Supporting Information

La_{0.2}Sr_{0.25}Ca_{0.45}TiO₃ surface reactivity with H₂: a combined *operando* NEXAFS and computational study

Authors: F. Bassato^{*1,2}, S. Mauri^{*1}, L. Braglia¹, A. Yu. Petrov¹, E. Dobovičnik³, F. Tavani⁴, A. Tofoni⁴, P. Ferrer⁵, D. Grinter⁵, G. Held⁵, P. D'Angelo⁴ and P. Torelli^{*1}

Affiliations

¹Istituto Officina dei Materiali IOM–CNR, Laboratorio TASC, Area Science Park, S.S.14, km 163.5, Trieste I-34149, Italy

²Department of Physics, University of Trieste, Via A. Valerio 2, Trieste 34127, Italy

³Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/1, Trieste 34127, Italy

⁴Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy

⁵Diamond Light Source, Oxfordshire OX11 0DE, U.K.

Corresponding Authors

Ferdinando Bassato – Istituto Officina dei Materiali IOM-CNR, Laboratorio TASC, Trieste I-34149; Department of Physics, University of Trieste, 34127 Trieste, Italy; Email: <u>bassato@iom.cnr.it</u>

Silvia Mauri – Istituto Officina dei Materiali IOM-CNR, Laboratorio TASC, Trieste I-34149; Email: mauri@iom.cnr.it

Piero Torelli – *Istituto Officina dei Materiali IOM-CNR, Laboratorio TASC*, Trieste I-34149; Email: torelli@iom.cnr.it

XRD Patterns

Fig. S1 XRD pattern of the samples synthesized by hydrothermal route (a) and modified-Pechini (b)

Fig. S2 Inset on the (200) reflection of figure S1

	LCSTO Hydrothermal	LCSTO Pechini
a (Å)	5.5419	5.5432
b (Å)	5.4974	5.4937
c (Å)	7.7995	7.7966

Table S1: LCSTO cell parameters calculated from XRD

Particle size analysis

Fig. S3 SEM images of LCSTO Hydrothermal (a) and LCSTO Pechini (b)

Fig. S4 Size distribution of LCSTO hydrothermal (a) and LCSTO Pechini (b)

XPS Surveys

Fig. S5 Surveys of LCSTO samples (Cu and Mo peaks are ascribed to the sample holders, while Ag to silver paint)

Fig. S6 XPS core levels fittings for LCSTO Hydrothermal and Pechini

O1s LCSTO					
Hydrothermal					
	Position	FWHM	Line shape	Area	relative %
Lattice (O ₁)	531.0 eV	1.61 eV	GL (30)	92521.3	51.34
Vacancies (O ₂)	531.78 eV	1.86 eV	GL (60)	27610.7	15.32
-OH (O ₃)	533.09 eV	2.33 eV	GL (40)	56990.3	31.62
Sample holder (O _S)	529.06 eV	1.61 eV	GL (80)	3103.9	1.72
Residual STD= 1.048					

Table S2: XPS fitting parameters for O1s: sample LCSTO Hydrothermal

O1s LCSTO Pechini					
	Position	FWHM	Line shape	Area	relative %
Lattice (O ₁)	530.46 eV	1.48 eV	GL (30)	74316.6	57.20
Vacancies (O ₂)	531.33 eV	1.59 eV	GL (70)	22813.1	17.56
-OH (O ₃)	532.59 eV	2.15 eV	GL (30)	29074	22.38
Sample holder (O _S)	528.61 eV	1.64 eV	GL (80)	3711.9	2.86
Residual STD= 1.238					

Table S3: XPS fitting parameters for O1s: sample LCSTO Pechini

SAMPLE	Theoretical Stoichiometry	XPS outcome
LCSTO-Hydrothermal	La _{0.2} Sr _{0.25} Ca _{0.45} TiO ₃	La _{0.20} Sr _{0.40} Ca _{0.50} TiO ₃
LCSTO-Pechini	"	La _{0.20} Sr _{0.40} Ca _{0.50} TiO ₃
LCSTO-MBE pristine	п	La _{0.15} Sr _{0.40} Ca _{0.40} TiO ₃
LCSTO-MBE "spent"	n	La _{0.30} Sr _{0.70} Ca _{0.50} TiO ₃

Table S4: LCSTO estimated stoichiometry by XPS

Experimental procedure for the Operando NEXAFS experiments

All the samples were subjected to the same experimental procedure: firstly, the sample was pre-heated to 120 °C in pure He flow to remove the adsorbed water and possible contaminants. Then, it was cooled down to RT and heated up to 350 or 400 °C in H_2 (100%). A graphical scheme of the experimental procedure is reported in fig. S7 for clarity.

