
ＵＮ１ＶＥＲＳＩＴＡＤＥＧＬＩＳＴＵＤＩＤＩＴＲ１ＥＳＴＥ

　

ＸＸＸＶＣＩＣＬＯＤＥＬＤＯＴＴＯＲＡＴＯＤＩＲＩＣＥＲＣＡＩＮ

ＳＣＩＥＮＺＥＤＥＬＬＡＴＥＲＲＡ，ＦＬＵＩＤＯＤーＮＡＭＩＣＡＥＭＡＴＥＭＡＴＩＣＡ．
ＩＮＴＥＲＡＺＩＯＮＩＥＭＥＴＯＤ１ＣＨＥ

Ｕｎｄｅｒｓｔａｎｄｉｎｇｄｅｅｐｃｏｎｖｅｃｔｉｖｅ
ｓ

ｍ
ｏｒｇａｎｉｚａｔｉｏｎ：ｓｉｍｐｌｅｓｔｏｃｈａｓｔｉｃａｐｐｒｏａｃｈｅｓ

　　

ａｎｄ ｎｅｗ ｍｅｔｒｉｃｓｔｏｂｒｉｄｇｅｔｈｅｇａｐｓ

Ｓｅｔｔｏｒｅｓｃｉｅｎｔｉｆｉｃｏ‐ｄｉｓｃｉＰ１ｉｎａｒｅ：ＧＥＯ／１２０ＣＥＡＮＯＧＲＡＦ１ＡＥＦＩＳーＣＡＤＥＬＬ‐ＡＴＭＯＳＦＥＲＡ

ＤＯＴＴＯＲＡＮＤＯ
ＧｉｏｖａｎｎｉＢｉａｇｉｏｌｉ

ＣＯＯＲＤＩＮＡＴＯＲＥ
ｐｒｏｆ．Ｓｔｅｆａｎｏ Ｍａｓｅｔ

ＡＮＮＯＡＣＣＡＤＥＭＩＣ０２０２１／２０２２



UNIVERSITÀ DEGLI STUDI DI TRIESTE
Department of Mathematics and Geosciences

PhD Course in Earth Science, Fluid-dynamics and Mathematics. Interactions and Methods
XXXV Cycle

THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
Earth System Physics Research Section

Understanding deep convective
organization: simple stochastic approaches

and new metrics to bridge the gaps
Scientific disciplinary sector: GEO/12

PhD student: Giovanni BIAGIOLI
e-mail: GIOVANNI.BIAGIOLI@phd.units.it
e-mail: gbiagiol@ictp.it

Supervisor: dr. Adrian Mark TOMPKINS
ICTP-Earth System Physics

e-mail: tompkins@ictp.it

PhD Course Coordinator: prof. Stefano MASET
Università degli Studi di Trieste

e-mail: maset@units.it

Thesis reviewers:
prof. dr. George C. CRAIG

Ludwig-Maximilians-Universität München

prof. dr. Christopher E. HOLLOWAY

University of Reading

Academic Year 2021/2022
Second Session



e-mail:

A Trieste e alle persone, vicine e lontane,
che mi hanno accompagnato in questo viaggio



Contents

Abstract 1

1 Introduction 2
1.1 Atmospheric deep convection . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Interactions of deep convection with the nearby environment . . 4
1.1.2 Tropical vs. mid-latitude convection . . . . . . . . . . . . . . . . . 5

1.2 The paradigm of radiative-convective equilibrium . . . . . . . . . . . . . 6
1.3 Generalities on the organization of deep convection . . . . . . . . . . . . 8
1.4 Deep convective self-aggregation: dry gets drier, moist gets moister . . . 11

1.4.1 Physical mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Observational evidence of self-aggregation . . . . . . . . . . . . . 16

1.5 Uncertainties across models and in the assessment of the organization level 18
1.5.1 Measuring organization . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Research objectives and thesis plan . . . . . . . . . . . . . . . . . . . . . . 19

2 An idealized stochastic model of tropical convection 23
2.1 Towards the use of highly idealized models . . . . . . . . . . . . . . . . . 24

2.1.1 Simpler models of self-aggregation . . . . . . . . . . . . . . . . . . 24
2.1.2 Our starting point . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Horizontal transport term . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Subsidence term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Convective moistening term . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Full governing equation . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.5 Selection of convective locations . . . . . . . . . . . . . . . . . . . 30
2.2.6 The model contains the moisture-convection correlation . . . . . 32
2.2.7 A one-dimensional version of the model . . . . . . . . . . . . . . 33

2.3 Numerical treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 The one-dimensional case . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Towards the solution of the two-dimensional problem . . . . . . 36

ii



2.3.3 Treatment of the convective source term . . . . . . . . . . . . . . . 39
2.3.4 The Alternating Direction Implicit schemes . . . . . . . . . . . . . 39

2.4 Numerical convergence tests for the two-dimensional case . . . . . . . . 43
2.4.1 Numerical convergence of the ADI scheme . . . . . . . . . . . . . 43
2.4.2 Full solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 A dimensionless parameter to predict the onset of convective aggregation 48
3.1 Choice of the model setup, parameters and constants . . . . . . . . . . . 48
3.2 Mimicking cloud-resolving models . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Occurrence of self-aggregation and impacts on the mean state . . 50
3.2.2 Sensitivity to domain size . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 Sensitivity to horizontal resolution . . . . . . . . . . . . . . . . . . 55

3.3 Predicting the transition to aggregation . . . . . . . . . . . . . . . . . . . 58
3.3.1 Sensitivity to K and τsub . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Sensitivity to resolution and domain size . . . . . . . . . . . . . . 61
3.3.3 A distance scaling in a discrete domain . . . . . . . . . . . . . . . 63
3.3.4 Initial dimensional analysis . . . . . . . . . . . . . . . . . . . . . . 67
3.3.5 The role of the parameter ad . . . . . . . . . . . . . . . . . . . . . . 72

3.4 The aggregation number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 What is missing from the aggregation number? 77
4.1 Sensitivity to initial conditions . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Existence of hysteresis loops . . . . . . . . . . . . . . . . . . . . . 80
4.1.2 Hysteresis behavior at very high resolutions . . . . . . . . . . . . 82

4.2 Inclusion of cold pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Choice of parameters and constants . . . . . . . . . . . . . . . . . 85
4.2.2 Impacts on aggregation . . . . . . . . . . . . . . . . . . . . . . . . 85

5 A revised index to measure the organization of deep convection 89
5.1 Review of previous contributions . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Revisiting Iorg and relative Iorg . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Definition of Iorg and RIorg . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 The organization irregularity index, OII . . . . . . . . . . . . . . . 99
5.2.3 Inhibition effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.4 Spatial scales of RIorg . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.5 RIorg scales in tropical rainfall fields . . . . . . . . . . . . . . . . . 104

5.3 A new organization index Lorg . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.1 Continuous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Open boundary conditions . . . . . . . . . . . . . . . . . . . . . . 109
5.3.3 The discrete binomial process: dLorg . . . . . . . . . . . . . . . . . 111
5.3.4 The case of non-square domains . . . . . . . . . . . . . . . . . . . 114

5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.1 Application to model data . . . . . . . . . . . . . . . . . . . . . . . 116

iii



5.4.2 Application to precipitation observations . . . . . . . . . . . . . . 118

6 Conclusions 122
6.1 Final remarks and future research directions . . . . . . . . . . . . . . . . 127

Bibliography 129

iv



Abstract

Deep convective clouds can be observed in a variety of organizational states, from spa-
tially random distributions to more coherent structures spanning a wide range of spa-
tial scales. One puzzling mode of organization found in idealized numerical studies is
the so-called convective self-aggregation, in which the clouds spontaneously transition
from a random distribution in space to a regime where they are clustered. This phe-
nomenon can have important implications for tropical climate and its sensitivity, but
the problems are that the models do not agree on their representation of it and there
is also a lack of consensus on how to best quantify organization in both modeling and
observational studies.

To shed light on the discrepancies among models, we introduced a much simpler
stochastic reaction-diffusion model of tropical convection, which, in spite of its mini-
mal complexity, is still adequate to reproduce the behavior of full-physics systems and
captures the transition to aggregation at parameter values that are a reasonable approx-
imation of the present-day tropical atmosphere. The simplicity of the model allowed
us to derive a dimensionless parameter, referred to as the aggregation number, whose
value robustly indicates whether a given experimental configuration would undergo
aggregation or not at all. The aggregation number incorporates the model key parame-
ters, namely, a tropospheric radiative overturning timescale, the efficiency of horizontal
moisture transport and the strength of the convection-vapor feedback, as well as the
domain size and the horizontal resolution, in an attempt to explain these latter sensitiv-
ities detected in modeling studies. We suggest that this quantity can help understand
the differences between full-physics models of the atmosphere.

Regarding the quantification of the organization level of cloud field scenes, to pro-
vide a better assessment a new index has been developed that solves many of the draw-
backs and weaknesses of existing methodologies. The index categorizes the organiza-
tion in an absolute sense, is robust to the details of the calculation algorithm and is
linear in spatial scale for most used cases, allowing a quantification of the organization
level over and also beyond the β-mesoscale. These advantages make it suitable for use
in model intercomparison projects and in the analysis of a wide range of observation
products.
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Chapter 1
Introduction

This thesis deals with some intriguing and fascinating aspects related to atmospheric
convection. We all experience convective phenomena in our everyday life. A common
example is when we cook some pasta or boil some vegetables: we heat a pot of water
from below and, when its base becomes warm enough, we witness the formation of
a strange pattern consisting of adjacent cells. This is a very basic and familiar case of
convection, known as the Rayleigh-Bénard convection. From a physical point of view,
what is happening is that the hot water in contact with the pot base gets less dense and
starts to rise, overcoming any viscosity that naturally opposes mixing. Cold water at
the top tends to sink and a circulation establishes, the visible manifestation of which is
precisely the Bénard cells.

Something similar occurs in the atmosphere. When the solar radiation is absorbed
by the ground during hot, summer days, warm pockets of near-surface air heated by
conduction, called thermals, become positively buoyant and rise under conditions of
vertical instability. In conjunction, a downward motion generated by colder air being
displaced at the top of the thermal develops, thereby creating a circulation cell. If these
bubbles of air contain water vapor, it can condense as the air parcel rises and cools,
leading to the formation of clouds. Overall, common to these phenomena is the vertical
redistribution of energy driven by the mass motion in a fluid, that goes under the name
of convection. The movement of mass is caused by vertical temperature (hence density)
variations within the fluid, which are then acted upon by a mass-dependent field, such
as the gravitational one (Emanuel, 1994; Bohren and Albrecht, 1998).

The clouds that we see in the sky are thus a result of convective motions. Depending
on the height they reach, convective clouds can be generally classified as shallow if their
tops lie below the 500 hPa pressure level, deep if they extend above the 500 hPa level.
This is just a zero-order classification of cumulus clouds; an exhaustive review of the
different regimes of moist atmospheric convection is presented in Stevens (2005). In any
case, both types of clouds may have strong impacts on the atmospheric state and also on
climate and its sensitivity, mainly through effects on radiation budgets and circulations.
Our experience of violent storms associated with the towering cumulonimbus clouds
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that reach or sometimes even extend above the tropopause (Fig. 1.1) suggests that deep
convection can be very effective at transporting mass, momentum, moisture and energy
vertically throughout the troposphere.

This thesis will focus on deep convection only. In the following, unless otherwise
specified, the term convection will unambiguously refer to such a type.

Figure 1.1: Mature cumulonimbus over Pula, Croatia, August 2022.

1.1 Atmospheric deep convection

Let us take a parcel of air and lift it pseudo-adiabatically, i.e., we assume that the parcel
is subject to adiabatic cooling while ascending and, once saturated, its excess water
vapor condenses and is instantaneously lost as precipitation. At any height in this
hypothetical displacement, if the parcel is lighter than its environment it will continue
to rise, else it will sink. Since warm, moist air is less dense than cold, dry air, for
moist convection an extra source of energy is provided by the release of latent heat
of condensation or deposition in the pseudo-adiabatic ascent. This is related to the
concept of conditional instability: the atmosphere is said to be conditionally unstable if
it is unstable to moist saturated ascent but stable to dry unsaturated ascent, and it is
exactly the extra supply of buoyancy mentioned above that allows the parcel to rise.1

1If the environment is unstable to both unsaturated and saturated ascents, the vertical profile is said to
be absolutely unstable.
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Given an unstable environmental profile, when the boundary layer air is particu-
larly energetic, it manages to overcome the atmospheric stable layers that act as bar-
riers to penetration by cumuli (Johnson et al., 1999, grey dashed lines in Fig. 1.2) and
keeps rising all the way to the tropopause. Some overshoot past the level of neutral
buoyancy (LNB) is possible due to upward momentum of the rising air ( 1 in Fig. 1.2)
and the parcels undergo oscillatory motion which is then damped by friction. What we
have just described is the genesis of deep convective clouds. Among other things, these
clouds are characterized by large vertical velocities, high precipitation efficiencies and,
upon reaching the tropopause, extensive anvils 2 that increase the cloud albedo and
trap the terrestrial radiation. Thus the deep convection might have strong impacts on
the tropospheric radiation budgets.

1.1.1 Interactions of deep convection with the nearby environment

Deep convection interacts in several ways with its surroundings. It is a local source of
free tropospheric water vapor - the main one in fact (Grabowski and Moncrieff, 2004).
This supply is partly due to the detrainment of saturated air and cloud condensates,
mostly taking place around the cloud top level 3 . The detrained air and hydromete-
ors undergo evaporation or sublimation owing to the unsaturated conditions outside
the cloud. At the cloud edges, the turbulent mixing with dry, environmental air (en-
trainment) 4 drives the re-evaporation of some condensate, which chills the air and
originates the downdrafts (Houze jr., 2014). The downdrafts import cold and dry low-
tropospheric air into the boundary layer 5 , forming the so-called convective wakes or
cold pools 6 . The latter produce strong gustiness and are responsible for the trigger-
ing of new convective events through dynamical lifting processes (Rotunno et al., 1988)
or thermodynamical mechanisms (Tompkins, 2001b) 7 .

This moistening effect of convection is not the only one. We all know the ripples
that form in a pond or a lake after throwing a rock into it. This wave-like motion
propagates over the water body until gravity, the restoring force, has brought the sys-
tem back to a state of rest. Such ripples are a classic example of gravity waves, inter-
nal or interfacial waves that form after the equilibrium has been disrupted somehow,
with gravity systematically trying to restore it. The same happens in the atmosphere
when the buoyancy perturbations associated with deep convective motions excite grav-
ity waves. These perturbations are rapidly spread out over scales on the order of the
Rossby radius of deformation. Analogous to the pond, the troposphere surrounding
the convection needs to adjust in response to the associated upward mass flux and
heating. The radiation of gravity waves therefore induces a compensatory downward
motion, called subsidence 8 , which takes place in the pulses travelling away from the
heat source (Bretherton and Smolarkiewicz, 1989; Mapes, 1993). In real cases, when
multiple deep convective turrets are present, the horizontal temperature profile is effi-
ciently homogenized and subsidence is widespread. The moisture content of subsiding
air parcels is typically low, as it is related to the small upper tropospheric mixing ratios

4



carried downwards throughout the atmosphere. While descending, these layers of air
are warmed by adiabatic compression, which has a stabilizing effect and also acts to
reduce the relative humidity.

In conclusion, the convection acts to moisten its local field through detrainment of
water vapor and cloud condensate and to dry the far-field through subsidence. The net
effect is a drying of the atmosphere.

MELTING LEVEL

LNB

TRADE
INVERSION

1

2 3

4

5

6
7

8

Figure 1.2: Sketch representing the trimodality in cumulus cloud population in the tropics, in-
cluding trade wind cumulus, cumulus congestus and cumulonimbus cloud types (left to right),
after Johnson et al. (1999). For the cumulonimbus, some phenomenological aspects, physical
processes and interactions with the environment are represented and the reader can refer to the
text for the numbering. The arrow in the deep cloud interior indicates the upward motion of air
parcels within the cloud itself.

1.1.2 Tropical vs. mid-latitude convection

Deep convection is predominant in the tropics. This is evident from Fig. 1.3: the bright
white ring of deep, cold clouds slightly north of the Equator identifies the so-called In-
tertropical Convergence Zone (ITCZ). The ITCZ is essentially a band of deep convective
activity that circles the Earth in the tropical regions. It owes its name to the surface
convergence of trade winds from both hemispheres. In tandem with the high near-
equatorial water and land temperatures, the convergence of the trades helps sustain
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the ascent of warm and humid air masses, leading to the development of vigorous con-
vective activity. This rising motion constitutes the ascending branch of the Hadley cell,
the low-latitude meridional circulation cell that, together with ocean currents, redis-
tributes the surplus of incoming energy in the Tropics to higher latitudes.

In mid-latitudes we see that similar thermally direct convective processes may pre-
vail especially during summer (Lohmann et al., 2016). In Trieste (45◦ N) we often ex-
perience small-scale and short-lived showers on warm summer afternoons, when the
insolation is at a maximum and atmospheric instability can ensue, especially due to
elevated heat low effects over nearby steep terrain. Nevertheless, as compared to the
tropics, at our latitudes the weather is shaped to a much larger extent by the large-
scale dynamics. Extratropical cyclones and the associated frontal systems play a key
role, as most of our adverse meteorological conditions are dictated by the passage of
synoptic-scale disturbances, responsible for the large-scale uplift of air masses.

Figure 1.3: Combination of cloud data over the Pacific from NOAA’s GOES-11 satellite. The
ITCZ is the band of bright white clouds visible just above the center of the image.

In this dissertation, we will deal with tropical convection. For modeling purposes,
since the interactions of convection with the environment can be very branched out,
we would better start with an idealization of the tropical atmosphere, a basic scenario
referred to as the radiative-convective equilibrium. In spite of its simplicity, this con-
figuration still retains many fundamental aspects of convective processes and has been
used in the past in a variety of studies.

1.2 The paradigm of radiative-convective equilibrium

The simplest energy balance models of the Earth-atmosphere system assume that radi-
ation would be the only mechanism of heat transfer and the surface be an infinite ocean
of fixed, uniform temperature. If we approximate the atmosphere as a multi-layer sys-
tem, not only would this model be inaccurate yielding surface temperatures that much
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exceed the present-day ones, but also the resulting vertical temperature profiles would
be unstable. Convection is thus allowed to develop.

In other words, the Earth-atmosphere system is not in radiative balance, as is also
evident from the observed non-zero net tropospheric cooling rate of O(1 K day−1),
which contradicts the definition itself of radiative equilibrium. A vertical heat trans-
port mechanism must exist to prevent the temperature lapse rate from exceeding some
critical value. It is precisely the convection that compensates for radiative cooling and
stabilizes the atmospheric column through release of latent heat of condensation and
the associated subsidence warming in clear-sky areas. These processes produce a lapse
rate that is much smaller than the pure radiative equilibrium one (Hartmann, 2015).

The balance between radiative cooling and convective heating provides the simplest
possible description of the climate system and is at the theoretical foundation of the
idealization of radiative-convective equilibrium (RCE). This paradigm was first employed
by Manabe and Strickler (1964) in a study led with a single-column model. In RCE
simulations, to keep things simple, any large-scale dynamical forcing is neglected and,
in fact, Emanuel et al. (2014) formally defines the RCE state as the statistical equilibrium
one that the Earth-atmosphere system would attain in the absence of lateral energy
transport.2 In spite of this, however, the development of internal circulations is still
possible, hence interactions between radiation, convection and large-scale dynamics
can be analyzed within the RCE framework.

The timescale of adjustment to equilibrium in RCE configurations is set by radia-
tive cooling rates through their control on subsidence velocities in clear-sky regions
(Tompkins and Craig, 1998a,b) assuming fixed sea surface temperature (SST). Indeed,
in subsidence areas, in the absence of large-scale convergence - as is commonly as-
sumed in RCE - the radiative cooling has to be balanced by subsidence heating (see
Section 3.1 for an application of such a balance). This determines a tropospheric over-
turning timescale that is nothing but the time to equilibrium. If the SSTs are instead
interactive, this timescale can be much longer (Cronin and Emanuel, 2013).

Since the real atmosphere is incessantly under the influence of external disturbances,
questions arise as to whether RCE is relevant to real-world situations. While this might
not be the case locally, on large enough spatial and temporal scales, the tropical cli-
mate can be though of as in a state of RCE (Wing and Emanuel, 2014; Hohenegger and
Stevens, 2016). The observational study by Jakob et al. (2019) confirmed this hypoth-
esis, showing - perhaps surprisingly - that the tropics as a whole are near RCE even
on daily timescales. By extension, the global-mean state of the planet can be assumed
to exist in RCE (Stephens et al., 2008). The radiative-convective equilibrium configura-
tion therefore lends itself to be a very accurate and useful idealization to understand
tropical weather and climate.

For these reasons, the RCE paradigm has long been adopted in numerical studies
of tropical convection (e.g., Held et al., 1993; Tompkins and Craig, 1998a; Bretherton

2The definition does not imply that small fluctuations associated with single deep convective events
are no longer permitted (Tompkins and Craig, 1998a). Rather, it is over timescales that are long compared
to the typical lifetime of convective clouds that the balance holds.
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et al., 2005; Wing and Emanuel, 2014). The ordinary radiative-convective equilibrium
state of tropical convection is characterized by nearly randomly distributed patterns of
cumulus clouds in both space and time (Bretherton et al., 2005; Lebsock et al., 2017).
Such a regime is eloquently referred to as the pop-corn convection: similar to the corn
kernels that puff up, the convection bubbles across the whole computational domain
(cf. Fig. 1.4a). A bunch of questions then arise: is this equilibrium climate stable? Is
there the possibility that multiple equilibria exist, especially when internal large-scale
circulations develop? The mysterious situation depicted in Fig. 1.4b seems to provide
an answer...

Figure 1.4: Snapshots of random (a) and self-aggregated (b) convection from cloud-resolving
model simulations performed with the System for Atmospheric Modeling (SAM). The experi-
ments employ different domain sizes of 198 km (a) and 510 km (b). Shown in both panels are
the near-surface temperature (units K, colors) and the 0.4 g kg−1 isosurface of the mixing ratio
of all liquid and ice condensate species (grey). From Muller and Held (2012).

1.3 Generalities on the organization of deep convection

In Fig. 1.4b, the clouds are seen to be in close proximity to each other, while in panel (a)
they are rather scattered. If we look back at Fig. 1.3, we notice that the ITCZ appears as
a unique, very elongated line of convection that spans the entire tropical Pacific. These
two images contain textbook examples of convective organization. What do we exactly
mean by organization in this context?

Unfortunately, a rigorous, universally accepted definition of convective organiza-
tion is missing, but a number of attempts have been made. One could define organized
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convection as a mode which has a lifetime greatly exceeding that of individual con-
vective events and grows upscale (Craig and Mack, 2013; Windmiller and Craig, 2019),
covering an area much larger than the single cells. Or can define organization as the
“nonrandomness of meteorological fields in convecting regions” (Mapes and Neale,
2011). Or, perhaps less vaguely, can identify organized states as those marked by spa-
tial and temporal correlations between updrafts, with the correlations induced by the
convection itself rather than by external influences, such as mid-latitude cyclones and
the associated frontal systems (Windmiller, 2017; Windmiller and Craig, 2019). In this
perspective, the ITCZ could be regarded as a planetary-scale manifestation of deep con-
vective organization (Hohenegger and Jakob, 2020).

It is undisputable that convection tends to organize. Cloud fields in the atmosphere
can exhibit a variety of organizational regimes. They can be randomly distributed
within a given area (Fig. 1.5a) or feature dispersion or clumping. In the first case, the
clouds arrange themselves into regular structures (Fig. 1.5b); in the second, they exist
in close proximity and are tightly packed together (Fig. 1.5c). The former configura-
tion is referred to as a regular one, the latter is said to be clustered. These organizational
states pertain to all types of convective clouds, both shallow and deep (e.g., Plank, 1969;
Sengupta et al., 1990; Zhu et al., 1992; Lee et al., 1994; Nair et al., 1998; Zhao and Di Giro-
lamo, 2007; Tobin et al., 2012, 2013; Holloway et al., 2017; Radtke et al., 2022), but in this
work we will only focus on the deep convective organization.

(a) (b) (c)

Figure 1.5: (a,b) Advanced very high resolution radiometer (AVHRR) imagery, with fair-
weather cumulus cloud fields exhibiting randomness (a) and regularity (b). From Nair et al.
(1998). (c) Snapshot of infrared brightness temperature from Meteosat Second Generation, with
the scene showing a large cluster of deep convective activity over north-western Germany. The
red (blue) colors indicate cloud top temperatures on the order of 210 (240) K. From Pscheidt
et al. (2019).

Over the last decades, the scientific community has devoted increasing attention
to the variety of phenomena falling under the broad category of deep convective or-
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ganization. These modes extend over a wide range of spatial scales, from scattered
individual thunderstorms to more complex and coherent structures encompassing nu-
merous convective cells. Commonly cited examples include squall lines (∼ 10 km, e.g.,
Houze jr., 1977), mesoscale convective systems (MCSs, ∼ 100 km, e.g., Houze jr., 2004)
and the sub-category of mesoscale convective complexes (MCCs, Maddox, 1980), trop-
ical cyclones and hurricanes, up to planetary-scale envelopes like the Madden-Julian
Oscillation (MJO, Madden and Julian, 1971).

The interest in these phenomena arose from the fact that they are ubiquitous in the
tropical atmosphere, which provides an excellent framework for better understanding
the tropical weather and climate. They can be studied to get valuable insights into the
mechanisms that lead to tropical cyclogenesis for example, or to give rise to advances in
predictability (e.g., MJO is a major source of predictability on intraseasonal timescales,
Zhang et al., 2013). Perhaps more importantly, such regimes have interactions with
the large-scale environment that are different from those related to ordinary convection
and can strongly impact the circulation, the vertical water and energy transport, the
tropospheric radiative budgets and the hydrological cycle (e.g., Houze jr., 1982; Hart-
mann et al., 1984; Machado and Rossow, 1993; Mapes and Houze jr., 1993; Mapes, 1993;
Bony et al., 2015). For instance, around 50% of the total tropical rainfall is contributed
to by organized systems (Nesbitt et al., 2000; Tan et al., 2013) and recent increases in
tropical precipitation have been attributed to changes in the frequency of convective
organization (Tan et al., 2015). The occurrence of organized deep convection has also
been linked to extreme weather events (Gray and Marshall, 1998; Mathon et al., 2002;
Pendergrass et al., 2016; Bao et al., 2017; Rigo et al., 2019). The large-scale impacts of the
organization suggest that it can be critical to the present-day and future climates and
our assessment of climate sensitivity (Pierrehumbert, 1995; Lindzen et al., 2001; Bony
et al., 2015; Mauritsen and Stevens, 2015).

Generally speaking, organized convection can result from mechanisms that are in-
ternal to the convection itself or from external factors. Falling into the first category are,
e.g., cold pools (Rotunno et al., 1988; Tompkins, 2001b; Haerter et al., 2019), the storm-
induced gustiness in convectively active regions (Emanuel, 1987; Neelin et al., 1987) or
moisture-convection interactions (Tompkins, 2001c; Grabowski and Moncrieff, 2004).
Vertical wind shear (Thorpe et al., 1982; Rotunno et al., 1988; Robe and Emanuel, 2001)
or sea-surface temperature gradients (e.g., Waliser and Graham, 1993) instead belong
to the second group of mechanisms. In Section 1.4, we will introduce a very special
mode of organization found in idealized numerical modeling studies and review the
mechanisms that induce it.

The effects of mesoscale convective organization are very rarely reproduced in the
representation of convection in current general circulation models (GCMs) due to the
coarse resolutions at which they are operated, which requires the use of cumulus pa-
rameterizations and thus leads to a misrepresentation of some convective processes
(Tobin et al., 2013; White et al., 2018). High priority should therefore be given to a
proper representation of organization and its impacts in climate models, owing to the
heavy implications for climate variability and change (Tobin et al., 2013).
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1.4 Deep convective self-aggregation: dry gets drier, moist gets
moister

The intriguing mode of organization shown in Fig. 1.4b is the so-called convective self-
aggregation. It has been detected in numerical RCE experiments and is in fact quite
striking, because sometimes, in spite of homogeneous boundary conditions and zero
or time-invariant large-scale forcing, the convection is found to spontaneously cluster
starting from an initial spatially uniform distribution. This can happen over periods
of a few days to several weeks, especially when the domain is large enough (note the
difference in domain size between Figs. 1.4a and 1.4b).

The major characteristics of self-aggregated convection are already evident. The end
climate is a spatially organized atmosphere with a single, intensely convecting, almost
circular, very wet region surrounded by a dry background. For very large domains
(Patrizio and Randall, 2019) or long channel geometries (Wing and Cronin, 2016), it has
been found that the convection sometimes spreads over multiple clusters, or bands.
How do we approach this equilibrium state? Let us have a look at the following Fig.
1.6, which shows the transition to aggregation in terms of the vertically integrated,
density-weighted water vapor field. We see that aggregation begins as a dry area that
expands (the blue patch in the upper-left corner in panel b) and amplifies, pushing the
convection into a limited, increasingly wet region (the red circle in c). This behavior can
be encapsulated in the paradigm “dry gets drier, moist gets moister”.

From Fig. 1.6c, the evolution towards bimodality in the spatial moisture distribu-
tion is apparent, with a dry peak corresponding to the subsiding areas and a moist
peak to the convective cluster. However, given the comparatively larger fraction oc-
cupied by the former and the fact that saturation limits moisture in convecting areas,
the domain-mean state turns out to be much drier. This means that self-aggregation
does not produce a spatial redistribution of moisture but has a dramatic impact on the
mean climate (Wing et al., 2017). The reduced water vapor absorption in a domain-
mean sense also implies that the outgoing longwave radiation (OLR) is much higher
compared to the non-aggregated case.

This latter fact means that the system loses energy to space much more efficiently.
The implications for climate sensitivity are enormous. Indeed, it has been proposed
that self-aggregation can act as a thermostat to regulate tropical climate (Khairoutdi-
nov and Emanuel, 2010; Wing et al., 2017). Moreover, Emanuel et al. (2014) showed
that the self-aggregated state could be the preferred equilibrium state of tropical con-
vection under warm SSTs, which implies that global warming may lead to the tropics
switching to this regime in future climates. This would provide a negative feedback
to global warming itself, referred to as an iris-like effect (Mauritsen and Stevens, 2015).
In other words, the Earth is proposed to possibly possess an adaptive infrared regula-
tion mechanism, which opens/closes dry regions in response to increasing/decreasing
surface temperatures. This action is similar to the enlargement of the eye’s iris as the
pupil contracts under changes in light intensity, whence the name. However, much
uncertainty remains in this respect.
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(a) (b) (c)

Figure 1.6: Evolution to self-aggregation in terms of the daily-averaged water vapor path
(WVP) for a simulation conducted with the cloud-resolving model SAM. The horizontal maps
refer to the field at day 10 (a), day 20 (b) and day 50 (c) of the simulation. From Bretherton et al.
(2005).

Aggregation has been detected in a variety of models, including two- and square-
domain three-dimensional cloud-resolving models (CRMs, e.g., Held et al., 1993; Tomp-
kins and Craig, 1998a; Bretherton et al., 2005; Stephens et al., 2008; Muller and Held,
2012; Jeevanjee and Romps, 2013; Wing and Emanuel, 2014; Muller and Bony, 2015;
Holloway and Woolnough, 2016; Hohenegger and Stevens, 2016; Tompkins and Semie,
2017; Shamekh et al., 2020; Tompkins and Semie, 2021; Shi and Fan, 2021), elongated-
channel three-dimensional CRMs (e.g., Tompkins, 2001c; Stephens et al., 2008; Posselt
et al., 2012; Wing and Cronin, 2016) and GCMs with parameterized convection (e.g.,
Held et al., 2007; Popke et al., 2013; Arnold and Randall, 2015; Reed et al., 2015; Coppin
and Bony, 2015; Hohenegger and Stevens, 2016). If the effects of rotation are included,
the models feature a behavior resembling spontaneous tropical cyclogenesis (Brether-
ton et al., 2005; Nolan et al., 2007; Khairoutdinov and Emanuel, 2013).

Overall these studies have identified a series of physical processes responsible for
the onset and the maintenance of self-aggregated conditions. This has been accom-
plished mainly through mechanism-denial/suppression experiments that isolate the ef-
fects of some processes. In recent years, however, Wing and Emanuel (2014) introduced
an energy budget analysis framework to assess which mechanisms drive a growth of
moisture perturbations, based on the fact that self-aggregation is typically accompanied
by the amplification of dry and moist anomalies. In particular, they considered the spa-
tial variance of vertically integrated frozen moist static energy (FMSE), which increases
as aggregation progresses, and calculated the correlations of the FMSE anomalies with
those associated with individual diabatic or dynamical contributions (longwave and
shortwave radiative fluxes, surface enthalpy fluxes, circulation terms). In this context,
we will say that a physical mechanism provides a positive feedback to self-aggregation
if it further removes energy from the low-FMSE (i.e., dry) columns and feeds energy
into the high-FMSE (moist) columns, thereby favouring the clustering; otherwise, the
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process is said to provide a negative feedback.

