levi subalgebra L of g:

L =
⊕
h

Lh⊕H. (6.76)

The minimal L containingM is precisely the Levi subalgebra corresponding to the Springer

simultaneous resolution of the roots dual to H. As a consequence, for the Higgs background

Φ conforming to prescription 1, we have a web of correspondences between its Casimirs,

the Levi subalgebra of g in which it is embedded, and the simultaneous resolution that is

unobstructed by Φ. Namely, we can extend the graph (6.73) as:

Casimirs of Ssubreg ←→ Casimirs of Φxy xy
Springer resolution ←→ Levi subalgebra containing Φ

(6.77)

In selected cases, such as the quasi-homogeneous cDV singularities of Chapter 5, we have

found completely automatic techniques to pinpointM, solely relying on the degrees of the

deformation parameter in the ADE versal deformation. OnceM is fixed, one can proceed

and explicitly build a Higgs background focusing on the single addends and concentrating

on tuning only the entries comprised in the Slodowy slice through the nilpotent orbit related

to the single addend12. In general, many different nilpotent orbits are compatible with

the threefold equation, yielding a different spectrum in 5d, according to the codimension

formula of Appendix C. To conform to presciption 1, one takes the nilpotent orbit with

biggest codimension inside the nilpotent cone.

In more general cases, though, the procedure is not straightforward, and some guesswork

must be employed, embarking on a recursive strategy: one first tries choosing M = T ,
that is the subalgebra corresponding to a complete resolution, and checks if there exists a

holomorphic choice of the partial Casimirs ofM that reproduce the threefold. If it exists, the

job is concluded and one has found the correctM: otherwise, the algorithm goes on, picking

a biggerM, that corresponds to some partial resolution, until a suitable Higgs background

is found. In the “worst” case, one ends up withM = g.

As a byproduct, embedding a Higgs background in a subalgebraM⊂ g corresponding to

a given simultaneous resolution of g, and keeping the dependence of the resulting threefold on

the partial Casimirs ofM, one automatically obtains the expression of the versal deformation

of the g-singularity in coordinates adapted to the simultaneous resolution, a task that can

12This strategy turns out to work in all the examined examples, although a definitive proof is yet to be
found.
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pose significant computational challenges, especially for the exceptional algebras.

On the other hand, if one drops assumption 1, a plethora of possible Higgs backgrounds

arise, corresponding to choice 2: these are the T-brane backgrounds. They might give rise

to a smaller unbroken symmetry in five dimensions, to a smaller dimension of the 5d Higgs

branch, or to a combination of both phenomena. As we have seen in Chapter 5, T-brane

backgrounds display an intricate structure, which is, in cases such as the cDV singularities,

interestingly classified by the theory of nilpotent ADE orbits.

In the next section, we conclude with some more general remarks concerning the work

performed so far.

Final remarks

In the course of this thesis, we have focused on a narrow corner of M-theory geometric engi-

neering, namely on the study of M-theory compactifications on one-parameter deformations

of ADE singularities, displaying an isolated singularity. Picking this somewhat restrictive

environment, though, has been extremely beneficial: we have been able to compute the Higgs

branches of the rank-0 5d SCFTs for wide classes of non-toric threefolds built as deformed

ADE singularities, many of which were previously unexplored. We have employed an ex-

tremely explicit technique, based on an adjoint Higgs background associated to the threefold

singularity, that has reduced the task to a straightforward linear algebra computation13. The

outcome has confirmed that these rank-0 5d SCFTs possess a Higgs branch that is composed

of free hypers or discrete gaugings of free hypers14. In this fashion, we have constructed ex-

amples of simple threefold flops of all lengths, and completely exahusted the classification of

the Higgs branches of quasi-homogeneous compound Du Val singularities.

On a dual side, these computations have furnished an alternative physics-based interpre-

tation of the Gopakumar-Vafa invariants of the compactification threefolds: the counting

of the GV invariants, which is usually performed in the mathematics literature employing

sophisticated techniques, or via correspondences with sheaf-theoretic data, has been refor-

mulated as a zero-mode computation of fluctuations around a Higgs background (that lends

itself to an open string states interpretation in the A and D cases, that admit a Type IIA

counterpart), based exclusively on linear algebra. This has confirmed existing results from

the mathematical literature, as well as adding the knowledge of the GV invariants for the

classes of threefolds we have analyzed in the main body of the thesis. Besides, our com-

putations naturally yield an interpretation of charge 0 hypermultiplets as “degree 0” GV

invariants, which are not properly defined in the mathematical literature. This is an aspect

that requires further investigation.

Moreover, we have also shown a complementary approach for the characterization of

13Moreover, as we have mentioned in the first section of the Conclusions, this technique in principle applies
to all possible one-parameter deformations of ADE singularities, and not only to the classes examined in
the text.

14With the caveat, which is yet to be completely understood, that the flavor symmetry in 5d turns out to
be smaller than the expected one for a bunch of free hypers.
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Higgs branches and GV invariants, relying on the tachyon condensation formalism, that has

allowed quicker computations for singularities admitting a Type IIA dual, thanks to the re-

duced sizes of the tachyon matrices with respect to their Higgs counterpart. We have shown

this in action for a few examples of simple flops, but nothing forbids an application also to

other cDV singularities.

On a side note, the work of the preceding chapters has further elucidated the role of

nilpotent orbits in the classification of 5d SCFTs, as they have been one of the key or-

ganizing principles in the explicit construction of the Higgs backgrounds, via the theory

of Slodowy slices and Grothendieck-Springer resolutions, as well as in the analysis of T-

brane backgrounds. In particular, the T-brane backgrounds seem to be governed by a Hasse

diagram-like hierarchical structure. As welcome byproducts, the theory of ADE nilpotent

orbits has also produced a direct and automatic way to compute deformed ADE families

admitting a given simultaneous partial resolution, based on the “adjoint Higgs method”,

as well as a natural definition of reconstructible Higgs backgrounds in the D and E series,

expanding upon the definition in the A case.

The results recapped in the previous paragraph offer natural avenues for extensions and

generalizations: the somewhat limited scope of rank-0 5d SCFTs arising from hypersurface

equations built as one-parameter deformed ADE singularities, for example, ineherently calls

for a generalization of the “adjoint Higgs” technique to higher-rank 5d SCFTs, with the due

adaptations, and hopefully transferring much of its computational power. This is particularly

relevant also in light of applications to the (D,D) and (D,E) singularities, which are not

cDV, and that as such require an updated approach with respect to the one outlined in this

work.

