
Citation: Bassan, G.A.; Marchesan, S.

Peptide-Based Materials That Exploit

Metal Coordination. Int. J. Mol. Sci.

2023, 24, 456. https://doi.org/

10.3390/ijms24010456

Academic Editors: Yoshiko Okamura

and Michio Suzuki

Received: 9 November 2022

Revised: 12 December 2022

Accepted: 22 December 2022

Published: 27 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Peptide-Based Materials That Exploit Metal Coordination
Giovanni A. Bassan and Silvia Marchesan *

Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
* Correspondence: smarchesan@units.it

Abstract: Metal–ion coordination has been widely exploited to control the supramolecular behavior
of a variety of building blocks into functional materials. In particular, peptides offer great chemical
diversity for metal-binding modes, combined with inherent biocompatibility and biodegradability
that make them attractive especially for medicine, sensing, and environmental remediation. The
focus of this review is the last 5 years’ progress in this exciting field to conclude with an overview of
the future directions that this research area is currently undertaking.
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1. Introduction

Peptide-based materials have been attracting researchers’ attention due to their fa-
vorable properties, their variety, their ease of preparation also through green methods,
and their compatibility with the environment and with living systems. In the last century,
over forty-five thousand publications have been produced on the topic, with numbers
increasing steadily especially in the last two decades (Figure 1), and it can be surprising
to note that the first one dates as back to 1913. However, back then, both knowledge and
technology were not mature to understand nanomaterials’ and supramolecular structures.
Until the 1970s, the production rate was <100 per year, to then reach >200 in the 1980s,
>300 by 1990, and >400 by 2000. Remarkably, by 2010, more than 1.5 k publications were
being generated each year, to then almost double to nearly 3 k by 2021. A big impulse to
the field was provided by the discovery in 2003 that even a short peptide, as simple as
diphenylalanine, was able to form robust nanotubes in mild conditions in water [1]. This
finding opened the field also to those with limited or no expertise in organic synthesis and
peptide synthesis, and indeed since then the rate of relevant manuscripts per year featured
a steep increase. The main research areas have been diverse, spanning from biological
sciences and medicine, to chemistry, materials science, engineering, physics, agricultural
and environmental sciences (Figure 2) [2].
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Figure 1. Number of publications in the last century present on Scopus containing “peptide AND
materials” in the title, abstract, or keywords. The search was performed on 4 November 2022.
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Peptide-based materials can be classified in different ways, based on the type (i.e.,
hydrogels, organogels, xerogels, films, adhesives, colloids), on their composition (i.e., purely
organic materials, made from peptides alone or in combination with other molecules,
or hybrid materials, made from peptides and inorganic components), and, finally, on
the leading forces that keep them together. In particular, in this last case, it is possible
to distinguish between materials kept together by covalent bonds, and those formed
by supramolecular interactions, such as coordination and hydrogen bonds, as well as
electrostatic, hydrophobic, and host–guest interactions [3].

It is well known that peptides can be excellent ligands for a great variety of substances,
including metal ions. Different strategies have been developed to chelate these ions with
peptides (Scheme 1):

• Amino acids without chelating sidechains, e.g., Phe or Leu, can coordinate metals
through their backbone amides and their ammonium and carboxylate termini;

• Those with hydrophilic sidechains containing a Lewis base, e.g., Cys or His, can chelate
metals not only through these functional groups, but also through their backbone or
termini, so that metal ions act as bridges to enable intermolecular cross-linking;

• Those with chelating ionizable sidechains, e.g., Asp or Lys, can chelate metal ions
either through these sidechains, or through their backbone and termini [4];

• Alternatively, the introduction of synthetic heterocycles, such as pyridine units, en-
abled the formation of complexes (e.g., with palladium ions) to hold together complex
supramolecular architectures [5,6].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 19 
 

 

 
(a) (b) (c) 

Scheme 1. (a) Coordination motifs for metal tripeptide complexes, M = Pd, Ni, or Cu [7]. (b) Zinc 

complexes of His-containing peptides [8]. (c) Non-natural pyridinyl-amino acid derivative coordi-

nating Co, Zn, or Mn ions [6]. 

