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the first kind, the Chebyshev nonlinear filters. This family shares many of the character-
istics of the recently introduced Legendre and even mirror Fourier nonlinear filters, but
has also peculiar properties. Chebyshev nonlinear filters belong to the class of linear-in-
the-parameters nonlinear filters. Their basis functions are polynomials, specifically, pro-
ducts of Chebyshev polynomial expansions of the input signal samples. According to the
Stone–Weierstrass theorem, they are universal approximators for causal, time-invariant,
finite-memory, continuous, nonlinear systems. Their basis functions are mutually ortho-
gonal for white input signals with a particular nonuniform distribution. They admit per-
fect periodic sequences, i.e., periodic input sequences that guarantee the mutual ortho-
gonality of the basis functions on a finite period. Using perfect periodic input signals, an
unknown nonlinear system and its most relevant basis functions can be identified with
the cross-correlation method. It is shown in the paper that the perfect periodic sequences
of Chebyshev nonlinear filters are simply related to those of even mirror Fourier nonlinear
systems. Experimental results involving a real nonlinear system illustrate the potential-
ities of these filters.
ar filters include

filters [1], still actively studied and used in applications [6–
10], but also Wiener nonlinear filters [1], Hammerstein
filters [1,11–14], memory and generalized memory poly-
the most popular finite-memory and infinite-memory
nonlinear filters. The filters belonging to this class are
characterized by the property that their output depends
linearly on the coefficients. The filters find application in
speech [1], audio [2,3], telecommunication [4], image
processing [1], biological system modeling [5], and many
other fields. The LIP class includes truncated Volterra
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nomial filters [15,16], filters based on functional expan-
sions of the input samples, as functional link artificial
neural networks (FLANN) [17–20] and radial basis function
networks [21]. A review of finite-memory LIP nonlinear
filters can be found in [22]. LIP nonlinear filters with
infinite-memory have also been studied [23–27] and used
in applications.

The Wiener nonlinear filters [1] were introduced to
overcome the limitations of Volterra filters, whose basis
functions are never orthogonal, not even for a white input
signal. In Wiener filters the basis functions are orthogonal
for white Gaussian input signals, which means that for
these inputs a fast convergence speed of gradient descent
algorithms can be expected and the cross-correlation
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method can be applied to efficiently identify an unknown
nonlinear system. Nevertheless, it should be noted that the
Wiener basis functions depend on the standard deviation

effectively model weak and medium nonlinearities. The
basis functions of CN filters are not orthogonal for white
uniform input signals in ½�1; þ1�, as those of EMFN and

The Chebyshev polynomials of the first kind [49,50] are
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of the Gaussian input and that the cross-correlation
method applied to stochastic inputs often requires mil-
lions of samples for an accurate estimate of the filter
coefficients [5].

Recently, the finite-memory LIP class has been enriched
with novel sub-classes of nonlinear filters that guarantee
the orthogonality of the basis functions for white uniform
input signals in the range ½�1; þ1�: the Fourier nonlinear
(FN) filters [28,29], the even mirror Fourier nonlinear
(EMFN) filters [29,30], and the Legendre nonlinear (LN)
filters [31,32]. FN and EMFN filters are based on trigono-
metric function expansions of the input signal samples,
and do not include a linear term among the basis func-
tions. In contrast, LN filters are based on Legendre poly-
nomial expansions of the input signal samples and have a
linear term formed by the first order basis functions. The
basis functions of FN, EMFN, and LN filters form algebras
that satisfy all the requirements of the Stone–Weierstrass
approximation theorem [33]. Thus, they can arbitrarily
well approximate any causal, time-invariant, finite-mem-
ory, continuous, nonlinear system. While [29] suggested
that EMFN filters should be preferred to FN filters, because
they often provide a much more compact representation
of nonlinear systems, it was found in [34] that also FN
filters can be very useful for modeling nonlinear systems.
It has been shown that EMFN filters can also be better
models than LN and Volterra filters in the presence of
strong nonlinearities, while Volterra and LN filters provide
better results for weak or medium nonlinearities [29,32].