On a slightly more mathematics-oriented side, considering M-theory on two-parameter

deformations of ADE singularities, a setting that could be aptly dealt with the adjoint Higgs

method, could shed some light on Gopakumar-Vafa invariants for Calabi-Yau fourfolds, as

introduced by Klemm and Pandharipande [183] and later developed in the mathematical

literature [184–186]. The properties of the 3d effective theories arising from these setups,

previously considered in [157] in some special cases, but that remain largely uninvestigated,

could also be analyzed in this fashion.

227



APPENDIX A

ADE Lie algebras

In this Appendix we review a few basic facts about Lie algebras that we need in the main

body of the work: we start from strolling through some definitions, and end up giving explicit

matrix presentations for the Lie algebra in the An and Dn series.

Among the countless reviews of the topic, we mainly draw from the crystal clear lectures

of Benini [187] and the book of Collingwood, MacGovern [112].

A.1 Basic facts on Lie algebras

For our purposes, a Lie algebra g is a vector space over C that comes with an antisymmetric

bilinear operation, usually called commutator:

[·, ·] : g×g→ g. (A.1)

The Lie algebra can be explicitly defined by a set of generators T a, satisfying the commuta-

tion relations:

[T a, T b] = ifabcT c, (A.2)

where repeated indices are summed, and the factor i is needed to make the generators

hermitian, i.e. (T a)† = T a. The coefficients fabc are called structure constants, they are

antisymmetric in the first two indices, and completely define the Lie algebra g. In other

words, given the set of all fabc we can completely reconstruct the commutation relations,

and so also the algebra.

A representation ρ of the Lie algebra g associates every element of the Lie algebra to an

element of the endomorphisms of a vector space V :

ρ : g→ End(V ). (A.3)

The dimension of V is the dimension of the representation, and ρ is said to be a faithful

representation if it is an injective map.
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The most natural representation of the Lie algebra, that takes V as the Lie algebra itself, is

the adjoint representation “ad”, defined as:

ad : g×g→ g ad(X) = [X, Y ]. (A.4)

The generators of the adjoint representation are nothing but the structure constants ifabc.

Using the adjoint representation we can also define the Killing form κ, a symmetric

bilinear form on g:

κ : g×g→ C, κ(X, Y ) = Tr (ad(X)ad(Y )) . (A.5)

In the following, we will only be concerned about simple Lie algebras, namely non-abelian

algebras that do not contain any proper ideal. In this setting, we take a look at a specific

choice of basis for the generators in (A.2), known as Cartan-Weyl base, that is extremely

convenient for our ends.

Given a Lie algebra g of rank n, we can always find a set of n mutually commuting

generators, that we denote by H i. Namely, they satisfy:[
H i, Hj

]
= 0, ∀i, j = 1, . . . , n. (A.6)

The generatorsH i are called Cartan generators, and they define the Cartan subalgebra h of g,

which is maximal. Being a set of commuting generators, they can always be simultaneously

diagonalized up to an appropriate change of basis. We set ourselves in such basis, and

consider the remaining generators of the algebra, denoted by Eα. They can be chosen in

such a way as to be eigenvectors of the Cartan generators, namely:

[H i, Eα] = αiEα. (A.7)

The vectors α = (α1, . . . , αn) are the roots of the Lie algebra g, and it can be proven that

they are non-zero and all different. The set of all the root vectors α constitutes the root

system ∆ of g, and it can be seen that the dimension of the Lie algebra is connected to the

number of root and Cartan generators, that is:

dim(g) = n︸︷︷︸
Cartan

+ |∆|︸︷︷︸
roots

. (A.8)

With some work, one can show that the full commutation relations of the Lie algebra in
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the Cartan-Weyl basis are given by:

[H i, Hj] = 0

[H i, Eα] = αiEα

[Eα, Eβ] = Nα,β if α+β ∈ ∆

= 2α·H
|α|2 if α = −β

= 0 otherwise,

(A.9)

where Nα,β are some constants, and α·H ≡ αiH
i.

Making use of the Killing form (A.5) we can establish a correspondence between the

Cartan subalgebra h spanned by H i and the roots α. More precisely, the roots α can be

seen as operators living in the dual h∗ of h. In other words, we associate to every element

Hα ∈ h an operator:

α = κ(Hα, ·). (A.10)

In this way, we can define a scalar product (·, ·) between roots using the Killing form:

(α, β) = κ(Hα, Hβ) =
∑
i

αiβi, (A.11)

where the last step is made possible by a suitable normalization of the elements of the Cartan

subalgebra. In particular, the square module of a root is defined as:

(α, α) = κ(Hα, Hα) = |α|2. (A.12)

Consider now the root system ∆, that comprises all the roots as defined in (A.9): the

total number of roots is higher than the rank of g, and so they are linearly dependent. We

can then choose an ordered basis (β1, . . . , βn) and expand each generic root α accordingly:

α =
∑
i

ciβi, (A.13)

with ci some numerical coefficients. This allows us to split the root system ∆ into two sets

of same cardinality: the positive roots (i.e. roots whose first non-vanishing ci is positive) ∆+

and the negative roots ∆−. These two sets are related by:

∆+ = −∆−. (A.14)

We further define a simple root as a root that cannot be written as the sum of any other

set of roots. There are exactly n positive simple roots, and they form the preferred basis

(α1, . . . , αn) in which to perform the expansion (A.13). It can be proven that all the roots
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in ∆ can be generated as sums of the simple roots, and there exists an easy algorithm to

perform the computation in any Lie algebra (for details, we refer to [187]). Finally, the choice

of simple roots provides us with the last ingredient needed to tackle the characterization of

the algebras in the ADE classification.

Indeed, each Lie algebra is uniquely defined by its Cartan matrix Aij, defined as:

Aij =
2(αi, αj)

|αj|2
∈ {0,−1,±2,−3}. (A.15)

More specifically, the ADE Lie algebras are simply laced, meaning that the Cartan matrix is

symmetric and that its only possible entries are 2 on the diagonal, as well as 0 or −1 outside:

AADE
ij =

2(αi, αj)

|αj|2
∈ {0,−1, 2}. (A.16)

The Cartan matrix, in turn, can be neatly represented graphically introducing the Dynkin

diagram, in which each node corresponds to a simple root and each line connecting two nodes

corresponds to a non-vanishing entry (i.e. a −1 entry in our cases) in the Cartan matrix. We

conclude this section by listing the Dynkin diagrams for the ADE classification, that will be

extensively used in the main text:

In the next section we report another useful tool, namely the standard matrix represen-

tation basis for the Lie algebras in the An and Dn series, along with recipes to explicitly

build the Cartan and root generators.