These features, coupled with the typical dynamism and reversibility of coordination 

bonds, as well as their high directionality and defined geometry, open the way to new 

avenues towards materials with emerging behavior from the metal–ion coordination with 

peptides. Firstly, the formation of metal–peptide complexes could be a trigger for the sol-

to-gel transition (Figure 3), or the other way around. As an example, Figure 3 shows the 

inclusion of a bis-pyridinyl moiety to a peptide forming β-sheets as a strategy to cross-

link peptide stacks into a luminescent hydrogel in the presence of Eu (III) [9]. Secondly, it 

could introduce the dependence of this transition from different chemical or physical 

stimuli such as pH, temperature, ionic strength, light, concentration, or changes in the 

composition of the environment [10]. Thirdly, the coordination with metals can be used 

to tune and refine the characteristics of a given peptide-material, such as stress resistance, 

stiffness, self-healing capability, redox, or catalytic activity. All these advantageous fea-

tures contribute to make metal coordination a very interesting and useful approach to 

explore new frontiers in the production of innovative, low-toxicity materials for a wide 

range of applications. These include, but are not limited to, 3D printing, controlled-release 

agents for bioactive compounds, imaging, environmental remediation, catalysis, and 

sensing [11]. 

Scheme 1. (a) Coordination motifs for metal tripeptide complexes, M = Pd, Ni, or Cu [7].
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coordinating Co, Zn, or Mn ions [6].
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These features, coupled with the typical dynamism and reversibility of coordination
bonds, as well as their high directionality and defined geometry, open the way to new
avenues towards materials with emerging behavior from the metal–ion coordination with
peptides. Firstly, the formation of metal–peptide complexes could be a trigger for the
sol-to-gel transition (Figure 3), or the other way around. As an example, Figure 3 shows the
inclusion of a bis-pyridinyl moiety to a peptide forming β-sheets as a strategy to cross-link
peptide stacks into a luminescent hydrogel in the presence of Eu (III) [9]. Secondly, it could
introduce the dependence of this transition from different chemical or physical stimuli
such as pH, temperature, ionic strength, light, concentration, or changes in the composition
of the environment [10]. Thirdly, the coordination with metals can be used to tune and
refine the characteristics of a given peptide-material, such as stress resistance, stiffness, self-
healing capability, redox, or catalytic activity. All these advantageous features contribute to
make metal coordination a very interesting and useful approach to explore new frontiers
in the production of innovative, low-toxicity materials for a wide range of applications.
These include, but are not limited to, 3D printing, controlled-release agents for bioactive
compounds, imaging, environmental remediation, catalysis, and sensing [11].
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Figure 3. Coordination with Europium yields cross-linked luminescent hydrogels from a pep-
tide with bipyridinyl moieties. (A) peptide structure with metal-binding bipyridinyl group in red.
(B) schematic of peptide self-assembly into stacks and cross-linking with the metal. (C) UV-visible
absorbance spectra of the cross-linked peptide gel (EFK-bpy-Eu), and the metal (EuCl3) or peptide
(EAK-bpy) components alone. (D) photographs of the luminescent gels under natural and UV light.
Reproduced from [9] under a Creative Commons license.
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Furthermore, coordination could prove useful to template metal nanoparticle (NP) [12],
nanorods [13], or nanocluster [14] formation in situ through a green process, eventually to
generate a hybrid material for advanced applications [15,16]. As an example, Figure 4 shows
a cartoon for peptide self-assembly into nanoribbons, and microscopy images that revealed
how they were used to template the in situ reduction of gold into oriented nanorods,
yielding a chiroptical material [13]. Alternatively, interesting topological features could
be introduced to attain soft or hard matter with selective and dual porosities, for instance
through the generation of cages or pores with selective binding abilities for molecular
guests, beyond the mesh between peptide chains [17–20].
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Figure 4. (a) Cartoon showing peptide assembly into a nanoribbon. (b) AFM image of the resulting
assembled fiber. (c) TEM image of the gold nanorods oriented (arrows) into a helical pattern.
(d) Proposed model of the gold nanorods associated to the outer surface of the peptide ribbon.
Adapted with permission from [13]. Copyright © 2016, American Chemical Society.

In this review, we will focus on the recent developments of the last five years on
peptide materials that feature metal coordination based on their possible applications,
especially in medicine, but also for environmental remediation and sensing. Readers are
referred to reviews dating 2017–2018 for coverage of earlier findings in these fields [21,22].
In this work, we will not cover applications in catalysis since extensive reviews have just
been published on this topic [23–27].