In [32,35–37], it has been proved that perfect periodic
sequences (PPSs) can be developed for the identification of
EMFN and LN filters. A periodic sequence is called perfect
for a modeling filter if all cross-correlations between two
of its basis functions, estimated over a period, are zero.
PPSs guarantee the orthogonality of the basis functions on
a finite period. An unknown system can be effectively
modeled, using a PPS as input signal, by means of the
cross-correlation method, i.e., simply computing the cross-
correlations between the basis functions and the system
output.

The most relevant basis functions, i.e., those that
guarantee the most compact representation of the non-
linear system according to some information criterion, can
also be easily estimated.

In this paper we study a novel sub-class of finite-
memory LIP nonlinear filters based on Chebyshev poly-
nomials of the first kind, the Chebyshev nonlinear (CN)
filters. CN filters share many of the characteristics of EMFN
and LN filters, but have also distinctive peculiarities that
make them interesting alternatives to EMFN and LN filters.
CN filters are products of the first kind Chebyshev poly-
nomial expansions of the input samples that satisfy all the
requirements of the Stone–Weierstrass approximation
theorem. Therefore, they can arbitrarily well approximate
any causal, time-invariant, finite-memory, continuous,
nonlinear system, as well as Volterra, FN, EMFN, and LN
filters. As the Volterra and the LN filters, CN filters include
a linear term among the basis functions, allowing them to
LN filters. On the contrary, they are orthogonal for white
signals with a particular distribution that can be easily
obtained with a sine transformation from a white uniform
distribution. Thus, for these white input signals they pro-
vide fast convergence speed of gradient descent adapta-
tion algorithms and efficient identification algorithms.
Finally, CN filters also admit PPSs, which can be used for
their efficient identification using the cross-correlation
approach. Interestingly, the PPSs of CN filters are related
to those of EMFN filters with a simple sine transformation.

Chebyshev polynomials have been already used in
various fields of nonlinear signal processing. In [38,39] a
nonlinear system is converted into a time-variant linear
system with respect to a transformation function com-
posed of Chebyshev polynomials. In [40], baseband mod-
eling of nonlinear devices such as RF amplifiers is studied
using a frequency-domain Volterra kernel approximation
based on Chebyshev polynomials. Artificial neural net-
works exploiting functional expansions of the input signals
using Chebyshev polynomials have been proposed for
nonlinear dynamic system identification [41,42], nonlinear
channel equalization [43–45], nonlinear adaptive filtering
[46], and modeling of loudspeakers [47] and nonlinear
audio effects [48]. Nevertheless, in contrast with the
nonlinear filters discussed in this paper, the approaches of
the literature do not consider cross-terms, i.e., products of
Chebyshev basis functions involving samples with differ-
ent time delay, which can be very important for modeling
nonlinear systems [22]. Their basis functions are not
complete under product and do not form an algebra. In
contrast to the filters here proposed, the previous filters
based on Chebyshev polynomials do not satisfy the con-
ditions of the Stone–Weierstrass approximation theorem
and thus are not universal approximators.

The paper is organized as follows. Section 2 reviews
Chebyshev polynomials of the first kind and their prop-
erties. Section 3 derives the CN filters and discusses their
properties, with particular attention to orthogonality and
PPSs. Section 4 provides experimental results involving a
real nonlinear device and test sets available in the litera-
ture. Concluding remarks follow in Section 5.

The following notation is used throughout the paper. R
is the set of real numbers, R1 is the unit interval ½�1; þ1�,
N is the set of natural numbers, δij is the Kronecker delta,
and 〈xðnÞ〉L indicates time average over L successive sam-
ples of x(n).

2. Chebyshev polynomials of the first kind
a family of orthogonal polynomials generated by the fol-
lowing recursive relation:

Tnþ1ðxÞ ¼ 2xTnðxÞ�Tn�1ðxÞ; ð1Þ
with T0ðxÞ ¼ 1, T1ðxÞ ¼ x and Tn(x) the Chebyshev poly-
nomial of order n. The polynomials are orthogonal in R1



with respect to the weighting function 1
π
ffiffiffiffiffiffiffiffiffi
1� x2

p , since
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3. Chebyshev nonlinear filters

In this section, we first introduce the family of CN fil-

Table 1
Chebyshev polynomials of the first kind.

