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Chapter 1

Introduction

Free-electron lasers (FELs) are capable of generating intense pulses of a few fs
from VUV to hard X-rays [1, 2, 3, 4, 5, 6, 7, 8]. This possibility is opening a wide
range of new scientific opportunities. The time scale of a few fs allows probing
ultrarapid, out-of-equilibrium dynamics, driving transitions in regimes where
excitation is not exhausted by fast decaying side channels, such as the Auger ef-
fect [9]. Ultrashort pulses can probe THz-stimulated dynamics, such as coherent
phonons [10] or collective excitations in condensed matter, paving the way for
the observation of coherent, field-dependent phenomena. When sort pulses are
combined with a correspondingly high peak power, nonlinear optics is possible
at EUV/soft X-ray wavelengths. These are examples showing the importance of
generating short intense pulses at a FEL facility such as FERMI. In this thesis
work, we discuss some of the schemes available to produce ultrashort photon
FEL pulses. The work starts from a briefly review from analytical and theoret-
ical point of view, highlighting the limitation in the short pulse generation due
to the finite gain bandwidth of a FEL. FERMI, as a seeded FEL source, aims at
generating close to the Fourier limit pulses [5, 6]. The interplay between pulse
duration, spectral purity, and quality of the electron beam longitudinal phase
space are analyzed. Several options available for the production of short pulses
are then addressed from a computational point of view. In some promising cases
it was finally possible to carry out experiments which were compared to the the-
oretical predictions. In the last three years, we have deepened the analysis of
mainly two schemes: the superradiance cascade scheme[11, 12, 13, 14], consisting
in multiple harmonic jumps, with a small harmonic number, to quickly saturates
the bunch, reaching the overbunched condition and to allow just the first peak
to fully evolve in the superradiant evolution. This condition allows to reach a
few fs pulses, due to the shortening of the bunching factor and the overbunched
condition. The second peak is cleared by the out-of-resonance condition. The
second one is the spoiled beam condition [15], in which the longitudinal length is
reduced by the implementation of the scraper, which is composed by two blades
that scatter away the tails of the electron charge distribution. By removing
the outer charge, only the core distribution is allowed to propagate, resulting
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CHAPTER 1. INTRODUCTION 4

in a shorter electron bunch. We have proved that this will also reduce the FEL
pulse duration. The first method, superradiance, was tested experimentally at
FERMI in several conditions. This method has some limitations in terms of
applicability, requiring specific undulator configurations to properly work, but
it is now considered sufficiently mature to be applied in user experiments. The
second method seems promising and applicable in the long wavelength range of
FERMI but is still in the stage of simulation work. The personal contribution
on the development of these scheme at FERMI starts from the analysis of the
experiment carried out at November 2019, the simulations provided in Chapter
6 and all the experiments/simulations concerning the spoiled beam.
Before discussing the FEL properties, we want to briefly review some of the
major schemes and concepts that concerns the production of ultrashort FEL
pulses.



Chapter 2

Generation of short pulses in

FELs

The ability to generate short pulse duration from lasers has become increasingly
important in a wide range of fields, as it allows researchers to study faster
dynamics and interactions. In particular, the use of femtosecond and attosecond
pulses has enabled the observation of dynamics on the atomic and electronic
timescales in fields such as chemistry, atomic physics, and solid state physics.
This has led to a deeper understanding of these processes and has opened up
new possibilities for research and applications.
Ultrafast processes in atomic physics started with the real-time observation of
the femtosecond Auger decay in krypton, in which the attosecond dynamics was
firstly introduced [17]. From this, other important results in the field of ultrafast
atomic physics has been achieved, such as the real-time observation of electron
tunneling [18] and the measurement of temporal delays of the order of a few tens
of attoseconds in the photoemission of electrons from different atomic orbitals
of neon [19] and argon [20]. Attosecond pulses allowed quantum mechanical
electron motion and its degree of coherence to be measured in atoms by using
attosecond transient absorption spectroscopy [21].
In the past few years, attosecond pulses have also been used to measure ultrafast
electronic processes in simple molecules [22]. Sub-femtosecond electron local-
ization after attosecond excitation has been observed in H2 and D2 molecules
[23], and control of photo-ionization of D2 and O2 molecules has been achieved
by using attosecond pulse trains (APTs) [24, 25]. More recently, an APT, in
combination with two near-infrared fields, was used to coherently excite and
control the outcome of a simple chemical reaction in a D2 molecule [26].
In ultrafast pump–probe experiments, the pump pulse is used to clock with
femtosecond accuracy the atomic or molecular motion. The second femtosec-
ond pulse, can be used to probe the time evolution of the system. Since the
synchronization of a few femtoseconds can be achieved in a straightforward way
using relatively simple split-and-delay stages, the sequence of snapshots taken
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Figure 2.1: Pulse duration achievable from laser source over the years [16]

at variable t delays can be used as a stroboscopic probe of dynamics in real
time.
The femtosecond dynamics [27] of electrons in metals has been given much
attention. Several experimental methods have been developed that allow de-
termining the relaxation time and relaxation length of an excited electron. A
very important point was the invention of methods that allow directly investi-
gating the time characteristics of the dynamics of excited states and, first and
foremost, the method of time resolved two-photon photoemission spectroscopy
(TR2PPE). In this method, the first (pumping) photon excites an electron into
an intermediate state, and the second photon (probing photon), which comes
after a certain time delay, transfers the electron from the intermediate state to
the vacuum. Such experiments can be carried out at a low intensity of laser
radiation, when investigating the dynamics of excitation of a single electron, or
at a high intensity, when studying collective excitation. From the considera-
tions reported above, it is therefore important to develop femto to attoseconds
laser source capable of probing new dynamics. In the following we are going to
review a few of the most common schemes and setups proposed and in some
cases implemented in order to produce short pulses in FELs.

2.1 Electron beam Manipulation

Several methods were proposed to generate femto and sub-femtosecond photon
pulses in FELs, by manipulating and/or shaping the electron bunch, before
starting the exponential amplification in a FEL. These methods generally apply
to self amplified spontaneous radiation FELs, where the pulse duration depends
only on the electron beam parameters, but can in principle extended to seeded
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Figure 2.2: Description of the scraping technique. a) the electron bunch is tilted
in a bunch compressor and then b) passes through two blades that scatter the
tails and leaves unspoiled electrons, compatible with the aperture of the scraper
2∆x. [15]

FEL’s also as the duration of the lasing region over the electron beam dominates
over the seed properties, i.e., if we consider a bunch length of 10fs and a seed
pulse of 50fs, the emitted photon pulse will not generally have a duration larger
than 10fs if supported by the FEL amplification gain bandwidth. From this
simple consideration we can conclude the importance of the electron shaping
techniques in shortening the FEL pulse duration.

2.1.1 Slotted-foil method

The first scheme that we review is the slotted-foil method, proposed in [15]. The
idea uses the fact that in a magnetic bunch compressor, the electron bunch is
tilted with a large angle, from the longitudinal axis to the traversal plane. In
this way the longitudinal length is exchanged by the transverse length.
In Fig. 2.2 is reported the representation of the scheme. The tilting of the elec-
tron bunch is necessary because, usually, the longitudinal length of the beam
is much greater than the transverse sizes. After this rotation, a scraper, which
is a device made by two symmetrical blades, with respected of the longitudi-
nal axis, is placed. The scraper has a vertical aperture that allows the core
electrons in the bunch to be left unspoiled or unscattered. The tail electrons
suffer the presence of the blade and are scattered by Coulomb scattering and
the the traversal emittances are increased. In this way, the can manipulate the
longitudinal length of the beam, decreasing it by the same ratio between the
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aperture of the scraper and the unmodified transverse rms, therefore

∆tFWHM ≈ 2∆x

σx
σt, (2.1)

where σt is the longitudinal length and σx is the transverse length, both without
the scraper. [15] showed that it is possible to keep the peak current constant,
while lowering the aperture of the scraper. This suggests a linearity behavior
between the unspoiled charge and the longitudinal length of the unscattered
electrons. This is very important, since the peak current plays a crucial role
in the gain of a FEL and this linearity assures the possibility to keep the same
gain, while lowering the bunch duration. Further, they provide evidences of high
peak power photon pulses with 2fs FWHM pulse duration in a SASE FEL with
the possibility to reach sub-femtosecond pulses. This scheme was also studied at
FERMI and in Chapter 7 we will provide both computational and experimental
results.

2.1.2 Single-spike FEL operation

The idea of a ultra-low charged beam provided further ideas. While the scarper-
ing technique relies on the Coulomb scattering in order to cut the tails in the
charge distribution, it has the negative side of generating a lot of radiations,
which are dangerous also for the electronic equipment. Another way for gener-
ating bunch with a low value of charge is presented in [28]. Here, the choice of
the bunch length, dictated by the physics of the FEL and the two downstream
compression processes, deduces the correct scaled beam charge Q that should be
used to obtain the desired pulse length. Therefore, by the machine constrains
a specific amount of charge Q is extracted by a RF gun, from the photoinjec-
tor. Then, the scaling laws described in the paper allow the evaluation of the
beam properties. After the two compressions, it is possible to achieve a narrow
high-peaked profile for the current. Finally, from a 1pC bunch with 28fs of
longitudinal length, the authors provide the generation of very intense photon
pulses (over 100MW of peak power), with an high level of spectrum stability
and 12fs of pulse duration.

2.1.3 Enhanced SASE

Another scheme that relies in the manipulation of the beam prior to the undu-
lators line is the one proposed by [29]. The authors suggest to induce an energy
modulation in the beam, with an external optical laser pulse, with a short pulse
duration (∼50fs). The beam modulated is then accelerated up to the nominal
energy, without impacting negatively in the modulated region. After the linac, a
dispersive section generates the microbunching structure and an enhanced peak
current profile, compatible to the modulated region.
In Fig. 2.3 is reported the simulated current profile (plot b)), after the chicane,
in the region correspondent region of the energy modulation (plot a)). As we
said, the current plays a crucial role in the gain of an FEL process, therefore,
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Figure 2.3: Energy modulation, impressed by a laser pulse in a wiggler magnet,
and correspondents peak current resulting from a simulation of the proposed
scheme[29]

by shaping this profile, it is possible to generate single spikes with a very short
FWHM. This behavior will be impressed in the peak power profile, allowing the
generation of very intense, ultrashort FEL pulses. Here the authors show that
it is possible to obtain FEL pulses with a FWHM duration of

∆τ ≈ 4MGλx
c

,

where MG is the gain length of the process, in number of wiggler periods, λx is
the wavelength of the external laser used for imprinting the energy modulation
and c is the speed of light. Further, it shows that this result provides photon
pulses very close to the FTL condition and with a higher degree of temporal
coherence, since the SASE output from a microbunch with length ∆z0 has the
condition ∆z0 ≤ 2πMGλx[30].

2.1.4 Laser heater beam spoiler

A somehow complementary scheme to the one reported above, uses a laser heater
to increase the energy spread in the tails of the electron bunch to suppress any
kind of FEL emission [31]. The laser is applied before the two-stage compression.
In this way, the electron beam has a central region in which the electrons are at
their nominal energy, with a natural energy spread, and two tails with a higher
value of energy spread. The large energy spread is necessary to put out of
resonance the tail electrons, while the core electrons are on resonance. The two
compressors enhance the effect,since the energy spread is increased by the same
compression factor C. This allows the selection of a variable region of unspoiled
electrons, therefore the final FEL pulse duration will be lowered. Despite the
setup, the authors show the possibility to fine control the parameters, to obtain
pulses with a time duration lowered by a factor 5 (see Fig. 2.4).
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Figure 2.4: Experimental results of the LH shaping scheme [31]. (a),(b) Longi-
tudinal phase space of the electron bunch with lasing suppressed and lasing on,
respectively, for the unshaped electron bunch. (c),(d) Longitudinal phase space
of the electron bunch with lasing suppressed and lasing on, respectively, for
the temporally shaped electron bunch. (e) Slice energy spread as a function of
time for the unshaped electron bunch (red) and the temporally shaped electron
bunch (blue). (f) X-ray profile for the unshaped electron bunch measured from
the energy loss to the FEL (red) and the shaped electron bunch (blue).
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2.1.5 Chirp and taper

The generation of a isolated, attosecond spike radiation pulses in a single pass
FEL, operating in SASE mode, has been proposed also by [32]. In this paper, the
authors provide a combination of energy chirp in the electron beam and a strong,
negative taper in the undulators line. The energy chirp is necessary to detune
the beam’s local resonant frequency, while the undulators tapering allows the
continuous gain of a spike initiated in the rear of the bunch as it moves forward.
Without tapering, the radiation emitted would exit the local gain bandwidth.
The chirp is applied by using an external seed laser and a modulator to energy
modulates the electrons. Then, using an appropriate undulator taper, only a
short slice around zero-crossing produces powerful FEL pulse. The main part
of the bunch is unmodulated and suffers from the presence of strong negative
undulator tapering. With this scheme, the author provided simulated results
of 100GW, 200as pulses in an isolated single spike. More recent, [33] provided
experimental demonstration of this scheme, showing one order of magnitude of
power emitted, between tapered and untapered condition and with a FTL pulse
duration of ∼50fs at 540nm.

2.2 Seeded FELs

2.2.1 Chirped-Pulse Amplification

Acting directly on the e-beam is a common technique for SASE FELs. If we
consider seeded FELs then we can expand the range of possibilities to provide
shorter pulses. A scheme that relies on particular characteristics of the seed is
the Chirped Pulse Amplification (CPA). This is a technique that was first devel-
oped in atomic laser research in the late 1980s by Mourou and Strickland [34].
Ultrashort pulses contain a broad spectral bandwidth according to their Fourier
transform. This fact enables the possibility to add a phase shift to different
frequencies or wavelengths, using a grating pair with a specific characteristics
of the medium, of the laser pulse just after its generation in a mode-locked
laser cavity. The result is a stretched pulse containing a correlation between
the longitudinal position and the frequency, i.r.a chirp. The pulse has in this
case a lower peak power and can be amplified without damaging optical compo-
nents. After amplification the pulse can be compressed to very short duration
by adding a spectral phase with an opposite sign to that introduced by the
grating. To demonstrate the effectiveness of the CPA technique, the authors
performed experiments using a Ti:sapphire laser system. They were able to
increase the peak power of the laser pulse by a factor of 1000, from 50 kW to 50
MW, without causing damage to the amplifying material. In FELs the idea is
similar, we introduce a chirp in the seed laser. The FEL photon pulse inherits
the amplitude and phase from the seed laser. The undulators line amplifies
the chirped pulse that should have a duration comparable to the entire elec-
tron bunch. A larger fraction of the bunch charge interacts with radiation with
respect to the bunch fraction that would have interacted with the short pulse.
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Figure 2.5: A Gaussian laser pulse with a frequency chirp is used to seed the
FEL in CPA mode. Electrons are modulated by the seed, and the resulting
density modulation is transformed into bunching when passing through the dis-
persive section. The modulated electrons emit coherently in a long undulator
tuned at an harmonic of the seed. The FEL beam is directed towards the
experimental chamber, where the FEL pulse duration is measured by photo-
ionizing He gas atoms and acquiring a photo-electron distribution using a VMI
spectrometer.[36].

The chirped light after amplification is then dechirped by a grating pair, short-
ening the pulse and increasing the peak power (see Fig. 2.5). This scheme was
proposed in FELs by [35]. At FERMI the scheme was implemented and tested
for the first time [36] providing a compression of the pulse duration of about a
factor 4. While promising in reaching ultrashort duration at short wavelengths,
this scheme is prone to phase distortions of the amplified pulse that cannot be
easily re-compressed to the ideal values. In addition, optical compressors have
a transmission efficiency pretty low at short wavelengths, making not trivial to
recover by compression the original peak power prior to compression. Different
other schemes rely on the properties of the seed laser to manipulate the FEL
photon pulse.

2.2.2 Superradiance

The saturation process in a free-electron laser (FEL) can be exploited to generate
ultrashort pulses. As the electrons pass through the field, they are amplified,
and the emitted radiation becomes more intense. However, as the intensity of
the radiation increases, it can cause the electrons to lose energy, which slows
down the amplification process. This phenomenon is known as saturation, and
it can be used to generate ultrashort pulses of radiation [11]. In this non-linear
regime achievable after saturation, the pulse light slips over the electron bunch
faster than it did in the exponential regime. This regime has the unique property
of a pulse duration that scales with the inverse squared root of the position along
the undulators line. By carefully controlling the electron beam and magnetic
field, it is possible to produce pulses as short as a few femtoseconds [14]. This
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is one of the methods explored at FERMI and it is a central argument of this
thesis, an extensive description including the achieved experimental results is
provided in Chapter 5.



Chapter 3

Introduction to FEL Theory

It is well known that an accelerated electric charge emits radiation. This is
the basic principle on which synchrotrons are built: the trajectory of electrons
is bent by magnetic fields, in order to form a circular trajectory. In a circular
motion, electrons experience a centripetal acceleration, and emit radiation called
synchrotron radiation. In the case of an FEL, the light is emitted by electrons
traveling through a series of a small bending magnets, with an alternate sign
of the magnetic field [37]. A collection of this small bending magnets form
an undulator. In this situation, the electrons will “wiggle” in the undulator,
forming an oscillating trajectory. In the following we are going to review the
physics behind the FEL emission, for a single electron, which will be extended
in the Appendix A.