2. Metal–Peptide Materials in Medicine

Peptide-based materials have been a hot topic in the search for innovative techniques
for diagnosing and treating patients, that could be safer, easier to implement, and less
invasive relative to traditional options, thanks to their similarity to natural biomolecules
and their assembled structures [28–30]. Thanks to rational design, they found various
applications in medicine (Figure 5) [31,32], and a special focus has been placed on the
controlled delivery of therapeutics [33–36], cancer therapy [37,38], wound healing [39],
tissue engineering [39], imaging [40,41] and theranostics [42], treatment of infections [43],
sensing [44,45], and vaccine development [46,47]. Moreover, the interaction between the
peptide and the metal of interest could occur both before the contact of the material with
cells, or when the peptide reaches the target area. In this latter case, metal coordination
could be triggered by local physiological or pathological conditions (e.g., pH, ion concentra-
tion), so as to change the material behavior and even its structure, in terms of aggregation
state and porosity [48].
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Figure 5. Peptides and metal nanoclusters (NCs) find various applications in medicine, including
imaging, sensing, delivery, and therapy. Reproduced with permission from [32], © 2016 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim, Germany.

2.1. Minimalistic Systems Based on Dipeptides Interacting with Metal Ions for Drug Delivery

Since the report by Reches and Gazit on the self-assembly of diphenylalanine into
nanotubes and its potential use as templates to cast silver nanowires [1], there has been
a great interest in minimalistic dipeptide systems and their use in combination with metals.
In particular, a popular approach to attain self-assembly of simple amino acids or dipeptides
is based on the inclusion of aromatic N-caps [49]. Among these, the fluorenylmethyloxycar-
bonyl (Fmoc) moiety has been by far the most popular, also because Fmoc-amino acids are
commercially available, being the building blocks for solid-phase peptide synthesis [50].
In a recent progress, Fmoc-dipeptides that could self-assemble into metal–ion responsive hy-
drogels (Figure 6) were studied for possible applications as drug carriers. Sharma et al. [51]
reported the case of Fmoc-His-Phe, Fmoc-His-Leu, and Fmoc-His-Val that formed hydro-
gels when the pH was slowly decreased from alkaline to neutral values. These hydrogels
demonstrated to be responsive to the presence of different salts of divalent metal ions, i.e.,
Ni2+, Co2+, Cu2+, Fe2+, and Mn2+. The presence of these metals modulated the properties of
the hydrogels in various ways. In the case of Ni2+, Co2+, and Cu2+, the interaction caused
the gel-to-sol transition, with a new sol-to-gel transition with pH lowering to 3. In the
case of Fe2+ and Mn2+, presence of the ions weakened the gels, although the strength of
their interaction with the peptides was not sufficient to induce a transition to sol. These
behaviors could enable the controllable release of bioactive compounds loaded in the gels
in areas with a higher concentration of these ions.
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Figure 6. Metal-cation responsive behavior of supramolecular hydrogels composed of Fmoc-dipeptides
with His. Reproduced with permission from [51]. Copyright © 2019, American Chemical Society.

In the case of Fmoc-Phe-Phe, metal binding could exert different effects depend-
ing on the metal ion type (i.e., Na+, K+, Zn2+, Cu2+, Fe3+, Al3+), and concentration rel-
ative to the dipeptide. The coordination affected the biomolecular secondary structure
towards β-sheets, random coils, or superhelices, and, consequently, gelation ability, kinetics,
and rheology [52].

2.2. Longer Peptides Interacting with Metal Ions for Drug Delivery

Elongation of the peptide sequence by adding further amino acids is often convenient
to enable the formation of secondary structures, or to introduce protein-inspired bioactive
motifs and fine-tune the biological properties of a given material. Peptide-based materials
and, in particular, supramolecular hydrogels, have been widely studied as delivery agents
of therapeutics [53]. Their interactions with metal ions offer an attractive strategy to trigger
their cargo release in situ [21]. Ca2+ or Mg2+ proved effective to enhance the rheological
properties of a collagen-inspired peptide anion Nap-Phe-Phe-Gly-Asp-Hyp, inducing its
gelation at physiological pH. The material showed better cytocompatibility relative to the
peptide alone, with increased cell viability and agglomeration [54]. A similar interesting
behavior was observed using Ca2+ as a trigger for gelation with three peptide amphiphiles
containing disulfide bridges between poly-L-Cys and 3-mercaptopropionic acid. The
pendant carboxylate groups were used to bind cisplatin for its sustained release, which
could be enabled using either pH changes or redox triggers. These peptide amphiphiles
could form micelles or nanofibrils, depending on their concentration and pH value. Both
structures could interact with Ca2+ to adopt a gelling β-sheet structure. Furthermore, the
material displayed good cytocompatibility in vitro [55].

