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Abstract 

The increase in global population coupled with reduced crop yield due to climate change have 

arisen a serious concern in terms of food security. In order to cope with the increasing pressure 

on the current system of food production and supply, innovative and sustainable approaches are 

needed. We need to shift our diet towards plant-based substitutes of proteins. We call this shift 

the protein transition. 

Switching to plant-based protein requires increasing the area and productivity of protein-rich 

seeds. The economic competitiveness of feed crops (cereals and oil rich crops) is very strong and 

largely explains farmers' lack of interest in protein-rich crops.  

From an agricultural perspective, however, the adaptability of these minor crops in different 

pedo-climatic zones must be verified.  

In this thesis we report about the experiments carried out with the aim to test optimization 

practices for protein crops production in organic agriculture in North of Italy (Friuli-Venezia 

Giulia region). We investigated the performance of crops under organic agriculture practices, 

which are recognized as a key strategy in the Common Agricultural Policy framework of the 

European Union (EU). This policy aims to ensure a fair standard of living for farmers, stabilize 

agricultural markets, provide a secure and affordable food supply for consumers, and promote 

sustainable agriculture. Within this framework, organic farming is acknowledged as a main 

factor in providing environmental sustainability, biodiversity conservation, and meeting 

consumer demand for organic products. 

The studied species were: chickpea, faba bean and lentil, which have been poorly cultivated in 

this region.  

Since the lack of knowledge about these crops in this region, they were studied to assess the 

varieties' adaptability to water stress, heat and cold stress, low soil fertility, also evaluating seed 
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and protein yield. This was conducted through multiple experiments which are collected in the 5 

chapters of this thesis.  

In the first chapter we present a study aimed to evaluate performance of various cvs of chickpea, 

faba bean and lentil, grown in Udine during summer 2021. By the results of this experiment, we 

decided to focus on the two more promising species, chickpea and lentil.  

In the second chapter, we present a study conducted during the growing season 20222, where we 

investigated the adaptability to water and heat stress of chickpea and lentil. Tolerance of these 

crops was assessed by treating these crops with an increasing gradient of irrigation performed 

during the critical phase of grain filling. During both the growing seasons 2021 and 2022 we 

paid particular interest in assessing the performance of crops with multispectral data acquired 

with remote sensing techniques by unmanned aerial system (UAS). 

In the third chapter, have deepened the investigation of remote sensing of these crops, which has 

been poorly studied in chickpea and lentil Hence, we present an investigation aimed to assess the 

most used agronomical parameters and yield by remote, with remotely sensed vegetation indices, 

calculated from data collected by UAS. In particular, we tested an ensemble of indices as 

predictors of crop biomass, leaf area index, crop status and yield.  

One of the main constraints in organic agriculture consists in managing weed competition. The 

Sustainable Use of Pesticides Directive of the European Union promotes the adoption of 

Integrated Pest Management approaches as a key strategy to achieve sustainable pesticide use. 

For this reason, in the fourth chapter we present a study where we tested chickpea and lentil 

intercropped with buckwheat to verify the allelopathy and competition functions with the main 

objective of managing weed competition. 

As a side project, in the fifth chapter, we present a methodological investigation aimed to 

perform an unsupervised classification model to test the possibility of automatically classifying 

chickpea, lentil, faba bean and quinoa, by using a combination of spectral and photogrammetric 

data acquired by remote with UAS. 
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Faba bean resulted being the species with low and unstable yield, probably due to biotic stress. 

Chickpea seems to be a suitable crop for this region with high grain and protein yields also under 

drought stress.  

Lentil performance was variable as in the first trials it did not produce grains, while on the 

second experimental year it got high production.  

Irrigation influenced crop phenology of chickpea by extending the duration of the flowering and 

grain setting phases, with some negative effects in terms of seed quality.  

The use of remote sensing data was effective in monitoring crops development. Significant 

correlations were assessed between vegetation indices and field-measured parameters. The use of 

time-integrated vegetation indices was particularly effective in correlating biomass and yield. 

Intercropping with buckwheat did not provide significant evidence about being an effective 

strategy to mitigate weed competition; however, the use of buckwheat water extracts had a 

significant effect on seeds germination. Random Forest modelling with remote data acquired by 

UAS resulted being a useful tool, able to classify with high accuracies the investigated protein 

crops at the species level. This result is of particular interest in automated classification of crops 

using commonly used precision agriculture data.   
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Riassunto  

L'aumento della popolazione mondiale associato alla riduzione del rendimento delle colture a 

causa dei cambiamenti climatici ha suscitato una forte preoccupazione in termini di sicurezza 

alimentare. Per affrontare la crescente pressione sul sistema attuale di alimentazione, sono 

necessari approcci innovativi e sostenibili. È necessario un cambiamento nelle abitudini 

alimentari attuali, integrando più fonti vegetali nell’apporto proteico della nostra dieta Questo 

cambiamento è definito “transizione proteica”. 

La transizione proteica richiede un incremento nella quantità di superfici coltivate e nella 

produzione di colture proteiche. Data la maggiore resa economica delle attuali colture 

(cerealicole e oleaginose) rispetto alle colture proteiche minori, gli agricoltori non sono propensi 

ad adottare sistemi produttivi alternativi. 

L’adattabilità di queste colture minori nelle diverse zone pedoclimatiche deve essere ancora 

investigata. In questa tesi illustriamo delle prove sperimentali volte a validare le pratiche di 

ottimizzazione della produzione di colture proteiche in agricoltura biologica, nella regione Friuli-

Venezia Giulia. Abbiamo valutato la prestazione di una serie di colture coltivate in regime di 

agricoltura biologica, una delle strategie di maggior rilievo nel quadro della Politica Agricola 

Comune dell'Unione Europea (UE). Questa politica mira a garantire uno standard 

imprenditoriale equo per gli agricoltori, stabilizzare i mercati agricoli, garantire un mercato 

alimentare sicuro e accessibile per i consumatori e promuovere l'agricoltura sostenibile. 

All'interno di questa politica, l'agricoltura biologica è riconosciuta come un elemento 

fondamentale al fine di promuovere la sostenibilità ambientale, la conservazione della 

biodiversità e nel soddisfare la domanda dei consumatori per i prodotti biologici. 

Le specie studiate sono cece, favino e lenticchia, colture poco diffuse nella regione FVG. 

Data la poca conoscenza delle prestazioni di queste colture nella regione d’interesse, sono state 

predisposte una serie di prove sperimentali finalizzate a valutarne l’adattabilità in termini di 
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stress idrico e termico, bassa fertilità dei suoli e resa in granella e proteina. Le sperimentazioni 

sono state raggruppate ed esposte nei cinque capitoli che compongono questa tesi. 

Nel primo capitolo viene presentato uno studio finalizzato a valutare la prestazione di varie 

cultivar di cece, favino e lenticchia, coltivate a Udine durante la stagione estiva 2021. Dai 

risultati di questo esperimento si è deciso di focalizzare l’attenzione sulle due colture reputate 

più promettenti, cece e lenticchia. 

Nel secondo capitolo viene presentato uno studio atto a investigare la risposta di cece e lenticchia 

allo stress idrico. La tolleranza allo stress è stata valutata trattando le colture con trattamenti di 

irrigazione crescente, effettuati durante la fase critica di riempimento dei baccelli.  

Durante entrambe queste sperimentazioni è stato posto particolare interesse all’utilizzo di 

tecniche di telerilevamento con dati multispettrali acquisiti da drone (unmanned aerial system – 

UAS) col fine di valutare la prestazione delle colture da remoto. 

Nel terzo capitolo viene presentata una indagine finalizzata a valutare con maggiore dettaglio 

l’utilizzo di tecniche ti telerilevamento, che sono state scarsamente studiate in cece e lenticchia. 

Lo studio presentato ha come obiettivo di correlare i principali indici di vegetazione con i 

principali parametri agronomici e la resa in granella delle colture. Nello specifico, sono stati 

valutati molteplici indici come potenziali proxy per la biomassa delle colture, l’indice di area 

fogliare, lo status idrico e la resa. 

Una delle principali criticità legate all’utilizzo di pratiche di agricoltura biologica consiste nella 

gestione della competizione attuata dalle malerbe infestanti. La Direttiva sull'Uso Sostenibile dei 

Pesticidi dell'Unione Europea promuove l'adozione di approcci di Gestione Integrata degli 

Infestanti come strategia chiave per raggiungere un uso sostenibile dei pesticidi. Per questo 

motivo, nel quarto capitolo presentiamo uno studio in cui abbiamo valutato la tecnica della 

consociazione per la gestione delle infestanti in cece e lenticchia, coltivate con una coltura 

allelopatia, il grano saraceno.  
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Nel quinto capitolo viene presentato un progetto secondario con finalità metodologiche, 

finalizzato all’implementazione un modello di classificazione unsupervised per testare la 

possibilità di classificare automaticamente cece, lenticchia, favino e quinoa, utilizzando una 

combinazione di dati multispettrali e di fotogrammetria acquisiti con tecniche di telerilevamento 

da UAS. 

Il favino è risultato essere la specie con il minore rendimento, probabilmente a causa di stress 

biotici.  

Il cece è risultato essere una coltura adatta per questa regione, dato l’alto rendimento e la 

produzione di proteina, anche in condizioni di siccità.  

