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SUPPLEMENTARY MATERIAL

A. Maps for the wave function and for the density matrix

Let us consider a (N dimensional, for simplicity) Hilbert space H associated to the physical
system of interest, and a generic norm-preserving map T : H → H, which might not be linear. The
map might be stochastic, as typical of collapse models; we will denote the stochastic average with
a bar over the quantities to be averaged over the noise (if the map is deterministic, the bar can be
removed from the proof).

Let us also consider the associated space B(H) of N ×N matrices, to which the density matrix
belongs. A density matrix ρ̂ in general admits multiple decompositions in terms of pure states, for
example:

ρ̂ =
∑
n

pn|ψn⟩⟨ψn| =
∑
k

qk|ϕk⟩⟨ϕk|, (1)

where {|ψn⟩} and {|ϕk⟩} are two different sets of normalized vectors in H, while {pn} and {qk}
are two sets of positive real numbers summing to 1, which represent our ignorance about the
precise state of the system. The two statistical mixtures {(|ψn⟩, pn)} and {(|ϕk⟩, qk)} are said to
be equivalent since they correspond to the same statistical operator as per Eq. (1).

A generic map T need not preserve the equivalence between statistical mixtures, i.e.

ρ̂′(1) ≡
∑
n

pn|Tψn⟩⟨Tψn| ≠ ρ̂′(2) ≡
∑
k

qk|Tϕk⟩⟨Tϕk|, (2)

where |Tψn⟩ = T [|ψn⟩] and similarly for |ϕk⟩. However, if this happens it can be shown that, under
the further assumption that measurements occur (either effectively or fundamentally) as provided
by the Born rule and the von Neumann projection postulate, one can establish a protocol for
superluminal signaling [1, 2]. Rejecting this possibility amounts to asking that the map T preserves
the equivalence among statistical mixtures. In such a case, the map induces a map among density
matrices according to:

Λ : B(H) → B(H)

ρ̂ → Λ[ρ̂] =
∑
n

pn|Tψn⟩⟨Tψn|, (3)

where {(|ψn⟩, pn)} is now any statistical mixture associated to ρ̂.

We now show that the map Λ thus defined is linear, positive and trace preserving. Linearity is
proven as follows: suppose that ρ̂ is the convex sum of ρ̂1 and ρ̂2 according to: ρ̂ = p1ρ̂1 + p2ρ̂2,
with p1, p2 ≥ 0 and p1 + p2 = 1; consider also a statistical mixture {(|ψ1n⟩, p1n)} associated to ρ̂1
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and {(|ψ2n⟩, p2n)} associated to ρ̂2. Then:

Λ[ρ̂] = Λ

 2∑
j=1

pj
∑
n

pjn|ψjn⟩⟨ψjn|

 =

=

2∑
j=1

pj
∑
n

pjn|Tψjn⟩⟨Tψjn| = p1
∑
n

p1n|Tψ1n⟩⟨Tψ1n|+ p2
∑
n

p2n|Tψ2n⟩⟨Tψ2n|

= p1Λ

[∑
n

p1n|ψ1n⟩⟨ψ1n|

]
+ p2Λ

[∑
n

p2n|ψ2n⟩⟨ψ2n|

]
= p1Λ[ρ̂1] + p2Λ[ρ̂2]; (4)

in the first line we simply rewrote ρ̂ in terms of the statistical mixture {(|ψ1n⟩, p1n)}∪{(|ψ2n⟩, p2n)};
in going from the first to the second line we used Eq. (3) applied to ρ̂; in going from the second
to the third line we used again Eq. (3), this time applied to ρ̂1 and ρ̂2; in the last line, we used
the fact that {(|ψ1n⟩, p1n)} and {(|ψ2n⟩, p2n)} are two statistical mixtures associated to ρ̂1 and ρ̂2
respectively.

The map Λ is automatically positive since it maps wave functions into wave functions; it is also
trace preserving, given that it maps statistical mixtures into statistical mixtures. Now we discuss
complete positivity.