Micelles could be obtained from the union of different peptides and peptoids based
on the sequence poly(Sar)-block-poly(Glu), where Sar indicates sarcosine. In solution, these
copolymers self-assembled in micelles that could be cross-linked with cis-diaquabis(2,2′-
bipyridine)-ruthenium(II) complex ([Ru(bipy)2(H2O)2]2+) or with cis-diaquabis(2,2′-biqui-
noline)-ruthenium(II) complex ([Ru(biq)2(H2O)2]2+). The micelle morphology was tunable
from spherical to more elongated, depending on the nature of the copolymer and the com-
plex used. Importantly, the cross-linked systems demonstrated photocleavable behavior:
blue light-irradiation resulted in the complete release of Ru(II) from the micelles with the
first complex. These systems were tested on skin tumoral cells HuH-7 and demonstrated
a higher absorption for Ru(II) complexes, and an enhanced cytotoxicity that could enable
their use as photo-controlled carriers for cancer therapy [56].
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Cisplatin could also be used to induce peptide gelation. Wu et al. reported that
NapPhe-Phe-Tyr-Glu-Arg-Gly-Asp could form a hybrid hydrogel trough both coordination
bonds between Asp, Glu and Arg sidechains with Pt2+ ions of cisplatin, and ionic interac-
tions with NPs of the hybrid alginate–irinotecan. This material performed well in terms of
injectability, loading and controlled release of the two drugs separately, depending on the
concentration of alginate present in the local environment [57].

A different use of Ca2+ was envisaged in the case of the decapeptide Nap-Gly-Phe-Phe-
Tyr-Gly-Arg-Gly-Asp-His-His that spontaneously self-assembled into a supramolecular
gel with good biocompatibility and wide possibilities for further functionalization. One
limitation of this material was its low stability for long periods of time, that was addressed
by using Ca2+ for cross-linking with other gelators, such as alginate. This strategy enhanced
the biocompatibility of the system, and it introduced also the possibility to obtain reversible
transitions to enable its injectability and to increase cell adhesion [58].

Ca2+ induced the sol-to-gel transition of the peptide Fmoc-Phe-Phe-pSerC-(oNB)-PEG
that contained ortho-nitrobenzyl (oNB) protected phosphonated Ser. Gelation could be
triggered also by Zn (II), Co (II) and Cu (II) ions, but only the gel obtained with Ca2+ showed
new features in terms of photo-activity. This hydrogel was responsive to the concentration
of the metal and light irradiation at 365 nm disrupted the gel, which reformed when left
in the dark. The authors then applied the material for the loading and release of the
anti-tumoral drug doxorubicin [59].

2.3. Peptides and Metal Ions for Tissue Regeneration

Peptides have attracted great interest for their ability to self-assemble into nanofibrillar
hydrogels that mimic the extracellular matrix, thus providing an ideal scaffold for cells’
growth and tissue regeneration [60]. In particular, the use of metal coordination offers
a convenient strategy to improve the mechanical properties of the hydrogels and provide
them with self-healing behavior [61,62]. Patel et al. developed a thermogel based on
a poly-Ala oligopeptide functionalized with PEG that could coordinate Fe(III) ions with
a crown-ether like system. Gelation could be obtained at 37 ◦C, at physiological pH, and
presence of the metal ions enhanced the material properties. When tested on neuronal
staminal cells, the gel proved to be cytocompatible, it promoted cell aggregation, with
consequent slow release of metal ions (i.e., 10% of the total iron ions was observed after
21 days for different Fe(III) concentrations). Interestingly, cells displayed an increased
release of different differentiation factors induced by the iron-containing gel. Overall, this
material was thus envisaged for applications as an injectable agent to promote neuronal-cell
differentiation for regenerative medicine [63].

2.4. Peptides and Metal Ions for Wound Healing

For wound healing applications, silver is a traditional metal that has been added to
peptide hydrogels for its antibacterial properties [64]. Recently, more complex systems
can be built using complex tridimensional metal structures: polyoxometalates (POMs),
a class of polynuclear metal-oxo anions of early-transition metal ions in high-oxidation
states, e.g., Mo(VI) or W(VI) [65]. These polyanions could be combined with polycationic
peptide gelators towards denser fibrillar networks that turned the gels into adhesives. In
particular, the tripeptides Gly-His-Lys, Gly-Phe-Lys, and Gly-Val-Lys were combined with
POMs to yield underwater coacervates in solution. By adding divalent ions, such as Mn2+,
Ni2+, or Co2+, it was possible to induce the aggregation of the coacervates into strong under-
water adhesives (Figure 7) that could be envisaged for applications in wound dressings [66].

2.5. Peptides and Metal Ions for Antimicrobial Materials

Antimicrobial peptides have been inspiring research activities towards bioactive coat-
ings and adhesives for biomedical use [67], also beyond wound healing applications [68].
Minimalistic systems such as amino-acid derivatives [69,70] or dipeptides [71–74] can
be antimicrobial too, although their activity can be sometimes too mild for practical
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applications [75]. Therefore, a combination of bioactive peptides with metal ions and
nanostructures for additive or synergistic effects to fight infections can be a convenient
strategy [76–78]. In this regard, copper, silver, and zinc clearly play an elected role for their
established antimicrobial activity and possibility of production with reasonable, or even
low, costs [79]. In particular silver, also in its NP form, is the most widely studied [80].
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The simplest materials that have been studied for biomedical application are hydro-
gels made of a single amino acid capable of self-assembly into a supramolecular stable
structure, driven by an external stimulus that could be its concentration, the pH, or the
ionic strength of the solution. These gels were highly biocompatible, thanks to the nature of
their constituents, and they could be very versatile in functionalization and use. It has been
reported that four Fmoc-amino acids (i.e., Fmoc-Pro, Fmoc-His, Fmoc-Ala, and Fmoc-Leu)
could form hydrogels only when coordinated with Ag+, also promoting the formation
of ultrasmall silver NPs, as demonstrated by XPS and TEM studies [81]. These materials
showed great potential for the loading and release of small antimicrobial drugs under
controlled conditions, and they demonstrated themselves antimicrobial activity, thanks
to the presence of Ag+ ions and NPs that could interact with the hydrophobic bacterial
membrane, inducing cytoplasmatic leaking outside the cell.

D’Souza et al. designed a peptide sequence with two units of 3′-pyridyl-Ala (3′PyA)
to coordinate Ag+ and gel. Ag(I) tendency to form two-coordinate linear complexes was
exploited to crosslink the nonapeptide (3′-PyA)-Leu-Arg-Leu-Arg-Leu-Arg-Leu-(3′-PyA)
into a gel with a 15-fold increase in storage modulus, relative to the peptide alone without
silver. The gel demonstrated a higher antimicrobial activity in the presence of Ag(I) both
against Gram-positive (S. auerus) and Gram-negative (E. coli) bacteria, with good cytocom-
patibility on mammalian cells in vitro [82]. Shnaider et al. reported that also nanofibrillar
silk-hydrogel composites with silver NPs exerted good antimicrobial activity and bio-
compatibility. In particular, the materials were produced with a microfluidic process that
ensured high reproducibility and homogeneity, and they exerted a two-step activity, first
by promoting bacterial adhesion, and then their eradication, in vitro and in vivo [83]. Iudin
et al. described core-shell NPs that featured a silver core, and a poly(Glu) shell capable of
binding the antimicrobial peptide polymyxin. Interestingly, a synergistic effect was noted
between the components, as demonstrated by a detailed analysis of polymyxin release
and minimal bioactive concentration [84]. Besides silver, also nanostructured copper was
recently combined with bioactive peptides. In particular, copper nanoclusters were capped
with the antioxidant tripeptide glutathione for increased stability in aqueous solutions, and
they exhibited antibacterial activity on E. coli [85].
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2.6. Amyloid Beta (Aβ) Fibrillation Inhibitors Based on Metal–Ion–Peptide Nanostructures

Peptide-based nanomaterials have been envisaged also as inhibitors of pathological
amyloid fibrillation [86–88]. Often, a sequence is designed to contain the Phe-Phe motif
for recognition of, and binding to, Aβ as well as an amino acids that can act as β-breaker
to disrupt the formation of cross-β structures that are typical of amyloids. In the past,
for instance, this approach proved useful with proline, as described by Soto et al. [89].
More recently, a simple tripeptide L-Pro-D-Phe-L-Phe formed nanoparticles and could
inhibit fibrillation in vitro, whilst displaying good cytocompatibility on mammalian cells,
and high resistance against protease-mediated hydrolysis [90]. Furthermore, there is
emerging evidence that biometal (especially Fe, Cu, and Zn) dyshomeostasis and metal-
amyloid interactions lead to the pathogenesis of Alzheimer’s disease, thus metal-chelation
strategies have also been used to inhibit Aβ fibrillation [91–94]. Co (II) [95,96], Pt (II) [97–99],
Ru (II) [100,101], and heterometallic Pt(II)-Ru(II) [102] complexes proved effective too for
this purpose, also through chelation of Cu (II) that was captured from Aβ [103]. It is thus not
surprising that peptides binding Cu(II) [104–110], Zn(II) [111–113], and Cd(II) [112] have
been successfully designed to inhibit Aβ fibrillation. Researchers have sought to combine
gold NPs with Cu (II) chelating peptides to develop effective inhibitors (Figure 8) [114].
In this case, the peptides served three functions: (1) as capping agents to stabilize the gold
NPs, (2) as bait to bind the Aβ peptide through the Phe-Phe motif and inhibit fibrillation
using the sequence Leu-Pro-Phe-Phe-Asp, as well as (3) capture Cu(II) from amyloid
plaques using the Gly-Gly-His motif.
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3. Metal–Peptide Materials for Environmental Remediation

