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a b s t r a c t 

Supervised data stream learning depends on the incoming sample’s true label to update a classifier’s 

model. In real life, obtaining the ground truth for each instance is a challenging process; it is highly costly 

and time consuming. Active Learning has already bridged this gap by finding a reduced set of instances 

to support the creation of a reliable stream classifier. However, identifying a reduced number of informa- 

tive instances to support a suitable classifier update and drift adaptation is very tricky. To better adapt 

to concept drifts using a reduced number of samples, we propose an online tuning of the Uncertainty 

Sampling threshold using a meta-learning approach. Our approach exploits statistical meta-features from 

adaptive windows to meta-recommend a suitable threshold to address the trade-off between the number 

of labelling queries and high accuracy. Experiments exposed that the proposed approach provides the 

best trade-off between accuracy and query reduction by dynamic tuning the uncertainty threshold using 

lightweight meta-features. 

© 2023 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Present-day supervised machine learning tasks rely on extract- 

ng hidden patterns from vast amounts of data. A significant part 

f them is fashioned as a data stream of continuous data arriving 

t a very high speed. This demands algorithms that are suitable 

o deal with fast processing time and limited memory space effi- 

iently [1–3] . 

Unlike traditional tasks accomplished by static and batch meth- 

ds on previously collected data, many challenges and particu- 

ar constraints arise when dealing with the data-stream paradigm. 

mong the challenges, updating the model could be very tricky, 

ince new data can arrive at any time, often changing their be- 

aviour and leading to a concept drift issue [4,5] , which invalidates 

odels built in the past. 

Active Learning is an area of machine learning grounded on the 

dea that if the learning algorithm can choose which data sam- 

les are more useful for its learning process, it can be trained 

etter, faster, and with fewer data. There are many Active Learn- 

ng methods for vastly different scenarios, but Stream-based and 
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ool-based selective sampling have achieved high-quality results in 

tream mining [6] . 

Stream-based and Pool-based methods are a subset of the Se- 

ective Sampling strategy grounded on a heuristic to query whether 

 new data sample is worth taking part in the training of the 

odel. The most commonly used query strategy is Uncertainty 

ampling [7] , which uses an uncertainty measure. This measure is 

ost commonly the Entropy ( H) of the data sample based on the 

lass probabilities obtained from the classifier. If H(S i ) > Z, where 

is a threshold value and S i is a mew sample used in train- 

ng. However, choosing correctly Z poses an additional challenge 

ecause its value is strictly related to each particular piece of a 

ata stream. Furthermore, changes in the stream patterns (concept 

rift) demand updating Z. Thus, using a static Z is not feasible for 

eal-life data streams. 

An alternative approach is first to learn an optimal Z default 

etting and then redefine Z after a concept drift instead of leaving 

t at that default value. However, this approach is very demand- 

ng, as it relies on the use of an accurate concept drift detector 

nd tuning Z. Detectors are methods to estimate the positions of 

oncept drifts in data streams. This allows for a base learner up- 

ate to be triggered after changes in the data distribution and thus 

mprove the classification task [8] . Therefore, we have the possible 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ias caused by the detector and a challenging tuning task regard- 

ng Z due to stream constraints [9] . 

We believe that using the performance of related previous tasks 

an help make a suitable recommendation of Z. Thus, we pro- 

ose using Meta-learning (MtL) to adjust the Z value of Uncer- 

ainty Sampling based on statistical meta-features extracted from 

n adaptive windowing procedure handling the trade-off between 

he number of labelling queries and high accuracy. We explored 

he Very Fast Decision Tree as a classification algorithm for differ- 

nt streams and concept drift conditions. The main contributions 

f this paper are as follows: 

• A methodology to improve stream classification performance 

under a reduced number of class labels, i.e., a real-life scenario; 
• The usage of Meta-learning for Active Learning tuning as a re- 

gression problem; 
• A discussion around the importance of different meta-feature 

categories in the context of entropy-based hyperparameter se- 

lection; 
• A discussion on how Stream-based classifiers are impacted by 

concept drifts over different scenarios and how the classifica- 

tion performance may be improved when some data samples 

are ignored during training. 

The manuscript is organised as follows. Section 2 presents an 

verview of related work on active learning and meta-learning 

or data streams. Section 3 introduces the proposed approach. 

ection 4 presents the experimental evaluation and analysis. Fi- 

ally, Section 5 makes the concluding remarks. 

. Background 

We can define a data stream as a potentially unbounded se- 

uence of instances < S 1 , S 2 , . . . , S n , . . . > , where S i is a new sam-

le. Addressing as a supervised machine learning task, we can de- 

ne each sample S i p i (x i , . . . , x d , y ) = P i (X, y ) , where P i (X, y ) is a

oint distribution of i -th sample, described by a d-dimensional fea- 

ure vector related to a class y . Each sample in the data stream

s independent and randomly grounded on a stationary probability 

istribution D i (X, y ) . Since X is continuously arriving, one impor- 

ant solution is to get useful information on the fly without storing, 

ncrementally incorporating, and discarding samples. Regarding y , 

ts value is required to access the class labels to train the model 

ollowing a supervised learning process. However, this requirement 

oes not match real-life scenarios since obtaining a label (ground 

ruth) for each sample is a high-cost process due to the time and 

vailability of the labelling. Formally we can define concept drift as 

 i (X, y ) � = P t+�(X, y ) at time t . 

.1. Active learning for data stream mining 

Active Learning has a multitude of different techniques, but 

n the context of streaming, it is generally prioritised the use of 

imple techniques to not add significant overhead. Among these, 

e have Selective Sampling using Uncertainty Sampling for sam- 

le querying selection. Selective Sampling is comprised of two dif- 

erent approaches: pool-based sampling and stream-based sampling . 

he difference between them is that pool-based sampling collects 

ools of samples, ranks these samples, and queries only the n first 

amples, while stream-based sampling decides if a sample is worth 

abelling when it arrives [6] . Since data is both unbounded and fast 

rriving in a stream setting, stream-based sampling approaches are 

sually preferred. Among the query strategies used in selective 

ampling techniques, Uncertainty Sampling tends to be commonly 

sed thanks to its simplicity and speed while also providing better 

esults when compared to Random Sampling in general [6] . 
2 
Although uncertainty sampling has some less commonly used 

ncertainty measures such as least confidence and margin sampling , 

he most general and commonly used is entropy [6] , which is the 

ne we refer to when mentioning Uncertainty Sampling in this pa- 

er. Eq. 1 defines this measure, where x is the sample, y i corre- 

ponds to a label possibility and P (y i ) is the probability that y i is

he correct class according to the classifier. The logarithmic base is 

sually set to 2 to represent “bits”, but it can be changed, provided 

hat it is kept consistent and the uncertainty sampling variables 

re scaled properly. Entropy determines the amount of confusion 

r uncertainty present in a system, which in this case corresponds 

o the confidence that the classifier knows the correct label. If the 

ntropy is high, the classifier is uncertain since the probabilities 

or each class are similar. 

(x ) = −
∑ 

P (y i ) log P (y i ) (1) 

One of the biggest problems with the use of Active Learning in 

treaming environments is dealing with concept drift [10] and un- 

alanced classes [11] . Since the structure of the data may change, 

he Active Learning configuration may become outdated and may 

ven negatively impact the learning process. 

A few solutions to this are found in the literature, such as train- 

ng a new classifier in the background when the old classifier be- 

ins to lose accuracy and finally replacing it with a new one when 

rift is detected by a drift detection algorithm, which is also re- 

ponsible for controlling the labelling rate of instances to accom- 

odate new concepts [12] . This allows the model to avoid losing 

ccuracy because the model is trying to adapt to the changes with- 

ut altering anything else. 