A.2 Explicit Cartan and root generators for A and D

algebras

In this section we give explicit rules to construct the matrices of the fundamental represen-

tation of An and Dn, and to express the elements of the Cartan subalgebra h and all the root

231



generators Eα for α ∈ ∆ in our preferred basis, following Collingwood and MacGovern [112].

This will make up the backbone of all the computations carried out in the main chapters.

An series

The preferred basis for the fundamental representation of An = sl(n+1) is the standard

(n+1)-dimensional representation given by traceless matrices. The Cartan elements in h

are chosen to lie on the diagonal. In order to express the root generators, define linear

functionals ei ∈ h∗ as:

ei(H) = ith diagonal entry of H. (A.17)

The root system of An is therefore defined as:

∆ = {ei−ej | 1 ≤ i, j ≤ n+1, i ̸= j}. (A.18)

The positive roots are spanned by ∆ = {ei−ej | i < j}, and the simple roots are the

positive roots where i and j are consecutive numbers. We denote the simple positive roots

as:

αi = {ei−ej | i, j consecutive}. (A.19)

As a result, the root generators Eei−ej associated to the roots ei−ej ∈ ∆ can be defined

as:

Eei−ej = Xi,j, (A.20)

where Xi,j is a matrix of sl(n+1) having 1 as its (i, j) entry and 0 elsewhere.

To conclude this section, let us give an explicit example, taking into account the A5 =

sl(6) algebra. A5 has rank 5, and consequently possesses 5 simple roots. They can be written

as:

∆simple roots = {e1−e2, e2−e3, e3−e4, e4−e5, e5−e6}. (A.21)

Each simple root intersects, via the Killing form (A.11), only with its neighboring simple

roots, and hence the Lie algebra A5 can be represented by a linear Dynkin diagram with 5

nodes, each corresponding to a simple root. The matrix representation of the simple roots

goes as (where we have highlighted the non-vanishing entries referred to the generator of the

simple roots αi): 

0 α1 0 0 0 0

−α1 0 α2 0 0 0

0 −α2 0 α3 0 0

0 0 −α3 0 α4 0

0 0 0 −α4 0 α5

0 0 0 0 −α5 0


(A.22)

The other roots in the root system ∆ can be written down either by using the represen-

tations of the simple roots as linear functionals (A.19), or commuting their explicit matrix

representations (A.22).
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Dn series

For the Dn series, let us start by giving our preferred basis for the fundamental represen-

tation of so(2n). A generic 2n-dimensional matrix in the fundamental of so(2n) is expressed

in this basis as: {
M =

(
Z1 Z2

Z3 −Zt
1

)
| Z2, Z3 antisymmetric

}
, (A.23)

where Z1, Z2, Z3 are complex-valued matrices. It is easy to show that matrices of the kind

(A.23) satisfy the Lie algebra of so(2n):

MQ+QM t = 0. (A.24)

with Q the quadratic form:

Q =

(
0 1

1 0

)
. (A.25)

which has superseded the identity in the definition of the Lie algebra in the new basis (A.23).

The Cartan subalgebra is given by the diagonal matrices, that by construction are of the

form:

H =

(
D 0

0 −D

)
, (A.26)

with:

D =


h1 0 0 . . . 0

0 h2 0 . . . 0
...

...
...
. . .

...

0 0 0 . . . hn

 . (A.27)

Now define functionals ei ∈ h∗ similarly to the An case (notice that the index goes until n,

not 2n):

ei(H) = hi. (A.28)

The root system ∆ of Dn is then spanned by:

∆ = {±ei±ej | 1 ≤ i, j ≤ n, i ̸= j}. (A.29)

The set of positive roots is therefore:

∆+ = {ei±ej | 1 ≤ i < j ≤ n}, (A.30)

and the n simple positive roots are:

∆simple roots = {e1−e2, . . . , en−1−en, en−1+en}. (A.31)

The simple roots intersect in the shape of the Dynkin diagram of Dn, the “upper” node
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being given by the simple root αn = en−1+en.

Explicit matrix representations of the root generators can be produced using the following

dictionary:

Eei−ej = Xi,j−Xn+j,n+i,

Eei+ej = Xi,n+j−Xj,n+i,

E−ei−ej = Xn+i,j−Xn+j,i.

(A.32)

where Xi,j has 1 as its (i, j) entry and 0 elsewhere.

Finally, let us give a concrete example of such representation basis. Take into account

the rank 4 algebra D4, that possesses four simple roots:

∆simple roots = {e1−e2, e2−e3, e3−e4, e3+e4}. (A.33)

The matrix representation associated to the simple roots turns out to be:

0 α1 0 0 0 0 0 0

0 0 α2 0 0 0 0 0

0 0 0 α3 0 0 0 α4

0 0 0 0 0 0 −α4 0

0 0 0 0 0 0 0 0

0 0 0 0 −α1 0 0 0

0 0 0 0 0 −α2 0 0

0 0 0 0 0 0 −α3 0


(A.34)

A.3 Borel and Levi subalgebras

In this section we define three classes of subalgebras of an ADE Lie algebra g: the Borel,

parabolic and Levi subalgebras, that are extremely relevant in the context of Springer res-

olutions, dealt with in Chapter 2. As we only need an operative understanding of such

concepts, mathematical details will be avoided.

Let us start by defining Borel subalgebras of a Lie algebra g:

Def A.1. A Borel subalgebra b of g can always be decomposed (modulo conjugation) as a

direct sum h⊕n, where h is a Cartan subalgebra of g and n = [b, b] is a subalgebra composed

of nilpotent elements. Furthermore, the nilpotent subalgebra n can always be decomposed as

a sum of positive root generators of g, namely:

n =
∑
α∈∆+

Eα. (A.35)

An example helps in clarifying the meaning of the above definition: consider the An

algebras and their standard matrix representation, given in the previous section. Borel
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subalgebras of An are nothing but subalgebras formed by upper triangular matrices (up to

conjugation by Gad). For instance, in the A3 = sl(4) case, Borel subalgebras are all conjugate

to:

b =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 , (A.36)

where a ∗ entry can take any value in C.
Notice that each Borel subalgebra b highlights a choice of simple roots ∆simple roots (for

instance, in the A3 case, the simple roots α1, α2, α3 in the canonical matrix representation).