1.4.1 Physical mechanisms

Experiments have shown that a range of internal processes all contribute to convec-
tive self-aggregation to various degrees. These include cloud/clear-sky radiative feed-
backs, surface flux contributions, advective processes and the relationships between
convection and water vapor (e.g., Held et al., 1993; Tompkins and Craig, 1998a; Tomp-
kins, 2001b; Bretherton et al., 2005; Stephens et al., 2008; Muller and Held, 2012; Wing
and Emanuel, 2014; Muller and Bony, 2015; Holloway and Woolnough, 2016; Wing
et al., 2017). Nonetheless, there is still debate in the literature about which feedback
is the most important in driving the aggregation. Most of the feedbacks also change
in strength during the simulations and there is not a single leading process through-
out the evolution of self-organization (Wing and Emanuel, 2014) to the point that the
physical mechanisms that trigger the clustering of convection have been found to dif-
fer from those that maintain it once established (Muller and Held, 2012; Muller and
Bony, 2015). It is also possible that some processes first favour and then even oppose
(or vice versa) the organization, i.e., the feedbacks change in sign between the pre- and
post-aggregated states (Wing and Emanuel, 2014; Tompkins and Semie, 2021).

In general, spatial inhomogeneities in diabatic terms have been shown as essen-
tial for aggregation to occur. Horizontally homogenizing the radiative heating rates
or assuming wind-insensitive surface fluxes indeed prevents the clustering (Tompkins
and Craig, 1998a). The importance of differential radiative profiles, with cooling in
dry areas and warming due to high anvil clouds in moist areas, has been reiterated by
other studies (e.g., Bretherton et al., 2005; Stephens et al., 2008). However, interactive
radiative fluxes turn out to be unnecessary for aggregation under some special circum-
stances, for instance when downdraft and cold pool formation is inhibited, in which
case the transition to organization is only driven by feedbacks between moisture and
convection (Muller and Bony, 2015; Holloway and Woolnough, 2016).

We now review the main mechanisms responsible for aggregation in more detail.
The radiative contributions will be partitioned into a longwave (LW) and shortwave
(SW) term.

Longwave radiation

There is a wide consensus in the literature regarding the role that longwave radia-
tive fluxes play in driving the aggregation process. According to Coppin and Bony
(2015), the organization in their GCM simulations is initiated by the formation of dry,
convective-free regions resulting from random events of large-scale midtropospheric
subsidence. Their strong longwave radiative cooling relative to the moister environ-
ments amplifies the existing moist static energy (MSE) gradients and induces an ex-
pansion like density currents that act to confine deep convection. These dry regions
have been termed radiatively driven cold pools (Coppin and Bony, 2015).
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The one just described is a direct diabatic contribution, but there is also an indirect,
circulation-mediated effect. Indeed the efficient LW cooling in non-convective areas,
mainly from shallow clouds, has to be compensated for by low-level subsidence heat-
ing (cf. Section 1.2), which in turn forces a shallow circulation that exports MSE to the
moist regions to satisfy continuity. Such a radiatively driven motion yields net energy
loss of the dry patches and therefore reinforces the spatial MSE tendencies, providing
a positive feedback to self-aggregation. This upgradient energy transport has been ac-
knowledged as a distinctive feature of organized runs (Bretherton et al., 2005; Muller
and Held, 2012; Wing and Emanuel, 2014; Muller and Bony, 2015).

Some aspects are still uncertain. A number of studies have shown that it is mainly
the radiative effects from low clouds that are crucial (e.g., Muller and Held, 2012);
others instead point to a larger relative importance of clear-sky processes (Wing and
Emanuel, 2014). The theoretical work by Emanuel et al. (2014) proposed that, at high
SSTs, the rapid increase of lower tropospheric water vapor concentration via the Clausius-
Clapeyron relationship leads to a very large clear-sky infrared emissivity, hence signifi-
cant LW cooling. Thus clustering onset would be driven by direct radiative interactions
at warm temperatures. On the other hand, Coppin and Bony (2015) have argued that it
is at relatively cold SSTs that the longwave term is the most effective.

Shortwave radiation

Shortwave radiative effects are found to contribute to the self-aggregation process (Wing
and Emanuel, 2014; Wing and Cronin, 2016), although in general they are not strictly
necessary (Wing et al., 2017). The dry columns favour aggregation because of the re-
duced water vapor absorption there (Wing and Emanuel, 2014), which yields reduced
SW heating and therefore a relative loss of energy. There is no agreement in the litera-
ture concerning the sign of the SW feedback in moist regions. Muller and Held (2012)
suggested that the reflected shortwave radiation by deep clouds leads to less short-
wave heating and therefore opposes the clustering, providing a negative feedback to
self-aggregation. By contrast, Wing and Emanuel (2014); Holloway and Woolnough
(2016) showed that the SW absorption is highly correlated with the column relative
humidity, with the strong positive feedback in moist areas colocated with thick clouds.

Surface fluxes

Similar to shortwave radiation, surface latent and sensible heat fluxes represent another
area of disagreement between the models in terms of which processes are fundamen-
tal to the aggregation. While some studies have acknowledged their role (Tompkins
and Craig, 1998a; Bretherton et al., 2005; Coppin and Bony, 2015; Tompkins and Semie,
2021), others have shown that convection can still cluster if certain conditions are met,
regardless of whether surface fluxes are non-interactive (Muller and Held, 2012; Hol-
loway and Woolnough, 2016).

The bulk aerodynamic formulas for latent and sensible heat fluxes suggest that the
surface flux feedback contributes through the two competing influences of the wind
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speed and the ocean-atmosphere thermodynamic disequilibrium (Wing and Emanuel,
2014). The former effect, sometimes referred to as the WISHE feedback (wind-induced
surface heat exchange, Emanuel, 1987; Neelin et al., 1987), is stronger in moist areas due
to the storm-induced gustiness in the convergence region, which intensifies the heat
fluxes around the convective core, providing a positive feedback. Instead the enthalpy
disequilibrium effect, which is related to differences in temperature and humidity be-
tween the sea and the near-surface air, is larger in dry than in moist areas and acts
against the organization. Recently, more sophisticated approaches based on similarity
theory have been considered by Tompkins and Semie (2021). These formulations also
account for the contribution of boundary layer stability to latent heat flux perturba-
tions, which is shown to be of similar magnitude as the WISHE effect in the pre-onset
phase. This impact would be missing from models that only employ bulk aerodynamic
formulas.

Large-scale advective processes

The export of MSE by the shallow, radiatively driven circulation that sustains the clus-
tering is an example of the impact of advective processes. However, there is no agree-
ment among the models about whether the large-scale circulations can initiate the or-
ganization on their own or intervene to boost pre-existing anomalies (Wing et al., 2017).
The sign of the overall circulation feedback is under debate as well: while some studies
have found that it favours the clustering during some phases of the evolution to aggre-
gation (Wing and Emanuel, 2014; Holloway and Woolnough, 2016), others have shown
that it always opposes the organization (Wing and Cronin, 2016). In general, if aggrega-
tion does not occur, it must be due to transport processes, since diabatic effects always
act to promote clustering. The GCM experiments by Coppin and Bony (2015) suggest
more complex interactions in terms of the spatial exchange of energy. Their total ad-
vective tendency provides a negative feedback to self-aggregation, which is consistent
with a diffusive (i.e., downgradient) redistribution of moisture; however, there could
still be some local upgradient transport.

In this latter respect, Windmiller and Craig (2019) proposed that, if a stochastic
representation of convection is adopted, it is reasonable to assume that the transport
is purely diffusive, at least in the early stages of self-aggregation. This is in agree-
ment with the initial negative contribution from the advective term found by Wing and
Emanuel (2014), but in disagreement with Holloway and Woolnough (2016). A diffu-
sive representation of transport always opposes aggregation.

Water vapor-convection interactions: the moisture-memory feedback

We saw in Section 1.1.1 that convection locally moistens the atmosphere. The moisture-
convection interaction is actually two-way, as convection is more likely to erupt in
moister environments and is suppressed in dry ones (Mapes and Zuidema, 1996; Sher-
wood, 1999; Parsons et al., 2000; Raymond, 2000b; Redelsperger et al., 2002; Derbyshire
et al., 2004; Grabowski and Moncrieff, 2004). Moist regions thus favour successive
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convective activity, enabling a feedback loop in which the moist regions continue to
moisten through the generation of new deep clouds (Craig and Mack, 2013).

A moisture-convection feedback, sometimes referred to as the moisture-memory feed-
back (Muller and Bony, 2015), has been proposed and shown as key in organizing the
convection (Held et al., 1993; Tompkins, 2001c,a; Grabowski and Moncrieff, 2004). This
is primarily due to reduced entrainment of dry air resulting from enhanced humidity
in moist areas. The mixing with environmental air in moister environments therefore
leads to a reduced cooling of an ascending parcel, which does not largely alter its buoy-
ancy and produces strong and persistent convection. The moisture-memory feedback is
sufficient to trigger self-aggregation on its own even in the absence of radiative effects,
provided that the re-evaporation of rain at low levels is artificially suppressed (Muller
and Bony, 2015; Holloway and Woolnough, 2016). Indeed, without downdrafts inject-
ing dry and cold air into the boundary layer and the associated cold pools that induce
efficient low-level mixing, the convection always settles at the same, very wet locations.

Questions may arise as to whether these conditions are realistic to some extent. This
could be the case if the boundary layer air is nearly saturated and the precipitation effi-
ciency is around 100% (Wing et al., 2017). Nonetheless, it must be reminded that CRM
experiments often simplify the physics of the real atmosphere to a highly idealized rep-
resentation, and for instance do not impose a mean wind or vertical wind shear, while
it has been proved that the latter can shear out incipient moisture anomalies and induce
efficient mixing (e.g., Held et al., 1993; Tompkins, 2001c).

Historically the moisture-convection feedbacks have been downgraded as less im-
portant with respect to the diabatic interactions. For instance, the theoretical study by
Emanuel et al. (2014) suggested that no role is played by the coupling between convec-
tion and water vapor in the onset of self-aggregation, even though it may strengthen the
otherwise radiatively driven clustering. The GCM simulations by Arnold and Putman
(2018) and the mechanism-denial CRM experiments by Yang (2019) further showed
that the moisture-convection feedback, although important, is not necessary by itself
to drive the aggregation. In particular, Yang (2019) found that convection could still
self-organize in the absence of radiative and surface flux feedbacks, rainfall evapora-
tion and virtual effects of water vapor if the moisture profile is relaxed to its horizontal
mean. This suggests that the effect on convection of the spatial variability of moisture
and their interactions are not essential.

1.4.2 Observational evidence of self-aggregation

The first question you may have come up with when we introduced the concept of
self-aggregation earlier has likely been “is this real or just an artifact of the models?”.
Holloway et al. (2017) provided a detailed answer to this question, suggesting that
some promising results and correspondences to the findings of idealized numerical
simulations have been documented in observational studies, as later confirmed also by
Lebsock et al. (2017); Bony et al. (2020).

The first such studies are those by Tobin et al. (2012, 2013), who explored the interac-
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tions of deep convective organization with the atmospheric state over tropical oceans at
both the synoptic scale and the mesoscale by means of multisatellite observations and
meteorological reanalyses. Statistical relationships were derived by categorizing atmo-
spheric variables by the clustering strength for situations which are similar in terms
of convective activity (as measured by domain-averaged precipitation rate), SST and
large-scale dynamical conditions. Models and observations agree in several respects:
highly aggregated states are accompanied by strong humidity gradients between the
convective area and the non-convecting environment, the latter being drier especially
in the mid and upper troposphere. This dryness and a prominent reduction in shallow,
midlevel and deep convective cloudiness are responsible for large increases in OLR.
The decrease in low-level cloud fraction with aggregation is not found in other obser-
vational studies (Stein et al., 2017; Lebsock et al., 2017) nor reproduced in models, which
rather predict a large increase in low cloud amounts (Wing et al., 2017), even though this
can be a result of the relatively coarse resolutions employed that under-resolve shallow
convective motions (Wing and Cronin, 2016). As a consequence, while models indi-
cate a strong net tropospheric radiative cooling with aggregation, observations point
to a reduced planetary albedo (i.e., less reflected SW), which counteracts the increases
in OLR, thereby producing almost no impact on the top-of-atmosphere net radiation
budget. Concerning surface flux contributions, models are partially supported by ob-
servational analyses. Indeed, Tobin et al. (2012, 2013) found that, at synoptic scales (but
not at the mesoscale), the surface heat fluxes are enhanced due to an intensification of
near-surface wind speed in the convective regions and ocean-atmosphere thermody-
namic contrasts outside.

In their analysis of satellite and radiosonde data over the equatorial Indian Ocean,
Kadoya and Masunaga (2018) noticed that the occurrence of organization is charac-
terized by a number of features reminiscent of the self-aggregating RCE experiments.
These include the formation and growth of dry areas in the vicinity of intensifying
convection (not driven by subsidence though) and the subsequent enhancement of ra-
diative cooling and localization of precipitation. However, some aspects are dissimilar,
such as the time to aggregation, which is much shorter in observations than in ideal-
ized studies. In this respect, Holloway et al. (2017) argued that the typical timescale
for self-organization in models includes the spin-up period of small-scale convective
activity, that is, pre-onset periods in which the clustering has not even started. Also, as
already noted in Section 1.2, the real atmosphere is constantly subject to external large-
scale perturbations, which would end up hindering the establishment and persistence
of aggregation and accelerating the disaggregation processes. Bretherton et al. (2005)
however suggested that the self-aggregating RCE is supposed to be relevant over the
Indian Ocean or the Western Pacific warm pool regions where SST gradients and mean
wind shear are weak.

We may also wonder whether the physical mechanisms that induce the clustering
in RCE studies are relevant to the real world. CRM simulations conducted under more
realistic settings over either small domains or a near-global aquaplanet have shown
that this is generally the case, with radiative feedbacks again playing a major role (e.g.,
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Bretherton and Khairoutdinov, 2015; Holloway, 2017). In conclusion, although the ev-
idence of self-aggregation in nature is quite limited to date, encouraging signs from
observations and more complex modeling frameworks have been found to support the
findings of idealized RCE experiments.

1.5 Uncertainties across models and in the assessment of the
organization level

Unfortunately much uncertainty remains about the robustness, if not even the exis-
tence, of self-aggregation and its relevance to the real world. Even though the models
generally agree on the role that diabatic processes play in driving the organization,
they show little or no consensus about a series of important aspects. For example, the
temperature-dependence of self-aggregation is under debate: while some numerical or
theoretical studies have suggested that clustering is favoured by warmer conditions
(Held et al., 1993; Khairoutdinov and Emanuel, 2010; Emanuel et al., 2014; Wing and
Emanuel, 2014), others have detected the peculiar self-aggregated behavior at temper-
atures well below the current tropical SSTs (Coppin and Bony, 2015; Holloway and
Woolnough, 2016; Wing and Cronin, 2016), even as low as 243 K (Abbot, 2014). This
casts doubts on the prospect posed by Emanuel et al. (2014); Mauritsen and Stevens
(2015) of self-organization providing a negative climate feedback in future scenarios
(Wing et al., 2017).

The most puzzling aspect of self-aggregation is perhaps its strong sensitivity to the
specifics of the model configuration and the details of the experimental framework.
The occurrence of organization is indeed dependent on the parameterization schemes
used, be they radiation, convection, microphysics, boundary layer, subgrid-scale tur-
bulence or mixing schemes (Popke et al., 2013; Wing and Cronin, 2016; Tompkins and
Semie, 2017; Shi and Fan, 2021; Huang and Wu, 2022). The condition assigned at the
lower boundary is also found to have an impact. In general, the experiments assume
an underlying ocean of fixed, uniform SST but, if an interactive lower boundary (i.e., a
slab ocean) is prescribed, clustering turns out to be delayed, or even impeded (Brether-
ton et al., 2005; Hohenegger and Stevens, 2016; Shamekh et al., 2020; Tompkins and
Semie, 2021). Another source of concern is represented by the fact that the occurrence
of organization is sensitive to the domain size and horizontal grid spacing employed,
with large domains and/or coarse resolutions facilitating the aggregation (Muller and
Held, 2012). This points to a lack of numerical convergence regarding the clustering.
However, the latter sensitivities are found to vanish in some cases when the physics is
altered, e.g., if rainfall evaporation (hence cold pool formation) is suppressed (Jeevan-
jee and Romps, 2013) or ad-hoc vertical profiles of radiative cooling rates are imposed
(Muller and Bony, 2015).
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1.5.1 Measuring organization

In order to aid understanding of these controversial aspects, efforts have been made
to measure the organization in practice. The absence of a unanimously agreed upon
definition of deep convective organization (Retsch et al., 2020) implies that it is not
straightforward to rigorously identify and measure the clustering, not only in model
output but also in the analysis of observational products. This has motivated an exten-
sive body of literature regarding the derivation of organization indices (or metrics), that
reflect different conceptual views and explore a variety of aspects of the organization
processes. Such indices can either detect aggregation based on some of its large-scale
signatures (e.g., increase in OLR), or essentially tell us how densely deep convective
clouds occupy space. In this thesis we present a comprehensive review of the existing
methodologies to date. It is not rare that these metrics largely disagree in their assess-
ment of the level of organization across scenes, sometimes even with zero correlations
between measures (Wing et al., 2020).

The uncertainties and open questions are summarized by the following Fig. 1.7,
which shows the response of aggregation to warming as measured by three organiza-
tion metrics for a set of models with explicitly resolved convection. This analysis is con-
ducted within a recent model intercomparison study called the Radiative-Convective
Equilibrium Model Intercomparison Project (RCEMIP, Wing et al., 2020). The metrics
employed are the subsidence fraction fsub (Coppin and Bony, 2015), the organization
index Iorg (Tompkins and Semie, 2017) and the spatial variance of column relative hu-
midity (CRH) σ2

CRH (Wing and Cronin, 2016); for all indices, higher values correspond
to more aggregated conditions (Section 5.1). The disparities between the models are
confirmed. It is indeed seen that nearly 50% of the models predict net increase of ag-
gregation with warming (dots falling above the horizontal dashed line) and nearly 50%
of the models predict net decrease of aggregation with warming. This is true regardless
of which metric is used to quantify the organization. However, the lack of consensus
among the models is not the only concerning aspect of this analysis: another one is that,
even within a given model, there can be no consistent response to warming as indicated
by the three indices. This is the case of the UCLA-CRM model, for which σ2

CRH points
to an increase in aggregation, while fsub shows the opposite and Iorg exhibits almost no
sensitivity to SST.

1.6 Research objectives and thesis plan

The take-home messages from Fig. 1.7 provide the main motivations to our work, and
highlight the uncertainties in our present understanding of convective organization and
its implications for weather and climate studies. We will move along two tracks:

• First track: we will aim to construct a simple, diagnostic tool that possibly helps
explain the sensitivities of cloud-resolving models and the differences existing
between them.
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Figure 1.7: Rate of change of aggregation with warming (per K degree) for a set of models with
explicit convection, as measured by three organization metrics fsub (orange circles), Iorg (purple
squares) and σ2

CRH (green triangles), see Section 5.1 for details on these metrics. The response
to warming is evaluated by considering the differences between the time-averaged indices cor-
responding to simulations at 305 and 295 K surface temperatures, respectively. The models are
ordered according to their value of d fsub/dSST (for the first two models, fsub could not be cal-
culated due to missing output). From Wing et al. (2020).

• Second track: we will aim to define a new organization index, suitable for use
in model intercomparison studies, that amends as many drawbacks as possible
of the previous metrics, leading to robust and objective characterizations of the
degree of aggregation.

These two tracks are not parallel but strongly interconnected and point to a better un-
derstanding of the self-aggregated convective mode, both in terms of the underlying
physical mechanisms (first track) and the practical assessment of the organization de-
gree (second track).
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Regarding the first track, we will propose a much simpler model of the tropical
atmosphere that, in spite of a minimal complexity in terms of the representation of
physics, still retains many aspects of the more complex ones. If such a tool can sim-
ulate an evolution to self-aggregation consistently with CRMs, it may be useful to ex-
plain their inter-model differences since, unlike CRMs, it lends itself to isolating the
effects of different processes and drawing more robust and general conclusions due to
its simplicity and less intricate interactions between the physical processes. In the past,
approaches of this type have been widely used to shed light on specific aspects of the
organization process and understand the fundamental instabilities that govern it (e.g.,
Nilsson and Emanuel, 1999; Raymond, 2000a; Raymond and Zeng, 2000; Bretherton
et al., 2005; Sobel et al., 2007; Craig and Mack, 2013; Emanuel et al., 2014; Windmiller
and Craig, 2019; Ahmed and Neelin, 2019; Shi and Fan, 2021; Li, 2021). We therefore
introduce a new conceptual model for the humidity budget in the tropical troposphere,
which consists of a simple partial differential equation of the reaction-diffusion type.
The model is equipped with a stochastic term that makes its representation of convec-
tion much more realistic. Details on the model and its numerical solution are given in
Chapter 2.

The simple model is found to reproduce many aspects and sensitivities of the more
complex ones, posing itself as a valuable candidate to explore the controversial points
of CRM simulations. Expanding on a heuristic argument, a dimensional analysis lead
us to derive a dimensionless parameter, referred to as the aggregation number, which we
hypothesize could indicate whether the system organizes or not for a given experimen-
tal and model setup. In fact, large ensembles of simulations demonstrate that clustering
occurs at a precise critical value of the aggregation number. These findings, and a dis-
cussion on their potential relevance for the community, are presented in Chapter 3. The
results of Chapters 2 and 3 have been included in a paper that has been published in the
American Geophysical Union (AGU) Journal of Advances in Modeling Earth Systems
(Biagioli and Tompkins, 2023a).

Chapter 4 examines some further aspects of the simple model that have not been in-
cluded in the derivation of the aggregation number. Consistent with CRMs, our model
exhibits a weak hysteresis, which nevertheless is not particularly strong and thus does
not much alter the conclusions of Chapter 3. For a better comparison with more com-
plex numerical studies, a very idealized inclusion of the convective inhibition effects
due to cold pools is also discussed.

Regarding the second track of our research, we conducted a comprehensive liter-
ature review on the existing organization metrics, which showed that there is not a
universally accepted measure of aggregation. This is because distinct indices empha-
size different aspects of the organization process and thus possess some relative draw-
backs. Taking the perhaps most widely used metric in recent years as a starting point,
we introduce new and complementary indices that improve on some of its deficien-
cies and are much more robust to calculation details. The new metrics prove as useful
supplements to measuring convective organization across a range of spatial scales in
both model output and observational datasets. These results are presented in Chapter
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5 and have been included in a manuscript that has been submitted to the Journal of
the Atmospheric Sciences of the American Meteorological Society (AMS) (Biagioli and
Tompkins, 2023b).

Chapter 6 concludes with some final remarks and outlines some possible directions
for future research.
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Chapter 2
An idealized stochastic model of
tropical convection

We saw in the introduction that dynamical models of the atmosphere including a de-
tailed representation of microphysics and radiative transfer processes (full-physics mod-
els) rarely agree on when or how the phenomenon of convective self-aggregation oc-
curs. Attempts have been made in the past to shed light on the areas of disagreement
between full-physics models. One possible strategy consists in the development of
much simpler models which may serve as useful diagnostic tools. A relatively recent
research avenue has led to the derivation of theoretical approaches that interpret the
occurrence of self-organization as driven by an instability of the spatially uniform RCE
state of tropical convection (Bretherton et al., 2005; Craig and Mack, 2013; Emanuel
et al., 2014; Beucler and Cronin, 2016; Li, 2021; Shi and Fan, 2021).

In this chapter, we introduce a new such approach, a stochastic reaction-diffusion
model that consists of a single prognostic equation for column total water relative hu-
midity (CRH) and uses CRM-like domain sizes and horizontal resolutions for ease of
comparison with full-physics models. Its formulation is largely inspired by the work
of Craig and Mack (2013), that is, the model represents the effects of moistening due
to convection, horizontal transport and subsidence drying on the tropical CRH budget.
Unlike its predecessor, the model is supplemented with a new stochastic term in the
representation of convective moistening that makes it suitable to be run at convection-
permitting resolutions. This new formulation, however, makes the numerical solution
strategy quite challenging, as sharp discontinuities are created in the spatial CRH field.
To ensure numerical stability, a solver method was designed, that is also widely intro-
duced in the present chapter.
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2.1 Towards the use of highly idealized models

It is a common practice in science to reduce complex problems to much simpler and
more tractable ones. This also applies to the puzzling paradigm of convective self-
aggregation, whose occurrence stems from intricate interactions between convection,
water vapor, radiation, microphysics, turbulence, and so on. The results of mechanism-
denial experiments themselves must be interpreted with some caution, as suppressing
the effects of a physical process would remove not only its direct, but also indirect,
influences. A good way forward could thus be to simplify the physics as much as
possible and retain only the absolute essentials.

2.1.1 Simpler models of self-aggregation

Models of the atmosphere that are simpler than the full-physics ones but still able
to mimic some of their aspects have long been used in the study of convective self-
aggregation.

Under the broad umbrella of self-aggregation are also falling two-dimensional and
two-column models featuring a spontaneous symmetry-breaking and instabilities rep-
resenting the onset of aggregation (Raymond, 2000a; Nilsson and Emanuel, 1999; Ray-
mond and Zeng, 2000), single-column models and two-dimensional CRMs run into the
weak temperature gradient (WTG) approximation (Sobel et al., 2001) that exhibit mul-
tiple equilibria (Sobel et al., 2007; Sessions et al., 2010, 2015, 2016). These latter studies,
together with the two-layer model by Emanuel et al. (2014), hint at a bistability of the
atmosphere under certain circumstances. In particular, the single-column experiments
by Sobel et al. (2007) demonstrated that two stable equilibria can coexist whose occur-
rence depends on the initial moisture profile. These results provide a direct link to
CRM findings to the extent that the non-convective equilibrium may correspond to the
dry patch of a self-organized climate and the moist equilibrium to the deep convective
cluster.

In contrast to these column models, other approaches are spatially explicit in that
they represent the horizontal variability of convection and/or humidity on spatial grids,
but simplify the physics of the system to a highly conceptualized representation. The
first model of this type was a two-dimensional stochastic representation of cumulus
self-aggregation of Randall and Huffman (1980). More recently, Böing (2016); Haerter
(2019) have introduced two-dimensional horizontal idealized models of convective cold
pools to show how they could contribute to clustering, while Yang (2021) used a one-
dimensional linear shallow-water model to investigate aggregation.

Some conceptual models that are even more basic in terms of their representation
of physics were also developed. Within the framework of these minimally simple ap-
proaches, the onset of aggregation has been regarded as caused by an instability of
the uniformly convecting atmosphere in a state of RCE (the pop-corn state of tropical
convection, as we termed it in Section 1.2). A separation of the atmosphere into moist
regions with ascent and dry regions with descent then ensues. An early example is the
semiempirical ordinary differential equation (ODE) model by Bretherton et al. (2005),
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whose derivation follows from their CRM simulations. The aforementioned work by
Emanuel et al. (2014) later introduced a two-layer model and showed how an insta-
bility due to infrared radiation could occur in warmer, moister atmospheres. More
recently, Shi and Fan (2021) proposed a heuristic parametric ODE model of the RCE
dynamics. Both Emanuel et al. (2014) and Shi and Fan (2021) described the onset of
self-organization in their models as a subcritical bifurcation of the spatially homogeneous
RCE state of convection.

Including stochastic components

Sometimes highly idealized models have been equipped with stochastic terms to make
such models more relevant for the real tropical atmosphere.

In the more general context of tropical convection modeling, stochastic approaches
have been used for parameterization purposes and to investigate its impacts on atmo-
spheric spatiotemporal variability (Lin and Neelin, 2000, 2002; Majda and Khouider,
2002; Khouider et al., 2003; Plant and Craig, 2008; Khouider et al., 2010; Khouider,
2014). Another recent research strand has focused on the analogy between the onset of
strong precipitation as a function of column water vapor in the tropics and the theory
of continuous phase transitions (e.g., Peters and Neelin, 2006), and to this aim stochas-
tic models have been developed that are able to capture the salient features of tropical
convection (Stechmann and Neelin, 2011; Hottovy and Stechmann, 2015a,b).

In particular, the model by Hottovy and Stechmann (2015a) considers a single prog-
nostic equation for column water vapor supplemented with both space- and time-
uncorrelated noise (white noise) field. Ahmed and Neelin (2019) further elaborated on
this model and introduced a more complex formulation in terms of the representation
of physics and the addition of a temporal red noise to include the variability induced by
the absent processes, which is assumed to possess a temporal auto-correlation. Their
model is capable of closely reproducing the observed statistics of tropical precipita-
tion and can also sustain self-aggregation if the radiative feedbacks are strong enough
and the amplitude of the stochastic forcing is properly reduced. Their moisture budget
equation is of the advection-reaction-diffusion type.

In fact, it is not uncommon to study the intriguing convective self-organization
through simple differential problems that can be even more minimal in terms of physi-
cal complexity, often consisting of a single reaction-diffusion equation (e.g., Windmiller
and Craig, 2019; Li, 2021; Shi and Fan, 2021) or ODE (Bretherton et al., 2005), possibly
equipped with stochastic forcing terms.

2.1.2 Our starting point

Another spatially explicit approach of the reaction-diffusion type (Allen-Cahn equa-
tion) is a two-dimensional model introduced by Craig and Mack (2013) to examine ag-
gregation of convection. Their model consists of a prognostic partial differential equa-
tion for the vertically integrated water budget W in the tropical troposphere, whose
derivation follows from arguments by Yanai et al. (1973). The prognostic equation for W
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consists of three terms. Convection locally moistens the atmosphere and the moisture is
then advected laterally using a diffusive mixing approximation, while the troposphere
is subject to subsidence drying (cf. Section 1.1.1 and see cartoon Fig. 2.1). Clustering
of convection is driven by a function that dictates greater convective moistening where
the atmosphere is more humid, basing this positive feedback on the observed exponen-
tial increase of tropical precipitation as a function of W documented in Tropical Rainfall
Measuring Mission (TRMM) precipitation data (Bretherton et al., 2004; Rushley et al.,
2018).

The model has three physical parameters that describe the efficiency of the horizon-
tal vapor transport, the subsidence drying timescale and a parameter that determines
the strength of the convection-water vapor feedback. Starting from a homogeneous
state with random fluctuations, Craig and Mack (2013) found that the model repro-
duces the phenomenon of self-aggregation, termed “coarsening”, for most parameter
ranges, except for values of the convection-water vapor feedback strength far below
those reported by Bretherton et al. (2004); Rushley et al. (2018). They described the con-
ditions for instability in terms of the subsidence timescale and the feedback parameter,
but without considering the impact of the horizontal transport. We will show in Chap-
ter 3 that this is also relevant. Their theory also did not incorporate the domain size nor
resolution and thus could not explain the sensitivity to these simulation parameters
that have been documented in the full-physics CRMs (cf. Section 1.5).

In the next Section 2.2, we will adapt the model of Craig and Mack (2013) to inves-
tigate convective aggregation onset in CRM-like experiments which resolve convection
and use spatially limited domains of size O(102-103 km) with periodic boundaries. In
order to do this, the model presented here differs from that of Craig and Mack (2013)
in several respects, the key difference regarding the spatial resolution employed. The
water budget equation of Craig and Mack (2013) was integrated on a 40 km climate-
model-sized grid in which convection was treated deterministically. This means that
the convective moistening term operated continuously in all locations, since the coarse
resolution implied convection could be always occurring somewhere within a cell at
a rate determined by the cell’s humidity. Here we instead use a cloud-resolving grid
resolution of O(1 km) and treat the spatiotemporal occurrence of convective activity as
a stochastic binary process, either on or off. Indeed, the choice of extremely fine grids
implies that, at any fixed time, within a single grid box, the presence of convection is
“all-or-nothing”, i.e., convection is either occurring or not at all, and a deterministic
formulation for the moistening term is definitely not appropriate. Using a weighted
random variable, a subset of cells will be selected at each time step to develop new con-
vective activity to supplement the existing convection. This stochastic approach with its
dependence on grid spacing will allow us to incorporate both the model resolution and
the simulation domain size into the theory for aggregation onset presented in Chapter
3.
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2.2 The model

As already anticipated, the model introduced here is closely related to the one pre-
sented in Craig and Mack (2013). Instead of using W as a prognostic variable, we write
the model in terms of the column total water relative humidity, R = R (x, t), where x
denotes the spatial coordinate(s) and t is time. R is defined as the sum of the density-
weighted, column-integrated ice water (qi), liquid water(ql) and water vapor (qv) spe-
cific humidities normalized by the column-integrated saturation value (qs),1

R =

∫
ρ(qv + ql + qi)dz∫

ρqsdz
.

Changes in R primarily reflect those in the vertically integrated water content, owing
to the horizontal temperature gradients being small in the tropical troposphere (WTG
approximation, Sobel et al., 2001). However, R is dimensionless and less sensitive to
temperature than W, which shows exponential dependence on temperature through
the Clausius-Clapeyron relationship. We also assume time-invariance of temperature,
so that the system consists of a single prognostic equation for R.2

In our model, as in Craig and Mack (2013), three processes affect R:

∂R
∂t

= Rconv + Rtrans + Rsub.

The model assumes that column relative humidity is rapidly increased in locations
where deep convection occurs (Rconv), these moisture sources are subsequently redis-
tributed horizontally by lateral vapor transport (Rtrans), while subsidence (Rsub), that
balances the convective mass flux, dries the atmosphere (cf. Section 1.1.1). A sketch of
the model representation of physics is presented in Fig. 2.1.