Shan et al. [13] proposed a framework that allows for the adap- 

ation of concept drift during stream classification. It uses an en- 

emble composed of a stable classifier that always learns the latest 

ata and an array of dynamic classifiers that learn on late slid- 

ng windows. With the use of Active Learning, using both Uncer- 

ainty Sampling and Random Sampling, the framework is capable 

f maintaining high accuracy levels and gradually stabilising in the 

dvent of concept drift. Liu et al. [14] proposed a framework that 

elies on two metrics to decide whether an instance should be la- 

elled. The first, called local density, is a metric based on Ebbing- 

aus law of human memory cognition [15] to create a sliding win- 

ow based on the forgetting curve from which the local density 

s calculated. The second one is the classical uncertainty sampling 

rounded on the representativeness of the instance and the confi- 

ence that the classifier can make the right decision. This method 

chieves good stability and performance even in the presence of 

radual concept drift while also keeping only one classifier unlike 

he previously seen methods, but it also suffers from a large num- 

er of hyperparameters to tune, and under abrupt concept drift 

cenarios its superiority to other methods is not obvious. In the 

ontext of sampling, Bouguelia et al. [16] proposed a method that 

rovided an adaptive threshold value that is adjusted according 

o the error rate of the model. Although this method was created 

ith the proposed “sufficient weight” sampling method, it is also 

sable in regular Uncertainty Sampling contexts. The disadvantage 

f this method is that it does not consider concept drifts. Castellani 

t al. [17] also propose a method to adapt to concept drifts by us- 

ng a drift detector to estimate when a change occurs. Once a drift 

s detected, the querying budget is temporarily increased, after a 

hile it is then set at a low value to comply with the global bud-

et target. Once some time has passed, the budget value is then 

eturned to its regular value. This method was only tested under 

he occurrence of a single abrupt drift, as such this method is not 

roven to perform well under complex scenarios. 

It can be seen that many propositions that tackle Active Learn- 

ng in the context of Stream Mining either aim for performance 

nd general adaptability or concept drift handling at the cost of 
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omplexity and resource usage. We aim to propose an approach 

hat allows for both good general and concept drift adaptability 

hile also keeping the task relatively simple with a few new tun- 

ng parameters introduced. 

.2. Meta-learning for data stream mining 

Meta-learning has some recent applications to data stream min- 

ng in literature [18] . One of the preliminary proposals was made 

y Rossi et al. [19] , they proposed a framework for algorithm se- 

ection on stream regression tasks using meta-learning. The pro- 

osed approach is based on extracting meta-features from the data 

tream bounded by sliding windows, creating meta-instances that 

ed the meta-model. The meta-model chooses one or more algo- 

ithms to be trained on the current sliding window of data. Differ- 

nt from traditional meta-learning frameworks, the models are al- 

ays retrained instead of keeping static until recalled by the meta- 

earner; it also allows for ensembles to be formed when the meta- 

earner chooses more than one algorithm to build models over the 

urrent data. 

A similar approach was proposed by van Rijn et al. [20] where 

 heterogeneous ensemble (different types of classifiers) was used 

o classify a data stream by choosing the main classifier with 

 weight of 1 and the others with a weight of 0. The main

lassifier is selected through the use of a meta-learning model 

ombined with the proposed Online Performance Estimation. This 

howed a significant improvement over the regular use of meta- 

earning techniques for data stream classifier selection, although it 

s still generally worse than the proposed BLAST method. Anderson 

t al. [21] proposed a framework to deal with concept drifts during 

tream classification. The authors’ proposal is based on maintain- 

ng a repository of classifiers alongside the current classifier be- 

ng used; when drift is detected, a meta-learner will then choose 

 classifier from this repository that it judges as the fittest for the 

ew structure of the data. The framework keeps training the cur- 

ent and maintained classifiers using new instances from right be- 

ore the drift (when the detector signals a warning state); once a 

ew drift is detected, one of the classifiers that were being used 

s stored in the repository, and the low accurate one is discarded 

efore the meta-learner selects a new classifier. 

It is worth mentioning the concern related to drift adaptation 

y all meta-learning over data stream approaches presented. The 

oncept drift phenomenon requires attention, which demands a 

onsiderable change in the trained model and even an algorithm 

hift after a drift. In other words, a drift adaptation is beyond 

odel updating, requiring hyperparameter tuning or the use of 

ther algorithm biases. This observation supports our assumption 

hat by using meta-learning to dynamically tune Active Learning 

lgorithms, we can provide boosted results, even under different 

rift scenarios. 

.3. Meta-learning for active learning 

To the best of our knowledge, the use of meta-learning tech- 

iques paired with Active Learning is not very well explored in 

he literature. Ravi et al. [22] propose the use of meta-learning 

o select samples to be labelled instead of using a query strategy. 

hrough the computation of quality and diversity over the sam- 

les from a pool of unlabelled data, a meta-model is capable of 

electing promising samples to train a classifier. It is worth not- 

ng though that this framework is to be used exclusively under 

atch scenarios. Yu et al. [23] propose a framework that aims to 

etect concept drifts and classify them into their different cate- 

ories. Another contribution is related to the capacity of reduc- 

ng the cold start effects often present in traditional drift detec- 

ion methods. This framework can be split into two main phases: 
3 
 training phase where the meta-model is trained and the detec- 

ion phase, where the meta-model is deployed. During the training 

hase, meta-features from examples of various types of concept 

rift are extracted and used to train the meta-model. At the de- 

ection phase, the meta-model is set to detect concept drift while 

lso adapting itself dynamically by training on relevant examples 

elected by Stream Based Active Learning. 

While the previous work does indeed combine both Active 

earning and Meta-learning, it tackles the problem of drift detec- 

ion and not adaptation. With these works, we can see that meta- 

earning and active learning were not concepts fully explored un- 

er stream mining scenarios together. 

. Proposed approach 

Meta-learning, or learning to learn, regards learning a model 

rom a previous similar task and predicting unseen related tasks. 

n particular, after having properly chosen hyperparameters for ac- 

ive learning tasks on stream data it is possible to induce a model 

o recommend suitable values. Meta-learning for hyperparame- 

er tuning has been successfully applied in different problem do- 

ains such as image processing [24] , supervised machine learning 

25] and coupled with algorithm selection [26] . Current literature 

oes not present a solution for Active Learning based on Streams, 

xploring meta-characteristics related to the behaviour of streams 

r sampling uncertainties. Through the use of Stream-based Ac- 

ive Learning alongside Uncertainty Sampling for label querying, 

ur stream classifier can be trained with a lower labelling cost. 

owever, this introduces a hyperparameter that requires tuning 

or each task: the Z value or uncertainty threshold , which deter- 

ines the amount of uncertainty or entropy necessary for the Ac- 

ive Learning model to deem a sample worthy of labelling. 

Our approach aims to dynamically tune Z by adding a meta- 

odel on top of the Active Learning model. This meta-model, 

rounded in Meta-learning theory, is responsible for selecting an 

ppropriate Z for each stream chunk. Since a stream may change 

ts behaviour through concept drift, the meta-model decides on 

 new Z routinely, through a set trigger, e.g., a change detec- 

or [1,27] . We propose to employ a trigger based on a change de- 

ector that detects possible changing behaviour, indicating a con- 

ept drift. It is worth mentioning that several algorithms such 

s ADWIN [27] , Page-Hinkley [28] and the Early Drift Detection 

ethod (EDDM) [29] can play this role in the proposed framework. 