Now, picking a subset Θ ⊆ ∆simple roots we can define parabolic subalgebras :

Def A.2. Given a Borel subalgebra b = h⊕n, a parabolic subalgebra p containing b can

always be generated, up to conjugation, by a direct sum of:

• h

• the root generators contained in b

• the simple roots generators E−α, if α ∈ Θ.

The definition of parabolic subalgebra naturally takes us to the last relevant class of

subalgebras we will need, the so-called Levi subalgebras :

Def A.3. Given a parabolic subalgebra p associated to a subset Θ of simple roots, and to the

subroot system ⟨Θ⟩ generated by Θ, the maximal Levi subalgebra L contained in p is given

by:

L = h⊕
∑
α∈⟨Θ⟩

Eα. (A.37)

Again, let us give a clarifying example, in the algebra A3 = sl(4).

Pick Θ = {α1, α3}. Then the subroot system generated by Θ is:

⟨Θ⟩ = {α1,−α1, α3,−α3}. (A.38)

The parabolic subalgebra relative to Θ is obtained summing to the Borel subalgebra (A.36)

the generators of all the roots −α such that α ∈ Θ, namely −α1 and −α3:

pΘ =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 . (A.39)

The Levi subalgebra relative to Θ is instead given by the sum of the Cartan subalgebra in
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b with the subroot system ⟨Θ⟩, yielding:

LΘ =


∗ ∗ 0 0

∗ ∗ 0 0

0 0 ∗ ∗
0 0 ∗ ∗

 . (A.40)

For further intuition, a remarkably eloquent classification of parabolic and Levi subalgebras

in the A3 case is contained in a table of [112].

A.4 Casimir invariants for ADE Lie algebras

It is a well-known fact [188] that an ADE Lie algebra g of rank n possesses n Casimir

invariant operators, i.e. operators made up of Lie algebra generators that commute with the

whole algebra. One of the easiest and most influential examples is the spin operator, i.e. the

Casimir invariant operator of the su(2) algebra.

In general, one can define n independent Casimir operators for all the ADE Lie algebras.

In turn, it can be shown that this implies that there exist n independent tensors, invariant

under the whole Weyl group W of g. More precisely, given the Lie algebra generators T a,

we can define n tensors C
(m)
i1,...,im

of degree m of the form:

C(m) : g×· · ·×g︸ ︷︷ ︸
m times

→ C

(T i1 , . . . , T im) → C
(m)
i1,...,im

= sTr(T i1 . . . T im),

(A.41)

where:

sTr(T i1 . . . T im) =
1

m!

∑
σ∈Sm

Tr(T iσ1 . . . T iσm ), (A.42)

with σ the elements of the permutation group of m elements Sm.

In the following, we will treat the tensors C(m) and the C
(m)
i1,...,im

∈ C as the same object,

and will often call them (with some abuse of notation) “Casimir invariants”.

We proceed now in giving the explicit expressions of the Casimirs C(m) for all the ADE Lie

algebras. Having in mind the applications of the main text, where we want to compute the

“Casimir invariants” of the Higgs background Φ, we give the expressions for C(m)(Φ, . . .Φ︸ ︷︷ ︸
m times

),

keeping the notation of the main text.

For the An algebras we have:

An

ki = Tr(Φi+1), i = 1, . . . , n
(A.43)
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For the Dn algebras we have:

Dn

k̃i = Tr(Φ2i), i = 1, . . . , n−1
k̃n = Pfaff(Φ)

(A.44)

For the E6, E7, E8 algebras we have:

E6 ci = Tr(Φi) for i = 2, 5, 6, 8, 9, 12

E7 c̃i = Tr(Φi) for i = 2, 6, 8, 10, 12, 14, 18

E8 ĉi = Tr(Φi) for i = 2, 8, 12, 14, 18, 20, 24, 30

. (A.45)
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APPENDIX B

Explicit deformation coordinates for exceptional Lie

algebras

In this section we show how to compute the explicit form of the equations (3.79), after having

briefly recapped how they are obtained.

Our aim is to exhibit a simple way to relate the Casimirs of the Higgs background Φ

with the coefficients of the versal deformations of the E6, E7, E8 singularities, thus allowing

to write down explicitly the equation that corresponds to a given Φ. In principle, this entails

that we can reproduce both the deformed E families over the partial Casimirs ϱi ∈ T /W ′,

for some partial simultaneous resolution W ′, and the explicit threefold equations, once a

dependence ϱi(w) has been chosen.

To ground our reasoning, we work with a Higgs field Φ in the representations (3.77). This

is not compulsory, but the coefficients that we will show in the following lines are subject

to change according to the representation in which Φ resides. Take Φ to live in the Cartan

subalgebra of one among E6, E7, E8
1, i.e.

Φcartan =
n∑

i=1

aiH̃
i, (B.1)

where H̃ i are the Cartan elements in some basis and the ai are generic coefficients. Imposing

that the action of Φcartan on the simple roots generators Eαi
respects the volumes (1.26) of

the 2-cycles associated to the simple roots, namely:

[Φcartan, Eαi
] = volαi

·Eαi
, (B.2)

and recalling that the volumes are functions of the parameters ti, we can solve for the

coefficients ai = ai(ti) and find the “canonical” basis of the Cartan subalgebra, that is the

1This can always be achieved by diagonalizing (eventually with non-holomorphic eigenvalues) the Higgs
field.
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one in which the coefficients are precisely the parameters ti. In this way we can rewrite:

Φcartan =
n∑

i=1

tiH
i, (B.3)

withH i the “canonical” Cartan subalgebra generators. We can further compute the Casimirs

of Φcartan, as defined in (3.78), that we rewrite here for convenience:

E6 ci = Tr(Φi
cartan) for i = 2, 5, 6, 8, 9, 12

E7 c̃i = Tr(Φi
cartan) for i = 2, 6, 8, 10, 12, 14, 18

E8 ĉi = Tr(Φi
cartan) for i = 2, 8, 12, 14, 18, 20, 24, 30

. (B.4)

We stress that now the Casimirs of Φcartan are functions of the parameters ti.

Now consider the deformed E singularities in equation (1.24). In each one, we have n

deformation parameters:

E6 ϵi for i = 2, 5, 6, 8, 9, 12

E7 ϵ̃i for i = 2, 6, 8, 10, 12, 14, 18

E8 ϵ̂i for i = 2, 8, 12, 14, 18, 20, 24, 30

, (B.5)

which are functions of the parameters ti. Following the recipe of the A and D series, we

know that it should be possible to write the parameters (B.5) as functions of the Casimirs

(B.4) of Φcartan. For example, given Φcartan ∈ E6 we should have:

ϵ2 = β1c2

ϵ5 = β2c5

ϵ6 = β3c6+β4c
3
2

...