A map Λ on B(H) is completely positive if, for any M ∈ N, the extended map IM⊗Λ on B(HM⊗H)
is positive, where IM is the identity map on B(HM) and HM is a M -dimensional Hilbert space. The
Hilbert space HM refers to any additional degree of freedom, which is not affected by the considered
dynamics. Asking for an ancilla to exist, which is not affected by the considered dynamics, is in
principle an additional assumption; anyhow, in all collapse models so far formulated, such an ancilla
naturally exists in a strong sense (for example the spin of fermions is not affected by the collapse)
and in a weak sense (systems like photons can have an arbitrarily weak coupling to the collapse
noise, if their energy is arbitrarily low).

The map T̃ : HM ⊗H → HM ⊗H must exist, otherwise by simply attaching the system of interest
to an ancilla, there would be no dynamics for the wave function anymore; it must also preserve the
equivalence among statistical mixtures, for the same reason spelled above. Then T̃ generates the
map Λ̃ : B(HM ⊗H) → B(HM ⊗H) according to:

Λ̃ : B(HM ⊗H) → B(HM ⊗H)

˜̂ρ → Λ̃ [ ˜̂ρ] =
∑
n

p̃n|T̃ ψ̃n⟩⟨T̃ ψ̃n|, (5)

with obvious meaning of symbols; again, Λ̃ is linear.
Since T on H is in general nonlinear, its extension T̃ on H ⊗ HM (which is also nonlinear) is

in general not uniquely determined by T , even if the ancilla does not evolve. However, locality,
which is an instance of non-faster-than-light signaling, requires that, for factorized states, the map
T̃ factorizes into:

IM × T : HM ×H → HM ×H
|ϕ⟩ ⊗ |ψ⟩ → |ϕ⟩ ⊗ |Tψ⟩ (6)

(the ancilla could be arbitrarily far away). This map generates the following map among factorized
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density matrices:

IM × Λ : B(HM)× B(H) → B(HM)× B(H)

ρM ⊗ ρ̂ → (IM × Λ) [ρ̂M ⊗ ρ̂] = ρ̂M ⊗ Λ[ρ̂], (7)

which can be extended by linearity to the whole tensor product space, thus defining:

IM ⊗ Λ : B(HM ⊗H) → B(HM ⊗H). (8)

The two maps Λ̃ and IM ⊗Λ are the same map, since they are both linear and coincide on a basis of
B(HM ⊗H). Since Λ̃ is positive by construction, because it maps statistical mixtures in statistical
mixtures, also IM ⊗ Λ is. This proves that Λ is completely positive.

As a final note, we point out that in [3] it was shown that also positive but non completely-positive
dynamics admit stochastic unravelings. This means that the stochastic unraveling T , which is not
associated to a completely-positive dynamics, does not admit an extension T̃ to a larger Hilbert
space, like the one discussed here above.

B. Derivation of Eq. (8) in the main text

In this section we derive the formulas for the expectation values of p̂j and p̂2j with respect to
Φ[ρ̂]. The reason why we include also the average momentum is that it is relevant for the analysis
carried on in appendix C. We start from Eq. (5) in the main text, and we compute

Tr {p̂jΦ[ρ̂]} =
1

L3

∫ +L
2

−L
2

dx
∑
k

∑
n

⟨n|p̂jÂk(x)ρ̂Â
†
k(x)|n⟩ =

=
1

L3

∫ +L
2

−L
2

dx
∑
k

∑
n,ℓ,m

⟨n|p̂je
i
ℏ p̂·xAke

− i
ℏ p̂·x|ℓ⟩⟨ℓ|ρ̂|m⟩⟨m|e i

ℏ p̂·xA†
ke

− i
ℏ p̂·x|n⟩. (9)