La lenticchia ha avuto prestazioni variabili. Il primo anno non ha prodotto seme, mentre quello 

successivo ha avuto una produzione elevata.  

L'irrigazione ha influenzato la fenologia del cece, prolungando la durata della fase di fioritura e 

riempimento del baccello, con alcuni effetti negativi sulla qualità del seme. 

L'uso dei dati di telerilevamento è stato efficace nel monitorare lo sviluppo delle colture. Sono 

state individuate correlazioni significative tra gli indici di vegetazione e i parametri misurati in 

campo e l'elaborazione di indici cumulativi di vegetazione è stato efficace nel correlare biomassa 

e resa. La consociazione con il grano saraceno non è risultata essere una strategia efficace per 

mitigare la competizione da infestanti, tuttavia, l'uso degli estratti acquosi di grano saraceno ha 

avuto effetti di inibizione sulla germinazione dei semi. Il modello Random Forest si è rivelato 

uno strumento utile in grado di classificare con alta precisione le colture proteiche a livello di 

specie. 
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General introduction 

Climate change effects have arisen serious concern in terms of food security, impacting various 

aspects of food production, distribution and access (Wheeler and Von Braun 2013). As the 

global population is projected to increase to over 9 billion by 2050, there will be an increase in 

demands for nutrient-dense foods, including high-quality protein sources (Grafton et al. 2015). In 

response to this challenge, there is a need for the food production and supply systems to 

proactively develop innovative and sustainable approaches, as they are currently not suited to 

address the foreseen increase in pressure (Miraglia et al. 2009). The 2030 Agenda for 

Sustainable Development, adopted by all United Nations Member States and the signing of the 

Paris agreement on climate change (COP21) in 2015 created a juridical obligation for Member 

States and pushed for a re-think of our food system. Alternative protein sources are urgently 

needed to respond to the increasing protein demand from a growing world population and the 

need for a more resource-efficient production. Global food production is the largest pressure 

caused by humans on Earth, threatening local ecosystems and the stability of the Earth system 

(COP21 2016).  

Nowadays, a significant portion of the protein in diet is based on animal products. This is mostly 

due to the food consumption habits of people, then to an agricultural constraint (Gotor and 

Marraccini 2022). In fact, the consumption of plant-based proteins has significantly decreased 

after 1960s, especially in Europe, along with a shift towards the consumption of animal-based 

proteins. Hence, the decreasing demand for plant-based proteins in food, mostly derived from 

pulses, has induced a progressive decrease in their production area in the last five decades 

(Watson et al 2017). The EU27 livestock sector (based on pig and poultry accounting for 75% of 

45Mt of meat production) requires energy-rich cereals and to import 80% of protein-rich feed 

from third countries like Brazil, Argentina and the United States. The EU currently devotes only 

3% of its arable land to protein crops used for feed or for food. This consolidated production 
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system entails major issues in terms of environmental sustainability. Livestock-based farming 

contribute significantly to greenhouse gas emissions (Wood and Tavan 2022), necessitate 

extensive land use (Poore and Nemececk 2018) consume and pollute vast amounts of water 

(Aschemann-Witzel et al 2020). Hence, the need to develop promote and adopt new, sustainable 

food system shifting the diet including a greater than 50% reduction in global consumption of 

unhealthy foods such as red meat, fat and sugar, and a greater than 100% increase in 

consumption of healthy foods, such as nuts, fruits, vegetables, and legume (Willett et al. 2019). 

Despite their importance, grain legume and in particular pulses production is declining globally, 

especially in Europe, where in 2018 they accounted for only 1.3% of the EU27 Utilized 

Agricultural Area (UAA) (Gotor and Marraccini 2022). This decline can be attributed to a 

multitude of factors, however, a major contribution consists in the increase in importing 

affordable soybean for feed from abroad, especially North and South America, which led to 

deflation in meat price. As a consequence, pulse cultivation reduced also in the number of 

cultivated crops (Watson et al. 2017). Recently, Gotor and Marraccini (2022) conducted a 

systematic review of 269 papers from 1974 to 2019 to identify the most suitable pulse species for 

the Western European Temperate Regions. They investigated a list of 41 species and, based on 

their agronomical characteristics (e.g. temperature and water requirements, pest risk, yield) and 

nutritional profile (i.e. energetic value and content in protein, oil, carbohydrate and fiber). 

According to crops thermal requirements and climatic suitability, they selected 21 minor crops 

that are currently underutilized but have the potential to thrive in such regions. 

Organic agriculture is a farming approach aimed to apply sustainable cropping practises while 

avoiding the use of synthetic compounds (herbicides, pesticides and fertilisers), also avoiding 

other practises of conventional agriculture (e.g., use of genetically modified organisms, and 

growth regulators), being reputed harmful for the environment and potentially for human health 

(Lotter 2003). This approach aims to promote environmental sustainability, soil health, 

agroecosystem diversity, climate change mitigation, sustainable resource use and consumer 
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health (Willer and Lernoud 2017). Organic agriculture is recognized as a key strategy in the 

Common Agricultural Policy framework (CAP) of the European Union (EU). This policy aims 

to ensure a fair standard of living for farmers, stabilize agricultural markets, provide a secure and 

affordable food supply for consumers, and promote sustainable agriculture. Within this 

framework, organic farming is acknowledged as a main tool in providing environmental 

sustainability, biodiversity conservation, and meeting consumer demand for organic products 

(Pânzaru et al. 2023). 

Major constrains in organic agriculture compared with conventional, are represented by lower 

yield (estimated to be in average equal to 20%) due to biotic and abiotic factors like pest, and 

diseases, weeds and mineral nutrients (e.g. NPK) availability (Lotter 2003). Acknowledging for 

these issues, cropping of legumes, particularly grain legumes, represent a key method in organic 

farming. Grain legumes can support the development of sustainable and climate-resilient 

cropping systems. Legumes have the capability to biologically fix Nitrogen (BNF), reducing the 

use of mineral N fertilizers. Furthermore, the BNF has a legacy for the following crop promoting 

soil fertility and reducing the synthetic N fertilizers requirements (Watson et al. 2017).  

The BNF function of legumes is also used in cropping system diversification as intercropping of 

legumes with cereals. This method is well known from the past but now is part of specific 

research in order to better value: i) yield of mixes legumes-cereals under varying climatic 

conditions; ii) resistance to drought, water and heat/cold stress; iii) capacity to control weeds 

emergence and competition; iv) susceptibility to pests and diseases. Experiments are required 

also to validate at farm level the introduction of legumes and intercropped legumes in 

combination with other agronomic practices. 

The Smart Protein HO2020 project has been established with the aim of harness sustainable 

protein (plant and microbial) knowledge to significantly enhance the sustainability and resilience 

of a new European protein supply chain by developing alternative protein ingredients and 

products for humans which have a positive impact on economy, environment, biodiversity and 
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food security. In this framework, the aim of this thesis was to focus on food security by 

promoting grain yield and quality in organic production system. In the Smart Protein project, this 

aim was pursued by the working package 1 (WP1), composed by a group of universities and 

companies that has investigated the selected crops: chickpea (Cicer arietinum, CH), lentil (Lens 

culinaris, LN), faba bean (Vicia faba, FB) and quinoa (Chenopodium quinoa, QN). These 

species have been investigated by various experimental trials in a European North to South 

transect in order to account for diverse pedo-climatic and cropping systems conditions.  

In this thesis we reported the results of three years of experimental trials supported by Smart 

Protein in Udine (Italy). These crops are rpresent in the Friuli-Venezia Giulia region, in only 4 

farms. According to the local farmers, these crops have generally low yields and high costs of 

processing, resulting in low incomes. 

The aim of the research was to select the most performing cultivars of selected protein crops for 

this region and validate the practices to optimize their production under organic farming. This 

aim was pursued in five different steps which form the main structure of this thesis.  

In a first step we conducted a crops and cultivar screening to validate the species and cultivars 

adaptability and assess yield and seeds quality. We then evaluated the adaptability of chickpea 

and lentil to drought conditions. Furthermore, we investigated irrigation and intercropping as 

optimization strategies to improve yield and protein production. and the last experiment tested 

the precision agriculture technology to monitor crops performance using a Random Forest 

classification model.  

These research activities are designed to meet the needs of organic production, but of course the 

knowledge generated is also of primary interest to conventional production. 
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1 Introduction 

Agriculture plays a fundamental role whithin the framework of policies of the European Green 

Deal. In particular, the Farm to Fork Strategy stands out as a major component, comprising a set 

of policies and strategies aimed to promote more sustainable agricultural practices and food 

system (Boix-Fayos and de Vente 2023). One of the key goals of the Farm to Fork strategy is to 

enhance the sustainability of the entire food supply chain. In this optic, it is recognised the 

environmental impact of protein production and consumption, and it aims to encourage more 

sustainable practices (Billen et al. 2024).  

To move towards an innovative and sustainable food system supported by alternative protein 

production, a robust supply of high-quality raw materials is essential. For this purpose, the Smart 

Protein project has targeted three grain legumes (faba bean, lentil and chickpea) and a protein-

rich grain crop (quinoa), to be promoted in different pedo-climatic regions of Europe. 