When a new possible drift point is detected, the data samples 

ounded by the change detector are used to extract meta-features, 

hich feed our meta-model towards outputting a new Z for the 

ncertainty Sampling as Fig. 1 shows. It is worth mentioning that 

ifferent change detectors could perform as the trigger. 

The workflow implementing our meta-learning approach is 

omposed of these five steps: 

1. Meta-Feature Extraction is a step devoted to describing the char- 

acteristics of the event stream based on the lightweight tempo- 

ral time series features [30] . 

2. Meta-Target Definition identifies the best Z value that provides 

a suitable trade-off between accuracy a low label querying 

( Algorithm 1 ). Since this is a data-driven step, it is necessary 

to discover suitable Z values able to cover the search space of 

possibilities under the cited trade-off assumptions. 

3. Meta-Database , through this step, the meta-features and meta- 

targets are combined, forming meta-instances used to train the 

meta-model as described in Algorithm 2 . 

4. Meta-Learner is a step grounded in machine learning to induc- 

ing the meta-model using the obtained meta-instances. Meta- 

Model , is the final model able to output the recommendation of 

a proper Z. 
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Fig. 1. Proposed approach overview. 

Algorithm 1: Best Z Selection. 

Input : R : Classification result of Z candidate containing 

accuracy and query quantity, s : Selection margin for 

top values 

Symbols : AC C (x ) : Accuracy obtained from the Z value x , 

QRY (x ) : Query rate obtained from the Z value x 

Output : R top : The Z value with the lowest query rate within 

the top value selection interval 

1 R acc ← Z with highest accuracy in R ; 

2 T ← { R i ∈ R | AC C (R acc ) − s ≤ AC C (R i ) ≤ AC C (R acc ) } ; 
3 R top ← argmin T (QRY (T )) ; 

4 return R top ; 
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5. Meta-Recommending , when a change is detected, its samples 

(stream chunk) have their features extracted towards predicting 

a new Z by meta-model. The meta-model outcome is inputted 

into the Uncertainty Sampling to work labelling instances to the 

stream classifier, as possible to follow in Algorithm 3 . 
4 
. Experimental study 

The experimental study was designed to answer the following 

esearch questions (RQ): RQ1: Is our Uncertainty Sampling tun- 

ng method ( Z _ MtL ) competitive with standard fixed values? RQ2: 

oes Z _ MtL allow Uncertainty Sampling to support high classifica- 

ion accuracy when faced with concept drifts? RQ3: Does Z _ MtL 

dapt well to concept drifts by limiting queries when necessary? 

Q4: How well does our method compare to the regular super- 

ised learning method (with all labels)? 

To answer our research questions and prove the contributions 

rovided by our approach, we conduct experiments on different 

cenarios: synthetic and real-life streams affected or not by con- 

ept drifts. 

We explored different drift detectors (ADWIN, EDDM and Page- 

inkley) and two classifiers in our experiments. We select the 

aive Bayes (NB) and Very Fast Decision Tree (VFDT) [1] with de- 

ault hyperparameters as our stream classifiers, using the scikit- 

ultiflow [31] implementation. There exist different classifiers, 

uch as SVFDT [2] and ensembles. However, the selection was 

ade considering simple and well-known algorithms to provide 

traightforward insights and possible limitations of our proposal. 

Our experimental setup can be split into five main areas: 

) Meta-Learning for Uncertainty Sampling threshold tuning, ii) 
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Algorithm 2: Meta-Database Construction. 

Input : G : List of Data Stream Generator possibilities, α: drift 

detector choice, β: drift classifier choice, p β : the 

amount of samples used to pre-train the drift 

classifier, γ : window classifier choice, ζ : Z value 

choices, p γ : the amount of samples used to pre-train 

the window classifier, t: target number of 

meta-samples in the Meta-database, q : amount of 

samples in each stream created 

Symbols : ACT : Stream-based Selective Sampling Active 

Learning 

Output : M: Meta-database 

1 M ← empty dataset ; 

2 while | M| < t do 

3 g ← new generator from G ; 

4 X ← new data stream from g; 

5 αx ← new instance of α; 

6 βx ← new instance of β; 

7 Pre-train βx on first p β samples of X; 

8 for X i ∈ { X pβ + 1 , . . . , X q } do 

9 Update αx with error from prediction βx (X i ) ; 

10 if αx change detected then 

11 for ζ j ∈ { ζ1 , . . . , ζn } do // Z choosing mechanism 
12 W ← { X last _ dri f t , . . . , X i } ; 
13 γx ← new instance of γ ; 

14 Pre-train γx on first p γ samples of W ; 

15 R j ← 

Results from ACT 
γx 

Z= ζ j 
on { W pγ + 1 , . . . , W q } ; 

16 end 

17 Z best ← best Z from Algorithm 1 with input R ; 

18 M k ← { features generated from W, Z best } ; 
19 end 

20 end 

21 end 

22 return M; 

Algorithm 3: Meta-Recommending. 

Input : S: data stream, αx : drift detector, βx : classifier, θx : 

meta-learner model, p β : the amount of samples used 

to pre-train the classifier 

Symbols : ACT : Stream-based Selective Sampling Active 

Learning 

1 Z ← 0 . 5 ; 

2 Pre-train βx on first p β samples of S; 

3 for S i ∈ { S p β+1 , . . . , S n } do 

4 E i ← run ACT 
β

Z 
on S i and return error from prediction ; 

5 Update αx with E i ; 

6 if α change detected then // Z requires change 
7 F ← features generated from { S last _ dri f t , . . . , S i } ; 
8 Z ← prediction from θx with input F ; 

9 end 

10 end 
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ncertainty Sampling stream benchmarks, iii) Stream classifica- 

ion with dynamic thresholding, iv) Querying rate using dynamic 

hreshold tuning, and v) Uncertainty Sampling for drift adaptation. 
5 
.1. Meta-learning for uncertainty sampling threshold tuning 

The meta-learning approach proposed in this paper is grounded 

n gathering knowledge from previous suitable Z values from di- 

erse streams. We took advantage of several stream benchmarks 

nd their variations to create a robust and rich source of stream 

ata. We created a meta-database exploring a large collection of 

tream datasets generated on-the-fly by 7 benchmark generators 

HyperplaneGenerator, LEDGeneratorDrift, MIXEDGenerator, Ran- 

omRBFGeneratorDrift, RandomTreeGenerator, SineGenerator, and 

TAGGERGenerator). HyperplaneGenerator, is creates datasets re- 

arding a classification problem around a rotating hyperplane, in- 

roducing drifts by modifying the rotation probability of each ex- 

mple. LEDGeneratorDrift constructs datasets around the problem 

f predicting the number displayed by a seven-segment LED dis- 

lay, introducing drifts randomly. MIXEDGenerator creates datasets 

haracterised by the occurrence of abrupt concept drifts. Drift is in- 

roduced by reversing the classification. RandomRBFGeneratorDrift 

roduces a dataset based on a radial basis function, adding drifts 

y moving the centroids at a certain speed as samples are gener- 

ted. RandomTreeGenerator creates data samples with randomised 

eatures that are then inputted into a random tree that is built in 

he background; the label of each instance is defined by this tree. 

ineGenerator generates datasets containing abrupt concept drift. 

rift is introduced by reversing the classification of points. Based 

n the artificial SINE1 dataset. Finally, the STAGGERGenerator cre- 

tes specific abrupt concept drifts. 

Each generator creates streams with unique behaviours that can 

e adjusted through their hyperparameters. To ensure that we have 

he maximum amount of variation in our datasets, each stream 

as created by randomly selecting a generator and randomly set- 

ing the values of their hyper-parameters. 

Each stream has approximately 30 0,0 0 0 samples, randomly af- 

ected by different drifts ( Gradual, Recurring and Abrupt ) covering 

inary and multi-class classification problems. 