ϵ12 = . . .

(B.6)

with βi some numerical coefficients to be determined imposing the equality of (B.6) with the

explicit expressions of ϵi, ϵ̃i, ϵ̂i as functions of the ti, which can be found in [111]. Performing

this kind of computation for all the E6, E7, E8 cases we find the relationships (B.7), (B.8)

and (B.9) between the Casimirs of Φcartan and the deformation parameters ϵi, ϵ̃i, ϵ̂i.

It is crucial to highlight that the equations (B.7), (B.8) and (B.9) are valid for any Higgs

field configuration Φ, and that the use of Φcartan is a mere computational tool useful to obtain

the final expression. This is the case because the traces of Φ are invariant under diagonal-

ization, and of course it can be explicitly checked in the threefolds we have analyzed in the

main text. Moreover, using (B.7), (B.8) and (B.9) for Higgs configurations corresponding to

simple flops examined in Chapter 4, one immediately obtains the expressions of the defor-
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mation parameters (B.5) in terms of the partial Casimirs of the Higgs. In this way, one can

construct a generic deformed E6, E7, E8 family admitting a simple flop.

Summing up, once one has built an explicit Higgs configuration Φ(w), corresponding to

an arbitrary simultaneous resolution, the explicit expression of the resulting threefold can be

obtained computing its Casimirs and plugging them into (B.7), (B.8) and (B.9).

The end result for the E6 case is:

ϵ2 = −
c2
24

ϵ5 =
c5
60

ϵ6 =
c32

13824
− c6
144

ϵ8 = −
c42

110592
+
13c2c6
8640

− c8
240

ϵ9 =
c9
756
− c22c5
11520

ϵ12 = −
c12
3240

+
109c62

4299816960
− 847c32c6
134369280

+
109c22c8
3732480

+
13c2c

2
5

466560
+

61c26
933120

.

(B.7)
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For the E7 case:

ϵ2 =
c̃2
18

ϵ6 =
c̃32

139968
− c̃6
72

ϵ8 = −
7c̃42

25194240
+
11c̃2c̃6
16200

− c̃8
300

ϵ10 = −
2c̃10
315

+
c̃52

151165440
− 17c̃22c̃6
583200

+
c̃2c̃8
1400

ϵ12 = −
16c̃10c̃2
1148175

+
c̃12

12150
− 149c̃62
10579162152960

+
167c̃32c̃6

3401222400
+

737c̃22c̃8
881798400

− 31c̃26
437400

ϵ14 =
8303c̃10c̃

2
2

14935460400
− 2201c̃12c̃2
217314900

+
4c̃14
62601

+
11083c̃72

24082404724998144
− 11609c̃42c̃6
5530387622400

− 1289c̃32c̃8
1433804198400

+
353c̃2c̃

2
6

142242480
− 31c̃6c̃8
1463400

ϵ18 =
12182634587c̃10c̃

4
2

77806514663884339200
− 564449c̃10c̃2c̃6
3418744644000

+
1844c̃10c̃8
3956880375

− 27233975c̃12c̃
3
2

11321053720935552

+
301c̃12c̃6
452214900

+
307855c̃14c̃

2
2

13588370378352
− 2c̃18
1507383

− 886993691c̃92
313644160640867419847393280

+
4713945967c̃62c̃6

72026602145995788288000
− 14715122551c̃52c̃8
2334195439916530176000

− 579011753c̃32c̃
2
6

23156700792822720000

+
2313866297c̃22c̃6c̃8

222355151645760000
− 77393c̃2c̃

2
8

3376537920000
− 15011c̃36
97678418400

.

(B.8)
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For the E8 case:

ϵ2 =
ĉ2
120

ϵ8 =
13ĉ42

24883200000
− ĉ8
5760

ϵ12 =
ĉ12

181440
+

101ĉ62
3224862720000000

− ĉ22ĉ8
64512000

ϵ14 = −
71ĉ12ĉ2

798336000
+

ĉ14
1108800

− 2531ĉ72
9029615616000000000

+
103ĉ32ĉ8

696729600000

ϵ18 = −
4451ĉ12ĉ

3
2

689762304000000
+

1523ĉ14ĉ
2
2

12454041600000
− ĉ18
47174400

− 26399ĉ92
2080423437926400000000000

+
4747ĉ52ĉ8

722369249280000000
+

331ĉ2ĉ
2
8

1672151040000

ϵ20 =
191071ĉ12ĉ

4
2

2121019084800000000
+

127ĉ12ĉ8
174569472000

− 1165063ĉ14ĉ
3
2

612738846720000000
+

236627ĉ18ĉ2
434023349760000

+
10249681ĉ102

61414099887587328000000000000
− 2994007ĉ62ĉ8
35540567064576000000000

− 323371ĉ22ĉ
2
8

82269831168000000
− ĉ20
220809600

ϵ24 = −
193ĉ212

17793312768000
+

228270563ĉ12ĉ
6
2

29320967828275200000000000
+

234189517ĉ12ĉ
2
2ĉ8

945465467240448000000

− 9171869023ĉ14ĉ
5
2

52675933174824960000000000
− 23281ĉ14ĉ2ĉ8
9150846566400000

+
561557071ĉ18ĉ

3
2

8291582073815040000000

+
8268193432181ĉ122

580761207304971815485440000000000000000
− 20976434911ĉ82ĉ8
3055351469407469568000000000000

− 16935675593ĉ42ĉ
2
8

33005339947302912000000000
− 666323ĉ22ĉ20
721337268326400000

+
ĉ24

10061694720
− 593ĉ38
887354818560000

ϵ30 = −
636328729ĉ212ĉ

3
2

367646783551116410880000000
− 189107437ĉ12ĉ14ĉ

2
2

277976001893990400000000
+

2521ĉ12ĉ18
31907254579200000

+
122785779721089347ĉ12ĉ

9
2

5354576379380206927872000000000000000000
+

374760114643099ĉ12ĉ
5
2ĉ8

685159914799807856640000000000000

− 199931513ĉ12ĉ2ĉ
2
8

94458563710156800000000
+

28501673ĉ214ĉ2
3860777804083200000000

− 1634513578407571229ĉ14ĉ
8
2

3206548401263100769075200000000000000000

− 3442332938170993ĉ14ĉ
4
2ĉ8

593805259493166809088000000000000
+

1223ĉ14ĉ
2
8

112201334784000000
+

15587535288859801ĉ18ĉ
6
2

76346390506264304025600000000000000

− 1051350791ĉ18ĉ
2
2ĉ8

1243310844834938880000000
+

38736013334814563129113ĉ152
919171413254131073937239231692800000000000000000000000

− 966205043352894287ĉ112 ĉ8
46497194159854305977303040000000000000000000

− 53516928494297557ĉ72ĉ
2
8

42002885419922588958720000000000000000

− 2159242595767ĉ52ĉ20
737984035215212544000000000000

+
21328481ĉ32ĉ24

58332071437516800000000
+

225239997090599ĉ32ĉ
3
8

119591548765057371340800000000000

+
72667ĉ2ĉ20ĉ8

4518107320320000000
− ĉ30
1978376400000

.