Use of legumes represent a key strategy as they capitalize on their biological ability to fix 

Nitrogen (N) from the atmosphere. This capability reduces the input requirements in terms of 

nutrients for these crops, moreover, part of the Nitrogen is stocked in the soil into a plant-usable 

form promoting soil fertility and reducing the synthetic fertilizers requirements of the following 

crops (Watson et al. 2017). The Nitrogen amount that can be fixed varies according to the 

species and cultivar and it depends as well on the environmental factors like temperature and 

water availability (Watson et al. 2017). It has been estimated that in Europe, the average 

Nitrogen fixed by grain legumes amounts to 133kg ha-1 (Baddeley et al. 2013) and can reach up 

to 250kg ha-1 in some species like faba bean (Duc et al. 1988). 

However, the production of large quantities of raw material addressed to the production of 

ingredients for plant-based food requires productive cultivars with high yields and a quality that 

are suitable for industry demand. Plant-based food production at larger scales is developing and 

there are different challenges to face.     
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As a main issue, yield stability of protein crops is generally less stable than spring cereals, 

especially in the Northern countries of Europe (Peltonen-Sainio and Niemi 2012). Hence, the 

challenges in scaling up their production include ensuring yield stability through adapted 

varieties, enhancing tolerance to abiotic and biotic stress conditions, and developing optimized 

production systems for these new protein crop species (Cernay et al. 2015, Watson et al. 2017, 

Röös et al. 2020, Olesen et al. 2021).  

In 2018, grain legumes accounted for only 1.8% of the Utilized Agricultural Area (UAA) of 

Europe (Gotor and Marraccini 2022) and the more widely cultivated species were soybean, pea 

and faba bean, resulting a 70% deficit of high protein materials for feed (Watson et al. 2017). In 

general, the cultivation of dry pulses occurs within intensive production systems, while only 

2.2% is grown in organic farms, primarily in Italy, Germany, Austria, and France (Eurostat 

2017).  

Among pulses, faba bean has a broad adaptability across different pedoclimatic regions of 

Europe. However, its production is primarily oriented toward animal feed and it is highly 

susceptible to drought, diseases, and pests (Alandia et al. 2020, Sellami et al. 2021). On the 

contrary, lentil is mainly produced for human consumption due to high cost of production, 

mostly processing. It is mainly grown in the Mediterranean region as it requires minimal inputs 

in terms of water and nutrients and its seeds have a high nutritional profile, with protein content 

that can reach up to 30% (Romano et al., 2021). Chickpea is also cultivated in the Mediterranean 

region, mostly due to its capability of drought tolerance. It is mostly produced in Spain and the 

main challenges for its cultivation are related to biotic stress (Stoddard 2017). Quinoa has been 

recently introduced in Europe and its adoption has been increasing in various countries, mainly 

Spain, France and Italy, while tt is less cultivated in the Northern region. Quinoa yield can reach 

up to 2ton ha-1 and its seeds have a high nutritional value, also containing all essential ammino 

acids (Vilacundo et al. 2017, Alandia et al. 2020). Quinoa is particularly adapted to drought 

conditions, however it is quite susceptible to diseases (Jacobsen 2003).   
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The aim of this research is to validate the species and cultivars adaptability and assess yield and 

seeds quality of chickpea, faba bean and lentil, in the Friuli-Venezia Giulia region (NE Italy). 

For this purpose, we aim to combine the most used agronomical parameters, coupled with 

vegetation assessment by remote with multispectral data acquired by unmanned aerial system 

(UAS). 
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2 Materials and Methods 

2.1 Study Area 

The experiment was conducted during the growing season 2021 in Udine (NE Italy) at the 

experimental farm “A. Servadei” of the University of Udine (46.03°N, 13.22°E), in a field that 

had previously been cultivated with maize. 

Soil characteristics were obtained from a combined sample of 20 sub-samples taken at sowing at 

25cm depth. The soil textural class is Loam (36%sand. 35% silt 22% clay, 7% gravel), having 

1.9% of Soil Organic Carbon, 6.8 pH and 9 C/N. The soil has a low fungi/bacteria ratio of 0.5 

and microbial activity is low. The SOC balance indicates a steady state supply of C equal to 1.6 

tC ha-1 year-1 assuming an annual mineralization rate of 2.9% of the actual SOC. Deficiencies of 

Mn are foreseen for legumes; Fe, Zn, P and K plant available are evaluated rather low. The soil 

Water Holding capacity (at 0.25m depth) is 52mm. 

 

2.2 Climate and weather conditions 

Climate in Udine is temperate, with cold winters (minimum temperature usually below 0°C) and 

warm, relatively dry summers (average maximum temperature higher than 27°C). Precipitation is 

relatively evenly distributed throughout the year, with some variation in intensity and frequency 

between the seasons, being maximum in autumn. Climate diagram of Udine is represented in 

Figure 1.1.  
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Figure 1.1. Climate diagram of Udine. Data by ARPA-OSMER weather station (Udine Sant’Osvaldo). Reference 

period 2001-2022. 

 

Weather data have been acquired by the ARPA-OSMER weather station (Udine Sant’Osvaldo) 

located in the university’s farm, close to the experimental area. Weather conditions of the 2021 

growing season are represented in Figure 1.2. Compared to long term data (Figure 1.1), in 2021 

spring temperature was cooler (~ -2°C). June was particularly dry (-83mm), however, the 

cumulative precipitation from sowing to harvest reached 545mm for faba bean and 568mm for 

chickpea. 
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Figure 1.2. Weather conditions of the growing season in Udine during 2021. Sowing and harvest are marked by 

arrows. Data collected by ARPA-OSMER weather station (Udine Sant’Osvaldo). 

 

2.3 Experimental design and crops management 

Different varieties of four protein crops were tested:  

- Chickpea (Cicer arietinum, CH) cvs: Eq.3279, Eq.3282, Eq.3283, Eq.3284, Sultano;  

- Faba bean (Vicia faba var minor, FB) cvs: Fuego, Tiffany, Fanfare, Lynxs, Taifun, 

Alexia, GL Emilia;  

- Lentil (Lens culinaris, LN) cvs: Anicia, Flora, Itaca;  

- Quinoa (Chenopodium quinoa, QN) cvs: Eq.1001, Eq.1002, Eq.1010, Eq.1014, Puno, 

Titicaca.  

Furthermore, for chickpea, two cvs mixes were tested as an optimization strategy: 

- Sultano + Eq.3282 (ratio 1:1),  

- Sultano + Eq.3284 (ratio 1:1).  

The CVs of each crop were arranged according to a randomized block experimental design. 
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Plots dimensions were: 8m length and 1.52m width (4 rows with row-distance of 0.38m), 

resulting in a plot area of 12.16m2. The CVs tested for each crop are listed in Tables 1.1-1.3. 

Treatments (cultivar/intercropped cultivars) were replicated in three blocks for chickpea, faba 

bean and quinoa, while lentil varieties were replicated four times.  

 

Table 1.1. Tested cultivar of chickpea, faba bean, lentil and quinoa. 

Chickpea Faba bean Lentil Quinoa 

C1.3279 F1.Fuego L1.Anicia Q1.Titicaca 

C4.3282 F2.Tiffany L2.Itaca Q3.1001 

C5.3283 F6.Fanfare L7.Flora Q4.1002 

C6.3284 F7.Lynxs  Q5.1010 

C25.Sultano F9.Taifun  Q6.1014 

C26.Sult+3282 F10.Alexia  Q8.Puno 

C27.Sult+3284 F11.GL Emilia   

 

 

Sown seeds of chickpea and lentil were inoculated with specific Rhizobia; chickpea was 

inoculated with Mesorhizobium cicero and lentil with Rhizobium leguminosarum. Rhizobia, 

provided by Agrifutur S.r.l. (Alfianello-Brescia, IT). 

All crops were sown on 30/03/2021. Sown seeds amount was defined according to values of 

thousand seeds weight (TSW, g), germination rate (G%) and targeted plant density (see Table 

1.1). Target plant densities (plants m-2) were chickpea: 45; faba bean: 35; lentil: 200; quinoa: 70.  

Sowing depth was 3 cm for chickpea and faba bean, and 2 cm for lentil and quinoa. Since quinoa 

varieties did not emerge, a second sowing was conducted on 05/05/2021 at 1 cm depth. 

However, since scarce emergence at second sowing as well, quinoa experiment was withdrawn.  

Emergence took place approximately two weeks after sowing, while flowering occurred at 

beginning of June. Harvests of faba bean and chickpea were conducted respectively on 

16/07/2021 and 29/07/2021. Due to heat stress during the flowering period, lentil varieties did 

not produce seeds and were not harvested.  
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Table 1.2. Information about tested CVs with corresponding target plant densities, varieties, thousand seeds weight 

(TSW) and seeds germination percentage (G%) 

Species 
Target plant 

density (#/m2) 
cv / treatment TSW (g) G% 

Chickpea 45 

Eq.3279 434 82% 

Eq.3282 344 92% 

Eq.3283 454 81% 

Eq.3284 425 84% 

Sultano 268 89% 

Sultano + Eq.3282 * * 

Sultano + Eq.3284 * * 

Faba bean 35 

Fuego 546.2 87% 

Tiffany 573 86% 

Fanfare 530.9 92% 

Lynxs 625.8 89% 

Taifun 526.6 89% 

Alexia 434 89% 

GL Emilia 468.5 92% 

Lentil 120 

Anicia 25.1 100% 

Itaca 34.9 80% 

Flora 24 92% 

Quinoa 70 

Titicaca 2.92 97% 

Eq.1001 3.79 92% 

Eq.1002 4.28 96% 

Eq.1010 3.95 95% 

Eq.1014 3.70 94% 

Puno 2.18 89% 

* Resulting values combining data from corresponding cvs. 
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Table 1.3. Characteristics of cultivars under investigation. 