T0ðxÞ ¼ 1
T1ðxÞ ¼ x
T2ðxÞ ¼ 2x2�1
T3ðxÞ ¼ 4x3�3x
T4ðxÞ ¼ 8x4�8x2þ1
T5ðxÞ ¼ 16x5�20x3þ5x
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�1
Tn xð ÞTm xð Þ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p dx¼ 1; n¼m¼ 0
1=2; n¼ma0:

>: ð2Þ

For any xAR1 also TnðxÞAR1 and it has maxima and
minima equal to þ1 and �1, respectively. Thus, the Tn(x)
are equiripple functions in R1.

The Chebyshev polynomials of the first kind can also be
defined as the only polynomials that satisfy the following
property:

Tn½ cos ðθÞ� ¼ cos ðnθÞ: ð3Þ

Furthermore, it is

Tn½ sin ðθÞ� ¼
ð�1Þm sin ½ð2mþ1Þθ�; n¼ 2mþ1
ð�1Þm cos ½2mθ�; n¼ 2m:

(
ð4Þ

Any degree N polynomial, p(x), can be expressed as a
linear combination of Chebyshev polynomials:

pðxÞ ¼
XN
n ¼ 0

cnTnðxÞ: ð5Þ

Most importantly, any real continuous function f(x) can be
arbitrarily well approximated with a linear combination of
Chebyshev polynomials. This property can be proved by
resorting to the Stone–Weierstrass theorem [33]:

“Let A be an algebra of real continuous functions on a
compact set K. If A separates points on K and if A
vanishes at no point of K, then the uniform closure B of
A consists of all real continuous functions on K”.

A family A of real functions is said to be an algebra if A is
closed under addition, multiplication, and scalar multi-
plication, i.e., if (i) f þgAA, (ii) f � gAA, and (iii) cf AA, for
all f AA, gAA and for all real constants c. The Chebyshev
polynomials and their linear combinations form an algebra
on the compact R1 that satisfies all the requirements of the
Stone–Weierstrass theorem. Indeed, the family of func-
tions is closed under addition, scalar multiplication, and
multiplication, since

2TmðxÞTnðxÞ ¼ TmþnðxÞþT jm�njðxÞ; ð6Þ

it separates points (e.g., with T1ðxÞ) and vanishes at no
point (e.g., with T0ðxÞ).

The approximation of a continuous function f(x) with a
linear combination of Chebyshev polynomials, p(x), up to a
degree N is very close to a min–max approximation [50].
Indeed, the approximation error can be expressed as:

ϵðxÞ ¼ f ðxÞ�pðxÞ ¼
Xþ1

Nþ1

cnTnðxÞ: ð7Þ

If the function is continuous and differentiable, the
sequence of coefficients cn converges rapidly to 0, such
that ϵðxÞCcNþ1TNþ1ðxÞ, which is an equiripple function for
the properties of Chebyshev polynomials.

Table 1 summarizes the first Chebyshev polynomials of
the first kind.
ters. Then, we discuss an orthogonality property and we
show how PPSs can be developed and used for system
identification.

3.1. The family of nonlinear filters

We are interested in developing a family of nonlinear
filters capable to arbitrarily well approximate any causal,
time-invariant, finite-memory, continuous, nonlinear sys-
tem, whose input–output relationship can be expressed by
a nonlinear function f of the N most recent input samples,

yðnÞ ¼ f ½xðnÞ; xðn�1Þ;…; xðn�Nþ1Þ�; ð8Þ
where the input signal x(n) is assumed to take values in R1,
yðnÞAR is the output signal, and N is the system memory.