3.1 Motion in a Magnetic Field

We start from studying the case of a single particle in an oscillating magnetic
field of a planar undulator. As we discussed before, the oscillating magnetic
field is generated by a collection of permanent magnets, with alternate signs.
The strength of the magnetic field is determined by the magnetic material and
by the undulator geometry, mainly by the gap between the upper and the lower
series of poles. For simplicity we assume that the motion is along the z direction
and the oscillations are in the transverse x direction. Using the fact the the curl
and the Laplacian are zero in the gap of the undulator, the magnetic field on
axis can be expressed as

B = B0 sin (kuz) with ku =
2π

λu
, (3.1)

where λu is the period of the undulator.
In order to describe the dynamics of an electron passing through the magnetic
field of an undulator we recover the relativistic equations of motion. From
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Figure 3.1: Scheme of a generic planar undulator. The permanent magnets
generate the magnetic field that impress the oscillator motion to the e-beam.
[38]

special relativity, we know that the dynamics of a relativistic particle is given
by (assuming gamma as constant)

p = mcγβ, (3.2)

where c is the speed of light in vacuum and m is the mass of the particle, in
our case an electron, and where we use definitions of the Lorentz transformation
parameters

β =
v

c
and γ =

1√
1− β2

.

The force impressed by an electromagnetic field on the particle is

dp

dt
=
e0
c
(v ×B+E) = e0 (β ×B+E) (3.3)

In order to integrate the equation of motion with the field given by Eq. 3.1
and to find the expression of the electron trajectory and velocity, we have to
integrate Eq. 3.3. Substituting the expression of the field in Eq. 3.3 we obtain
the following system of equations
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



β
′

x = e0
mcγBy sin (kuz)βz,

β
′

y = 0,

β
′

z = − e0
mcγBy sin (kuz)βx,

(3.4)

The first of Eq. 3.4 can be integrated over time finding the expression for the
particle transverse velocity

βx = βx0 +
e0
mcγ

By

t
✂

0

sin (kuz)βzdt = βx0 +
e0

mc2γ
By

z
✂

0

sin (kuz) dz =

= βx0 −
e0By
mc2γku

[cos (kuz)− 1] = − e0By
mc2γku

cos (kuz) . (3.5)

In the second step we have used the fact that cβzdt = dz and defined the
integration constant βx0 = −e0By/mc2γku. This choice for the initial condition
for the transverse velocity ensures a purely oscillatory motion in the x-plane.
We introduce the undulator strength parameter

K =
e0By
mc2ku

=
λue0By
2πmc2

= 0.934B0 [T ]λu [cm]

The magnetic field intensity and the length of the undulator period (that we
expressed in Tesla and cm respectively in the practical units expression) are the
two physical quantities that can be varied to modify the undulator strength.
While the length of the period is a parameter generally fixed once the undulator
has been built, the intensity of the magnetic field can be varied by changing the
gap of the undulator, i.e. the transverse distance between the poles.
In order to find the relation for βz, instead of integrating the last relation in
Eq. 3.4, we use the fact that we assume the energy of the electron as a constant
of motion, and the modulus of the velocity is preserved. This condition will be
relaxed when we will deal with the interaction of the electron with the field of
a co-propagating electromagnetic wave. In this derivation we assume

β2 = 1− 1

γ2
= β2

x + β2
z = const.

Therefore, substituting Eq. 3.5 and manipulating the expression, we end up
with

βz = 1− 1

2γ2

(
1 +

K2

2

)
− K2

4γ2
cos (2kuz) . (3.6)

This relation shows that the longitudinal motion is composed by an average
longitudinal velocity

β̄z = 1− 1/
(
2γ2

) (
1 +K2/2

)
, (3.7)
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Figure 3.2: Plots of the trajectories in Eqs. 3.8 and 3.9. While the transverse

component oscillate around the center of the z axis, the longitudinal is a linear function

in time, therefore the oscillating term doesn’t contribute to the motion. This is because

of the term γ2in the denominator, which is of the order of 10
6. Here we have used

c = 3 ·10
8, βz = 0.999999, γ = 2000, K = 1.8, λu = 0.0552cm and the time correspond

to a single wiggler period. .

and a term oscillating with twice the frequency of the transverse motion induced
by the magnetic field, Eq. 3.5. The oscillation has an amplitude proportional
to (K/γ)2. In order to calculate the electron trajectory in the case of an ultra-
relativistic beam where γ >> K, we neglect the longitudinal oscillatory motion
and integrate once more over time, to obtain the equation of motion in the
undulator

x (t) = −cK
γ

✂ t

0

cos
(
kuβ̄zct

)
dt =

K

γku
sin (kuct) . (3.8)

As expected the transverse trajectory is oscillating around the z axis. For the
longitudinal component, we have

z (t) = c

✂ t

0

[
β̄z −

K2

4γ2
cos (2kuz)

]
dt = β̄zct−

K2

8γ2ku
sin (2kuct) (3.9)

A charged particle that experiences acceleration emits light. From the third
plot of Fig. 3.2, it is clear that the electron experiences an acceleration in the
x direction. This configuration, as we will see later, will produce photons with
linear horizontal polarization. In case of an oscillatory motion in the y-z plane
instead of the x-z plane, the light would be polarized in the vertical plane.
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Figure 3.3: Sketch of the trajectory of one electron and the light pulse emitted
during the acceleration.

Superimposing these two motions with half a period of phase mismatch, would
generate an helical motion along the z axis and the light would be be circularly
polarized.
The duration of the light pulse depends on the different propagation velocity of
electrons wiggling along the undulator and the light propagating along the axis.
We define the time that the photons take to travel through the undulator as δtp
and the correspondent time of propagation of the the electrons as δte (see Fig.
3.3 for a simple representation). These two quantities are given by

δtp =
Lu
c

and δte =
Lu
vz

=
Lu

c
[
1− 1

2γ2

(
1 + K2

2

)] ,

where Lu = Nλu is the length of the undulator and where we have considered
the averaged longitudinal velocity Eq. 3.7. The slippage between light and
electrons is the difference

δte − δtp =
Lu
cβz

[
1− 1

2γ2

(
1 +

K2

2

)
− 1

]
=
Nλu
2γ2c

(
1 +

K2

2

)
,

corresponding to the duration of a pulse composed by N cycles, each of wave-
length

λ0 =
λu
2γ2

(
1 +

K2

2

)
. (3.10)

The wavelength of the light emitted by the electron depends on the period of
the undulator, the energy of the electron and the undulator strength parameter.
Assuming a given value for the period λu, which usually is set once the undulator
has been built, by changing the energy of the electron and the gaps of the
undulator, i.e. the Kparameter, we can tune the final wavelength covering an
extremely wide spectral range: several orders of magnitudes from terahertz to
hard-X ray and γ−ray wavelengths.



CHAPTER 3. INTRODUCTION TO FEL THEORY 19

Synchrotron radiation is emitted in a cone of aperture 1/γ with respect to the
direction of motion. The electron is following a curved trajectory; by consider-
ing the ratio between the transverse velocity and the longitudinal velocity the
deflection angle is

θ ≃ βx
βz

∼ K

γ
(3.11)

where we have expanded the arctan of the angle because for an ultrarelativistic
beam γ >> 1. The field generated by the electron in motion is given by
From Liènard-Wiechert theory of potentials [39], the electric field generated by
the charge is

E (R, t) = e0
n− β

γ2 (1− β · n)3 |r′|2
+
e0
c

n×
[
(n− β)× β′

]

(1− β · n)3 |r′|

∣∣∣∣∣
tr

, (3.12)

where n = r′/ |r′|and the prime indicates the time derivative. The expression
of the electric field is evaluated at the retarded time tr = t− r′ (t) /c, since the
fields propagate at c in vacuum. As we can see, the electric field that comes
from the Liènard-Wiechert potentials is made by two terms: the first one is
proportional to the inverse of γ2 and decays as the square of the distance. If
velocity and acceleration are zero, only this term survives which corresponds to
the electrostatic electric field generated by a charge. The first term is usually
referred to as a generalized Coulomb field. The second term is proportional to
the particle acceleration and decays as the inverse first power of the distance,
therefore it is dominant one at large distances.
Spectral brightness is the measure of the amount of light that is emitted by a
source per unit frequency and per unit of solid angle [39]

dI (ω)

dωdΩ
=

c

4π2

∣∣∣∣
✂ +∞

−∞

eiωt [r′ (t)E (R, t)]tr

∣∣∣∣
2

dt. (3.13)

Now we substitute in Eq. 3.13 the electric field proportional to β′ in Eq. 3.12,

dI (ω)

dωdΩ
=

e20
4π2c

∣∣∣∣∣

✂ +∞

−∞

eiωt

[
n×

[
(n− β)× β′

]

(1− β · n)3

]

tr

dt

∣∣∣∣∣

2

.

In order to evaluate this expression, we change variable and integrate over the
retarded time

tr = t− n · r′ (t)
c

⇒ dtr = dt− n · βdt,

dI (ω)

dωdΩ
=

e20
4π2c

∣∣∣∣∣

✂ +∞

−∞

e
iω

(

tr−
n·r

′(tr)
c

)

n×
[
(n− β)× β′

]

(1− β · n)2
dtr

∣∣∣∣∣

2

. (3.14)

This expression is further simplified by noting that
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Figure 3.4: System of coordinates for the description of the energy emission
from a particle. The point P correspond to a static observer.

n×
[
(n− β)× β′

]

(1− β · n)2
=

d

dt

n× (n× β)

(1− β · n) =
d

dtr
n× (n× β) ,

Therefore we have

dI (ω)

dωdΩ
=

e20
4π2c

∣∣∣∣
✂ +∞

−∞

e
iω

(

tr−
n·r

′(tr)
c

)

d

dtr
[n× (n× β)] dtr

∣∣∣∣
2

.

Integrating by parts by parts one gets

dI (ω)

dωdΩ
=
e0ω

2

4π2c

∣∣∣∣
✂ +∞

−∞

e
iω

(

tr−
n·r

′(tr)
c

)

n× (n× β) dtr

∣∣∣∣
2

.

We now consider a generic charged particle following the trajectory Eq.3.8, 3.9,
and we define the system of reference shown in Fig. 3.4.
For an electron moving along the z axis with an oscillation in the x axis, we
have (in the limit of a far field, as we will explain later in this chapter)

n =




0
0
1


 and β =




βx
0
βz


 .

This leads to

n× (n× β) =




−βx
0
0


 .
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The emission process occurs in a finite interval of time where acceleration is
different from zero. Therefore, we can assume that in times before entering the
undulator and after the exit from it, there is no emission: this allows us to
restrict the integration between tin = 0, for simplicity, and tfin = Lu/vz. In
order to specify the time retarded condition, we assume that the observer is at
a large distance from the source so that n is purely longitudinal. Using Eq. 3.9
we have

tr −
n · r′ (tr)

c
= tr − β̄ztr +

K2

8γ2kuc
sin (2kuctr) ,

so our integral becomes

dI (ω)

dωdΩ
=
e0ω

2

4π2c

∣∣∣∣∣

✂ Lu/c

0

e
iω

[

(1−β̄z)tr+ K2

8γ2kuc
sin(2kuctr)

]

K

γ
cos (kuctr) dtr

∣∣∣∣∣

2

,

where we have substituted the expression for βx. Using the Jacobi–Anger ex-
pansion we can write

eiχ sin(ψ) =
+∞∑

m=−∞

eimψJm (χ) ,

where Jm (χ) is n-th Bessel function of the first kind. In our case the quantities
χ, ψ, ωu are defined as

χ =
K2

8γ2
ω

ωu
ψ = 2ωutr ωu = kuc.

After the substitution we observe that the term χ doesn’t depend on tr. The
sum and the Bessel functions can be carried out of the integral

dI (ω)

dωdΩ
=
e0ω

2

4π2c

K2

γ2

∣∣∣∣∣

+∞∑

m=−∞

Jm (χ)

✂ Lu/c

0

eitr[(1−β̄z)ω+2mωu] cos (ωutr) dtr

∣∣∣∣∣

2

.

Using the exponential representation of the cosine, we have only one exponential
We have therefore

dI (ω)

dωdΩ
=
e0ω

2

4π2c

K2

γ2

∣∣∣∣∣

+∞∑

m=−∞

Jm (χ)

✂ Lu/c

0

eitr[(1−β̄z)ω+2mωu] e
iωutr + e−iωutr

2
dtr

∣∣∣∣∣

2

=

=
e0ω

2

16π2c

K2

γ2

∣∣∣∣∣

+∞∑

m=−∞

Jm (χ)

✂ Lu/c

0

[
eitr[(1−β̄z)ω+(2m+1)ωu] + eitr[(1−β̄)ω+(2m−1)ωu]

]
dtr

∣∣∣∣∣

2

.
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The exponentials differ for the term 2m ± 1. By defining 2m ± 1 = u with u
odd, we can transfer this difference into the order of the Bessel function and
then sum up the two exponentials

dI (ω)

dωdΩ
=

e0ω
2

16π2c

K2

γ2

∣∣∣∣∣

+∞∑

u=−∞

[
Ju+1

2
(χ) + Ju−1

2
(χ)

] ✂ Lu/c

0

eitr[(1−β̄)ω+uωu]dtr

∣∣∣∣∣

2

.

The integral of the exponential is

✂ Lu/c

0

eitr[(1−β̄)ω+uωu]dtr =
ei
Lu
c [(1−β̄z)ω+uωu] − 1

iLuc
[(
1− β̄z

)
ω + uωu

] =

= iei
Lu
2c [(1−β̄)ω+uωu]sinc

(
Lu
2c

[(
1− β̄z

)
ω + uωu

])
.

where the function sinc is defined as (sinx) /x and has the maximum in the
limit x → 0 . We simplify the argument considering the expression of β̄z, we
have

Lu
2c

[(
1− β̄z

)
ω + uωu

]
=
Lu
2c

[
ω

2γ2

(
1 +

K2

2

)
+ uωu

]
=

Nλuωu
2c

[
ω

2γ2ωu

(
1 +

K2

2

)
+ u

]
= Nπ

(
ω

ω0
+ u

)
with ω0 =

2γ2ωu(
1 + K2

2

) .

(3.15)
As a final step, we remove the phase factor in the modulus and we limit the
sum to positive frequencies, occurring at negative values of the index u. ,We
introduce n = −u and using the fact that J−n (χ) = (−1)

n
Jn (χ) , we get

dI (ω)

dωdΩ
=

e0ω
2

16π2c

K2

γ2

∣∣∣∣∣

+∞∑

n=1

[
Jn−1

2
(χ)− Jn+1

2
(χ)

]
sinc

[
nNπ

(
ω − nω0

nω0

)]∣∣∣∣∣

2

.

(3.16)
This is the spectral brightness of the radiation emitted by a single electron trav-
eling through a planar undulator. This relation can be generalized introducing
an additional electromagnetic field (coming from an external source or a previ-
ous emission), as we reported in Appendix A. In Fig. 3.5, left plot, it is shown
the behavior of the sinc function for different values of number of undulator
periods N . The sinc function is maximized when its argument is zero. This
indeed allowed us to limit the sum to positive n for positive frequencies. The
sum over n in Eq.3.16 implies the presence of a sequence of higher order, odd
harmonics of the fundamental, centered at ω0. The process described in this
section corresponds to the emission of light from a single charge traversing an
undulator magnet. The electron produce a field impulse composed by a number
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Figure 3.5: Left: Plot of the sinc function in Eq.3.14, for some values of the
number of the undulator’s periods N. Right: Plot of the sinc function for dif-
ferent harmonic number n with 30 periods.

of periods equal to the number of wiggles of the electron trajectory, and period
length given by the resonance condition, Eq. 3.10. The spectrum is composed
by a sequence of odd harmonics of the central wavelength Eq. 3.10. The rel-
ative spectral width of each harmonic is inversely proportional to the number
of periods of the undulator, corresponding to the fact that a longer train or
radiation periods leads to a narrower spectral linewidth. The emission of an
ensemble of electrons will be characterized by a field that is the superposition of
the field emitted by each particle. The properties of the field of this ensemble of
particles depends therefore on the synchronization between the trajectories of
these particles, and the electron dynamics in presence of a collection of electrons
can be dominated by collective effects that alter the electron dynamics itself.
This process will be analyzed in the next section.