CV Characteristics 

Eq.3279 
27% protein, Ascochyta Blight: medium tolerant, Fusarium wilt:tolerant, Kabuli, light color 

seeds Growth habit: semi-erect. TSW: 359gr 

Eq.3282 
21% protein, Ascochyta Blight: Light tolerant, Kabuli light color seeds Growth habit: semi-

erect. TSW: 349gr 

Eq.3283 
23% protein, high yielding,, Ascochyta Blight: medium tolerant, Kabuli light color seeds 

Growth habit: semi-erect. TSW: 419gr 

Eq.3284 
22% protein, high yielding, Ascochyta Blight: medium tolerant, Fusarium wilt:tolerant, Kabuli 

light color seeds Growth habit: semi-erect. TSW: 423gr 

Sultano 

Medium-small size seeds, White flowers, erect plant, Plant height 75-80 cm, Medium Early 

Cycle, Good Cold Tolerance, Excellent  Water stress resistance, Excellent Lodging 

Resistance, Excellent dehiscence resistance, Good Resistance to Ascochyta, protein 19-20%, 

Plant Density 30-50 pl/m2 (higher colder envir). 

Sultano + Eq.3282 Combined characters of both varieties 

Sultano + Eq.3284 Combined characters of both varieties 

Fuego Good leaf health, Pale hilum and stable yields; high 27.5 % protein 

Tiffany High stable yields, good leaf health, low in vicin and convicin, high 27.7 % protein 

Fanfare Resistance to dowry mildew, TSW: 545-556 g, 27.5% protein 

Lynxs Resistance to dowry mildew, Pale hilum, High Yielding 27.5 % protein 

Taifun Low tannin‡ cv, stable yields 

Alexia 
30% protein, high stable yield potential, Tolerance to root diseases, good performance towards 

Botrytis, virus and rust 

GL Emilia Tolerance to lodging, good tolerance to diseases, low vicine/convicine‡ content 

Anicia medium size plant, green seed color, French label reference, 30% protein 

Itaca 

Extern.  seed colour Brown, Intern. seed colour orange, Medium-big seed size, erect plant, 

Plant height 37-40 cm, Medium Late, Seeds/pod 1/2, medium Cold Tolerance, Medium Water 

stress resistance, Excellent dehiscence resistance, protein 24-25%, Plant Density 220-300 

pl/m2 (higher colder envir). 

Flora tall plant, blond seed color, tolerant to lodging, TSW=72 g 

Titicaca 
Danish bred cv high adaptation range, high and stable yields, Stress tolerance: drought, 

salinity, frost 

Eq.1001 13% protein, Bitter cv (Saponin), TSW: 3.6 g 

Eq.1002 14% protein, big seed size, BITTER CV saponin, compact growth, TSW: 3.9 g 

Eq.1010 15% protein, bitter cv (saponin), compact growth, TSW:4 g 

Eq.1014 14% protein, big seed size, BITTER CV saponin, compact growth, TSW: 4.37 g 

Puno 
Danish bred cv, tolerant to leaf diseases Stress tolerance: drought, salinity, frost Resistant to 

downy mildew, white grain TWS: 2.95 G, 17.6%9 PROTEIN 
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As a result of experienced drought stress, especially in June, all crops received irrigation four 

times throughout the growing season (total 109mm). Irrigation occurred on the following dates 

with the specified amounts: 15mm on 02/04/2021, 20mm on 17/06/2021, 37mm on 24/06/2021 

and 30/06/2021. 

Crops were grown under organic practices; no fertilization was applied, and weeding was 

periodically performed through hand hoeing. 

 

2.4. Field measurements 

Soil water content (SWC, m3m-3) was monitored throughout the season with CS-616 sensors 

connected to a CR-1000 datalogger (Campbell Scientific Ltd, Shepshed, England). A total of 8 

sensors were randomly placed in the field, 4 in chickpea and 4 in faba bean plots. Crops water 

consumption (WC, mm d-1 was then estimated as: 

𝑊𝐶 =  (𝑆𝑊𝐶𝑇 − 𝑆𝑊𝐶𝑇−1) ∗ 0.3 ∗ 1000 ∗  −1  , 

Where SWCT is the mean SWC of a specific day, SWCT-1 is the SWC of the day before, 0.3 is 

the depth of the layer of soil considered (i.e. 0.3m), 1000 is the rate of conversion from m3m-2 to 

mm and -1 is used to convert from water loss to water consumption. Water consumption was 

calculated based solely on soil water content values without considering other external factors 

(e.g., rainfall, evaporation) that directly influence the soil water content. The depth of the soil 

layer considered in the calculation is determined by the placement of sensors at a depth of 30 cm, 

as specified by their technical specifications, also corresponding to the layer explored by the 

majority of the root system (>90%) of the investigated crops. 

Plants height (Hp, cm) was assessed as the average of 10 plants per plot. Hp was measured three 

times during the growing season: on 21/05/2021, 03/06/2021 and 17/06/2021.  

Measurements at flowering were conducted on 10/06/2021. For each crop we selected 2 cvs: 

chickpea: Sultano and Eq.3282; faba bean: Taifun and Tiffany; lentil: Itaca and Ancia. In each 
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plot we sampled an area of 0.76m2 (2 rows of 1m and row distance of 0.38m). For each sampling 

area we counted the total number of plants to estimate the plant density (PD, plants m-2) and 

measured Hp of 5 plants. Plants were then cut at the ground level to measure the aboveground 

fresh biomass (FWabv, kg m-2) and oven-dried for 72h at 70°C to measure the aboveground dry 

biomass (DWabv, kg m-2). Dry matter content (DMC, g/g) was then calculated as the ratio 

between DW and FW. Moreover, considering the same CVs, 10 plants per plot were collected to 

record the number of leaves of each plant. After leaves and stems were separate. Leaves area 

(LA, m2) was measured with LI-COR 3050C leaf area meter (LI-COR Biosciences, Lincoln, 

USA). Leaves and stems were then oven-dried for 72h at 70°C to measure stems dry weight 

(SDWsub, kg), leaves dry weight (LDWsub, kg) and estimate the leaves fraction of the total 

biomass (LF, kg kg-1). Specific leaf area (SLA, m2 kg-1) was calculated as the ratio between LA 

and LDWsub. Leaves total dry biomass (LDWtot, kg m-2) was calculated as the product of LF and 

DW. Leaf Area Index (LAI, m2m-2) was then calculated as the product of LDW and SLA. 

A further measurement of LAI was conducted on 23/06/2023 with the LI-COR LAI-2200C Plant 

Canopy Analizer. For each plot 2 sets of 5 measurements per row were conducted, following the 

diagonal transects’ protocol for row crops specified by the producer. 

At harvest, for all plots two sample areas were assessed. A first area of 0.76m2 was sampled to 

measure PD, number of pods per plant, total DW and yield (g/m2). Harvest Index (HI) was then 

calculated as: 

𝐻𝐼 =  
𝑦𝑖𝑒𝑙𝑑

𝑦𝑖𝑒𝑙𝑑 + 𝐷𝑊
 

A larger area of 3.04m2 (2 rows of 4m length) was sampled on each plot to measure yield. Due to 

issues in data collection and lack of replicates for proper data correction, anomalous yield data 

from the larger area were replaced with yield measured in the smaller area of the same plot.  
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2.5 CHN analysis and protein content 

Dry samples of crop residues and seeds were grounded into a fine powder with a ball mill to 

ensure uniformity in the sample. Nitrogen content (NC, g g-1) was then measured using Dumas’ 

combustion using a CN Elemental Analyser (Vario Microcube, © Elementar) coupled to a stable 

isotope ratio mass spectrometer (IRMS; Isoprime 100, © Elementar). 

A subsample of grounded samples was oven-dried at 120°C for 48h to determine the residual 

water content and subsequently correct the CHN measurements.  

Protein content (PC, g g-1) of seeds was then estimated as: 

𝑃𝐶 = 𝑁𝑐 ∗ 6.25 

where Nc is the Nitrogen content of seeds (g g-1) and 6.25 is the conversion factor to estimate the 

protein content based on the assumption that, on average, proteins contain approximately 16% 

Nitrogen. 

Protein yield (ton ha-1) was calculated as the product of yield and Nc. 

 

2.6 Spectral Vegetation Indexes 

Remote sensing data were acquired with an unmanned aerial system (UAS) on 4 dates during the 

growing season at: i) crops development – 21/05/2021; ii) flowering – 04/06/2021; iii) early pods 

setting – 26/06/2021; iv) late pods maturation – 05/07/2021. All UAS flights were conducted 

between 10:00 to 11:00 a.m. (L.S.T.). 