We proceed with the same approach used for intro-
ducing EMFN and LN filters [29,32]. Eq. (8) can be inter-
preted as a multidimensional function in the RN

1 space,
where each dimension corresponds to a delayed input
sample. We want to expand the nonlinear function
f ½xðnÞ; xðn�1Þ;…; xðn�Nþ1Þ� with a series of basis func-
tions fi,

f ½xðnÞ; xðn�1Þ;…; xðn�Nþ1Þ�

¼
Xþ1

i ¼ 1

cif i½xðnÞ; xðn�1Þ;…; xðn�N�1Þ�; ð9Þ

where ciAR, and fi is a continuous function from RN
1 to R,

for all i. Moreover, we want the basis functions to satisfy
the requirements of the Stone–Weierstrass theorem. To
this purpose, we first write the Chebyshev polynomials,
i.e., the 1-dimensional basis functions, for
x¼ xðnÞ; xðn�1Þ;…; xðn�Nþ1Þ:

1; T1½xðnÞ�; T2½xðnÞ�; T3½xðnÞ�;…
1; T1½xðn�1Þ�; T2½xðn�1Þ�; T3½xðn�1Þ�;…
⋮
1; T1½xðn�Nþ1Þ�; T2½xðn�Nþ1Þ�; T3½xðn�Nþ1Þ�;…

Then, to guarantee completeness of the algebra under
multiplication, we multiply the terms having different
variables in any possible manner, taking care of avoiding
repetitions. It is easy to verify that this family of real
functions and their linear combinations constitute an
algebra on the compact RN

1 that satisfies all the require-
ments of the Stone–Weierstrass theorem. Indeed, the set
of functions is closed under addition, multiplication
(because of (6)) and scalar multiplication. The algebra
vanishes at no point due to the presence of T0½xðnÞ� ¼ 1.



Moreover, it separates points, since two separate points
must have at least one different coordinate xðn�kÞ and the
linear term T1½xðn�kÞ� ¼ xðn�kÞ separates these points. As

which immediately follows since the basis functions are
products of Chebyshev polynomials which satisfy (2).
Since the weighting function is not a constant, the basis
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a consequence, the nonlinear filters formed by a linear
combination of these basis functions are able to arbitrarily
well approximate any causal, time-invariant, finite-mem-
ory, continuous, nonlinear system.

We define the order of an N-dimensional basis function
as the sum of the orders of the constituent 1-dimensional
basis functions. Avoiding repetitions, the following basis
functions are formed:

The basis function of order 0 is the constant 1.
The basis functions of order 1 coincide with the N 1-

dimensional basis functions of order 1, i.e., the linear
terms:

xðnÞ; xðn�1Þ;…; xðn�Nþ1Þ:
The basis functions of order 2 are the N 1-dimensional basis
functions of order 2 and the basis functions originated by the
product of two 1-dimensional basis functions of order 1:

T2½xðnÞ�; T2½xðn�1Þ�;…; T2½xðn�Nþ1Þ�;
xðnÞxðn�1Þ;…; xðn�Nþ2Þxðn�Nþ1Þ
xðnÞxðn�2Þ;…; xðn�Nþ3Þxðn�Nþ1Þ
⋮
xðnÞxðn�Nþ1Þ:

Thus, there are N � ðNþ1Þ=2 basis functions of order 2.
Similarly, the basis functions of order 3 are the N 1-

dimensional basis functions of order 3, the basis functions
originated by the product between an 1-dimensional basis
function of order 2 and an 1-dimensional basis function of
order 1, and the basis functions originated by the product
of three 1-dimensional basis functions of order 1. This
constructive rule can be iterated for any order P.

The constructive rule for generating the basis functions
follows the same multiplicative rule used for generating the
basis functions of Volterra filters, with the only difference
that the product of k equal samples, xkðn� iÞ, is replaced by
Tk½xðn� iÞ�. Thus, the two classes of filters have the same
number of basis functions of order P, memory N. The linear
combination of all the Chebyshev basis functions with order
ranging from 0 to P and memory length of N samples defines
a CN filter of order P, whose number of terms is

NþP

N

� �
: ð10Þ

3.2. An orthogonality property

By exploiting the orthogonality property of the Che-
byshev polynomials in (2), it can be verified that the basis
functions are orthogonal in RN