To segment each stream into chunks from which features may 

e extracted, we leveraged the use of a drift detector. Our choice 

f a drift detector for the generation of our meta-database was AD- 

IN [27] with a δ value of 10 e −4 due to the detection performance 

bserved in the preliminary tests. With these configurations, we 

xtracted 2026 windows in total, which translates to 2026 meta- 

nstances in the meta-database. The same configuration of ADWIN 

s used alongside other detectors in the further phases of our ex- 

eriments. 

Since the meta-data from the drift detector is not persisted in 

he meta-database, we reasoned that it would be unnecessary to 

reate a new meta-database for each drift detector and classifier. 

his would also allow us to evaluate the ability of our trained 

eta-model to generalise under different classifiers and drift de- 

ectors. 

Since our drift detectors are all univariate, the value fed to the 

lgorithm was the prediction result from a classifier (in the case 

f our meta-database, a VFDT) making predictions on the top of 

he generated stream and outputting 0 if it predicted wrongly or 1 

f predicted correctly. The detector then detects changes when the 

lassifier changes its behaviour by suddenly making too many mis- 

akes or too many hits. This same principle is applied in the Meta- 

ecommending phase, where the prediction result of the stream ac- 

ive learning model is fed to the detector. 

With the drift points detected by our drift detector, we can seg- 

ent the entire stream into windows delimited by the aforemen- 

ioned points. Each window represents the behaviour of the stream 

t a certain period of time before (and after) going through a drift. 

ith these windows in hand, we are able to aggregate and extract 

eta-features that map their behaviours. 
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Table 1 

Meta-features used in our experiments generated by TSFEL [30] . s is the signal vector, t is the time vector represented by (i/ f s ) N 
i =0 

where f s is the sampling rate 

and N is the size of s , and �s is the discrete derivative of s defined by �s = s i +1 − s i . 

Name Descriptor Complexity Function 

Absolute energy Energy O ( log n ) 
∑ N 

i =0 s 
2 
i 

Total energy Energy O (1) 
∑ N 

i =0 s 
2 
i 

t N −t 0 

Autocorrelation Correlation O (1) 
∑ 

n ∈ Z s (n ) s (n − l) 

Centroid Neighbourhood O (1) 
∑ N 

i =0 t i ×s 2 
i ∑ N 

i =0 s 
2 
i 

Neighbourhood peaks Neighbourhood O (1) Count the peaks found using continuous wavelet transform with n (default = 0) neighbours 

Peak to peak distance Format O (1) | max (s ) − min (s ) | 
Negative turning points Format O (1) 

∑ N−1 
i =0 turn (�s i +1 , �s i ) where turn (x, y ) = 

{
1 , if x < 0 and y > 0 

0 , else 

Positive turning points Format O (1) 
∑ N−1 

i =0 turn (�s i , �s i +1 ) where turn (x, y ) = 

{
1 , if x < 0 and y > 0 

0 , else 

Slope Format O ( log n ) m coefficient from fitted equation s = mt + b

Zero crossing rate Format O (1) 
∑ N 

i =1 1 R < 0 (s i −1 si ) where 1 R < 0 is an indicator function [32] 

Mean absolute diff Distance O (1) mean (| �s | ) 
Mean diff Distance O (1) mean (�s ) 

Median absolute diff Distance O (1) median (| �s | ) 
Median diff Distance O (1) median (�s ) 

Signal distance Distance O (1) 
∑ N−1 

i =0 

√ 

1 + �s 2 
i 

Sum absolute diff Distance O (1) 
∑ N−1 

i =0 | �s i | 
Area under the curve Statistical O ( log n ) 

∑ N 
i =0 (t i − t i −1 ) × s i + s i −1 

2 

Entropy Entropy O ( log n ) − ∑ 

x ∈ s P (x ) log 2 P (x ) 

Table 2 

Performance for each meta-model candidate across 10 rep- 

etitions of 10 cross-validation runs. 

Name 

RMSE 

Mean STD 

CART 0.284 0.020 

MLP (2 Layers: 25x25) 0.780 0.122 

Random Forest 0.241 0.006 

SVM (Linear) 0.305 0.017 

SVM (Polynomial) 0.594 0.085 

s

t

c

w

t

s

e

E

i

c

v

u  

2

t

f  

S

o

w

i

i

t

m

t

t

f

f  

m

o

e

d

s

e

t

w

s

(

s

v

b

w

e

v

S

c

a

e

R

v

p

o

4

m

i

a

R

S

e

a

m

a

Meta-features need to tackle the challenge of representing the 

tream behaviour related to a suitable Z, the threshold of Uncer- 

ainty Sampling. As such, besides the meta-feature extraction pro- 

edure, we also need to define a particular value of Z for each 

indow. Moreover, it is worth noting that the meta-feature extrac- 

ion step should have a low computational cost. Considering each 

tream chunk as a time series, we employed the descriptors of En- 

rgy, Correlation, Neighbourhood, Format, Distance, Statistics and 

ntropy. The complete list of descriptors and features can be found 

n Table 1 . From the descriptors, each extracted meta-feature has 

alculated its mean, minimum, maximum, and standard deviation 

alues. 

In our experiments, the meta-feature extraction was performed 

sing the TSFEL [30] library with a fixed sampling frequency ( f s ) of

0% of window size. This value determines the number of samples 

hat should be sampled for each unit of time, e.g. when set to 20%, 

or every 5 units of time 1 sample will be used, since 20% = 

1 
5 .

ince only a few meta-features require the setting of this value (in 

ur case, only 3), our f s was chosen empirically. 

The TSFEL library essentially aggregates every sample in our 

indow and calculates the meta-features for each feature present 

n the original stream. Since this would generate a discrepancy 

n the number of meta-features across different streams, we fur- 

her aggregate these ”meta-features per feature” into summarised 

eta-features. They represent the minimum value found in all fea- 

ures for that meta-feature, the maximum value, the average, and 

he variance between the values. This reduces our meta-database 

rom Nmeta-features ∗Mfeatures to Nmeta-features ∗4 . 

Most of our meta-features are calculated in O (1) time with a 

ew taking O ( log n ) time. We also need to add the cost of sum-

arising our meta-features, which is comprised of O (n ) . Even with 
6 
ur summarised meta-features, our costs remain relatively low, 

nsuring that our framework is capable of readily responding to 

rifts. 

By performing all these steps, we are then able to convert a 

tream window W into a single meta-database sample M k . All gen- 

rated samples are then combined into a single meta-database M

hat is then used to train our meta-model. 

Analysing the feature importance provided by Random Forest, 

e observed the Energy features as the most important with a 

core of 0.055, followed by Correlation (0.016) and Neighbourhood 

0.010). Entropy meta-features have the lowest importance with a 

core of 0.001. 

The meta-model needs to predict, as a regression task, the Z

alue that provides the maximum accuracy with the lowest possi- 

le number of queries. The values of Z that match this requirement 

ere discovered using the procedure found in Algorithm 1 . In our 

xperiments, we set the selection margin s to 0.02. The higher this 

alue, the more the algorithm will favour query rate over accuracy. 

We evaluated different machine learning regressors such as 

upport Vector Machine (linear and polynomial kernel), CART De- 

ision Trees, Multi-Layer Perceptron (with several architectures), 

nd Random Forest. The last one presented the smaller predictive 

rror, the results are summarised in Table 2 . 

Thus, using a Random Forest as a regressor, we obtained a 

MSE of 0.241 ( ±0 . 006 ) after 10 repetitions of 10-fold cross- 

alidation strategy. Our meta-model θx was built without a tuning 

rocedure since after testing there are no relevant improvements 

ver the default hyperparameters. 