Fig. S7 Experimental scheme of the measurements

Detailed description of STO, LSTO, LCSTO NEXAFS features

Starting the description from lower photon energies, L_3 edge shows two pre-edge peaks (**a** and **b** in Fig. 2)) located at ~ 460.5 and 461.5 eV, assigned to transitions towards virtual orbitals of t_{2g} -like symmetry^{1,2}, originated from $2p^6 d^0 \rightarrow 2p^5 d^1$ transition for Ti⁴⁺ in O_h symmetry and characteristic of d⁰ compounds³. The presence of the crystal field in proximity of the octahedral Ti⁴⁺sites cause the loss of the 3d orbitals degeneracy, giving

rise to the well-known t_{2g} and e_g states: this is reflected by the splitting of the L edges white line. In detail, **c** and **e** structures can be attributed to $2p^{3/2} \rightarrow 3d_{t2g}$ and $2p^{1/2} \rightarrow 3d_{t2g}$ transitions while **d** and **f** to $2p^{3/2} \rightarrow 3d_{eg}$ and $2p^{1/2} \rightarrow 3d_{eg}$. It is important to highlight that, in the presence of O_h symmetry, e_g states are related to dz^2 and dx^2-y^2 orbitals which are strongly hybridized with the ligands (in the case of SrTiO₃ with O atoms) because of their geometry. This results in a major sensitivity of the **d** and **f** structures to the Ti-O bonds modifications in the NEXAFS spectra, that could originate from structural distortions or oxygen vacancy formation. Vibronic effects and a larger dispersion caused by a higher degree of hybridization of the Ti 3d e_g orbitals with the surrounding O atoms also reflects in the broadening of **d** and **f**^{2,3}.

Theoretical Modelling

For SrTiO₃, the theoretical spectra have been calculated starting from the corresponding crystallographic structure (<u>Acta Cryst.</u> (1995). <u>B51</u>, 942-951 <u>https://doi.org/10.1107/S0108768195003752</u>, 10.1103/PhysRevB.60.2961). The .cif file containing the crystallographic parameters was employed to build a SrTiO₃ cluster (fig. S8) that was used for the theoretical simulations of the spectra.

Figure S8. 5x5x5 SrTiO₃ supercell model used for the theoretical simulations. The dimensions of the unit cell are a=b=c=3.908 Å, $\alpha=\beta=\gamma=90^{\circ}$.

The photoabsorber atom has been chosen in order to be at the centre of the cluster, therefore with crystallographic coordinates x=0, y=0 and z=0. The same procedure has been employed to build analogue clusters with different crystallographic parameters and chemical compositions, described in detail hereafter. In order to build the $La_{0.2}Sr_{0.25}Ca_{0.45}TiO_3$ cluster, the SrTiO₃ crystal structure was chosen as a starting point. To have a clear view of the operations carried out on the SrTiO₃ structure, a simplified picture of its cubic unit cell is shown in fig. S9, where the first and second coordination shells of the photoabsorber atom are clearly observable (Model 1). In detail, the central Ti site is bound to six oxygen atoms in octahedral coordination, while eight Sr atoms occupy the corners of the resulting FCC cell. In order to build the $La_{0.2}Sr_{0.25}Ca_{0.45}TiO_3$ model, two operations have been performed on the SrTiO₃ structure:

- Structural modification: La_{0.2}Sr_{0.25}Ca_{0.45}TiO₃ has an orthorhombic unit cell. The cell parameters have been calculated from the XRD patterns (table S1); the values found were then replaced to those of the SrTiO₃ structure when building the cluster model. The resulting orthorhombic unit cell is shown in fig. S9 (Model 2).
- Chemical modification: Starting from Model 2 and keeping the same cell parameters, four Sr atoms have been replaced with Ca atoms, while two Sr atoms have been substituted by La atoms (Model 3).

In Model 4, the cubic unit cell of $SrTiO_3$ has been modified, substituting a Sr atom with a La atom. In order to simulate the structural and chemical modifications that occurred after exposing the $La_{0.2}Sr_{0.25}Ca_{0.45}TiO_3$ to H_2 atmosphere, Model 5 was built: it has the same cell parameters of Model 3 with the addition of an oxygen vacancy.

Figure S9 – a) Model 1: Cubic Unit Cell of SrTiO₃; b) Model 2: Unit cell of SrTiO₃ where cell parameters have been substituted with the ones of La_{0.2}Sr_{0.25}Ca_{0.45}TiO₃, resulting in an orthorhombic unit cell; c) Model 3: Orthorhombic Unit cell used to simulate the structure of La_{0.2}Sr_{0.25}Ca_{0.45}TiO₃. d) Model 4: Cubic unit cell of SrTiO₃ where one Sr atom has been substituted by a La atom. e) Model 5: Orthorhombic Unit cell used to simulate the structure of La_{0.2}Sr_{0.25}Ca_{0.45}TiO₃, with an oxygen vacancy. Green: Strontium; Red: Oxygen; Blue: Titanium; Yellow: Lanthanum; Purple: Calcium.

For model 3, it should be taken into account that La, Ca and Sr atoms can be arranged in different configurations in the first coordination shell of Ti. Considering as a first approximation a cubic unit cell, the number of unique permutations of the vertices is 420. When also symmetry is included, this number reduces to 17 different ways to arrange the atoms. For this reason, we performed separate calculations for the seventeen different configurations when calculating Ti^{4+} and $Ti^{3+}L$ edges of LCSTO: the results are reported in Fig. S10

Figure S10 – Ti⁴⁺ (left) and Ti³⁺(right) L edges simulations of LCSTO, considering the seventeen different configuration in which La, Ca and Sr can be arranged in model 3.

Fig. S10 shows clearly that the differences detected in the different spectra are almost negligible for the purpose of these simulations: it can be indeed observed that the position and intensity of the main features are very similar. Since the experimental spectra we show in this work are realistically a mean of all the possible configurations, we averaged these simulated spectra to obtain the calculated ones we show in the main manuscript. Clusters analogous to the one of STO have been built for model 2-5, according to their crystallographic cell parameters.

Input structure

As an example, the input structure employed for SrTiO₃ is reported hereafter. We highlighted the most important parameters that will be described in the next paragraph. The other keywords used in the input are described in detail in the FDMNES manual (<u>http://www.neel.cnrs.fr/fdmnes</u>, J. Phys. : Condens. Matter 21, 345501 (2009)).

Range -5 .1 10 0.2 20 1 40 2 50 Energpho Edge

L23

E cut -3.0 Overlap 0.19 Spinorbite Quadrupole TDDFT Green Radius 6.00 Absorber 1 Atom 38 0 22 3 3 2 0 4 0 0 4 1 4 8 2 2 0 2 2 1 4 molecule 1 1 1 90 90 90 2 0.00000000 0.0000000 0.00000000 3 0.000000000 -1.9495000000 0.000000000 3 0.0000000000.000000000 -1.9495000000 3 -1.9495000000 0.000000000 0.00000000 3 1.94950000000.0000000000 0.0000000000 3 0.0000000001.9495000000 0.000000000 3 0.0000000000.00000000 1.9495000000 1 -1.9495000000 -1.9495000000 1.9495000000

1.94950000001.9495000000 -1.9495000000 1 1 -1.9495000000 1.9495000000 -1.9495000000 1 1.94950000001.9495000000 1.9495000000 1.9495000000 -1.9495000000 1.9495000000 1 -1.9495000000 -1.9495000000 -1.9495000000 1 1 1.9495000000 -1.9495000000 -1.9495000000 1 1.9495000000 -1.9495000000 1.9495000000 -3.8990000000 2 0.000000000 0.000000000 2 0.000000000 -3.899000000 0.000000000 2 0.000000000 0.000000000 -3.8990000000 2 0.000000000 0.00000000 3.8990000000 2 0.000000000 3.8990000000 0.000000000 2 0.000000000 0.000000000 3.8990000000 3 0.000000000-3.8990000000 1.9495000000 3 0.000000000 -1.9495000000 3.8990000000 -3.8990000000 1.9495000000 3 0.000000000 -3.8990000000 0.000000000 1.9495000000 3 3 1.94950000000.000000000 -3.8990000000 3 0.0000000001.9495000000 -3.8990000000 -1.9495000000 0.000000000 3.8990000000 3 3 -1.9495000000 3.8990000000 0.000000000 3 0.000000000 -1.9495000000-3.8990000000 0.000000000 -1.9495000000 -3.8990000000 3 3 0.000000000-3.8990000000 -1.9495000000 -3.8990000000 -1.9495000000 0.000000000 3 3 -1.9495000000 -3.8990000000 0.000000000 1.94950000000.0000000000 3.8990000000 3 3 0.0000000001.9495000000 3.8990000000 3 0.0000000003.8990000000 -1.94950000003 1.9495000000 - 3.8990000000 0.000000000 1.9495000000 3.8990000000 3 0.000000000 3 0.0000000003.8990000000 1.9495000000 3 3.8990000000 -1.9495000000 0.000000000 3 3.89900000000.000000000 -1.94950000003 -1.9495000000 0.000000000 -3.899000000 3.89900000001.9495000000 3 0.000000000 3 3.89900000000.0000000000 1.9495000000

2	-3.8990000000	3.89900000	0	0.0000000000
2	0.000000000	-3.89900000	000	3.8990000000
2	0.000000000	3.899000000	0	3.8990000000
2	3.8990000000	-3.89900000	000	0.0000000000
2	-3.8990000000	-3.89900000	000	0.0000000000
2	3.8990000000	0.00000000	0	-3.8990000000
2	-3.8990000000	0.00000000	0	3.8990000000
2	0.000000000	3.899000000	0	-3.8990000000
2	0.0000000000	-3.89900000	000	-3.8990000000
2	-3.8990000000	0.00000000	0	-3.8990000000
2	3.8990000000	0.00000000	0	3.8990000000
2	3.8990000000	3.899000000	0	0.0000000000
3	-1.9495000000	3.899000000	0	-3.8990000000
3	-3.8990000000	3.899000000	0	-1.9495000000
3	0.0000000000.000	000000	5.848	5000000
3	-3.8990000000	-3.89900000	000	-1.9495000000
3	1.9495000000 3.899	000000	-3.89	90000000
3	1.9495000000-3.89	90000000	3.899	0000000
3	-3.8990000000	-3.89900000	000	1.9495000000
3	0.00000000000.000	000000	-5.84	85000000
3	0.0000000005.848	5000000	0.000	0000000
3	-3.8990000000	3.899000000	00	1.9495000000
3	-1.9495000000	3.899000000	0	3.8990000000
3	1.9495000000 3.899	000000	3.899	0000000
3	3.899000000 -1.94	95000000	-3.89	90000000
3	3.899000000 -3.89	90000000	-1.94	95000000
3	0.000000000-5.84	85000000	0.000	0000000
3	-1.9495000000	-3.89900000	000	3.8990000000
3	3.899000000 -3.89	90000000	1.949	5000000
3	3.8990000000-1.94	95000000	3.899	0000000
3	-3.8990000000	-1.94950000	000	3.8990000000
3	3.89900000001.949	5000000	-3.89	90000000
3	1.9495000000-3.89	90000000	-3.89	90000000
3	-5.8485000000	0.00000000	00	0.000000000
3	5.84850000000.000	0000000	0.000	0000000
3	-1.9495000000	-3.89900000	000	-3.899000000
3	-3.8990000000	-1.94950000	000	-3.899000000

3	-3.899000000	1.949500000	00	-3.899000000
3	3.89900000001.949	5000000	3.8990	000000
3	3.899000000 3.899	000000	-1.949	95000000
3	-3.899000000	1.949500000	0	3.8990000000
3	3.899000000 3.899	0000000	1.9495	5000000

Convolution

End

The electronic configuration of the valence orbitals has been explicitly defined in the input structure, in order to be able to differentiate Ti atoms with different oxidation states. The electronic configuration in the ground state of the valence atoms for Ti⁰ is the following:

 $3d^2 4s^2 4p^0$

In order to simulate a Ti photoabsorber with a +4 or +3 oxidation state while keeping the whole cluster neutral, four electrons (two from the 3d and two from the 4s atomic orbitals) and three electrons (one from the 3d and two from the 4s orbitals) were moved to the 4p atomic orbitals, respectively, obtaining the following configurations:

```
3d<sup>0</sup> 4s<sup>0</sup> 4p<sup>4</sup> (Ti<sup>4+</sup>)
3d<sup>1</sup> 4s<sup>0</sup> 4p<sup>3</sup> (Ti<sup>3+</sup>)
```

For the simulations of $SrTiO_3$ and $LaTiO_3$ compounds, the default convolution parameters of FDMNES code have been adopted (cit manual FDMNES), i.e. using an "arctangent" shape for the broadening. For $La_{0.2}Sr_{0.25}Ca_{0.45}TiO_3$, a Gaussian broadening (FWHM = 0.5) has been employed to better reproduce the experimental spectrum.

Comparison between pre-edge structures of calculated STO and LCSTO NEXAFS spectra

Figure S11 – Pre-edge structures of the calculated spectra of $SrTiO_3$ (red) and $La_{0.2}Sr_{0.25}Ca_{0.45}TiO_3$ (black). Bars: non convoluted spectra; Solid lines: convoluted spectra.

Figure S12 – Ti L_3 edge for LCSTO samples: RT in He

SrTiO₃.cif file

For detailed information please see under Terms & Conditions.

Full information about CCDC and FIZ Karlsruhe data access policies and

```
# citation guidelines are available at http://www.ccdc.cam.ac.uk/access/V1
#
# Audit and citation data items may have been added by FIZ Karlsruhe.
# Please retain this information to preserve the provenance of
# this file and to allow appropriate attribution of the data.
#
**********
data 80871-ICSD
database code depnum ccdc archive 'CCDC 1641048'
loop
citation id
citation doi
citation year
1 10.1107/S0108768195003752 1995
audit update record
;
2018-02-27 deposited with the CCDC. 2024-01-10 downloaded from the CCDC.
;
database code ICSD
                            80871
chemical name systematic 'Strontium Titanate'
chemical formula sum
                           '03 Sr1 Ti1'
_cell_length_a
                            3.8996
cell length b
                            3.8996
cell length c
                            3.899
_cell_angle_alpha
                             90
cell angle beta
                            90
_cell_angle gamma
                             90
```

_cell_volume	59.27
_cell_formula_units_Z	1
_symmetry_space_group_name_H-M	'P m -3 m'
_symmetry_Int_Tables_number	221
_symmetry_cell_setting	cubic
_refine_ls_R_factor_all	0.006
loop_	
_symmetry_equiv_pos_site_id	
_symmetry_equiv_pos_as_xyz	
1 'z, y, -x'	
2 'y, x, -z'	
3 'x, z, -y'	
4 'z, x, -y'	
5 'y, z, -x'	
6 'x, y, -z'	
7 'z, -y, x'	
8 'y, -x, z'	
9 'x, -z, y'	
10 'z, -x, y'	
11 'y, -z, x'	
12 'x, -y, z'	
13 '-z, y, x'	
14 '-y, x, z'	
15 '-x, z, y'	
16 '-z, x, y'	
17 '-y, z, x'	
18 '-x, y, z'	
19 '-z, -y, -x'	

- 20 '-y, -x, -z' 21 '-x, -z, -y' 22 '-z, -x, -y'
- 23 '-y, -z, -x'
- 24 '-x, -y, -z'
- 25 '-z, -y, x'
- 26 '-y, -x, z'
- 27 '-x, -z, y'
- 28 '-z, -x, y'
- 29 '-y, -z, x'
- 30 '-x, -y, z'
- 31 '-z, y, -x'
- 32 '-y, x, -z'
- 33 '-x, z, -y'
- 34 '-z, x, -y'
- 35 '-y, z, -x'
- 36 '-x, y, -z'
- 37 'z, -y, -x'
- 38 'y, -x, -z'
- 39 'x, -z, -y'
- 40 'z, -x, -y'
- 41 'y, -z, -x'
- 42 'x, -y, -z'
- 43 'z, y, x'
- 44 'y, x, z'
- 45 'x, z, y'
- 46 'z, x, y'
- 47 'y, z, x'

48 'x, y, z'
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
Sr1 Sr2+ 0 0 0
Ti1 Ti4+ 0.5 0.5 0.5
01 02- 0 0.5 0.5

#End of data_80871-ICSD

LaTiO₃.cif file

This file contains crystal structure data downloaded from the # Cambridge Structural Database (CSD) hosted by the Cambridge # Crystallographic Data Centre (CCDC) in cooperation with FIZ Karlsruhe.

Please note that these data are only for research purposes or private use.

For detailed information please see under Terms & Conditions. # Full information about CCDC and FIZ Karlsruhe data access policies and # citation guidelines are available at http://www.ccdc.cam.ac.uk/access/V1 # # Audit and citation data items may have been added by FIZ Karlsruhe.

Please retain this information to preserve the provenance of # this file and to allow appropriate attribution of the data.

```
**********
data 98414-ICSD
_database_code_depnum_ccdc_archive 'CCDC 1657687'
loop
citation id
_citation_doi
citation year
1 10.1103/PhysRevB.68.060401 2003
_audit_update_record
;
2018-02-27 deposited with the CCDC. 2022-02-09 downloaded from the CCDC.
;
_database_code_ICSD
                           98414
_chemical_name_systematic 'Lanthanum Titanate(III)'
_chemical_formula_sum 'La1 O3 Ti1'
cell length a
                          5.6336
_cell_length_b
                           5.6156
_cell_length c
                           7.9145
_cell_angle_alpha
                           90
cell angle beta
                           90
_cell_angle_gamma
                           90
cell volume
                           250.38
_cell_formula_units_Z
                  4
_symmetry_space_group_name_H-M 'P b n m'
symmetry Int Tables number
                          62
```

orthorhombic

symmetry cell setting

#

```
loop
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
1 '-x+1/2, y+1/2, z'
2 'x, y, -z+1/2'
3 'x+1/2, -y+1/2, z+1/2'
4 '-x, -y, -z'
5 'x+1/2, -y+1/2, -z'
6 '-x, -y, z+1/2'
7 '-x+1/2, y+1/2, -z+1/2'
8 'x, y, z'
loop
atom site label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
La1 La3+ 0.9916 0.0457 0.25
Til Ti3+ 0.5 0 0
01 02- 0.0799 0.4913 0.25
02 02- 0.7096 0.2941 0.0417
```

#End of data_98414-ICSD

INPUT STRUCTURE FOR LCSTO

Range -5 .1 10 0.2 20 1 40 2 50

Energpho Edge L23 E_cut -3.0 Overlap 0.19 Spinorbite Quadrupole TDDFT Green Radius 6.00 Absorber 1 Atom_conf 1 1 3 3 2 0 4 0 0 4 1 4 molecule 1 1 1 90 90 90 22 0.00000000 0.00000000 0.0000000000 8 0.000000000 -1.943600000 0.000000000 8 0.0000000000 1.9436000000 0.0000000000 8 -1.9593500000 0.000000000 0.0000000000 8 1.9593500000 0.000000000 0.0000000000

0.000000000 0.00000000 -2.7575350000

8

22	0.0000000000	-3.8872000000	0.000000000
22	0.0000000000	3.8872000000	0.0000000000
20	-1.9593500000	-1.9436000000	2.7575350000
20	-1.9593500000	-1.9436000000	-2.7575350000
20	-1.9593500000	1.9436000000	2.7575350000
20	1.9593500000	-1.9436000000	-2.7575350000
57	-1.9593500000	1.9436000000	-2.7575350000
57	1.9593500000	-1.9436000000	2.7575350000
38	1.9593500000	1.9436000000	-2.7575350000
38	1.9593500000	1.9436000000	2.7575350000
22	-3.9187000000	0.0000000000	0.0000000000
22	3.9187000000	0.0000000000	0.0000000000
8	-1.9593500000	3.8872000000	0.0000000000
8	-1.9593500000	-3.8872000000	0.0000000000
8	1.9593500000	3.8872000000	0.0000000000
8	1.9593500000	-3.8872000000	0.000000000
8	3.9187000000	-1.9436000000	0.000000000
8	3.9187000000	1.9436000000	0.000000000
8	-3.9187000000	1.9436000000	0.000000000
8	-3.9187000000	-1.9436000000	0.0000000000
8	0.0000000000	-3.8872000000	2.7575350000
8	0.0000000000	3.8872000000	2.7575350000
8	0.0000000000	3.8872000000	-2.7575350000
8	0.0000000000	-3.8872000000	-2.7575350000
8	3.9187000000	0.0000000000	-2.7575350000
8	-3.9187000000	0.0000000000	2.7575350000
8	-3.9187000000	0.0000000000	-2.7575350000
8	3.9187000000	0.0000000000	2.7575350000
22	0.0000000000	0.0000000000	-5.5150700000
22	0.0000000000	0.0000000000	5.5150700000
22	3.9187000000	3.8872000000	0.0000000000
22	-3.9187000000	3.8872000000	0.0000000000
22	-3.9187000000	-3.8872000000	0.0000000000
22	3.9187000000	-3.8872000000	0.000000000
8	0.0000000000	-5.8308000000	0.000000000
8	0.0000000000	5.8308000000	0.0000000000
8	0.0000000000	-1.9436000000	5.5150700000

8	0.0000000000	-1.9436000000	-5.5150700000
8	0.0000000000	1.9436000000	-5.5150700000
8	0.0000000000	1.9436000000	5.5150700000
8	1.9593500000	0.0000000000	-5.5150700000
8	-1.9593500000	0.0000000000	-5.5150700000
8	1.9593500000	0.0000000000	5.5150700000
8	-1.9593500000	0.0000000000	5.5150700000
8	-5.8780500000	0.0000000000	0.000000000
8	5.8780500000	0.0000000000	0.000000000
8	3.9187000000	-3.8872000000	-2.7575350000
8	-3.9187000000	-3.8872000000	-2.7575350000
8	3.9187000000	-3.8872000000	2.7575350000
8	3.9187000000	3.8872000000	-2.7575350000
8	-3.9187000000	3.8872000000	-2.7575350000
8	-3.9187000000	3.8872000000	2.7575350000
8	3.9187000000	3.8872000000	2.7575350000
8	-3.9187000000	-3.8872000000	2.7575350000
38	-1.9593500000	5.8308000000	2.7575350000
38	1.9593500000	-5.8308000000	-2.7575350000
38	-1.9593500000	-5.8308000000	-2.7575350000
38	-1.9593500000	5.8308000000	-2.7575350000
38	-1.9593500000	-5.8308000000	2.7575350000
38	1.9593500000	5.8308000000	-2.7575350000
38	1.9593500000	5.8308000000	2.7575350000
38	1.9593500000	-5.8308000000	2.7575350000
22	0.0000000000	-3.8872000000	-5.5150700000
22	0.0000000000	3.8872000000	5.5150700000
22	0.0000000000	-3.8872000000	5.5150700000
22	0.0000000000	3.8872000000	-5.5150700000
22	-3.9187000000	0.0000000000	-5.5150700000
22	3.9187000000	0.0000000000	-5.5150700000
22	-3.9187000000	0.0000000000	5.5150700000
22	3.9187000000	0.0000000000	5.5150700000
38	-5.8780500000	-1.9436000000	-2.7575350000
38	-5.8780500000	-1.9436000000	2.7575350000
38	-5.8780500000	1.9436000000	-2.7575350000
38	5.8780500000	-1.9436000000	-2.7575350000

38	-5.8780500000	1.9436000000	2.7575350000
38	5.8780500000	-1.9436000000	2.7575350000
38	5.8780500000	1.9436000000	-2.7575350000
38	5.8780500000	1.9436000000	2.7575350000
8	-3.9187000000	5.8308000000	0.0000000000
8	3.9187000000	5.8308000000	0.0000000000
8	3.9187000000	-5.8308000000	0.0000000000
8	-3.9187000000	-5.8308000000	0.0000000000
8	1.9593500000	-3.8872000000	5.5150700000
8	-1.9593500000	-3.8872000000	-5.5150700000
8	-1.9593500000	3.8872000000	-5.5150700000
8	1.9593500000	-3.8872000000	-5.5150700000
8	-1.9593500000	3.8872000000	5.5150700000
8	-1.9593500000	-3.8872000000	5.5150700000
8	1.9593500000	3.8872000000	-5.5150700000
8	1.9593500000	3.8872000000	5.5150700000
8	-3.9187000000	-1.9436000000	-5.5150700000
8	3.9187000000	-1.9436000000	5.5150700000
8	-3.9187000000	1.9436000000	5.5150700000
8	3.9187000000	-1.9436000000	-5.5150700000
8	3.9187000000	1.9436000000	-5.5150700000
8	3.9187000000	1.9436000000	5.5150700000
8	-3.9187000000	1.9436000000	-5.5150700000
8	-3.9187000000	-1.9436000000	5.5150700000
8	5.8780500000	-3.8872000000	0.0000000000
8	-5.8780500000	-3.8872000000	0.0000000000
8	5.8780500000	3.8872000000	0.0000000000
8	-5.8780500000	3.8872000000	0.0000000000
22	0.0000000000	7.7744000000	0.0000000000
22	0.0000000000	-7.7744000000	0.0000000000
22	3.9187000000	3.8872000000	-5.5150700000
22	-3.9187000000	3.8872000000	-5.5150700000
22	3.9187000000	3.8872000000	5.5150700000
22	-3.9187000000	-3.8872000000	-5.5150700000
22	3.9187000000	-3.8872000000	5.5150700000
22	-3.9187000000	3.8872000000	5.5150700000
22	-3.9187000000	-3.8872000000	5.5150700000

22	3.9187000000	-3.8872000000	-5.5150700000
22	7.8374000000	0.0000000000	0.0000000000
22	-7.8374000000	0.0000000000	0.000000000
8	-1.9593500000	-7.7744000000	0.000000000
8	1.9593500000	-7.7744000000	0.0000000000
8	1.9593500000	7.7744000000	0.0000000000
8	-1.9593500000	7.7744000000	0.0000000000
8	0.0000000000	-5.8308000000	5.5150700000
8	0.0000000000	5.8308000000	5.5150700000
8	0.0000000000	5.8308000000	-5.5150700000
8	0.0000000000	-5.8308000000	-5.5150700000
8	5.8780500000	0.0000000000	5.5150700000
8	-5.8780500000	0.0000000000	-5.5150700000
8	5.8780500000	0.0000000000	-5.5150700000
8	-5.8780500000	0.0000000000	5.5150700000
8	-7.8374000000	-1.9436000000	0.000000000
8	7.8374000000	1.9436000000	0.000000000
8	-7.8374000000	1.9436000000	0.000000000
8	7.8374000000	-1.9436000000	0.000000000
8	0.0000000000	7.7744000000	-2.7575350000
8	0.0000000000	7.7744000000	2.7575350000
8	0.0000000000	-7.7744000000	2.7575350000
8	0.0000000000	-7.7744000000	-2.7575350000
8	0.0000000000	0.0000000000	-8.2726050000
8	0.0000000000	0.0000000000	8.2726050000
8	-7.8374000000	0.0000000000	-2.7575350000
8	-7.8374000000	0.0000000000	2.7575350000
8	7.8374000000	0.0000000000	2.7575350000
8	7.8374000000	0.0000000000	-2.7575350000

Convolution

Gaussian

0.5

References

- Yong, Z.; Linghu, J.; Xi, S.; Yin, X.; Leek, M. L.; Shen, L.; Timm, R.; Wee, A. T. S.; Feng, Y. P.; Pan, J. Unravelling Uniaxial Strain Effects on Electronic Correlations, Hybridization and Bonding in Transition Metal Oxides. *Acta Mater* 2019, *164*, 618–626. https://doi.org/10.1016/j.actamat.2018.11.017.
- (2) De Francesco, R.; Stener, M.; Fronzoni, G. Computational Investigation of the L2,3-Edge Spectra of Bulk and (110) Surface of Rutile TiO2. *Surf Sci* 2011, 605 (5–6), 500–506. https://doi.org/10.1016/j.susc.2010.12.006.
- (3) De Groot, F. M. F.; Fuggle, J. C.; Thole, B. T.; Sawatzky, G. A. L q 3 X-Ray-Absorption Edges of d Compounds: K+, Ca2+, Sc'+, and Ti + in Oh (Octahedral) Symmetry; 1990; Vol. 8.