3.2 FEL Amplifier

In the previous section we analyzed the dynamics of an electron traversing an
undulator. The electron dynamics in presence of both the fields of the undulator
and of an optical wave of wavelength close to the resonant wavelength Eq. 3.10
is governed by the pendulum equation [40]

{
dθ(t)
dt = nωu

(
nω0−ωr
nω0

)
,

dν(t)
dt = a (r, t) cos [θ (t) + Φ (r, t)] ,

(3.17)

where n is the harmonic number, ωu ω0 ωr are, respectively, the undulator,
resonance and radiation frequency, a (r, t) is the slowly varying amplitude of the
radiation field and Φ (r, t) is an arbitrary slowly varying phase of the radiation
field, that is in general expressed as

E(r, t) = a (r, t) ei(krz−ωrt+Φ(r,t)). (3.18)

The variable
θ (t) = (nku + kr) z (t)− ωrt (3.19)
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represents the ponderomotive phase of the electron in the longitudinal phase
space and the variable

ν = nωu

(
nω0 − ωr
nω0

)
(3.20)

represents the electron energy detuning with respect to an ideal electron that
has the resonance Eq. 3.10 at the wavelength of the optical wave and is propor-
tional to the electron energy. These equations are derived from the Lorentz force
equation Eq.3.3 averaging the fast oscillating terms due to the fast oscillations
of the electromagnetic fields and of the undulator field observed by the ultra-
relativistic electron. From the definition Eq. 3.17 we have that when the optical
wave is close to the resonant frequency ωr ≃ ω0 , we have that dθ/dt = ν ≃ 0
i.e. the ponderomotive phase θ represents a slowly varying variable indicating
the electron phase with respect to the field. From the second of Eq.3.17 we
have that the electron energy variation depends on the phase of the field. A
bunch of electrons interacting with a radiation beam with a wavelength close
to the resonant wavelength, is therefore periodically modulated in energy, with
the period of the optical wave. The energy modulation will cause a periodic
detuning of the electrons that according to the first of Eq.3.17 will shift forward
(dθ/dt > 0) or backward (dθ/dt < 0) in phase depending on the energy modula-
tion. This mechanism converts the energy modulation into a density modulation
of the electron beam. The electrons with the same longitudinal coordinate emit
radiation in phase causing an amplification of the field.
The variation of the radiation field is strictly related to the phase of the electrons

∂

∂τ
a (τ) = −2πg0

1

Ne

Ne∑

i=1

e−ıθi(τ), (3.21)

where g0 is the gain coefficient [41] and the average term in RHS is referred
as the bunching factor, which will be derived in the case of the seeded FEL,
in Chapter 4. This term is related to the density modulation via the Fourier
transform, in fact the density function (in the 1D limit) is

ρ (τ) =

Ne∑

i=1

δ (τ − τi) ,

and taking the Fourier transform we have

ρ̃ (ω) =

✂ +∞

−∞

eıωτ
Ne∑

i=1

δ (τ − τi) dτ =

Ne∑

i=1

eıωτi .

|ρ̃ (ω)|2 =

Ne∑

i=1

eıωτi
Ne∑

j=1

e−ıωτj = Ne +

Ne∑

i 6=j

eıω(τi−τj)

This is important because, from this relation, we can see the contribution of this
term to the radiation field. If the electrons are randomly distributed (as in the
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case of the SASE) the second term in the square brackets is zero, on average.
In the case of correlated electrons (as in the case of a seeded FELs), term in
the square brackets gives N2

e . Therefore, seeding an electron beam provides a
stronger emission of photons.
This amplification of the radiation field is the result of the positive feedback
between two physical processes: the growth of the modulation induced by the
interaction of the beam with the undulator field and the co-propagating laser
wave and the emission of radiation from a this modulated electron beam. These
processes, in a long undulator, lead to an exponential growth of the power (in
the 1D theory [42, 43, 44])

P (z) ∝ P0

9
ez/Lg with Lg =

λu

4π
√
3ρFEL

.

where z is the position inside the undulator, λu is the undulator period, P0 is
the initial power (which could come from shotnoise, in the case of a SASE FELs,
or from an external source, in the case of seeded FELs) and

ρFEL =
1

4π

[
2π2

γ3

(
Ipeak
IaΣe

)
(λuK [JJ ])

2

]1/3
, (3.22)

is the Pierce parameter, a very fundamental quantity that affect all the variables
in the FEL dynamics. Here, [JJ ] = J0 (χ) − J1 (χ) is the Bessel coupling
[40], Σe is the traversal surface of the e-beam, Ia is the Alfven current and
Ipeak is the bunch current and. We have introduced here the gain length Lg
representing the undulator length required to increase the radiation power by
e Saturation in a FEL amplifier starting from a randomly distributed electron
beam, where radiation emission is governed by the electron shot-noise (Self-
Amplified Spontaneous Emission FEL, i.e. SASE FEL), is typically reached in
18−20 times Lg . The FEL amplification can be speed up by preparing the beam
with a modulation induced before the injection in the amplifier, as it happens
at FERMI, a seeded FEL. In this case the saturation length is shorter. For
the FERMI facility, we said that usual values for λu is a couple of centimeters,
ρFEL is usually some 10−3, therefore the gain length is ∼ 1m. In Fig. 3.6 is
reported a simulation of the energy growth along the second stage of FEL2 that
reproduce the exponential evolution of the energy in the FEL pulse (linear plot
on the left and log plot in the right).
So far we have introduced the high-gain case for the FEL dynamics in what is
called cold beam limit, i.e. the limit in which just the longitudinal evolution is
considered. In a more generic case, the transverse quantities affect negatively
the light emission. Just consider the case in which the beam is no more mo-
noenergetic but has some energy spread with the mean value centered at the
resonance energy. It is clear that only the electrons at the resonance energy will
emit at the resonance wavelength. The others have the effects of broadening
the spectrum, which is a degradation effects for FEL quality. The transverse
interactions cause similar worsening effects for the quality. In order to keep
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Figure 3.6: Left: Energy growth from a simulation with GENESIS1.3 [45] along
the FERMI FEL2 line. Here we have the energy emitted from a bunch at
γ0 = 1.3GeV,along six undulators with λu = 3.48cm and N = 66 periods. Here
is visible the exponential growth of the light field. Right: The same as in the
left panel, but in logarithmic scale for the energy. This is useful in order to
fit linearly the growth (dashed line) and obtain the gain length of the process,
which in this case is of 1.8m.

trace of these degradating effects, without rework the whole path that led to
the FEL equation, one can use the Xie relations.
The main results that Xie [46] obtained by studying the effects of the transverse
and other degradating parameter are the following: first, the gain length and
the output power of the light will be modified as

Lgc =
Lg
χ

and Poc = χ2Po,

where the c stands for corrected and Po is the output power. The quantity χ is
a function of several parameters that keep into account the degradating effects.
Xie proposed these relations

ηd =
Lg
Lr
, ηǫ =

4πǫLg
βTλ0

, ηγ =
4πσγLg
λuγ

,

in which, the first relation takes into account the natural diffraction of the
radiation field, which sets a lower limit to the transverse size of the optical mode.
The quantity Lr = 4πσ2

x/λ0 is the Rayleigh range of the radiation beam with
wavelength λ0and σx is the r.m.s. of the beam. The second relation is associated
to the presence of transverse effects, in which ǫ is the beam transverse emittance
and βT is the transverse beta Twiss coefficient. The last relation describes the
effects in presence of an energy spread in the e-beam, σγ is, in fact, the r.m.s.
energy spread. From these relations, the parameter χ is given by

χ (ηd, ηǫ, ηγ) =

(
1 +

∑

n

anη
αn
d ηβnǫ ηδnγ

)−1

.
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Figure 3.7: Plots of the gain function and its rms as a function of the energy
detune and the position inside the undulator.

While the Xie relations can be evaluated analytically, the coefficients an and the
powers of the ηi were evaluated numerically and tabulated. As final concept,
we want to introduce the gain function, defined as

g (ν0, z) =
|a (ν0, z)|2

|a (ν0, 0)|2
− 1.

where a (ν0, z) is the field amplitude of the emitted radiation, ν0 is the energy
detune and z is the position along the undulator. Assuming ν0 = 0, i.e. the
maximum growth, we can the gain function can be written as

g (ν0, z) = exp

[
z

Lg
− 1

σ2
∆ω/ω

(
ω0 − ωr
ω0

)2
]
.

where
σ∆ω/ω = 2ρfelσν =

6ρfel√
2z/Lg

.

As we can see, not only the gain function increases exponential along the un-
dulators line, but also has its bandwidth decreasing as the inverse of the square
root, as reported in Fig. 3.7. At the end of process, when z/Lg ∼ 18− 20, the
bandwidth is almost equal to the Pierce parameter, stressing the fact that has
a fundamental role in the FEL process.
Up to now we have discussed the high-gain theory of FELs and we saw that
the emission of energy from the e-beam can be exponential, but this process
cannot last forever. At some point the energy of the electrons lower such that
the resonance condition is no longer valid. At this point we have saturation. In
the saturation regime, the FEL behaves like a small-gain process. Without an
external seed, the amplification process starts from shotnoise. The amplification,
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Figure 3.8: Example of power profile of a simulated SASE FEL at 14.67nm (red
line). In blue is reported an example of single spike fit.

therefore, will produce a power profile that is an amplification of the shotnoise.
In Fig. 3.8 is reported an example of a simulation of the power profile, at
the end of the amplification process, at 14.67nm. This high-power, multi-spike
structure is a characteristic of the power profile in a SASE FEL. It is complicate
to estimate the time structure of these kind of profiles, in an analytical way, due
to local fluctuations of the e-beam parameters, such as energy, energy spread,
current, and so on. Despite this, [47] provide a statistical analysis of the time
structure.
From the first order time correlations of the electrical field of the radiation, it
is possible to obtain the rms coherence time of the single spike as

τcoh =

√
π

σω
. (3.23)

In this relation appears the standard deviation of the gain process σω defined
before. This relation is true only for the linear regime, therefore from the
start-up to the exponential regime. The blue fit in Fig. 3.8 is an example of
the structure of a single spike. The analysis of the peaks considered within
a threshold of the 30% of the peak power gave us a result of δt = 7.85 ±
2.46fs. This result is the mean of all the spike selected (marked with a cross).
During the evolution, we saw that σ∆ω/ω decreases, indicates that the time
structure of the single spike start at lower value and then increases until the end
of the amplification. Since at the end of the exponential regime we saw that
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σ∆ω/ω ∼ ρfel, we can conclude that the temporal structure can be estimate, at
the end of the amplification process as τcoh ∼ (ρfel · ω)−1[48]. Finally, from a
statistical point of view, we can estimate also the number of the spikes simply by
consider the whole time window divided by the mean coherence time, Nspike =
Twindow/τcoh. In the figure above, we have considered only the main spikes
but if we consider all of them, we obtain a mean number of 159 spikes. Since
the time window is ∼ 1.2ps, the formula gives us Nspike=152, very close to
the real number. One can measures the coherence time with an interferometric
approach, and obtains the number of modes Nspike from a statistical analysis of
the pulse energy distribution. From this, one can arrive at an estimate for the
pulse duration [49]. As a final remarks, we want to briefly describe the effect of
a chirped light. Suppose a laser field with a quadratic chirp phase and model it
as

E (t) = A (t) eı(ω0t+αt
2),

where α is the quadratic phase chirp (or linear in frequency) and A (t) is the
field amplitude. For a Gaussian pulse, we know that the Fourier Transform
Limit condition has to hold, therefore σtσω = 1/2. This is true, if the light has
no chirp, otherwise we have to take the Fourier transform of the electric field
and, knowing the pulse duration σt,we can obtain the frequency bandwidth,
modified by the presence of the chirp. So, putting in formulas we have

✂

[
e
− t2

4σ2
t e−ı(ω0t−αt

2)
]
e−ıωtdt =

√
2πCe

−
(ω−ω0)2

4





1+(4ασ2t )
2

4σ2
t





(1+4ıασ2
t )

,

which is a bit complicated but, since the Fourier transformation of a Gaussian
is a Gaussian, we can recover the frequency bandwidth by the definition of the
Gaussian. Therefore, looking at the relation above, we can conclude that

σ2
ω =

1 +
(
4ασ2

t

)2

4σ2
t

,

from which, if α = 0, then we recover the FTL condition. This told us that the
frequency bandwidth is enlarged by the presence of the chirp term and, from
the frequency we can obtain

σω
ω

=
σλ
λ

⇒ σω =
2πcσλ
λ2

. (3.24)

We can identify every single spike in a SASE power profile, as a single Gaussian
peak with a pulse duration as described before, and a minimum duration given
by the FTL condition. Using the relations above, we can make some examples of
pulse durations: consider a 20nm FEL with a relative wavelength σλ/λ = 10−3,
the FTL pulse duration is, therefore, 5.3 fs rms or 12.5 fs FWHM but the
coherent time provided by the gain function, Eq. 3.23, gives us 18.81 fs rms
or 44.3 fs FWHM. This imply that, in order to shortening the pulse duration,
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also the gain function has to be modified in some ways. In the next chapter we
are going to describe the seeded FELs and the coherent temporal structure in
presence of an external seed.



Chapter 4

High Gain Harmonic

Generation

In the previous section, we briefly discussed the principles of FEL dynamics,
describing the main process causing the energy conversion from the electrons
kinetic energy into light. The resonant interaction between the transverse mo-
tion of the wiggling electrons, the undulator magnetic field, and the emitted
transverse electromagnetic field lead to an instability that converts the electron
kinetic energy into the electromagnetic radiation. This energy conversion pro-
cess is initiated by the presence of a modulation of the electron beam density,
or by an input signal that seeds this modulation. The initial modulation can be
stochastic, reflecting the arrival time of randomly distributed electrons at the
entrance of the undulator, or may be the result of an existing per-modulation
that can be induced at the electron emission from the cathode, exploiting the
beam dynamics in the accelerator, or in a separated FEL just devoted to prepare
the beam modulation. In this chapter we describe a specific FEL configuration
where the beam modulation is prepared in a dedicated undulator where the
electron beam interacts with an external laser beam, that we will seed the mod-
ulation. This configuration was introduced in [50] and extended later in several
other variants [51, 52, 53].
A sketch of a high-gain harmonic generation FEL in shown in Fig. 4.1. The first
element along the electron beamline is the modulator, a first undulator where the

Figure 4.1: Sketch of the setup for an HGHG scheme (see text for details).

31
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electron beam propagates with a laser beam tuned at the resonant wavelength of
this undulator. Here the beam is modulated in energy. This energy modulation
is then converted into density modulation due to a dispersive section, usually
made by four dipoles (see Fig. 4.2). Then the bunch enters an undulators line,
in which these undulators are tuned at a specific harmonic of the seed laser, and
the amplification process is carried on, until saturation occurs. In the following
we are going to enter into details of this scheme.
Seeding the amplifier with an external laser source, provides a number of ad-
vantages, as increased stability in pulse and photon energy, reduced size of the
device, improved longitudinal coherence and more control on the pulse struc-
ture. Further, we also saw that the initial bunching factor plays a crucial role
in the FEL process and higher is the bunching factor, higher is the value of
the amplitude field. The combination of a dispersive section, that convert the
energy modulation coming from the seed to a density modulation, and an undu-
lators line that select a specific harmonics, is the key of the High Gain Harmonic
Generation. Experiments conducted more than a decade ago, demonstrated the
HGHG process at infrared [54] and UV wavelengths [55] employing the third
harmonic. Further works are also made on different seeding techniques, such
as [56, 57, 58]. More recent demonstrations at the FERMI FEL-1 facility [5]
have extended the output wavelength range down to the XUV regime with
power saturation having been achieved for harmonic 13. All these experiments
have shown distinct advantages of HGHG seeding over the SASE configuration,
such as improved output pulse energy and central wavelength stability, reduced
spectral line width, and a larger longitudinal coherence length that can be com-
parable to the seed coherence length. FERMI FEL-1 has been in operation
since 2012 as a user facility [59], with unprecedented performances in terms of
control of the properties of the pulse: as polarization [60, 61], longitudinal co-
herence [62, 63], and the possibility of generating multiple pulses for pump and
probe experiments [64, 65, 66]. The HGHG does have some limitation. The
electron beam’s incoherent energy spread σE at modulator input, together with
the chromatic dispersion in the radiator, implies a limit in the harmonic num-
ber, beyond which the microbunching structure is not enough for the emission
process. There are variations to the HGHG scheme that allows to bypass this
limitation, but before, due to the importance of this scheme, we are going to an-
alyze more closely the physics behind it. We are going to consider a seeded FEL
and recall the main parameters that define the emission process in the high-gain
regime. First of all the Pierce parameter, from Eq. 3.22, which is a universal
scaling parameter and fundamental for the definitions of the processes. Typical
values for ρFEL are in the range 10−3–10−4, depending on the FEL operation
wavelength. The exponential evolution is carried out inside the undulators line,
which is designed in order to reach saturation at the end of the line, and the
characteristic length is defined by the gain length as

Lg =
λu

4π
√
3ρFEL

.

Other two important elements that play a key role are the dispersive section
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Figure 4.2: Example of phase-space before (blue dots) and after (orange dots)
the dispersive section. The red and green dots are the separatrix in the phase-
space. The simulation was done with GENESIS1.3 v4[45].

and the seed laser. As we already said, the seed laser imprints an energy mod-
ulation, clearly visible analyzing the longitudinal phase-space of the electron
bunch, while the dispersive section converts the energy modulation into density
modulations, in order to increase the initial bunching factor, accelerating the
first part of the field evolution and decreasing the saturation length.
In Fig. 4.2 is represented an example of phase-space, before and after the
dispersive section. As we can see the periodic modulation in the energy is
establish by the seed laser (blue dots) and the coupling with the magnetic field
inside the modulator. After the dispersive section, the phase-space appeared as
locally rotated. In order to understand the implications of this effect we will give
a briefly description of the physics behind. We start from two assumptions: we
consider no gain in the modulator, since its main role is to impress the energy
modulation into the bunch, and we assume also an uniform density modulation.
We calculate an expression of the bunching factor after the dispersive section.
In the assumption of negligible gain the amplitude of the field is a constant and
we can integrate Eqs. 3.17

ν′ (ζ) = ν (ζ, τ = 1) = ν (ζ, 0) + |a (ζ, 0)| cos [θ (ζ, 0) + Φ (ζ, 0)] ,

θ′ (ζ) = θ (ζ, τ = 1) = θ (ζ, 0) + ν (ζ, 0) +
1

2
|a (ζ, 0)| cos [θ (ζ, 0) + Φ (ζ, 0)] .