Altum and multispectral data were acquired with a MicaSense RedEdge MX camera (MicaSense 

Inc., Seattle, WA, USA) equipped on an unmanned aerial vehicle (UAV) piloted in manual 

mode. Spectral bands acquired were Blue (B, 475±32nm), Green (G, 560±27nm), Red (R, 

668±14nm), Red Edge (RedEd, 717±12nm) and Near-Infrared (NIR, 842±57nm). Images were 

acquired with a multicamera system at 1 Hz frequency with minimum overlap of 80%. Pictures 

of the MicaSense calibrated reflectance panel were also acquired before and after each flight, in 
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order to correct the acquired images on the day’s lighting conditions and compare the results of 

different flights. Furthermore, to accurately georeferentiate the data, 17 ground control points 

were randomly placed in the field and their GPS positions and height accurately assessed. 

Images processing has been conducted using the software Agisoft Metashape v.1.4.2 (Agisoft 

2018) to obtain a digital elevation model (DEM), a digital terrain model (DTM) and reflectance 

raster maps for each spectral band. Single-plot data were extracted using the GRASS GIS v.6.4.5 

software (GRASS Development Team 2010), by over-lapping a mask vector of 3.04m2 (4m 

length, 0.76m width) on each plot and setting the geographic regions boundaries for the sampling 

areas with the “g.region” and “r.mask” functions. Camopy pixels were selected by subtracting 

the DTM to the DEM. Average plot values were then calculated with the R v2.0.1 software (R 

Core Team, 2021) and used to calculate the Normalized Difference Vegetation Index (NDVI, 

Rouse et al. 1974) as: 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

 

2.6 Statistical analysis 

All statistical analyses were conducted with the R software. All analyses were conducted 

separately for each species. After data normality a homoscedasticity assessment, differences 

between treatments were assessed by one way analysis of variance and Tukey’s Honest 

Significance Difference as post hoc. Since sampling at flowering was conducted on two cvs per 

species, differences were assessed by Student’s t-Test. 
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3 Results 

3.1 Soil Water Content 

Variation in soil water content of the upper layer (0-30cm) during the growing season is 

represented in Figure 1.3. We reported values for chickpea and faba bean up to harvest date, 

hence no datum was reported for lentil. SWC was lower in faba bean throughout the whole 

season, however, by looking to the estimated water consumption (Figures 1.4, 1.5), there was no 

difference between crops. 

 

Figure 1.3. Soil water content (0-30cm) measured during the growing season 2021 in Udine, in fields cultivated 

with Chickpea (CH, blue line and ribbon) and Faba Bean (FB, green line and ribbon). 
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Figure 1.4. Daily water consumption (mm d-1) calculated for chickpea (CH, blue line) and faba bean (FB, green 

line) from soil water content measured during the growing season 2021 in Udine. 

 

 

Figure 1.5. Daily water use (mm d-1) for chickpea (CH, yellow bar) and faba bean (FB, green bar) from soil water 

content at 0.3m depth measured with soil moisture sensors from June 21st 2021 to harvest in Udine. Sum of 

Rainfalls and irrigations (mm·d-1) are also indicated (blue line). 

 

 

3.2 Crops phenology and development 

Crops phenological development stages with corresponding thermal sums are reported in Table 

1.4. Within each species, all cultivars exhibited a similar development. Emergence, flowering 

and harvest maturity occurred within a few days across all cultivars. Among species, chickpea 

had the highest thermal sum requirement, with 980°C d-1 at flowering and 2223°C d-1 at harvest. 
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Table 1.4. Overview of crops development during the growing season 2021 in Udine. For each phenological stage 

are reported the average date and corresponding Growing Degree Days (GDDs, base temperature = 0°C). 

Species 

Sowing Emergence Flowering Harvest 

Date Date 
GDDs 

(°C/d) 
Date 

GDDs 

(°C/d) 
Date 

GDDs 

(°C/d) 

Chickpea 30/03/2021 14/04/2021 165 08/06/2021 980 29/07/2021 2223 

Faba bean 30/03/2021 14/04/2021 165 02/06/2021 853 16/07/2021 1902 

Lentil 30/03/2021 11/04/2021 138 08/06/2021 980 
Not 

harvested 
- 

 

 

Values of Hp measured among the growing season are graphically represented in Figures 1.6-1.8 

and reported in Table 1.5. Statistical differences among plants heights occurred differently 

according to the growth stage. At crops development (Figure 1.4) no differences were assessed 

among chickpea and faba bean cultivars. On the contrary, in lentil, cv Flora was significantly 

higher than Itaca and Anicia (p < 0.01). Similar results occurred at crops flowering (Figure 1.5) 

two weeks later. On the contrary, at flowering statistical differences were assessed in chickpea, 

where all treatments with cv Sultano were significantly higher than Eq.3283 (p < 0.01). 
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Table 1.5. Mean values with corresponding standard deviation of plant height measured in various treatments of 

chickpea, faba bean and lentil during the growing season 2021 in Udine. Statistical differences are denoted by 

different letters, otherwise not significant. 

Species Treatment 

Plant height, cm 

21/05/2021 03/06/2021 17/06/2021 

Chickpea 

Sultano 20.5 ± 0.7 37.6 ± 2.7 55.3 ± 4.0 b 

Eq.3279 20.1 ± 2.2 34.3 ± 0.9 47.9 ± 3.3 ab 

Eq.3282 21.2 ± 0.5 33.2 ± 2.7 45.0 ± 2.4 ab 

Eq.3283 20.2 ± 1.5 35.3 ± 2.8 41.9 ± 2.9 a 

Eq.3284 21.4 ± 1.3 34.5 ± 5.7 47.2 ± 2.0 ab 

Sult+Eq.3282 24.2 ± 3.1 36.8 ± 2.2 55.2 ± 9.0 b 

Sult+Eq.3284 23.1 ± 2.3 42.8 ± 5.8 55.5 ± 3.9 b 

Faba bean 

Alexia 39.4 ± 0.5 63.7 ± 3.8 87.0 ± 7.8 

Fanfare 39.6 ± 5.8 61.4 ± 3.4 85.2 ± 5.6 

Fuego 39.3 ± 1.5 63.0 ± 2.7 83.0 ± 1.9 

GL Emilia 37.8 ± 1.3 60.6 ± 4.6 87.8 ± 2.6 

Lynxs 38.4 ± 0.5 60.9 ± 3.7 87.2 ± 2.0 

Taifun 37.9 ± 1.8 58.6 ± 2.8 83.1 ± 5.7 

Tiffany 41.0 ± 1.9 64.7 ± 0.6 89.0 ± 7.9 

Lentil 

Anicia 14.1 ± 0.2 a 21.1 ± 1.6 ab 31.4 ± 2.2 

Flora 18.9 ± 1.1 b 26.2 ± 2.4 b 36.0 ± 1.7 

Itaca 14.8 ± 0.8 a 18.6 ± 1.7 a 30.3 ± 6.0 
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Figure 1.6. Plants height of Chickpea (CH, blue bars), Faba bean (FB, green bars) and Lentil (LN, yellow bars) 

varieties measured during crops development on 21/05/2021.Analysis of variance (ANOVA) probability values are 

specified whether statistical differences were assessed, otherwise not significant (n.s.) 

 

 

Figure 1.7. Plants height of Chickpea (CH, blue bars), Faba bean (FB, green bars) and Lentil (LN, yellow bars) 

varieties measured at crops flowering, on 03/06/2021.Analysis of variance (ANOVA) probability values are 

specified whether statistical differences were assessed, otherwise not significant (n.s.) 
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Figure 1.8. Plants height of Chickpea (CH, blue bars), Faba bean (FB, green bars) and Lentil (LN, yellow bars) 

varieties measured on 17/06/2021.Analysis of variance (ANOVA) probability values are specified whether 

statistical differences were assessed, otherwise not significant (n.s.) 

 

Mean values with corresponding standard errors of LAI measured in chickpea and faba bean on 

June 23rd and July 2nd 2021 are reported in Table 1.6. On June 23rd, LAI in chickpea ranged from 

1.72±0.32m2m-2 to 2.57±0.12m2m-2, while in faba bean from 1.58±0.38m2m-2 to 1.84±0.43m2m-

2.  On July 2nd, 2021, LAI in chickpea ranged from 1.66±0.18m2m-2 to 2.52±0.22m2m-2, while in 

faba bean from 1.5±0.1m2m-2 to 2.13±0.3m2m-2. From first to the second measurement, in 

chickpea, LAI increased in treatments: Eq.3279, Eq.3283, Sultano, Sultano + Eq.3282 and 

Sultano + Eq.3284; and decreased in Eq.3282 and Eq.3284. The increase in the intercropped 

treatments may be due to the increase in LAI of the Sultano variety. In faba bean, LAI increased 

in Tiffany, decreased in Alexia, Fanfare and Taifun and remained stable in Fuego, GL Emilia and 

Lynxs. 

No statistical difference was assessed either considering CV and the interaction of date*CV in a 

two-way ANOVA (both p > 0.05).  
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Table 1.6. Mean values with corresponding standard error of leaf area index (LAI) measured in chickpea (CH) and 

lentil (LN) on June 23rd and July 2nd, 2021. No statistical difference was assessed. 