Recently, the interest in developing new methods for removing pollutants from dif-
ferent environments has grown strong, especially for the treatment of waste waters of
industrial processes. The discovery that simple amino acids and peptides could gel oils
from mixtures with water raised in interest in their use to remediate polluted environments
from oil spills [115]. In this field, peptide hydrogels found wide applicability to remove
dangerous metal ions and organic molecules too, such as ionic dyes, in a safe, fast, and
selective way, often giving, in addition, the opportunity to recycle the material different
times before it expires. Systems as simple as dipeptides have been designed for this pur-
pose. For instance, the protected dipeptide myristil-Trp-Phe could form both hydrogels and
organogels in different solvents, including petroleum, kerosene, diesel, and petroleum ether.
The organogels demonstrated a great absorption ability of toxic organic molecules, while
the hydrogels could remove up to 98.8% of toxic heavy metal ions, such as Pb2+ and Cd2+.
Extraction with ethyl acetate enabled recovery of the gelator for its application in another
two cycles of absorption. Solvent removal yielded a stable xerogel that could perform great
absorption also towards aqueous solutions of common organic ionic dyes [116].
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A pyrene–peptide amphiphilic conjugate was designed with two Glu residues for
metal coordination through their sidechains, while the polyaromatic unit enabled self-
assembly and gelation. Several metal ions were tested for their effects on the gelation ability
of the amphiphile, with Zn2+ yielding the best soft material for the selective absorption
and removal of cationic dyes (i.e., methylene blue), as opposed to anionic dyes (i.e, methyl
orange), present individually or in mixtures [117].

A more complex system was proposed by Huang et al. to remove only Cd(II) ions in
a selective way from waters. This system was based on a hybrid PNIPAM-CadRP, obtained
from the union of the Cd-binding peptide CadRP (which was a fragment of the pro-
tein that regulates its concentration CadR), with poly(N-isopropyl)acrylamide (PNIPAM).
At temperatures below 34 ◦C, this peptide with Cd(II) ions formed a well-swollen material
that changed its porosity when the temperature was raised. As a result, the accessibility
to the internal peptide and the release of the ions was also different. This phenomenon
rendered the system suitable for treating waters containing cadmium ions, also thanks to
its reusability for various cycles [118].

4. Metal–Peptide Materials for Sensing

The combination of peptides with metals has been studied for applications in sens-
ing too. In the past, peptides attracted great interest as biorecognition motifs that could
be coupled to electrochemical transducers for various sensing applications, as recently
reviewed [119]. More recently, self-assembling peptides forming ordered arrays, films,
and nanotubes, have been coupled also to carbon nanostructures to create innovative
sensing platforms that could exploit also other properties of the peptides, besides biorecog-
nition [120]. Peptides and metals have been combined in various ways. For instance,
peptide–metal conjugates have been applied to biosensing [121]. Peptides have been used
for the sensing of metals too [122]. Mba’s research group has recently reported an inter-
esting application of a pyrene–peptide conjugate gel that coordinated Cu(II) ions through
Glu sidechains, for monitoring food freshness [117]. The colorimetric response of copper to
changes in the coordination environment was thus exploited to sense amines, since their
production is a useful indicator of the spoilage of meat products [123]. Indeed, the hydrogel
manifested different colors depending on the type of amine present, and turned from light
blue to dark brown when exposed to spoiled chicken breast (Figure 9).
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HCl vapors. (d) Colorimetric responses of the gel (red circles) when exposed to chicken meat stored
at 25 ◦C (left) and 4 ◦C (right). Reproduced from [117].
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Another pyrene–peptide conjugate was recently reported for sensing, this time for
Ca2+ ions. The sequence Val-Pro-Gly-Lys-Gly was used in this work to obtain a thermo-
responsive self-assembled system that formed spherical aggregates in water, that gelled
in response to octafluoronaphthalene, thanks to the establishment of aromatic interaction
between the electron-rich and the electron-poor aromatic units. This gel was responsive to
the presence of Ca2+ through coordination and changes in its critical gelation concentration.
For these reasons, this system was envisaged as a sensor for the presence of calcium
ions [124]. Wang et al. reported in this field the case of a xerogel derived from the union of
the peptide (D-Asp)5 with silver nanoclusters [Ag9(mba)9] (mba = 2-mercaptobenzoate).
The coordination of the peptides with Ag+ ions of the clusters led to a luminescent material,
and the large Stokes shift (≈140 nm) and a fluorescence time in the scale of microseconds
(6.1 µs) suggested that the hydrogel was a phosphor. This material was able to selectively
recognize small biological molecules, in particular L-Arg and D-Arg that could totally
quench the phosphorescence of the gel. Studies on the effect of temperature demonstrated
that this system was stable up to 200 ◦C, making it a very useful sensor for these amino
acids [125].