.2. Uncertainty sampling stream benchmarks 

For our experiments, we used 34 benchmark datasets from 

ultiple sources. They are listed in Table 3 , the number column 

s also used with reference to them in the other tables. They 

re essentially split into 8 groups: CTU-13 [33] , Electricity [34] , 

andomRBF [35] , LED24 [36] , Hyperplane [37] , Poker Hand [38] , 

EA [39] and Insects [40] . The selected datasets represent differ- 

nt problem complexities, number of instances, features, classes, 

nd drift scenarios. Each of these categories, except out-of-control, 

akes up two datasets, one with a balanced class distribution and 

nother imbalanced [40] . 
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Table 3 

Benchmark stream datasets used in our experiments. 

Number Name Instances Features Classes Drifts Type 

1 CTU-13 - Scenario 1 [33] 2,824,636 11 2 38 Real 

2 CTU-13 - Scenario 2 [33] 1,808,122 11 2 35 Real 

3 CTU-13 - Scenario 3 [33] 4,710,638 11 2 5 Real 

4 CTU-13 - Scenario 4 [33] 1,121,076 11 2 3 Real 

5 CTU-13 - Scenario 5 [33] 129,832 11 2 1 Real 

6 CTU-13 - Scenario 6 [33] 558,919 11 2 9 Real 

7 CTU-13 - Scenario 7 [33] 114,077 11 2 3 Real 

8 CTU-13 - Scenario 8 [33] 2,954,230 11 2 3 Real 

9 CTU-13 - Scenario 9 [33] 2,087,508 11 2 43 Real 

10 CTU-13 - Scenario 10 [33] 1,309,791 11 2 15 Real 

11 CTU-13 - Scenario 11 [33] 107,251 11 2 19 Real 

12 CTU-13 - Scenario 12 [33] 325,471 11 2 29 Real 

13 CTU-13 - Scenario 13 [33] 1,925,149 11 2 39 Real 

14 Electricity [34] 45,312 7 2 27 Real 

15 RandomRBF 250k samples, 50 features [35] 250,000 50 2 9 Synthetic 

16 RandomRBF 500k samples, 10 features [35] 500,000 10 2 20 Synthetic 

17 RandomRBF 1M samples, 10 features [35] 1,000,000 10 2 25 Synthetic 

18 LED24 1M samples, 0% noise [35] 1,000,000 24 10 10 Synthetic 

19 LED24 1M samples, 10% noise [35] 1,000,000 24 10 1 Synthetic 

20 LED24 1M samples, 20% noise [35] 1,000,000 24 10 0 Synthetic 

21 Hyperplane [37] 250,000 10 2 4 Synthetic 

22 Poker Hand [38] 829,201 10 10 153 Synthetic 

23 SEA [39] 60,000 3 2 4 Synthetic 

24 Insects - Abrupt Imbalanced [40] 452,044 33 6 73 Real 

25 Insects - Incremental Imbalanced [40] 143,323 33 6 43 Real 

26 Insects - Incremental-gradual Imbalanced [40] 355,275 33 6 61 Real 

27 Insects - Incremental-reoccurring Imbalanced [40] 452,044 33 6 91 Real 

28 Insects - Incremental-abrupt Imbalanced [40] 452,044 33 6 84 Real 

29 Insects - Abrupt Balanced [40] 57,018 33 6 12 Real 

30 Insects - Incremental Balanced [40] 24,150 33 6 14 Real 

31 Insects - Incremental-gradual Balanced [40] 52,848 33 6 33 Real 

32 Insects - Incremental-reoccurring Balanced [40] 79,986 33 6 47 Real 

33 Insects - Incremental-abrupt Balanced [40] 79,986 33 6 56 Real 

34 Insects - Out-of-control [40] 905,145 33 24 21 Real 

Fig. 2. Accuracy between different combinations of algorithms (Naive Bayes and VFDT) and detectors (ADWIN, Page Hinkley and EDDM). Each bar graph represents a subset 

of stream datasets. 
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.3. Performance with different detectors and classifiers 

The first experiment was conducted to support the investiga- 

ion of possible bias or effects for the use of a particular change 

etector or classifier. We explored six different combinations of 

B and VFDT classifiers to three change detectors (ADWIN, EDDM 

nd Page Hinkley) observing their average accuracy and percentage 

f queries requested during the classification of the whole stream 

atasets. 

In Fig. 2 is possible to see the accuracy obtained from all 

atasets. This figure has three regions highlighted (scenarios 1–

3, scenarios 14–23, and scenarios 24–34) to provide different per- 

pectives of analysis. 
7 
Regarding the first region, CTU datasets (scenarios from 1 to 

3), VFDT-based combinations were able to provide superior re- 

ults for scenarios 1, 2, 3, 4, 6, 7, 8, 12 and 13. In Scenarios 5

nd 11 a very similar performance of VDFT and NB was observed. 

owever, in scenarios 9 and 10 it was observed superior results 

rom the NB classifier. It is important to note that the CTU-based 

atasets present a high predictive performance superior to 98% . 

The remaining scenarios (from 14 to 34) are dataset streams 

ith tricky predictions, ranging from 53% to 100% when using 

ll labels to classify new samples. Again, VFDT presented supe- 

ior accuracy in the major part of the scenarios, except dataset 

5 (RandomRBF 250k sample) and 21 (Hyperplane). In particular, 

hen observing different change detectors regardless of the clas- 
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Fig. 3. Percentage of queries between different combinations of algorithms (Naive Bayes and VFDT) and detectors (ADWIN, Page Hinkley and EDDM). Each bar graph repre- 

sents a subset of stream datasets. 100% of queries regards the usage of requesting labels for all stream sample. 

Table 4 

Accuracy percentage of all Z values across all 34 datasets and their standard deviation. The best performance per dataset is marked 

in bold and the standard deviation is shown in parenthesis (also in percentages). The underlined values in the All Labels column 

indicate that it lost accuracy to Active Learning techniques. 

Datasets 

Fixed Z

Z _ MtL 

All 

Labels 
0.05 0.1 0.2 0.5 0.7 

1 99.30 (0.62) 99.30 (0.62) 99.30 (0.62) 99.30 (0.62) 99.30 (0.62) 99.30 (0.62) 99.80 (0.81) 

2 98.90 (0.60) 98.90 (0.60) 98.90 (0.60) 98.90 (0.60) 98.90 (0.60) 98.90 (0.60) 99.60 (0.71) 

3 99.80 (0.19) 99.80 (0.19) 99.80 (0.19) 99.80 (0.19) 99.80 (0.19) 99.80 (0.19) 100.00 (0.04) 

4 99.90 (0.07) 99.90 (0.07) 99.90 (0.07) 99.90 (0.07) 99.90 (0.07) 99.90 (0.07) 100.00 (0.07) 

5 99.70 (0.28) 99.70 (0.28) 99.70 (0.28) 99.70 (0.28) 99.70 (0.28) 99.70 (0.28) 99.90 (0.27) 

6 99.30 (0.22) 99.30 (0.22) 99.30 (0.21) 99.30 (0.21) 99.30 (0.21) 99.30 (0.21) 99.90 (0.27) 

7 99.90 (0.04) 99.90 (0.04) 99.90 (0.04) 99.90 (0.04) 99.90 (0.04) 99.90 (0.04) 99.90 (0.25) 

8 99.80 (0.03) 99.80 (0.03) 99.80 (0.03) 99.80 (0.03) 99.80 (0.03) 99.80 (0.03) 100.00 (0.08) 