(B.9)
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APPENDIX C

Higgs branches from M-theory on (AM−1, AN−1)

singularities

In this Appendix we aim at obtaining the Higgs branch of M-theory on a generic (AM−1, AN−1)

singularity, given by the following threefold, explicitly expressed as a C∗-fibration:

uv = zM+wN . (C.1)

In order to achieve this task, we decompose the brane locus, which is the r.h.s of (C.1), into

irreducible factors (namely, polynomials in (w, z) that do not admit further factorization).

Each factor corresponds, geometrically, to an irreducible component of the brane locus (seen

as a one-dimensional subvariety of Cw×Cz).

We write (AM−1, AN−1) as (Amp−1, Amq−1), with p, q coprimes, p ≥ q, andm = gcd(M,N).

It then becomes manifest that we can always factor the brane locus as follows:

∆ = zmp+wmq =
m∏
s=1

(zp+e2πis/mwq). (C.2)

The factor (zp+e2πis/mwq) in (C.2) can be realised, for all the (p, q), as the characteristic

polynomial of a p×p matrix As, with matrix entries being polynomials in w of degree at

most one.

The blocks “As” (they are, indeed, characterized by the four integers p, q, s,m, appearing

in each factor of (C.2) but we omit p, q,m for ease of notation) whose characteristic poly-

nomials are the irreducible factors appearing in (C.2) can be put in the following canonical

shape1:

1Notice that the canonical form (C.3) is precisely in the shape of a companion matrix, as usually under-
stood in the mathematical literature.
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As(w) =



0 ∗ 0 · · · 0
0 0 ∗ 0 0
... 0

. . .
. . . 0

0 0 0 0 ∗
−e2πis/mw 0 0 0 0


, (C.3)

where the ∗ entries are filled either with w, or are constants (that can be set to 1); to

reproduce the right characteristic polynomial, we have to fill q−1 ∗-entries with “w”.

Depending on the position where we place the “w”, one has a different number of zero-

modes. D-brane states realizing the same brane locus (or, analogously, dual to the same

M-theory geometry) but with a different number of zero-modes are known in this context as

T-brane states.

There exists a fast criterium to understand (without performing any computation2) if

the chosen As describes a T-brane background. The argument holds more generally for any

Higgs field Φ. Indeed, we can think of As itself as the Higgs field associated to the singularity

uv = χ(As), with As ∈ Ap−1 and χ the characteristic polynomial. Keeping the characteristic

polynomial fixed, we associate to Φ the nilpotent orbit O0 obtained acting with the seven-

dimensional gauge group on Φ|w=0. We find that the number nind of linearly independent

elements of the seven-dimensional gauge algebra g supporting a five-dimensional zero-mode

always equals the complex codimension of O0 in the nilpotent cone of g:

nind = codC

(
O0 ↪→ N

)
. (C.4)

(C.4) holds also for the Higgs fields associated to the threefolds analyzed in Chapter 5,

namely all quasi-homogeneous cDV singularities. Notice that if there are 5d localized modes

supported on C[w]/(wk) with k > 1, then nind does not coincide with the total number of 5d

modes localized in the Higgs background.

Furthermore, we find that in all the (Aj, Al) cases the Higgs maximizing nind also maxi-

mizes the total number of five-dimensional modes. Consequently, the Higgs field Φ displaying

the maximum number of five-dimensional modes is the block-diagonal sum of blocks As cor-

responding to the O0 that sits at the lowest position in the Ap−1 nilpotent orbits Hasse

diagram, while the other Higgs fields have obstructed five-dimensional modes3. Let us con-

sider the example of the (A1, A4) quasi-homogeneous cDV singularity. The threefold is:

uv = z5+w2, (u, v, w, z) ∈ C4. (C.5)

2Of course, one can always run the gauge fixing analysis to check this a posteriori. The codimension
formula for Aj-fibered threefolds simply shortens this process. Unfortunately, the same argument cannot be
applied in the Dk case.

3A more precise geometric proof of this is given in [98].
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We have two possible Higgs backgrounds4 reproducing the same geometry:

Φ(I) =


0 1 0 0 0

0 0 w 0 0

0 0 0 1 0

0 0 0 0 1

−w 0 0 0 0

 , Φ(II) =


0 w 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−w 0 0 0 0

 . (C.6)

If we want to have no obstructed five-dimensional modes we have to pick the first Higgs, Φ(I).

Indeed, the orbit corresponding to Φ(I) is, in the notation of [112], the one with partition

[3, 2], that is below the orbit [4, 1] (associated to Φ(II)) in the A4 nilpotent orbits Hasse

diagram. It also turns out that [3, 2] is the tiniest orbit that contains a matrix (that is,

As|w=0) realizing (z5+w2) as its characteristic polynomial.

Summing up, if we want to maximize five-dimensional modes, for a given factor zp+

e2πis/mwq in (C.2) we pick the block As such that codCO0 ↪→ NAp−1 is maximized (with

NAp−1 the nilpotent cone of Ap−1)
5. To obtain them factors of the brane locus corresponding

to the full Higgs field, we take the block direct sum of all the As blocks
6:

Φ(Amp−1,Amq−1) ≡



As=1 0p 0p 0p

0p As=2

...

...
. . . 0p

...
... As=m


︸ ︷︷ ︸

m blocks

. (C.7)

The previous procedure applies similarly for all the (Amp−1, Amq−1) singularities, and we can

describe it in general terms as follows:

1. the five-dimensional modes localize with the following pattern:

φ ≡



(p−1)(q−1)modes p·q modes · · · p·q modes

p·q modes
. . .

...
...