The parameter τ represents here a normalized coordinate of propagation along
the undulator, i.e., at τ = 1 we have z = Lu. At τ = 1 the equations above
provide the coordinates θ′, ν′ of an electron at the position ζ along the bunch,
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calculated at the end of the modulator. After the modulator, the beam enters
the dispersive section. This is a purely magnetic device where the length of the
trajectory depends on the particle energy. The dispersive section do not affect
the particle energy, ν′′ = const = ν′. At the exit of the dispersive section the
coordinate θ becomes

θ′′ (ζ) = θ (ζ, τ = 1 + τdisp) = θ′ + ν′τdisp =

= θ (ζ, 0) + ν (ζ, 0) (1 + τdisp) + |a (ζ, 0)| cos [θ (ζ, 0) + Φ (ζ, 0)]

(
1

2
+ τdisp

)
.

where we introduced the parameter τdisp = R56

2Nλ0
corresponding to the dispersive

strength R56 normalized to the characteristic dispersion of the modulator 2Nλ0.
The coordinates θ′′, ν′′ represent the position in the longitudinal phase space θ, ν
after the modulator and the dispersive section. We assume a Gaussian energy
distribution, independent on the coordinate ζ, and centered around ν0

f (ν, ζ) =
1√
2πσν

exp

[
− (ν − ν0)

2

2σ2
ν

]
(4.1)

We recall that the parameter ν represents the frequency detuning and is a
function of the beam energy

ν = 2πN

[
nω0 (γ)− ωr
nω0 (γ)

]
,

We calculate the bunching factor, defined as the discrete Fourier transform with
period λ of the longitudinal electron density
.

bn (s) =
1

λ

✂ ζ+λ

ζ

dζ

✂ +∞

−∞

dν f (ν) e−ikθ
′′(ζ) (4.2)

Substituting the expression of θ′′ and f(ν) , the bunching factor reads

bn (s) =

✂ +∞

−∞

dν
1√
2πσν

e
−

(ν−ν0)2

2σ2ν
1

λ

×
✂ ζ+λ

ζ

dζ ′e−ın[θ(ζ
′)+ν(ζ′)(1+τdisp)+|a(ζ′)| cos[θ(ζ′)+Φ(ζ′)]( 1

2+τdisp)].

Looking at the integration in ν, we can easily perform it by including the ν (ζ)
term coming from θ′′. Also, for simplicity, we call 1 + τdisp ≈ t. Using the
Gaussian integration, we have

✂ +∞

−∞

dν
1√
2πσν

e
−

(ν−ν0)2

2σ2ν e−ınν(ζ)(1+t) = e−
1
2 (ntσν)

2

.

The result above can be expressed in terms of the dispersion strength ,
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δz = R56
δE

E
⇒ t =

R56

2Nλ0
,

where λ0 is the seed wavelength andN is the number of wiggler of the modulator.
Also, the frequency rms can be converted into the energy spread σγ as

σν = 2πNσω = 4πN
σγ
γ
.

Substituting into the exponential leads to

e−
1
2 (nτdispσν)

2

= e−
1
2 (nk0R56

σγ
γ )

2

.

Now, the bunching factor reads

bn (s) = e−
1
2 (nk0R56

σγ
γ )

2 1

λ

✂ ζ+λ

ζ

dζ ′e−ın[θ(ζ
′)+|a(ζ′)| cos[θ(ζ′)+Φ(ζ′)]t].

In order to solve this integral, we recall that θ (ζ, 0) = (kr + ku) ζ ≈ krζ, since
kr ≫ ku and using the Jacobi–Anger expansion we can write

bn (s) = e−
1
2 (nk0R56

σγ
γ )

2 1

λ

✂ ζ+λ

ζ

dζ ′e−ınkrζ
′

∞∑

m=−∞

(−ı)m Jm (nt |a (ζ ′)|) e[ımkrζ′+Φ(ζ′)].

At this point, since we are integrating over one period at the position ζ, we can
use the assumption that the field amplitude |a (ζ ′)| and phase Φ (ζ ′) are slowly
varying variables (SVEA approximation), and can be carried out of the integral.
Therefore we have,

bn (s) = e−
1
2 (nk0R56

σγ
γ )

2
∞∑

m=−∞

(−ı)m Jm (nt |a (ζ)|) eıΦ(ζ) 1

λ

✂ ζ+λ

ζ

dζ ′e−ı(n−m)krζ
′

.

The complex exponentials are orthogonal functions and the integral is a Kro-
necker’s delta δn,m.Only one term of the summation survives, for m = n and
the bunching factor reads

bn (ζ) = e−
1
2 (nk0R56

σγ
γ )

2

Jn (nt |a (ζ)|) eıΦ(ζ). (4.3)

Finally, we observe that the field amplitude is equal to the variation of energy
∆ν and using the definition of t, we can rearrange the argument of the Bessel
as

nt |a (ζ)| = n
R56

2Nλ0
∆ν = n

R56

2Nλ0
4πN

∆γ

γ
= nk0R56

∆γ

γ
,

so the final result is

bn (s) = e−
1
2 (nk0R56

σγ
γ )

2

Jn

(
nk0R56

∆γ

γ

)
eıΦ(ζ). (4.4)
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Figure 4.3: Density plots of the modulus of the bunching factor as a function of
the dispersive section and the energy modulation impressed by the seed, above
from left the first and the second harmonic. Below the third and the fourth
harmonic.. Here γ = 1.3GeV, σγ = 130keV and λ0 = 260nm
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In Fig. 4.3 we have plotted the absolute value of Eq. 4.4 for different values
of dispersive strength R56 and energy modulation ∆γ [41]. The behavior of
bn is characterized by the hyperbola in the space R56 − ∆γ. The stronger
is the initial modulations the lower is the value of R56 required in order to
reach an equivalent bunching factor. Increasing the harmonic order has the
effect of pushing away the hyperbola from the origin. Furthermore, the higher
is the harmonic, the stronger has to be the energy modulation, to reach the
maximum initial bunching factor. From Eq. 4.4, we can understand which are
the parameters that maximize the bunching factor. It’s not possible to derive
the extrema analytically because the equation is transcendent, but numerical
approximations exist [67, 68]. According to [67] we can maximize the Bessel
when the argument X = nk0R56

∆γ
γ is equal to XM defined as

XM

n
= 1 +

√
2

3
n−2/3.

In this way we can estimate one parameter, knowing the others, and maximize
the bunching factor. After the dispersive section, the bunch is ready to enters
the radiators line and undergoing the exponential emission of light. The radi-
ators are tuned in order to select a specific harmonics and dispersive section is
optimized to reach saturation at the end of the line. We now address the ques-
tion related to the pulse duration in a HGHG FEL. From Eq. 4.3 we observe
that that the input field amplitude appears in the argument of the Bessel func-
tion, therefore the bunching factor and the generated FEL pulse will depend on
the shape of the seed, through the non-linear deformation induced by the Bessel
function of order equal to the harmonic order. The bunching factor seeds the
amplification in the amplifier at the resonant harmonic n of the seed. The pulse
shape in the early phases of the amplification process is therefore determined by
the bunching factor. The amplification process has its characteristic bandwidth
(see end of Chapter 3). Therefore if the bandwidth of the pulse resulting from
the harmonic conversion is spectrally narrower than the gain bandwidth, the
amplification process will leave unaltered the temporal properties of the pulse.
Different is the case of a short seed producing a pulse spectrally broader than
the gain bandwidth of the amplifier. We will analyze this condition in Chapter
6
Figure 4.4 shows the behavior of the bunching factor, for different harmonics.
These results come from a simulation with GENESIS1.3v4 [45] where we have
simulated a bunch going through the modulator and the dispersive section.
From the right plot we observe that, higher is the harmonic number and lower
is the peak of the bunching factor. Another important feature is coming from
the width of the profiles. Suppose that we are able to keep the same peak value
of the bunching, then the higher is the harmonic number and narrower is the
profile and this is a characteristic inherited from the Bessel’s function. Further,
since the profile of the bunching is one of the main contributors to the profile
of the field amplitude, the width of the bunching factor is tightly related to the
time duration of the FEL pulse. In the article [67], they proved that the scaling
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Figure 4.4: Bunching factor, after the dispersive section, for n = 2 to 13. The
lower is the harmonic number and the higher is the peak value. The left plot is
renormalized to the max value of the first harmonic.

Figure 4.5: Bunching factor, after the dispersive section, for the fundamental
and the sixth harmonics. In this case the dispersive section was tuned ten times
higher than the optimum value, used in Fig. 4.4.

relation of the pulse duration, knowing the pulse duration of the seed, as σseed,
is

σFEL =
7

6

σseed
n1/3

. (4.5)

This is an important relation for us, because it tells us that the shorter is the
seed laser, the shorter is the pulse duration, at the beginning of the amplification
process. We want to stress the fact that this relation give us the pulse duration
after the harmonic conversion and not at the end of the amplification process.
The temporal duration, defined by Eq. 4.5, evolves following the evolution of
the gain bandwidth described by Eq. 3.23.
If the parameters are not optimized, in particular, if the dispersive section or
the seed energy modulation is too high, then the profile of the initial bunching
factor has no more a single Gaussian-like profile, as in Fig. 4.4, but rather
has multiple peaks. This condition is called overbunching. The overbunching
situation is reached also after the exponential evolution, in a HGHG scheme.
As reported in Fig. 4.5, the overbunched condition is characterized by multiple
peaks, that come from the Bessel function and its oscillating behavior for large
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values of the argument. The correspondent harmonic up-conversion, in this case
we reported just the sixth harmonic, gives rise to a very noisy bunching, that
reassemble the SASE behavior. Despite this bad behavior for a simple HGHG
scheme, the overbunching condition can be used, conjointly to other setups,
to provide a further expansion in the light productions. For example, if we
consider a phase Φ (ζ) in Eq. 4.4, with a controlled quadratic chirp, and a two
peaks overbunching situation, we can tune both bunching peaks at a slightly
different wavelength, therefore the FEL pulse will be the superimposition of
two wavelength simultaneously. This light production scheme is called two-color
scheme [65] and firstly observed in [69].
At FERMI, the two-color scheme was characterized by [65, 70]. In Fig. 4.6
is reported the analysis done in the experimental session: the bunching factor
profile was studied as a function of the chirp in the phase of the seed laser.
At the Fourier Transform Limit (FTL), when the quadratic chirp is zero, the
FEL spectrum is inheriting the multi-peak behavior of the bunching factor.
When the quadratic chirp is present (this is more clear looking at the bottom
figure), the seed energy is slightly different between the head and the tail of the
light pulse. This different energy in the seed, combined with the high energy
modulation (therefore an overbunching situation), generates two pulses in the
time domain with a different resonance condition. Since the two pulses are no
longer at the same resonance condition, they cannot have the same wavelength
and, therefore, there will be no interference pattern in the spectrum. In fact,
the spectrum is made by two separated pulses in the wavelength domain. This
scheme is currently an available possibility for the beamlines and already in use
since a couple of years. With this we have finished the description of the HGHG
scheme and in the next section we are going to describe how FERMI works.
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Figure 4.6: Above: the behavior of the bunching factor with respect to the
seed phase. The FEL pulse can be shaped by manipulating the electron bunch-
ing envelope and FEL phase. The bunching envelope, which corresponds to
the temporal FEL pulse shape, is optimized for maximum bunching just be-
fore bifurcation, resulting in a single peak. Increasing the dispersive strength
leads to peak splitting and a multi-peak structure due to electron overbunching.
The spectral map of the FEL spectrum strongly depends on the FEL phase,
with a direct correspondence between the temporal and spectral domains for a
significantly chirped FEL pulse. However, a Fourier-limited pulse with a flat
phase develops distinctive features in the spectral map with increasing disper-
sive strength due to interference between the individual peaks in the multi-peak
bunching structure. The bunching and spectral maps are normalized in ampli-
tude for each value of the dispersive strength for visualization purposes.Below:
the concept of the two-color scheme.



Chapter 5

FERMI Free Electron laser

5.1 LINAC

The FERMI accelerator is schematically shown in Fig.5.1 [71]. It consists of five
linac segments L0 – L4, two bunch compressors (BC1 and BC2), a laser heater
and a spreader, i.e. the transfer line where the beam is delivered to two FEL
lines. The operation of the FEL lines is exclusive, that is, the two FELs are
operated alternately, during different time periods. The electrons are generated
at the electron gun cathode by the interaction of a ∼ 5 ps laser pulse from the
photoinjector laser (PIL) with the flat Copper wall of the cavity, and accelerated
up to about 5 MeV by the radiofrequency gun [72]. After the gun, the bunch is
accelerated up to about 100 MeV. Here a Laser Heater (LH), i.e. a device that
adds a controlled amount of incoherent energy spread to the electron beam, is
used to suppress microbunching instability growth via energy Landau damping
[73]. At this stage the energy of the beam is ~100 MeV. The beam here has
approximately the same peak current 60-70 A, that had at the exit of the gun.
The LINAC section L1 is then used both for increasing the electron-beam energy
(up to about 300 MeV) and for inducing a controlled energy chirp, necessary for
electron-beam compression. In order to achieve high peak current the electron
beam must be manipulated in longitudinal phase space. The radiofrequency of
some of the klystrons driving L1 is dephased by about 26 degrees with respect
to the value providing the maximum energy, in order to induce a correlation
between the energy and the position along the bunch. This correlation is ex-
ploited in the the first Bunch Compressor (BC1) to reduce the bunch length and
to increase the peak current. The compressor BC1 consists of a chicane built
from four rectangular bending magnets where the electron trajectory length is
correlated to the energy. Since more energetic electrons follow shorter paths, the
bunch, traveling through the bending magnets, will be compressed by a factor

C =
1

1 + hR56
,

where R56 is the dispersive value (negative by convention) and h = dE/dz

41
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Figure 5.1: Schematic representation of the accelerator line at FERMI

Figure 5.2: Schematic representation of the undulators lines FEL1 and FEL2
at FERMI

(negative by the cavity phase setting) is the linear chirp in the bunch energy.
After the BC1 section the bunch is accelerated up to the desired value by the
three remaining linac segments (L2,L3,L4). Between L3 and L4 there’s a second
bunch compressor, which is identical to BC1, and would allow a much stronger
compression factor. At present this is not used in the baseline working mode
of FERMI for its detrimental effect on the beam energy spread. At the end
of acceleration line L4 the electron beam energy can range between 750 MeV
up to 1.3/1.5 GeV (depending on the beam repetition rate, at 50/10 Hz re-
spectively).The electron peak current after compression ranges from 500 A to
higher values (up to 1000A), depending on the bunch length needed for the FEL
operating modes. The nominal value for the current is 700 A.
After the accelerators line, a spreader line, which consists in rectangular bending
magnets, deflects the electrons and select one of the two undulator lines: FEL-1
and FEL-2.