9 96.90 (3.40) 96.90 (3.40) 96.90 (3.40) 96.90 (3.40) 96.90 (3.40) 96.90 (3.40) 98.50 (1.74) 

10 94.80 (4.40) 94.80 (4.40) 94.80 (4.40) 94.80 (4.40) 94.80 (4.40) 94.80 (4.40) 100.00 (0.18) 

11 98.90 (2.52) 98.90 (2.52) 98.90 (2.52) 98.90 (2.52) 98.90 (2.52) 98.90 (2.52) 99.40 (2.97) 

12 99.20 (0.39) 99.20 (0.38) 99.20 (0.38) 99.20 (0.38) 99.20 (0.38) 99.20 (0.38) 99.40 (1.52) 

13 97.60 (0.45) 97.60 (0.45) 97.60 (0.45) 97.60 (0.45) 97.60 (0.45) 97.60 (0.45) 99.50 (0.85) 

14 79.90 (2.10) 79.40 (2.84) 78.80 (2.84) 77.70 (3.37) 77.70 (3.37) 78.00 (3.09) 78.70 (7.61) 

15 97.40 (1.89) 95.30 (2.19) 97.70 (1.69) 95.70 (1.95) 74.30 (8.66) 97.10 (1.25) 98.40 (1.60) 

16 87.10 (4.35) 86.60 (4.31) 86.90 (4.11) 86.30 (4.09) 84.30 (3.02) 85.70 (4.41) 89.90 (3.61) 

17 89.10 (3.66) 88.60 (3.66) 88.80 (3.46) 87.90 (3.31) 85.70 (2.57) 87.40 (3.56) 91.10 (2.96) 

18 99.80 (0.80) 99.80 (0.80) 99.80 (0.80) 99.80 (0.80) 99.80 (0.80) 99.80 (0.80) 100.00 (0.34) 

19 72.90 (0.62) 73.10 (0.62) 72.90 (0.65) 72.50 (0.70) 72.80 (0.63) 72.60 (0.68) 73.70 (2.03) 

20 51.10 (0.36) 51.10 (0.36) 51.10 (0.35) 51.10 (0.36) 51.00 (0.36) 51.00 (0.36) 51.10 (2.33) 

21 87.70 (0.81) 87.50 (0.77) 86.50 (0.71) 86.90 (0.80) 87.20 (0.80) 86.80 (0.71) 89.20 (1.69) 

22 42.00 (3.98) 43.20 (6.12) 50.50 (2.04) 45.80 (7.32) 33.70 (6.12) 42.80 (6.87) 74.10 (11.62) 

23 84.80 (1.26) 84.80 (1.26) 84.80 (1.36) 84.60 (1.50) 83.20 (1.69) 84.60 (1.51) 84.70 (2.65) 

24 63.00 (3.56) 63.30 (3.52) 62.30 (3.54) 63.20 (2.65) 63.30 (4.39) 62.10 (3.01) 67.10 (8.89) 

25 64.90 (2.58) 65.90 (2.45) 64.90 (2.70) 62.80 (3.31) 65.20 (1.90) 64.70 (3.74) 57.70 (12.18) 

26 61.30 (2.48) 60.70 (2.05) 60.90 (1.62) 57.50 (1.46) 57.70 (1.97) 60.60 (2.39) 66.20 (11.81) 

27 62.80 (2.71) 61.80 (2.21) 64.00 (2.48) 60.20 (2.57) 58.80 (3.89) 61.60 (2.54) 63.00 (10.28) 

28 60.10 (1.29) 62.30 (2.12) 61.40 (1.92) 58.90 (1.87) 58.10 (2.55) 60.20 (2.96) 64.60 (11.42) 

29 48.40 (2.86) 49.30 (3.41) 49.20 (3.16) 49.00 (3.02) 48.20 (2.76) 49.00 (2.89) 52.20 (6.59) 

30 69.60 (3.54) 69.50 (3.80) 71.50 (4.16) 69.60 (4.49) 72.10 (5.29) 75.10 (5.51) 60.90 (15.46) 

31 57.40 (3.12) 57.90 (2.62) 57.80 (2.93) 57.50 (2.81) 57.70 (2.81) 58.10 (2.89) 53.80 (15.68) 

32 55.00 (1.80) 53.90 (1.79) 55.00 (1.98) 53.40 (2.46) 53.10 (1.80) 56.30 (2.45) 53.30 (20.07) 

33 57.80 (2.45) 58.70 (1.64) 57.30 (2.41) 58.10 (3.28) 50.60 (5.47) 59.60 (2.13) 57.70 (15.86) 

34 50.40 (2.75) 50.40 (2.45) 49.70 (2.95) 49.40 (2.05) 49.00 (2.32) 49.50 (2.98) 56.30 (4.76) 

Total Avg. 89.65 (0.17) 89.67 (0.17) 89.88 (0.17) 89.52 (0.17) 88.84 (0.19) 89.51 (0.17) 90.12 (0.16) 
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ifier, there are particular streams where EDDM outperformed AD- 

IN and Page Hinkley, (i.e., datasets 16, 17, 22, and 30). ADWIN 

nd Page Hinkley presented a very similar performance, except for 

ataset 22 (Poker Hand). It is important to note that during the ex- 

eriments using CTU datasets, the impact in terms of accuracy was 

bserved in classifier selection. On the contrary, in the INSECTS 

atasets, one noted the influence of both classifier and change de- 

ector effect on the accuracy. 
8 
Fig. 3 reveals a slight modification of query percentage for dif- 

erent detectors, most of them presented in the INSECTS datasets. 

onversely, in the CTU streams, just scenarios 8 and 13 presented 

ariations, particularly when classifying the samples using Naive 

ayes. Regarding classifiers, it is not possible to observe a classi- 

er as more economic than others in terms of querying. On one 

and, VFDT queried less for RandomRBF-based streams. On the 

ther hand Naive Bayes did the same for the Insects streams. 
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Fig. 4. Nemenyi post hoc test (significance of α = 0 . 05 and critical distance (CD) of 

1.29) considering the accuracy obtained using static thresholds Z (0.05, 0.1, 0.2, 0.5 

and 0.7) and our proposal ( Z _ MtL ). 

Fig. 5. Query demand all datasets for static thresholds (0.05, 0.1, 0.2, 0.5, 0.7) and 

our proposal ( Z _ MtL ). 

Table 5 

Relative query number (in percentage) of all Z values across all 34 datasets. The 

most reduced number of queries was marked in bold. 

Datasets 

Fixed Z

Z _ MtL 
0.05 0.1 0.2 0.5 0.7 

1 91.20 91.20 91.20 91.20 91.20 91.20 

2 90.50 90.50 90.50 90.50 90.50 90.50 

3 80.30 80.30 80.30 80.30 80.30 80.30 

4 70.00 70.00 70.00 70.00 70.00 70.00 

5 91.30 91.30 91.30 91.30 91.30 91.30 

6 92.60 90.40 89.90 89.90 89.90 89.90 

7 91.00 91.00 91.00 91.00 91.00 91.00 

8 72.50 72.50 72.50 72.50 72.50 72.50 

9 83.60 83.60 83.60 83.60 83.60 83.60 

10 80.00 80.00 80.00 80.00 80.00 80.00 

11 84.60 84.60 84.60 84.60 84.60 84.60 

12 70.00 69.70 69.70 69.70 69.70 69.70 

13 81.50 81.50 81.50 81.50 81.50 81.50 

14 75.80 49.00 34.60 1.70 0.50 21.30 

15 7.00 4.90 5.80 3.90 3.30 4.50 

16 57.00 52.20 41.20 24.40 16.80 20.40 

17 50.90 47.50 35.10 18.20 12.90 15.30 

18 100.00 100.00 100.00 100.00 100.00 100.00 

19 91.50 94.40 89.80 60.90 59.10 58.20 

20 99.90 99.90 99.90 98.70 98.40 99.40 

21 91.60 88.50 77.80 56.50 46.10 54.00 

22 6.50 5.80 14.00 3.70 5.50 2.20 

23 95.40 93.20 84.80 38.40 28.20 36.00 

24 80.10 78.80 79.30 65.40 53.80 45.90 

25 56.10 52.10 47.70 30.30 31.20 19.90 

26 70.90 66.10 67.80 41.40 28.80 38.40 

27 82.00 70.50 76.10 65.40 47.70 56.60 

28 80.30 77.50 79.40 51.20 49.80 48.90 

29 56.40 51.40 49.10 38.10 30.90 36.60 

30 29.90 25.00 21.70 15.50 11.30 11.90 

31 44.20 42.50 35.40 27.40 20.80 25.30 

32 48.70 44.10 34.10 24.10 17.70 20.30 

33 51.70 45.20 36.50 27.00 17.00 16.60 

34 85.60 77.90 79.00 70.30 49.10 67.60 

Total Avg. 78.68 77.80 77.22 73.06 71.24 72.08 
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In general, we can affirm that classifiers influence more the pre- 

ictive performance and the number of queries than the change 

etectors. VFDT was superior in terms of accuracy, but it is not 

ossible to affirm the best classifier in terms of querying reduction. 

here are particular improvements provided by different classifiers 

or specific datastream scenarios. Regarding change detectors, AD- 

IN and Page-Hinkley behave similarly and EDDM provided more 

ccurate results in some specific cases. 
9 
.4. Stream classification with dynamic thresholding 

This experiment is focused on comparing the overall perfor- 

ance of five static Z values (0.05, 0.1, 0.2, 0.5, and 0.7) on 

4 stream datasets to address RQ1 using ADWIN and VFDT as 

hange detector and classifier. This combination was selected be- 

ause it balances the trade-off between predictive performance 

nd query reduction, providing good insights for future discus- 

ions ( Section 4.4, Section 4.5 , and Section 4.6 ). Table 4 collects

he results of the average accuracy throughout the stream for all 

atasets with the most accurate values of Z marked in bold. It is 

ossible to observe several similar high accuracy results across all 

tatic configurations and the dynamic one ( Z _ MtL ), particularly on 

3 datasets (all from the CTU-13 group). This shows that the differ- 

nt uncertainty sampling setups could not lead to improvements in 

hese datasets, since all experimented Z deliver similar predictive 

erformance. 

On the one hand, static Z values of 0.05, 0.1, and 0.2 led to 

ighly accurate results. On the other hand, 0.7 and 0.5 delivered 

ower accuracy. 

It is important to note that the stream datasets affected by con- 

ept drift (datasets from 24 to 33) revealed different rankings of 

he best accurate Z value. Instead of the most restrictive ones tak- 

ng over the top rankings, we observed the presence of medium 

nd high Z, e.g., 0.2 and 0.7, achieving better performance than 

.05 and 0.1. Furthermore, there are particular real and synthetic 

atasets in which Z _ MtL obtained the best performance (datasets 

0, 31, 32, and 33), even increasing the accuracy of using all labels. 

e marked with underline in Table 4 those streams that the un- 

ertainty sampling strategy improves the accuracy when compared 

o all available labels. A great part of them underwent the concept 

rift effect. 

Table 4 also provides the average accuracy across each Z, and 

ere we can observe that, while all values are very similar, less re- 

trictive values of Z, such as 0.05, 0.1, and 0.2 obtained the highest 

ccuracy values with (89.65%), (89.67%) and (89.88%) respectively, 

osing only to the non usage of Active Learning. As discussed be- 

ore, the more restrictive Z, the more reduced the accuracy is, with 

 Z of 0.7 leading to the lowest average performance (88.84%), also 

nteresting to note that this Z achieved the highest standard de- 

iation, showing that it was the least stable among the other val- 

es. We note that Z _ MtL achieved a similar median value (88.42%) 

o the usage of all labels when using a VFDT. This achievement 

rought some insights related to RQ2, since the presence of con- 

ept drift can deteriorate the incremental tree performance when 

ed by all labels. This topic is discussed in Section 4.6 . 

Focusing on finding a superior method to setup Z, we evalu- 

ted the results based on statistical analysis based on the non- 

arametric Friedman test to determine any significant differences 

mong the fixed Z values and the dynamic recommended ones 

 Z _ MtL ) using 34 datasets. We used the post hoc Nemenyi test to

nfer which differences are statistically significant. As Fig. 4 shows, 

ifferences between populations are significant. Particularly, we 

ssume that there are no significant differences within Z of 0.1, 

.05, 0.2, 0.5 and Z _ MtL ; Z of 0.2, 0.5 and Z _ MtL . All other differ-

nces are significant. In other words, Z _ MtL achieved results sta- 

istically equal to the usage of the most reduced Z values, those 

hat query more frequently for labels and provide high-accuracy 

alues. 

It is worth mentioning that low Z values tend to obtain high 

redictive performance since the demand for more labels. Thus, 

he number of queries required for each Z value is a complemen- 

ary analysis to address the trade-off between performance and 

uerying expected by using Active Learning. 
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Fig. 6. Nemenyi post hoc test (significance of α = 0 . 05 and critical distance (CD) of 

1.29) considering the number of queries requested using static thresholds (0.05, 0.1, 

0.2, 0.5 and 0.7) and our proposal ( Z _ MtL ). 
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.5. Querying rate using dynamic threshold tuning 

Fig. 5 shows the percentage of queries from the evaluated 

atasets across the static thresholds and Z _ MtL . Low Z values (0.05, 

.1, and 0.2) required an average of 70.15% of instance labels. On 

he other hand, the more restrictive Z (0.5 and 0.7) and the dy- 

amic one ( Z _ MtL ) restricted the demand for labels to 54.78% of

he total samples. Similarly to the accuracy evaluation, it was pos- 

ible to observe several similar querying numbers when classify- 

ng CTU-13 streams (datasets 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13), as in

able 5 is shown. Moreover, the accuracy was similar to the usage 

f all labels, but training the VFDT with fewer labels, e.g., UCT13 - 

cenario 12, achieved 99 . 20% of accuracy querying 69 . 70% of labels.

The datasets 15 (RandomRBF 250k) and 22 (Poker Hand) had a 

umber of queries inferior to 10% of the total available instances, 
Fig. 7. Accuracy, Queries, Relative Accuracy and dynamically adjusted Z values fro

10 
ithout compromising the accuracy when compared to the usage 

f all labels. In particular, all labels were required when process- 

ng Dataset 18 (LED24 1M samples with 0% noise). Z _ MtL recom- 

ended values were able to reach the smaller number of queries 

n 6 datasets (19, 22, 24, 25, 28, and 33), most parts of them were

ffected by concept drift. 

We evaluate the performance of the reduction in terms of 

ueries requested based on a statistical analysis grounded in the 

on-parametric Friedman test to determine any significant differ- 

nces between the fixed Z values and the dynamic recommended 

nes ( Z _ MtL ) using 34 datasets. Again, we took advantage of the 

ost hoc Nemenyi test to infer which differences are statistically 

ignificant. Fig. 6 shows the Nemenyi post hoc test on the number 

f queries, where we can observe that differences between pop- 

lations are significant. Particularly, we assume that there are no 

ignificant differences within Z of 0.7 and Z _ MtL ; Z of 0.7 and 

.5; Z of 0.5 and 0.2; Z of 0.2, 0.1 and 0.05. All other differences 

re significant. In other words, Z _ MtL achieved results statistically 

qual to the usage of the highest Z value, the most restricted when 

uerying labels. 