. . . p·q modes

p·q modes . . . p·q modes (p−1)(q−1) modes


︸ ︷︷ ︸

m blocks

;

(C.8)

4With polynomial entries of degree at most one in w.
5This also implies that the codimension of the whole Higgs (living in Amp−1) in N is maximized.
6The integers p, q are the same for all the blocks, the phase e2πis/m multiplying the lowest-left entry in

(C.3) is opportunely tuned in such a way that each block As reproduces each of the factors of (C.2).
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2. the discrete group (starting with G7d = SU(mp)) is always isomorphic to Zp. We can

pick the generator to be:

Ggauge ≡



e
2πi
p 1p 0p 0p 0p

0p 1p

...

...
. . . 0p

...
... 1p


︸ ︷︷ ︸

m blocks

; (C.9)

3. the flavor group matrix Gflavor ∈ U(1)m/U(1)diag is:

Gflavor ≡



eiα11p 0p . . . 0p

0p eiα21p

...
...

...
...

. . . 0p

0p . . . 0p eiαm1p


︸ ︷︷ ︸

m blocks

,
m∑
s=1

αs =
2πn

p
; (C.10)

4. Ggauge, Gflavor act on the modes by adjoint action:

φ→ Ggaugeφ(Ggauge)
−1, φ→ Gflavorφ(Gflavor)

−1; (C.11)

The data in the matrix (C.8) allows us to completely reconstruct the Higgs branches as

complex varieties7. That matrix and the shape of the flavor and discrete gauging are already

sufficient to reconstruct completely the Higgs branch, and determine the action of the flavor

group.

For the (Amp−1, Amq−1), we can do more, and recollect the result in a closed compact

formula. Looking at (C.8), we get the following general formula for the Higgs branch:

HBm,p,q = C(m
2−2m+2)pq+m(1−p−q)×C2(m−1)pq

Zp

. (C.12)

The Zp acts multiplying the first half of the C2(m−1)pq complex coordinates (corresponding

to, say, the chiral complex scalars inside the hypers) by e
2πi
p , and the second half of the

C2(m−1)pq complex coordinates (that correspond to the complex scalars in the anti-chiral

part of the hyper) by e−
2πi
p . As we have remarked in the main text, the discrete gauging

group might disappear if we make a different choice for the seven-dimensional gauge group

global structure.

7In particular, we cannot determine the hyper-Kähler metric.

246



In Chapter 5, we indeed take a different choice, namely we pick as starting 7d gauge group

SU(mp)/Zmp. This leaves no discrete group in 5d.

The flavor group is U(1)m/U(1)diag, as we saw in (C.10). These abelian factors cor-

respond, in the resolved CY geometry, to the P1’s inflated in the resolution. These P1’s

correspond to the roots at positions r×p, with r = 1, ..,m−1 in the Dynkin diagram of the

Amp−1 ADE singularity. Each of the flavor U(1) of (C.10) acts linearly, with charge one, on

m(q−1)(p−1) modes:

Qi → eiαsQi, Q̃i → e−iαsQ̃i, i = 1, ..., ncharged hypers, s = 1, ...,m. (C.13)

To conclude, we quickly recap our strategy to get to (C.12). Given, as input datum, the

equation of the (Amp−1, Amq−1) singularity:

1. We computed the brane locus ∆ looking where the C∗-fibers of the threefold degenerate.

2. We factored the brane locus (C.2) in polynomials that can be represented by the char-

acteristic polynomials of a traceless matrix As with entries being w−dependent poly-
nomials of degree at most one. We found that any polynomial that enters in the

factorization of the brane locus of the (Amp−1, Amq−1) singularity is the characteristic

polynomial of some block As of the shape (C.3).

3. We counted the number of five-dimensional modes that are localized in the diagonal

blocks. More precisely, each of the As selects a minimal sl(p) ↪→ Amp−1 subalgebra

that corresponds to the block containing As (C.8) (we highlighted the sl(p) subalgebras

corresponding to the various As with different colours in (C.7)). The localization of

modes inside a certain sl(p) subalgebra is determined just by the corresponding block

As, and is always the same for all the s.

4. We counted the number of five-dimensional modes that a pair As, As localizes in the

corresponding off-diagonal blocks of the block decomposition of the sl(mp,C[w]) matrix,

finding: 

(p−1)(q−1) modes . . . · · · p·q modes
...

. . .
...

...
. . .

...

p·q modes . . . . . . (p−1)(q−1) modes


. (C.14)
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APPENDIX D

T-branes and nilpotent orbits in (A,D) singularities

As we have briefly mentioned in the case of (Aj, Al) singularities of Appendix C, the choice

of the Higgs background Φ deforming the stack of D6-branes is not unique. This means that

in general many different Higgs fields Φ(w) realizing the brane-loci of the (Aj, Al) singular-

ities, called T-brane backgrounds, are allowed. These various choices can be labelled using

the Lie algebra formalism involving nilpotent orbits: given a Higgs field Φ(w), we define as

Φ0 = Φ(w = 0) its constant component. As on w = 0 we wish to obtain the undeformed

singularity, we find that Φ0 is always nilpotent for all the (Aj, Al) and (Ak, Dn), and thus

belongs to some nilpotent orbit O0 of Aj (supposing j > l) or Dn, respectively. Consequently

we can label every Higgs Φ(w) using the nilpotent orbit O0 in which its constant compo-

nent resides. This argument indeed holds for all the quasi-homogeneous cDV singularities.

Furthermore, the codimension formula (C.4) relates the nilpotent orbit O0 to the number of

linearly independent elements of the 7d gauge algebra that support 5d modes localized at

the intersection of the D6-branes. For the (Aj, Al) singularities the story ends here: in order

to obtain the Higgs background for (Aj, Al) yielding the maximal number of modes, we take

the blocks in A in (C.3), evaluated on w = 0, to lie in the biggest-codimension nilpotent

orbit O0 compatible with the geometry, namely reproducing the brane locus. We remark

that in general the total number modes for this Higgs configuration need not be equal to the

number of linearly independent elements in the 7d gauge algebra (i.e. there could be modes

supported on C[w]/(wk) with k > 1).

This is an example of a more general phenomenon: whenever we tackle the anaylsis of a

quasi-homogeneous cDV singularity, the Higgs background producing the maximal amount

of 5d modes lies in the nilpotent orbit of minimal dimension, when evaluated on w = 0. All

the Higgses that localize less 5d modes are T-brane states. Namely, we find that:

For quasi-homogeneous cDV singularities, the Higgs field localizing the maximal amount

of 5d modes satisfies:

Φ(w)|w=0 = Φ0 ∈ Olow
0 ,

with Olow
0 the nilpotent orbit of lowest dimension (that is, biggest codimension in N ) allowed

by the compatibility with the threefold equation.