5.2 Undulators Lines

In Fig. 5.2 we have sketched the two undulators lines. Both rely on the High-
Gain Harmonic Generation scheme, which was previously introduced. FEL-1
is based on one stage (one harmonic conversion). FEL-2 instead, uses two
harmonic conversions to reach higher harmonic orders. The first stage of FEL-2
is equivalent to FEL-1 (same undulator’s parameters, see Tab. 5.1).
The first modulator (MOD and MOD1), must satisfy FEL resonance over a
nominal seed wavelength range of 240 to 360 nm, has 30 periods with length of
10 cm, for a total length of 3m. Inside the modulator, the seed laser is injected
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Table 5.1: Undulators parameters at FERMI.

in order to modulate the electron beam. The seed is linearly polarized in the
horizontal plane, the modulator has the same linear horizontal polarization to
ensure the best coupling to the seed. After each modulator, a dispersive mag-
netic chicane (DS and DS1) converts the energy modulation into the coherent
micro-bunching . For reasonably large input seed powers (e.g. ≥ 10 MW) and
short wavelengths (λ0 ≤ 300 nm), the necessary R56 dispersion parameter is up
to ~100 µm in the first stage modulator. The bunching structure is therefore
impressed on the electron beam distribution and the bunch is ready to initiate
the amplification process in the respective amplifiers, RADS and RADS1, where
one of the higher order harmonics of the modulation seed are amplified. Both
FEL-1 and the first stage of FEL-2 have radiators with 42 periods of length
5.52 cm, for a 2.4m total length. The radiators can be set for linear (horizontal
and vertical) and circular (left and right) polarization. The spectral range of
FEL-1 and of the first stage of FEL-2 covers the range 100-20 nm . On FEL-1,
at the end of the radiators line, the electron bunch is deviated by a magnetic
chicane and transported to the Main Beam Dump (MBD), where the bunch is
stopped. The light pulses are instead transported by the photon line delivery
system to diagnostics and to the experimental hall downstream. In FEL-2, after
the first stage, a delay line (DL), which consist in a dispersive section with a
larger dispersion that that of DS or DS1 , retards the electron bunch by ~300
fs, in order to shift the light coming from the first stage to a fresh, unseeded
region of the bunch. Here a new energy modulation occurs, and the HGHG
process is repeated starting from the short wavelength seed generated as the
output of the first stage. This technique is called Fresh-Bunch scheme, was
proposed in [74, 75] and demonstrated at FERMI for the first time [64]. The
second modulator of FEL-2 (MOD2) has the same parameters of the first stage
amplifier since the two have to share the same range of resonance wavelengths;
the final amplifier of FEL-2 instead, after the second harmonic conversion covers
the range of resonances from 20 nm to 4 nm, and requires therefore a shorter
undulator period. These modulate are composed by 66 periods with a length of
3.48cm each, for a 2.3m of total length. After the radiators line, the bunch is
deflected to MDB through the same line for FEL1.
FERMI uses the properties of free electron lasers to generate extremely intense,
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ultra-short pulses of infrared, visible, and ultraviolet light. These high-intensity,
highly-coherent light pulses are used in a wide range of scientific and industrial
applications, including spectroscopy, imaging, and materials science. The light
produced by FERMI is extremely intense, with peak powers reaching up to
several GW, is highly coherent, meaning that the phases of the light waves
are tightly synchronized. This coherence allows for precise measurements and
manipulation of samples, light pulses produced at FERMI are very short, on
the order of femtoseconds to attoseconds. This short pulse duration allows for
the study of ultrafast processes and the precise control of chemical reactions.
Further, the light can cover a broad range of wavelengths, from the far infrared
to the soft X-ray region. These and other characteristics such as stability of the
wavelength over shot-to-shot pulses, fine tunability and the ability to manipulate
the light pulses in a various way enable scientists to study a wide range of
phenomena at the atomic and molecular level with unprecedented precision and
control.
As an example of some of the properties of FERMI capability, we have reported
in Fig. 5.3 a collection of 2000 spectra acquired during a machine tuning, at
27nm. The analysis of the spectra reveals a very good stability in time, with a
∆λ/λ = 7.77 · 10−4, indicating a very narrow bandwidth.
In general, FEL-1 is characterized by a high degree of longitudinal and transverse
coherence and high wavelength stability (fluctuations <10-4 rms, typically). The
seed is generated by an optical parametric laser amplifier (OPA). Covering the
whole FEL tuning range (100-20 nm) requires the variation of the electron-
beam energy, which is not possible during the same user beam time. Typical
tuning ranges available for a given experiment are 65-20 nm or 100-30 nm. The
FEL is available in four polarization states: linear horizontal, linear vertical,
circular right and circular left. The best performance in terms of FEL power
and spectro-temporal quality is obtained when the FEL is seeded using the third
harmonic of the Ti:Sapphire amplifier (around 261 nm). In this case, the FEL
light is produced at the integer harmonics of the seed.
In Fig. 5.4 are reported the wavelength of the FEL pulse achievable, versus the
electron beam energy. The colors represent the estimated energy content in the
FEL pulse, at the source, for circular polarization and linear polarizations. For
FEL-2, the fresh bunch scheme allows the decreasing of the wavelength range
towards EUV-soft X-rays, as reported in Fig. 5.5.
The seed laser system contains two Ti:Sapphire based regenerative amplifiers
(RGA) seeded by a single mode- locked ultrafast oscillator (Vitara HP, Coher-
ent). The latter is locked with high precision (relative timing jitter ≤ 3 fs RMS)
to the reference timing signal by the use of a Balanced Optical Cross-correlator.
In the case of FEL-1, for providing full tunability in the range 20-100 nm (cover-
ing also 18-20 nm at present), two OPA ranges need to be used, namely 232-267
nm (Second Harmonic Sum Frequency Signal OPA process, SHSFS) and 295-
365 nm (fourth Harmonic Signal OPA process, FHS). In the case of FEL-2,
the spectral range 4-20 nm has to be covered. Taking into account the need
for higher peak power of the seed pulse and the higher losses of the grating
compressor at shorter wavelengths, the seed tunability used in FEL-2 mode is
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Figure 5.3: Example of the stability achievable at FERMI, FEL-1. A collection
of 2000 spectra acquired during a beamtime preparation at 27nm with ∆λ/λ =
7.77 · 10−4.
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Figure 5.4: Plots of the wavelength achievable as a function of the Linac energy
for FEL-1. The colors indicates the nominal energy per FEL pulse.
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Figure 5.5: Plots of the wavelength achievable as a function of the Linac energy
for FEL-2. The colors indicates the nominal energy per FEL pulse.
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typically reduced to 238-267 nm, which allows one to obtain a nearly full cov-
erage of the range. Seeding with THG (third harmonic generation) here has
an advantage due to the higher peak power, pulse quality and stability com-
pared to OPA generated pulses. THG seeding also permits pulses of duration
< 50 fs FWHM. The usual pulse duration for the OPA is around 100fs [76].
The usual scheme for light production at FERMI is the HGHG for FEL-1 and
HGHG + fresch bunch injection for FEL-2 [5, 64, 6]. During the years, different
other schemes have been tested and commissioned for users availability: The
generation of two-colour extreme ultraviolet pulses of controlled wavelengths,
intensity and timing by seeding of high-gain harmonic generation free-electron
laser with multiple independent laser pulses [77, 78]; A two-color scheme in
which a single-pass free electron laser (FEL), in a dynamical regime, can be ex-
ploited to perform two-color pump-probe experiments in the vacuum ultraviolet
or x-ray domain, using the free-electron laser emission both as a pump and as
a probe[65]; The possibility to achieve ultrashort pulses at EUV-soft X-rays in
a seeded FEL using a superradiant cascade [13, 79, 14]; A scheme to provide
transversely separated pulses with parallel or crossed linear polarizations. This
configuration permits to explore additional features, in particular, the possibil-
ity to excite a transient polarization grating on the sample [80]; Generation of
FEL pulses at the water window by exploiting the so-called nonlinear harmonic
regime, which allows generation of radiation at harmonics of the resonant FEL
wavelength [81]. In the following we are going to enter into details of some of
the schemes studied at FERMI for the generation of ultrashort pulses.



Chapter 6

Superradiance

Saturation is a nonlinear process in which the electrons have lost enough energy
to be no longer in resonance with the field. As the evolution of the exponential
regime goes on, the electrons rotates in the longitudinal phase space. When
they reach the bottom of the bucket, the emission process ends and they start
to re-acquire energy. While there isn’t a net new contribution to the field am-
plitude, the light, already produced before, still interacts with the electrons. In
particular, the light produced during the exponential evolution has one third of
the speed of light in the electron’s reference system. The slippage corresponds
to the distance covered by the FEL pulse over the longitudinal coordinate of
the bunch in the electron beam reference frame. During saturation, the light
starts to recover its own speed. In this way, the slippage starts to increase and
the light is able to modulate new, fresh, electrons, extracting new energy from
them, while the electrons in the tail of the light pulse are no longer in condition
to reabsorb the light, because it has slipped away. In this regime of operation
the power extracted from the beam scales as the square of the bunch charge
and it is known as superradiant regime [82] In the framework of FEL physics
was first studied in [83, 84, 85, 86, 11, 87, 88, 89].
In Fig. 6.1 we have reported a simulated pulse along the FEL-1 amplifier. The
length of the amplifier used in the simulation is actually twice the effective length
of the amplifier of FEL-1 to observe the pulse evolution in strongly saturated
conditions. The evolution is plotted as a density map of the peak power (color
intensity), as a function of the undulator position (vertical axis) and the internal
coordinate of the electron bunch (horizontal axis). The light pulse is moving
along the internal coordinate ζ, while evolving along the undulators line. The
slope drawn by the evolution of the pulse, over the space (ζ, z) represents the
velocity of propagation of the pulse. This velocity is different at the beginning
and the end of the process: during the exponential amplification the pulse travels
over the current distribution at a velocity that is about c/3 in the beam frame.
After the saturation the velocity increases up to c and the slippage increases as
in the propagation in vacuum. This is one of the distinguishing features of the
superradiant regime: the pulse duration decreases during the evolution.

49



CHAPTER 6. SUPERRADIANCE 50

Figure 6.1: Evolution of the light pulse along the FEL1 line. The brighter zones
corresponds to higher powers. The left plot is inside the modulator, while the
right plot is inside the radiators line. (Simulations done with Genesis1.3v4. The
radiators line is twice the actual length in order to reach the superradiance.)

Figure 6.2: Representation of the phase-space of a superradiant pulse in four
different positions: a) before the light modulation; b) during the light modula-
tion; c) during the light modulation, at the maximum of the process; d) after
the light modulation, when the pulse has slipped away.
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In Fig. a simulated superradiant pulse is shown [11]. The figure represents
a snapshot of the field distribution vs. ζ, at some fixed position along the
undulator line. The plots, a,b,c,d represent the longitudinal phase-space in four
different positions along the pulse . In a temporal sequence, considering that the
radiation pulse is propagating over the beam, we may imagine that the phase-
space plotted in point A will become the one in point B, then in the point C and
finally in the point D. The first position (A) corresponds to the situation where
the electrons are not yet affected by the interaction with the light pulse: the
beam is not modulated in energy . In this situation the separatrix the motion
whose amplitude is proportional to the square root of the field amplitude are
close each other. The unmodulated beam is substantially not emitting any light,
if we exclude a residual SASE background. The position corresponding to B is
instead reached by the optical pulse. The bucket potential corresponding to the
larger separation between the separatrices is deeper, the beam is modulated in
energy and partially in phase, the electrons emit light in resonance with the wave
that is indeed amplified . In plot c), corresponding to the position C along the
pulse, the electron beam is fully modulated and has lost a consistent amount
of energy. The energy loss has brought the density modulation out of phase
with the field. This stops the amplification process and the field amplitude is is
maximized and the pulse reach the peak power value. In D instead the phase
mismatch increases up to bringing the electron bunching that is now completely
out of phase with the field, to reabsorb all the energy available in the field at
that position, causing the complete absorption of the field and the emission of
a new pulse out of phase by π with respect to the main pulse. The number
of electrons participating to the emission is reduced at each cycle because of
the induced dispersion in energy and phase, therefore the amplitude of these
secondary peaks decreases. In summary, in these conditions the light, traveling
along the bunch, continuously modulates new electrons, extracts energy from
them and slips away before the electrons are able to reclaim back the energy.
In order to understand why the pulse duration decreases and the others scaling
laws, we consider the motion inside the buckets formed by the separatrix [11].
The electrons enter the bucket while they are distributed horizontally in the
phase-space (see plot a) in Fig. 6.2). The motion is clockwise and the emission
process will end when the electrons reach the bottom of the bucket, so after
traveling 1/4 of the rotation period in the phase-space. Looking at the equations
of motion, like Eq. 3.17 for example, we see that the frequency of the rotation,
called synchrotron frequency is Ωs =

√
a. Therefore, the synchrotron period is

δτs = 2π/Ωs. In this time interval, the slippage length for a pulse propagating
at c is ∆s = δτsNλ0, therefore, if the pulse length is comparable to the slippage
length, in just a 1/4 of the period we have that

σs ≈
πNλ0
2
√
a

∝ 1

P
1/4
FEL

,

since the power scales with the square of the field amplitude. The energy carried
by a pulse of duration σs is by definition
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EFEL ∝ PFELσs ∝ P
3/4
FEL,

at the same time we may expect that the energy collected by the pulse is propor-
tional to the distance covered by the pulse over the current, that is proportional
to the trapped number of electrons, multiplied by the depth of the separatrix,
that is proportional to the electron energy loss Ωs

EFEL ∝ ζsΩs (6.1)

where s is the number of trapped electrons inside the bucket and Ωs can also
be seen as the bucket depth. The number of the electrons can be estimated
by considering a pulse with a group velocity c and so ζs = z − βzt ≃ zuλ0/λu,
where zu is the position along the undulator line. Combining also the elements
we have

EFEL ∝ sΩs ∝ zuP
1/4
FEL ⇒





PFEL ∝ z2u,

EFEL ∝ z
3/2
u ,

σs ∝ z
−1/2
u .

(6.2)

The last of Eqs. 6.2 shows that the duration of the first peak in the pulse de-
creases with the square root of the position along the undulator. In the light
of these explanations, we note in Fig. 6.1 during and after the exponential
amplification the pulse duration grows At saturation the amplification stops,
the peak power in the central part of the pulse saturating earlier decreases and
the pulse splits in two peaks. The front peak, propagating over fresh electrons
is favored with respect to the rear one, propagating over electrons heated by
the FEL process. The pulse in the trailing edge as well as the central heated
region affects the quality of the light and introduce spurious contributions. To
further suppress the tails there are various ways, an higher energy spread can
be impressed in the region associated to the tail, for example [90]. This contri-
bution is also partially suppressed in a superradiant cascade, that represent an
interesting method to reduce the pulse duration at FERMI.

6.1 Superradiant cascade

Using the higher harmonic radiation or premodulated e-beam from another
FEL to seed a single-pass FEL section is a promising method for expanding
the operating wavelength range of a FEL. This has been studied in literature
and tested experimentally in a single stage configuration. However, when the
beam is propagated in a FEL cascade, the growth of energy spread in the first
stages can inhibit FEL gain in the following stages. One solution is the "fresh
bunch injection technique" which uses a dispersive section between two FEL
stages to remove residual bunching and shift the radiation pulse to a portion of
electrons where the beam quality has not yet been affected by the FEL process.
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This allows the FEL to restart with a fresh beam and initiate a new sequence
of harmonic multiplication. The design of a device based on this scheme is
challenging due to various factors, including the bunching at a given stage being
affected by input signal, gain and length of undulator sections, and dispersion
of intermediate sections. Additionally, a chain of amplifiers can amplify noise
and degrade the signal-to-noise ratio. Despite these challenges, operating a FEL
cascade is attractive for improvements in FEL radiation performance such as
stability, linewidth, short pulse generation and pulse shape control. However,
these difficulties limit the feasibility of a cascade with a high number of stages
to extend final wavelength to the subnanometer range of the spectrum. The
super-radiant solution is particularly interesting in a cascade because it is a
stable configuration for the coupled system of fields and particles. Additionally,
the higher-order harmonic emission demonstrates strong bunching on the front
side of the pulse. When passing through a stage of harmonic multiplication
in a cascade, the beam portion with a high nth harmonic bunching coefficient
will coherently radiate the respective harmonic field, producing a short burst
of radiation that will start slipping over the electron bunch. In the following
we are going to provide experimental demonstration of a superradiant cascade
configuration.

6.2 Experimental tests of a superradiant cascade

at FERMI at the 18th harmonic of the seed

The superradiant cascade at FERMI has been studied and characterized in the
last years as a method for producing short pulses while still delivering high
pulse intensities, even in excess of the saturation power [14, 79]. This scheme
was largely investigated on FEL-2. FEL-2 is configured as a three stages cascade
where the three conversions are by a triple harmonic jump. Following Fig.6.3,
the first modulator Md1 act as in the HGHG setup, modulating the seed and
coupling it with the electron beam. Then, the first dispersive section DS1 is set
to an high value, in order to reach saturation after the first conversion, already
at the end of the first stage. The first stage is composed by only two of the
radiators of the first stage (line Rd1 in fig. 6.3, a). Then the second stage is
made by tuning the third radiator of the first stage and the second modulator
MOD2 to an harmonic of Rd1. We indicate this radiator as Rd2. The delay
line DL is set with a dispersion close to zero, its role is that of a a phaseshifter,
as in this configuration the large fresh bunch injection typically required by
FEL-2 is not desired. The second dispersive section is set to zero, because the
beam reaches Rd3 already in saturated conditions. Rd3, is set to reach the final
harmonic, in the example represented in Fig. 6.3it is h18 corresponding to 14.7
nm.
These experiments were carried out in 2019, on the FERMI FEL-2 line, during
three experimental sessions, labeled A, B and C. The beam/undulator param-
eters changed slightly from one session to another and are listed in Table 6.1.
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Figure 6.3: FEL layout. a, FEL-2 in SRC mode. Above the lines are reported
the power profiles coming from simulations made with GENESIS, with the same
parameters reported in Tab. 6.1, column B. b, FEL-2 layout for the HGHG
mode
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Table 6.1: Parameters of the machine during the different experimental sessions

The wavelength (14.7 nm) was chosen to be attainable from the seed (264.4
nm) as a triple harmonic jump, 3 × 2 × 3. During the experimental sessions
we acquired the spectra, the mean energy per pulse, the time duration of the
light pulses and the energy as a function of the number of radiators of the last
undulators line, in order to obtain the gain curve. All these data were filtered
principally to remove the contribution of the jitter and the background.
From Fig.6.4, we can see some of the main features of the superradiant cascade,
together with the power profiles that appears in Fig.6.3, above the correspondent
sections of the radiators line. The first spectrum, has sidebands, one on the left
and one on the right, that indicates the presence of overbunching. The spectrum
then is cleaned by the harmonic conversion and the sidebands disappear, leaving
just the right peak of the bunching. From the power profiles of the first and
second stage, we see that there are two main peaks (the head and the tail). These
two peaks can be seen as two sources of light with the same properties, therefore
we expect to have a pattern of interference in the spectrum, coming from the
Fourier transform of the two-point source power profile. We can also see that,
by lowering the intensity coming from the tail, also the pattern of interference
becomes weaker. The last stage almost completely clean the residual of the tail
and the superradiant evolution is carried on in the remaining peak. The fringes
that appear in the first and in the second stage are due to distance between the
source and the spectrometer: since these are generated at the beginning of the
line, the light mode can grows more and reach the dimensions of the vacuum
chamber, with which interacts causing a diffraction pattern. Further, from the
spectra at the end of the first and the second stage, we can clearly see that the
distance between the peaks of the overbunching is shrinking: since spectrum
and power profile are Fourier related, a lowering in the distance between two
spectra peaks, imply and increase between the peaks in the temporal domain. As
already discussed, the pulse duration of a superradiant pulse decreases with the
inverse squared root of the position in the undulators line. In the experiments,
we acquired 1000 spectra, in order to have a sufficient set of data and to properly
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Figure 6.4: Example of spectra during the experimental session. From the left
to right, respectively the first, the second and the last stage spectrum (scale in
nm on the x-axis and intensity in a.u. on the y-axis). Top: measured (above)
and simulated (below) spectra during the first experimental session. Bottom:
measured spectra acquired during a second experimental session. The fringes
are due to diffraction with the vacuum chamber (see text for details).
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Figure 6.5: Top: Energy measurements for HGHG and SRC (a) and correspon-
dent binning distribution (b)

Figure 6.6: Comparison between the scaling laws in SCR and the simulated
data from GENESIS simulation, respectively for peak power (A), pulse energy
(B), pulse duration (C). The parameters used are the same reported in Tab.
6.1, column B

analyze them.
Figure 6.5 (a and b) shows the pulse energy measured in a sequence of 1000 con-
secutive pulses. The averages (± one standard deviation) of the energy distribu-
tion were 7.7 ± 1.8 µJ and 23.5 ± 5.2 µJ in SRC and HGHG mode respectively.
The resulting shot-to-shot relative stability in the two configurations is compa-
rable (24% in SRC vs. 22% in HGHG). The simulations (Fig. 6.6) reproduced
very well the pulse energy and duration at the end of the cascade. We compared
the behavior of peak power (A), pulse energy (B) and pulse duration (C) vs.
coordinate along the undulator z (physical drifts of 1.35 m in between the undu-
lators were removed). The trends are compared with the fit functions (in blue)
for power Ppeak (z) = P0 + αP (z − z0)

2, energy E(z) = αE(z − z0)
3/2 and du-

ration δt(z) = αt(z− zt0)
−1/2 with the following fit parameters: P0 = 0.23GW,

E0 =1.7 µJ, αp =46.5 MWcm2 , αE = 0.64µJm3/2, αt = 20.5 m−1/2 ,z0 = 6.5
m and zt = −4 m. In all of these cases, we have confirmed the scaling laws
that characterize the superradiant process. The FEL amplification process is
initiated by a strongly bunched, “short” region of the beam: in the early part
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of the final radiator the field is generated by coherent harmonic generation,
where the power grows as z2 but where also the pulse duration is expected to
grow, and not to decrease with z. The dynamics evolves from this regime to
exponential regime and then to superradiance without a clear distinction be-
tween these different regimes. The self-similar pulse evolution, that we indicate
as superradiance, becomes dominant after the trend of the pulse duration vs.
z changes slope and starts to decrease, i.e. when saturation effects erode the
rear part of the pulse and begin to shrink its duration. The experiment was
designed to include an autocorrelation measurement, to provide direct evidence
of the pulse duration.The FEL pulse passed through the FERMI split-and-delay
line AC/DC [91] and we monitored the (energy resolved) photoelectron signal
of two-photon above-threshold ionization (ATI) of Ar at the LDM (low den-
sity matter) beamline [92, 93]. A magnetic bottle electron spectrometer, was
installed and configured to detect either electrons or ions. The spectrometer
design has been previously described. Argon gas was injected into the source
chamber using a pulsed valve and directed into the detector chamber through
a skimmer. The electron time-of-flight signal was recorded shot-by-shot with
a fast digitizer and saved for later analysis. The focal shape and position of
the FEL beam were initially projected onto a YAG screen in the interaction
region, and then optimized using a Shack-Hartmann wavefront sensor. The gas
jet, the FEL beam and the spectrometer axis were arranged to be mutually
perpendicular.
The autocorrelation traces for the SRC and the HGHG FEL configurations
respectively, are shown in Figs.6.7 (a) and (b): the full width at half maximum
(FWHM) pulse duration derived therefrom is δtfel = 4.7± 0.6fs in SRC mode; in
HGHG mode is 22 ± 4 fs. The average spectral width, calculated as the FWHM
of a Gaussian fit of the spectrum, was 0.063 ± 0.007 nm and 0.021 ± 0.007 nm for
SRC and HGHG respectively. The uncertainty intervals represent the standard
deviation of the width distribution. From these values we can estimate also the
FTL condition for the processes: for the HGHG is σωσt ∼ 0.73, while for SRC is
∼ 0.52. For the SRC setup, this means that the main peak is almost at FTL but
the contributions coming from the tail can affect the quality of this result. The
spectral width observed in HGHG mode implies a FWHM pulse duration of at
least 15 fs (at the FTL). This value is smaller than the duration of the measured
pulse (22 fs), suggesting the presence of a residual non-linear phase chirp of the
seed, that causes a σωσt farther from the FTL. With the data acquired we can
confirm that the main features of the superradiance process has been proofed.
We have showed that the scaling laws are followed by the emission process in
the last stage, from the simulations for every scaling law and from the energy
measurement acquired during the experimental session. We also demonstrated
that the time duration in the SRC is shorter, compared to the equivalent setup
in HGHG scheme. From the time duration and the spectra acquired we have
also proofed that the SRC allows the emission of pulses that are close to the
FTL.
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Figure 6.7: Pulse duration. Autocorrelation trace obtained from the Ar 3p ATI
yield, with the FEL operating in SR (a) mode and HGHG (b) mode.
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6.3 Frequency Pulling and superradiance

Frequency pulling is a phenomenon commonly observed in conventional lasers.
In an atomic laser, the frequency of the laser output is determined by the natural
frequency of the atoms in the laser cavity. However, if an external signal is
applied to the laser, the frequency of the output can be shifted to match the
frequency of the injection signal. This is because the external signal causes the
atoms in the laser to oscillate at the frequency of the injection signal, effectively
"pulling" the laser frequency to match it. From the theory of conventional
lasers, this effect is described by the equation

νL =
ν0/∆νc + νc/∆ν0
1/∆ν0 + 1/∆νc

where ν0 is the center frequency and νc is the frequency of the cavity mode (see
[94, 95] for a theoretical derivation). A parallel to conventional lasers is possible
in a FEL considering the effect of the seed as that of an optical cavity. The FEL
gain is indeed centered at some frequency depending on the undulator resonance,
the feedback of the optical cavity is instead provided by the pulse seeding the
process. By changing the resonance condition, a change in the frequency of the
light will occur. [96] have showed how the duality, between the equations of this
effect in standard lasers and in FELs, occurs. The result is that the frequency
of the emitted light is

νFEL = νs − (νs − νu)
σ2
s

σ2
s + σ2

u

where νs is the frequency of the seed laser, νu is the central frequency of the
radiator gain curve, σs and σu are the FWHM of the seed and the gain spectra.
This effect has been studied experimentally at FERMI in various occasions
[96, 97] and lately in superradiant cascade regime [14]. From the relation above,
we can see that, if σs ≪ σu then the frequency shift is really small and the final
FEL frequency is principally determined by the seed. If instead σs ≫ σu, the
wavelength is shifted towards νu: this corresponds to the case of a SASE FEL,
where the emission frequency only depends on the resonant condition. In Fig.
6.8 we plotted a simple simulation of the behavior of the frequency pulling: the
idea is to move the center of the gain imposed by the resonance condition and to
measure the variation of the position of the FEL bandwidth. It is clear that the
FEL bandwidth in the spectrum domain is the product of the gain functions of
seed and undulators line. Also, if we detune too much the undulators, the two
Gaussian functions will become independent and the FEL bandwidth function
will be zero.
In HGHG we always observed a weak coupling between the wavelength of the
emitted light and wavelength set by the resonance condition of the undulators.
Typically a shift of the resonant condition causes a modest frequency shift and
mainly affects the FEL intensity. In superradiant regime the opposite has been
observed: the coupling is much stronger and the output wavelength is domi-
nated by the undulator resonance. In order to investigate and quantify this
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Figure 6.8: Example of the behavior of the frequency pulling: the green curve
simulates the spectral bandwidth function of the seed laser, while the blue one
indicates the gain generated by the resonance of the undulators line. The prod-
uct of these two Gaussian functions gives a third Gaussian which describes the
spectral bandwidth of the FEL spectrum (red line). Here we used µs = 0,
σs = 3.0, µu = 1.0, σu = 1.0 (units are neglected). By moving the mean value
µu from 1 to -1, the mean value of the FEL bandwidth is pulled in the same
direction.

behavior, we slightly detune the gaps of the last radiators line, to shift the res-
onant wavelength. This, if the frequency pulling is strong, reflects in a change
of the wavelength of the light acquired. We started from the central resonance
condition and moved four steps above and below, acquiring 1000 spectra per
step. The undulator gap and K-parameter data are converted to relative wave-
length detuning (λg − λs)/λs, where λg is the resonant wavelength imposed by
the undulator setting, using the standard magnetic calibration of the FERMI
undulators (related to νu = c/λg ). For comparison, a similar measurement was
carried out later in a typical HGHG mode. Each data point represents a sum
of 1000 shots in superradiance mode and 100 shots in HGHG mode.
In Fig. 6.9 we have reported the results from the analysis described above, for
SRC (a) and for HGHG (b) and the linear fitting from the two behaviors (c).
It is very evident that in SRC the frequency pulling is strong. From the fitting
of the central wavelength we obtained a value of

η =
σ2
s

σ2
s + σ2

u

= 0.91± 0.02,

From the coefficient η we can estimate the gain bandwidth of the process, know-
ing the bandwidth of the seed and viceversa. Inverting the relation above, we
can estimate the equivalent pulse duration/seed bandwidth that should initiate
the amplification process to provide the observed trend of the shift. To match
the measured value, we find

σs = σg

√
η

1− η
= 4.5× 10−3nm,

which corresponds to an FTL equivalent rms seed duration σt ≈ 0.86 fs. In
the superradiant cascade, the final amplifier behaved as if the amplification
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Figure 6.9: a, FEL spectra vs the final resonant frequency in SRC. b, FEL
spectra vs the final resonant frequency in HGHG. c, Central emission frequency
versus undulator resonant frequency in HGHG (black) and SRC (blue) mode of
operation. In all the plots, λ is the wavelength acquired by the spectrometer.
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Table 6.2: Parameters of the bunch and the undulators line for the simulations.

was initiated by a pulse as short as a single optical cycle of the optical seed,
a substantial difference with the behavior of HGHG. For the HGHG case we
see that the frequency pulling is very weak, almost negligible (Fig ... ). The
linear fitting shows that in our case we had η = 0.039 ± 0.035, with a fast
decay of the intensity while detuning the undulators. This strong difference
led to the conclusion that the strong frequency pulling is a main feature of the
superradiance process and can be used to characterize the behavior of the FEL
in this condition.

6.3.1 Frequency pulling simulations of the superradiant

cascade

The superradiant cascade was studied with Genesis 1.3 simulations We run
several simulations with GENESIS1.3v4.2, in order to reproduce the machine
in the same configuration as described in Tab. 6.2. We wanted to support the
experimental results with simulations so we tried to set up the input parameters
for mimic the machine the most realistic way. The beam generated was not
simulated in a one-for-one condition due to the high computational time and
resources. Further, previous simulations showed already a good output with a
statistics of 24k macroparticles. Here we decided to use 120k macro particle, to
increase the accuracy.
Since, in literature, there are already others experiment done in the HGHG
scheme for the frequency pulling effect (ref.), and since our results are in agree-
ment with these other results, we just simulated the SRC condition.
In GENESIS1.3 the linac line is not simulated, but we start directly from the
modulator with the insertion of the seed light. Therefore, the bunch has to
be generated with the characteristics similar to the real bunch, just before the
modulator. The line simulated is the same as in Fig. 6.3, for the SRC scheme.
The results of the simulations are in a good agreement with the results obtained
in the experimental sessions. The method for simulating the frequency pulling
is the same, we have changed the undulators’ strength parameter about 0.7%
above and below the value reported in Table 6.2, and evaluated the spectrum
coming from the superradiant evolution. The simulations confirm the behavior
seen during the experimental sessions. The emitted wavelength is follows the
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Figure 6.10: Linear fitting of the relative wavelength from the resonance con-
dition (λg − λs)/λs versus the relative wavelength from the light emitted
(λ− λs)/λs. This is the equivalent of the plot in Fig. 6.9 (c).

change of the resonance condition, almost linearly. The results are reported
in Fig. 6.10 and Fig. 6.11. It’s interesting to note a small difference in the
slope between the experimental data and the correspondent simulated set: the
experimental data show a stronger dependence on the resonance condition. The
offset that appears in the y-axis is due to the fact that the peak value of the
gain of the FEL process is not perfectly centered, but is asymmetric as can be
seen from Fig. 3.7, with the respect of the resonance energy.
Still the behavior that results from the simulations confirm the behavior of the
machine in the experimental session. The final result is η = 0.718 ± 0.022
and despite the fact that is a slightly lower value compared to the experimen-
tal results, simulation show a strong relationship between the emitted and the
resonant wavelength. From this data we can conclude that also in the computa-
tional setup, the strong frequency pulling is a main feature of the SRC scheme.
A future development of the simulations can be done by increasing the statistics
of the simulated beam, using one-for-one simulations to reduce the noise that
appears in the spectra (Fig. 6.11) and to increase the accuracy of the results.
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Figure 6.11: 3D plot of the relative wavelength from the resonance condition
(∆λk) versus the relative wavelength from the light emitted (∆λl). This is the
equivalent of the plot in Fig. 6.9 (a).

6.4 Experimental characterization of superradi-

ant cascade at other output frequencies

The first experiment was carried out at h18 of the seed. Superradiance showed to
be a powerful method to produce short pulses in a seeded FEL as FERMI. The
possibility to set-up a superradiant cascade at other harmonic multiplication
factors is therefore of primary interest to apply this scheme to experiments
requiring not only short pulses, but also specific photon energy ranges. For
these reasons, in other experimental sessions, the first setup described in Sect.6.2
was repeated and extended to three others harmonic orders: h36, h12 and h24.
In order to reach h36 and h24 we have modified the usual SRC configuration,
described in Fig. 6.3 (a), in such a way that the 3rdstage has been splitted in
two stages: the firsts three radiators of the Rd3 were tuned at h18, as the usual
setup, but then the last three radiators were tuned at h36, doubling the output
frequency. The same was done for h12 and h24. For sake of clarity we will
refer to the triple harmonic jump, as in Fig. 6.3, while we will call quadruple
harmonic jump the setup to reach h36 and h24, described before. The machine
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Figure 6.12: Examples of spectra acquired. From left, at h12, h24, h18 and h36.
The spectrum at h24 was integrated at 0.1s

Table 6.3: Results of the analysis for the four configurations

parameters are close to the ones used the first time, so we can refer to the Table
6.1. The seed laser at h12 and h24 had the wavelength different, at 247.2nm.
The procedure of the data acquired is the same, so we are going to report just
the results of these four working point.
In Fig. 6.12 and in Tab. 6.3 we have reported the principal results of this
experimental session. In Fig. 6.12 are reported the single shot spectra for each
configurations. Unfortunately, the h12 and h24 configurations were not very
stable: a jitter of the intensity was observed and, for h24, the intensity was low
in a way that it was not possible to to acquire single shot spectra. The reported
measurements for h24 correspond to an integration up to 0.1s, equivalent to
5 FEL shots per data point. We could observe the increase in the spectral
width that characterizes the spectrum of a superradiant FEL pulses. Due to
the fact that a superradiant pulse is very close to the FTL condition, if we
neglect the contribution coming from the tail, the pulse duration was inferred
by the spectral width.
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In Table 6.3 are reported the results of the main quantities. Except for h24, the
others configuration were rather stable and with an acceptable quality. First,
the repeatability of h18 has been confirmed. We recover almost the same values
as obtained before. We also characterized the frequency pulling, which resulted
to be slightly reduced with respect to first time.
In Fig.6.13 are reported the frequency pulling behavior for h12 and h18. For h12
we observed a plateau-like region in the middle. This behavior can be associated
to a not perfect stability of the machine, during the acquisition but a further
analysis has to made, in order to confirm this. Despite the fact the frequency
pulling values are lower, compared to the first experimental session, its behavior
at h18 was surprisingly stable and well aligned. The machine was characterized
in three more working points and we also confirmed that in all of these working
points we had ultra short pulse durations (< 10fs), with 1.7fs FWHM at h36.