Species Treatment 
LAI m2m-2 

June 23rd 2021 July 2nd 2021 

CH 

Eq.3279 1.81 ± 0.14 2.23 ± 0.14 

Eq.3282 2.57 ± 0.12 2.29 ± 0.14 

Eq.3283 2.01 ± 0.16 2.3 ± 0.14 

Eq.3284 1.72 ± 0.32 1.66 ± 0.18 

Sultano 2.26 ± 0.21 2.52 ± 0.22 

Sultano + Eq.3282 2.1 ± 0.09 2.44 ± 0.25 

Sultano + Eq.3284 1.93 ± 0.27 2.32 ± 0.16 

FB 

Alezia 1.7 ± 0.23 1.6 ± 0.11 

Fuego 1.7 ± 0.4 1.72 ± 0.06 

GL Emilia 1.58 ± 0.38 1.6 ± 0.36 

Fanfare 1.75 ± 0.38 1.5 ± 0.1 

Tiffany 1.84 ± 0.43 2.13 ± 0.3 

Lynxs 1.74 ± 0.51 1.76 ± 0.3 

Taifun 1.73 ± 0.37 1.57 ± 0.18 

 

 

3.3 Plant growth measurements at Flowering 

Measurements were done just after flowering on 10/06/2021 considering two cvs per species: 

chickpea Eq.3282 and Sultano; faba bean Taifun and Tiffany; lentil Itaca and Ancia. The cvs 

choice was addressed selecting the most productive ones as recorded in previous year 

experiments conducted in the project network.  

Plant density (PD) of crops is represented in Figure 1.9. Measured values partially match the 

target plant density set at sowing (see Table 1.2). Statistical difference was assessed in chickpea, 

where Sultano reached the target PD of 45 plants m-2 while in Eq.3282 germination was lower 

than expected. 
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Figure 1.9. Plant density (Standings) measured in selected varieties of Chickpea (CH, blue bars), Faba bean (FB, 

blue bars) and lentil (LN, yellow bars) at flowering on 10/06/2021. Significance: * p<0.05; **p<0.01; ***p<0.001; 

otherwise not significant. 

 

Number of leaves per plant are represented in Figure 1.11. Values were similar among varieties, 

~28 leaves plant-1 in chickpea, 14 leaves plant-1 in faba bean and 24 leaves plant-1 in lentil. No 

statistical difference was assessed. 

 

Figure 1.10. Number of leaves per plant measured in selected varieties of Chickpea (CH, blue bars), Faba bean (FB, 

blue bars) and lentil (LN, yellow bars) at flowering on 10/06/2021. No significant differences were assessed. 

 

SLA values measured at flowering are represented in Figure 1.11. Faba bean had the highest 

SLA values (13-14m2kg-1), followed by lentil (10-13m2kg-1), then chickpea (9-10m2kg-1). No 

difference was assessed.  
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Figure 1.11. Specific leaf area measured in selected varieties of Chickpea (CH, blue bars), Faba bean (FB, blue 

bars) and lentil (LN, yellow bars) at flowering on 10/06/2021. No significant differences were assessed. 

 

DWabv values measured at flowering are represented in Figure 1.12. Cultivars were similar 

within each species and no statistical difference was assessed. Faba bean produced the higher 

biomass with ~2.3ton ha-1, followed by lentil then chickpea, with ~1.2ton ha-1 and 0.9ton ha-1, 

respectively. 

 

Figure 1.12. Aboveground dry biomass measured in selected varieties of Chickpea (CH, blue bars), Faba bean (FB, 

blue bars) and lentil (LN, yellow bars) at flowering on 10/06/2021. No significant differences were assessed. 

 

LAI values measured at flowering in the selected varieties of chickpea, faba bean and lentil are 

graphically represented in Figure 1.13. Higher values were measured in faba bean, with 
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approximatively 2m2m-2, while in both chickpea and lentil mean values were lower than 1m2m-2. 

Statistical differences among cultivars of the same species have not been assessed. 

 

 

Figure 1.13. Leaf area index measured in selected varieties of Chickpea (CH, blue bars), Faba bean (FB, blue bars) 

and lentil (LN, yellow bars) at flowering on 03/06/2021. No significant differences were assessed. 

 

3.4 Measurements at harvest 

Mean values with corresponding standard deviations of parameters measured at harvest are 

reported in Table 1.7 and graphically represented in Figures 1.14-1.16. 

DWabv was similar between chickpea and faba bean (Figure 1.14). In chickpea, Sultano had the 

highest DWabv, with 2.54 ± 1.18ton ha-1, while Eq.3279 exhibited the lowest one, 1.40 ± 0.34ton 

ha-1). However, no statistical difference was assessed among the treatments. In faba bean, highest 

DWabv was measured in Tiffany, with 3.25 ± 0.65ton ha-1. Statistical differences (p<0.01) were 

assessed between Tiffany and four underperforming varieties: Alexia, GL Emilia, Fanfare and 

Taifun. 

In terms of yield (Figure 1.15), faba bean varieties of Tiffany and Famfare were the most 

productive, while GL Emilia and Taifun yields significantly lower. Overall, regardless of the 

variety, yield of faba bean was generally low. In chickpea, Sultano and Eq.3282 were the most 

productive, respectively with 1.71 ± 0.50ton ha-1 and 1.67 ± 0.44ton ha-1. These treatments were 
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significantly different from Eq.3283 and Eq.3284, which were the less performing. In 

intercropped treatments of Sultano we measured lower yields, approximatively 0.5ton ha-1 less 

than the pure variety, however no statistical difference was assessed. 

In faba bean, HI was generally low (Figure 1.16). All cvs had mean values of HI lower than 0.3. 

Lowest values were in Taifun (0.14 ± 0.08), significantly different (p < 0.01) from Alexia and 

Fanfare which HI were 0.28 ± 0.09 and 0.30 ± 0.04, respectively. By the other side, all chickpea 

treatments performed well with average values ranging from 0.37 to 0.45. No statistical 

difference was assessed in chickpea. 

 

Table 1.7. Mean values with corresponding standard deviation of yield, aboveground dry biomass of residues and 

harvest index measured at harvest in chickpea (CH) and faba bean (FB) at the end of the growing season 2021 in 

Udine. Statistical differences are denoted by different letters, otherwise not significant. 

Species Treatment 

Aboveground dry 

biomass of residues 

ton ha-1 

Yield  

ton ha-1 
Harvest index 

CP 

Eq.3279 1.40 ± 0.34 1.13 ± 0.25 AB 0.45 ± 0.01 

Eq.3282 2.29 ± 0.52 1.67 ± 0.44 B 0.42 ± 0.04 

Eq.3283 1.67 ± 0.59 1.02 ± 0.40 A 0.38 ± 0.03 

Eq.3284 1.72 ± 0.08 1.03 ± 0.27 A 0.37 ± 0.06 

Sultano 2.54 ± 1.18 1.71 ± 0.50 B 0.41 ± 0.04 

Sultano+Eq.3282 1.82 ± 0.51 1.24 ± 0.22 AB 0.41 ± 0.03 

Sultano+Eq.3284 1.74 ± 0.12 1.20 ± 0.38 AB 0.40 ± 0.06 

FB 

Alexia 1.69 ± 0.65 a 0.64 ± 0.23 ab 0.28 ± 0.09 a 

GL Emilia 1.71 ± 0.82 a 0.35 ± 0.12 a 0.18 ± 0.09 ab 

Fanfare 1.66 ± 0.47 a 0.75 ± 0.36 b 0.30 ± 0.04 a 

Fuego 2.10 ± 0.78 ab 0.50 ± 0.04 ab 0.20 ± 0.06 ab 

Lynxs 2.12 ± 0.36 ab 0.62 ± 0.11 ab 0.23 ± 0.03 ab 

Taifun 1.56 ± 0.54 a 0.29 ± 0.22 a 0.14 ± 0.08 b 

Tiffany 3.25 ± 0.65 b 0.77 ± 0.24 b 0.20 ± 0.08 ab 
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Figure 1.14. Aboveground dry biomass of residues, measured in Chickpea (CH, blue bars) and Faba bean (FB, 

green bars) treatments at harvest. Different letters denote significant differences. “n.s.” = not significant (p > 0.05). 

 

 

Figure 1.15. Yield measured in Chickpea (CH, blue bars) and Faba bean (FB, green bars) treatments at harvest. 

Different letters denote significant differences. “n.s.” = not significant (p > 0.05). 
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Figure 1.16. Harvest Index measured in Chickpea (CH, blue bars) and Faba bean (FB, green bars) treatments at 

harvest. Different letters denote significant differences. “n.s.” = not significant (p > 0.05). 

 

3.5 CHN analysis and protein content 

Results of CHN analysis are reported in Table 1.8 and graphically represented in Figures 1.17-

1.19. 

Protein content of seeds (Figure 1.17) was mostly similar within different treatments of the same 

crop and no statistical difference was assessed. In chickpea, mean values of protein content (PC) 

ranged between 0.18g g-1 and 0.19g g-1, while in faba bean from 0.27g g-1 to 0.32g g-1.  