2.2.1 Horizontal transport term

Considering the horizontal transport first, we follow Craig and Mack (2013) in approx-
imating the lateral transport of water vapor by a down-gradient diffusion, Rtrans =
K∇2R, which is parameterized using a simple fixed value for the diffusivity K. This is
an oversimplification as it neglects the enhanced mixing expected near updrafts com-
pared to stably stratified subsidence regions (Tompkins and Semie, 2017) and also ne-
glects temporal variations. However, Windmiller and Craig (2019) demonstrated that
a diffusive treatment of lateral transport can reasonably represent the evolution of wa-
ter vapor at least in the early stages of self-aggregation, as anticipated in Section 1.4.1.
The use of a down-gradient mixing implies horizontal transport does not amplify, but
rather damps, the existing R anomalies. In other words, by reducing spatial variance of
R, the horizontal transport always acts to oppose aggregation.

1Although the temperature dependence is not explicitly considered here, our estimate of column cloud
water detrainment (see Section 3.1) takes into account the saturation with respect to ice at temperatures
colder than 0◦C.

2If we do not assume time-invariance of temperature, a prognostic equation for temperature would be
needed, in spite of the horizontal gradients being negligible in the tropical troposphere.
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Figure 2.1: Schematic of the physical processes represented by our toy model, with vertical
ascending and descending motions and horizontal transport highlighted (arrows), and impacts
on the tropical CRH budget (bell-shaped black curves).

2.2.2 Subsidence term

The treatment of subsidence also follows Craig and Mack (2013), as subsidence is mod-
eled as a relaxation process towards a completely dry atmosphere, thus Rsub = −R/τsub,
with a characteristic timescale τsub set to be uniform throughout the domain. In as-
suming this, we have implicitly hypothesized that the adjustment due to gravity wave
propagation from convective events is instantaneous, which is still reasonable since this
propagation is fast relative to other processes and subsidence is a superposition of dry-
ing from all convective events. The relaxation representation of subsidence implies that
this term will also always reduce spatial variance of R, since it ultimately leads to a
homogeneous dry atmosphere.

2.2.3 Convective moistening term

The interesting behavior of the model, namely, its ability to represent convection in both
random and aggregated configurations, as we will see in Chapter 3, derives from the
specification of the convective moistening term. The key novelty with respect to Craig
and Mack (2013) is the adoption of a stochastic treatment for the convective moistening
term, so that the model lends itself to be run at convection-resolving resolutions. This
is particularly suited to mimic the typical CRM experimental setup, with the modified
governing equation integrated on a two-dimensional mesh of grid cells using a ∆x ∼
∆y ∼ O(1 km) horizontal resolution and D = O(102-103 km) domain sizes. In some
previous idealized modeling studies (Hottovy and Stechmann, 2015a), the grid spacing
was chosen to be the minimum scale of a single tropical deep convective cell, but we
will not similarly constrain the resolution here.

Convective moistening is modeled as a fast relaxation with characteristic time τc ≪
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τsub towards Rc, the total water relative humidity in convective columns, which exceeds
unity due to the detrainment of cloud condensate: Rconv = Ic(Rc − R)/τc. This term
contains a diagnostic indicator random variable Ic = Ic(x, t) that maps the domain
to convecting (Ic(x, t) = 1) and non-convecting (Ic(x, t) = 0) locations according to
a non-uniform, humidity-dependent probability function pc(R(t)). Thus, unlike the
horizontal transport and subsidence terms that operate continuously in all cells, the
moistening only occurs in locations occupied by convective updrafts, where Ic = 1. In
all other cells Ic = 0 and the convective moisture source is zero (see sketch Fig. 2.2).
The moistening term represents the sole stochastic contribution to the humidity budget.
The details of the weighted random sampling procedure are outlined in Section 2.2.5.

Figure 2.2: Sketch representing the action of the indicator random variable. Red are the grid
cells selected by the underlying weighted random sampling to develop convective activity, where
Ic = 1. The white cells are not involved in the convection and within them the dynamics is only
governed by subsidence and diffusion.

2.2.4 Full governing equation

In addition to the previous assumptions and modeling, we impose no large-scale dy-
namical forcing and exclude the Coriolis effect. Diurnal and seasonal cycle representa-
tions are also omitted.

The continuous form of the budget equation for R is thus given by

∂R
∂t

=
(Rc − R)

τc
Ic + K∇2R − R

τsub
, (2.1)

where the first term on the RHS represents the humidity source associated with con-
vection, the second term expresses the lateral moisture transport, while the third term
describes the drying action of subsidence. We recall that the constants τc and τsub denote
the characteristic timescales associated with convective moistening and subsidence, re-
spectively, Rc is the convective moistening relaxation target and K represents the hor-
izontal moisture transport efficiency; Ic is the indicator function of the subset of con-
vective points, which are prescribed at each integration step. To mimic the behavior of
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the full-physics models, we will solve this equation on a square discretized grid with
periodic boundary conditions of equal resolution in the x and y directions.

In summary, the net effect of convection as represented by the model is to locally
moisten around the sites of convection through column saturation and detrainment
of cloud condensate and to dry the far-field through compensating subsidence. Note
that this treatment is more simplistic than the stochastic model of Ahmed and Neelin
(2019) who modelled microphysics processes directly, and also included a treatment
of horizontal vapor divergence and large-scale dynamics in addition to local diffusive
mixing.

2.2.5 Selection of convective locations

Size of the sampling

To initialize the model a specific number Nc(t = 0) of cells are chosen at random to be
convective, according to a weighted probability which will be discussed below. There is
a memory for convection, and on subsequent time steps, each convective cell has a fixed
probability of dying, to give an average convective duration of 30 minutes. Locations
are then chosen for initiating new convective events, to ensure that the desired total
population size Nc(t), imposed as an external constraint, is maintained.

We require the time-averaged value of convective population size Nc, and thus also
the convective fraction ϵ, be prescribed by a simple mass conservation argument pro-
posed by Tompkins and Craig (1998a). Specifically, continuity requires that the large-
scale vertical motion, defined as the weighted average of the mean ascent in active
clouds and the mean descent of the environmental air in-between, be

w ≡ (1 − ϵ)wsub + ϵwc = 0,

wsub and wc indicating the subsidence and the convective updraft vertical velocities,
respectively. Assuming the small area approximation, i.e., ϵ ≪ 1, so that 1 − ϵ ≈ 1, and
expressing ϵ = Nc/Nxy, where Nxy is the total number of grid points in the computa-
tional domain, yields

Nc = Nxy
|wsub|

wc
= Nxy

h
τsubwc

=

(
D
∆x

)2 h
τsubwc

, (2.2)

where h is the approximate depth of the troposphere. We emphasize that, as Nc is
a function of the domain size, horizontal resolution and imposed subsidence rate, it
remains invariant throughout simulations.

Rather than imposing a constant convective fraction (i.e., Nc(t) = Nc), we assume
that the temporal variation of Nc(t) follows a Poisson distribution with parameter Nc,
subjected to a running mean with a window length equal to the assumed convec-
tive lifetime of 30 minutes, to ensure that the convective birth-rate on any time step
is (nearly always) zero or positive. Occasional negative rates are subject to a correc-
tion procedure to ensure the time-averaged convective population is precisely Nc in
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all experiments. We note that increasing the average convective lifetime would make
self-aggregation more likely, but this aspect of the model sensitivity is not investigated
further.

Weights of the sampling

When choosing the locations for new convective events, all cells in the domain with
Ic = 0 are sampled without replacement (i.e., no two convective cells can occupy the
same location), using a non-uniform probability distribution pc(R(t)) that depends on
the column relative humidity R at current time t. We base the probability of a cell
being chosen as convective on the observations of the non-linear moisture-precipitation
relationship by Bretherton et al. (2004) and Rushley et al. (2018) using TRMM data,
which gives surface precipitation P increasing exponentially with R:

P(R) = P0eadR, (2.3)

where P0 and ad are constant coefficients quantifying the horizontal mean RCE rain rate
and the sensitivity of precipitation to column humidity, respectively. This form was also
confirmed independently by Holloway and Neelin (2010).

An increase in precipitation could result from an increase in the occurrence of con-
vective events and/or an increase in precipitation intensity per event. To allow us to use
eqn. (2.3) to define the probabilities pc(R), we make the assumption that the increase
in precipitation rate as a function of R is solely due to the more frequent occurrence
of convection in moister atmospheres. In other words, we assume that the rainfall
intensity per event is constant. This assumption, also adopted by previous idealized
modeling studies (Stechmann and Neelin, 2011, 2014; Hottovy and Stechmann, 2015b),
seems to be reasonable according to a recent analysis of (mid-latitude) station data by
Yano and Manzato (2022) and neglects the limited contribution of increased humidity
to increased precipitation efficiency (Narsey et al., 2019). It would be straightforward to
include a relationship for this latter effect, but while it would change the critical thresh-
old for aggregation onset, it would not affect the conclusions of the work and is omitted
for simplicity.

Making the above assumption means we can apply (2.3) to give the probability of
occurrence of new convection, associated with the random sampling, as

pc(Rj,k) = Z(t)
(

eadRj,k(1 − Icj,k)
)

, (2.4)

where the subscripts j, k = 1, . . . ,
D
∆x

refer to the spatial grid and the relationship

is normalized at each time step by Z(t) to ensure the sum of probabilities across all

convective-free cells is unity, i.e., Z(t) =
(

∑j,k

(
eadRj,k(1 − Icj,k)

))−1
.3

3The factor (1 − Icj,k ) means that the cells that were already experiencing convection and have not
dissipated in the meantime continue to evolve and are therefore excluded from the sampling.
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Craig and Mack (2013) modified the fit of Bretherton et al. (2004) by subtracting
unity from the exponential (i.e., eqn. (2.3) would become P(R) = P0

(
eadR − 1

)
) to

give the limit of zero precipitation when R = 0. This assumption introduces a second
dry equilibrium state as convection can not remoisten a completely dry domain where
R = 0 everywhere. We instead retain the original form of Bretherton et al. (2004) to
allow our model to trigger convection in dry columns. In practice, the difference to
Craig and Mack (2013) in the P-R relationship has very limited effect at the values of R
found in the domain.

Note that the external constraint on Nc(t) and the specification of the probability
law that underlies the weighted random selection process serve to define the indica-
tor function in that they determine the cardinality of the subset mapped by Ic and the
locations where Ic is activated at time t. This prevents the problem from being un-
derdetermined. Our closure of specifying Nc differs from that adopted by Craig and
Mack (2013), who instead constrained the domain-mean accumulated precipitation by
assuming that the latent heat release balances the radiative cooling above the boundary
layer.

2.2.6 The model contains the moisture-convection correlation

The convective term, unlike the transport and subsidence terms, can act to increase or
decrease the spatial variance of R, depending on the spatial distribution of R itself and
the choice of convective locations. If convection occurs in the moistest regions of the do-
main, the impact is to increase spatial variance, possibly leading to aggregation. Thus
the model will be sensitive to ad, which describes the observed correlation between
convection and water vapor.

Through eqn. (2.4) the model incorporates such a correlation, which some CRM
studies associate with the moisture-memory feedback (cf. Section 1.4.1): deep convec-
tion moistens its local environment, while enhanced humidity encourages persistence
of convection. In addition, as already mentioned in the Introduction (Section 1.4.1),
CRM studies have also acknowledged the important role of the radiative and surface
flux contributions to the localization of convection. In moist areas, this primarily oc-
curs through enhanced longwave heating and shortwave absorption due to the high
infrared opacity and the presence of deep convective cloudiness and through increased
fluxes due to the strengthening of the storm-induced gustiness. These effects jointly act
to amplify the positive MSE anomalies in the moist patches. In this perspective, the
parameter ad, which describes how likely convection is to occur in the vicinity of pre-
vious events, can be thought of as representing the net positive feedback of all diabatic
processes driving the aggregation.

In summary, the formulation of the simple model contains the moisture-convection
correlation. This correlation can be associated with feedback processes directly involv-
ing the water vapor field or can simply represent a diagnostic of other mechanisms (like
the diabatic ones) that do not entail a spatial homogeneity of water vapor. The specifi-
cation of the convective moistening term and, in particular, of the probability function

32



that underlies the selection of new convective cells can be regarded as a proxy for a
number of physical processes, at least those associated with water vapor.

2.2.7 A one-dimensional version of the model

To better visualize the effects of each physical term, a one-dimensional version of the
model was also developed, which is identical to eqn. (2.1) except for the fact that the
laplacian ∇2 is to be replaced by the second derivative ∂2/∂x2. An animation show-
ing the results of a simulation performed with this one-dimensional counterpart of the
model can be found at http://clima-dods.ictp.it/Users/gbiagiol/animation_1d.
mp4. In this experiment, there is only one convective event at a time, which is anyway
consistent with the mass conservation constraint eqn. (2.2). Given its simplicity, this
version also lends itself to motivating or checking the findings of some more theoret-
ical studies, which are beyond the scopes of this thesis but will be a topic of future
research.

2.3 Numerical treatment

Adequate numerical treatment is needed to ensure the results are not time step sensi-
tive. We will use implicit solution techniques to ensure stability. The time step is set to
be uniform. Adaptive strategies could be considered, with a refinement of the time step
in the very first, transient phase after the eruption of updrafts. Nevertheless, the local
spikes introduced by convection act to continuously perturb the system and in practice
the adaptive approach is not viable. In the following, we will provide a full description
of the numerical solvers for both the one- and two-dimensional versions of the model
and discuss a number of idealized experiments to demonstrate numerical robustness.
The code for numerical solution of the two-dimensional model is available on github
at https://github.com/adriantompkins/toy_diffusion and the version used in this
thesis is tagged v1.1.JAMES.

2.3.1 The one-dimensional case

For the implicit solution of the full one-dimensional equation, a uniform spatial grid
with spacing ∆x and a uniform mesh in time with time step ∆t are considered. Second-
order accurate central difference approximations to the second derivative are employed
for the spatial dimension, whereas first-order backward Euler method is applied in
time. One may want to adopt the second-order accurate trapezoidal rule for the tem-
poral integration, but it is well known that, when sharp discontinuities are present
in a diffusive problem (as is the case here) and a large time step is taken, the solution
may contain spurious oscillations, that are then damped with time (e.g., Østerby, 2003).
This is directly related to the concept of L-stability (e.g., Brugnano and Trigiante, 1998).
Moreover, such a treatment would introduce an additional computational burden as a
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matrix-by-vector multiplication has to be performed at each time step. For these rea-
sons, the implicit Euler scheme is preferred despite being only first-order in time.

The final discretized equation reads

Rn+1
j − Rn

j

∆t
= − 1

τsub
Rn+1

j − 1
τc

(
Rn+1

j − Rc

)
In

cj
+

K
∆x2

(
Rn+1

j+1 − 2Rn+1
j + Rn+1

j−1

)
,

which leads to
αn

j Rn+1
j − β

(
Rn+1

j+1 + Rn+1
j−1

)
= Rn

j +
∆t
τc

RcIn
cj

, (2.5)

where

αn
j = 1 + ∆t

(
1

τsub
+

1
τc
In

cj
+ 2

K
∆x2

)
, β = K

∆t
∆x2 .

In the previous formulation, the subscript j and the superscript n refer to the spatial and
temporal discretizations, respectively. It is important to remark that the label αn

j (rather
than just α) is because these elements depend on the spatial and temporal variables
through the indicator function Ic. We however recall that the selection of convective
locations is performed before the time integration takes place, whence the superscript
n.

For each time n ≥ 0, the set of equations (2.5) can be rewritten in the matrix form

AnRn+1 = bn, (2.6)

where An ∈ RNx×Nx , Nx being the total number of grid points in the x-direction, is the
cyclic tridiagonal matrix

An =


αn

1 −β −β
−β αn

2 −β
. . . . . . . . .

−β αn
Nx−1 −β

−β −β αn
Nx

 ,

Rn+1 ∈ RNx denotes the vector of the unknowns and bn ∈ RNx is simply the RHS of
(2.5). The structure of the coefficient matrix results from the assumption of periodic
boundary conditions which is typically made in CRM studies, i.e., the solution “wraps
around itself” at the end of the spatial domain. Note that the matrix is not even circulant
due to the presence of the stochastic moistening term.

If An were a tridiagonal matrix, the linear system (2.6) could be efficiently solved
with the classical tridiagonal matrix (or Thomas) algorithm (TDMA). It is well known
that the application of the TDMA to a problem of size N requires 8N − 7 floating point
operations (flops), 3(N − 1) of which in the LU-decomposition phase of the coefficient
matrix and 5N − 4 in the subsequent solution phase. A condition for TDMA to be stable
is the symmetry and positive definiteness of the tridiagonal system matrix (Higham,
2002). Here it is still possible to retain the efficiency of the classical TDMA by adopting
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a decomposition of the coefficient matrix based on the Sherman-Morrison formula (Golub
and van Loan, 2013). This reduces the original problem to the solution of two linear
tridiagonal systems.

General case

Let Ax = b denote a set of equations, with A ∈ RN×N the coefficient matrix, which we
assume is cyclic tridiagonal, x ∈ RN the unknown and b ∈ RN the RHS. Any cyclic
tridiagonal matrix can be interpreted as a rank-one correction of a general (nonsingular)
tridiagonal matrix T ∈ RN×N , i.e.,

A = T + uvT, (2.7)

where u, v ∈ RN are proper vectors. The choice of T, u and v is arbitrary and we will
see an example choice for the case of interest below. The Sherman-Morrison formula
gives the inverse of A in terms of the inverse of T as

A−1 = T−1 − 1
1 + λ

(
T−1uvTT−1

)
, (2.8)

under the further assumption 1 + λ ≡ 1 + vTT−1u ̸= 0. By means of (2.8), the solu-
tion of the original set of equations is reduced to the solution of auxiliary tridiagonal
systems

Ty = b (2.9)
Tz = u, (2.10)

followed by a linear combination of y and z, to yield

x = y −
(

v · y
1 + v · z

)
z. (2.11)

Application to our case

In the case of interest, for each n ≥ 0, the cyclic tridiagonal matrix representation An of
(2.6) satisfies (2.7) with, e.g.,

Tn =



2αn
1 −β

−β αn
2 −β

. . . . . . . . .
−β αn

Nx−1 −β

−β αn
Nx

+
β2

αn
1


un =


−αn

1
0
...
0
−β

 vn =



1
0
...
0
β

αn
1


. (2.12)

Decompositions other than (2.12) can be adopted depending on the first entry of un,
which is arbitrary: here un

1 = −αn
1 , while, for instance, setting un

1 = αn
1 will result in
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a zero top-left entry in the matrix Tn and in a failure of the LU-decomposition of Tn.
The symmetric matrix Tn is strictly diagonally dominant (hence nonsingular) and has
strictly positive diagonal entries, thus it is positive definite (Bini et al., 1988). The LU-
decomposition process of the matrix Tn is therefore stable.

The computational cost is still massively cut. We notice that, in each update (2.6),
in addition to the 10Nx − 8 flops associated with the solution of (2.9)-(2.10), the compu-
tation (2.11) requires 2Nx + 6 algebraic operations, hence the linear complexity of the
TDMA is well retained. Finally, 3(Nx − 1) storage units are needed, which introduces
insignificant memory overhead.

2.3.2 Towards the solution of the two-dimensional problem

For the numerical solution of the two-dimensional problem (2.1), this kind of approach
can not be extended and applied due to the completely different structure of the co-
efficient matrix resulting from implicit-time discretization. The size of the linear sys-
tem itself sometimes can be so large that its solution at each time step turns out to
be extremely expensive. For instance, the adoption of two-dimensional backward Eu-
ler or Crank-Nicolson (CN) schemes yields a block coefficient matrix of dimension
Nx Ny × Nx Ny, Nx and Ny being the total number of grid points in the x- and y-direction,
respectively. Although sparse, the matrix is not circulant (or at least block circulant with
circulant blocks) nor constant with time owing to the triggering of convective events,
whose corresponding terms contribute to the entries of the main diagonal. This makes
the attempts to solve the problem through implicit procedures almost prohibitive.

On the other hand, the use of explicit schemes is not to be recommended due to
severe constraints on the time step to ensure stability. For example, if explicit Euler
method is employed to solve reaction-diffusion equations like

∂R
∂t

= K∇2R − R
τsub

(2.13)

(eqn. (2.1) with only the diffusion and subsidence terms retained), application of von
Neumann stability analysis shows that the scheme is stable provided that 4K∆t/∆x2 +
4K∆t/∆y2 + ∆t/τsub ≤ 2, i.e., assuming ∆x = ∆y, the limit

∆t ≤ 2
8K
∆x2 +

1
τsub

≃ ∆x2

4K
(2.14)

is imposed on the time step, the approximate equality following from the fact that typ-
ically τ−1

sub ≪ 1. The restriction (2.14) is referred to as the diffusive stability criterion. The
quantity ∆x2/K can be interpreted as a characteristic diffusion time, essentially the time
needed for a disturbance to be transmitted by diffusion over a distance ∆x (Ferziger and
Perić, 2002).

For implicit discretization schemes, there is no longer a critical threshold for stabil-
ity, yet the limit (2.14) still serves as a measure of accuracy. In fact the unconditionally
stable Crank-Nicolson scheme may produce solutions with oscillatory behavior if large
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time steps are taken (Ferziger and Perić, 2002), especially in response to sharp disconti-
nuities in the initial conditions. In practice, time steps that widely exceed the constraint
(2.14) may be used, the actual limit being often problem-dependent (Ferziger and Perić,
2002), but still caution must be taken in the choice of the time step.

Splitting techniques

A computationally sustainable alternative able to retain the implicitness of the solution
method is offered by the adoption of the so-called splitting strategies.

Commonly, when a differential problem involves many physical processes, it is not
possibly or numerically efficient to attempt the integration of the equations by means
of a single solver method. We could then decompose (split) the system into sub-groups
of processes and use different suitable and advantageous methods for each group, with
tendencies from each treated sequentially in time. Similar techniques can be applied
with respect to the spatial dimension. That is, a d-dimensional problem can be bro-
ken down into more convenient (sub)problems in lower-dimension spaces, which can
be solved more easily/efficiently. These approaches, referred to as operator and dimen-
sional splitting respectively, may lead to significant simplifications of the overall solu-
tion procedure. However, they normally introduce an error, the splitting error, which
is investigated in the sequel.

The following discussion focuses on the first type of splitting strategies and is largely
based on Hundsdorfer and Verwer (2003). Let ut = f (u) denote a generic, scalar partial
differential equation, where f can be regarded as a spatial partial differential operator.
The simplest possible splitting is a two-term splitting, i.e., a two-term additive decom-
position of the RHS is assumed,

f (u) = f1(u) + f2(u). (2.15)

Various approaches are considered for the time advancement from tn to tn+1.
The most intuitive one is the so-called Lie splitting, which results in the sequential

solution of the problems

u∗
t = f1(u∗), tn < t ≤ tn+1, u∗(tn) = un, (2.16)

u∗∗
t = f2(u∗∗), tn < t ≤ tn+1, u∗∗(tn) = u∗(tn+1), (2.17)

and the global solution is set to be un+1 = u∗∗(tn+1). The two groups of physical
processes are therefore integrated one after the other, with the tendency from the first
used as initial condition for the treatment of the second. We can estimate the local
truncation error τn+1 associated with the splitting (2.16)-(2.17). This is by definition the
error introduced by a single splitting integration step, under the local hypothesis that
the exact solution is known at tn.4 It obeys

τn+1 =
1
2

∆t2
[

∂ f1

∂u
f2 −

∂ f2

∂u
f1

]
u(tn) +O

(
∆t3) ,

4In other words, the local truncation error can be regarded as the residual generated per integration
step when the exact solution is plugged into the numerical scheme.
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with ∆t = tn+1 − tn. In particular, the splitting is exact only if the term in brackets,
called the commutator [ f1, f2] of the operators f1 and f2, is zero, otherwise it provides a
first-order approximation as the local error on smooth solutions is O

(
∆t2).

The accuracy can be improved to second order by adopting the so-called Strang
splitting (Strang, 1968). In this case, rather than taking a full time step with each oper-
ator, half a step is performed with the operator f2, followed by a full step with f1 and
another half step with f2 (or vice versa), with the tendency from the previous process
providing the initial value to the subsequent process(es). In formulae,

u∗
t = f2(u∗), tn < t ≤ tn+ 1

2 , u∗(tn) = un, (2.18)

u∗∗
t = f1(u∗∗), tn < t ≤ tn+1, u∗∗(tn) = u∗

(
tn+ 1

2

)
, (2.19)

u∗∗∗
t = f2(u∗∗∗), tn+ 1

2 < t ≤ tn+1, u∗∗∗
(

tn+ 1
2

)
= u∗∗(tn+1), (2.20)

and the overall solution is given by un+1 = u∗∗∗(tn+1). The local truncation error intro-
duced by the splitting (2.18)-(2.20) satisfies

τn+1 =
1

24
∆t3 ([ f2, [ f1, f2]] + 2 [ f1, [ f1, f2]]) u(tn) +O

(
∆t4
)

,

thus revealing second-order accuracy on sufficiently smooth solutions, provided that
each subproblem is treated with a method of such accuracy at least.

Splitting techniques are commonly invoked in meteorological applications with
multiple timescales (Beljaars et al., 2018). In the case of interest, the subsidence and
diffusion components of the full equation (2.1) will be separated from the convective
source term. Thus, in analogy with (2.15), we can write

∂R
∂t

= f1(R) + f2(R),

where f1(R) is the RHS of (2.13) and f2(R) = τ−1
c (Rc − R) Ic. The convenience of this

splitting is immediately apparent: it will not produce any splitting error in the non-
convective grid points, where the second operator vanishes - it does not even make
sense to talk about a splitting in those locations. On the other hand, in the cells where
convection is triggered, the commutator [ f1, f2] is

[ f1, f2] = K∇2
(

Rc − R
τc

)
− 1

τsub

Rc − R
τc

+
1
τc

(
K∇2R − R

τsub

)
= − 1

τsub

Rc

τc
̸= 0.

This requires the use of second-order Strang splitting methods, even though typical
values of τsub, τc and Rc (cf. Section 3.1) imply [ f1, f2] ≃ 0 and the convective fraction ϵ
is usually ϵ ≪ 1 (the small-area approximation, Section 2.2.5).

In conclusion, the numerical solution procedure for eqn. (2.1) consists in solving
the differential problem with only the convection term for half a time step, then the
problem eqn. (2.13) for a full step and again the former for another half step. Now
everything is reduced to finding suitable integration formulas for both subproblems.
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2.3.3 Treatment of the convective source term

For the problem involving f2, the analytical solution is derived, in order to reduce as
much as possible any integration error, related to the application of numerical methods,
which can be incurred in addition to the splitting error. This exact solution is given by

R(t) =
(

Rc + (R(t0)− Rc) e−
t−t0

τc

)
Ic(t0).

2.3.4 The Alternating Direction Implicit schemes

The numerical solution of the reaction-diffusion equation (2.13) is obtained by means
of second-order accurate centered difference approximations of the second derivatives
and a properly modified version of the Alternating Direction Implicit (ADI) scheme for
the temporal discretization.5 The equation will be integrated on a square mesh with
uniform spacing, assumed to be the same in the x and y directions, i.e., ∆y = ∆x, and
on a uniform grid in time with step ∆t.

The ADI schemes can significantly reduce the computational cost associated with
the application of backward Euler or Crank-Nicolson methods. Nevertheless, they re-
tain all advantages of implicit schemes while also leading to much smaller and gener-
ally structured sets of linear systems, which can be easily solved with direct methods.
Indeed, the ADI procedures consist in splitting two-dimensional problems into two
separate steps, treating implicitly only one spatial derivative at a time and therefore
performing line-by-line solution of small, independent sets of equations. Thus the ADI
schemes can be interpreted as an example of dimensional splitting approaches (cf. Sec-
tion 2.3.2).

The classical ADI method, first developed by Peaceman and Rachford (1955) for
the numerical solution of the two-dimensional heat equation, can be regarded as a per-
turbed formulation of the Crank-Nicolson scheme. Applying CN to eqn. (2.13) would
yield (

1 − βδ2
x − βδ2

y + ω
)

Rn+1
j,k =

(
1 + βδ2

x + βδ2
y − ω

)
Rn

j,k,

where the subscripts j, k, j = 0, . . . , Ny, k = 0, . . . , Nx, refer to the horizontal square
grid and the superscript n indicates discrete time steps; δ2

• is a second-order difference

operator, β = K
∆t

2∆x2 and ω =
∆t

2τsub
. By factoring both sides, the previous equation

5In principle it would be possible to derive the analytical solution of eqn. (2.13) (as it is a linear parabolic
equation) through separation of variables and the theory of Fourier series. In particular, separation of
variables would lead to Sturm-Liouville eigenvalue problems for the spatial components of the solution
and to a first-order ordinary differential problem for the temporal part. Nevertheless, numerical treatment
is still the preferred approach as future modifications may be made to the model, involving, for example,
the inclusion of non-linear terms which necessarily restricts us to the use of numerical schemes.
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can be rearranged as(
1 − βδ2

x + ω
) (

1 − βδ2
y

)
Rn+1

j,k =
(
1 + βδ2

x − ω
) (

1 + βδ2
y

)
Rn

j,k

+
(

β2δ2
xδ2

y − ωβδ2
y

) (
Rn+1

j,k − Rn
j,k

)
.

(2.21)

The last term on the RHS is O(∆t3) as Rn+1
j,k − Rn

j,k ≈ ∆t∂R/∂t (see below for a complete
analysis). In the derivation of the Peaceman-Rachford ADI scheme an analogous third-
order term is neglected (the relationship for time advancement is the same as (2.21)
with ω = 0). This is justifiable when ∆t is small, but large errors can be introduced
with larger time steps. Methods based on such approximations are called approximate
factorization schemes (Thomas, 1995).

Our modified version of the conventional ADI method entails the sequential solu-
tion of the systems (

1 − βδ2
x + ω

)
Rn+ 1

2
j,k =

(
1 + βδ2

y

)
Rn

j,k, (2.22)(
1 − βδ2

y

)
Rn+1

j,k =
(
1 + βδ2

x − ω
)

Rn+ 1
2

j,k . (2.23)

This means that, for a time step
∆t
2

, the x-derivative is treated implicitly, the y-derivative

explicitly and an intermediate solution Rn+ 1
2 is obtained, then the procedure is repeated

for a second time step of equal size, with the difference equation (2.23) evaluated im-
plicitly in the y-direction and explicitly in the x-direction.

It is possible to show that the two-step scheme (2.22)-(2.23) is unconditionally stable
and second-order in both space and time, hence convergent. For stability, we make use
of the von Neumann analysis and take the two-dimensional discrete Fourier transform
of both sides of equations (2.22) and (2.23). Labeling ζ, η the transformed coordinates,
we see that the symbol (that is, the amplification factor) of the difference scheme (2.22)-
(2.23) fulfills

ρ(ζ, η) =

(
1 − ω − 4β sin2

(
ζ
2

)) (
1 − 4β sin2 ( η

2

))
(
1 + 4β sin2 ( η

2

)) (
1 + ω + 4β sin2

(
ζ
2

)) ,

which is |ρ| ≤ 1 owing to the positive sign of β and ω. This guarantees that (2.22)-(2.23)
is unconditionally stable as a scheme for initial-value problems. Nevertheless, since
periodic boundary conditions are assigned, the same conclusions hold for (2.22)-(2.23)
now regarded as a method for initial-boundary-value problems (Mitchell and Griffiths,
1980; LeVeque, 2007).

The second-order accuracy can be established by recalling that the ADI scheme dif-
fers from CN for the term −

(
β2δ2

xδ2
y − ωβδ2

y

) (
Rn+1

j,k − Rn
j,k

)
. It is well known that the

Crank-Nicolson method is second order in time. This order of consistency is inherited
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by the ADI scheme as Taylor series expansion of the extra terms yields(
β2δ2

xδ2
y − ωβδ2

y

) (
Rn+1

j,k − Rn
j,k

)
=

K2

4
∆t3

(
∂5R

∂t∂x2∂y2

)n

j,k
+

K
2τsub

∆t3
(

∂3R
∂t∂y2

)n

j,k

+O
(
∆t3∆x2)+O

(
∆t3∆y2)+O(∆t4).

Prescribing periodic boundary conditions leads to circulant tridiagonal systems,
which can be easily solved by using Fast Fourier Transform (FFT) algorithms (e.g., Coo-
ley and Tukey, 1965). The matrices resulting from (2.22) and (2.23),

A1 = circ (1 + 2β + ω,−β, 0, . . . , 0,−β) ,
A2 = circ (1 + 2β,−β, 0, . . . , 0,−β) ,

are strictly diagonally dominant, hence nonsingular.6 If the mesh points are ordered
by lines, in the x-direction in the first stage and in the y-direction in the second one,
(2.22) represents a set of Ny independent circulant tridiagonal systems with coefficient
matrix A1 and size Nx each and, similarly, (2.23) constitutes a set of Nx independent
circulant tridiagonal systems with matrix A2 and size Ny. To carry out this procedure,
an implicit (transposed) reordering of the CRH data between (2.22) and (2.23) and then
again between (2.23) and (2.22) at the new discrete time must be done.