6.5 Superradiance and undulator tapering

Usually, the undulators are tuned through the nominal energy of the beam. Un-
dulators however can be “tapered”, i.e. the parameter strength of the undulators
can be modified to detune the undulator resonance with respect to its predefined
value. Here we report just a computational analysis in order to provide further
extension to the experimental sessions carried on previously.
This technique is e.g. implemented to match the shift of the resonant condition
due to the energy lost by the electrons during the emission (see for example
[98, 99, 100]). During the evolution inside the undulators, the bunch converts
part of its energy into radiation. Therefore, in the last undulators, the energy of
the bunch is lower, usually a couple of MeV, depending on the nominal energy.
It is straightforward to assume, then, that the last undulators are slightly off
resonance. By moving the gap, so readjusting the strength parameter, it is
possible to compensate the energy lost. This technique has the effect of moving
the buckets, inside the longitudinal phase-space, down, if we have moved the
gaps in order to lower the resonance energy. A complementary effect can be
reached by moving the phaseshifter before entering the undulator ([101] as an
example). These devices are the equivalent of one undulator’s period and are
able to retard the electrons up to one radiation wavelength, with respects to
the traveling light. In this way we can move the phase, resulting in a movement
towards left or right, of the bucket, inside the phase-space.
To probe this effect we have simulated a tapering condition, in the last undu-
lator’s line of FEL-2, both in SRC and HGHG at h18. The simulations were
carried out by moving the phaseshifter, before the last undulator, such that
the phase changed by 0.2 radiant, from 0 to 2π, and the undulator parameter
strength, such that the equivalent resonance energy will be from −5MeV to
+5MeV, with 0.5MeV steps. In Fig.6.14 are plotted the 2D maps of the situ-
ation described. The colors refer to the pulse time duration (rms in fs) in the
left plots and the FEL energy pulse in µJ in the right plots. It is interesting
to note that, while the energy maps are similar, the pulse durations maps are
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Figure 6.13: Top plot: Frequency pulling plot for h12, as the the relative wave-
length from the resonance condition (∆λ/λ0)k versus the relative wavelength
from the light emitted (∆λ/λ0)sp. Bottom plot: the same for h18.
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Figure 6.14: 2D maps of the taper equivalent resonance energy vs the shifted
phase in the last undulators line. Top plots h18 in SRC. Left: pulse time
duration (rms in fs). Right: FEL pulse energy (µJ). Bottom plots h18 in HGHG.

rather different. While the minimum in the SRC is located at positive taper
values and a 2π/3 of the nominal phase, the minimum in the HGHG is located
at negative value of taper, which is the common situation since the taper is set
in order to match the energy loss of the electrons. This is due to the different
conformation of the buckets in the phase space. In particular, the fact that the
pulse durations have opposite behavior (in HGHG the pulse evolves in order to
reach a duration compatible to the cooperation length, while in SRC the pulse
length decreases as z−1/2), suggests that the phase space has a sort of opposite
conformation.



Chapter 7

Scraper

Another method to provide shorter FEL pulse is the scraper technique, as
pointed out in Chapter 2. The scraping is a way to reduce the electrons in
the whole e-beam, in order to shortening the electron beam length. This is
done by inserting two metal blades (the scraper), while the e-beam has a low
kinetic energy. These blades spoils the tails of the beam, increasing the emit-
tance in these regions of the bunch. The idea is to preserve intact just the core
electrons and the same peak current, to avoid a weakening of the process (the
FEL gain is proportional to the peak current).
In Fig.7.1 is reported the scheme of the scraper used at FERMI. The blades
(gray rectangles) are placed inside the chicane of BC1, after the tilting of the
e-beam by the first couple of dipoles, in order to cut the longitudinal length.
Then, the bunch is rotated back by the last couple of dipoles, converting the
effect of the scraper form the transverse plane to the longitudinal one.

Figure 7.1: Sketch of the setup of the scraper used at FERMI.
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Figure 7.2: Example of longitudinal phase-space, without scraper. Left plots:
measured at the end of the LINAC, with current distribution (below) and bunch
length measures (above) at FWHM (blue), at 20% of the FW (red) and with
80% of the charge, i.e. excluding the tails in the distribution (green). Right
plots: simulated in the same condition as in the right, with ELEGANT. Here are
reported the longitudinal phase-space (above) and the current profile (below).

The current distribution of the bunches at FERMI is almost flat, but there
are some tails, as reported in Fig.7.2. By closing the blades of the scraper,
the electrons are removed form the tails and scattered away. In [15], they
provided evidences that, while reducing the charge in the beam, the peak current
remained constant. If this is true, we can select a specific aperture of the scraper,
and therefore a specific length of the bunch, without degrading the gain of the
FEL process. In the following we will report the description of the experimental
setup and the results.

7.1 Experimental Session

In the first experimental session, we have first searched for proofs that the bunch
length lowering is linear with the charge lost. The setup was simple, the scraper
is located in BC1, as described before. Since the electrons are scattered by the
scraper in this region, the amount of radiations emitted is very high and work-
ing continuously with the scraper for hours can be dangerous, especially if the
components are not correctly protected against radiations. In order to show the
behavior of the scrapered electron beam, we moved the blades, with a selected
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step, and measured in DBD zone the current profile and the bunch length. The
charge was acquired by the charge monitor in the BC1 region, after the scraper.
Furthermore, simulations were carried on, using ELEGANT, to compare the
results with the real ones and explore the quality of the computational output.
The scraper in ELEGANT acts by removing the electrons in the tail, instead of
spoiling them, therefore the phase-space right after the scraper appears already
cut.
The initial condition of the bunch was 500A of current profile, almost 500pC
of electric charge and 1.2ps of bunch length. We proceed to close the blades at
1mm steps, from the open position, until we reached 1mm or so of aperture.
Then we changed the step to sample better this narrow region. The results are
plotted in Fig. 7.3, in which the top plot is the peak current value and the
bottom plot is the behavior of the bunch length as a function of the scraper
aperture. We can see that the behavior in the first part (larger aperture) are as
expected: while the bunch length is lowering, the current profile is constant and
at the nominal value. There are some mismatch in the first points, probably due
to some residuals in the tails of the current distribution. The situation is more
critical when the blades are narrower, from 1mm to below, because we start to
touch the core electrons. While the behavior of the bunch shortening is still
linear, there are some strange behaviors in the current profile. We confirmed
that the problem was due to the calibration of the deflector: since the bunch
length is smaller, it became hard to correctly calibrate the deflector, therefore
some systematic errors were introduced. Also the simulated behavior was good
enough and reproduced correctly the realistic behavior, with scraper apertures
greater than 1mm. The last point acquired was at 0.3mm of aperture, in which
we obtained an electron bunch 120fs long, 15 pC of electron charge and it is
comparable with the FWHM of the seed usually used. After we confirmed the
corrected behavior of the scarpered beam, the main goal is to use this beam to
provide FEL emission.
First of all, we have analyzed the FEL emission from the computational point
of view. We have selected two positions of the scraper, 0.35mm and 0.1mm.
These points were, for us, the more interesting points, due to the fact that at
0.35mm, the bunch length is comparable with the seed duration and 0.1mm
is the mechanical limit of the scraper implemented at FERMI. Also, in these
points we expect to have troubles with the current peak value, since looking at
Fig. 7.3, the calibration of the deflector is problematic and the measures coming
from it cannot be trusted.
The simulations are performed by simulating the propagation of the bunch,
through the Linac, using ELEGANT and the ouputs has been used as input for
GENESIS simulations. For simplicity, we have simulated the FEL-1 line. In
Tab. 7.1 are reported the settings of the simulations done.
Before discussing the results, a few words on the input parameters are needed.
Despite the fact that we were able to reach a very low value of bunch length, very
close to the seed duration, the quality of the beam is not as usual. The high level
of scraping has produced a current profile that is Gaussian shaped. Further, the
peak current has been heavily degraded because, at this level of bunch length,
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Figure 7.3: Results from the first experiments with the scraper, both measured
and simulated. Here we have reported the behavior of the peak current vs
the aperture of the scraper (top) and the length of the unspoiled beam vs the
aperture of the scraper (bottom).
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Table 7.1: Parameters of beam and undulators used for the simulation of the
FEL emission with a scrapered beam

we have removed a portion of core electrons, losing over 50% of the peak current
in the second configuration (0.1mm). In this situation, the emission of FEL light
is concentrated where the process is stronger, that is around the current peak.
Even if we used a seed longer of the bunch, the principal emission would have
been still coming from the core of the bunch. Unfortunately, the current profile
cannot be manipulated in order to recover the usual top flat profile made by the
linac, therefore it is for us impossible to make the whole bunch emitting with
the same intensity. The current profile is the dominating quantity in this setup
and the power profile inherit its behavior.
The results obtained for the first case, with the scraper aperture at 0.35mm, are
reported in Fig. 7.4. Overall, the FEL emission is quite good. The power profile
shows that we obtained a pulse with 23fs, which is less than Eq. 4.5 provides.
The spectrum evolution shows some sidebands, but a better optimization of the
dispersive section shows the possibility to smooth away those sidebands. The
important thing here is to keep a good degree of coherence and spectra quality.
The same analysis is true for the simulation at 0.1mm of scraper aperture (Fig.
7.5). The evolution is somewhat chaotic at the beginning, but the final FEL
pulse has a good quality. In this case, the output shows a pulse duration of
18fs. Usual pulse duration at FERMI, in a non-scrapered beam, are in the
range between 40-45fs. Therefore, we can conclude that this setup can provide
shorter pulses. As mentioned before, an higher level of scraping leads to an
higher impact in the current profile, at
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Figure 7.4: Output of the simulation made with the scraper at 0.35mm. Top
plots: FEL peak power evolution and profiles. Bottom plots: FEL wavelength
evolution and profiles

Figure 7.5: Output of the simulation made with the scraper at 0.1mm. Top
plots: FEL peak power evolution and profiles. Bottom plots: FEL wavelength
evolution and profiles
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Figure 7.6: FEL spectra at 120pC (0.4mm of aperture). The blue profile on the
left is an example of single spectrum inside the collection. We achieved a very
good stability, with a 80uJ as mean energy per pulse.

the point that this quantity becomes almost the main variable in the FEL pro-
cess. After the results of the simulations, we have tried to have machine time for
test this configurations and confirm the results. During the first experimental
session, we characterized the behavior of the charge and current profile, as a
function of the aperture of the scraper (results shown before). We had a sec-
ond experimental session, with the support of the DiProI beamline, in order to
acquire the pulse duration of the FEL light produced with a scrapered beam.
We started the experiment with a scraper aperture of 0.4mm, which corre-
sponded to a 120pC of charge. At this low value of charge the devices had
troubles, especially the trajectory devices due to the smaller transverse sizes.
Also, a shorter bunch is much more sensible to the time jitter, therefore also the
stability was affected. Despite of that, we were able to produce FEL emission
and obtained a stable situation with a mean energy per pulse of 80µJ. A series
of 1000 spectra was acquired (Fig. 7.6) to provide evidence of the emission and
stability of the process. Unfortunately, we weren’t able to collect measurement
for the pulse duration, for which another experimental session will be needed.
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Final Remarks

This thesis provided an analysis of schemes for the production of ultrashort
pulses, focusing on some of the works carried on at FERMI. For the superra-
diance scheme, we have tested the machine in the SRC, at h18, and charac-
terized the behavior in this point. We obtained a pretty stable spectrum with
a 10 − 15µJ of energy per pulse. We confirmed the superradiant emission by
proving that the energy follows the theoretical scaling law. By reproducing the
machine condition with the simulations from GENESIS, we proved that also the
time durations and the peak power followed the proper scaling laws. From the
autocorrelation made of the LDM beamline, we confirmed the shortening of the
pulse durations, down to 4.7 fs FWHM. Further, we have shown that in SRC,
the FEL pulses are very close to the FTL condition. In the same situation of
the machine, we have characterized the frequency pulling, showing that, while
in HGHG this effect is very weak, in SRC the movement of the resonance wave-
length is followed almost linearly by the FEL wavelength, implying a strong
frequency pulling. As a further proofs, we simulated the same experimental
session in GENESIS and obtained a similar behavior of the FEL, but with a
weaker frequency pulling effect. Then we proceed to have an another experimen-
tal session in which we have characterized the machine in a more working points,
starting from testing the reproducibility of h18, to other harmonics. Again, we
confirmed the frequency pulling and the stability of the machine. This scheme
allowed us to reach a pulse shortening of almost 80%, from the standard HGHG
scheme.
For the scrapered beam, we were able to confirm the linear behavior between
charge left in the bunch and scraper aperture, with an overall constant peak
current. Of course, with a very small value of the scraper aperture, the current
profile loses it’s top flat behavior and the peak value start to decrease, caused
by the scarpering of the inner electron in the bunch. We also had a good agree-
ment of the values of charge, peak current and bunch length between the results
coming from ELEGANT simulations and from the deflector at the end of the
LINAC. The attempt to provide proofs of FEL emission with a shorter bunch
was more troublesome, but, first we provided computational evidences that a
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scrapered beam delivers shorter FEL pulses, using the results from ELEGANT
and using them on GENESIS. Then, we tried to test the results with an exper-
imental session, but we were just able to acquire spectra at a single position of
the aperture of the scraper. Nonetheless, we reached a stable condition, both
in the spectra quality and in the energy delivered. In this case we have an
estimated reduction of the pulse duration of about 60%.
Despite that a scrapered beam cannot reach the levels of the superradiance
shortening, still this method is useful for longer wavelength. In fact, it is more
difficult to set up a superradiant cascade on FEL-1, due to the lower number
of undulators. Superradiance on FEL-1 has been tested by using a double
harmonic cascade, instead of the triple one, but the results showed a worse
quality of the spectrum. Therefore, it is better to provide shorter pulses on
FEL-2 with the superradiant cascade and on FEL-1 with the scraper. To date,
instead, a spoiled beam on FEL-2 hasn’t been studied yet, providing a way to
further expand the studies on short pulses at FERMI. At the end we provided
evidences of the generation of short pulses, down to 1.7fs, without impacting
on the setup of the machine. As reviewed in Chapter 2, there are possibilities
to achieve attosecond durations, but have the negative side that they rely on
particular requirements such as specific radiators or specific instruments that
need to be implemented on the machine.
Finally, the author (Sottocorona Filippo) wants to thank all the member of
FERMI group and Elettra Sincrotrone for this experience, in particular the
supervisor Luca Giannessi for all the knowledge and the patience during these
three and half years.



Chapter 9

Appendix A - Rational

Harmonics

We saw in Chapter 3 how to obtain the spectral brightness of the light produced
by an electron moving in a undulated magnetic field. It is interesting to see
what happen to this configuration, when we introduce another modulation,
with different frequency. In the following calculations we consider an additional
modulation coming from an external electromagnetic field (for example a seed
laser or a light pulse emitted in a previous stage), coupled to the modulation of
the undulator. We start from the definition of the electromagnetic fields,

B = (0, B sin(kuz), 0) and Er = (E cos(krz−ωrt−ψ0), 0, 0) Br =
1

c
(n×Er) ,

where kuis the period of the undulator and kr is the period of the modulation
coming from the previous stage. From the equation of motion, we have

dp

dt
= e0 [Er + v × (B+Br)] = m0cγβ̇,

From now on we consider an observer that lies completely in the z-axis. There-
fore the radiation seen by the observer is in the n = (0, 0, 1) direction. This
assumption leads to

β × (n×Er) =




−βzEx
0

βxEx


 β × cB =




−βzcBy
0

βxcBy




and the equation of motion will become




m0cγβ̇x = e0 [(1− βz)E cos(krz − ωrt− ψ0)− βzcB sin(kuz)] ,

m0cγβ̇y = 0,

m0cγβ̇z = e0 [βxE cos(krz − ωrt− ψ0) + βxcB sin(kuz)] .
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We start from solving the first equation in system above. Integrating both sides,
we get

βx = βx0 +
e0

m0cγ

t
✂

0

[(1− βz)E cos(krz − ωrt− ψ0)− βzcB sin(kuz)] dt.

Now, for the first integral we use dz = cβzdt. Therefore

βx = βx0−
e0

m0c2γ

z
✂

0

βzcB sin (kuz) dz+
e0E

m0cγ

t
✂

0

(1− βz) cos (krcβzt− ωrt− ψ0) dt =

= βx0 −
e0B

m0cγku
[cos (kuz)− 1] +

e0E

m0cγ

t
✂

0

(1− βz) cos [krc (1− βz) t+ ψ0] dt =

= βx0−
e0B

m0c2γku
[cos (kuz)− 1]+

e0E

m0cγ

1

krc
[sin(krc (1− βz) t+ ψ0)− sin(ψ0)] .

In the calculations above, we have changed a sign in the last term, using the
fact that the cosine is an even function. We define Km = e0B/(m0cku), the
dual one for the electric component Ke = e0E/

[
m0c

2kr
]

and kn = kr (1− βz).
We have therefore knz = krcβzt− ωrt.
Furthermore, by choosing the integration constant βx0 = −Km/γ+Ke sin(ψ0)/γ
and we get

βx = −Km

γ
cos(kuz) +

Ke

γ
sin(knz + ψ0).

With the traverse velocity, we can now compute the longitudinal velocity. Using
the relation

β2 = 1− 1

γ2
= β2

x + β2
z ⇒ β2

z = 1− 1

γ2
− β2

x,

and substituting the horizontal velocity βx in the above expression we have

β2
z = 1− 1

γ2
−K

2
m

γ2
cos2(kuz)+

2KmKe

γ2
cos(kuz) sin(knz+ψ0)−

K2
e

γ2
sin2(knz+ψ0).