5. Conclusions

In this overview, we showed the latest developments in the production of new materi-
als derived from the coordination of metal ions to different peptides in order to obtain new
materials for applications in medicine, pollutants’ removal, and sensing (Table 1). From the
summary shown in Table 1, it is evident that hydrogels are by far the most popular type of
matter under study, and that metal ions in the divalent state are those mostly studied to
cross-link the peptides. There is thus still a clear gap pertaining in particular transition-state
metals, with studies on ruthenium and platinum being very recent additions to the field.

Table 1. Summary of metal–peptide-based materials discussed in this review.

Metal Ion Peptide Material Application Ref.

Na+ Fmoc-Phe-Phe Hydrogel DNA biochip [52]

K+ Fmoc-Phe-Phe Hydrogel Medicine [52]

Ag+

Fmoc-Pro Hydrogel AM 1/Drug delivery [81]
Fmoc-His Hydrogel AM 1/Drug delivery [81]
Fmoc-Ala Hydrogel AM 1/Drug delivery [81]
Fmoc-Leu Hydrogel AM 1/Drug delivery [81]

(3′-PyA)-Leu-Arg-Leu-Arg-Leu-Arg-Leu-(3′-PyA) Hydrogel AM 1 [82]
Silk fibroin Nanocomposite AM 1 [83]

Poly(Glu)/polymyxin Nanoparticles AM 1 [84]
(D-Asp)5 Hydrogel Arg sensing [125]

Mg2+ Nap-Phe-Phe-Gly-Asp-Hyp Hydrogel Drug delivery [54]

Ca2+

Nap-Phe-Phe-Gly-Asp-Hyp Hydrogel Drug delivery [54]
Poly-Cys amphiphile Hydrogel Drug delivery [55]

Nap-Gly-Phe-Phe-Tyr-Gly-Arg-Gly-Asp-His-His Hydrogel Drug delivery [58]
Fmoc-Phe-Phe-pSerC-(oNB)-PEG Hydrogel Drug delivery [59]

Pyrenyl-Val-Pro-Gly-Lys-Gly Hydrogel Ca++ sensing [124]

Mn2+

Fmoc-His-Phe Hydrogel Drug delivery [51]
Fmoc-His-Leu Hydrogel Drug delivery [51]
Fmoc-His-Val Hydrogel Drug delivery [51]
Gly-His-Lys Adhesive Wound healing [66]
Gly-Phe-Lys Adhesive Wound healing [66]
Gly-Val-Lys Adhesive Wound healing [66]
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Table 1. Cont.

Metal Ion Peptide Material Application Ref.

Fe2+
Fmoc-His-Phe Hydrogel Drug delivery [51]
Fmoc-His-Leu Hydrogel Drug delivery [51]
Fmoc-His-Val Hydrogel Drug delivery [51]

Co2+

Fmoc-His-Phe Hydrogel Drug delivery [51]
Fmoc-His-Leu Hydrogel Drug delivery [51]
Fmoc-His-Val Hydrogel Drug delivery [51]
Gly-His-Lys Adhesive Wound healing [66]
Gly-Phe-Lys Adhesive Wound healing [66]
Gly-Val-Lys Adhesive Wound healing [66]

Fmoc-Phe-Phe-pSerC-(oNB)-PEG Hydrogel Drug delivery [59]