1 with weighting function
1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2ðnÞ

p ⋯ 1
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2ðn�Nþ1Þ

p . Taking two different basis func-

tions fi and fj, the orthogonality condition is written asZ þ1

�1
⋯

Z þ1

�1
f i x nð Þ;…; x n�Nþ1ð Þ½ �

� f j x nð Þ;…; x n�Nþ1ð Þ½ �

� dxðnÞ⋯dxðn�Nþ1Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2ðnÞ

p
⋯π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2ðn�Nþ1Þ

p ¼ 0; ð11Þ
functions are not orthogonal for a white uniform dis-
tribution of the input signal in R1, as for EMFN and LN
filters. Nevertheless, the basis functions are orthogonal for
a white distribution of the input signal in R1 having
probability density function

px xð Þ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p : ð12Þ

Indeed, in (11) the factor

1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2ðnÞ

p
⋯π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2ðn�Nþ1Þ

p
can be interpreted as the joint probability density function
of the N-tuple ½xðnÞ;…; xðn�Nþ1Þ�. As a consequence, a
fast convergence of the gradient descent adaptation algo-
rithms, used for nonlinear systems identification, is
expected using a white input signal with probability den-
sity function (12). This signal can be obtained by trans-
forming a signal u(n), white uniform in R1, with the fol-
lowing mapping:

x nð Þ ¼ sin
π

2
u nð Þ

h i
: ð13Þ

Indeed, the probability density of x(n), px(x), is related to
the probability density of u(n), pu(u), as follows:

px xð Þ ¼ du
dx

���� ����pu uð Þ: ð14Þ

By inserting in (14) the inverse of (13),

u nð Þ ¼ 2
π
arcsin x nð Þ½ �; ð15Þ

and pu uð Þ ¼ 1
2, it is immediate to obtain (12).

3.3. Perfect periodic sequences

The CN filters admit also perfect periodic sequences
(PPSs), i.e., periodic sequences that guarantee the ortho-
gonality of the basis functions on a finite period L, such
that

〈f i½xðnÞ;…; xðn�Nþ1Þ�f j½xðnÞ;…; xðn�Nþ1Þ�〉L ¼ 0; ð16Þ
for all ia j. Indeed, PPSs for CN filters can be obtained by
transforming the PPSs of EMFN filters with the mapping in
(13). This can be easily proved. Indeed, the 1-dimensional
basis functions of EMFN filters are equal to sin kπ

2 x
� �

, for
order k¼ 2mþ1 and mAN, and are equal to cos kπ

2 x
� �

, for
order k¼2m and mAN. According to (4), a Chebyshev
basis function excited by the sequence sin ½π=2uðnÞ� pro-
duces the same output (apart from a sign change) of the
corresponding EMFN basis function excited by u(n). Thus,
the orthogonality of the EMFN basis functions for a PPS
input u(n) implies the orthogonality of the Chebyshev
basis functions for x nð Þ ¼ sin π

2u nð Þ� �
.

PPSs are very useful for identifying causal, time-invar-
iant, finite-memory, continuous, nonlinear systems. Let us
assume that the input–output relationship of the non-
linear system is expressed as a linear combination of
Chebyshev basis functions up to order K and memory of N



samples,

yðnÞ ¼
X

glf lðnÞ: ð17Þ
identification [52] and composed of data recorded on real
nonlinear systems are used to assess the performance of
the proposed filter. The characteristics, the computational
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Using a PPS input for a CN filter of order K and memory N,
the coefficients gl can be efficiently estimated by com-
puting the cross-correlation between the system output
and each basis function over a multiple m of the sequence
period L,

bgl ¼
〈f lðnÞyðnÞ〉mL

〈f 2l ðnÞ〉mL

: ð18Þ

Let us assume that the nonlinear system is identified
with a PPS of order K and memory N. As discussed in
[32,36], when the nonlinear system in (8) is a linear
combination of basis functions with memory N and max-
imum order greater than K, the identification is affected by
an error that influences mainly the coefficients of the
higher-order basis functions, while, in general, has only a
marginal effect on the coefficients of the lower-order basis
functions. When the system to be identified is a linear
combination of basis functions with order K but memory
greater than N, the identification is also affected by an
error, which influences mainly the coefficients of basis
functions associated with the most recent samples x(n),
xðn�1Þ;…, while, in general, the coefficients of basis
functions associated with less recent samples xðn�Nþ1Þ,
xðn�Nþ2Þ;… are only marginally affected.