Protein yield (Figure 1.18) in chickpea was higher in Sultano and Eq.3282, being respectively 

313.2 ± 106.2kg ha-1 and 307.4 ± 89.1kg ha-1. In all other treatments, average protein yields 

ranged from 190.0kg ha-1 in Eq.3284 to 228 ± 48.4kg ha-1 in Sultano + Eq.3282, however we did 

not observe any statistical difference. In faba bean, protein yield was lower in GL Emilia and 

Taifun, with 101.3 ± 59.6kg ha-1 and 91.0 ± 64.4kg ha-1, respectively. These were statistically 

different from the most productive varieties: Fanfare with 240.9 ± 111.8kg ha-1 and Tiffany with 

223.8 ± 47.4kg ha-1. 
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Nitrogen stock of remaining crop residues (kgN ha-1) (Figure 1.19) was generally low in both 

species. In chickpea, higher values were measured in Eq.3282, with 39.3 ± 10.9kg ha-1 and lower 

in Eq.3279, with 22.8 ± 5.9kg ha-1. Despite this difference statistical differences were not 

assessed, probably due to the high variability of data. In faba bean the highest values were 

measured in Lynxs and Tiffany, with 43.3 ± 12.5kg ha-1 and 55.9 ± 14.1kg ha-1, respectively. 

These were significantly different (p < 0.05) from Taifun 24.1 ± 6.1kg ha-1.  

 

Table 1.8. Mean values with corresponding standard deviation of protein content of seeds, protein yield and 

nitrogen stock of residuals measured in chickpea (CH) and faba bean (FB) at the end of the growing season 2021 in 

Udine. Statistical differences are denoted by different letters, otherwise not significant. 

Species Treatment 
Protein content  

g g-1 

Protein yield 

kg ha-1 

Nitrogen stock 

kgN ha-1 

CP 

Eq.3279 0.19 ± 0.01 210.8 ± 62.1 22.8 ± 5.9 

Eq.3282 0.18 ± 0.01 307.4 ± 89.1 39.3 ± 10.9 

Eq.3283 0.19 ± 0.01 197.3 ± 81.1 24.5 ± 11.3 

Eq.3284 0.19 ± 0.02 190.0 ± 43.8 23.7 ± 4.8 

Sultano 0.18 ± 0.01 313.2 ± 106.2 35.0 ± 23.2 

Sultano+Eq.3282 0.18 ± 0.01 228.6 ± 48.4 27.2 ± 15.0 

Sultano+Eq.3284 0.18 ± 0.01 221.4 ± 63.7 24.2 ± 5.2 

FB 

Alexia 0.28 ± 0.03 182.0 ± 67.0 ab 24.4 ± 15.1 ab 

GL Emilia 0.27 ± 0.10 101.3 ± 59.6 a 30.0 ± 16.3 ab 

Fanfare 0.32 ± 0.03 240.9 ± 111.8 b 26.9 ± 9.0 ab 

Fuego 0.28 ± 0.01 139.6 ± 12.7 ab 34.9 ± 9.7 ab 

Lynxs 0.29 ± 0.01 181.1 ± 24.2 ab 43.3 ± 12.5 b 

Taifun 0.31 ± 0.02 91.0 ± 64.4 a 24.1 ± 6.1 a 

Tiffany 0.30 ± 0.03 223.8 ± 47.4 b 55.9 ± 14.1 b 
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Figure 1.17. Protein content of seeds estimated for Chickpea (CH, blue bars) and Faba bean (FB, green bars) 

treatments. No statistical difference was assessed (n.s.). 

 

 

Figure 1.18. Protein yield estimated for Chickpea (CH, blue bars) and Faba bean (FB, green bars) treatments. No 

statistical difference was assessed (n.s.). 
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Figure 1.19. Nitrogen stock of crop residues measured in Chickpea (CH, blue bars) and Faba bean (FB, green bars) 

treatments. Different letters denote significant differences. “n.s.” = not significant (p > 0.05). 

 

3.6 Remote sensing of crops  

Spectral signatures of crops obtained from reflectance data are represented in Figure 1.20. On 

21/05/2021, during crops development, reflectance in the visible spectrum (VIS, 400-700nm) 

was mostly similar among species, with the exception of faba bean, which exhibited higher 

absorption in the red region and higher reflectance of NIR. On 04/06/2021, at flowering, spectral 

signature of all crops followed the same trend, however reflectance in the green and red region 

was slightly lower in faba bean. On 23/06/2021, at early pods maturation, spectral reflectance in 

the infrared region decreased in faba bean and lentil, while in chickpea it followed the same 

trend of the previous measurement. On 05/07/2021, at late pods maturation all crops exhibited a 

similar trend of low reflectance among all spectrum, typical of crops senescence. 
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Figure 1.20. Spectral signature of Chickpea (CH), Faba bean (FB) and Lentil (LN) from multispectral data acquired 

on 4 dates during the growing season in Udine.  

 

NDVI values measured during the growing season are listed in Table 1.9 and graphically 

represented in Figures 1.21-1.23. No statistical difference was assessed for any crop on any date. 

The highest values were recorded in faba bean and lentil approaching flowering stage while in 

chickpea, NDVI increased even after flowering through the end of June. Subsequently, NDVI 

decreased in all crops, as senescence progressed. Looking at standard deviation values and 

comparing 1st and 2nd date with 3rd and 4th, standard deviation values are higher. It is possible 

to comment saying that CVs were affected differently by diseases and weed cover (e.g. disease 

Botrytis affected more Taifun than Tiffany) and weed cover was different in different block and 

this interacted with the CVs effect. Nevertheless, we need to consider that the blocking factor is 
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used to reduce spatial variability and assure the comparability among the treatments. Therefore, 

if weed cover is different among blocks, you can still compare the relative differences among the 

varieties. 

 

Table 1.9. Mean values with corresponding standard deviation of Normalized Difference Vegetation Index (NDVI) 

acquired in chickpea (CH), faba bean (FB) and lentil (LN) on 4 dates during the growing season at: i) crops 

development – 21/05/2021; ii) flowering – 04/06/2021; iii) early pods maturation – 26/06/2021; iv) late pods 

maturation – 05/07/2021. No statistical difference was assessed (p > 0.05). 

 

NDVI 

Species Treatment 21 May ‘21 4 June ‘21 23 June ‘21 5 July ‘21 

CH 

Eq.3279 0.64 ± 0.02 0.78 ± 0.02 0.80 ± 0.02 0.67 ± 0.03 

Eq.3282 0.62 ± 0.02 0.77 ± 0.01 0.86 ± 0.01 0.74 ± 0.05 

Eq.3283 0.62 ± 0.04 0.77 ± 0.02 0.83 ± 0.01 0.74 ± 0.06 

Eq.3284 0.64 ± 0.06 0.76 ± 0.04 0.82 ± 0.01 0.66 ± 0.10 

Sultano 0.59 ± 0.02 0.73 ± 0.02 0.85 ± 0.02 0.75 ± 0.06 

Sult + Eq.3282 0.61 ± 0.04 0.76 ± 0.05 0.84 ± 0.02 0.76 ± 0.06 

Sult + Eq.3284 0.66 ± 0.06 0.79 ± 0.04 0.85 ± 0.01 0.73 ± 0.04 

 

 FB 

Alexia 0.68 ± 0.02 0.80 ± 0.00 0.78 ± 0.02 0.61 ± 0.06 

Emilia 0.71 ± 0.03 0.82 ± 0.01 0.76 ± 0.07 0.62 ± 0.08 

Fanfare 0.73 ± 0.03 0.83 ± 0.02 0.77 ± 0.07 0.64 ± 0.11 

Fuego 0.70 ± 0.06 0.80 ± 0.04 0.78 ± 0.06 0.62 ± 0.10 

Lynxs 0.72 ± 0.02 0.82 ± 0.02 0.78 ± 0.07 0.65 ± 0.12 

Taifun 0.72 ± 0.02 0.82 ± 0.02 0.78 ± 0.06 0.66 ± 0.10 

Tiffany 0.72 ± 0.03 0.83 ± 0.03 0.81 ± 0.05 0.72 ± 0.09 

LN 

Ancia 0.66 ± 0.03 0.81 ± 0.03 0.53 ± 0.06 0.59 ± 0.09 

Flora 0.69 ± 0.02 0.82 ± 0.02 0.59 ± 0.04 0.57 ± 0.07 

Itaca 0.67 ± 0.03 0.80 ± 0.04 0.55 ± 0.10 0.56 ± 0.11 
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Figure 1.21. Normalized Difference Vegetation Index (NDVI) values measured in Chickpea treatments on 4 dates 

during the growing season in Udine. No statistical difference was assessed (n.s.). 

 

 

Figure 1.22. Normalized Difference Vegetation Index (NDVI) values measured in Faba bean treatments on 4 dates 

during the growing season in Udine. No statistical difference was assessed (n.s.). 
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Figure 1.23. Normalized Difference Vegetation Index (NDVI) values measured in Lentil treatments on 4 dates 

during the growing season in Udine. No statistical difference was assessed (n.s.). 
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4 Discussion 

In Italy, and in Europe, there is a lack of research into chickpea in general, and into the breeding 

of the species in particular (Zaccardelli et al. 2010). To improve production stability and grain 

quality, greater efforts should be made to validate cultivars of such crop. An example of this 

activity has been conducted by Zaccardelli et al. (2010), which carried out a genetic selection 

activity aimed to obtain chickpea varieties with higher protein yields and more suitable for 

mechanization.  