Ni2+

Fmoc-His-Phe Hydrogel Drug delivery [51]
Fmoc-His-Leu Hydrogel Drug delivery [51]
Fmoc-His-Val Hydrogel Drug delivery [51]
Gly-His-Lys Adhesive Wound healing [66]
Gly-Phe-Lys Adhesive Wound healing [66]
Gly-Val-Lys Adhesive Wound healing [66]

Cu2+

Fmoc-His-Phe Hydrogel Drug delivery [51]
Fmoc-His-Leu Hydrogel Drug delivery [51]
Fmoc-His-Val Hydrogel Drug delivery [51]
Fmoc-Phe-Phe Hydrogel Drug delivery [52]

Fmoc-Phe-Phe-pSerC-(oNB)-PEG Hydrogel Drug delivery [59]
Glutathione Nanoclusters AM 1 [85]

Cys-(Gly)5-His, Cys-(Gly)3-Leu-Pro-Phe-Phe-Asp Nanoparticles Amyloid inhibition [114]
Phe-Glu-Phe-Glu-Gly-pyrene Hydrogel Amine sensing [117]

Zn2+
Fmoc-Phe-Phe Hydrogel DNA biochip [52]

Fmoc-Phe-Phe-pSerC-(oNB)-PEG Hydrogel Drug delivery [59]
Phe-Glu-Phe-Glu-Gly-pyrene Hydrogel Pollutant capture [117]

Ru2+ Poly(Sar)-block-poly(Glu) Micelles Drug delivery [56]

Cd2+ Myristil-Trp-Phe Hydrogel Pollutant capture [116]
PNIPAM-CadRP Hydrogel Pollutant capture [118]

Pt2+ Poly-Cys amphiphile Hydrogel Drug delivery [55]
Nap-Phe-Phe-Tyr-Glu-Arg-Gly-Asp Hydrogel Drug delivery [57]

Pb2+ Myristil-Trp-Phe Hydrogel Pollutant capture [116]

Al3+ Fmoc-Phe-Phe Nanofibrils/spheres Medicine [52]

Fe3+ Fmoc-Phe-Phe Nanofibrils/spheres Medicine [52]
PEG-poly-Ala Hydrogel Tissue regeneration [63]

Mo4+
Gly-His-Lys Coacervate Wound healing [66]
Gly-Phe-Lys Coacervate Wound healing [66]
Gly-Val-Lys Coacervate Wound healing [66]

W4+
Gly-His-Lys Coacervate Wound healing [66]
Gly-Phe-Lys Coacervate Wound healing [66]
Gly-Val-Lys Coacervate Wound healing [66]

1 AM = antimicrobial.

As discussed in this review, these new materials are gaining more interest for their
features, especially in the field of biomedicine, since they provide great opportunities for
the development of safe and biocompatible drug carriers, with the excellent possibility to
control the release of the molecules that they are carrying. Moreover, some of these materials
are also useful for the development of functional biofilms containing different types of cells,
or new hemostatic agents suitable for wound healing. The combination of responsiveness
to local-environment conditions (e.g., pH, metal ions, etc.) with optical and/or electronic
properties conferred by the metal ions (e.g., photo-activity, luminescence), place these
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materials into an ideal spot to develop theranostics, where advanced drug delivery is
combined with diagnostics, to address unmet challenges in medicine, such as those posed
by aggressive cancer types.

Besides applications in medicine, these materials show interesting behavior also in the
treatment of waste waters, since the peptides can form gels from coordination with toxic
ions, thus providing convenient tools for their removal, together with organic dyes, since
the formed peptide–metal gels can trap these molecules inside them. Clearly, the scale-up
and industrial implementation of this type of soft matter for environmental remediation
still faces practical challenges to solve, such as robustness of the hydrogels to undergo
harsh industrial conditions, and multiple cycles of use, as well as the development of
convenient workflows for large-scale applications. Sensing is another area that benefits
from the optoelectronic and robustness properties of metals with the biorecognition ability
of peptides. However, also in this case, key challenges to be addressed pertain the robust-
ness and reliability of biosensors through multiple cycles under conditions pertinent to
commercial use, and reproducibility of biosensor production and performance to meet
industrial needs. Nevertheless, this field is moving at a fast pace also towards exciting new
areas such as bioelectronics, and innovative ways to store, convert, and transfer energy in
a green manner [126–129]. Finally, the combination of minimalistic peptides or amino acids
with metal ions to provide porous materials and metal-organic frameworks [130–132] is
attracting a lot of attention and could provide green alternatives for the future entrapment
of gases or other species, as well as for entioselective separation, although this field is still
in its infancy.
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