In order to simplify the expression above, we use the fact that

cos2(kuz) =
1 + cos(2kuz)

2
and sin2(knz + ψ0) =

1− cos [2 (knz + ψ0)]

2
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and the expansion of the square root at the second order in γ. Therefore,

βz = 1− 1

2γ2
− K2

m

2γ2
1 + cos(2kuz)

2
+
KmKe

γ2
cos(kuz) sin(knz + ψ0)+

−K2
e

2γ2
1− cos [2 (knz + ψ0)]

2

Now, reorganizing the terms in a more useful way, we have

βz = 1− 1

2γ2

(
1 +

K2
m +K2

e

2

)
− K2

m

4γ2
cos(2kuz)+

+
KmKe

γ2
cos(kuz) sin(knz + ψ0)−

K2
e

4γ2
cos [2 (knz + ψ0)]

It is useful to define

β̄z = 1− 1

2γ2

(
1 +

K2
m +K2

e

2

)

Now we need to find the longitudinal trajectory, therefore we have to integrate
the longitudinal velocity obtained. So

z(t) =

✂ t

0

cβzdt = ¯cβzt−
K2
m

4γ2

✂ t

0

cos(2ku ¯cβzt)dt+

+
KmKe

γ2

✂ t

0

cos(ku ¯cβzt) sin(kn ¯cβzt+ ψ0)dt−
K2
e

4γ2

✂ t

0

cos
[
2
(
kn ¯cβzt+ ψ0

)]

For clarity, we’re going to evaluate each integral separately

✂ t

0

cos(2kucβ̄zt)dt =
1

2kucβ̄z
sin

(
2kucβ̄zt

)

✂ t

0

cos(ku ¯cβzt) sin(kn ¯cβzt+ ψ0)dt =

=
1

2

✂ t

0

sin
[
(ku + kn) β̄zct+ ψ0

]
dt− 1

2

✂ t

0

sin
[
(ku − kn) β̄zct− ψ0

]
dt =

=

[
cos (ψ0)− cos

[
(ku + kn) β̄zct+ ψ0

]]

2
[
(ku + kn) β̄zc

] −
[
cos (ψ0)− cos

[
(ku − kn) β̄zct+ ψ0

]]

2
[
(ku − kn) β̄zc

]

✂ t

0

cos
[
2
(
kn ¯cβzt+ ψ0

)]
=

1

2kncβ̄z

[
sin

[
2
(
kn ¯cβzt+ ψ0

)]
− sin (2ψ0)

]
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And putting all together we get

z(t) = ¯cβzt−
K2
m

4γ2
1

2kucβ̄z
sin

(
2kucβ̄zt

)
+

+
KmKe

γ2

{[
cos (ψ0)− cos

[
(ku + kn) β̄zct+ ψ0

]]

2
[
(ku + kn) β̄zc

] −
[
cos (ψ0)− cos

[
(ku − kn) β̄zct+ ψ0

]]

2
[
(ku − kn) β̄zc

]
}
+

−K2
e

4γ2
1

2kncβ̄z

[
sin

[
2
(
kn ¯cβzt+ ψ0

)]
− sin (2ψ0)

]
.

In order to simplify from now on we can neglect, in βzand z(t), all the terms in
Ke. Now that we have the dynamical quantities, we can compute the spectral
brightness

d2I (ω)

dωdΩ
=
e20ω

2

4π2c

∣∣∣∣∣

✂ Lu/cβ̄z

0

eiω(tret−r(tret)·n/c) [n× (n× β)]ret dtret

∣∣∣∣∣

2

Since we are looking for axial components, n = (0, 0, 1). In this way the triple
cross product is equal to −βx and the exponential becomes

tret − r (tret) · n/c = tret − z(tret)/c = tret
(
1− β̄z

)
+
K2
m

8γ2
1

cku
sin (2kuctret)

Focusing just on the integral and putting everything together, we get

✂ Lu/cβ̄z

0

e
iω

[

tret(1−β̄z)+
K2
m

8γ2
1
cku

sin(2kuctret)

] {
Km

γ
cos(ku ¯cβztret) +

Ke

γ
sin(kncβ̄ztret + ψ0)

}
dtret

The first integral is well known and we have already deal with it in the Chapter
2 . We will compute just the lasts two. Therefore

Ke

γ

✂ Lu/cβ̄z

0

e
iω

[

tret(1−β̄z)+
K2
m

8γ2
1
cku

sin(2kuctret)

] [
ei(kn

¯cβztret+ψ0) − e−i(kn
¯cβztret+ψ0)

2i

]
dtret

In order to take care of the sine in the exponential, we use the Jacobi–Anger
expansion in Bessel terms

eiχ sin(ψ) =
+∞∑

m=−∞

Jm (χ) eimψ ⇒ e
i ω
ωu

K2
m

8γ2
sin(2kuctret) =

+∞∑

m=−∞

Jm

(
ω

ωu

K2
m

8γ2

)
ei2mωutret

In this way the integrals above become
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Ke

2iγ

+∞∑

m=−∞

Jm

(
ω

ωu

K2
m

8γ2

){
eiψ0

✂ Lu/cβ̄z

0

eitret[ω(1−β̄z)+2mωu+kn ¯cβz]

−e−iψ0

✂ Lu/cβ̄z

0

eitret[ω(1−β̄z)+2mωu−kn ¯cβz]

}

In order to simplify the quantity above we can assume that β̄z ∼ 1, we define
ωr = krc and evaluate the quantities in the argument of the Bessel functions
as χ = K2

m/(4 + 2K2
m), using the resonance condition and we relabel the series

index as u = 2m . With these, the integrals above become

Ke

2iγ

+∞∑

m=−∞

Jm (χ)

{
eiψ0

✂ Lu/cβ̄z

0

eitret[ω(1−β̄z)+uωu+ωn] − e−iψ0

✂ Lu/cβ̄z

0

eitret[ω(1−β̄z)+uωu−ωn]

}
=

=
Ke

2iγ

Lu
c

+∞∑

u=−∞

Ju
2
(χ)

{
eiψ0ei

Lu
2c {ω(1−β̄z)+uωu+ωn}sinc

[
Lu
2c

{
ω
(
1− β̄z

)
+ uωu + ωn

}]}
+

−Ke

2iγ

Lu
c

+∞∑

u=−∞

Ju
2
(χ)

{
e−iψ0ei

Lu
2c {ω(1−β̄z)+uωu−ωn}sinc

[
Lu
2c

{
ω
(
1− β̄z

)
+ uωu − ωn

}]}

Finally, put every pieces back together, the spectral brightness will be

d2I (ω)

dωdΩ
=

e20ω
2L2

u

16π2c3γ2

∣∣∣∣∣Km

+∞∑

u=−∞

[
Ju

2 +1 (χ) + Ju
2 −1 (χ)

]
ei
Lu
2c {ω(1−β̄z)+uωu}sinc

[
Lu
2c

{
ω
(
1− β̄z

)
+ uωu

}]
+

−iKe

+∞∑

u=−∞

Ju
2
(χ)

{
ei
Lu
2c {ω(1−β̄z)+uωu+ωn}+iψ0sinc

[
Lu
2c

{
ω
(
1− β̄z

)
+ uωu + ωn

}]}
+

+iKe

+∞∑

u=−∞

Ju
2
(χ)

{
e−i

Lu
2c {ω(1−β̄z)+uωu−ωn}−iψ0sinc

[
Lu
2c

{
ω
(
1− β̄z

)
+ uωu − ωn

}]}
∣∣∣∣∣

2

Now, looking at the arguments of the Bessel, for the ones that are associated
with Km, we can rewrite them as

Lu
2c

{
ω
(
1− β̄z

)
+ uωu

}
=
Nλuωu

2c

[
ω

ωu

2γ2

(1 +K2
m/2)

+ u

]
= Nπ

(
ω

ω0
+ u

)
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In the same way, and using that ωr = ω0/n, with n as the harmonic number,
we can analyze arguments of the Bessel, for the ones that are associated with
Ke, therefore

Lu
2c

{
ω
(
1− β̄z

)
+ uωu ± ωr

}
=
Nλuωu

2c

[
ω

ωu

2γ2

(1 +K2
m/2)

+ u± ωr
ωu

]
= Nπ

(
ω

ω0
+ u± 1

ng

)

with 1/g = 2γ2/
(
1 +K2

m/2
)
. From this relation we can see that the resonant

peak in the brightness is no more centered at integer harmonics of the central
frequency ω0. The term 1/g is dominated by γ2 which is of the order of 106,
therefore we can no longer have a condition on u such that the argument of
the sinc is equal to zero. To be precise there’s a condition on u, but since
we have to balance a term of 106 this would require an harmonic number of a
million, which is impossible. This leads to the conclusion that the contribution
of the external field, with the assumption of dropping all the terms in Ke in
the velocity and trajectory, is canceled by an impossible condition on u. Using
instead all the terms in the longitudinal velocity and trajectory, excluding just
the non oscillating components, we want to see how the spectral brightness will
change. Therefore we restart from

✂ Lu/c

0

e
i

[

ωtret(1−β̄z)+
ωK2

m sin(2ωutret)

8γ2ωu
−
ωKmKe

2γ2

{

cos[(ωu+ωn)tret+ψ0]
ωu+ωn

−
cos[(ωu−ωn)tret+ψ0]

ωu−ωn

}

−
ωK2

e

4γ2
sin[2(ωntret+ψ0)]

2ωn

]

{
Km

γ
cos(ωntret)−

Ke

γ
sin(ωntret + ψ0)

}
dtret

in which we have already assumed that β̄z ∼ 1, ωu = kuc and ωn = knc. We
now expand all the oscillating functions in the exponential with

eiχ sin(ψ) =
+∞∑

m=−∞

Jm (χ) eimψ and eiχ cos(ψ) =

+∞∑

m=−∞

imJm (χ) eimψ

and focusing on just the exponential term, it becomes

+∞∑

µ=−∞

+∞∑

ν=−∞

+∞∑

ρ=−∞

+∞∑

σ=−∞

Jσ

(
− ωK2

e

8γ2ωn

)
Jρ

(
ωKmKe

2γ2 (ωu − ωn)

)
Jν

(
− ωKmKe

2γ2 (ωu + ωn)

)
Jµ

(
K2
mω

8γ2ωu

)
×

×e2iσ(ωntret+ψ0)+ρ[(ωu−ωn)tret+ψ̃0]+ν[(ωu+ωn)tret+ψ̃0]+2µωutret+ω[tret(1−β̄z)]

Dropping the Bessel’s arguments and evaluating the integrals, we have

∑

µ,ν,ρ,σ

JσJρJνJµe
i(2σ+ρ+ν)ψ0

✂ Lu/c

0

eitret[(ρ+ν+2µ)ωu+(2σ−ρ+ν)ωn+ω(1−β̄z)]×
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×
[
Km

2γ

(
eiωutret + e−iωutret

)]
dtret =

=
Km

2γ

∑

µ,ν,ρ,σ

JσJρJνJµe
i(2σ+ρ+ν)ψ0ei(ρ+ν)π/2×

[
✂ Lu/c

0

eitret[(ρ+ν+2µ+1)ωu+(2σ−ρ+ν)ωn+ω(1−β̄z)]dtret+

+

✂ Lu/c

0

eitret[(ρ+ν+2µ−1)ωu+(2σ−ρ+ν)ωn+ω(1−β̄z)]dtret

]
=
KmLu
4γc

∑

µ,ν,ρ,σ

JσJρJνJµ×

×ei(2σ+ρ+ν)ψ0ei(ρ+ν)π/2
{
ei
Lu
2c [(ρ+ν+2µ+1)ωu+(2σ−ρ+ν)ωn+ω(1−β̄z)]×

×sinc

{
Lu
2c

[
(ρ+ ν + 2µ+ 1)ωu + (2σ − ρ+ ν)ωn + ω

(
1− β̄z

)]}
+

+ei
Lu
2c [(ρ+ν+2µ−1)ωu+(2σ−ρ+ν)ωn+ω(1−β̄z)]×

×sinc

{
Lu
2c

[
(ρ+ ν + 2µ− 1)ωu + (2σ − ρ+ ν)ωn + ω

(
1− β̄z

)]}

Now we can rename the indices as





ρ+ ν + 2µ+ 1 = a

2σ − ρ+ ν = b

2σ + ρ+ ν = d

ρ+ ν = 2e

⇒





µ = a−1
2 − e

ν = 2e− d−b
2

ρ = d−b
2

σ = d−2e
2

=
KmLu
4γc

∑

a,b,d,e

(
J d−2e

2
J d−b

2
J2e− d−b

2
J a−1

2 −e + J d−2e
2
J d−b

2
J2e− d−b

2
J a+1

2 −e

)
eieπeidψ0

{
ei
Lu
2c [aωu+bωn+ω(1−β̄z)]sinc

{
Lu
2c

[
aωu + bωn + ω

(
1− β̄z

)]}}

Integrating the other function, the electric sine

∑

µ,ν,ρ,σ

JσJρJνJµe
i(2σ+ρ+ν)ψ0ei(ρ+ν)π/2

✂ Lu/c

0

eitret[(ρ+ν+2µ)ωu+(2σ−ρ+ν)ωn+ω(1−β̄z)]×

×
[
Ke

2iγ

(
eiωntret − e−iωntret

)]
dtret =
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=
Ke

2iγ

∑

µ,ν,ρ,σ

JσJρJνJµe
i(2σ+ρ+ν)ψ0ei(ρ+ν)π/2

[
✂ Lu/c

0

eitret[(ρ+ν+2µ)ωu+(2σ−ρ+ν+1)ωn+ω(1−β̄z)]dtret+

−
✂ Lu/c

0

eitret[(ρ+ν+2µ)ωu+(2σ−ρ+ν−1)ωn+ω(1−β̄z)]dtret

]
=

=
KeLu
4iγc

∑

µ,ν,ρ,σ

JσJρJνJµ

ei(2σ+ρ+ν)ψ0ei(ρ+ν)π/2
{
ei
Lu
2c [(ρ+ν+2µ)ωu+(2σ−ρ+ν+1)ωn+ω(1−β̄z)]×

×sinc

{
Lu
2c

[
(ρ+ ν + 2µ)ωu + (2σ − ρ+ ν + 1)ωn + ω

(
1− β̄z

)]}
+

−ei
Lu
2c [(ρ+ν+2µ)ωu+(2σ−ρ+ν−1)ωn+ω(1−β̄z)]×

×sinc

{
Lu
2c

[
(ρ+ ν + 2µ)ωu + (2σ − ρ+ ν − 1)ωn + ω

(
1− β̄z

)]}}

Now we rename the indexes as





ρ+ ν + 2µ = a

2σ − ρ+ ν + 1 = b

2σ + ρ+ ν = d

ρ+ ν = 2e

⇒





µ = a
2 − e

ν = 2e− d−b+1
2

ρ = d−b+1
2

σ = d−2e
2

=
KeLu
4iγc

∑

a,b,d,e

(
J d−2e

2
J d−b+1

2
J2e− d−b+1

2
J a

2−e
− J d−2e

2
J d−b−1

2
J2e− d−b−1

2
J a

2−e

)
eieπeidψ0

{
ei
Lu
2c [aωu+bωn+ω(1−β̄z)]sinc

{
Lu
2c

[
aωu + bωn + ω

(
1− β̄z

)]}}

Finally we define

χe =
ωK2

e

8γ2ωn

χ±
em =

ωKmKe

2γ2 (ωu ± ωn)

χm =
K2
mω

8γ2ωu

, putting everything together
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d2I (ω)

dωdΩ
=

e20ω
2L2

u

16π2c3γ2

∣∣∣∣∣∣

∑

a,b,d,e

〈[
KmJ d−2e

2
(−χe) J d−b

2

(
χ−
em

)
J2e− d−b

2

(
−χ+

em

)
×

[
J a−1

2 −e (χm) + J a+1
2 −e (χm)

]
+

+iKeJ d−2e
2

(−χe) J a2−e (χm)

×
[
J d−b+1

2

(
χ−
em

)
J2e− d−b+1

2

(
−χ+

em

)
− J d−b−1

2

(
χ−
em

)
J2e− d−b−1

2

(
−χ+

em

)]]
×

×eieπeidψ0e
iLu2c

[

πN
(

a+bωn
ωu

+ ω
ω0

)]

sinc

{
πN

[
a+ b

ωn
ωu

+
ω

ω0

]}〉∣∣∣∣
2

Clearly the brightness with the electric terms is much more different. First of
all, it is quite easy to check that, if we take the limit Ke → 0, we recover the
usual definition of the brightness, with just the magnetic contribution. Also,
now the sinc function has again the usual terms in the argument a + ω

ω0
, in

which a plays the role of the harmonic number, but has also the term bωn/ωu,
which is a much smaller term compared to 1/g, in the previous analysis. This
term clearly move the resonance condition and allows the creation of further
peaks around the original peak, centered at ω/ω0. In order to give an idea of
the contribution of the electric strength parameter, we give an example of its
estimation. From

Ke =
e0E

m0c2kr
,

it is useful to rewrite the constants in a different way, using the following table
and the fact that kr = 2π/λr

Definitions
Velocity of light: c = 1/

√
ǫ0µ0 2.997 · 108 m/s

Vacuum impedance: Z0 =
√
µ0/ǫ0 = 1/ (cǫ0) 377 Ω

Alfvén current: IA = e0c/r0 17040 A
Voltage IAZ0 IAZ0 = 4πm0c

2/e0 6.421 · 106 V
Electron classical radius: r0 = (1/4πǫ0) e20/m0c

2 2.818 · 10−15 m

So Ke will become

Ke =
2Eλr
IAZ0

Now, in order to evaluate the field quantity, we start from the power associated
to the field, using the Poynting vector S = c2ǫ0 (E×B)
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P = c2ǫ0
1

T

✂

T

✂

ǫ0 (E×B) dSdt =
1

2
cǫ0ΣL |η (z, t)|2 ⇒ |η (z, t)| =

√
2P

cǫ0ΣL

Therefore, assuming an energy of the radiation of 20µJ and a pulse duration
of 60fs, one has P = 20 · 10−6/

(
60 · 10−15

)
= 333MW . Moreover with a

cross-section of the beam up to 10−6m2,we get |η (z, t)| = 5 · 108 V/m.
For the Ke, we assume a lambda for the radiation up to λr = 20 nm, so we get
Ke = 3.12 · 10−6
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