6A fundamental property of circulant matrices is that they are diagonalized by the Fourier matrices,
the matrix form of the discrete Fourier transform. In formulae,

A = FH
N ΛFN , (2.24)

where A ∈ CN×N , C being the set of complex numbers, is a circulant matrix which can also be denoted
A = circ(a0, a1, . . . , aN−1) = circ(a) in terms of the first column entries; FN ∈ CN×N is the Fourier matrix
of order N which is the Vandermonde matrix of the complex conjugates of the primitive N-th roots of
unity, with a multiplicative constant 1√

N
; ·H denotes the Hermitian transpose of a matrix; Λ is the diagonal

matrix containing the eigenvalues of A (Davis, 1979). The set of eigenvalues of a circulant matrix can be
expressed as

λ =
√

NFNa. (2.25)

For the solution of the circulant system Ax = b, it is seen that, if A is nonsingular, the factorization (2.24)
yields

x = A−1b = FH
N Λ−1FNb,

which implies the sequential solution of the systems

y = FNb, (2.26)

z = Λ−1y, (2.27)

x = FH
N z. (2.28)

We note that the relationships (2.25), (2.26) and (2.28) represent the Discrete Fourier Transform (DFT) and
Inverse Discrete Fourier Transform (IDFT), respectively. Direct evaluation of each of the above expressions
would require O(N2) flops, precisely N2 multiplications and N2 − N additions. The computational bur-
den can be substantially reduced if FFT methods are used, e.g., the Cooley-Tukey algorithm (Cooley and
Tukey, 1965). Here the FFT algorithm has to be applied three times, one in (2.26), one in (2.27) via (2.25)
and one in (2.28). A proof of numerical stability results for the Cooley-Tukey FFT algorithm, as well as for
the solution procedure (2.25)-(2.28), can be found in Higham (2002).
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Final remarks and alternative solver methods

Other approaches can be developed for the numerical solution of circulant systems to
exploit eventual properties and structures of the coefficient matrix (e.g., Chen, 1987).
Alternatively it is still possible to make use of the Sherman-Morrison formula (2.8),
especially because the matrix representations of (2.22) and (2.23), hence their decom-
positions (2.7), do not vary with time. This means that the LU-decomposition of the
tridiagonal matrix in (2.7) has to be performed only once and the solution of the lin-
ear system (2.10) has to be calculated only at the beginning of the overall integration
procedure and then stored. Only the solution of (2.9) would be required in each of the
updates (2.22), (2.23). This method was found to be extremely competitive with the
FFT one as long as the size of the linear systems resulting from (2.22) and (2.23) stays
relatively small (< 100), then the circulant solver is to be preferred.

We agreed upon ignoring the third-order term on the RHS of (2.21), as tests con-
ducted to compare the performances of ADI versus Crank-Nicolson showed that gen-
erally the infinity norm

∥∥Rn
CN − Rn

ADI

∥∥
∞ ≡ maxj,k

∣∣Rn
CNj,k

− Rn
ADIj,k

∣∣ of the difference
between the respective solutions rapidly goes to zero (not shown). Factorizations other
than (2.21) can be used, for example the one adopted by Douglas and Kim (2001) on
the basis of a more general formulation of ADI procedures developed by Douglas and
Gunn (1964).

Different approaches could be chosen to solve (2.13) by means of implicit methods.
For example, one may want to use Crank-Nicolson scheme directly and apply, e.g.,
the efficient block circulant solver by Chen (1987) to the linear system resulting from
the discretization. However, we noticed that the ADI method is able to produce more
accurate results than the CN itself for the heat equation with linear source term (2.13)
under consideration here. In particular, we saw that, for certain combinations of K, ∆t
and ∆x, the Crank-Nicolson scheme turns out to be overdiffusive, therefore providing
inaccurate solutions, whereas the ADI method is not affected by this drawback and
smooths spurious oscillations. This feature was already pointed out by other authors
(e.g., Sgura et al., 2012).

A further alternative is to use the ADI procedure for the numerical solution of the
full equation (2.1), without adopting any operator splitting technique. However, this
would lead to the solution of smaller, independent sets of equations which are no longer
circulant or constant with time. Obviously it is still possible to employ the Sherman-
Morrison formula (2.8) but it would be used for each of the Nx + Ny systems to be
solved per time step, for all temporal iterations. Indeed in this case none of the decom-
positions (2.7) can be stored. Even though the resulting method was still relatively fast,
it was not considered further.
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2.4 Numerical convergence tests for the two-dimensional case

2.4.1 Numerical convergence of the ADI scheme

The convergence properties of the new ADI solver are assessed against the assumption
of initial top-hat or Gaussian profiles. The results of convergence tests under time step
and grid refinements are shown in Figs. 2.3 and 2.5, respectively.

Time step sensitivity

In the first case (Fig. 2.3), the problem eqn. (2.13) is considered, with K = 104 m2s−1,
τsub = 10 days, over a domain with size D = 300 km and spacing ∆x = 2 km,7 and
initial condition given by

R0(x) = R(x, 0) =

{
1 for x ∈ [x1, x2]× [y1, y2]

0.8 elsewhere
, (2.29)

where x1, y1 = 140 km and x2, y2 = 160 km. The top-hat configuration is a good test
bench due to presence of very sharp discontinuities. Earlier (Section 2.3.2) we saw that
the diffusive stability criterion (2.14) is to be satisfied for the explicit Euler method to
be stable, while, for implicit schemes, a limit of this type still serves as a measure of

accuracy. Labeling ξ = 4K
∆t

∆x2 , we impose several time steps corresponding to a range
of values of ξ and compute the solutions Rξ .

Convergence is apparent in the time slices of Fig. 2.3 (dashed and dash-dotted
lines), even though the approximation for ξ = 6 exhibits a spurious oscillation at
the beginning, which is then damped and rapidly disappears. This is also confirmed
by a more systematic error analysis which, given the convergence properties, uses
the solution corresponding to ξ = 5 × 10−4 (∆t = 0.05 s) as a reference one, Rref.
For each choice of ξ and time {tn

ξ}n≥0, the infinity norm of the error e, ∥e(tn
ξ )∥∞ ≡

maxj,k |Rrefj,k(t
n
ξ )− Rξ j,k(t

n
ξ )|, is computed. The following Fig. 2.4a shows that, in gen-

eral, the error decays in a few iterations. To evaluate the orders of the magnitude of the
errors more precisely, these are charted in terms of time step choice in Fig. 2.4b after
t = 100 s of simulated time (corresponding to the first iteration for the case ξ = 1).8

Grid size sensitivity

Spatial convergence properties are examined, as also demanded by a resolution sensi-
tivity study presented in Chapter 3. The results of a grid refinement analysis performed
on the problem eqn. (2.13) with K = 5 × 103 m2s−1, τsub = 10 days and Gaussian initial
distribution with µ = 150 km and σ = 5 km are shown in Fig. 2.5. The horizontal spac-
ing is successively halved ranging from ∆x = 2 km to 250 m, and the time step ∆t is

7See Section 3.1 for details on the model parameters and setup.
8In this dissertation, unless otherwise specified, we will choose the time step such that ξ < 1 (see

Section 2.4.2).

43



0.80

0.85

0.90

0.95

1.00

R

0 50 100 150 200 250 300
x (km)

0.80

0.85

0.90

0.95

1.00

R

=  0.001
=  0.01
=  0.10
=  0.25
=  0.50
=  1.00
=  1.50
=  2.00
=  3.00
=  6.00

Figure 2.3: Computed solutions along the section y = 150 km for the problem (2.13) with
K = 104 m2 s−1, τsub = 10 days, R0(x) as specified in (2.29). Shown are the initial profile
(solid lines) and the numerical approximations for different time step choices at t = 600 s
(dashed) and 3600 s (dash-dotted). ξ = 1 corresponds to ∆t = 100 s.

such that ξ = 0.25 in all cases. At t = 600 s (dashed lines), the profiles are almost insen-
sitive to the resolution, then any error is eventually smoothed down and, at t = 3600 s
(dash-dotted), the curves are nearly indistinguishable.

In case profiles with sharper discontinuities are prescribed, the method is still able to
provide reasonably good approximations, despite exhibiting a more pronounced sensi-
tivity to both the time step size and the resolution.

2.4.2 Full solver

In the full system (2.1), the action of convection is to continuously introduce local delta
function perturbations into the R distribution, with sharp gradients between the con-
vective points and the surrounding grid cells. This is particularly challenging for the
numerics and could possibly amplify numerical errors. Further sets of tests are thus
conducted, aimed at quantifying the impact of the errors associated with the operator
splitting.

Fig. 2.6 charts the results obtained for different values of K, K = 104 m2s−1 (solid
lines) and K = 2.5 × 104 m2s−1 (dashed lines), and ξ (colors), all else being kept fixed
(τsub = 12 days, ad = 14.72, D = 300 km, ∆x = 2 km, R0 = 0.8). Convergence to
the same statistically steady solutions is apparent, even though, in the low-diffusion
case, the approximation for ξ = 3 (∆t = 300 s) yields some differences in both the
R spatial mean and standard deviation final state. Interestingly, both the transition to
equilibrium and the following evolution do not vary monotonically with ∆t, and we
attribute this effect to the large stochastic component present in the modeled system.
The time step dependency almost entirely disappears for higher values of K, as they
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(a)

(b)

Figure 2.4: (a) Time evolution of the infinity norm of the error for numerical solutions of (2.13)
(with K = 104 m2 s−1, τsub = 10 days, initial condition as in (2.29)) obtained for different time
step choices. (b) Infinity norm of the errors at t = 100 s as a function of time step. The errors
are calculated with respect to the solution corresponding to ξ = 5 × 10−4 (∆t = 0.05 s).
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Figure 2.5: Results of a grid refinement study conducted on the problem (2.13) with K =
5 × 103 m2 s−1, τsub = 10 days and a Gaussian initialization. Shown are the solutions along
the section y = 150 km, at times t = 0 (solid lines) t = 600 s (dashed) and 3600 s (dash-dotted).

require the use of a smaller time step (via eqn. 2.14), which also leads to less severe
splitting errors. For the experiments presented in this thesis, in general, the time step is
chosen so that ξ < 1.

2.5 Summary

In the previous sections, we introduced a simple stochastic lattice model of the reaction-
diffusion type which considers the evolution of column total water relative humid-
ity in the tropical troposphere. Due attention was devoted to ensure the model is as
insensitive as possible to the specifics of numerical discretization methods, since the
grid-point, stochastic representation of the convective moistening term can pose seri-
ous problems in this respect.

A number of questions arise, which will be addressed in the next chapter. First, is
the model able to reproduce realistic states of random and self-aggregating convection,
in spite of being highly idealized? If so, will it allow to draw robust conclusions regard-
ing the onset of the instability that leads to self-aggregation? Is it possible to know in
advance which end climate is likely to be approached by the system for a given experi-
mental and model configuration?
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Figure 2.6: Statistics of the R distribution for different runs of the model in terms of ∆t in the
cases K = 104 m2 s−1 (solid lines), 2.5 × 104 m2 s−1 (dashed lines), with τsub = 12 days and
ad = 14.72. ξ = 1 corresponds to ∆t = 100 s and ∆t = 40 s, respectively.
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Chapter 3
A dimensionless parameter to predict
the onset of convective aggregation

The model introduced in Chapter 2 is minimal-complexity in terms of the representa-
tion of physics, but still retains much of the behavior of the models that represent all
the key physical processes. In this chapter, we will show that, depending on the chosen
parameter and experimental settings, the model can mimic both random and clustered
convective states and produces a transition to aggregation at parameter values that are
a realistic approximation of the present-day tropical atmosphere. Many other aspects
of the full-physics models are reproduced, such as their sensitivity to resolution and
domain size, with aggregation more likely using coarser grid sizes and larger domains.
The model is therefore a valuable tool to explain these sensitivities in the context of
full-physics CRMs, which we attribute to the distribution of inter-convective nearest-
neighbor distances in the initial random phase.

The simplicity of the model allows us to investigate its parameter sensitivities. Us-
ing dimensional analyses, heuristic scaling arguments and a fit from empirical data,
we will derive a dimensionless quantity, called the aggregation number, which combines
model and experiment configuration parameters and has a predictive power. Analy-
sis of large ensembles of several thousand simulations indeed demonstrates that the
transition between random and organized regimes occurs at a critical value of the ag-
gregation number, with convection aggregating when the parameter falls below the
critical threshold. The aggregation number ultimately tells us whether a specific model
and experiment setup will result in an aggregated or random convective state.

3.1 Choice of the model setup, parameters and constants

We start by describing the model and simulation settings. The governing equation (2.1)
is integrated over a square domain which is periodic in both horizontal directions. The
simulations examined in this chapter are initialized with column relative humidity field
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R assumed to be completely horizontally homogeneous with R = 0.8 everywhere. We
will see in Chapter 4 that there is sensitivity to the initial conditions with the model
exhibiting a weak hysteresis, but this is beyond the scope of the present chapter. No
perturbations are imposed to the initial R distribution since stochasticity is already ac-
counted for in the model through the convective location function. All experiments
are run for at least 120 days (with some extended to 180 days), a period long enough
such that there is a long-term steady state of variables indicating equilibrium has been
achieved.

As a metric of clustering or random convection we mostly use the domain spatial
standard deviation of R averaged over the last 20 days of simulation, denoted by σR,20.
Low values of σR,20 indicate random convection while high values indicate convection
is aggregated. In addition, we also use the Iorg parameter of organization described in
the appendix of Tompkins and Semie (2017) (see also Chapter 5), a more quantitative
metric of aggregation as it allows one to classify scenes as random or aggregated (or
even regular, i.e., dispersed, when inter-convective spacing is larger than expected from
a random distribution).

Details of the large ensembles with the default values and ranges used for each
of the parameters are reviewed below and summarized in Table 3.1. The subsidence
timescale τsub is derived assuming that in subsidence areas, in the absence of large-scale
convergence, subsidence heating approximately balances the net radiative cooling, Qrad
(cf. Section 1.2):

τsub =
h

dθ

dz
eQrad

,

which, inserting characteristic values for the depth of the free troposphere (h ≈ 10 km),
the mean environmental lapse rate of potential temperature dθ

dz ≈ 6.5 K km−1 and the
vertically integrated radiative cooling rate Qrad ≈ 1.5 K day−1, gives τsub = 16 days,
with the ensembles spanning 5-40 days. We note that this timescale is much longer than
that used in Craig and Mack (2013) of 2 days.

Analysis of TRMM data by Rushley et al. (2018) gave the convection sensitivity fac-
tor ad values of 14.72 and 16.12, depending on the TRMM retrieval version, and our
ensembles span values of 10-30. The default values of ad used here refer to the daily-
mean precipitation-R relationships, but the same exponential law eqn. (2.3) applies to
the monthly-mean relationship, with a coefficient of 11.4 that was estimated by Brether-
ton et al. (2004) and employed by Craig and Mack (2013) in their simulations. However
we note that this latter value is also included in our experimentation (see Table 3.1).

A reasonable estimate for the horizontal moisture transport efficiency K can be cal-
culated by defining it as a function of characteristic length and velocity scales, ℓ0 and
v0, associated with convective motions:

K = ϵℓ0v0,

where ϵ is a eddy-size related coefficient set to ϵ = 0.1. Typical scales are the free
tropospheric depth, ℓ0 = 10 km, and v0 = wc = 10 m s−1 (updraft velocity observed
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in convective cores),1 implying that reliable values for K are on the order of 104 m2 s−1,
but our experiments evaluate values from 103 to 4 × 104 m2 s−1.

The convective moistening characteristic time τc is set to a very fast timescale of
1 minute to lead to almost instantaneous saturation. We did find some sensitivity of
the model to the choice of τc but using slower adjustment times did not change the
conclusions derived from the model. Finally, we set the convective relaxation target Rc
accounting for column cloud water detrainment using estimates from CRM simulations
to give Rc = 1.05.

To keep the total simulation size tractable while exploring the parameter space,
we constructed series of ensembles of O(1000) members that investigate two param-
eters while keeping others fixed. Three ensembles of experiments using a domain
size D = 300 km and resolution ∆x = 2 km cover combinations of τsub and K for
ad = 14.72, 16.12 (results shown in Figs. 3.8, 3.15, 3.18), and K and ad (Fig. 3.19). An ad-
ditional ensemble of experiments employed a limited range of fixed values for the three
model key parameters, combined with a range of domain sizes (D = 200, 300, 400, 1000
km, Fig. 3.4) and spatial resolutions (∆x = 0.5, 1, 1.5, 2, 4 km, Fig. 3.6), see also Fig.
3.16 and Fig. 3.17. To construct the final analysis exploring the five-parameter space
(K, τsub, ad, D, ∆x), a sub-sampled ensemble of 1160 members was used (Fig. 3.20).

Table 3.1: Parameters (default and ranges) used in the simulations.

Default value Range
K (m2 s−1) 104 103 − 4 × 104

τsub (days) 16 5 − 40

ad
14.72

10 − 30
16.12

D (km) 300 200 − 1000
∆x (km) 2 0.5 − 4

The numerical model output is available in netcdf format at https://samodel.dmg.
units.it/.

3.2 Mimicking cloud-resolving models

3.2.1 Occurrence of self-aggregation and impacts on the mean state

Before analyzing the large ensembles it is useful to demonstrate how the model can
produce both random and aggregated convective states depending on the parameter
settings chosen. We start by showing two experiments, one with the default values of K,

1We recall that the lateral mixing term is a proxy representation of humidity transport by the overturn-
ing circulation, i.e. by eddies on the order of the domain size and not by sub-grid-scale eddies determining
the mixing between adjacent cells. Thus, by mass conservation, one can derive the scaling with either ver-
tical scales and velocities or those in the horizontal.

50

https://samodel.dmg.units.it/
https://samodel.dmg.units.it/


τsub and ad (CTRL, see Table 3.2) and the second with a reduced value of the horizontal
transport efficiency (0.5K). Five time slice panels show the evolution of the horizontal
R field (Fig. 3.1 and movie available at http://clima-dods.ictp.it/Users/gbiagiol/
regimes.mp4). In the default experiment (upper panels), the convective sources remain
randomly distributed throughout the domain, even on day 180, and the domain-mean
R remains moist.

In contrast, halving the strength of the lateral transport of water vapor (lower pan-
els) causes the model to evolve towards a dramatically different state. After an initial
period of random convection, the variability of R in the domain increases during the
transition towards a spatially organized atmospheric state, characterized by the emer-
gence of a single, almost circular, intensely convecting area surrounded by a dry envi-
ronment. Close examination shows many examples of localized moist cells caused by
the stochastic convective selection in those locations. Once aggregation has established,
the dry patch is very rarely disrupted by moistening processes from local sources, but
it is not guaranteed that deep convective events necessarily trigger in the wettest cells
and occasionally drier cells are chosen (see movie). This behavior would be missing
from a deterministic formulation of the model.

Figure 3.1: Evolution of the spatial column relative humidity field R (color shading and con-
tours, with intervals of 0.1) for simulations with K = 104 m2 s−1 (a-e), K = 5 × 103 m2 s−1

(f-j), τsub = 16 days and ad = 14.72. The domain size and the grid resolution are kept at their
default values, D = 300 km and ∆x = 2 km.

These experiments highlight the ability of the simple model to mimic both random
and aggregated equilibrium states, with results resembling those yielded by more com-
plex, full-physics CRMs, at least from a qualitative point of view (e.g., Bretherton et al.,
2005; Muller and Held, 2012). Also in accordance with the full-physics models (e.g.,
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Bretherton et al., 2005; Wing and Emanuel, 2014), the mean state is much drier in the
aggregated simulation relative to the random case, and column relative humidity has
a higher spatial variability, clear from the temporal evolution of the probability density
function (PDF) of the spatial moisture field (Fig. 3.2).

In the control experiment with higher horizontal moisture transport efficiency, the
PDF stays essentially unimodal throughout the simulation, although a second minor
mode corresponding to saturated cells is in evidence and is directly due to the exter-
nally imposed constraint (eqn. 2.2) on the number Nc of convectively active columns
per time step. The primary unimodal feature of the PDF is to be ascribed to larger dif-
fusive effects (combined with relatively slow drying tendencies), which prevent the do-
main from developing some drier-than-average background region surrounding moist
patches. A transition towards a broader distribution is apparent in the lower diffusion
experiment which undergoes aggregation, since the action of moistening processes is
able to overcome the counter-gradient smoothing by subsidence and diffusion. As self-
aggregation progresses and the dry and humid regions are increasingly separated, a
bimodal PDF develops reminiscent of tropical observations (Zhang et al., 2003; Mapes
et al., 2018). The dry mode here is linked to the long diffusive tail of the distribution
and the moist mode is related to detrainment area, possibly exaggerated by the use of
a single detrainment value. This behavior is almost identical to that shown in coarser
resolution deterministic experiments of Craig and Mack (2013).

Time series of R show the impact of aggregation on the mean humidity field (Fig.
3.3) in four simulations including the control run (CTRL) and three perturbation ex-
periments, which alter the horizontal transport efficiency (0.5K), the subsidence rate
(τsub10) or the convective-humidity feedback strength (ad16.12) in turn. A brief overview
of these runs is reported in Table 3.2. These simulations show that it is possible to gen-
erate self-aggregation in the model by reducing the diffusive humidity transport, in-
creasing the subsidence rate or strengthening the convective-moisture feedback. It is
interesting to note that the two ad values corresponding to different TRMM retrieval
versions can produce either random or aggregated states, all else being kept fixed.

The existence of two characteristic timescales is apparent, the first associated with
the initial fast adjustment on the convective timescale, and the second representing the
time of adjustment to equilibrium related to the overturning timescale determined by
the subsidence rate (cf. Section 1.2). This is also in agreement with previous CRM
experiments using fixed surface temperatures (Tompkins and Craig, 1998b; Cohen and
Craig, 2004) although Cronin and Emanuel (2013) highlight that longer timescales are
possible if an interactive lower boundary is used. After the equilibrium state is reached,
temporal fluctuations in the field are limited to shorter timescale variability associated
with the relative position of convective events. The temporal variability is restrained
by the condition that the convective population variation in time is limited (see Section
2.2.5). The non-aggregated case, conversely, after the very first transient phase where
initial convective events increase the humidity variance, reaches an equilibrium rapidly
with a low spatial variance associated with the domain that is moistened throughout
by local convective sources.
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Figure 3.2: Time evolution of the absolute frequency of occurrence of R values for the simula-
tions reported in Figure 3.1, namely (a) non-aggregating case with K = 104 m2 s−1, and (b)
aggregating case with K = 5 × 103 m2 s−1. The other model settings are τsub = 16 days and
ad = 14.72.

The time evolution of the organization index Iorg introduced by Tompkins and Semie
(2017) shows that the convection remains random in the control run, with a time-
average value of 0.5, while in the three perturbation experiments it increases towards
values exceeding 0.9, indicating highly aggregated conditions.

Table 3.2: Summary of the simulations of Figure 3.3.

Simulation name
Parameters

K (m2 s−1) τsub (days) ad
CTRL 104 16 14.72
0.5K 5 × 103 16 14.72

τsub10 104 10 14.72
ad16.12 104 16 16.12
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Figure 3.3: Temporal evolution of the spatial R distribution, in terms of domain mean (upper
panel) and standard deviation (middle panel), and the organization index Iorg (lower panel) for
the simulations CTRL (blue line), 0.5K (green line), τsub10 (orange line), ad16.12 (red line).
The dashed line in the Iorg plot marks Iorg = 0.5, which is the value for a random distribution
of convective cells. For details on the experimental setup, refer to Table 3.2.

3.2.2 Sensitivity to domain size

CRM simulations show that self-aggregation is facilitated by large domains, with abrupt
transition to clustered convection taking place when the domain size D exceeds a cer-
tain threshold, typically D ≳ 200-300 km (Bretherton et al., 2005; Muller and Held,
2012; Jeevanjee and Romps, 2013; Muller and Bony, 2015; Patrizio and Randall, 2019).
Li (2021) provided an analytical argument to explain the domain-size dependence of
self-aggregation within the framework of a conceptual, two-dimensional, stochastic
reaction-diffusion model for the column moist static energy (CMSE) budget. In par-
ticular, such a dependence is found to result from the competing influences of vertical
and horizontal advective transports on the CMSE anomalies.

Here too the occurrence of aggregated states is found to be sensitive to the domain
size (Fig. 3.4; another example is shown in a movie available at http://clima-dods.
ictp.it/Users/gbiagiol/dom_size.mp4). Convection in the smallest domain of size
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D = 200 km remains in a random state for these parameter choices (see caption). For
D = 300 km, there is no aggregation, but some variance of moisture over the scale of the
domain is apparent, and the moist patch is elongated. This simulation was extended to
150 days which confirmed that this state is a quasi-stationary equilibrium. Extending
the domain to 400 km results in aggregation with a single center.

The largest domain with D = 1000 km exhibits an interesting behavior in that
the convection originally organizes into two distinct convective clusters that last un-
til around day 20, at which point the larger of the two centers starts to dominate and
the first center dies out (Fig. 3.5). This behavior is reminiscent of the two-dimensional
simulations of Held et al. (1993) which show two competing centers of convection for
a period of time before collapsing to a single convective center, although this was on
smaller domains. In our simple diffusive model, we hypothesize that the convection
will always collapse to a single center due to the fact that the subsidence term is treated
as a uniform relaxation towards zero R and does not account for the location of con-
vection events, in contrast to the transport term which diffuses moisture out from the
centers. In the real atmosphere, the subsidence occurs through the propagation of grav-
ity waves from the convective centers (cf. Section 1.1.1), and thus the aggregated con-
vective clusters would be separated by a Rossby deformation radius determined by the
Coriolis effect off the equator and by diffusive dissipation, which would give a cluster
spacing on O(1000 km) scales, on the equator (Bretherton and Smolarkiewicz, 1989).

Wing and Cronin (2016) offered an alternative mechanism for both the cluster sep-
aration distance and the spatial scale of aggregation based on boundary layer recovery
through surface fluxes, which would also be a physical process missing in this simple
model, that does not account for surface fluxes. Yang (2018) proposed that the charac-
teristic horizontal scale of self-aggregation is determined by the boundary layer height
and the density variations between moist and dry regions in the boundary layer, the lat-
ter owing to the virtual effect of water vapor. Additionally Beucler and Cronin (2019)
recently used a new diagnostic to interpret the role of different diabatic forcings on the
spatial scale of aggregation. In any case it remains that the formulation of the simple
model presented here will always lead eventually to a single convective center in the
cases where aggregation occurs.

3.2.3 Sensitivity to horizontal resolution

Aggregation in CRM studies is also resolution sensitive, with coarser grids favouring
the occurrence of clustered convection. For instance, Muller and Held (2012) found
that, for spacings ∆x < 2 km, self-aggregation never develops when starting from ho-
mogeneous initial conditions (but, when an aggregated initial profile is prescribed, it
manages to persist even at resolutions as fine as ∆x = 500 m if the domain size is
sufficiently large, namely D ≳ 200 km).

Similar results are found here, examining the atmospheric states at day 120 for
simulations with the numerical grid successively refined (halved), with parameters K,
τsub, ad and D invariant (Fig. 3.6, animation available at http://clima-dods.ictp.it/
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Figure 3.4: Plan views of the spatial field of column relative humidity R (shading and contours,
interval 0.2) after 120 days of simulated time for runs with K = 104 m2 s−1, τsub = 16 days,
ad = 14.72 and domain sizes D = 200 km (a), 300 km (b), 400 km (c), 1000 km (d).

Figure 3.5: Horizontal maps of R (shading and contours every 0.1) after 7 (a), 13 (b) and 19 (c)
days in the experiment with domain size D = 1000 km.

Users/gbiagiol/hor_res.mp4). For a grid resolution of 4 km and 2 km, the convection
aggregates into a single center. Refining the resolution to 1 km, the aggregated state
takes on the form of an elongated band, instead of the usual circular shape, spanning
one horizontal dimension entirely, while using a resolution of 500 m leads to random
convection that does not undergo aggregation at all.

Holloway and Woolnough (2016) provided a geometric argument to explain the pre-
ferred shape taken by self-aggregated convection in doubly-periodic RCE simulations,
suggesting the structure of wet patches is such as to minimize their perimeter-to-area
ratio, because lateral mixing acts to reduce any horizontal moisture gradient. In par-
ticular, if the area Acl of the cluster is Acl > Acl, crit ≡ D2/π (i.e., the moist patch
occupies roughly more than one third of the computational domain), then a band-like
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Figure 3.6: Snapshots of the R field (shading and contours, interval of 0.2) after 120 days of
simulation in the case K = 5 × 103 m2 s−1, τsub = 10 days, ad = 14.72, with D = 300 km,
∆x = 4 km (a), 2 km (b), 1 km (c), 500 m (d).

arrangement is likely to appear, as observed in the first three-dimensional simulations
of radiative-convective equilibrium by Tompkins and Craig (1998a), which only used
a 100 × 100 km domain. In extremely large domain experiments, however, Patrizio
and Randall (2019) actually show a transition from circular clusters towards elongated
bands in the largest O(6000 km) domain experiments. For smaller ratios, and indeed
over an infinite plane, the preferred form would be a circle in all cases, as in the seminal
study of Bretherton et al. (2005).

For ∆x = 2 km and ∆x = 4 km, the time series of the spatial R mean show contrast-
ing behavior at the simulation outset, with the initial adjustment in the R-mean profile
completely absent in the 4 km case (Fig. 3.7, top panel), as the initial phase involves
the development of larger, but fewer, convection cells, while most columns start to be
progressively dried by subsidence. This prevents R from increasing at the beginning of
the 4 km simulation when starting from these relatively moist initial conditions.

The 1 km simulation was repeated three times to ascertain any eventual, additional
stochastic contribution to the final self-aggregated shape and indeed the results of the
multi-run ensemble simulation, shown in Fig. 3.7 (orange solid line and dashed lines),
manifest various evolutions. For the same parameter set and experimental design, the
simulation may end up either with the usual spatial pattern typical of convective clus-
tering, marked by a pronounced reduction in domain-mean R and a slightly lower
variance, or with convective centers being aligned in a band. This indicates proximity
to a critical cluster area Acl, crit beyond which the wet spot arranges itself in a banded
structure, and whether or not the corresponding radius is reached depends on the large
stochastic effects present in the modeled system. The temporal evolution of one run
(green dashed line in Fig. 3.7) even shows an initial banded equilibrium state, which
transitions to a circular cluster around day 40-45. Wing and Emanuel (2014) found sim-
ilar behavior in their CRM simulations, pointing out that, in some runs, convection was
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confined to a single band maintained for tens of days before collapsing into a circular
clump, the evolution of the spatial orientation of the cluster being thus attributed to the
largely stochastic nature of self-aggregation.

For ∆x = 500 m, the profile is extraordinarily moist from the very beginning and so
it persists throughout the run (Fig. 3.6d and 3.7, blue line).

Figure 3.7: Time evolution of spatial R mean and standard deviation for the simulations pre-
sented in Figure 3.6 (solid lines), with a 4-member ensemble performed in the case ∆x = 1 km
(orange solid line and dashed lines).

3.3 Predicting the transition to aggregation

In the previous section we showed that the occurrence of aggregation is sensitive to the
settings of the three model key parameters, K, τsub and ad, representing the efficiency
of the horizontal transport, the strength of the subsidence drying and the sensitivity of
convection to humidity, respectively, as well as the domain size D and resolution ∆x.
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Here we wish to derive a method to predict when aggregation will occur as a function
of these five parameters. As a first step, we will use dimensional analysis to empirically
derive a dimensionless quantity that predicts the onset of aggregation. We discuss the
five parameters in turn to understand their impact on aggregation, and then construct
the dimensionless parameter.

3.3.1 Sensitivity to K and τsub

The occurrence of the self-aggregated state is sensitive to the value of the horizontal
moisture transport efficiency K and subsidence strength τsub. In this model, convection
locally moistens its environment while drying the far-field instantaneously through
subsidence. Thus the onset of aggregation will depend on how quickly moisture sources
are communicated relative to the subsidence drying. Stronger diffusive transport re-
duces the spatial variance of humidity and makes aggregation less likely. Indeed, in the
limit of infinite diffusion, convective moisture sources would be communicated instan-
taneously throughout the domain resulting in random convection. Likewise, stronger
subsidence drying would act to promote aggregation. The competing influences of
subsidence and horizontal transport are fundamental.

On dimensional grounds, the subsidence timescale (units s) and the horizontal trans-
port efficiency (m2 s−1) can be combined together to give an area of influence (Kτsub)
on the moisture field of an individual convective cell. Such a quantity (or related ones)
would naturally appear in the context of reaction-diffusion problems. For example, the
stationary solution R(x) of the one-dimensional heat equation with linear sink term

∂R
∂t

= K
∂2R
∂x2 − R

τsub
, x > 0, t > 0,

with conditions R(0, t) = Rc and limx→∞ R(x, t) = 0, is given by

R(x) = Rce
− x√

Kτsub ,

which shows that (Kτsub)
1
2 is the e-folding length scale of the steady-state R in this

simple problem. Therefore, the area of influence can be intuitively viewed as a measure
of the potential (rather than the actual, due to the finite cloud lifetime) maximum area
impacted by an individual deep convective event (cf. Fig. 2.1).

As highlighted by the sensitivity studies (Fig. 3.4 and movie http://clima-dods.
ictp.it/Users/gbiagiol/dom_size.mp4), when the diffusion-based communication of
moisture from the sources acts over scales comparable to the domain size, aggregation
may be easily prevented. This is consistent with results from previous literature. The
stability analyses conducted by Shi and Fan (2021) proved that, if the diffusive ten-
dencies are strong, large-scale humidity perturbations would be required to destabi-
lize the spatially homogeneous state of tropical convection, up to completely inhibit-
ing the clustering. By means of a conceptual model, Li (2021) analytically determined
a threshold domain size below which the homogenizing effect of diffusive transport
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dominates, thereby preventing incipient CMSE anomalies from amplifying and lead-
ing to self-aggregation.