In our study, all chickpea varieties performed similarly, and no pre-commercial variety 

performed better than the commercial variety of Sultano. Sultano has been validated as one of 

the best CV for the Italian region, especially south Italy where climatic conditions are generally 

more favorable for this crop (e.g. Pardo et al. 2000, Zaccardelli et al. 2010, 2013, Sellami et al. 

2021). In our study, Sultano yield was estimated approximatively 1.7 t ha-1 with a protein content 

of 18% resulting in a protein yield of 313kg ha-1. In a study conducted in 2012 in south Italy, the 

same variety yielded 2.6ton ha-1 with protein content of 20%, resulting in a protein yield of 540 

kg ha-1 (Zaccardelli et al. 2013).  

Faba bean is an important source of protein in the diets of many regions, especially in the 

Mediterranean area, however, in north of Europe faba bean production is mostly directed 

towards livestock feed. (Jensen et al. 2010). Faba bean is considered one of the most protein-rich 

pulses as its seeds have an average protein content of 29%, reaching up to 35% (Muktadir et al. 

2020). Although, in the last 50 years its production area has significantly decreased, especially in 

Italy, also because of its susceptibility to drought and diseases (Jensen et al. 2010). Hence, the 

urgent need for breeding and selecting varieties adapted to regional situations (Maalouf et al. 

2019). In this study all screened faba bean varieties had poor yields with higher values of 0.77ton 

ha-1 in Tiffany and lowest of 0.29ton ha-1 in Taifun. This result may be attributed to biotic stress. 

In fact, by visual assessment, faba bean plots were indiscriminately affected by diseases, in 
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particular botrytis and coffee rust. Despite that, protein content of seeds was high in all tested 

varieties and ranged from 27% in GL Emilia to 32% in Fanfare. This result is quite promising as 

it confirms the suitability of this crop for facing the challenge of producing large quantities of 

raw material addressed to the production of ingredients for plant-based food. However, a high 

protein content is not a sufficient result if it is not coupled with high yield and grain quality. 

Lentil was not harvested as flowers aborted and plants did not undergo seed formation. This 

problem may be attributed to weather conditions of mid-June, when a prolonged drought period 

coupled with high temperatures occurred. In fact, it is known that under heat stress (prolonged 

temperatures higher than 32°C), lentil flowers tend to abort and not produce seeds (Sehgal et al. 

2021). 

Multispectral data have been widely used coupled with environmental and genotypic traits for 

crop modeling, with interesting applications in breeding (Lake and Sadras 2016). Crops growth 

is traditionally assessed by destructive sampling (Zhang and Flottmann 2016) or with 

morphometric measurements integrating allometric relations (Vega et al. 2001). These methods 

are time consuming and, being destructive, they do not allow to monitor changes in plant growth 

over time (Sadras et al. 2013). Hence, spectral monitoring of crops has been widely adopted as 

an efficient tool to model crops development and the NDVI index has been demonstrated being a 

proxy of crop biomass (Seo et al., 2019), leaf area index (Kross et al., 2015), nitrogen uptake 

(Holzhauser et al., 2022), and yield (Gao et al., 2018). Despite that, limited work has been 

conducted on grain legumes, generally considered more challenging than cereals or oilseeds 

(Sadras et al. 2013). In this study we used multispectral data, in particular the NDVI index, to 

monitor plants development the growing season.  

No difference was assessed among cultivars of the same species at any date. However, these data 

were particularly suitable for monitoring plants development and senescence. In May, NDVI was 

higher in faba bean than in the other crops. This result agrees with field-measured data, 

indicating faba bean as the species with higher plant height and aboveground biomass. At 
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flowering NDVI was similar in all species and after that it is possible to observe different 

responses of crops in terms of stress/senescence. NDVI values decreased rapidly in lentil, 

indicating that crops may have suffered of heat stresses shortly after flowering. In faba bean it 

slowly decreased during June and reached the minimum at beginning of July as plant senescence 

occurred and fungal infections of leaves increased (Botrytis sspp.). In chickpea there was not a 

proper decrease neither in July. This result was expected as chickpea was the later species to 

enter senescence and was harvested at the end of July.  

Our results highlight the suitability and adaptability of these crops in the Friuli Venezia Giulia 

region. Up to our knowledge, the investigated species have been poorly cropped in this territory, 

being reputed low-yielding crops generating reduced incomes for the farmers. Nevertheless, our 

findings support that these species, especially chickpea, may be suitable for being cropped by the 

local farmers. 

The incorporation of minor crops aligns with the broader objectives outlined in the Common 

Agricultural Policy of the European Union. This policy encourages agricultural diversity, 

sustainability, and rural development by promoting crop diversification. Cultural diversification, 

coupled with organic farming practices, is recognized as a crucial strategy to enhance 

environmental sustainability and mitigate the risks associated with market volatility. Therefore, 

our study supports the potential integration of pulse crops, particularly chickpea, into the 

agricultural landscape of the region, aligning with the overarching goals of the Common 

Agricultural Policy. 
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5 Conclusions 

This study provides one of the few pieces of evidence of pulse species and cultivars validation in 

North of Italy. We highlighted the suitability of these crops for this region where up to now they 

are scarcely cultivated. In particular, the most performing species resulted being chickpea, which 

to our knowledge is cropped by a restricted number of farmers (<5) being reputed a low yielding 

crop, generating low income. Our results strongly support the possibility to integrate these crops 

in the current agricultural rotations of the local farmers. Integration of minor crops in is 

considered within the broader framework of supporting agricultural diversity, sustainability and 

rural development stated by the Common Agricultural Policy of the European Union, as it 

promotes the diversification of crops. Cultural diversification, along with organic agriculture 

practises are recognised as pivotal strategies to enhance environmental sustainability and reduce 

the risk of market volatility. 

Among all selected varieties of chickpea, Sultano seems to be the most suitable for this region.  

In faba bean, all cultivars underperformed in terms of yield, however measured protein content 

of seeds was high. More experiments would be suggested to assess different optimization 

practices (e.g, sowing dates, selection of resistant varieties, irrigation management). 

Due to stress-induced abortion of flowers, lentil did not produce grains. Further investigation is 

necessary to assess the suitability of this crop, already present mostly in southern regions of 

Italy. 

Multispectral sensing of crops, in particular the NDVI index was an effective tool for monitoring 

crops development. Since the lack of literature for investigations using remote sensing on pulses 

Further studies may couple spectral sensing with field-measured parameters like diseases 

incidence and severity and water stress. 
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Assessment in Chickpea and Lentil under Anomalous 

Drought Conditions 
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1 Introduction 

Chickpeas is the primary protein source for approximately 20% of the global population and 

ranks as the second largest pulse, following common bean. Worldwide, chickpea production 

exceeds 17 Mton per year and average yield depends on many factors like geographical area, 

sowing period, variety, and nutrient deficiency (Amede et al. 2002, Vanlauwe et al. 2010, Korbu 

et al. 2016, Abdulkadir et al. 2017, Tamene et al. 2017). However, drought stress has been 

addressed as the major limitation for this yield (Vadez et al. 2012).  

Chickpea is mostly cultivated in geographical regions with distinct season variability like India, 

Pakistan, Turkey Ethiopia (Vadez et al. 2021). It is cultivated during the dry winter season 

(Majumdar 2011) and farmers generally rely on water stored in the soil during the rain reason 

(Hajjarpoot et al. 2018). Despite differences among regions, it has been observed that terminal 

water stress occurs in about 60% of the situations and it may reduce crop yield by about 70% 

(Hajjarpoot et al. 2018, Vadez et al. 2021). According to the observed correlation patterns 

between water use efficiency and grain yield, thanks to its vigorous root system, chickpea seems 

to be a crop adapted to mild drought (Palta and Turner 2019), however tolerance is strictly 

dependent on the variety (Krishnamurthy et al. 2013) and the vegetative phase at which drought 

occurs (Kashiwagi et al. 2013). As an example, according to the models developed by Vadez et 

al. (2012), it has been suggested that even a single irrigation event provided during the grain-

filling phase, may increase chickpea yield by over 30%.  

Lentil is a cool-season legume mostly cultivated in the Mediterranean and northern temperate 

regions (Tullu et al. 2011). It is the most important pulse after chickpea, however, its production 

represents 6% of the global pulse production and it is mostly located (~ 70%) in India, Turkey 

and Canada (Alexander 2015). Lentil is usually grown as a rainfed crop, it is considered as a 

stress resistant as it is able to face water deficit and temperature extremes during growth stages 

(Sehgal et al. 2021).  
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Lentil yield ranges between 900 and 1000kg ha-1 (FAO 2005), however it may drastically 

reduce when plants experience drought individually or in combination with high temperatures 

(affecting pollen viability) (Barnabas et al. 2008, Delabunty et al. 2015, Shegal et al. 2017). In 

fact, despite being adapted to drought conditions, water stress can reduce yield by 50% to 70% 

whether coupled with prolonged high temperatures (Delahunty et al. 2015, Mishra et al. 2016, 

Sita et al. 2017). