
Inspecting Code Churns to Prioritize
Test Cases

Francesco Altiero , Anna Corazza , Sergio Di Martino(B) ,
Adriano Peron , and Luigi Libero Lucio Starace

University of Naples Federico II, Naples, Italy
{francesco.altiero,anna.corazza,sergio.dimartino,adriano.peron2,

luigiliberolucio.starace}@unina.it

Abstract. Within the context of software evolution, due to time-to-
market pressure, it is not uncommon that a company has not enough
time and/or resources to re-execute the whole test suite on the new
software version, to check for non-regression. To face this issue, many
Regression Test Prioritization techniques have been proposed, aimed at
ranking test cases in a way that tests more likely to expose faults have
higher priority. Some of these techniques exploit code churn metrics, i.e.
some quantification of code changes between two subsequent versions of
a software artifact, which have been proven to be effective indicators
of defect-prone components. In this paper, we first present three new
Regression Test Prioritization strategies, based on a novel code churn
metric, that we empirically assessed on an open source software system.
Results highlighted that the proposal is promising, but that it might
be further improved by a more detailed analysis on the nature of the
changes introduced between two subsequent code versions. To this aim,
in this paper we also sketch a more refined approach we are currently
investigating, that quantifies changes in a code base at a finer grained
level. Intuitively, we seek to prioritize tests that stress more fault-prone
changes (e.g., structural changes in the control flow), w.r.t. those that
are less likely to introduce errors (e.g., the renaming of a variable). To
do so, we propose the exploitation of the Abstract Syntax Tree (AST)
representation of source code, and to quantify differences between ASTs
by means of specifically designed Tree Kernel functions, a type of sim-
ilarity measure for tree-based data structures, which have shown to be
very effective in other domains, thanks to their customizability.

Keywords: Regression testing · Test prioritization · Code churn.

1 Introduction

Within the software maintenance, changes in the source code can introduce bugs
and faults in the software, not only in the new features but also in already val-
idated functionalities. In literature, this phenomenon is called Software Regres-
sion. Regression Testing is a set of activities aimed at providing confidence that

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64881-7_17&domain=pdf
http://orcid.org/0000-0001-7090-4249
http://orcid.org/0000-0002-9156-5079
http://orcid.org/0000-0002-1019-9004
http://orcid.org/0000-0002-7111-3171
http://orcid.org/0000-0001-7945-9014
https://doi.org/10.1007/978-3-030-64881-7_17

(I) the changed parts of the software behave as intended, and (II) the unchanged
parts have not been adversely affected by modifications [1,13]. Although exten-
sively used in industry, regression testing is challenging from both a process
management and a resource management perspective, being extremely time con-
suming. This is especially true with novel software development methodologies,
such as Continuous Integration/Continuous Delivery, where the rate of genera-
tion of new releases is very high [10]. As a consequence, many research efforts
have been dedicated to propose different approaches for regression testing, with
the general goal to reduce the amount of required testing efforts, while at the
same time keeping a high confidence on the quality of the software, as reported
in a recent survey on these techniques [19]. In the literature, the key strategies
to reduce regression testing costs are:

1. Regression test selection - selecting subset of existing test cases to run on the
modified software (e.g., [14,24]);

2. Regression test suite minimization - reducing the test suite size to a minimal
subset, to maintain the same level of coverage as the original test suite;

3. Regression test suite prioritization - finding an ideal order of test cases accord-
ing to some criteria, such that test cases with higher priority are executed
earlier than ones with lower priority [18].

In this paper, we focus on the third scenario, by proposing three test suite
prioritization strategies, able to meaningfully combine traditional code coverage
metrics with the concept of code churn, a metric used in software engineering
to measure the amount of code changes taking place within a software unit over
the time [23]. We investigate the use of code churns for testing, since many
studies have found that parts of software with higher churn exhibit also higher
defect density (e.g.: [23,32]), but, to the best of our knowledge, this metric has
never been significantly exploited to prioritize regression tests. We then evaluated
the effectiveness of the proposed test prioritization strategies against a widely
adopted strategy as a baseline, i.e. the total coverage prioritization, on an open
source software system, showing promising results.

Moreover, we also sketch a novel approach which analyses the nature of
the code churn, that we believe could further improve the performance of the
proposed strategies. In detail, in presence of code modifications, we aim at giving
higher priority to tests that stress the more changes being potentially more fault-
prone (e.g., structural changes in the control flow), w.r.t. those that are less likely
to introduce errors (e.g., the renaming of a variable). To do so, we propose the
exploitation of the Abstract Syntax Tree (AST) representation of source code,
and to quantify differences between ASTs by means of specifically designed Tree
Kernel functions, a type of similarity measure for tree-based data structures,
which turned out to be very effective in other ICT/software engineering domains
(e.g. [3]), thanks to their customizability.

The paper is organized as follows. In Sect. 2 we present an overview of the
state-of-the-art in test prioritization, whereas in Sect. 3 we formalize the pro-
posed prioritization strategies. In Sect. 4, we report on the empirical study we
conducted to assess the effectiveness of the proposed strategies, and discuss the

2

results of this experiment. In Sect. 5, we sketch the new churn quantification
approach we are currently investigating. At last, in Sect. 6, we draw our conclu-
sions.

2 Related Works

With recent software development processes, like Continuous Deployment, the
software codebase is updated very often, and these changes should be readily
deployed to the customers. In this scenario, regression testing is a critical issue,
as the re-execution of the whole test suite, for each new revision, may be too
costly/time consuming. A common solution to this problem involves the use of
regression test prioritization approaches [15,28], which aim at permuting the
test suite of a software system, with the goal to give higher priority to tests with
higher chance to find faults. In this scenario, in presence of time constraints, a
project manager can choose to re-execute only the n most relevant test cases.
A lot of research efforts have been spent in this direction (e.g., see survey [35]).
Research efforts have been also devoted to defining metrics to quantify and com-
pare the rates of fault detection of test suites [7,8]. Another class of related
papers deals with prioritization techniques that are driven by requirements with
higher priority, or operate in the presence of time constraints [20,33]. The appli-
cation of Genetic Algorithms to determine the most effective test order has also
been leveraged in different research studies, as in [16,31].

Coverage-based test case prioritization techniques are among the most widely
studied approaches for regression test prioritization, as stated in [19]. These
techniques aim to rank test cases according to the amount of coverage on source
code they provide, considering either block coverage, decision (branch) coverage
or statement coverage. A comparison of search algorithms for coverage-based
regression test prioritization has been performed in [21]. A case study of several
coverage-based regression test prioritization techniques on a real-world complex
industrial system which includes real regression faults has been presented in [5].

Two main strategies are employed in coverage-based regression test priori-
tization, namely the total strategy and additional strategy [11]. Total strategy
ranks test cases according to how much they contribute to increment the overall
coverage, while additional strategy considers the increment of coverage supplied
by a test case only on source code which was not covered by the execution of any
prior test case. [12] presented a NP-hard optimal strategy to maximize the aver-
age percentage of branch covered metric (see [21]) as intermediate goal, showing
that it performs worse than additional strategy to the ultimate goal of detecting
faults.

There were previous works which exploited the combination of code coverage
analysis along with change impact analysis. For example, [17] experimentally
applied a procedure-level coverage regression test based on change-based test
selection methods to WebKit,1 an open source web browser engine project.

3

https://webkit.org/

Approaches for particular types of applications (such as for software product
lines [30]) or testing strategies (e.g., model-based testing [25]) have also been
introduced, as well as the use of techniques from different application domains
(e.g., information retrieval ones [29]). These approaches have been employed, for
example, to address coverage profiling overhead (in terms of time and space) and
potential problems associated with the imprecision of static program analysis.

Several studies investigated methods to improve regression testing in Con-
tinuous Integration (CI) development environments, as analyzed in [26], which
detected history-based regression test prioritization techniques as the mainly
adopted approaches in CI environments. In particular, the work in [10] has intro-
duced two regression testing techniques (for testing selection and prioritization,
respectively) which use readily available test suite execution history data to
determine what tests are worth executing and executing with higher priority.

3 The Proposed Prioritization Strategies

In this section, we introduce the necessary notation and concepts, and then
formalize the churn-based prioritization strategy we propose.

3.1 Preliminary Definitions

In the test case prioritization problem, given a test suite T S over a current
software version V , the goal is to find an ordering of the tests in T S that maxi-
mizes the regression fault-revealing capability over time of the tests on the next
version of the software V ′ [12]. In the prioritization framework we formalize in
this section, we assume that a reference structural code unit (e.g., statements,
branches, methods), with respect to which coverage and churn metrics are eval-
uated, has been selected.

Given two subsequent versions V and V ′, the code churn between them cap-
tures the information about the amount of structural code units that were altered
between the two versions. More formally, we encode the code churn between V
and V ′ using two functions: changedV , and deletedV . These functions assign to
each structured code unit in V a boolean value with the following semantics. For
each structured code unit s in V , changedV (s) (resp., deletedV (s)) is true iff s
is changed (resp., deleted) in the next version V ′, and false otherwise.

Moreover, given a test case t ∈ T S, we define CovTestV (t) as the set of
structural code units that are covered by the execution of t.

To represent the coverage contribution of a test case t in a way that also takes
into account churn information, we introduce the concept of churn coverage as
follows.

For a test case t, the corresponding churn coverage ChurnCovV (t) is the
triple 〈c, d, u〉, where:

– c is the number of structural code units covered by the test case t which are
changed in the next version. More formally,

c = |{s ∈ CovTestV (t) | changedV (s)}|;

4

– d counts the number of structural code units, covered by the test case t, which
have been deleted in the next version. According to our formalization,

d = |{s ∈ CovTestV (V) | deletedV (s)}|;

– u is the number of structural code units that are covered by t and remain
unchanged in the next version, i.e. u = |CovTestV (V)| − (c + d).

3.2 The Proposed Ranking Strategies

By introducing suitable ordering criteria for tests in a way that takes into account
churn coverage information, it is possible to define different churn-based priori-
tization strategies.

In what follows, we start by re-defining the total coverage prioritization strat-
egy, which we will use as a baseline for our experiments, and then we propose
three definitions of the � ordering relation leveraging churn coverage increments
information, to instantiate different prioritization strategies.

Baseline Strategy: Total Coverage
As for the baseline strategy, we consider the total coverage prioritization, which
is based on the definition of total structural code unit coverage prioritization,
provided by [27]. This strategy takes into account the total coverage provided
by a test case and ranks tests decreasingly according to this measure. Thus, it
relies only on coverage information and does not consider churns at all.

The ordering �Tot which realizes this strategy is defined as follows. Given
two tests t and t′, with ChurnCovV (t) = 〈c, d, u〉 and ChurnCov(t′) = 〈c′, d′, u′〉,
it holds that

t �Tot t′ iff c + d + u ≤ c′ + d′ + u′.

Strategy 1: Prioritize Churn
The prioritize churn strategy prioritizes tests based on their coverage of changed
and deleted structural code units. This strategy assigns a higher priority to
test cases which cover little outside of the code units which have been altered
(i.e. changed or deleted), and is derived from the specific strategy defined in
[17]. The ordering �Churn which implements the prioritize changed strategy is
defined as follows. Given two tests t and t′, with ChurnCov(t) = 〈c, d, u〉 and
ChurnCov(t′) = 〈c′, d′, u′〉, it holds that

t �Churn t′ iff
d + c

d + c + u
≤ d′ + c′

d′ + c′ + u′ .

Strategy 2: Prioritize Unchanged
In a symmetric manner w.r.t. the prioritize churn strategy, the prioritize
unchanged strategy aims at prioritizing tests covering more unchanged struc-
tural code units. This strategy is inspired by the General strategy defined in
[17]. Intuitively, this ordering ranks test cases according to the ratio of unchanged
statements a test case covers on the total number of its covered statements.

5

Using churn coverage information to formalize the principles of this strat-
egy, we define the ordering �Unch as follows. Given two tests t and t′, with
ChurnCovV (t) = 〈c, d, u〉 and ChurnCovV (t) = 〈c′, d′, u′〉, it holds that

t �Unch t′ iff
u

c + d + u
≤ u′

c′ + d′ + u′ .

Strategy 3: Combined Approach
In the third approach, we propose a combined strategy, which selects first test
cases covering more changed parts of the product, and then test cases guaran-
teeing the highest coverage of the unchanged parts.

Intuitively, this strategy first considers tests covering at least one changed
structural code unit, ranking them according to the number of covered changed
units, and then focuses on the remaining tests, ranking them according to their
overall coverage.

More formally, given two tests t and t′, with ChurnCovV (t) = 〈c, d, u〉 and
ChurnCovV (t′) = 〈c′, d′, u′〉 the ordering �Comb realizing this strategy is defined
as follows:

t �Comb t′ iff one of the following is satisfied:

1. (c′ + d′) − (c + d) > 0;
2. | (c + d) − (c′ + d′) | = 0 and u ≤ u′.

4 Empirical Evaluation of the Proposed Strategies

In this section we present the design of the empirical study we performed to
assess the effectiveness of the proposed strategies to prioritize test cases, and
then discuss the results of our evaluation.

4.1 Experimental Protocol

The goal of our investigation is to assess the effectiveness of the proposed priori-
tization strategies (see Sect. 3), using the standard total code coverage approach
as a baseline. To this aim, we first realized a toolchain implementing the three
proposed strategies (plus the baseline), evaluating churns at method level. An
high-level architectural representation of this solution is shown in Fig. 1.

6

Fig. 1. Architecture of the developed solution to prioritize test cases.

The solution computes, for the various versions of a software product, statis-
tics on code coverage of the test suites and code churn. In particular, test coverage
information is obtained by JaCoCo, a widely used open source library for mea-
suring and reporting Java code coverage.2 Churn statistics at method level are
computed by a tool we specifically developed, based on the metrics calculated
by the SonarQube tool.3 Then, a Prioritization Module takes in input the met-
rics obtained by Jacoco and the Code Churn Calculator, to rank test cases. We
developed multiple versions of the Prioritization module, in order to implement
the various strategies described in the previous section.

As Object of the experiments, we used a Java project often employed in
software engineering empirical studies, namely Siena (Scalable Internet Event
Notification Architecture). It is a scalable publish/subscribe event notification
middleware for distributed applications [2], and is also available within the SIR
repository [6], which contains software-related artifacts meant to support rigor-
ous controlled software engineering experiments. We considered eight subsequent
versions of Siena, the latest of which included 26 classes corresponding to 6035
lines-of-code, and 567 test cases. In Table 1, we detail, for each of the considered
versions, the total number of lines-of-code, and the coverage percentage achieved
by the whole test suite. Moreover, in Table 2 we report code churn information
between the subsequent versions we considered.

As for the experimental protocol, we used our solution to prioritize test cases
in the Siena test suite, for each pair of consecutive versions, and measured the
relative coverage profit for each of the test cases. More formally, given a prior-
itized test suite 〈t1, . . . , tn〉, and an index i ∈ [1, . . . , n], we define the relative
coverage profit up to the i-th test in the prioritized test suite as follows:

2 The JaCoCo tool can be obtained freely at http://www.eclemma.org/jacoco/.
3 The SonarQube tool can be obtained freely at https://www.sonarqube.org/.

7

http://www.eclemma.org/jacoco/
https://www.sonarqube.org/

Table 1. Size and coverage statistics for the considered versions of Siena.

Version Total lines of code Covered lines of code

V0 11384 46%

V1 11343 30%

V2 11349 29%

V3 11423 29%

V4 11471 46%

V5 11471 47%

V6 11426 46%

Table 2. Churn metrics for Siena.

Versions Changed methods Deleted methods Unchanged methods

V0 → V1 2 9 185

V1 → V2 1 0 186

V2 → V3 3 0 240

V3 → V4 1 0 252

V4 → V5 3 0 251

V5 → V6 1 1 252

V6 → V7 9 4 241

CovProfit(i) =

∣
∣
∣
⋃i

j=1 CovTest(tj)
∣
∣
∣

∣
∣
∣
⋃n

j=1 CovTest(tj)
∣
∣
∣

,

where CovTest(t) represents the set of bytecode-level instructions covered by
the execution of the test case t.

4.2 Results and Discussion

The results of our experiment show that the combination of code coverage and
churn metrics to prioritize test cases is leading to interesting results, especially
when used between two software versions with consistent churns. In particular,
for versions V6 and V7 of Siena, which exhibit the higher churn, with 9 changed
methods and 4 deleted ones (see Table 2), the churn-based strategies remarkably
outperform the baseline, as indicated by the decisively more rapidly-growing
relative profits curves we report in Fig. 2. In particular, the two strategies that
emphasize churn coverage, namely prioritize churn and combined perform sen-
sibly better than the others. For software versions with smaller churns, on the
other hand, the differences were less remarkable, with the churn-based strategies
only slightly outperforming the baseline.

8

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

40
6

42
1

43
6

45
1

46
6

48
1

49
6

51
1

52
6

54
1

55
6

Co
ve

ra
ge

 P
ro

fit

Prioritized Test Cases

Prioritization Coverage Profits for Siena (V6 → V7)

Baseline Prioritize Unchanged Prioritize Changed Combined

Fig. 2. Coverage profits of the considered strategies for Siena versions V6 to V7.

Fig. 3. A Java method and an example of the Abstract Syntax Tree of its body block.

Even though our churn-based strategies have proved themselves to be promis-
ing, we believe that they could be further improved by taking into account not
only the fact that a given structural unit of code changed, but also the nature
of said change. Indeed, it is reasonable to assume that not all the changes in
source code have the same probability of introducing new faults. For example,
one could argue that a refactoring operation, like a simple renaming of a local
variable in a method, is less likely to introduce new faults, whereas significant
control flow changes such as the update of a stopping condition in an iteration
construct are more likely to introduce faults. To capture this intuition, in the
next section we sketch a more refined approach we are currently investigating,
that quantifies changes in a code-base at a finer grained level, discriminating

9

between more and less significant changes. Intuitively, this new approach could
allow us to prioritize tests that stress more fault-prone changes, w.r.t. those that
are less likely to introduce errors.

5 A Novel Strategy to Measure Code Churns

The code churn definition we proposed in Sect. 3 quantifies the amount of
changed, unchanged and deleted code between versions, at method granular-
ity level. A more refined strategy for regression test prioritization could also
take into account the nature of code changes, ranking test cases according to
their coverage on altered code which is more likely to introduce faults.

To quantify and weight the amount of changes between two versions of a
software project, we propose the evaluation of similarity between the Abstract
Syntax Trees (AST s) representation of their source code, using Tree Kernel
functions.

AST s are a structured representation of source code, widely employed in
many scenarios, like for example in compilers. They have also been widely and
profitably used in software engineering, e.g., for code clone detection [3,34]. An
AST is a tree-based representation of source code, whose inner nodes represent
constructs of the programming language and leaf nodes are related to tokens
(i.e., variable and method names, literals) appearing in a source code fragment.
The topological relations between nodes establish the context of statements and
expressions. A label is assigned to each node: inner nodes are labeled with infor-
mation about the particular type of construct they model, while leaf nodes are
labeled with the sequence of characters of their token. In Fig. 3, an example of
an AST of a source code fragment in the Java language is depicted.

Tree Kernel functions are a particular family of kernel functions which specif-
ically evaluate similarity between two tree objects. They have been extensively
studied in tasks of Machine Learning and Natural Language Processing [22]. Tree
Kernels assess the similarity of two tree structures taking into account both the
topological information and the labels of their respective nodes, and are typ-
ically highly customizable according to a set of specific parameters, allowing
them to be tailored to meet different needs in the application domain. A prior
approach to evaluate similarity of source code using AST and Tree Kernels can
be found in [3], where a similar technique was applied to code clone detection,
with profitable results.

Similarity between AST s of source code can be used to obtain information
about the amount and magnitude of changes in two subsequent versions of a soft-
ware. These information can be included into code churn in order to support the
ranking of test cases for regression test prioritization. To this purpose, we plan to
model source code using a suitably defined AST representation, and to evaluate
similarity between two structured code units of subsequent software versions by
comparing the corresponding pair of AST s, by means of a specifically-designed
Tree Kernel function, which can be normalized to produce a similarity score
ξ in the range [0, 1]. Diversity could be evaluated as well by subtracting this
similarity score from 1, i.e., 1 − ξ.

10

Fig. 4. An example of similarity scores evaluated by a Tree Kernel function at state-
ment granularity level.

Figure 4 shows an example of normalized scores provided by a Tree Kernel
for corresponding statements in two versions of a source code fragment.

To include similarity measures in the code churn, we extend the notation
defined in Sect. 3. In particular, we characterize a code churn w.r.t. two subse-
quent versions V and V ′ not only by means of the changedV and the deletedV

functions, but also with a new diversity function diversityV . This function assigns
to each structured code unit in V a diversity score in the range [0, 1]. In par-
ticular, deleted units are evaluated to 1, since there is no corresponding unit in
the next version to which they can be compared. Similarly, unchanged units are
evaluated to 0, as the diversity clearly is minimal in this case. In the other cases,
i.e., when s changes in the next version, the score reflects the magnitude of the
change.

With this new function in place, it is possible to re-define the churn coverage
of a given test t, namely ChurnCovV (t) = 〈c, d, u〉, in a way that takes into
account the diversity score information. In the new churn coverage object, d and
u are computed as described in Sect. 3, while c can be taken as the sum of the
diversity scores in the code units covered by the test case. More formally,

c =
∑

s∈ChV (t)

diversityV (s),

with Ch(t) being the set of structured code units covered by t which are changed
in the next version.

6 Conclusions and Future Works

In this work, we proposed three prioritization strategies leveraging not only
test coverage, but also the notion of code churn, i.e., information about which
structural code units changed between two subsequent versions of a software.
Intuitively, the parts of code that changed between two software versions are
those that require to be tested with higher priority, w.r.t. unchanged parts which
have already been tested. Indeed, code churns have been proven to be an effective
indicator of defect-prone components.

11

We assessed the effectiveness of the proposed prioritization strategies by con-
ducting an empirical study on a well-known open source software system, namely
Siena. To do so, we implemented a prioritization solution consisting in both open
source software and tools we specifically developed, and used this solution to pri-
oritize the tests in the Siena test suite for 7 pairs of subsequent versions. As a
baseline for our evaluation, we considered the well-known total coverage prioriti-
zation approach, which has been used in several other studies and does not take
into account churn information. The promising results of our evaluation showed
that the proposed strategies that prioritize the coverage of changed parts signif-
icantly outperform the baseline strategy in the version pairs in which there is
a significant amount of changed parts. For prioritization tasks in which there is
only a small amount of changed parts between versions, the results were incon-
clusive, and the churn-based strategies performed only slightly better than the
baseline.

Moreover, we sketched a more refined approach to the evaluation of code
churns, employing Abstract Syntax Trees to model the considered structured
code units, and suitably-designed tree kernel functions to evaluate the degree of
similarity between subsequent versions of a given unit. This approach is able to
capture not only the fact that a given structured code unit changed or not, but
also the nature of said change. Intuitively, we believe that not all changes have the
same likelihood of introducing new faults, and thus this novel approach we are
currently investigating could further improve the effectiveness of the proposed
strategies.

In future works, we plan to extend our empirical evaluation by consider-
ing more software versions and additional coverage metrics, such as APSC [21].
Moreover, we plan to implement the novel churn quantification approach we
sketched in this paper, and to conduct new empirical evaluations involving a
greater number of software systems, considering evaluation metrics which mea-
sure fault-detection rate, such as the widely-used APFD metric [9]. Furthermore,
we will explore the possibility of using our tree kernel-based approach to evaluate
similarity between different graphical user interfaces (GUIs), which can also be
represented with a tree-like structure (e.g.: xml layout, html documents). This
could lead to the development of more advanced automatic GUI testing tools,
which we could then evaluate as in [4].

References

1. Baresi, L., Pezzè, M.: An introduction to software testing. Electron. Notes Theor.
Comput. Sci. 148, 89–111 (2006). Elsevier

2. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving scalability and expressive-
ness in an internet-scale event notification service. In: Proceedings of ACM Sym-
posium on Principles of Distributed Computing, PODC 2000, pp. 219–227. ACM,
New York (2000)

3. Corazza, A., Di Martino, S., Maggio, V., Scanniello, G.: A tree kernel based app-
roach for clone detection. In: 2010 IEEE International Conference on Software
Maintenance, pp. 1–5. IEEE (2010)

12

4. Di Martino, S., Fasolino, A.R., Starace, L.L.L., Tramontana, P.: Comparing the
effectiveness of capture and replay against automatic input generation for android
graphical user interface testing. Softw. Test. Verif. Reliab. (2020). https://doi.org/
10.1002/stvr.1754

5. Di Nardo, D., Alshahwan, N., Briand, L., Labiche, Y.: Coverage-based regression
test case selection, minimization and prioritization: a case study on an industrial
system. Softw. Test. Verif. Reliab. 25, 371–396 (2015). https://doi.org/10.1002/
stvr.1572. John Wiley and Sons Ltd

6. Do, H., Elbaum, S.G., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empir. Softw. Eng.:
Int. J. 10(4), 405–435 (2005)

7. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Prioritizing test cases for regres-
sion testing. In: Proceedings of International Symposium on Software Testing and
Analysis, ISSTA 2000, pp. 102–112. ACM (2000)

8. Elbaum, S.G., Malishevsky, A.G., Rothermel, G.: Incorporating varying test costs
and fault severities into test case prioritization. In: Proceedings of ICSE, pp. 329–
338. IEEE Computer Society (2001)

9. Elbaum, S.G., Malishevsky, A.G., Rothermel, G.: Test case prioritization: a family
of empirical studies. IEEE Trans. Softw. Eng. 28(2), 159–182 (2002)

10. Elbaum, S.G., Rothermel, G., Penix, J.: Techniques for improving regression test-
ing in continuous integration development environments. In: Proceedings of FSE,
pp. 235–245. ACM (2014)

11. Hao, D., Zhang, L., Zhang, L., Rothermel, G., Mei, H.: A unified test case priori-
tization approach. ACM Trans. Softw. Eng. Methodol. 24(2), 10:1–10:31 (2014)

12. Hao, D., Zhang, L., Zang, L., Wang, Y., Wu, X., Xie, T.: To be optimal or not in
test-case prioritization. IEEE Trans. Softw. Eng. 42(5) (2016). https://doi.org/10.
1109/TSE.2015.2496939

13. Harrold, M.J., et al.: Regression test selection for Java software. In: Proceedings
of ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2001, pp. 312–326. ACM (2001)

14. Harrold, M.J., Rosenblum, D.S., Rothermel, G., Weyuker, E.J.: Empirical studies
of a prediction model for regression test selection. IEEE Trans. Softw. Eng. 27(3),
248–263 (2001)

15. Hemmati, H.: Advances in techniques for test prioritization. Adv. Comput. 112,
185–221 (2019). https://doi.org/10.1016/bs.adcom.2017.12.004

16. Huang, Y.C., Peng, K.L., Huang, C.Y.: A history-based cost-cognizant test case
prioritization technique in regression testing. J. Syst. Softw. 85(3), 626–637 (2012)

17. Jasz, J., Lango, L., Gyimothy, T., Gergely, T., Beszedes, A., Schrettner, L.: Code
coverage-based regression test selection and prioritization in WebKit. In: Proceed-
ings of International Conference on Software Maintenance, ICSM 2012, pp. 46–55.
IEEE Computer Society (2012)

18. Kaushik, N., Salehie, M., Tahvildari, L., Li, S., Moore, M.: Dynamic prioritization
in regression testing. In: 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 135–138 (2011)

19. Khatibsyarbini, M., Isa, M.A., Jawawi, D.N., Tumeng, R.: Test case prioritization
approaches in regression testing: a systematic literature review. Inf. Softw. Technol.
93, 74–93 (2018)

20. Kim, J.M., Porter, A.: A history-based test prioritization technique for regression
testing in resource constrained environments. In: Proceedings of ICSE, pp. 119–
129. ACM (2002)

13

https://doi.org/10.1002/stvr.1754
https://doi.org/10.1002/stvr.1754
https://doi.org/10.1002/stvr.1572
https://doi.org/10.1002/stvr.1572
https://doi.org/10.1109/TSE.2015.2496939
https://doi.org/10.1109/TSE.2015.2496939
https://doi.org/10.1016/bs.adcom.2017.12.004

21. Li, Z., Harman, M., Hierons, R.: Search algorithms for regression test case priori-
tization. IEEE Trans. Softw. Eng. 33(4), 225–237 (2007)

22. Moschitti, A.: Efficient convolution kernels for dependency and constituent syn-
tactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006.
LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006). https://doi.
org/10.1007/11871842 32

23. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: Proceedings of the 27th International Conference on Software
Engineering, 2005. ICSE 2005, pp. 284–292. IEEE (2005)

24. Nanda, A., Mani, S., Sinha, S., Harrold, M., Orso, A.: Regression testing in the
presence of non-code changes. In: 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation (ICST), pp. 21–30 (2011)

25. Ouriques, J., Cartaxo, E., Machado, P.: On the influence of model structure and
test case profile on the prioritization of test cases in the context of model-based
testing. In: 2013 27th Brazilian Symposium on Software Engineering (SBES), pp.
119–128 (2013)

26. Prado Lima, J.A., Vergilio, S.R.: Test case prioritization in continuous integra-
tion environments: a systematic mapping study. Inf. Softw. Technol. 121, 106–268
(2020). https://doi.org/10.1016/j.infsof.2020.106268

27. Rothermel, G., Untch, R., Chu, C., Harrold, M.: Test case prioritization: an empir-
ical study. In: Proceedings of the International Conference on Software Mainte-
nance, pp. 179–188 (1999)

28. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Trans. Softw. Eng. 27(10), 929–948 (2001)

29. Saha, R.K., Zhang, L., Khurshid, S., Perry, D.E.: An information retrieval approach
for regression test prioritization based on program changes. In: ICSE (2015)

30. Sánchez, A.B., Segura, S., Cortés, A.R.: A comparison of test case prioritization
criteria for software product lines. In: ICST, pp. 41–50. IEEE Computer Society
(2014)

31. Sarro, F., Di Martino, S., Ferrucci, F., Gravino, C.: A further analysis on the
use of genetic algorithm to configure support vector machines for inter-release
fault prediction. In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing, pp. 1215–1220. ACM (2012)

32. Shin, Y., Meneely, A., Williams, L., Osborne, J.A.: Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities. IEEE
Trans. Softw. Eng. 37(6), 772–787 (2011)

33. Srikanth, H., Banerjee, S., Williams, L., Osborne, J.A.: Towards the prioritization
of system test cases. Softw. Test. Verif. Reliab. 24(4), 320–337 (2014)

34. Ul Ain, Q., Haider Butt, W., Anwar, M.W., Azam, F., Maqbool, B.: A systematic
review on code clone detection. IEEE Access 7, 86121–86144 (2019). https://doi.
org/10.1109/ACCESS.2019.2918202

35. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

14

https://doi.org/10.1007/11871842_32
https://doi.org/10.1007/11871842_32
https://doi.org/10.1016/j.infsof.2020.106268
https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1109/ACCESS.2019.2918202

	Contents
	Inspecting Code Churns to Prioritize Test Cases
	1 Introduction
	2 Related Works
	3 The Proposed Prioritization Strategies
	3.1 Preliminary Definitions
	3.2 The Proposed Ranking Strategies

	4 Empirical Evaluation of the Proposed Strategies
	4.1 Experimental Protocol
	4.2 Results and Discussion

	5 A Novel Strategy to Measure Code Churns
	6 Conclusions and Future Works
	References