Exploiting the orthogonality of the basis functions on a
PPS period, we can easily rank them according to the mean
square error (MSE) they produce. For the l-th basis func-
tion, the MSE reduction is

δMSEl ¼
〈f lðnÞyðnÞ〉2mL

〈f 2l ðnÞ〉mL

: ð19Þ

Eq. (19) can be combined with any information criterion to
obtain a compact representations for the nonlinear system.
The Bayesian information criterion [51] will be used in the
experimental results of this paper.

In general, the error in the approximation of a non-
linear system with the CN filter is not approximately equal
to a single basis function, as in (7). Thus, we cannot claim
that the CN filters provide a min–max approximation of
the nonlinear system. Nevertheless, in many simulations
identifying synthetic systems we have observed that CN
filters provide approximately an equiripple error.

4. Experimental results
In this section we highlight the properties of the novel

5

family of nonlinear filters by means of three experiments
involving real devices. Specifically, in the first two
experiments we consider the identification of an audio-
phile vacuum tube preamplifier, Behringer Tube Ultragain
Mic 100. The preamplifier has a gain setting that can be
used for introducing different levels of nonlinear distor-
tion. Different input signals have been fed to the pre-
amplifier and the output signals have been recorded at
8 kHz using a notebook. In the third experiment, two data
sets proposed for benchmarking in nonlinear system
complexity and the performance of the CN filters are
carefully analyzed in comparison to those of the well-
known Volterra filters, the EMFN filters described in
[29,30], and the LN filters introduced in [31,32]. The per-
fect sequences for EMFN and LN filters, used in the second
experiment, have been derived in [35,36] and [32,37],
respectively, and are available in [53].

4.1. First experiment

In the first experiment we want to highlight the use-
fulness of the orthogonality condition in (11). Thus, we
identify the preamplifier with a gradient descent algo-
rithm using a white input sequence in R1 having prob-
ability density function (12). With the selected settings,
the preamplifier introduces, on a sinusoidal input at
200 Hz, a second and third order harmonic distortion of
5.6% and 20.2%, respectively. The harmonic distortion is
defined as the ratio, in percent, between the magnitude of
each harmonic and that of the fundamental frequency. The
signal to noise ratio is greater than 65 dB. At 8 kHz sam-
pling frequency, the system has memory length of around
15 samples. Thus, the system has been identified with a
linear filter with memory of 15 samples, a Volterra, an
EMFN, a LN, and a CN filter all with memory of 15 samples,
order 3, and 816 coefficients. In order to do a fair com-
parison between the filters, the basis functions of all filters
have been normalized to have a unit power and the pre-
amplifier has been identified with the standard LMS
algorithm,

eðnÞ ¼ dðnÞ�hT ðnÞxðnÞ; ð20Þ

hðnþ1Þ ¼ hðnÞþμeðnÞxðnÞ; ð21Þ
where d(n) is the unknown system output, e(n) is the a
priori estimation error, xðnÞ is the vector collecting the LIP
filter basis functions, hðnÞ is the vector collecting the cor-
responding coefficients of the LIP filter, and μ is the step-
size. This algorithm can be easily applied to any linear-in-
the parameters nonlinear filter, since its output is linear
with respect to the coefficients themselves. Moreover, the
step-size, which has been assumed equal for all the coef-
ficients, has been carefully tuned for each of the adaptive
filters. Specifically, using the acquired signals, for each
filter the nonlinear system has been identified with dif-
ferent step-sizes μ¼ 0:01a� i, with a¼ 101=4 and iAN, and
the corresponding learning curves have been plot on the
same diagram. For each adaptive filter the step-size that
guarantees the minimum steady-state MSE (apart from a
dB fraction) with the fastest convergence speed has been
annotated. Indeed, in gradient descent algorithms the
steady-state MSE is the sum of three contributes: (i) the
additive noise, (ii) the modeling error of the specific
adaptive filter, and (iii) the excess MSE generated by the
gradient noise. While the first two contributes do not
depend on the step-size, the latter is negligible compared
to the first two for a sufficiently small step-size. As a
matter of fact, Fig. 1 shows the learning curves of MSE for



the CN filter with different step-sizes. Each learning curve
is the ensemble average of 50 runs of the LMS algorithm
applied to different data segments. Moreover, the learning

total harmonic distortion close or greater than 100% pro-
vide extreme distortion conditions. The preamplifier has
been identified with EMFN, LN, and CN filters using three

Fig. 1. Learning curves for the CN filter.
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curves have been smoothed using a box filter of 100
samples length. For a step-size μZ5:6 � 10�4 the steady-
state MSE is larger than the minimum one, while for
μr3:2 � 10�4 the steady-state MSE almost coincides for all
curves.