Thus one could scale Kτsub by the area of the computational domain, D2, which
would provide a dimensionless quantity. This quantity does not yet account for the
dependence of the resolution or the convective sensitivity to the moisture field, which
will be considered below, and is in any case not adequate to predict the onset of self-
aggregation. This is clearly shown in Fig. 3.8, which refers to the evaluation of the en-
semble of experiments that vary K and τsub, assuming the default values for ad, domain
size and resolution (ad = 14.72, D = 300 km, ∆x = 2 km, see Section 3.1). The figure
shows contours of σR,20 and isopleths of Kτsub/D2. The region of dense contour lines
marks the abrupt transition between those experiments that result in aggregated con-
vection (high values of σR,20) and those with random convection (low σR,20) equilibrium
states. Below the transition zone, on the left, the pronounced curvature of the contours
is due to increasingly weak diffusive effects that encourage convection to (re)develop
in a very restricted number of points, thus limiting the size of the cluster (hence the
variance of the spatial R distribution). Importantly, the profile of the transition regime
in the parameter space is not parallel to the isopleths of Kτsub/D2, which means that
there is no specific threshold value of Kτsub/D2 that captures the transition between
random and aggregated convective states. This departure is particularly evident in the
limit of small τsub.

The key is that the sensitivity of the occurrence of self-organization to τsub is more
subtle, because the mean number Nc of convective points active at each time step in-
troduces an additional dependence on the subsidence characteristic time through eqn.
(2.2). Since the number of updraft centers is inversely proportional to the subsidence
timescale τsub, stronger subsidence, while reducing the area of influence Kτsub, also
increases the density of convective events within the domain, reducing the mean inter-
convective spacing. This means that experiments with different values of K and τsub,
but the same product Kτsub, may exhibit different behavior; experiments with larger K
and smaller τsub, and hence higher number of convective cells, are more likely not to
organize.

An animation available at http://clima-dods.ictp.it/Users/gbiagiol/npts.mp4
shows the impact of the density of events in two simulations with K = 3 × 104m2 s−1,
τsub = 5 days and average number of convective sources Nc = 78 and Nc = 39.2 The
above arguments and the evolution shown in the movie undoubtedly motivate the ne-
cessity of including Nc in the dimensional analysis, either explicitly or implicitly. It
seems reasonable to represent the contribution from Nc in terms of the distribution of
spatial distances between convective towers, recalling that convection is initially ran-
domly distributed prior to aggregation (or remains random in non-aggregating experi-
ments).

2In the second case, the relationship (2.2) is violated, as Nc = 39 would correspond to τsub = 10 days.
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Figure 3.8: Contours of σR,20 (black solid curves) along with the isopleths of Kτsub/D2 (blue
dashed curves) for single realizations of the system in a large set of simulations with different K
and τsub and fixed ad, D and ∆x.

3.3.2 Sensitivity to resolution and domain size

Regarding first the domain-size sensitivity, it is intuitive that small domains may pre-
vent aggregation especially when the moisture diffusion starts to act over scales on
the order of the domain size, as already anticipated. Conversely, for large domains,
even though the number of grid points occupied by convection increases accordingly
as specified by the argument eqn. (2.2), the maximum inter-convective distance will
also increase as expected with a Poisson process.

In the construction of the dimensionless parameter therefore, we shall heuristically
argue that the key quantity is a measure of the expected maximum distance from the
nearest convection, i.e., a measure of the largest convective-free area, which will de-
termine the magnitude of the spatial humidity variance in the pre-aggregated state.
Larger distances from convection imply greater dry perturbations and humidity vari-
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ance in the domain, more likely to lead to aggregation through the indicator random
variable.

The choice of this distance metric as a relevant one to the clustering onset is mo-
tivated by the evolution observed in the simple model (cf. Fig. 3.1 and movie http:
//clima-dods.ictp.it/Users/gbiagiol/regimes.mp4)) and also by the findings from
previous literature, which, unless very few exceptions (Holloway and Woolnough,
2016), documents the formation, expansion and amplification of a dry patch with sup-
pressed convection to be crucial in initiating the aggregation (e.g., Wing and Emanuel,
2014; Coppin and Bony, 2015, see also Section 1.4.1).

Considering the resolution dependence, while the prominent sensitivity of self-
aggregation to the horizontal resolution might be attributed to numerical artifacts, for
instance the possibility of lateral mixing being resolution-dependent, grid refinement
studies conducted to evaluate the spatial convergence properties of the numerical solver
excluded this eventuality (cf. Fig. 2.5). Instead, the resolution sensitivity here is a direct
result of the number of convective sources.

The scaling closure eqn. (2.2) only constrains the cumulus fraction ϵ and not the
number nor the size of convective points, and, as the resolution is refined, the convec-
tive fraction is the result of more convective centers. Put another way, with a resolution
of 2 km, the minimum convective size is 4 km2, but if ∆x is halved, that same area
now consists of four separate convective towers of 1 km2 in different locations, since
the model does not impose a horizontal scale on the updraft (Fig. 3.9). This reduces
the maximum distance between the convective cores and makes convective aggrega-
tion less likely. If a fixed area were set for a single convective updraft core, in order to
avoid that the convection centers could become unrealistically small when moving to
finer resolution below O(1 km), we predict that no sensitivity to horizontal resolution
would be found.

Figure 3.9: Sketch representing the impact of decreasing grid spacing on the number and posi-
tions of updraft cores with the convective fraction ϵ being kept fixed.

Although this explanation for resolution sensitivity seems simplistic, it is supported
by recent experiments using an ensemble of CRM simulations of an MCS at different
resolutions (Prein et al., 2021). The study shows that the updraft dimension decreases
monotonically with decreasing grid spacing and has still not converged even when the
horizontal resolution reaches 250 m. Additionally, Sueki et al. (2019) show that the
nearest-neighbor distance between updraft cores reduces with finer resolutions and no
convergence is reached at 200 m, directly supporting the hypothesized mechanism for
grid size sensitivity represented in the simple stochastic model down to these resolu-
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tions. Note that some stochastic approaches instead impose a specific fixed scale for
convective events and would not exhibit this facet of resolution sensitivity (Showman,
2007; Yang, 2021; Fu and O’Neill, 2021).

3.3.3 A distance scaling in a discrete domain

The above findings further motivate the definition of a relevant distance for aggrega-
tion, which will account for the contribution from Nc and will also allow the incorpora-
tion of the resolution and domain size into the theory for aggregation onset. In particu-
lar, in the discussion of the resolution and domain size dependence, it was heuristically
argued that a relevant distance would be one that describes the largest distance from
convection within the domain, which would determine the magnitude of the driest
perturbation.

If the initial R distribution is horizontally homogeneous, as prescribed in all the ex-
periments presented in this chapter, the convection locations are random at the simula-
tion outset. In an infinite domain with a homogeneous planar Poisson point process, the
cumulative distribution function (CDF) of nearest-neighbor distances between points
(NNCDF) is given by the Weibull distribution (Stoyan et al., 2013; Weger et al., 1992) as

F(r) = 1 − e−λπr2
(3.1)

where λ is the mean number of events per unit area (the density of points) and r is a
radius (the nearest-neighbor distance), r ≥ 0. However, this approach is not appro-
priate here, as we need to consider the finite nature of the periodic domain, and treat
convection as a binary occurrence on a discrete grid, i.e., we consider cells to be either
convective or non convective (cf. Fig. 2.2).

During the entire pre-onset phase, the positions of the updraft centers can still be
regarded as the restriction of a Poisson process Φ to a compact set W, the computational
domain, and it is well known (e.g., Stoyan et al., 2013; Illian et al., 2008) that the resulting
process obeys a binomial law. In detail, assuming that precisely Nc objects of Φ belong
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to W, the (conditional) probability that 0 ≤ k ≤ Nc elements lie in a subset B of W is

p(Φ(B) = k|Φ(W) = Nc) =
p(Φ(B) = k, Φ(W) = Nc)

p(Φ(W) = Nc)

=
p(Φ(B) = k, Φ(W \ B) = Nc − k)

p(Φ(W) = Nc)

=
p(Φ(B) = k)p(Φ(W \ B) = Nc − k)

p(Φ(W) = Nc)

=

(λν(B))k

k!
e−λν(B) (λν(W \ B))Nc−k

(Nc − k)!
e−λν(W\B)

(λν(W))Nc

Nc!
e−λν(W)

=

(
Nc

k

)(
ν(B)
ν(W)

)k (ν(W \ B)
ν(W)

)Nc−k

=

(
Nc

k

)(
ν(B)
ν(W)

)k (
1 − ν(B)

ν(W)

)Nc−k

,

(3.2)

where p(·) denotes the probability, ν(·) the area, and the fourth and third equalities
follow from the hypothesis of Poisson process and the related independence property,
respectively.3

For a finite domain consisting of discrete cells we consider the probability, pclr(n, Nc),
of not finding any of Nc convective events within a square window B of size n∆x (con-
sisting of n2 grid boxes), centered on an arbitrary non-convective cell in the domain.
This is termed void probability and is obtained by imposing k = 0 and ν(W) = D2 in the
previous relationship (3.2). It can be approximated by

pclr(n, Nc) ≈
(

1 −
(

n∆x
D

)2
)Nc

, n ∈ N, n ≤ D
∆x

, (3.3)

with N denoting the set of non-negative integers. If the base point has instead been
chosen as convective, the void probabilities would simply be pclr(n, Nc − 1). Owing to
the imposed periodicity, no corrections are required if the central cell is in proximity to
the edges of the domain. This relationship is an approximation since we should account
for the fact that the sampling of convective grid boxes is without replacement (i.e., we

3By definition, a process Φ on the plane R2 is termed homogeneous Poisson if

(i) the distribution of point counts in a bounded set B is Poisson with parameter λν(B), i.e.,

p(Φ(B) = k) =
(λν(B))k

k!
e−λν(B),

where λ, the mean density of points, is termed the intensity of the Poisson process.

(ii) the random variables describing the number of points of Φ lying in disjoint sets are independent.
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should consider (n2 − 1) (∆x/D)2 in place of n2 (∆x/D)2 in the previous formula), but
this is negligible if the convective fraction is small (that is, Nc ≪ Nxy = (D/∆x)2) as is
the case here.

We consider two related metrics of the spacing of convective cells relevant to the
onset of aggregation, which are illustrated in a schematic (Fig. 3.10). The first distance
metric is the size dmax,clr of the largest convective-free box, which would describe the
greatest dry perturbation. The second metric instead considers a measure of the largest
inter-convection nearest-neighbor distance, specifically the dimension dmax,nn of the
maximum box centered on a convective cell that is devoid of further convective sources.
The behavior of these two length scales is anti-correlated over the long term as convec-
tion starts to aggregate, since the size of the maximum convective-free region grows
with the onset of aggregation, while the maximum inter-convective nearest-neighbor
spacing reduces, as shown comparing the left and right panels of Fig. 3.10. This is also
confirmed diagnosing the two quantities directly from the model simulations in Fig.
3.11 for the same set of experiments presented in Fig. 3.3.

Figure 3.10: Sketch of two potential metrics of convective spacing relevant for aggregation on-
set, namely the size of the largest clear-sky, convective-free box (dmax,clr, green boxes) and the
maximum inter-convective nearest-neighbor spacing (dmax,nn, blue boxes), in a random convec-
tive situation (left) and highly aggregated situation (right). The cell centroids are represented as
grey dots, the convective grid boxes as red crosses and the doubly-periodic nature of the domain
is accounted for.
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diagnosed from the numerical model, for the runs of Figure 3.3. A 2-day running mean has been
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Using (3.3), we can derive the distribution of dmax,nn, by considering the central
point of the search box to be each of the convective cells in turn. In this respect, we
note that pclr(n, Nc − 1) represents the probability that the convection-free box centered
on an arbitrary point of the pattern has size > n∆x. Therefore the probability that the
maximum size of convection-free box centered on a convective tower is less than n∆x
is given by

p(dmax,nn ≤ n∆x) ≈
(

Nc

Nc

)
(pclr(n, Nc − 1))0 (1 − pclr(n, Nc − 1))Nc

= (1 − pclr(n, Nc − 1))Nc

=

(
1 −

(
1 − n2∆x2

D2

)Nc−1
)Nc

, n ∈ N, n ≤ D
∆x

.

(3.4)

Eqn. (3.4) defines a cumulative distribution function, from which it is straightforward
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to calculate the percentiles and the expected value, dmax,nn, which represents, for a given
density of randomly distributed convective sources, the average dimension of the max-
imum box centered on any tower that is free from further events:

dmax,nn =

D
∆x

∑
i=1

i∆x

(1 −
(

1 − i2∆x2

D2

)Nc−1
)Nc

−
(

1 −
(

1 − (i − 1)2∆x2

D2

)Nc−1
)Nc

 .

(3.5)
The results of 70000 artificially generated random convective scenes with varying Nc
show that the theoretical estimate for dmax,nn presented in eqn. (3.5) fits the numerical
data perfectly (Fig. 3.12).

One might consider the metric dmax,clr to be a more relevant metric related to the
spatial variance of water vapor in the initial random convection phase, and thus to
aggregation onset. An approximation for this metric is given by

p(dmax,clr ≤ n∆x) ≈ (1 − pclr(n, Nc))
Nxy−Nc , n ∈ N, n ≤ D

∆x
. (3.6)

However, this analytical formula somewhat over-estimates the size of the maximum
clear-sky square when tested with numerical data as it considers the test at each cell in
the domain to be independent, which is not the case. The trials can instead be safely
assumed independent in the derivation of (3.4) due to the constraint Nc ≪ Nxy. Addi-
tionally, the fact that Nxy is very large can lead to precision issues in the calculation of
(3.6).

In any case, during the very early phase (first day) of the simulations, when con-
vection is still random, an analysis of scene snapshots from the large ensembles shows
that dmax,clr and dmax,nn are strongly linearly related (Fig. 3.13), and thus either can be
used in the scale analysis. We therefore choose to use dmax,nn, also because it relates
more closely to the more familiar nearest-neighbor metrics adopted in the derivation
of the widely used Iorg aggregation index (cf. Chapter 5). In the sequel, dmax,nn will be
referred to as d for brevity.

3.3.4 Initial dimensional analysis

Combining the above considerations, we introduce the following dimensionless pa-
rameter to explain the transition between homogeneous and aggregated regimes:

γ = f (ad)
Kτsub

D2
D
d

= f (ad)
Kτsub

Dd
, (3.7)

where d is given by eqn. (3.5). The parameter γ consists of the normalized area of in-
fluence divided by the expected maximum inter-convective nearest-neighbor distance,
rescaled by the domain size D. Low values of γ (in turn corresponding to either lower
K or τsub or larger D or d) are supposed to represent aggregated states.

In addition to the four factors of domain size, resolution, horizontal transport ef-
ficiency and subsidence rate that were discussed above, we have also incorporated
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Figure 3.12: Comparison between the results of a multi-run ensemble of experiments and the
theoretical estimate (3.5). Red dots illustrate the maximum nearest neighbor distances between
Nc objects thrown onto a 300 × 300 km domain with 2 km resolution, whereas the black line
represents the ensemble mean distance. Examining nearest-neighbor distances implies that there
are no events within a radius r of the base point, whereas the theory here involves the void proba-
bilities for a square box of size d. Imposing equal areas gives d as d =

√
πr, and multiplying the

ensemble mean by this factor (orange line) reproduces exactly the theoretical curve for d̄max,nn
(blue line).

the sensitivity of convection to water vapor through a generic function f (ad), where
f expresses the (unknown) functional dependence on ad. As ad is dimensionless, the
functional form of f will be derived empirically using an ensemble of numerical exper-
iments.

However, treating ad and the other parameters in (3.7) separately seems reason-
able since we speculate that the evolution to aggregation requires the generation of R
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Figure 3.13: Scatter plot of daily averaged diagnostics for dmax,nn versus dmax,clr from hourly
snapshots of scenes taken from a large ensemble in the first day of each experiment when con-
vection is still randomly distributed. The identity line is shown as a black dashed line for better
visualization.

anomalies in the initial random phase, which are then magnified by the indicator func-
tion. As discussed earlier, the formation of R anomalies is favoured by large convection-
free areas and results from the subsequent interplay between subsidence and horizontal
transport, while ad does not contribute at the beginning and its role can be decoupled
from the rest of the analysis. Indeed, if we decompose the column humidity field as
R(x, t) = R(t) + R′(x, t), R(t) and R′(x, t) being the domain-mean R and the local de-
parture from the mean, respectively, it is apparent that eadR(x,t) = eadR(t)eadR′(x,t) ≈ eadR(t)

if R(t) ≫ |R′(x, t)| ≈ 0, as is the case prior to aggregation onset. At this stage, the
weights of the selection process are dominated by the uniform term eadR(t). Conversely,
if substantial R anomalies are created, they are easily amplified by the exponential
shape of the convection-vapor feedback.

In this respect, we note that the exponential form of the moisture-convection feed-
back is not necessary for aggregation to occur, but a nonlinear relationship is still needed
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to retain the key behavior of the model. The following Fig. 3.14 presents the results of
a grid refinement study conducted with different functional forms of the convection-
vapor feedback, with K, τsub, ad and D invariant. In particular, we replaced the re-
lationship (2.3) with a linear form P(R) = P0adR (top panels) and a piecewise linear
function resulting from the linearization of (2.3) around RRCE = 0.603 (Bretherton et al.,
2004), i.e., P(R) = P0(1 + ad(R − RRCE))H(1 + ad(R − RRCE)), H denoting the Heav-
iside function (bottom panels). These experiments show that the exponential shape
of the feedback is not essential for the bimodal solution to exist and a piecewise lin-
ear relationship can still capture the key aspects of the organization; however, a linear
functional form does not produce clustering, even at coarse resolutions. Nonetheless,
in this latter case differences across the end climates do exist, likely due to the fact that
coarser resolutions lead to larger values of dmax,clr. The larger convection-free patches
that ensue are more likely subjected to efficient subsidence drying.

Figure 3.14: Results of grid refinement studies conducted with different shapes of the
convection-moisture feedback function, all else being equal. Shown is the column relative hu-
midity field R (shading and contours, interval 0.2) at the end of the integration procedure.

Thus, setting aside the functionality f for the moment and assuming ad = 14.72, and
using the default domain size and resolution (D = 300 km, ∆x = 2 km), we again eval-
uate the ensemble experiments that vary K and τsub to see if the dimensionless quantity
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(3.7) correctly predicts the final state to be clustered or random. Like the previous Fig.
3.8, Fig. 3.15 shows contours of σR,20, which we recall is the spatial standard deviation
of R in the last 20 days. In this case, the slope of the transition zone in (τsub, K) space is
almost exactly parallel to the isopleths of Kτsub(Dd)−1 (recalling that ad is fixed here),
represented as red dashed curves.

Further sets of simulations from the grand ensembles were examined for other val-
ues of D and ∆x, with the fit still holding for fixed ad, and the critical threshold value
is the same as in this default case D = 300 km, ∆x = 2 km (Figs. 3.16 and 3.17). This
means that there is a critical value that predicts the onset of aggregated convection.
The critical isopleth that fits the transition will depend on ad and thus the final task is
to determine the functional dependence on ad in the specification of γ.
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Figure 3.15: Contours of σR,20 (black solid curves) and isopleths of Kτsub(Dd)−1 (red dashed
curves) for single realizations of the system in a large set of simulations with varying K and τsub
and fixed ad, D and ∆x.
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Figure 3.16: As in Figure 3.15 but with larger domain, D = 400 km.

3.3.5 The role of the parameter ad

Intuitively, the relationship eqn. (2.4) may strongly impact the aggregation of convec-
tion, via the steepness ad of the exponential function, which governs the choice of con-
vective locations: low values of ad indicate that convection is very insensitive to water
vapor anomalies and stochasticity of the convection choice may dominate, whereas
high values produce organization as essentially only the moistest columns are likely to
be selected after the initial perturbations are introduced in the water field. In fact, in
the limit ad ≃ 0, eqn. (2.4) is homogeneous in the interval [Rmin, Rmax], Rmin and Rmax
being the minimum and maximum R values throughout the domain, and convection is
rendered completely random by definition. It is thus expected that, as ad increases, the
critical isopleth will be shifted upwards in the (τsub, K) space, as the range of parame-
ters for which the aggregated climate exists as a stable equilibrium state is broadened.
This is exactly seen in Fig. 3.18 changing ad to 16.12, which corresponds to TRMM
retrieval version 5 (Rushley et al., 2018).

The functional dependence of the transition on ad is determined empirically (Fig.
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Figure 3.17: As in Figure 3.15 but with higher resolution, ∆x = 2 km.

3.19), using σR,20 for simulations performed with a range of values of K and ad and fixed
τsub, D and ∆x. The fit from empirical data shows that the position of the transition
regime in the parameter space increases quadratically with ad. The changes of σR,20
for the simulations with aggregated convection are due to the absence of monotonicity
of σR,20 with ad. Indeed, for organized runs, the size of the moist, convectively active
region is reduced for high values of ad. Owing to the increasingly steep shape of the
exponential function eqn. (2.4), the larger ad gets, the more likely is for convection
to reactivate at the same spots (which are the moistest ones), thus shrinking the wet
patch, enlarging the area occupied by subsiding air and therefore reducing the spatial
R variance beyond the onset point of aggregation.

This nonlinear behavior of σR,20 in the clustered state seen in Figs. 3.15-3.19, with the
spatial variance of humidity increasing sharply with aggregation onset but reducing as
the degree of aggregation strengthens, implies that humidity variance can be used to
determine whether aggregation has occurred or not, but is not an effective metric of the
degree of aggregation for model inter-comparison studies such as Wing et al. (2020).
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Figure 3.18: As in Figure 3.15 but with ad = 16.12.

3.4 The aggregation number

Knowing the quadratic dependence of ad allows us to construct the full dimensionless
quantity that incorporates all three model parameters and the experiment domain size
and resolution, which will be referred to as the aggregation number Nag. This is given by

Nag =
Kτsub

a2
dDd

. (3.8)

We make an evaluation of the final dimensionless parameter (3.8) using a complete
ensemble of experiments which investigate the full five-dimensional parameter space
of changing K, τsub, ad and the domain size D and resolution ∆x. The resulting scatter
plot in Fig. 3.20 shows that the transition between random and aggregated states
occurs at a precise critical value of the dimensionless quantity Nag as specified in eqn.
(3.8). This means that Nag is able to predict almost exactly if a particular model and
experiment setup will lead to clustering, with convection found to aggregate when
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Figure 3.19: Contours of σR,20 (black solid curves) for an ensemble of runs carried out with
different values of Kτsub(Dd)−1 (here obtained varying K and keeping τsub, D and ∆x fixed)
and ad. The red solid line represents the polynomial (quadratic) empirical fit for the transition
regime.

the combination of the five parameters gives a Nag value below the critical threshold,
Nag,crit, of approximately 1.72× 10−3. This estimate (that is, the vertical line in Fig. 3.20)
has been obtained with an iterative procedure which yields equal number of misses
on either sides of the vertical line itself. A threshold of σR,20 = 0.05 was imposed to
distinguish between aggregated and non-aggregated runs. There is some variation in
the transition zone which we attribute to the stochastic nature of the model. Indeed,
repeating some of the experiments with configurations such that Nag ∼ Nag,crit, with
small initial random perturbations, showed that these could end up in either a random
or aggregated state.

The significance and possible implications of these findings will be discussed in
detail in Chapter 6.
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Chapter 4
What is missing from the aggregation
number?

The aggregation number (3.8), while hopefully useful, does not tell the complete story
and the toy model of tropical convection introduced in Chapter 2 has some further,
unexplored features. For instance, the experiments conducted in Chapter 3 all start
from identical homogeneous moist conditions of 80% relative humidity, but, similar to
CRM studies, the simple model is also found to be sensitive to the initial conditions,
with aggregation more likely starting from drier and/or more heterogeneous condi-
tions. Otherwise said, the model displays a hysteresis that, although very weak, can
not be captured by the dimensionless parameter Nag.

We saw that the physics of the model is highly simplified and many processes are
neglected. For instance, there is no explicit treatment of advection, unlike in Ahmed
and Neelin (2019), or radiation and surface fluxes, and the diabatic effects are implic-
itly included in the indicator random variable. Another effect that is missing from
the model in its present formulation - and hence from the aggregation number - is the
one of cold pools, which inhibit new convection in their stable interiors. A first, very
basic attempt to account for cold pool exclusivity effects is discussed, and some pre-
liminary results are presented, along with some considerations regarding the impact of
cold pools on the localization of convection in the simple model.

4.1 Sensitivity to initial conditions

One of the most striking features encountered in CRM simulations of self-aggregation
is the tendency of convection to lock itself into the aggregated state, once established.
It is difficult for convection to disaggregate, and the clustered state can be maintained
even without the feedbacks necessary to initiate it from homogeneous conditions. That
is, the system exhibits hysteresis (Khairoutdinov and Emanuel, 2010; Muller and Held,
2012). The importance of hysteresis lies in that this property extends the parameter
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range over which the aggregated regime exists as a stable equilibrium state of tropical
climate. Wing et al. (2017) argue that the robustness of clusters to changing environ-
mental conditions hints at the possibility of tropical climate system being intransitive
(or almost intransitive).1

We now want to see if the simple model of tropical convection introduced in Chap-
ter 2 exhibits hysteresis. A series of runs with different initial conditions were per-
formed to ascertain to which extent the initial state can impose a memory to the sys-
tem. The following Figs. 4.1, 4.2 and 4.3 refer to simulations initialized with a range
of horizontally homogeneous R profiles. The diffusivity K and the parameter ad have
been kept fixed at K = 104 m2 s−1 and ad = 14.72, respectively, while τsub = 10 days
(Fig. 4.1), 16 days (Fig. 4.2) and 20 days (Fig. 4.3).

It is apparent that, in the first case, the system always attains the same mean state,
regardless of the initial value R0: sooner (low R0) or later (large R0), the wet spot pe-
culiar of spatially organized atmospheres emerges. In particular, when the environ-
ment is initially fully saturated, i.e., R0 = Rc = 1.05, the humidity field stays quasi-
homogeneous at the simulation outset and the choice of convective locations is nearly
random. Then, when the first heterogeneities are created, mainly through the action of
subsidence drying, they are rapidly amplified through the convective indicator func-
tion. This progression is similar to that of other runs for R0 ≥ 0.9. In other words, the
moister the domain, the less impact convection has on the moisture field, i.e., it dries
by compensating subsidence but does not locally moisten, and the precipitation effi-
ciency would be much higher. For low values of R0, instead, the transition towards the
aggregated state is extremely fast, as shown in the lower panel of Fig. 4.1. Indeed, for
the chosen set of parameter values, even though the initial R field is spatially uniform,
a cluster is formed at the very beginning in practice - if R0 ≤ 0.4, generally within the
first day of simulation.

To understand this behaviour in more detail, let us consider an extreme case where
the initial humidity content of the environment is close to zero, i.e., R0 = 0.01. The
columns first selected for developing convection become dramatically moister than the
others owing to the fast relaxation time τc. Due to the large contrasts in humidity con-
tent between convecting and non-convecting cells, new convection is likely reactivated
in the previous spots and/or initiated in the vicinities of pre-existing sites, especially
when diffusion is not efficient at moistening the far-field. As in the domain size sen-
sitivity study presented in Chapter 3, one of the ensuing convective centers rapidly
prevails and the others shrink. Essentially this is equivalent to initializing the exper-
iment with the typical end climate of the organized case. The simulations performed
with low values of R0 can thus be considered as linked to the runs conducted by Muller
and Held (2012) to test for hysteresis. They initialized some of their simulations with a
moist bubble in the center of the dry domain, thus featuring large contrasts in humidity
content.

1In the sense of Lorenz (1968). Essentially, a system is intransitive when it possesses more than one
stable equilibrium state depending on the initial condition and almost intransitive when it is in a stable
state for a certain period of time and flips to an alternative one and then oscillates between the two.
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Figure 4.1: Time evolution of the mean and standard deviation of the spatial R field for simula-
tions with K = 104 m2 s−1, ad = 14.72, τsub = 10 days, R0 as reported in the legend. Runs are
conducted over a doubly-periodic square domain with size D = 300 km and horizontal resolu-
tion ∆x = 2 km.

Fig. 4.2 refers to the same parameter set as above except for τsub = 16 days, but
looks quite different. Two equilibria exist in this case and the initial condition is seen to
have an influence on the nature of the end climate. In other words, the system exhibits
hysteresis. Convection organizes only for a range of R0 values, R0 ≤ 0.6. Visual inspec-
tion of the scenes however suggests that the region surrounding the moist cluster is not
as dry as in the experiments discussed in Chapter 3, with the humidity content there
not less than 40%. Aggregated states are instead never obtained when starting from
relatively moist environments. In principle, we can not exclude that the two equilibria
in the upper panel of Fig. 4.2 would collapse into a single one or further evolve, but
extending the simulations past day 180 confirmed this not be the case. Therefore, once
clustering is established, it is not altered. A large stochastic component is visible in the
lower panel of Fig. 4.2 for the disorganized runs: there is no monotonicity with R0 and
the curves are continually intertwining. Contrary to the case of Fig. 4.1, for R0 ≤ 0.4,
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the R variance timeseries show a notable decrease after reaching a peak. This is be-
cause, after the initial outbreak of convection and the net separation between the moist
and dry phases, the moistening due to convection and the ensuing diffusive transport
are now opposed less efficiently by subsidence.
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Figure 4.2: As in Figure 4.1 but with τsub = 16 days.

This latter effect per se is not sufficient to destroy the clustering. However, if τsub is
further increased, aggregation does not persist, as the enlargement of the moisture halo
around convective events forces the active cells to be no longer localized but scattered,
even for very low values of R0 (Fig. 4.3). This is particularly evident in the R standard
deviation profile (lower panel). There is again one single statistically steady equilib-
rium state available for domain-mean R, which corresponds to a quasi-homogeneous
spatial distribution of convection.

4.1.1 Existence of hysteresis loops

The hysteresis behavior also manifests itself if K is varied and τsub held fixed. We show
this by conducting a different test, which exhibits the existence of a hysteresis loop.
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Figure 4.3: As in Figure 4.1 but with τsub = 20 days.

Specifically, we start from R0 = 0.8 for K = 5 × 103 m2 s−1 and perform a sequential
set of simulations by increasing K by 103 m2 s−1 at a time, with the initial state of each
run given by the end state of the preceding one. When K = 1.5 × 104 m2 s−1, the
diffusivity is reversed back. Since τsub is kept constant at 15 days, the time-averaged
convective population size is the same according to the argument (2.2). The results of
this sequential multi-run experiment are presented in Fig. 4.4, which shows the spatial
R standard deviation averaged over the last 20 days (out of 200) of each simulation, i.e.,
when equilibrium has been reached, for different values of K. The selected period is
long enough to ensure that a stable equilibrium state has been reached by the system
at the end of the integration procedure. The hysteresis loop is rather modest and not
particularly strong, yet evident.

Overall these experiments revealed that there is a limited window in the param-
eter space in which the initial condition imparts a strong memory to the system;
elsewhere, the initial state does not play any role and the conclusions of Chapter 3 well
hold. Nonetheless, it would be advisable to conduct some more systematic analysis to
see if the hysteresis loop is stronger for other parameter settings, for example changing
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Figure 4.4: Sequential series of experiments for different values of K, τsub = 15 days and
ad = 14.72, each simulation being initialized with the end climate of the previous one. The first
run has R0 = 0.8. At K = 1.5× 104 m2 s−1, the diffusivity is turned back down. K is increased
(blue solid line) or decreased (orange) by 103 m2 s−1 at a time. Shown is σR,20, the standard
deviation of the horizontal column humidity distribution averaged over the last 20 days, out of
200 of simulated time.

the convection-vapor feedback strength ad.

4.1.2 Hysteresis behavior at very high resolutions

Another experiment was performed to understand if a spatially organized atmosphere
can be disrupted by a finer grid spacing. CRM studies have investigated this facet of the
resolution sensitivity, with Muller and Held (2012) showing that, when the simulations
are initialized as organized, the clustered regime is maintained even at resolutions as
fine as ∆x = 500 m if the domain is large enough. This would suggest that the ability
of organized states to persist seems to be less sensitive to resolution than the ability of
aggregation to be instigated from homogeneous conditions. Otherwise said, the exis-
tence of the aggregated state exhibits less sensitivity than the self-aggregation process
itself.

The following Fig. 4.5 refers to the same case of Fig. 3.6d (namely, K = 5 ×
103 m2 s−1, τsub = 10 days, ad = 14.72, D = 300 km, ∆x = 500 m), but with the initial
condition given by R0 = 0.1, which, as discussed above, leads to an early establishment
of the aggregated state. Here, at day 2 (Fig. 4.5a), the cluster is already fully formed. It
then grows in size, mainly due to diffusive transport, but later stabilizes, as suggested
by the snapshots at days 50 (b) and 120 (c) that look almost identical. The findings
of our simple model are therefore once more consistent with those of CRMs and the
model poses as a useful tool to explore also this aspect of the resolution dependence of
self-aggregation.
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Figure 4.5: View of the spatial R field at days 2 (a), 50 (b) and 120 (c) of simulation, for a run
with the same parameters and setup as in Figure 3.6d, except for R0 = 0.1 (K = 5 × 103 m2

s−1, τsub = 10 days, ad = 14.72, D = 300 km, ∆x = 500 m).

4.2 Inclusion of cold pools

We saw in the Introduction that, when deep convection establishes, the subcloud layer
is cooled and moistened by evaporation of precipitation that falls through a subsatu-
rated environment. The cooling introduces a negative buoyancy perturbation and also
explains the lag between temperature and humidity drops that has often been docu-
mented in observations (Tompkins, 2001b). Later, in the mature stages, the entrainment
of dry, environmental air at the cloud edges causes some hydrometeors to evaporate,
which cools the air and generates the downdrafts (Houze jr., 2014). These are acceler-
ated by the frictional drag of falling precipitation, which results in some surrounding
air being carried down within the downdraft itself. The downdrafts inject cold and dry
air of much lower buoyancy into the boundary layer and, upon hitting the surface, the
air mass is spread away from the source as a density current (cf. sketch Fig. 1.2). The
moist air below the cloud base is replaced and pushed at the edges of the newly formed
cold pool, thus, unlike the temperature signal, the vapour depression has limited ex-
tent, with the periphery of the cold pool often (but not always, e.g., Kruse et al., 2022)
consisting of a ring of very moist air (Tompkins, 2001b). Cold pools suppress convec-
tion in the immediate neighborhood of pre-existing towers (inhibition effect), but can
initiate it by providing mechanical lifting to the warmer environmental air nearby or
by thermodynamic triggering mechanisms (Tompkins, 2001b; Torri et al., 2015).

As a first attempt, we tried to include cold pools in a very idealized way. It con-
sists in modifying the probabilities underlying the weighted random sampling that se-
lects the locations for new convection. Specifically, we account for the inhibition effect
due to cold pools by requiring convection to not redevelop in the cells formerly ex-
periencing it, and in their vicinities. To accomplish this, we introduce a new variable
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C(x, t) ∈ [0, 1], representing the likelihood of convective inhibition, with C(x, t) = 1
corresponding to full suppression of convection at point x and time t.2 We then se-
lect a radius rcin surrounding each convective point and representing the distance over
which convection is not allowed to erupt. That is, C is assumed to be identically one
for each point x within distance rcin off any convective point, while in the field far from
convection it is reasonable that C = 0. We impose the spatial C distribution be smooth,
avoiding discontinuity jumps at the edge of discs of radius rcin centered at the convec-
tive points. We thus require C satisfies a reaction-diffusion equation of the type

∂C
∂t

= Kcin∇2C − C
τcin

, (4.1)

where Kcin and τcin represent the efficiency of the spreading of high density air, hence
of inhibition, and the relaxation time to C = 0, i.e., to a complete removal of convective
inhibition. The former can be interpreted as due to the cold pool propagation, the
latter as the wake lifetime before the recovery of thermodynamic anomalies by surface
fluxes and environmental mixing takes place. We note that this approach neglects a
wide variety of phenomena, for instance the fact that, at the convergence lines between
colliding cold pools, convection can be easily triggered because the dynamical uplift
of boundary layer air is at a maximum there. The choice itself of fixed uniform values
for Kcin and τcin is also a simplification, as, e.g., Kcin should eventually be a function of
virtual temperature anomalies. Similar to the concept of area of influence introduced
in Chapter 3 for the moisture halo around convective towers, the maximum cold pool
size is controlled by Kcin and τcin.

The eqn. (4.1) can be solved numerically on the discrete grid through the ADI
scheme presented in Chapter 2. Once the solution is known, it is used to define the
non-uniform probabilities of the sampling procedure that determines the triggering of
new convection. These probabilities are no longer based on eqn. (2.4), but we impose
that

pcj,k ≡ pc(Rj,k; Cj,k) = Z(t)(1 − Cj,k)eadRj,k , (4.2)

where the subscripts j, k again refer to the grid and Z(t) is a normalizing factor. The
relationship eqn. (4.2) means that, if in principle Cj,k = 1, pcj,k would be zero regardless
of the value of Rj,k and convection could not redevelop in the moistest grid points. In
practice, however, values of C = 1 are never attained because of the relaxation term in
eqn. (4.1). The extent to which the probabilities are modified by the inclusion of cold
pools in both random and aggregated situations is apparent from Fig. 4.6. It is seen that,
in the former configuration, the most notable differences are in the areas surrounding
the updrafts (red dots) and in the vicinities of pre-existing ones, where full recovery of
the inhibition has not yet occurred. The differences are instead extremely evident in
the second case, not only within the moist patch typical of self-aggregated states, but
also in the far-field. The probabilities here are anyway lower than in the vicinities of

2Here [0, 1] denotes the unit interval, the left- and right-closed interval of real numbers between zero
and one.
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updrafts because of the huge difference in the R content, yet they differ almost by a
factor of 100 with respect to the case without cold pools included.

4.2.1 Choice of parameters and constants

For the radius rcin of convective inhibition from a tower we use the value of rcin = 8.6
km corresponding to the mean maximum cold pool radius found by Tompkins (2001b)
in his CRM study. The cold pool lifetime τcin can be thought of as the time taken by
surface heat fluxes to aid the recovery of moisture and temperature anomalies, even
though more complex processes, such as turbulent entrainment of air from above the
boundary layer, can be at play. Numerical and observational studies indicate that this
characteristic time ranges from 2, 2.5 to 3 h (Tompkins, 2001b; Ross et al., 2004; Kruse
et al., 2022) and here we set τcin to 2.5 h.

Finally, to provide accurate estimates of Kcin, we recall that the motion of the cold
pool is largely dictated by its head, a region of relatively deep fluid located in proximity
to the gust front. Under the assumption of incompressible and inviscid flow regime
for the density current, which allows to neglect viscous effects, the radially spreading
velocity of the head, u, is given by the von Kármán equation (Benjamin, 1968; Huppert
and Simpson, 1980):

u = Fr
√

g′H, (4.3)

where Fr is the Froude number, a constant expressing the ratio between inertial and buoy-
ancy forces; g′ = ρ−ρ0

ρ0
g is the reduced gravity that expresses the density contrast between

the current (ρ) and the ambient fluid (ρ0); H is the characteristic thickness of the current.
Here we follow Kruse et al. (2022) in setting Fr = 0.7 and in approximating the relative
density variation in the reduced gravity with the relative temperature variation T−T0

T0
.

Taking T − T0 = −2 K, T0 = 298 K, and assuming H be approximately 500 m, if we
combine the resulting value of u with the choice of rcin, we obtain an estimate for Kcin
on the order of 3 × 104 m2 s−1.

4.2.2 Impacts on aggregation

It is apparent that the inclusion of cold pools acts against organization, as it weakens the
feedback between convection and water vapor, favouring the maintenance of uniformly
distributed convection. The following Fig. 4.7a-e is to be compared with Fig. 3.1f-
j, as the model and experiment setup is the same except for the cold pool convective
inhibition effect accounted for in this case. It is seen that aggregation never establishes
in Fig. 4.7.

For simulations that aggregate, cold pools enlarge the wet patches and also delay
the clustering onset. This is shown in Fig. 4.8, which compares the evolution of two
simulations with the model key parameters invariant and cold pools included (orange
line) or not (blue). The final equilibrium states feature aggregation in both cases, but
with some remarkable differences. Indeed, the reduced size of the wet region without
cold pools accounted for translates into a much lower domain-mean R and R standard

85



Figure 4.6: Impact of cold pool convective inhibition effect on the probabilities (color shading)
underlying the weighted random sampling to locate new convection. Shown are random (a,c)
and clustered (b,d) convective states, both with (c,d) and without (a,b) cold pools included.
Convectively active cells are represented as red dots, while the contours in (c,d) refer to the
convective inhibition C.

deviation and a much higher value of Iorg, indicating very strong clustering. In case
cold pools are included, Iorg shows some tendencies towards regularity at the simula-
tion outset, which was expected because of the inhibition effects that induce dispersion
in the cloud field. The time of adjustment to equilibrium is also much longer. Another
example is shown in an animation available at http://clima-dods.ictp.it/Users/
gbiagiol/CPs.mp4.
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Figure 4.7: Snapshots of the spatial R (a-e) and C (f-j) fields for a simulation with the same
parameters and setup as experiment 0.5K (see Table 3.2), but with cold pool exclusivity effects
accounted for and rcin = 8.6 km, τcin = 2.5 h, Kcin = 3 × 104 m2 s−1. In panels (f-j), the active
cells are marked as grey dots.

It would be interesting to see whether in this case arguments similar to those used
in Chapter 3 apply in order to derive a modified version of the aggregation number
Nag. Since the impact of cold pool exclusivity effects is in the probabilities to locate new
convection, we expect some of the previous arguments still hold and modifications are
possibly to be made with particular regard to the assessment of the role of the indicator
random variable. We argue that the concept of area of influence and the assumption
of homogeneity for the Poisson point process representing the updraft locations in the
pre-onset phase should not be completely unreasonable, the latter at least in a time-
averaged sense. A more systematic analysis is however to be conducted, which will be
a topic of future work.
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Figure 4.8: Time evolution of the spatial R distribution, in terms of domain mean (upper panel)
and standard deviation (middle panel), and the organization index Iorg (lower panel) for two
simulations with (orange line) and without (blue line) cold pool inhibition effects accounted
for. The dashed line in the bottom panel marks Iorg = 0.5, which is the value for a random
distribution of convective cells. Here K = 103 m2 s−1, Kcin = 3 × 104 m2 s−1, τsub = 10 days,
τcin = 2.5 h, ad = 14.72 and rcin = 8.6 km, domain size and horizontal resolution are kept at
their default values, R0 = 0.8.
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Chapter 5
A revised index to measure the
organization of deep convection

The focus of the previous chapters was on the phenomenon of deep convective self-
aggregation, which may appear as an artifact of the models at a first glance. Parallel
efforts to provide observational evidence of it have been made, but the problem is that,
to detect and quantify its strength not just in observations but also within the models
themselves, proper metrics are required. More generically, there is no consensus on
what constitutes deep convective organization in practice, which means that there is
little agreement in the literature on how to best measure it. This has led to the flourish-
ing of a variety of aggregation metrics. They explore different aspects and signatures
of the organization processes, not infrequently exhibiting opposite behavior and trends
between each other.

In this chapter, we will first conduct a comprehensive review of the existing method-
ologies in an attempt to summarize the family of indices used to assess organization.
Some of their drawbacks are highlighted, with the vast majority measuring organiza-
tion only in a relative sense. One widely used metric in recent years, Iorg (Tompkins
and Semie, 2017), addresses this issue, but we will show that it is totally blind to or-
ganization beyond the β-mesoscale (20-200 km) and very contingent on the details of
the implementation method, a source of concern for the analysis of present-generation
precipitation or cloud retrievals.

We thus introduce a new and complementary metric based on all-pair (rather than
nearest-neighbor) distances between convective clouds, which also measures organiza-
tion in an absolute sense and accounts for inter-cluster spacings beyond the mesoscale.
Additionally, the new index, Lorg, is much more robust to the calculation details than
Iorg. Its use, demonstrated with idealized synthetic configurations as well as model
output and satellite rainfall retrievals, suggests that the new metric can act as a useful
supplement to the existing family of indices for measuring convective organization.
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5.1 Review of previous contributions

In our literature review, we will divide the indices used to assess organization broadly
into two genera. The first genus contains those metrics devised to account for the large-
scale impacts of the organization, i.e., they focus on the evolution of relevant meteoro-
logical fields as aggregation progresses. Examples include analyzing the spatial vari-
ance of the column water vapor in some way, or the mean top-of-atmosphere OLR. A
second genus of indices instead comprises object-based approaches, whose derivation
involves the location of cloud entities or updrafts within a given field to then provide a
measure of the extent to which these objects can be interpreted as scattered or clumped.
In both cases, the indices are usually calculated from snapshots of a given variable(s),
and their temporal evolution is considered. Since the first group detects the indirect
impacts of aggregation rather than the direct measurement of convective clustering, we
will refer to the two genera as indirect and direct organizational indices, respectively.

The indirect metrics are summarized in Table 5.1. They are intended to reflect some
clear signatures of the self-aggregation process, such as the growth of dry patches with
suppressed convection at the expense of moist ones and the ensuing transition towards
a much larger variability in the spatial moisture field (cf. Fig. 3.2). We further di-
vide this category to consider the humidity-related species as distinct from those based
on other markers, e.g., OLR and large-scale vertical velocity. Note, however, that the
derivation of metrics based on vertical velocity profiles may entail the analysis of three-
dimensional fields which - moreover - are not directly available in observations. All
these indices, with the exceptions of the interquartile ratio of WVP, the AFs, F0.8P and
ARH, take on higher values for more aggregated conditions.

One commonality of all of the indirect metrics is that they are all relative. They gauge
relative aggregation comparing two scenes, classifying one as more or less clustered
relative to the other. Taking the spatial variance and interquartile humidity ranges as an
example, it might in theory be possible to derive the expected values associated with a
random Poisson process in the distribution of updraft locations, but this would depend
on the assumed physics such as convective precipitation efficiency and mixing, and
thus in reality is not achieved. Without a theoretical random benchmark to compare
to, it is not therefore possible with such metrics to classify scenes as regular, random or
clustered.

These metrics are also affected by other factors in addition to the degree of con-
vective organization, which implies that some of the indices may fail even in the task
of measuring organization in a relative sense. For example, spatial humidity variabil-
ity will also be a function of the mean atmospheric temperature and the local surface
temperatures. This means that it is not straightforward to use such metrics to compare
organization between two model experiments that use different sea surface tempera-
tures SSTs for instance, or indeed between two different models as humidity variance
will be impacted by details of their respective sub-grid parameterizations such as those
for turbulence and microphysics in addition to their convective arrangements. These
drawbacks mean the vast majority of such metrics have only been applied to model
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simulations (not observations) to compare situations with identical boundary condi-
tions.

A third weakness of some of these methods is their strong nonlinear behavior as a
function of aggregation. For example, a pronounced increase in spatial variance of col-
umn humidity or moist static energy is frequently used to mark the onset of aggregation
from random conditions (cf. Fig. 3.3). However, we demonstrated in Chapter 3 that,
once aggregation is established, further enhancement of the clustered state leads to a re-
duction of variance. This nonlinear behavior and the non-existence of a 1-1 relationship
between these variance metrics and aggregation implies that they are inappropriate to
intercompare organized states between models for example.

Table 5.1: List of some indices related to the self-aggregation impacts on climate.

HUMDITY-BASED INDICES

Index
(name/acronym/symbol)

Definition/description References

WVP interquartile ratio Ratio of WVP in the driest quartile to WVP in
the moistest quartile of grid columns

Bretherton et al. (2005)

Metric for intensity of ag-
gregation σ

Difference in mean CRH between the moistest
and driest quintiles of columns

Arnold and Randall
(2015)

var(ĥ) Spatial variance of column-integrated frozen
moist static energy

Wing and Cronin (2016)

var(H) Spatial variance of CRH Wing and Cronin (2016);
Wing et al. (2020)

Column water vapor
(CWV) interquartile
range (IQR)

Difference between the 75th and 25th per-
centiles of horizontal CWV distribution

Holloway and Wool-
nough (2016); Holloway
(2017)

CWV upper-quantile
range (UQR)

Difference between the 95th percentile and the
median of horizontal CWV distribution

Holloway and Wool-
nough (2016); Holloway
(2017)

Domain-mean vertical-
average relative humid-
ity (ARH)

Spatial mean of vertically-averaged, density-
weighted relative humidity

Bao et al. (2017)

Degree of aggregation α Coefficient of variation of CWV Lebsock et al. (2017)

Degree of zonal convec-
tive clustering Sλ(P)

Zonal standard deviation of the meridionally
(6S-6N) averaged precipitation, normalized by
the mean 6S-6N precipitation

Popp and Bony (2019)

Convective organization
index BLW

(Reciprocal of the) ratio of the length of the
moist margin (separation boundary between
moist and dry regions) to a theoretical mini-
mum length

Beucler et al. (2020)

INDICES REPRESENTING OTHER SIGNATURES
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Index
(name/acronym/symbol)

Definition/description References

Mean outgoing long-
wave radiation (OLR)

Domain-mean OLR Wing and Emanuel
(2014)

Subsiding fraction (SF) Area fraction of the domain covered by midtro-
pospheric (500 hPa) descending motion

Coppin and Bony (2015);
Wing et al. (2020)

Ascending fraction #1
(AF1)

Area fraction of the domain with midtropo-
spheric vertical velocity > domain-mean posi-
tive vertical velocity

Bao et al. (2017)

Ascending fraction #2
(AF2)

Area fraction of the domain with net upward
mass-weighted vertical integral of vertical ve-
locity

Bao et al. (2017)

Wavelet-based organiza-
tion index (WOI) and lo-
cal WOI (LWOI)

Analysis of wavelet energy spectra of rain rates
to assess prevailing spatial scales, intensity and
anisotropy of precipitation structures

Brune et al. (2018, 2020,
2021)

F0.8P Minimum area fraction that accumulates 80%
of total precipitation in the band 6S-6N

Popp and Bony (2019)

The second genus of direct metrics require the identification of cloud objects within
a given scene and then making an assessment of the spatial relationship between these
identified objects as summarized in Table 5.2. In theory, these approaches are versatile,
as they can be applied to a range of meteorological variables that can identify cloud
positions in either model simulation output or observational datasets. Deep convective
entities can be located by imposing arbitrary thresholds on relevant fields used as prox-
ies, such as OLR (White et al., 2018; Wing et al., 2018), infrared brightness temperature
Tb (Tobin et al., 2012, 2013; Kadoya and Masunaga, 2018; Pscheidt et al., 2019; Bony
et al., 2020), radar reflectivity (Pscheidt et al., 2019; Retsch et al., 2020; Radtke et al.,
2022), precipitation (Pendergrass et al., 2016; Holloway, 2017; Bao et al., 2017), updraft
velocities (Tompkins and Semie, 2017; Cronin and Wing, 2017), cold cloud optical depth
and pressure (Xu et al., 2019).

However, in practice the challenge lies with the definition of distinct events. In
models, high updraft velocity can discern convective cores, but updraft velocities are
not available from present-generation satellite observations. Using proxies such as OLR
or visible imagery can mean cloud overlap causing a merging of distinct convective
events and thus confound the statistics, especially as some approaches use recursive
algorithms based on four-connectivity (or eight if diagonals are included, e.g., Jin et al.,
2022) clustering, that is, contiguous model/observation pixels meeting a given thresh-
old are considered a single entity. Bony et al. (2020) tried to avoid this when identifying
convective centers from observed Tb by using the local cold maxima if they were below
240 K with a filter applied to remove the impact of gravity waves.

From the direct indices, the precursor has been the Simple Convective Aggregation
Index (SCAI) by Tobin et al. (2012, 2013), which takes into account the number of deep
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convective objects within the domain and their degree of clumping. Its formulation is
provided in Table 5.2 and lower values of SCAI represent higher degrees of aggregation,
reflecting the view of the authors that convective organization intuitively corresponds
to a small number of cloud systems that exist in close proximity to one another. One
objection made to SCAI is the fact that it does not account for the size of the cloud
objects (e.g., White et al., 2018; Xu et al., 2019; Retsch et al., 2020).

Several proposals have amended this: some, like the Modified Convective Aggre-
gation Index (MCAI, Xu et al., 2019), are a variant of SCAI; while others are based
on different principles and conceptual views of the organization process. In particular,
inspired by the mathematical form of the gravitational interaction potential associated
with a distribution of objects, White et al. (2018) defined the convective organization
potential (COP) index as the arithmetic mean of the interaction potentials between all
possible pairs of convective points in the scene. High values of COP, in turn result-
ing from small amounts of large, close-by objects, would represent more aggregated
conditions. However, both Retsch et al. (2020) and Jin et al. (2022) pointed out that
the definition of COP might not properly emphasize the size of the objects, proposing
modifications to COP to assign greater weights to larger cloud elements, introducing
the Radar Organization Metric (ROME) and the area-based COP (ABCOP), respectively.

Finally Iorg was introduced that allows specific and quantitative categorization of
scenes. Possibly due to this ability, it is perhaps the most widely used organizational
index since its introduction for both model and observation studies. The index is based
on the nearest-neighbor distances (NNDs) between convective events, and is broadly
revisited in the following Section 5.2.

Table 5.2: List of some object-based organization metrics.

Index
(name,
acronym)

Formulation Variable and
threshold (refer-
ences)

Remarks and pros/cons
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Simple
Convective
Aggrega-
tion Index
(SCAI)

SCAI =
N

Nmax

D0
D

× 1000

N nr of clusters, D0 geometric
mean distance between cluster cen-
troids, Nmax half of total nr of pix-
els, D characteristic domain length.

Tb ≤ 240 K (To-
bin et al., 2012,
2013); Daily
precipitation
P ≥ P95 95th

percentile (Bao
et al., 2017).

• Considers number of clusters
and their grouping.

• Geometric mean distance
may not emphasize smaller
inter-convective distances
(White et al., 2018).

• Variability in SCAI might
reflect that of N (Tobin et al.,
2013; White et al., 2018;
Kadoya and Masunaga, 2018;
Brune et al., 2018; Jin et al.,
2022).

• For fixed N, it might classify
as less organized scenes with
larger objects (Xu et al., 2019;
Retsch et al., 2020).

• Ill-defined for N < 2.
• Size of the objects not ac-

counted for.

Precipitation-
based
SCAI
(SCAIP)

Same as SCAI. Daily precipita-
tion P ≥ 1.49
mm day−1 (Hol-
loway, 2017).

• Not suitable for comparing
situations with significantly
different domain-mean rain-
fall (Holloway, 2017).

Convective
Aggrega-
tion Index
(CAI)

CAI =
ND1

T

N nr of clusters, D1 arithmetic
mean distance between cluster cen-
troids, T average event duration
weighted by event size.

Daily precipi-
tation P ≥ P99
99th percentile
(Pendergrass
et al., 2016).

• Incorporates event duration.
• Precipitation-based index (not

OLR-based), which is prefer-
able when analyzing global
warming simulations.

Modified
Convective
Aggrega-
tion Index
(MCAI)

Same as SCAI but with the arith-
metic mean edge-to-edge cluster
distance D2 in place of D0.

Cloud optical
depth δ ≥ 10
and cloud top
pressure ≤ 440
hPa (Xu et al.,
2019)

• The modified measure of dis-
tance accounts for object sizes.

• Very weak sensitivity of the
aggregation level to the ob-
ject sizes for fixed N (unlike
SCAI).

• Behaves as SCAI for small ob-
ject area ranges, as COP for
large object area ranges.

• Largely dependent on N for
tropical convective scenes at
synoptic scales (Jin et al.,
2022).
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Convective
Organi-
zation
Potential
(COP)

COP =

(
N
2

)−1 N

∑
i=1

N

∑
j=i+1

ri + rj

dij

N nr of clusters, ri, rj object area-
equivalent radii, dij inter-centroid
distance.

OLR, double
thresholding
approach (non-
max suppres-
sion method),
with 150 W
m−2 and 175 W
m−2 thresholds
(White et al.,
2018).

• Addresses some of the defi-
ciencies of SCAI.

• Assumes circular elements,
which might not be the case
in real situations (Brune et al.,
2018).

• It is self-similar (Retsch et al.,
2020): COP does not change if
size of convective entities and
their separation distances are
multiplied by a scalar value.

• Ill-defined for N < 2.
• Weak sensitivity to N (Xu

et al., 2019).
• Tends to overestimate the or-

ganization level for small N,
to underestimate it for large N
(Jin et al., 2022).

• Strongly sensitive to the addi-
tion of small isolated objects
(Jin et al., 2022).

Area-based
COP (AB-
COP)

ABCOP =
N

∑
i=1

max
j=1,...,N

j ̸=i

Ai+Aj
2

1
D2

d2ij
D

N nr of clusters, Ai, Aj object areas,
d2ij edge-to-edge distance (mini-
mum value set to 1), D domain
size.

Hourly pre-
cipitation data
from IMERG
(Jin et al., 2022).

• More sensitive than COP to
object sizes.

• Properly handles small, noisy
isolated objects.

• Highly organized configura-
tions are those with large
object surrounded by many
satellite ones.

• Application to a range of do-
main sizes: captures well
known synoptic convective
phenomena and works well
for small domain scenes.

• Defined also in cases with
N = 1, but it could be unrea-
sonably small.

• Caution when comparing sit-
uations over domains with
very different sizes.

• Possibility of unphysical be-
havior for small domains.
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Radar Or-
ganization
Metric
(ROME)

ROME =

(
N
2

)−1 N

∑
i=1

N

∑
j=i+1

max {Ai , Aj}

+ min
{

1,
min {Ai , Aj}

Adij

}
min {Ai , Aj}

N nr of clusters, Ai, Aj object areas,
Adij

area in-between

Radar reflec-
tivity with the
adoption of the
Steiner et al.
(1995)’s algo-
rithm (Retsch
et al., 2020).

• Defined also in cases with
N = 1, in which ROME = A1.

• Good correspondence with
intuitive concepts of organi-
zation (the presence of vast re-
gions of convective activity is
a sign of clustering).

• Effective at reproducing the
observed diurnal cycle of con-
vective precipitation intensity
in the tropical wet season
months.

Organization
index Iorg Iorg =

∫ 1

0
F̂(F(r)) dF

F and F̂ cumulative distribution
functions of the cloud-to-cloud
nearest-neighbor distances for a
homogeneous Poisson point pro-
cess (eqn. (3.1)) and for the cloud
field scene under consideration, r
distance.

Vertical velocity
w at 730 hPa > 1
m s−1 (Tomp-
kins and Semie,
2017); cloud
top temperature
< 235 K (Cronin
and Wing,
2017); hourly
averaged w at
500 hPa > 0.5 m
s−1 (Cronin and
Wing, 2017);
OLR < 173
W m−2 (Wing
et al., 2018);
precipitation
P ≥ 2 mm h−1

(Brune et al.,
2018).

• Quantification of the organi-
zational regime for each indi-
vidual situation.

• Size of the objects not ac-
counted for.

• Level of organization under-
estimated for configurations
with large aggregates (Retsch
et al., 2020; Jin et al., 2022).

• No information about num-
ber, sizes and shapes of cloud
objects (Pscheidt et al., 2019).

• Noisy and difficult to inter-
pret for small N (Brune et al.,
2018; Pscheidt et al., 2019).

• Strongly sensitive to noisy
isolated convection (Jin et al.,
2022).

Morphological
Index of
Convective
Aggre-
gation
(MICA)

MICA =
∑N

i=1 Ai
Ac

D − Ac

D

N nr of clusters, Ac area of the min-
imum rectangle enclosing all cloud
objects, D domain size.

Tb ≤ 240 K
(Kadoya and
Masunaga,
2018).

• Although object-based, it ac-
counts for clear signatures of
self-aggregation, such as the
presence of large clear-sky ar-
eas.

• It performs well if clusters
are concentrated in one single
part of the domain.

• It may not work properly
with outliers existing far from
the main group of aggre-
gates (Kadoya and Masunaga,
2018) or with broadly scat-
tered objects, as in tropical or-
ganization scenes at synoptic
scales (Jin et al., 2022).
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Ishape

Ishape =
1
N

N

∑
i=1

Peqi

Pi

N nr of clusters, Pi perimeter of i-th
object, Peqi

circumference of area-
equal disc.

Radar reflectiv-
ity ≥ 30 dBz;
Tb ≤ 240 K
(Pscheidt et al.,
2019).

• Gives the average 2D shape
(more elongated/circular) of
cloud objects within the scene.

• To be used in combination
with other indices to bet-
ter characterize the organiza-
tional state.

Information
entropy of
maps of
convective
occurrence
H

H = −
L2

∑
i=0

pi log2 pi

L2 total number of grid points in
a domain, pi probability that in a
scanning subdomain of i2 points
other (binary) values agree with
the entry in the upper-left corner.

Tb ≤ 245 K +
≥ 1 pixel with
Tb ≤ 220 K
(Sullivan et al.,
2019).

• Allows to concisely quan-
tify the response of orga-
nized convection to dominant
modes of climate variability
(e.g., ENSO).

Since each index is designed to capture some specific aspect of the organization pro-
cess, Pscheidt et al. (2019) suggested the use of a combination of indices to fully char-
acterize the organizational state, for example distinguishing aggregated scenes with
fewer but larger objects from those with more numerous but smaller objects, which
could be the case of oceanic compared to continental organized convection (e.g., Xu
et al., 2019; Jin et al., 2022). In this regard, Brune et al. (2018, 2020, 2021) characterized
the degree of aggregation through discrete wavelet decomposition of rain rate fields
and introduced indices, called the wavelet-based organization index (WOI) and the lo-
cal WOI (LWOI), which inform about the dominant spatial scales and orientation of
precipitation patterns and their spectral energies.

5.2 Revisiting Iorg and relative Iorg

5.2.1 Definition of Iorg and RIorg

Iorg has its roots in the work of Weger et al. (1992); Zhu et al. (1992); Lee et al. (1994);
Nair et al. (1998), who analyzed the clouds in visible imagery and classified their or-
ganization based on the cumulative distribution function of nearest-neighbor distances
between identified cloud "objects". The identification process of an "object" is very de-
pendent on the type of field used and especially the spatial resolution. For very fine
resolution vertical velocity fields from model simulations, or satellite imagery, in which
a deep convective event may be very well resolved, horizontally adjacent convective
cells must be counted as a single entity by using (often recursive) algorithms to iden-
tify connected updraft cells (e.g., Wielicki and Welch, 1986; Zhu et al., 1992; Machado
and Rossow, 1993; Tompkins and Semie, 2017). This would not be advisable for scenes
with coarser resolution that under-resolve convective events, for instance the O(10 km)
Global Precipitation Measurement (GPM) rainfall retrievals (Huffman et al., 2020) or
global climate models. Moreover, if the whole systems (i.e., including anvils) are iden-
tified for example using OLR retrievals, there can be superposition between individual
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deep convective clouds. This can be avoided by imposing stringent selection criteria on
relevant variables as the use of warm thresholds may even entail the risk of including
unrelated cloudiness as belonging to the cluster (Roca et al., 2017; White et al., 2018;
Sullivan et al., 2019; Bony et al., 2020).

Given a cloud field, the NNCDF derived from the distribution of objects in the
scene, referred to as the observed or simulated NNCDF, F̂, is determined by calcu-
lating, for each updraft center, the distance to the closest object. If cyclic boundaries
are imposed, as is the case in CRM simulations of RCE, the classical euclidean metric
has to be replaced by a toroidal one. These observed NNCDFs are compared to a refer-
ence theoretical NNCDF expected from the theory if the same number of objects were
randomly distributed within the domain. Similar analyses of the joint distributions were
also carried out by Benner and Curry (1998); Craig and Cohen (2006).

The homogeneous Poisson point process reference model for the location of up-
draft cores implies that the cumulative distribution function of the nearest-neighbor
distances between convective points follows the Weibull distribution (3.1). Given a
point of the pattern, F(r) is the probability of the nearest object falling within a circle of
radius r centered at the base element. Alternatively, one could also employ the point-
to-neighbor statistics, in particular the point-to-cloud cumulative distribution function
(PCCDF), which obeys the same law as (3.1) (Weger et al., 1992) due to the memoryless
property of the exponential (Moltchanov, 2012), but this approach will not be consid-
ered here.

If the graph of the theoretical versus simulated NNCDFs lies on the 1-1 identity
line, the observed distribution matches the one that would be expected if the objects
were randomly arranged, hence the cloud centers are deemed to be perfectly randomly
distributed over all spatial scales (Fig. 5.1a). If the graph of the joint NNCDF lies
above the identity line, the corresponding process is designated as clustered, because
for a given value of NND there are more pairs than expected with the Poisson process,
hence the observed nearest-neighbor distance distribution function will be larger than
eqn. (3.1) (Fig. 5.1b). Vice versa, if the joint NNCDF graph lies below the 1-1 line,
the scene is regular since, for a given NND, there are less nearest-neighbor pairs than
expected for the Poisson distribution and the observed NNCDF is smaller than eqn.
(3.1) (Fig. 5.1c). The joint NNCDF can provide information concerning the spatial scales
of convection, for example, Tompkins and Semie (2017) showed convection was regular
at spatial scales inferior to 16-18 km, and clustered over larger scales.

Tompkins and Semie (2017) then converted the joint NNCDF into a single index Iorg
by integrating the area under the joint NNCDF graph:

Iorg =
∫ 1

0
F̂(F(r)) dF.

The index was preceded by the analysis of trade-wind cumulus fields in large-eddy
simulation experiments by Seifert and Heus (2013), who examined the integral depar-
ture of the observed NNCDF relative to the theoretical one. We therefore term the
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unnamed metric proposed by Seifert and Heus (2013) the relative Iorg, or RIorg, which is

RIorg =
∫ 1

0

(
F̂(F(r))− F(F(r))

)
dF =

∫ 1

0
F̂(F(r)) dF − 0.5 = Iorg − 0.5.

For these indices, the integration is performed numerically, by means of the trapezoidal
rule. RIorg = 0 corresponds to randomly distributed clouds (Fig. 5.1a, equivalent to
Iorg = 0.5), while RIorg > 0 refers to clustering (Iorg > 0.5), and RIorg < 0 to regularity
(Iorg < 0.5) as shown in Fig. 5.1b,c. In conclusion, analogous to the other object-based
indices, the calculation of Iorg and RIorg takes as input a two-dimensional binary matrix
(entries equal to 1 in the convective pixels, 0 elsewhere) resulting from the application
of specific selection criteria, and outputs a value that measures the organization level.
For ease of comparison with the new index developed in Section 5.3, we shall show
RIorg hereafter, but the conclusions made about spatial scales and drawbacks of the
index are obviously identical for both Iorg and RIorg.

When the number of cloud objects is small, deviations from complete spatial ran-
domness (CSR) must be tested for statistical significance in order to validate whether
any regularity or clustering signal suggested by the joint CDF is relevant. In the follow-
ing, we therefore generate a large number (400) of realizations by means of a random
number generator with the same sample size as in the observed case, and then com-
pute the 2.5th and the 97.5th percentiles of F̂ for each r within the range of NNDs. The
upper and lower bounds of this 95% confidence envelope serve to indicate where sig-
nificant clustering or regularity begins; if, for each r, the sample statistic lies within the
confidence interval, then the corresponding scene cannot be differentiated from ran-
domness.

5.2.2 The organization irregularity index, OII

The fact that RIorg is an integrated quantity means that the organization at specific
scales can not be determined. RIorg = 0 does not guarantee that the convective activity
is randomly distributed in space over all scales; rather, it might result from the super-
position of, e.g., regular and clustered sub-distributions (Fig. 5.1d). It is not uncommon
to have real cloud fields that manifest the coexistence of multiple categories of organi-
zation, because clouds of different sizes may exhibit different spatial structures (Weger
et al., 1992; Zhu et al., 1992). This is the case of boundary layer cloudiness, i.e., fair
weather cumulus (Zhu et al., 1992; Weger et al., 1993; Nair et al., 1998) and stratocumu-
lus cloud distributions (Lee et al., 1994). In our synthetic example, a crossover of the
diagonal is clearly visible in the NNCDF plot (Fig. 5.1d, right panel), with clustering
at small scales and regularity at large scales, despite the mean index value of zero. The
value of RIorg should be supplemented by careful analysis of the joint NNCDF. To sum-
marize the departure from randomness, we introduce a second index, the organization
irregularity index (OII), which is defined as the root-mean-square error (RMSE) of F̂
with respect to F:

OII =

√∫ 1

0

(
F̂(F(r))− F(F(r))

)2

dF.
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(a) Random scene, RIorg = 0.00, OII = 0.03
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(b) Clustered scene, RIorg = 0.44, OII = 0.50
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(c) Regular scene, RIorg = 0.45, OII = 0.54
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(d) Composite scene, RIorg = 0.00, OII = 0.23
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Figure 5.1: Series of synthetic configurations with cloud centers showing random (a), clustered
(b), regular (c) spatial structures and a clustered subregion embedded in a regular background
(d), along with the related nearest-neighbor distance distribution functions (blue lines in the
middle column) compared to the reference of random organization for the same number of points
of the process (that is, eqn. (3.1), green line). For each scene, the corresponding plot of Weibull
vs simulated NNCDF is included (red line), with the identity line represented as a dashed line
in the right panels. The cyan shading refers to the 95% confidence envelope for CSR. The red
and blue shaded areas count as positive and negative integrals respectively in the calculation
of RIorg. In (a) and (d), the value of the organization irregularity index (OII) is provided (see
Section 5.2.2 for details). The domain is 500 × 500 km2, with cyclic boundaries and resolution
∆x = 2 km, while the number Nc of points is Nc = 72 (a,b,d), Nc = 100 (c).
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OII can take values from zero (distribution is random at all spatial scales) to 1/
√

3 (dis-
tribution’s departure from randomness is maximum). Thus RIorg and OII effectively
describe two moments of the organization, summarizing the mean and a measure of
the variance of the organization across spatial scales, respectively.

5.2.3 Inhibition effects

The choice of modeling the cloud field spatial structure as a point process, as assumed
in the derivation of RIorg may lead to inaccuracies. In both numerical simulations and
satellite/radar imagery, the deep convective entities are finite-size rather than puncti-
form, and this poses a constraint on the minimum inter-convective distance r0 (Stoyan
et al., 2013). Such a constraint is the more severe the larger the total fractional cloudi-
ness ϵ, related to either increased cloud number and/or cloud size, because the possible
positions over which the constituent objects of the pattern can be located are reduced.
This inhibition effect is particularly pronounced for the nearest-neighbor statistics, as it
can alter the cumulative probabilities for small NNDs (Fig. 5.2b), impairing any pos-
sible interpretation of the NNCDF plot. Indeed, while F̂(r) = 0 for r < r0, F(r) = 0
if and only if r = 0. A strong regularity signal is imposed (Fig. 5.2c), with the joint
curve (red) lying irreversibly below the identity line (dashed), instead of being coinci-
dent. The distortion can be significant even when the cumulus fraction is about 1% (not
shown).
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Figure 5.2: (a) Generation of a scene with Nc = 125 randomly distributed points over a doubly-
periodic square domain with size D = 50 km and resolution ∆x = 1 km (ϵ = 0.05). (b, c)
Inhibition effects due to finite cloud sizes. In (c), the blue shaded area represents the integral
deviation F̂ − F that gives RIorg.

To reduce this effect, one may treat the objects as discs and consider the edge-to-
edge rather than inter-centroid distances between them, as suggested by Weger et al.
(1992); Nair et al. (1998); Pscheidt et al. (2019). This would also make the nearest-
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neighbor index sensitive to the size of the objects, somehow addressing the most im-
portant criticism made against it (e.g., Retsch et al., 2020; Jin et al., 2022). Indeed the
index can provide a counterintuitive indication of low degrees of organization for pat-
terns featuring the presence of large aggregates, since their centroids might be further
apart. However, if the edge-to-edge distances are considered, a theoretical model for
the random case is no longer available and the Weibull NNCDF (3.1) has to be replaced
by an estimated one, resulting from the generation of configurations in which the same
objects as in the observed scene are randomly distributed. For this lack of theoretical
null, we prefer not to use this approach here.

5.2.4 Spatial scales of RIorg

The NND statistics that underlie the calculation of RIorg can provide information con-
cerning the spatial scales over which convection is clustered, random or aggregated.
However, due to the exponential form of the Weibull CDF (3.1), RIorg does not assess
organization linearly across spatial scales (Fig. 5.3) and no mathematical derivation
has been provided for the mean scale that RIorg measures organization over. Bony
et al. (2020) analyzed statistics of NNDs of tropical deep convection identified in Tb
and inferred that the nearest-neighbor connectivity metric measures clustering on the
O(100 km) β-mesoscale, according to the subdivision of scales by Orlanski (1975). One
of the aims of this section is to derive the mean spatial scale of RIorg analytically.

We denote the mean spatial scale associated with a point pattern when analyzed in
terms of the relationships of each object to its close neighborhood by λRIorg . If a random
variable X is distributed according to a Weibull law, let Y be the truncated variable
with support limited to [0, rmax], i.e., Y = X|(0 ≤ X ≤ rmax), rmax being the maxi-
mal nearest-neighbor distance within a domain of characteristic length D. This is the
case encountered in practical applications, in which finite study areas are considered
and rmax = D/

√
2 if periodic lateral boundary conditions are applied, rmax = D

√
2

if open lateral boundary conditions are assigned. The definition of conditional proba-

bility implies that the probability density function fY(y) obeys fY(y) =
fX(y)

p(X ≤ rmax)
,

where p(·) denotes the probability of an event. Let E(Y) be the expectation of Y, then
λRIorg = E(Y) and

λRIorg =
(

1 − e−λπr2
max

)−1 ∫ rmax

0
r2λπre−λπr2

dr

=
(

1 − e−λπr2
max

)−1
(
−re−λπr2

∣∣∣∣r=rmax

r=0
+
∫ rmax

0
e−λπr2

dr
)

=
(

1 − e−λπr2
max

)−1
(
−rmaxe−λπr2

max + (λπ)−
1
2

∫ √
λπrmax

0
e−t2

dt

)

=
(

1 − e−λπr2
max

)−1 (
−rmaxe−λπr2

max + (4λ)−
1
2 erf

(√
λπrmax

))
,

(5.1)
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Figure 5.3: Contours of the spatial scales over which the Weibull distribution measures orga-
nization, shown as multiples of the grid spacing ∆x = 1 km for a case with D = 500 km and
convective fractions ϵ as reported on the y-axis.

where erf is the error function, erf(z) = 2√
π

∫ z
0 e−t2

dt. In principle, with the Poisson
law, unbounded regions are considered, hence as rmax → ∞ and we recover the well
known 1

2
√

λ
limit for the Weibull distribution. In practical cases, however, it is suffi-

cient that rmax ≫ (πλ)−
1
2 for the limit to be a good approximation, usually the case

for cloud resolving model simulations of radiative-convective equilibrium where the
updraft core fractions is ϵ < 1% (Craig, 1996; Tompkins and Craig, 1998a).

Eqn. (5.1) proves that the mean spatial scale associated with the analysis of the
nearest-neighbor distance distribution is related to the inverse of the density of convec-

tive events/entities. Also, all the spatial scales that much exceed (λπ)−
1
2 have very little

influence on the values of the Weibull CDF (hence on RIorg), which is instead controlled
by mesoscale organization of convection and neglects long-range interactions between
the constituent objects of the pattern. It is already well known that the nearest-neighbor
and the point-to-neighbor statistics are dominated by short-range inter-point spacings
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and say little about the elements over scales beyond (Illian et al., 2008). This is con-
firmed by Fig. 5.4, which shows two configurations, both consisting of the presence of
four clusters, but characterized by different large-scale arrangements of those clusters.
In Fig. 5.4(a) the inter-cluster distance is less that that in panel (b), but the organization
index does not capture this difference (i.e., RIorg = 0.33 in both cases) because it is only
impacted by sub-cluster distances and the cloud field is designed so that each pair of
neighboring points belongs to the same cluster. For the number of events and the do-
main size employed here, the mean spatial scale associated with the value of RIorg is
λRIorg ∼ 15 km.
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Figure 5.4: (left) Sets of points featuring small-scale clustering (a,b) and large-scale clustering
(a) and regularity (b), over a doubly-periodic 500km square domain with resolution ∆x = 2 km;
(center) observed NNCDF of cloud centers compared to the theoretical expectation for a random
distribution of the same number of points; (right) plots of the Poisson vs simulated NNCDFs,
with the cyan and red shadings representing a 95% confidence interval for CSR and the integral
deviation F̂ − F that gives RIorg.

5.2.5 RIorg scales in tropical rainfall fields

The mean spatial scale of RIorg can be investigated more systematically as a function of
the scene scale (namely, the size of the observation window). This can be carried out by
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analyzing observational data, provided that a proxy for the amount of deep convective
activity is selected. Here we make use of rainfall values obtained from the GPM data,
which have a spatial resolution of 0.1◦ × 0.1◦ and a temporal resolution of 30 minutes.
To detect convective areas, we set a precipitation threshold of 8 mm h−1: only the pixels
whose rainfall rate exceeds the minimum value are flagged as convective.

There is no broad consensus in the literature about the partitioning criteria between
stratiform and convective precipitation, as relatively different rain-rate thresholds have
been imposed in past studies, ranging from 6 mm h−1 (Johnson and Hamilton, 1988)
to 20 mm h−1 (Houze jr., 1973; Churchill and Houze, 1984), 22 mm h−1 (Tao et al.,
2000), 25 mm h−1 (Tao et al., 1993; Xu, 1995), with the threshold likely a function of
dataset resolution. In some cases, the threshold is not fixed, but allowed to vary, e.g.,
between 10 and 25 mm h−1 (Lang et al., 2003). Moreover, Yang and Nesbitt (2014) found
convective rain pixels with intensities far below those discussed above (in some cases
as low as 2 mm h−1) in their analysis of Tropical Rainfall Measuring Mission (TRMM)
precipitation radar data, but specified that, in general, the convective rain intensity is
larger than 5 mm h−1, partly consistent with previous results (e.g., Schumacher and
Houze, 2003).

Our analysis is conducted for a single scene (Fig. 5.5a) by gradually enlarging some
given square observation regions in the tropics (yellow boxes) to cover an area of 60◦ ×
60◦ (red). Shown in Fig. 5.5b is the mean RIorg lengthscale, λRIorg , as a function of the
window size D for the three domains D1, D2 and D3. In some regions there is a weak
trend of the RIorg scale with increasing domain size, but in all cases λRIorg ≪ D. The
typical range of λRIorg values for these scenes ranges from 40-125 km and belongs to
the β-mesoscale (20-200 km, Orlanski, 1975), confirming the conclusions of Bony et al.
(2020) based on observed NNDs. These findings provide further evidence for the need
to "broaden the horizons" of organizational indices and develop a new metric that can
measure aggregation quantitatively beyond the β-mesoscale.

5.3 A new organization index Lorg

5.3.1 Continuous case

Instead of using nearest-neighbor distances, the new indices derived in the present the-
sis adopt an all-neighbor connectivity approach. The spatial structure of cloud fields as
a whole and the related scales can be determined through the Ripley’s K-function, which
is essentially based on the counting of neighbors within a certain distance of a convec-
tive event of the scene (Ripley, 1976, 1977, 1981). Although widely employed in plant
ecology and forestry (e.g., Haase, 1995), this method has already been used in the con-
text of meteorological applications (e.g., Chan et al., 2013). Similar techniques were also
adopted by Nair et al. (1998); Cohen and Craig (2006) to evaluate the spatial trends of a
cloud field scene. In particular, they considered the mean local cloud number density
in annular regions centered at each cloud centroid, as a function of the radial distance r
from the centroid itself, and then compared the resulting profile to that expected from
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Figure 5.5: Determination of the mean spatial scale associated with RIorg, λRIorg , in terms of the
size of the study area (b) for a set of observations taken from a snapshot (a) from the GPM data
set. The analysis is carried out over increasingly large regions (from the yellow to the red ones)
whose size D has been incremented by 2◦ at a time. The convective points are those with rain
rate exceeding a minimum threshold (8 mm h−1).

a Poisson process.
Formally the Ripley’s function, K = K(r), is defined so that the quantity λK(r)

represents the mean number of neighbors of a typical point x lying in the disc b(x, r) of
radius r centered at x (Fig. 5.6a), i.e.,

λK(r) = E (N (b (x, r) \ {x})) , (5.2)

with E(·) denoting the expectation and N(·) the random number of points of the pro-
cess in a bounded set. Note that self-exclusion is assumed when counting the neighbors
of x.
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Figure 5.6: Neighbor counting over continuous domains (a,b,c) and discrete grids (d). The base
event xi is marked as a green dot/cell; the cloud centers belonging to the search disc/box (grey
shading) are shown as blue, while the other elements of the pattern contained in the observation
window W (light green shading) are red. If the search radius r > D/2 (b), the purple point
in the hatched circular segments has to be excluded from the counting, as it has already been
included when cyclic boundaries are imposed. The case of open domains (c) is that of a pattern
that can be assumed infinite (black dots), but with observations only available over W. The grey
shading in (c) also represents the fractional area of b(xi, r) inside W that appears in eqn. (5.9).
In the discretized domain (d), the doubly-periodic nature is accounted for.

For the homogeneous Poisson process, by definition,

E (N (b (x, r) \ {x})) =
∞

∑
k=0

ke−λπr2

(
λπr2)k

k!
= e−λπr2

∞

∑
k=1

k
(
λπr2)k

k!

= λπr2e−λπr2
∞

∑
k=1

(
λπr2)k−1

(k − 1)!
= λπr2e−λπr2

∞

∑
k=0

(
λπr2)k

k!

= λπr2e−λπr2
eλπr2

= λπr2,

hence
K(r) = πr2. (5.3)

We also introduce the area-normalized K-function, known as the Besag’s L-function
(Besag, 1977) and given by

L(r) =

√
K(r)

π
. (5.4)

In view of (5.3), in the homogeneous Poisson case, eqn. (5.4) reduces to

L(r) =

√
πr2

π
= r. (5.5)

Unlike metrics based on the NNCDF or PCCDF, the Ripley’s and Besag’s functions are
not "short-sighted" as they are based on all-point interactions.
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Similar to the procedure for computing RIorg, given any scene we can compare two
different L-functions, i.e., the one derived from the distribution of the objects within
that scene, which will be referred to as the observed or simulated L-function, L̂(r), and
the theoretical random one eqn. (5.5). If the convective events occur in space as a Pois-
son process, then L̂(r) is approximately equal to r. For clustered situations L̂(r) > r,
which is ultimately due to the fact that, on average, for a given distance r from any typi-
cal point, more objects are found than expected with the Poisson process. The reverse is
true for regular fields, in which case L̂(r) < r. We must ascertain, however, whether any
observed indication of clustering/regularity is statistically significant. Ripley (1979)
and Getis and Franklin (1987) provided approximations of the 0.05 and 0.01 point lev-
els of significance for rejection of the homogeneous Poisson process null hypothesis;
nevertheless here, following Haase (1995), we determine the 95% confidence envelopes
by generating a large number (400) of random patterns with the same number of ob-
jects as the observed scene and then computing the 2.5th and 97.5th percentiles of L̂(r)
for each r within the range of possible distances.

While the theoretical null eqn. (5.5) assumes an infinite point pattern, in practice
model output and observations are only available over finite regions W containing a
finite number Nc of cloud elements. For a given realization of a point pattern, the
estimator for the Besag’s function is defined as

L̂(r) =

√√√√√ 1
πλ̂

1
Nc

Nc

∑
i=1

wi(r)
Nc

∑
j=1,
j ̸=i

δij(r) =

√√√√√ ν(W)

πNc (Nc − 1)

Nc

∑
i=1

wi(r)
Nc

∑
j=1,
j ̸=i

δij(r), (5.6)

where δij(r) is an indicator function, δij(r) = 1 if the separation distance dij between
points xi and xj is such that dij ≤ r, zero otherwise; λ̂ is the unbiased estimator of the
average spatial density of events, λ̂ = (Nc − 1)/ν(W). To allow for the correction of
edge effects in case of open domains, wi(r) are weighting factors applied to the event
count ∑j ̸=i δij(r), cf. Section 5.3.2. For periodic domains with cyclic boundaries, wi(r) =
1.

Eqn. (5.6) allows to summarize the spatial trends of a point pattern over W or given
subregions of W. This approach is in fact estremely flexible as one can choose the de-
sired range of distances 0 ≤ r ≤ rmax over which to compute the L-functions, rmax
being the maximal distance between points within the selected region. It is possible to
normalize both the distance r and the Besag’s functions by rmax and we label z = r−1

maxr,
L̄ and ¯̂L the rescaled coordinate and L-functions, respectively. We first consider the case
of square domains of size D, both cyclic and open; applications to rectangular regions
will be dealt with in Section 5.3.4.

The estimate (5.6), normalized by rmax, is compared to the rescaled function L̄(z) =
z theoretically expected in case of CSR. We can then introduce a new index Lorg, which
is now linear in z (hence r) and is defined as the integral of ¯̂L − L̄ with respect to z, i.e.,
the area under ¯̂L − L̄:

Lorg =
∫ 1

0

(
¯̂L(z)− L̄(z)

)
dz. (5.7)
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We perform the integration numerically, by means of the trapezoidal rule. Values of
Lorg equal to, larger or lower than zero correspond to random, clustered or regular
configurations, respectively. As with RIorg, the value of Lorg is an average over spatial
scales and there may occur cancellation between clustering and regularity (cf. Fig. 5.7c).
To discern between pure randomness and composite cases, we therefore again consider
the organization irregularity index, which is now defined as the RMSE of ¯̂L with respect
to L̄:

OII =

√∫ 1

0

(
¯̂L(z)− L̄(z)

)2
dz. (5.8)

To illustrate Lorg in operation, several arrangements of points are shown in Fig. 5.7,
along with the observed normalized L-function and the corresponding value of the in-
dex (5.7). Periodic boundary conditions are assumed. When the objects are randomly
distributed (a), the simulated Besag’s function lies on the diagonal as expected from
the theory (eqn. 5.5). Contrary to RIorg, the new metric Lorg is able to distinguish sit-
uations with different levels of large-scale organization, as suggested by comparing
Figs. 5.4 and 5.7b,c. In (b), clustering is apparent at all spatial scales and is reproduced
by the observed Besag’s function being always above the diagonal. In (c), the crossover
of the identity line indicates a robust transition towards regularity in the long-range.

In panel (c) we also notice that, for large distances, there is a prominent deviation
of ¯̂L from the expected trend, which appears not to be due to particular features of the
point process but is quite artificial. Although smaller, the same behavior is also visible
in (a) and in the 95% confidence envelopes for complete spatial randomness. In fact,
when counting the number of events within discs of increasing radii, a tendency to-
wards regularity emerges if r > D/2, because the circles exceed the boundary of the
domain but the objects cannot be double-counted (Fig. 5.6b). This apparently reduces
the actual number of neighbors within r as compared to the expectation, thus explain-
ing the observed profiles. In the following Section 5.3.3, we will show two ways of
correcting this effect.

5.3.2 Open boundary conditions

A major issue arises when considering open rather than periodic domains. This situ-
ation is particularly relevant to the analysis of distance distributions in the deep con-
vective cloud fields as inferred from, e.g., satellite or radar observations (Radtke et al.,
2022). In such configurations, the discs b(x, r) centered at elements located close to the
boundary of W may exceed it and this eventually leads to an underestimation of the
actual number of neighbors within distance r (Fig. 5.6c). This is not the case when
cyclic boundary conditions are prescribed as the domain is periodically continued. To
avoid undercount biases when estimating the Besag’s functions, edge effects have to be
accounted for.

Several edge-correction strategies can be implemented. An exhaustive review of
techniques is presented in Haase (1995); Illian et al. (2008). If observations were avail-
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Figure 5.7: Synthetic point patterns featuring randomness (a), small- and large-scale clustering
(b, cf. Fig. 5.4a), small-scale clustering and large-scale regularity (c, cf. Fig. 5.4b), along with
the corresponding L-functions ¯̂L(z) (red lines in the lower row). The dashed lines in the bottom
panels represent the Besag’s functions L̄(z) = z expected for a random arrangement of the
Nc = 252 objects. 95% confidence bands for CSR are also shown (cyan shading), while red and
blue shadings respectively indicate areas counting as positive and negative in the calculation of
Lorg. The value of the OII (5.8) is also provided. The domain size is D = 500 km, with biperiodic
boundaries and resolution ∆x = 2 km, while rmax = D/

√
π in order for circles of radius rmax

to cover the same area as the domain.

able also outside the study region W, one could define a buffer zone surrounding the
window of interest. This approach is the one that most accurately mirrors the actual
point pattern. Nevertheless, Haase (1995) pointed out that it requires the density of
points in the buffer zone be the same as in the interior, which might not be the case, and
also that a much more relevant computational effort is needed.

Here we balance the potential loss of information introduced by considering open
domains by weighting the event counts at all distances r from any given element of the
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pattern. This technique, referred to as the area-based correction by Besag (1977), weights
the number of points in b(xi, r) by a factor wi(r) that accounts for the proportion of the
area of b(xi, r) that lies within the domain (cf. Fig. 5.6c):

wi(r) =
πr2

ν (b (xi, r) ∩ W)
. (5.9)

We note that this calculation in principle is not limited by any maximum search radius
(i.e., when the disc b(xi, r) is completely outside the domain, ν (b (xi, r) ∩ W) = ν(W)).1

5.3.3 The discrete binomial process: dLorg

For practical purposes, modeling the spatial distribution of convective events as a ho-
mogeneous Poisson point process may be inadequate for two reasons. One has already
been mentioned in Section 5.2.3, namely, representing updraft locations as a point pro-
cess (not necessarily Poisson) neglects inhibition effects due to finite cloud sizes. Sec-
ondly, one of the potential drawbacks of RIorg and Lorg is that the theoretical model
they are based upon assumes a continuous metric over an infinite plane, while numer-
ical studies or observational data sets demand to consider finite, discrete grids. The
above results are thus strictly valid only if unbounded regions are taken, as the Pois-
son model itself may not be appropriate to represent a point pattern in limited-area
domains (cf. Figs. 5.7 and 5.6b).

To solve this latter issue, we make use of arguments borrowed from the stochastic
geometry. We already saw in Section 3.3.3 that any finite random point pattern resulting
from the restriction to a compact set of a homogeneous Poisson process would follow a
binomial law. In particular, given Nc objects independently and uniformly distributed
(iud) within a finite domain W, for each bounded subset Ω containing a typical point
x, eqn. (5.2) translates into

E (N (Ω \ {x})) = (Nc − 1)
ν(Ω)

ν(W)

1The most widely employed method in the analysis of spatial point patterns is by far the so-called
Ripley’s local correcting factor method (Haase, 1995). It consists in weighting all pair separation distances and
holds under the assumptions of stationarity and isotropy of the point process. In this case, eqn. (5.6) has
to be modified as

L̂(r) =

√√√√ ν(W)

πNc (Nc − 1) ∑
i

∑
j ̸=i

wijδij(r),

where the weight wij accounts for the proportion of the circumference centered at xi and passing through
xj contained in W, i.e.,

wij =
2πdij

|∂b(xi, dij) ∩ W| , (5.10)

∂· denoting the boundary of a set and | · | the length. For rectangular study areas in the planar case, explicit
formulas are given by Goreaud and Pélissier (1999). However, unlike the area-based correction method
(5.9), the calculation is limited by a maximum search radius as, for square domains of size D, the procedure
(5.10) provides unbiased estimates for ¯̂L only up to distances equal to

√
2D/2 (Diggle, 1983; Haase, 1995).
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hence
λ−1E (N (Ω \ {x})) = Nc − 1

Nc
ν(Ω). (5.11)

since by definition λ = Nc/ν(W). When circles of radius r are considered, i.e., ν(Ω) =
πr2, and infinite point patterns are assumed, Nc → ∞ and we recover eqn. (5.3). In any
case, for reasonable sample sizes (e.g., Nc > 15), we can still approximate

λ−1E (N (Ω \ {x})) ≈ ν(Ω).

Taking circles of radius r as study areas in a random process over periodic square
regions of size D, the definition (5.4) now reads

L(r) =



√
Nc − 1

Nc
r for 0 ≤ r ≤ D

2
,√√√√ 1

π

Nc − 1
Nc

(
πr2 − 4

(
r2 arccos

D
2r

− D
2

√
r2 − D2

4

))
for

D
2

< r <
D√

2
,

(5.12)
which incorporates the correction necessary when r > D/2, whose importance has
been highlighted in Fig. 5.6b. The function (5.12) explains the profiles observed in the
random point pattern realizations (Fig. 5.8a) but we note that it is no longer linear when
r > D/2. Similar issues emerge when treating the case of elongated-channel domains,
which will be discussed in Section 5.3.4.
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Figure 5.8: As in Fig. 5.7 but with rmax = D/
√

2 and the theoretical profile for a random ar-
rangement of points corrected for the boundedness of the domain (black dashed line). The yellow
dashed line corresponds to the theoretical expectation assumed for infinite domains, L̄(z) = z.

An alternative solution comes from the first point discussed above. In fact, we might
directly consider the discrete grid, also because the zonal and meridional components
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of the inter-point distances are quantized in practical applications (for regular grids,
they are multiples of the horizontal spacing ∆x). This would prevent any deviation
from the expected profiles for distances lower than the minimum inter-convective spac-
ing. It must be noted, however, that the impact of inhibition effects would be much
weaker with the all-neighbor connectivity approach than with the nearest-neighbor
one. In the discrete grid, instead of considering circles of radius r as in eqn. (5.2), it
seems reasonable to count the events within square observation boxes of size ℓ = n∆x
(i.e., consisting of n2 − 1 cells) surrounding one of the convective pixels in turn (Figure
5.6d). We assume n ∈ N, 1 ≤ n ≤ D/∆x, where N denotes the set of non-negative
integers.

Given eqn. (5.11) with a square of size n∆x as Ω, we can define the discrete binomial
counterpart of the Besag’s function as

L(n∆x) ≡
√

K(n∆x) =

√
Nc − 1

Nc
(n2 − 1)∆x2 ≈ n∆x, (5.13)

which is the L-function that would be theoretically expected if the updraft centers were
independently and uniformly distributed within the domain. The approximation holds
under the assumption of reasonable sample sizes. The function (5.13) will be compared
against the one diagnosed from a realization of a point process, L̂(n∆x), given by

L̂(n∆x) =

√√√√√ ν(W)

Nc (Nc − 1)

Nc

∑
i=1

wi(n∆x)
Nc

∑
j=1
j ̸=i

δij(n∆x), (5.14)

where δij(n∆x) = 1 if the size of the box centered at the i-th object and delimited by the
j-th is less than n∆x, otherwise δij(n∆x) = 0; wi(n∆x) are weights assigned to the count
∑j ̸=i δij(n∆x) of events over boxes of size n∆x to correct for edge effects in case of open
domains (for periodic ones, wi(n∆x) = 1). The edge correction technique designed here
is similar to the one in eqn. (5.9), i.e., wi(n∆x) represents the fractional area of a square
of size n∆x surrounding the i-th point of the process contained within the domain. An
application of this method is presented in Section 5.4.

One may want to investigate the prevailing organizational regimes of a pattern over
the whole domain or restrict to given subsets of W. It would just suffice to select a
proper range of search box sizes 0 ≤ ℓ = n∆x ≤ ℓmax over which to evaluate the L-
functions, ℓmax being the maximum size within the region under consideration. If the
analysis is to be performed over the entirety of a square domain of size D, ℓmax = D if
the domain is periodic, ℓmax = 2D if it is open. Similar to the derivation of Lorg, both ℓ
and and the functions (5.13) and (5.14) are rescaled by ℓmax. Let zn = ℓ−1

maxℓ = ℓ−1
maxn∆x,

L̄ and ¯̂L be the results of the normalization.
We can then introduce the discrete version of the L-function-based index, dLorg, as

the Riemann sum

dLorg =

D
∆x

∑
n=1

(zn − zn−1)
(

¯̂L(zn)− L̄(zn)
)

. (5.15)
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Similar conclusions to the above apply to the new index (5.15) and the spatial regimes
corresponding to its values, with positive and negative deviations revealing overall
clustering and regularity trends, respectively. However, contrary to the derivation in
eqn. (5.12), no corrections due to the boundedness of the domain have to be imposed
for square study regions.

These considerations are supported by the following Figure 5.9, which shows the
normalized Besag’s function as measured from numerical routines for the same con-
figurations of Fig. 5.7. Note that the profile of the observed L-function in panel (a)
allows an interpretation of random organization to be safely made at all spatial scales,
since the tendencies towards randomness are recovered also in the far-field. We do
not see significant differences in Fig. 5.9b compared to Fig. 5.7b, as the spatial scales
potentially affected by the limited-area correction (5.12) are not attained by the grid
point distances here. The converse is true for panel (c), which now shows exactly what
we expected, short-range clustering and long-range regularity, whose effects mutually
cancel, as dLorg = 0. Note that the scenes in (a) and (c) can be distinguished using the
organization irregularity index (eqn. 5.8 in discrete form).
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Figure 5.9: As in Figs. 5.7, 5.8 but with the discrete binomial model (5.13) used as a standard
of randomness. The normalizing factor is ℓmax = D. Red and blue shadings respectively refer
to areas counting as positive and negative in the calculation of dLorg.

5.3.4 The case of non-square domains

So far we have examined square domains only, but the index should be generalized
to rectangle domains used in modeling studies (Tompkins, 2001c; Stephens et al., 2008;
Wing and Cronin, 2016) and which are also suitable for observational studies of the
tropics (e.g. Bony et al., 2020). Past numerical studies have pointed out that long chan-
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nel geometries do not artificially constrain the large-scale circulations while also retain-
ing any salient three-dimensional dynamical features (Tompkins, 2001a), allow a diag-
nosis of the typical aggregation length scales (Wing and Cronin, 2016; Wing et al., 2017)
and, as compared to square-domain experiments, also produce humidity distributions
that are in a much closer agreement with observations (Holloway et al., 2017).

Rectangular domains of width Dx and height Dy are considered here, assuming
Dy < Dx without loss of generality. The definition of the indices (5.7) and (5.15) is
still valid. The observed L-functions L̂ are again given by eqns. (5.6) and (5.14) with
ν(W) = DxDy, while the theoretical functions are given by eqn. (5.5) and (5.13) in case
of open domains; for cyclic domains, they are to be modified. In this case, arguments
similar to the finite-domain correction (5.12) apply, since, when periodically duplicating
the domain, multiple counting must be avoided. We thus have, for the derivation of
Lorg,

L(r) =
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(5.16)

and, for that of dLorg,

L(n∆x) =


√

Nc − 1
Nc

(n2 − 1)∆x2 for 0 ≤ n∆x ≤ Dy,√
Nc − 1

Nc

(
(n2 − 1)∆x2 − n

(
n −

Dy

∆x

)
∆x2

)
for Dy < n∆x ≤ Dx.

(5.17)
We note that the theoretical L-functions are no longer linear across scales in this case.
Eqns. (5.16) and (5.17) can be generalized by replacing Dy by min {Dx, Dy} and Dx
by max {Dx, Dy}. Concerning the normalizations that have to be performed for the
calculation of the indices, if organization is to be assessed over the whole domain the
maximum search radius and box size would become rmax =

√
D2

x + D2
y/2 and ℓmax =

max {Dx, Dy}, respectively, for periodic domains, twice those values in case of open
boundaries.

Figure 5.10 shows some synthetic scenes along with the corresponding values of
dLorg. Panel (a) confirms that the theoretical model (5.17) provides the L-function ex-
pected in case of spatial randomness for the discrete binomial process, whereas the
situation in (b) displays a relevant clustering signal at all scales. For open domains,
weighting procedures are defined that are similar to the ones discussed earlier. For the
same scene of Fig. 5.10b, if the domain is assigned open and cyclic boundaries in the
meridional and zonal directions, respectively, the clustering tendency is still notable
because the leftmost and rightmost bands are again close to each other (c). This is no
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longer the case with open conditions (d), which features a weak clustering tendency in
the short-range and a nearly imperceptible regularity signal in the long-range.

We again emphasize that the theoretical L-functions in (a,b) differ from those in
(c,d). In the first case, when n∆x > Dy (i.e., z > Dy/Dx = 0.25), periodic continuation
of the domain along the y axis must be considered but multiple counting of points
is not allowed, which explains the actual reduction in the number of neighbors for
z > 0.25 (the situation is similar to that shown in Fig. 5.6b). This is no longer the case
when the domain is open in the meridional direction: even though the theoretical L-
function is to be computed with respect to a pattern of independently and uniformly
distributed objects over the finite domain under consideration, the pattern itself can
be implicitly thought of as infinite along the y axis. This does not pose any restriction
in terms of avoiding multiple counting and square search boxes can be taken that also
exceed the domain and for which the theoretical L-function follows eqn. (5.13), because
the distribution of events outside the domain is assumed to be same as in the interior
(iud objects). In particular, the theoretical function L(n∆x) = n∆x is represented by the
identity line in (c,d).

5.4 Applications

5.4.1 Application to model data

The discrete approach proposed in Section 5.3.3 is particularly suited to analyzing
numerical model output. We compare the performance of dLorg vs RIorg for a large-
domain (3000 × 3000 km2) CRM-like experiment conducted with the stochastic model
introduced in Chapter 2. The time evolution of the indices is charted in Fig. 5.11.
Snapshots are superimposed that show maps of the spatial column-integrated relative
humidity field R sampled at different stages of the simulation. The aggregated state
consists of several mesoscale convective systems that reduce in number over time until
a single dominant convective cluster remains (cf. Section 3.2.2). Output every six hours
is considered to calculate the organization indices.

RIorg abruptly increases at the start of the integration, taking on very high values
that indicate strong clustering with RIorg > 0.2 by day 7 and stabilizing by around day
40 (Fig. 5.11e). However, as expected from its nearest-neighbor construct (cf. Fig. 5.4),
it is almost totally insensitive to the number (and the position) of MCSs in the scene,
as it only increases from 0.39 to 0.43 between day 25 (d) and day 100 (h). The new in-
dex agrees with RIorg in that it always classifies the field as clustered, nevertheless, it
evolves smoothly across different degrees of aggregation. The new metric can also dis-
cern the impact of cluster number and size, increasing linearly between day 32 and day
45, when the same six clumps are active and with changes in slope marking the elimi-
nation of clusters. dLorg finally stabilizes around day 86, when the penultimate cluster
expires leaving one dominant mesoscale convective system. The general evolution of
the R field and the simulated NNCDF and L-function are reported in a movie available
at http://clima-dods.ictp.it/Users/gbiagiol/indices.mp4.
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(c) Multiple bands, periodic BCs zonal direction, dLorg = 0.09
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Figure 5.10: Synthetic scenes featuring a random distribution of points (a) and the coexistence
of banded structures (b,c,d) in a long-channel domain with Dx = 2000 km and Dy = 500
km. Different boundary conditions are imposed: biperiodicity in (a) and (b), periodicity in the
zonal direction only (c), while in (d) the domain is open in both directions. The corresponding
theoretical and simulated L-functions are shown (black dashed and red solid lines), along with
the red and blue shadings that represent positive and negative deviations ¯̂L(z)− L̄(z) and count
as such in the derivation of dLorg.
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Figure 5.11: (a-h) Maps of the spatial column relative humidity field (color shading and con-
tours, with intervals of 0.2) for a simulation performed with the model introduced in this thesis.
(i) Temporal evolution of the indices RIorg (purple) and dLorg (green). The horizontal dashed
line marks the zero level, which is the value for a random distribution of convective cells for both
RIorg and dLorg. The vertical dashed lines refer to the samples (a-h).

5.4.2 Application to precipitation observations

Here we analyze organization in GPM rainfall observations and consider a box of 10◦ ×
10◦ (135E-145E, 5N-15N) in the Western Pacific warm pool region, imposing a threshold
of 8 mm h−1 on the rain rate field to identify convective pixels. As the resolution is
coarser than that of convective updrafts no recursive algorithm is applied to adjoint
adjacent points to single events.

In order to test the robustness of both indices to calculation method, two approaches
to identifying convective locations are compared. In the first all pixels exceeding the
threshold are counted as convective. Instead in the second method, only those con-
vective cells exceeding the threshold that are also a local maximum in their immediate
(3 × 3) neighborhood are retained, similar to Bony et al. (2020). This technique will be
referred to as the local maximum method.

We examine rain maps for five days in October 2016 (Fig. 5.12); the entire sequence
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of 30 minutes temporal resolution scenes is contained in an animation available at
http://clima-dods.ictp.it/Users/gbiagiol/obs_indices.mp4. For each scene, the
indices RIorg and dLorg are calculated (Fig. 5.13). Scenes with Nc < 15 are discarded.
The values of the indices as reported in the text will only refer to the application of the
local maximum method. In the computation of dLorg, the area-based edge correction is
employed.

Visual inspection of the situation of Fig. 5.12 panel (a) would suggest that it is less
organized than that in (b). Both cases show the presence of a very large aggregate in the
south-east corner, which is slightly larger at 19:30, but at 19:00, two smaller aggregates
can be identified at the south-west corner. The new index classifies the 19:30 scene
as more organized (dLorg = 0.21) than that at 19:00 (dLorg = 0.11), but the nearest-
neighbor connectivity metric RIorg indicates the opposite, as RIorg = 0.44 in (a) and
0.40 in (b). The reason for this behaviour of RIorg lies in the presence of the isolated
event in the south-west part of the scene (b): indeed, we calculated that if this event
is arbitrarily eliminated, RIorg would increase back to a value of 0.45 for this scene.
Something analogous happens in the situations (h-i), in which, as soon as the individual
object at the center of the window at 08:00 is flanked by an other one at 08:30, the value
of RIorg increases while the new index remains roughly constant. Finally, the scenes
in (d) and (e) look nearly identical in terms of their degree of aggregation, and indeed
the new metric stays constant (0.08), but RIorg, by virtue of its strong sensitivity to the
relative positions of the clouds, increases by 0.12 from (d) to (e).

These examples already hint at the weakness of indices based on nearest-neighbor
statistics, namely that they are quite sensitive to the appearance or addition of single
events to a scene, despite its considerable O(1000 km) dimension, mainly due to sam-
pling issues. This is evident in the considerable temporal variability in RIorg. Even
though both indices overall indicate clustering of the deep convective cloud field dur-
ing the period under consideration (Fig. 5.13), RIorg is strongly impacted by the relative
positions between the objects, whereas dLorg is not (or, at least, to a lesser extent).

It is also seen that RIorg is dramatically influenced by the number of points in the
scene. In particular, RIorg is very sensitive to the calculation method, with little agree-
ment between the methods with and without the local maximum algorithm applied.
Conversely, the new metric evolves more smoothly in time and is far more robust
to calculation method since the two timeseries (green solid and dashed lines in Fig.
5.13) are in good agreement with each other and feature a very limited offset, which
never impairs our assessment of the organization level of a scene. The level of cluster-
ing given by dLorg is considerably lower than RIorg due to the fact that the new index is
able to measure inter-cluster spacing of rain up to the domain scale of 1000 km.

Code availability and performance

The numerical routine used for the analysis presented in this chapter is freely available
on github at https://github.com/giobiagioli/organization_indices, along with a
detailed code documentation. The procedure to calculate Lorg/dLorg, although more
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Figure 5.12: Example snapshots from GPM observations in the period 13-17 October 2017. The
study area is the central 10◦ × 10◦ box bounded by the thick solid line (135E-145E, 5N-15N).
The blue patches represent the pixels that exceed the 8 mm h−1 rain rate threshold, while the red
points are the convective centers identified through the local maximum method.

computationally burdensome than that for RIorg, is efficient for practical cases. The
computation time on a Intel-Core i7−4790 4-core (3.60 GHz) PC is ∼ 12 s for a 500× 500
input data with periodic boundary conditions and a 0.5% convective fraction, ∼ 16 s
for the open boundary case.
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Figure 5.13: Time evolution of the metrics RIorg (purple) and dLorg (green) for the analysis of
GPM rainfall data in the 135E-145E, 5N-15N region (cf. Fig. 5.12) for the period from 13
October 2016 17.30 UTC to 17 October 2016 22 UTC. The metrics are calculated based on the
half-hour GPM retrievals, considering as convective points all those pixels that exceed the 8
mm h−1 rain rate threshold (dashed lines) or the pixels in the thresholded field that are further
identified as local maxima (solid lines). Missing values correspond to scenes with number of
convective objects Nc < 15. The vertical dashed lines refer to the samples (a-h) of Fig. 5.12.
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Chapter 6
Conclusions

Deep convective clouds can be observed in a variety of organizational states, from spa-
tially random distributions to more coherent patterns spanning a wide range of spatial
scales. The clustering of convection is usually associated with high-impact precipitation
extremes and future changes in the frequency of occurrence of organized deep convec-
tion have the potential to affect climate sensitivity. However the possible feedbacks
on climate provided by convective clustering are still poorly represented in present-
generation climate models. These are among the reasons that motivated the scientific
community to devote increasing attention to modes of deep convective organization
over the last decades, whether in idealized numerical studies or realistic situations in-
volving squall lines, mesoscale convective systems, tropical cyclones, up to the Madden
Julian Oscillation.

The increased availability of computing resources to conduct complex modeling
studies has brought to attention the intriguing paradigm of convective self-aggregation,
in which, under certain circumstances, tropical convection shows a spontaneous tran-
sition from a random distribution in space to a state where the clouds are clumped
together. This phenomenon occurs in spite of homogeneous initial and boundary con-
ditions and large-scale forcing in a state of radiative-convective equilibrium and has
been detected in a variety of modeling frameworks, with convection either explicitly
resolved or parameterized. The prominent domain-mean tropospheric drying found
in association with self-aggregation in both models and seminal observational studies
leads to a more efficient cooling by infrared emission and therefore has ramifications
for tropical climate and its variability. It has been suggested that self-aggregation can
act as a safety valve to regulate tropical climate and that there may be a propensity
for more aggregated convective conditions in warmer scenarios, producing a negative
feedback to global warming.

Nonetheless, discrepancies exist in the literature about the models’ representation
of self-aggregation and its robustness across models is far from being established. Re-
cent intercomparison studies have shown that sometimes the models display little or
no consensus even about whether organization is attained or not at all for a fixed ex-
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perimental configuration. The onset and nature of the aggregated equilibrium state
and the sensitivity to lower boundary conditions (e.g., SST) are among the aspects that
differ most between models with varying dynamical cores and representations of moist
physics, radiation, turbulence, etc. The fact that the occurrence of aggregation is sensi-
tive to the details of the experimental setup, such as domain size and resolution, raises
questions as to whether this phenomenon is real or just an artifact of the models.

Another major problem arises when it comes to assessing the strength of aggrega-
tion and convective organization in general. There is no agreement in the literature
on how to define, and hence quantitatively measure, organization not only in models
but also in observations. This has motivated the derivation of a wide variety of aggre-
gation metrics/organization indices, whose scope is to quantify how and to which extent
deep convective clouds occupy space. These indices explore different aspects of the
organization processes and, because of this, often disagree between each other in the
assessment of the degree of organization of a scene, as shown in the introduction.

This thesis has attempted to address these issues. In the introduction, we specified
two interconnected tracks along which we aimed to move and which we briefly recap
here.

• First track: aid understanding of self-aggregation in terms of the physical pro-
cesses involved, in order to explain the sensitivities detected in cloud-resolving
models.

• Second track: aid measuring of the organization level of cloud field scenes through
improved metrics, suitable for use in the analysis of wide ranges of model output
and observational data.

First track

Regarding the first research direction, in the introduction we proposed to shed light on
the controversial aspects between models by introducing a very idealized, minimally
simple model of the tropical atmosphere which retains the fundamental features of the
more complex ones but allows robust conclusions to be drawn due to its simplicity.
In doing so, we have entered a rich research avenue which uses toy models as diag-
nostic tools to gain a deeper understanding of the processes related to convective self-
aggregation. Within the framework of such approaches, the self-aggregation behaviour
has been regarded as a phase transition in moist convective systems and its onset as
caused by an instability of the spatially homogeneous RCE state of tropical convection.

In Chapter 2 we presented a stochastic reaction-diffusion model for the column to-
tal water relative humidity R in the tropics, whose representation of physics is based
on Craig and Mack (2013) but which uses CRM-like domain sizes and horizontal res-
olutions in an attempt to explain the sensitivities detected in full-physics models. The
model incorporates the effects of moistening due to convection, horizontal transport of
moisture by advection and diffusion processes, and drying due to compensating sub-
sidence. It contains the correlation between convection and water vapor that has been
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documented in observations and also shown to be key for the localization of convection
in previous numerical studies. In particular, convection towers are located according to
a weighted random selection process, which makes convection more likely in moist ar-
eas using a functional form derived from TRMM observations. The towers then rapidly
moisten their local environment for the entirety of their life span, which averages 30
minutes and local moistening is spread laterally by a local diffusive transport term.
Subsidence drying balances the moistening uniformly throughout the domain, mim-
icking the action of fast spreading gravity waves in a highly idealized way as they are
effectively assumed to have infinite group velocity. The model thus has three key pa-
rameters that describe the sensitivity of convection to humidity, ad, the efficiency of the
transport, K, and the strength of the subsidence drying, τsub, in addition to the domain
size D and the horizontal resolution ∆x.

The local delta function perturbations introduced into the R field by the triggering
of convection made the numerical solution procedure quite challenging, with sharp
gradients between convective non-convective grid boxes. An efficient numerical solver
extending the classical ADI scheme (Peaceman and Rachford, 1955) was designed for
the treatment of the model governing equation, that is fully implicit in time and there-
fore ensures stability.

In Chapter 3, we showed that, depending on the chosen parameter settings and
experimental framework, the model can produce either random or aggregated con-
vective states, which well resemble those yielded by more complex CRMs. Clustering
is favoured by more vigorous subsidence, weaker transport and stronger convection-
moisture feedback. Interestingly, the model is found to produce a transition to aggrega-
tion at parameter values that are a reasonable approximation of the present-day tropical
atmosphere and sensitivities to domain size and grid spacing similar to CRM studies,
with aggregation more likely using larger domains and coarser resolutions. While over
large domains two or more convective clusters can survive for a limited period in runs
that aggregate, they always ultimately collapse to a single center, due to the fact that
compensating subsidence occurs uniformly throughout the domain, that is, there is no
explicit deformation radius.

Concerning the sensitivity of self-aggregation to subsidence and diffusion, we ar-
gued that the horizontal transport efficiency and subsidence rate can be dimensionally
combined to give an area of influence of convection on the moisture budget. This quan-
tity serves as a measure of the distance through which the effects of a single deep con-
vective core are felt, with large areas of influence inhibiting aggregation by enlarging
the humidity “halo” around convective events.

Concerning the domain size and resolution sensitivities, we heuristically argued
that the important factor is a measure of the maximum convective-free distance prior
to clustering onset, as this would determine the size of the humidity fluctuations in
the pre-aggregated state. Indeed, since aggregation begins as a dry patch that expands
and then amplifies, larger convection-free distances would enhance the spatial hetero-
geneities of the column humidity field and promote the formation of drier-than-average
regions with suppressed convective activity, which may further develop and eventually
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lead to organization. Using the maximum inter-convective nearest-neighbor distances
interchangeably, we showed that these are constrained to decrease with smaller do-
mains or higher resolutions for a given convective fraction, thereby making aggregation
less likely. For example, finer resolutions lead to more but smaller convective centers,
reducing the inter-convective spacing. We note that this is different from the sugges-
tion of Tompkins and Semie (2017), who instead attributed resolution dependence to
the reduction of explicit entrainment. Our simple model therefore permits a reinter-
pretation of the sensitivity of aggregation to diffusion scheme found in Tompkins and
Semie (2017) not as the effect of humidity entrainment into updrafts, but instead as the
impact on mean updraft size, and therefore inter-convective distance.

Expanding on these arguments and using fits from experimental data to investigate
the dependence of aggregation on ad, we combined the five model parameters into a
single dimensionless quantity, the aggregation number Nag, that predicts whether a spe-
cific model and experiment setup will result in an aggregated convective state. The
reliability of Nag was assessed on the basis of large ensembles of O(1000) simulations
that explore the five-dimensional parameter space, which demonstrate that the transi-
tion to aggregation occurs at a specific threshold value of the dimensionless quantity. In
particular, clustering occurs when Nag falls below the critical threshold. This is subject
to a small amount of uncertainty due to the stochastic nature of the model. We suggest
that Nag could be of practical benefit for the community to help explain the differences
in aggregation states seen in model intercomparison projects such as RCEMIP (Wing
et al., 2020).

Some important physical processes and sensitivities missing from the aggregation
number in its present formulation have been explored in Chapter 4. We showed some
examples of the documented sensitivity of self-aggregation to initial conditions, with
the simple model exhibiting a weak hysteresis, consistently with the findings of CRM
simulations. The chapter also includes a first, very basic attempt to account for in-
hibition effects due to cold pools, which suppress convection in their stable interiors.
Their impacts on the convection-water vapor feedback, hence on aggregation, were
discussed.

Second track

Regarding the second research direction, in Chapter 5, to give a bit of context, we at-
tempted the first comprehensive review to collate all documented convective organi-
zation metrics, briefly highlighting the drawbacks of some of these. We emphasized
that the vast majority of metrics only measure the relative (rather than absolute) clus-
tering comparing two scenes and are thus qualitative in nature, and that some of them
are biased towards specific spatial scales or very sensitive to details of the calculation
procedure. It is also possible that the indices can suffer from non-linearities, which
means that they can not be employed to assess the strength of aggregation on a gradual
continuum but only to differentiate aggregated from random convective states.

We then revisited the metric Iorg (Tompkins and Semie, 2017), which has been widely
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used since its introduction in many observational studies and model intercomparison
projects, and also as a benchmark against which to compare the performance of other
organization indices. The main reasons for its popularity lie in that it has a theoret-
ical null to compare against and is quantitative in nature, i.e., it permits an absolute
categorization of scenes into random, clustered or regular. We derived an analytical
formula for the mean spatial scale over which Iorg measures organization as a function
of the convective density, and showed that its foundation on nearest-neighbor distances
means that it measures clustering over the β-mesoscale of 20-200 km. We showed that,
despite its usefulness, the metric is almost blind to inter-cluster organization on scales
exceeding 200 km and can also suffer from sampling issues which make the assessed
organization measure very sensitive to calculation details.

The aim of the second track has been achieved through the derivation of a new and
complementary metric Lorg to quantify the organization level of scenes, which is based
on all-neighbor (rather than nearest-neighbor) connectivity approach and thus mea-
sures organization robustly over but also beyond the β-mesoscale. The metric exploits
the theory behind the Ripley’s K-function and the related Besag’s L-function, which
are commonly used tools in the context of spatial point processes and are based on
the counting of events in the neighborhood of any element of the pattern for different
neighborhood sizes. These functions have proven to be effective and powerful tools to
capture the dominant spatial trends of a point pattern over a range of scales.

Lorg is similar to Iorg in its theoretical foundations - it assumes a continuous met-
ric over an infinite plane and compares the observed L-function against a theoretical
null used a reference (homogeneous Poisson process) - and also in that it is intended to
provide an absolute classification of scenes into regular, random and clustered. How-
ever, unlike Iorg, it measures organization linearly across different spatial scales, with
the only possible exception of scales where periodic continuation of the domain is to
be accounted for in the presence of cyclic boundaries. This is a consequence of the fact
that the Poisson law strictly holds in the only case of unbounded domains.

The practical need of analyzing gridded model output and observational data also
led us to derive a discrete version of Lorg, called dLorg. It is based on the comparison
of the discrete counterparts of two Besag’s functions, one derived from the distribution
of the events in a scene and a theoretical random one, assuming a discrete version of
the binomial point process, with neighbor searches performed over square boxes rather
than over circles. This follows directly from the theory of stochastic geometry, which
indicates that the restriction of a homogeneous Poisson process to a compact set (the
domain) is distributed according to a binomial law. Suitable corrections were proposed
to account for periodic and finite open boundary domains also of non-equal aspect
ratio.

The new index has proven satisfactory at reproducing the expected spatial trends
of organization at different scales, with the spacing of MCSs beyond the mesoscale well
detected. Like Iorg, the new metric is an integral index of organization over a range of
scales. Visual inspection of the underlying observed Besag’s functions can reveal how
organization changes as a function of scale, but we also introduced a second moment
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based index, the organization irregularity index (OII) which is an integrated measure
of the departure of convection from randomness across all spatial scales. Thus Lorg
and Iorg give two integrated assessments of the mean organization, while the OII is an
integrated measure of the variance of organization.

Application to idealized synthetic configurations and real-world situations, such as
model output and satellite rainfall retrievals in the tropics, revealed that Lorg improves
on several deficiencies of Iorg. The fact that the new metric is based on all-pair distances
implies that it is much less temporally noisy than Iorg and is also very robust to the
details of the implementation methodology. Lorg is indeed much less sensitive than Iorg
to the number and relative positions of the aggregates.

We believe that these improvements address many shortcomings of the existing
measures and also imply that the new metric is more appropriate to quantifying the
degree of aggregation in suites of experiments within the framework of model inter-
comparison projects, and also can usefully supplement existing methodologies of mea-
suring convective organization in a wide variety of observations.

As suggested by Muller et al. (2022), the introduction of new indices is a funda-
mental step forward to bridge the gaps between idealized models and observations.
In spite of being object-based, the new indices introduced in this thesis can also lend
themselves to assessing the role of some underlying physical processes. For instance, if
the inspection of the L-functions reveals some tendency towards regularity in the short
range, this could be due to the inhibition effect of cold pools, especially if the scales of
this regularity signal are comparable to the typical cold pool diameter. To ultimately
strengthen the connection between our two research directions, we notice that the new
indices are able to distinguish self-aggregation from other modes of organization. The
use of dLorg in a run with the stochastic model captured different stages of the aggre-
gation process, with the index steadily increasing and then stabilizing as soon as the
smaller mesoscale systems succumb. In this final state, the value of the index is very
high, because the updraft cores exist in close proximity to each other. This is not the
case for other organized regimes: for example, the mesoscale organization also present
in homogeneous RCE states of tropical convection is expected to correspond to lower
values of the new metrics, while a nearest-neighbor index would likely saturate in both
situations.

6.1 Final remarks and future research directions

There are multiple possible directions for future research, which are outlined below.

1. The next step in the work on the aggregation number is ideally to devise a method-
ology to take consecutive cloud-resolving model snapshots and calculate Nag.
This can be carried out by identifying the locations selected for new convective
events and by estimating the values of the parameters from the initial random
state fields through, e.g., the autocorrelation of water vapor. It should be suffi-
cient in fact to estimate the aggregation number in the initial phase of a simula-
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tion in order to predict if the corresponding random state is unstable and would
eventually undergo aggregation.

2. If a given model is found to have a more complicated convective autocorrelation
function, perhaps due to the mutual exclusivity of cold pools operating at scales
smaller than 15 or 20 km, then a systematic analysis similar to the one conducted
in this thesis could be performed with cold pools incorporated into the simple
model as in Chapter 4, to explore the impact on aggregation in a wider parameter
space.

3. In order to help investigate the unexplored features of the simple model, such
as the sensitivity to initial conditions and the hysteresis behaviour, which is also
relevant to CRMs, one might perform a stability analysis of the system’s vari-
ance equation. The latter could be derived by introducing a reasonable analytical
approximation of the stochastic formulation presented in this dissertation. More
generally, it would be desirable to introduce a more theoretical framework to pre-
dict when the instability of the RCE state that leads to self-aggregation is expected
to occur.

4. The next step in the work on the new aggregation metric is to evaluate its per-
formance in a wider range of model output and observational data, and possibly
investigate the relationships of convective organization as measured by Lorg with
some relevant variables. These would include land and ocean surface (or near-
surface) temperatures in various regions of the tropics to see if there are differ-
ences in organizational states between them, or the OLR, in an attempt to capture
signs of self-aggregation in the real atmosphere.

128



Bibliography

Abbot, D. S. (2014). Resolved Snowball Earth Clouds. Journal of Climate, 27(12):4391–
4402.

Ahmed, F. and Neelin, J. D. (2019). Explaining Scales and Statistics of Tropical Precipita-
tion Clusters with a Stochastic Model. Journal of the Atmospheric Sciences, 76(10):3063–
3087.

Arnold, N. P. and Putman, W. M. (2018). Nonrotating Convective Self-Aggregation in a
Limited Area AGCM. Journal of Advances in Modeling Earth Systems, 10(4):1029–1046.

Arnold, N. P. and Randall, D. A. (2015). Global-scale convective aggregation: Implica-
tions for the Madden-Julian Oscillation. Journal of Advances in Modeling Earth Systems,
7(4):1499–1518.

Bao, J., Sherwood, S. C., Colin, M., and Dixit, V. (2017). The Robust Relationship Be-
tween Extreme Precipitation and Convective Organization in Idealized Numerical
Modeling Simulations. Journal of Advances in Modeling Earth Systems, 9(6):2291–2303.

Beljaars, A., Balsamo, G., Bechtold, P., Bozzo, A., Forbes, R., Hogan, R. J., Köhler, M.,
Morcrette, J.-J., Tompkins, A. M., Viterbo, P., and Wedi, N. (2018). The Numerics of
Physical Parametrization in the ECMWF Model. Frontiers in Earth Science, 6:137.

Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Me-
chanics, 31(2):209–248.

Benner, T. C. and Curry, J. A. (1998). Characteristics of small tropical cumulus clouds
and their impact on the environment. Journal of Geophysical Research, 103:28753–28767.

Besag, J. (1977). Contribution to the Discussion on Dr. Ripley’s Paper. Journal of the
Royal Statistical Society: Series B (Methodological), 39(2):193–195.

Beucler, T. and Cronin, T. (2019). A budget for the size of convective self-aggregation.
Quarterly Journal of the Royal Meteorological Society, 145(720):947–966.

129



Beucler, T. and Cronin, T. W. (2016). Moisture-radiative cooling instability. Journal of
Advances in Modeling Earth Systems, 8(4):1620–1640.

Beucler, T., Leutwyler, D., and Windmiller, J. M. (2020). Quantifying Convective Ag-
gregation Using the Tropical Moist Margin’s Length. Journal of Advances in Modeling
Earth Systems, 12(10):e2020MS002092.

Biagioli, G. and Tompkins, A. M. (2023a). A Dimensionless Parameter for Predicting
Convective Self-Aggregation Onset in a Stochastic Reaction-Diffusion Model of Trop-
ical Radiative-Convective Equilibrium. Journal of Advances in Modeling Earth Systems,
15(5):e2022MS003231.

Biagioli, G. and Tompkins, A. M. (2023b). Measuring convective organization [submit-
ted]. Journal of the Atmospheric Sciences.

Bini, D., Capovani, M., and Menchi, O. (1988). Metodi numerici per l’algebra lineare.
Zanichelli.

Bohren, C. F. and Albrecht, B. A. (1998). Atmospheric thermodynamics. Oxford University
Press.

Böing, S. J. (2016). An Object-Based Model for Convective Cold Pool Dynamics. Math-
ematics of Climate and Weather Forecasting, 2(1):43–60.

Bony, S., Semie, A., Kramer, R. J., Soden, B., Tompkins, A. M., and Emanuel, K. A.
(2020). Observed Modulation of the Tropical Radiation Budget by Deep Convective
Organization and Lower-Tropospheric Stability. AGU Advances, 1(3):e2019AV000155.
e2019AV000155 10.1029/2019AV000155.

Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd,
T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., and Webb, M. J.
(2015). Clouds, circulation and climate sensitivity. Nature Geoscience, 8(4):261–268.

Bretherton, C. S., Blossey, P. N., and Khairoutdinov, M. (2005). An Energy-Balance
Analysis of Deep Convective Self-Aggregation above Uniform SST. Journal of the
Atmospheric Sciences, 62(12):4273–4292.

Bretherton, C. S. and Khairoutdinov, M. F. (2015). Convective self-aggregation feed-
backs in near-global cloud-resolving simulations of an aquaplanet. Journal of Advances
in Modeling Earth Systems, 7(4):1765–1787.

Bretherton, C. S., Peters, M. E., and Back, L. E. (2004). Relationships between Water
Vapor Path and Precipitation over the Tropical Oceans. Journal of Climate, 17(7):1517–
1528.

Bretherton, C. S. and Smolarkiewicz, P. K. (1989). Gravity Waves, Compensating Sub-
sidence and Detrainment around Cumulus Clouds. Journal of Atmospheric Sciences,
46(6):740–759.

130



Brugnano, L. and Trigiante, D. (1998). Solving Differential Problems by Multistep Initial
and Boundary Value Methods. Gordon and Breach Science Publishers.

Brune, S., Buschow, S., and Friederichs, P. (2020). Observations and high-resolution
simulations of convective precipitation organization over the tropical Atlantic. Quar-
terly Journal of the Royal Meteorological Society, 146(729):1545–1563.

Brune, S., Buschow, S., and Friederichs, P. (2021). The local wavelet-based organiza-
tion index – Quantification, localization and classification of convective organiza-
tion from radar and satellite data. Quarterly Journal of the Royal Meteorological Society,
147(736):1853–1872.

Brune, S., Kapp, F., and Friederichs, P. (2018). A wavelet-based analysis of convective
organization in icon large-eddy simulations. Quarterly Journal of the Royal Meteorolog-
ical Society, 144(717):2812–2829.

Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S., Ferro, C. A. T., and Stephen-
son, D. B. (2013). Does increasing the spatial resolution of a regional climate model
improve the simulated daily precipitation? Climate Dynamics, 41(5):1475–1495.

Chen, M. (1987). On the Solution of Circulant Linear Systems. SIAM Journal on Numer-
ical Analysis, 24(3):668–683.

Churchill, D. D. and Houze, R. A. (1984). Development and Structure of Winter Mon-
soon Cloud Clusters On 10 December 1978. Journal of Atmospheric Sciences, 41(6):933–
960.

Cohen, B. G. and Craig, G. C. (2004). The response time of a convective cloud en-
semble to a change in forcing. Quarterly Journal of the Royal Meteorological Society,
130(598):933–944.

Cohen, B. G. and Craig, G. C. (2006). Fluctuations in an Equilibrium Convective Ensem-
ble. Part II: Numerical Experiments. Journal of the Atmospheric Sciences, 63(8):2005–
2015.

Cooley, J. and Tukey, J. (1965). An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation, 19(90):297–301.

Coppin, D. and Bony, S. (2015). Physical mechanisms controlling the initiation of con-
vective self-aggregation in a General Circulation Model. Journal of Advances in Mod-
eling Earth Systems, 7(4):2060–2078.

Craig, G. C. (1996). Dimensional analysis of a convecting atmosphere in equilib-
rium with external forcing. Quarterly Journal of the Royal Meteorological Society,
122(536):1963–1967.

Craig, G. C. and Cohen, B. G. (2006). Fluctuations in an Equilibrium Convective En-
semble. Part I: Theoretical Formulation. Journal of the Atmospheric Sciences, 63(8):1996–
2004.

131



Craig, G. C. and Mack, J. M. (2013). A coarsening model for self-organization of tropical
convection. Journal of Geophysical Research: Atmospheres, 118(16):8761–8769.

Cronin, T. W. and Emanuel, K. A. (2013). The climate time scale in the approach
to radiative-convective equilibrium. Journal of Advances in Modeling Earth Systems,
5(4):843–849.

Cronin, T. W. and Wing, A. A. (2017). Clouds, Circulation, and Climate Sensitivity in
a Radiative-Convective Equilibrium Channel Model. Journal of Advances in Modeling
Earth Systems, 9(8):2883–2905.

Davis, P. J. (1979). Circulant matrices. John Wiley & Sons.

Derbyshire, S. H., Beau, I., Bechtold, P., Grandpeix, J.-Y., Piriou, J.-M., Redelsperger,
J.-L., and Soares, P. M. M. (2004). Sensitivity of moist convection to environmental
humidity. Quarterly Journal of the Royal Meteorological Society, 130(604):3055–3079.

Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns. Academic Press.

Douglas, J. and Gunn, J. E. (1964). A general formulation of alternating direction meth-
ods. part i. parabolic and hyperbolic problems. Numerische Mathematik, 6(1):428–453.

Douglas, J. and Kim, S. (2001). Improved accuracy for locally one-dimensional meth-
ods for parabolic equations. Mathematical Models and Methods in Applied Sciences,
11(09):1563–1579.

Emanuel, K. A. (1987). An Air-Sea Interaction Model of Intraseasonal Oscillations in
the Tropics. Journal of Atmospheric Sciences, 44(16):2324–2340.

Emanuel, K. A. (1994). Atmospheric Convection. Oxford University Press.

Emanuel, K. A., Wing, A. A., and Vincent, E. M. (2014). Radiative-convective instability.
Journal of Advances in Modeling Earth Systems, 6(1):75–90.
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