By exploiting p̂|n⟩ = (2πℏ/L)n|n⟩ we find

Tr {p̂jΦ[ρ̂]} =
2πℏ
L

∑
k

∑
n,ℓ,m

nj

(
1

L3

∫ +L
2

−L
2

dxe
2πi
L (m−ℓ)·x

)
︸ ︷︷ ︸

⟨ℓ|m⟩

⟨n|Ak|ℓ⟩⟨ℓ|ρ̂|m⟩⟨m|A†
k|n⟩ =

=
2πℏ
L

∑
n,ℓ

nj
∑
k

|⟨n|Ak|ℓ⟩|2⟨ℓ|ρ̂|ℓ⟩ =
2πℏ
L

∑
n,ℓ

P̃ (n, ℓ)nj⟨ℓ|ρ̂|ℓ⟩ (10)

where we defined

P̃ (n, ℓ) :=
∑
k

|⟨n|Ak|ℓ⟩|2. (11)

Performing the change of variables m = n− ℓ and then relabelling ℓ → n we finally get

Tr {p̂jΦ[ρ̂]} = Tr {p̂j ρ̂}+
2πℏ
L

∑
m,n

P (m,n)mj⟨n|ρ̂|n⟩ (12)
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where

P (m,n) = P̃ (m+ n,n) =
∑
k

|⟨m+ n|Ak|n⟩|2. (13)

is precisely Eq. (9) of the main text.
Recalling that m̃j =

2πℏ
L mj , it follows that:

dj,ρ̂ := Tr {p̂jΦ[ρ̂]} − Tr {p̂j ρ̂} =
∑
m,n

P (m,n)m̃j⟨n|ρ̂|n⟩ , (14)

A similar calculation leads to

Tr
{
p̂2j Φ[ρ̂]

}
=

(2πℏ)2

L2

∑
n,ℓ

P̃ (n, ℓ)n2j ⟨ℓ|ρ̂|ℓ⟩ (15)

Then again by performing the change of variables m = n− ℓ and then relabelling ℓ → n we get:

Tr
{
p̂2j Φ[ρ̂]

}
=

(2πℏ)2

L2

∑
m,n

P (m,n) (mj + nj)
2 ⟨n|ρ̂|n⟩ (16)

= Tr
{
p̂2j ρ̂

}
+
∑
m,n

P (m,n)m̃2
j ⟨n|ρ̂|n⟩+ 2

∑
m,n

P (m,n)m̃j⟨n|p̂j ρ̂|n⟩,

which implies

Dj,ρ̂ = Tr
{
p̂2j Φ[ρ̂]

}
− Tr

{
p̂2j ρ̂

}
=
∑
m,n

P (m,n)m̃2
j ⟨n|ρ̂|n⟩+ 2

∑
m,n

P (m,n)m̃j⟨n|p̂j ρ̂|n⟩. (17)

When dj,ρ̂ = 0 for all ρ̂, by taking ρ̂ = |n0⟩⟨n0| one finds
∑

m P (m,n0)m̃j = 0 for any n0; In such
a case the last term of Eq. (17) is always equal to zero, from which Eq. (8) in the main text follows.

C. General proof of the theorem, with dj,ρ̂ ̸= 0

In the main text, we proved the theorem with the simplifying assumption dj,ρ̂ = 0. Here we
want to generalise the first part of the theorem also to maps that change the average momentum.
Typical examples of this kind of maps are dissipative dynamics; in the context of collapse models,
dissipative extensions of the Ghirardi-Rimini-Weber (GRW) model, CSL model and QMUPL model
were introduced in [4–8]. Non-interferometric tests of the dissipative CSL model were studied in
[9].

We will prove the following theorem: consider a map of the form in Eq. (5) in the main text (i.e.
fulfilling conditions (i) and (ii) of the main text); consider the difference in the momentum spread
after and before the application of the map i.e.

∆j,ρ̂ := ∆pi,Φ[ρ̂] −∆pi,ρ̂ = Dj,ρ̂ − d2j,ρ̂ − 2⟨p̂j⟩dj,ρ̂ (18)

where ∆pj,ρ̂ = Tr(p̂2j ρ̂) − [Tr(p̂j ρ̂)]2 and dj,ρ̂ and Dj,ρ̂ are defined, respectively, in Eqs. (14) and
(17); If any state of the form:

ρ̂ = |ψ⟩⟨ψ| with |ψ⟩ = a|n0⟩+ b|m0⟩ (19)
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(where a, b are generic complex coefficients which satisfy the normalization condition |a|2+ |b|2 = 1)
satisfy ∆j,ρ̂ = 0 (no spread in the momentum) then the map Φ is such that:

Φ[|n0⟩⟨n0|] = |γ(n0) + n0⟩⟨γ(n0) + n0| (20)

with γ(n0) ∈ Z3. This implies that this map does not collapse the momentum eigenstates (it just
acts on them as a boost) hence it cannot be a satisfactory dynamics for the wave function collapse
in space.

Proof. It is convenient to introduce the following notation:

mj(n) :=
∑
m

P (m,n)m̃j m2
j (n) :=

∑
m

P (m,n)m̃2
j , (21)

which exploits the fact that, for each n, P (m,n) is a probability distribution of the variable m, in
such a way that mj(n) and m2

j (n) represent averages with respect to it.
In this new notation Eqs. (14) and (17) become:

dj,ρ̂ =
∑
n

mj(n)⟨n|ρ̂|n⟩, (22)

Dj,ρ̂ =
∑
n

(
m2

j (n) + 2mj(n)ñj

)
⟨n|ρ̂|n⟩. (23)

Given a state of the form in Eq. (19) one has:

⟨n|ρ̂|n⟩ = |a|2δn,n0
+ |b|2δn,m0

(24)

By choosing a = 1 and b = 0 one gets

∆j,ρ̂ = m2
j (n0)−

(
mj(n0)

)2
(25)

and requiring ∆j,ρ̂ = 0 implies:

m2
j (n0) =

(
mj(n0)

)2
. (26)

We can now compute ∆j,ρ̂ for generic coefficients a and b using condition (26). This leads to:

∆j,ρ̂ = |a|2|b|2
(
mj(n0)−mj(m0)

) [(
mj(n0)−mj(m0)

)
− 2 (m̃0j − ñ0j)

]
(27)

and the condition ∆j,ρ̂ = 0 implies:

mj(n0)−mj(m0) =

{
0

2 (m̃0j − ñ0j)
. (28)

In is now convenient to rewrite Eqs. (21) as follows:

mj(n0) =
∑
mj

Pj(mj ,n0)m̃j m2
j (n0) =

∑
mj

Pj(mj ,n0)m̃
2
j (29)
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where Pj are the marginals defined in Eq. (11) of the main text. As a consequence, condition (26)
reads

∑
mj

Pj(mj ,n0)m
2
j −

∑
mj

Pj(mj ,n0)mj

2

= 0 , (30)

which implies that each Pj(mj ,n0) is a distribution with zero variance, i.e.

Pj(mj ,n0) = δmj ,γj(n0) (31)

By replacing this identity in Eq. (28) one finds

mj(n0)−mj(m0) =
2πℏ
L

(γj(n0)− γj(m0)) =

{
0

−2 2πℏ
L (n0j −m0j)

(32)

for all n0,m0. This implies that either:

γj(n0) = γj(m0) =⇒ γj(n0) = γj (33)

or

γj(n0)− γj(m0) = −2 (n0j −m0j) . (34)

Since this equation must hold for all n0 and m0, it follows that γj(n0) must depend only on the
component n0j , which in turn implies

γj(n0) = γj − 2n0j , (35)

with γj arbitrary real constants. To summarize, we found that the marginals are equal to:

Pj(mj ,n0) =

{
δmj ,γj

δmj ,γj−2n0j ,
(36)

and since they are Kronecker deltas, the joint distribution is simply

P (m,n0) =
3∏

j=1

Pj(mj ,n0) . (37)

In order to establish how this requirement constrains the Kraus map in Eq. (1) in the main text,
we recall that:

P (m,n) =
∑
k

|⟨m+ n|Âk|n⟩|2 (38)

and from all analysis above

P (m,n) = δm,γ(n) where γj(nj) =

{
γj
γj − 2nj

, (39)
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which imply that for each k

|⟨m+ n|Âk|n⟩|2 = ck(n)δm,γ(n) , (40)

with
∑

k ck(n) = 1, ck(n) ≥ 0. By decomposing the matrix element as

⟨m+ n|Âk|n⟩ = Rk(m,n)eiφk(m,n) , (41)

one finds that the condition (40) does not restrict φk(m,n) but implies

Rk(m,n) =
√
ck(n)δm,γ(n). (42)

Accordingly, the Kraus operator can be expressed as:

Âk =
∑
m,n

|m+ n⟩⟨m+ n|Ak|n⟩⟨n| =
∑
n

√
ck(n)|γ(n) + n⟩⟨n|eiφk(γ(n),n) , (43)

which once replaced in Eq. (4) in the main text gives

Âk(x) =
∑
n

√
ck(n)|γ(n) + n⟩⟨n|eiφk(γ(n),n)e

2πi
L γ(n)·x (44)

and the translation covariant CP map reads

Φ[ρ̂] =
1

L3

∫ +L
2

−L
2

dx
∑
k

Âk(x)ρ̂Â
†
k(x) =

=
∑
n,ℓ

∑
k

√
ck(n)ck(ℓ)e

i[φk(γ(n),n)−φk(γ(ℓ),ℓ)]

(
1

L3

∫ +L
2

−L
2

dxe
2πi
L [γ(n)−γ(ℓ)]·x

)
⟨n|ρ̂|ℓ⟩|γ(n)+n⟩⟨γ(ℓ)+ℓ|.

=
∑
n,ℓ

∑
k

√
ck(n)ck(ℓ)e

i[φk(γ(n),n)−φk(γ(ℓ),ℓ)]
(
δγ(n),γ(ℓ)

)
⟨n|ρ̂|ℓ⟩|γ(n) + n⟩⟨γ(ℓ) + ℓ|. (45)

Since according to Eq. (39) each γj(nj) can take two possible values we have several possibilities.
However, this is not really important for us since, if we consider as initial state a plane wave
ρ̂ = |n0⟩⟨n0|, which is the most delocalized state in space, we have:

Φ[ρ̂] = |γ(n0) + n0⟩⟨γ(n0) + n0| (46)

which means the dynamics does not collapse plane waves, it just give a boost γ(n0). This conclude
our proof.

A final comment about the relation between this theorem and Heisenberg’s uncertainty principle
might be useful. The spread can be computed either at the wave function level, or at the density
matrix level; for a stochastic dynamics—as typical for collapse models—the first case refers to a
single realization of the noise, while the second case refers to the average over all realizations, and
is the one which is associated to experiments. Here we are interested in this second case.

At the density matrix level, the spread in position in general does not decrease after the collapse
(whose main effect is to cancel the off-diagonal elements of the density matrix in the position basis,
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not the diagonal ones), actually it increases more than what expected by the Schrödinger’s dynamics
alone [10]. As such, Heisenberg’s principle does not require the spread in momentum to increase
after the collapse; yet our theorem shows that it must, under the specified assumptions.

Even at the wave function level, it is not true that a collapse in position increases the spread
in momentum, unless the wave function starts in a state of minimum uncertainty. What happens
in general [4, 11] is that a collapse in position also localizes the wave function in momentum, so
that any initial state converges asymptotically to a state with (almost) the minimum uncertainty
allowed by Heisenberg’s uncertainty principle.

D. Proof of the theorem for a Lindblad dynamics

Here we prove the theorem for the case of CP and space-translation covariant Quantum Dynamical
Semigroup {Φt, t ≥ 0}, whose generator is of the Lindblad type [12, 13]. According to Holevo’s
theorem [14–18], it takes the form ˙̂ρ(t) = − i

ℏ [Ĥ, ρ̂(t)] + L[ρ̂(t)], with

L[ρ̂(t)] =
∫
dQ

∞∑
j=1

(
e

i
ℏQ·x̂L̂j ρ̂(t)L̂

†
je

− i
ℏQ·x̂ − 1

2

{
L̂†
jL̂j , ρ̂(t)

})
, (47)

where we used the shorthand notation L̂j = L̂j(Q, p̂), and such operators satisfy∫
dQ

∞∑
j=1

|L̂j(Q, ·)|2 <∞. (48)

We recall that we are considering a single particle or, alternatively, the center of mass of a composite
object. The Hamiltonian evolution might change the spread of the particle in momentum, but here
we are interested only in the diffusive contribution given by L[ρ̂(t)].

Similarly to what we did above, we carry out the calculation by confining the system in a box
of size L with periodic boundary conditions. This implies that in Eqs. (47) and (48) the variable
Q is discrete: Q = (2πℏ/L)ℓ := ℓ̃; integration over Q is replaced by a sum over ℓ ∈ Z3 and, as
before, the eigenvalues of the momentum operator take only discrete values p = (2πℏ/L)n := ñ
with n ∈ Z3.

Then Eq. (47) becomes:

L[ρ̂(t)] =
(
2πℏ
L

)3∑
ℓ

∞∑
j=1

(
e

i
ℏ ℓ̃·x̂L̂j ρ̂(t)L̂

†
je

− i
ℏ ℓ̃·x̂ − 1

2

{
L̂†
jL̂j , ρ̂(t)

})
(49)

with L̂j = L̂j(ℓ̃, p̂).
A straightforward calculation, making use of the cyclicity of the trace and of the identity

e−
i
ℏQ·x̂p̂e

i
ℏQ·x̂ = p̂+Q, leads to

Tr [p̂L[ρ̂(t)]]=
(
2πℏ
L

)3∑
ℓ

∑
n

f(ℓ̃, ñ)ℓ̃⟨n|ρ̂(t)|n⟩ (50)

and

Tr
[
p̂2L[ρ̂(t)]

]
=

(
2πℏ
L

)3∑
ℓ

∑
n

f(ℓ̃, ñ)(ℓ̃
2
+ 2ñ · ℓ̃)⟨n|ρ̂(t)|n⟩, (51)
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where we defined

f(ℓ̃, ñ) :=

∞∑
j=1

|Lj(ℓ̃, ñ)|2, (52)

with Lj(ℓ̃, ñ) eigenvalues of the L̂j operators i.e. L̂j(ℓ̃, p̂)|n⟩ = Lj(ℓ̃, ñ)|n⟩.
Similarly to the proof in the main text, we assume that Tr [p̂L[ρ̂(t)]]= 0 for any ρ̂(t). Accordingly,

Eq. (50) implies
∑

ℓ f(ℓ̃, ñ)ℓ̃ = 0 and Eq. (51) reduces to

Tr
[
p̂2L[ρ̂(t)]

]
=

(
2πℏ
L

)3∑
ℓ

∑
n

f(ℓ̃, ñ)ℓ̃
2
⟨n|ρ̂(t)|n⟩. (53)

The condition of having no diffusion, i.e. Tr
[
p̂2L[ρ̂(t)]

]
= 0 for any ρ̂(t), implies∑

ℓ

f(ℓ̃, ñ)ℓ̃
2
= 0. (54)

Since f(ℓ̃, ñ) is, by definition, a positive function, Eq. (54) implies f(ℓ̃, ñ) = λ(ñ)(2πℏ/L)−3δℓ,0
for all ñ (the factor (2πℏ/L)−3 is necessary to obtain a well defined limit when L→ ∞ in the final
result in Eq. (56)). Given Eq. (52), this implies

Lj(ℓ̃, ñ) = |Lj(ℓ̃, ñ)|eiφj(ℓ̃,ñ) =
√
λj(ñ)

(
2πℏ
L

)− 3
2

δℓ,0e
iφj(ñ) (55)

with
∑

j λj(ñ) = λ(ñ). From this it follows that the Lindbladian in Eq. (49) is of the form:

L[ρ̂(t)] =
∞∑
j=1

(
L̂j(p̂)ρ̂(t)L̂

†
j(p̂)−

1

2

{
L̂†
j(p̂)L̂j(p̂), ρ̂(t)

})
, (56)

with L̂j(p̂) =
∑

n

√
λj(ñ)e

iφj(ñ)|n⟩⟨n|. This result is consistent with what found in Eq. (17) in
the main text.
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