The learning curves of the different filters have then
been compared with the annotated step-sizes. Fig. 2 shows
the result of this comparison. Again the learning curves
presented are the ensemble average of 50 runs of the LMS
algorithm and have been smoothed using a box filter of
100 samples length. The step-size used for each learning
curve is reported in the legend. Given the strong non-
linearity considered in the experiment, the linear filter is
inadequate to model the preamplifier. In contrast, all
nonlinear filter structures provide almost the same steady-
state error in these experimental conditions. For the
selected input signal, the linear and the CN filter have
orthogonal basis functions and provide a fast convergence
speed of the LMS algorithm. On the contrary, the Volterra,
the EMFN and the LN filters do not share this orthogonality
property for the selected input and, indeed, their con-
vergence speed is slower than that of the linear and CN
filters. Nevertheless, the EMFN and the LN filters have
orthogonal basis functions for white uniform input signals.
Thus, in the current conditions they provide faster con-
vergence speed than the Volterra filter, since their basis
functions are closer to the orthogonality condition. Indeed,
the input signal autocorrelation matrix estimated over
1 000 000 samples has condition number 18.8 for the
EMFN filter, 25.1 for the LN filter, and 509 for the Volterra
filter.

4.2. Second experiment

In the second experiment, we consider the identifica-
tion of the preamplifier under different distortion condi-
tions using perfect sequences. Twenty different settings of
the gain control have been considered, ranging from the
lowest till the highest possible setting. The second, third
and total harmonic distortions on a 200 Hz signal at the
maximum used amplitude at the different settings are
represented in Fig. 3. Clearly, the last settings that have
PPSs, suitable to the three filters with order 3, memory 20,
and with a period of 655 408 samples. The perfect
sequence for the CN filter has been obtained by trans-
forming with (13) the PPS for EMFN filters. The coefficients
of the filters were estimated with the cross-correlation
method in (18) and the most relevant basis functions were
selected according to the Bayesian information criterion,
minimizing

BðνÞ ¼ L loge½σ2ϵ ðνÞ�þν loge½L� ð22Þ
where σ2ϵ ðνÞ is the variance of the residual error associated
to the first ν most relevant terms of the model and L is the
number of data used for the model estimation. The pre-
amplifier has also been identified with a Volterra filter on
the same data used for the CN filter identification. The
cross-correlation method cannot be applied to the Volterra
filter estimation since its basis functions are not orthogo-
nal. Thus, the Volterra filter has been identified with the
method of [54], which is one of the most computationally
efficient identification methods for LIP nonlinear systems
available in the literature. In all conditions, the signal to
noise ratio was greater than 65 dB.

Fig. 4 shows the number of selected terms and the
percentage of unexplained power (i.e., the ratio in percent
between the residual MSE and the power of the output
signal). The percentage of unexplained power is very low,
close to 1%, till settings 16, then it tends to increase indi-
cating that a third order model in inadequate to represent
the nonlinear system at those high nonlinear distortions.
CN, LN, and Volterra filters are all polynomial filters and
each filter can be converted into one of the other repre-
sentations. Thus, for the same input signal the filters
should provide very similar results, with just a possible
little change in the number of selected basis functions.
This is confirmed in Fig. 4 for Volterra and CN filters, which
are estimated for the same input signal. Also LN filters,
which are estimated for a different PPS input, provide very
similar results to Volterra and CN filters for small and
medium nonlinear distortions. On the contrary, because of
the different input signals, they produce larger errors for
higher distortions. When the Volterra, LN, and CN filters
are estimated on the same signal, they provide very similar
results. EMFN filters for low and medium distortions ori-
ginate slightly worse results than the other filters, because
they lack a linear term, but for higher distortions they are
able to provide better results than the other filters, also
when estimated on the same signal.

There is here a significant difference between the effort
necessary to estimate the CN, LN, and EMFN filters, and
that for estimating the Volterra filters. Obtaining the CN,
LN, and EMFN filters using PPSs and the cross-correlation
method required only a few hours of computer time. In
contrast, computing the results for Volterra filters with the
method in [54] requested days of simulations on the same
computer. As a matter of fact, if T indicates the number of
samples used for the identification, B the number of can-
didate basis functions, and S the number of selected basis
functions, the computational cost of the method of [54]



has order of TBS2 operations, while the cross-correlation
method requires only TB operations.

very similar modeling performance, with just a difference
in the number of selected basis functions, which depends
on the specific system. For “drive 1”, the Volterra filter

Fig. 2. Comparison of the learning curves for the linear, Volterra, EMFN,
LN, and CN filters.
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Table 2
Identification results on benchmarking data sets.

Data set Chebyshev Volterra Legendre EMFN

Number of selected bases
Drive 1 46 62 51 52
Drive 2 52 49 46 47
Tank 1 28 28 24 39
Tank 2 54 44 46 50

Unexplained power %
Drive 1 0.91 0.73 0.84 0.81
Drive 2 0.32 0.35 0.35 0.60
Tank 1 0.82 0.81 0.82 0.95
Tank 2 1.03 1.04 1.04 1.07
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4.3. Third experiment

In the third experiments, we compare the performance
of the CN, Volterra, LN, and EMFN filters on two data sets
available in the literature [52] and currently used for
benchmarking in nonlinear system identification [55]. The
first data set is recorded from coupled electric drives, i.e.,
two electric motors driving a pulley with flexible belt. The
second data set is generated by a fluid level control system,
i.e., two cascaded tanks with free outlets fed by a pump.
Two measured data are considered for each data set. More
details on the data sets can be found in [52]. For the input
signals of these data sets, the basis functions of CN, Vol-
terra, LN, and EMFN filters are never orthogonal. Thus, all
filters have been identified with the method of [54] con-
sidering a maximum order 3 and memory length 25 for
the filters. Table 2 provides for the four filters the number
of selected basis functions with the Bayesian information
criterion and the percentage of unexplained power. While
CN, Volterra, Legendre, and EMFN filters of order 3,
memory length 25 have 3276 basis functions, a subset of
30–60 basis functions is sufficient here to accurately
model the nonlinear system with percentage of unex-
plained power around or below 1%. In Table 2, all poly-
nomial filters, i.e., CN, Volterra, and EMFN filters, provide
appears to provide better performance than the other fil-
ters in terms of unexplained power, but the number of
selected basis functions is much larger than CN and LN
filters. Selecting the most significant 100 basis functions all
filters provide the same percentage of unexplained power
(around 0.5%). Apart from the data signal “drive 2”, also
the EMFN filter provides in these conditions similar per-
formance as the other filters. Indeed, even if the EMFN
filter lacks a linear term, its basis functions are particularly
suited for modeling strong nonlinearities, as those of the
nonlinear systems considered in the data sets of this



experiment. The main advantage of CN, LN and EMFN fil-
ters with respect to Volterra filters comes from the pos-
sibility of selecting as input signal a PPS. Exploiting the

of ISPA 2013, The Eighth International Symposium on Image and
Signal Processing and Analysis, Trieste, Italy, 2013, pp. 347–352.

[15] J. Kim, K. Konstantinou, Digital predistortion of wideband signals
based on power amplifier model with memory, Electron. Lett. 37
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orthogonality of basis functions, the PPS input facilitates
system identification and basis functions selection.

5. Conclusion
A novel family of nonlinear filters based on Chebyshev

polynomials of the first kind has been described. Accord-
ing to the Stone–Weierstrass theorem, the novel filters are
universal approximators for causal, time-invariant, finite-
memory, continuous, nonlinear systems. Their basis func-
tions are mutually orthogonal for white input signals
having a particular non uniform distribution. Moreover
they admit perfect periodic sequences which are related to
those of even mirror Fourier nonlinear systems. Experi-
mental results involving a real nonlinear system and two
data sets available in the literature, and used as bench-
marking of nonlinear systems, have been provided to
highlight the potentialities of these filters.
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