This is equivalent to requiring that every addend Φh(0) in (5.21) lies in the smallest al-
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lowed nilpotent orbit of the corresponding subalgebra, compatibly with the threefold equa-

tion.

In addition, the number of localized modes can be influenced by the distribution of the

w-dependent entries of the Higgs background. In the example of the (Ak, Dn) singularities,

this makes the hierarchy of the different Higgs backgrounds much more complicated. The

goal of this section is to show how a classification of the allowed Higgs backgrounds is pos-

sible, providing an explicit example.

The starting point, as always, is the threefold equation for the (Ak, Dn) singularities in

Table (5.1). The threefold equation, in turn, fixes the D6-brane locus, according to (3.62),

that we reproduce here for convenience:

det (ξ1+Φ(w)) = ∆(ξ2, w) = ξ2(ξ2n−2+wk+1). (D.1)

As we have said, there is vast space for ambiguities in the choice of a Higgs compatible

with the brane locus (D.1), giving rise to a hierarchy governed by the nilpotent orbits that

can be associated to the Higgs itself. Let us see how this precisely comes about.

Generally speaking, each Higgs comprises constant entries, along with entries depending

on w (w-entries).

Correspondingly, by considering the constant and w-entries separately, we can analyze

their orbit structure. In particular, for all the cases in (D.1), we now show how to associate

both the constant entries and the w-entries to nilpotent orbits, that can be classified by

suitable partitions of [2n] as the Higgs Φ lives in the algebra so(2n). As is well known in the

mathematical literature, nilpotent orbits are organized hierarchically along Hasse diagrams,

and this structure will be reflected in the possible choices for the Higgs background, giving

rise in general to different spectrums in 5d. Following the notation for the (Aj, Al) cases, we

denote the nilpotent orbit associated to the constant entries as O0, and the one related to

the w-entries as Ow. More precisely, we define:

O0 = nilpotent orbit in which Φ(0) lives,

Ow = nilpotent orbit in which Φ−Φ(0) lives.
(D.2)

Consequently, the full Higgs field Φ can be decomposed as:

Φ = Φ(0)+(Φ−Φ(0)) ≡ Φ0+Φw, (D.3)

where Φ0 ∈ O0 and Φw ∈ Ow.

When trying to pick a choice for Φ satisfying (D.1) for a given brane locus related to

some (Ak, Dn) singularity, one is confronted with the following logical steps:

• In general, each brane locus is compatible with many choices of O0
1, thus giving rise

1Here by compatible we mean that we can build an Higgs field Φ with Φ0 belonging to O0.
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to an ambiguity. There is always a minimal O0, giving rise to the largest spectrum.

Mathematically this is the lowest-lying orbit, among the compatible ones, in the Hasse

diagram.

Most notably, the choice of O0 completely fixes the number of linearly independent

elements inside the 7d gauge algebra supporting 5d localized modes, according to the

codimension formula (C.4).

• In general, each O0 is compatible with many bottom orbits Ow, namely with many

different choices of w-entries, barely sufficient to reproduce the correct brane locus

(where “barely” means that no “w” entry can be removed without affecting the brane

locus). Among the bottom orbits Ow there is always a minimal Ow, lying at the lowest

position in the Hasse diagram, giving rise to the maximal number of modes.

Each bottom Ow gives rise, in general, to a different number of total 5d modes.

• By deforming each bottom Ow, tuning zero-entries into w-entries while keeping the

brane locus and O0 fixed, we find a tower of allowed Ow, starting from the bottom one

and terminating on a top one (there always is a top orbit, as the size of the Higgs is

fixed by the brane locus).

Most importantly, each Ow belonging to the same tower2 gives rise to the same number

of total modes. In addition, towers starting from different bottom Ow need not be

disjoint (meaning that the same Ow can appear in many different towers, producing

different amounts of modes. What counts for the number of modes is the bottom Ow

at the base of the tower).

Summing up, given a brane locus in the (Ak, Dn) series, a choice of the Higgs is completely

determined once one picks:{
a nilpotent orbit O0, corresponding to the constant entries of Φ,

a bottom orbit Ow, corresponding to the w-entries of Φ.
(D.4)

In order to understand this hierarchy of choices in a more intuitive way, it is instructive

to depict it graphically, indicating with segments the possible choices, and with arrows

the nilpotent orbits hierarchy in the Hasse diagram sense. Notice that we have explicitly

indicated the minimal O0 and minimal Ow orbits, that when combined in the choice of the

Higgs yield the M-theory dynamics with the maximal number of modes. In an extensive case

by case analysis we have always found that such choice is unique, but we cannot rule out the

possibility that there is more than one minimal choice of O0 and Ow yielding the maximal

number of modes, as there could be more than one orbit on the same level of the Hasse

diagram hierarchy. We finally stress that each bottom orbit Ow in the picture is the starting

point of a tower of orbits, obtained deforming the Higgs configuration corresponding to the

bottom orbit, with the same number of total 5d modes as the ones given by the bottom

2We stress that this means that the Higgs associated to the Ow in the tower is obtained turning on some
w-entries in the Higgs associated to the bottom orbit, without modifying its brane locus.
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orbit. We have omitted such towers for a better graphical depiction.

Finally, notice that for every choice of O0 we have indicated the total number of linearly

independent elements of the 7d gauge algebra supporting localized 5d hypers (namely, the

number of 7d elements supporting localized 5d modes given by the codimension formula (C.4)

is twice the number we have indicated), and that for every bottom Ow we have highlighted

the total number of hypers.
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Let us now examine a concrete example, so as to make the abstract remarks above a bit

more grounded. An interesting instance of brane locus giving rise to a T-brane hierarchy

is (A8, D8), that displays a remarkable structure. This singularity is non-resolvable and its

brane locus is:

∆(ξ2, w) = ξ2(ξ14+w9)︸ ︷︷ ︸
type (b)

= 0. (D.5)

In the following picture, the red color refers to the O0, the blue color to bottom Ow and

the dark arrows to dominance in the Hasse diagram sense. We have instead omitted towers

with the same number of total hypers for the sake of graphical clarity. As before, we have

indicated the total number of 7d gauge algebra elements supporting localized 5d hypers for

every choice of O0 in the hierarchy, as well as the total number of hypers for every bottom

Ow. As it can be seen from the picture, the M-theory dynamics with maximal modes is

reproduced by the lowest O0 with the lowest Ow in the Hasse diagram, yielding 32 total

hypers. All the other partitions are instead T-brane configurations with a lower amount of

modes.
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