It is important to emphasise that the dynamic recommended 

 ( Z _ MtL ) obtained is statistically similar to the less restrictive Zs

0.5, 0.1 and 0.2) in terms of accuracy. Moreover, Z _ MtL values 

ere statistically similar to the most restrictive Zs (0.7 and 0.5) 

hen reducing the query demand. In other words, our proposed 
m experiments using Insects - Incremental Imbalanced stream (Dataset 25). 
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Fig. 8. Accuracy, Queries, Relative Accuracy and dynamically adjusted Z values from experiments using Electricity stream (Dataset 14). 
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pproach provides the best trade-off between accuracy and query 

eduction by dynamic tuning Z values using lightweight meta- 

eatures. 

Additionally, we observed the accuracies of datasets 30, 31, 32, 

nd 33 ( Table 4 ) were boosted by the use of uncertainty sam-

ling compared to the use of all available labels to incremen- 

ally induce VFDT. Precisely, Z _ MtL improved from an accuracy 

rom 60 . 90%(±15%) to 75 . 10%(±6%) in Dataset 30 (Insects - Incre-

ental Balanced); from 53 . 80%(±15%) to 58 . 10%(±6%) in Dataset 

0 (Insects - Incremental-gradual Balanced); from 53 . 30%(±15%) 

o 56 . 30%(±6%) in Dataset 30 (Insects - Incremental-reoccurring 

alanced); from 57 . 70%(±15%) to 59 . 60%(±6%) in Dataset 30 (In- 

ects - Incremental-abrupt Balanced). All of these data sets shared 

he presence of concept drift in a balanced classification problem. 

utting some explanation to this finding and answering RQ3, we 

bserved the effect of concept drift over the accuracy and number 

f queries, as discussed in Section 4.6 

.6. Uncertainty sampling and drift adaptation 

Our experiments brought some insights into the concept drift 

daptation using Active Learning on streams. Remarkably, the Un- 

ertainty Sampling reveals the potential of selecting the most in- 

ormative features when adapting the classifier to a drift. Regard- 

ng RQ3, Fig. 7 shows the results for Dataset 25 (Insects - Incre- 

ental Imbalanced), where we can see how Z tends to change in 
11 
ccordance with concept drifts when running on Z _ MtL usually by 

ecreasing it and allowing the learner to query more instances and 

dapt to changes faster while increasing it in stagnated periods to 

void unnecessary querying, this helps us answer RQ3 since we 

an see that Z _ MtL will control the querying rate in drift situa- 

ions. 

Using the Electricity stream from different perspectives as 

ig. 8 shows, we can observe the drift starting points and the 

articular changes in terms of accuracy, the number of queries, 

nd uncertainty sampling Z values. Observing the accuracy, it is 

vident that for all labels this metric changes considerably after 

 drift point. On the other hand, using uncertainty sampling, a 

mooth and regular accuracy was obtained. Regarding the number 

f queries, a strict relation was not observed between drift points 

nd a rough modification. We can affirm that Z equals 0.05 that 

rows linearly throughout the stream. This behaviour is similar to 

.1 and 0.2, but with a small gradient. Z _ MtL started to present this 

ehaviour at 28,0 0 0, but was not devoted to a drift point. Relative 

ccuracy was barely affected. Regarding the dynamically adjusted 

(bottom chart in Fig. 8 ), we can observe variations from 0.43 to 

.71, emphasising the demand for tuning the threshold of uncer- 

ainty sampling. 

Observing Z _ MtL results, which overcame the usage of all la- 

els, we selected Dataset 31 (Insects - Incremental and Grad- 

al) to explore some particular behaviours that are shown in 
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Fig. 9. Accuracy, Queries, Relative Accuracy and dynamically adjusted Z values from experiments using Insects - Incremental and Gradual Balanced stream (Dataset 31). 
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ig. 9 . Queries and Z values followed similar results. Slightly linear 

ueries have their slope related to Z, achieving higher inclination 

ith less restrictive values. This data stream has a gradual con- 

ept drift starting at around 14,0 0 0 which reduced the accuracy of 

FDT when using all labels. When using Active Learning for train- 

ng, the VFDT was hardly affected by the gradual drift, presenting a 

mooth reduction in accuracy. It is important to mention that after 

he concept drift, the relative accuracy exceeds 6.00, with Z _ MtL 

elivering the most accurate result. VFDT was able to recover the 

erformance, i.e., adjust to the drift, approximately at the point 

8,0 0 0. This window from 14,0 0 0 to 18,0 0 0 was appropriately han-

led by uncertainty sampling, allowing the VFDT to achieve supe- 

ior results compared to the usage of all labels. 

The Dataset 26 (Insects - Incremental and Gradual Imbalanced) 

hown in Fig. 10 further reinforces our observations, in this dataset, 

otably, the VFDT accuracy suffers dramatically across different 

oints of drift when using all labels while Z _ MtL remains relatively 

table even if its accuracy suffers marginal losses, while also main- 

aining a very low query rate compared to other Active Learning 

echniques, never surpassing the 20% mark. These achievements 

elp to answer RQ4 since scenarios over concept drift can take 

dvantage of frequent and accurate updating of Z values. We can 

onfirm that by selecting important features and avoiding irrele- 

ant ones, it is possible to improve the predictive performance. 

This robust capacity to adjust to the concept drift by outper- 

orming the usage of all available labels is highly suitable for vari- 

v

12 
us concept drift scenarios, leading to increasing VFDT drift adapt- 

bility. This improvement was observed in the great part of the ex- 

eriments with datasets affected by concept drift (datasets 25, 26, 

0, 31, 32, 33, and 34), half of them with dynamic tuning ( Z _ MtL )

s the most predictive approach. 

The main advantages of the proposed method are: i) Online se- 

ection of suitable Z values based on lightweight features. ii) Com- 

etitive results using Z _ MtL , which can overcome the usage of all 

abels with fewer samples. iii) Capacity to provide concept drift 

daptation for simple algorithms such as VDFT. Finally, we consider 

hat all research questions were addressed positively, which indi- 

ates that our proposal is a promising Stream-based Active Learn- 

ng taking advantage of Uncertainty Sampling for label querying. 

ur proposed approach has some limitations when dealing with 

ignals without drifts, since we introduce additional active learn- 

ng effort with no meaning. Furthermore, by using classifiers that 

ddress concept drift, the advantages of our proposal could be re- 

uced, as the active learning approach might not be effective. 

. Conclusion 

The proposed approach aims to reduce the overhead and costs 

f choosing the best Uncertainty threshold ( Z), automatically, 

hrough Meta-Learning. Also, allowing changes and automatic tun- 

ng through the process of processing the stream. Our tests re- 

ealed a significant improvement in the use of Uncertainty Sam- 
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Fig. 10. Accuracy, Queries, Relative Accuracy and dynamically adjusted Z values from experiments using Insects - Incremental and Gradual Imbalanced stream (Dataset 26). 
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ling when selecting samples for stream classification. By using 

ur solution to dynamically select Z, it was possible to improve 

he accuracy by considerably reducing the demand for labels, while 

aintaining a steady adaptation to the introduced concept drifts. 

n particular, due to our framework adapting well to the newly 

ntroduced concept drifts, we managed to obtain superior perfor- 

ance when compared to regular supervised classification by us- 

ng all labels. The results obtained encourage us to pursue fur- 

her work in investigating the dynamic tuning of alternative Ac- 

ive Learning approaches, Ensemble and Adaptive Classifiers and 

he use of budgeting for further querying reduction. 
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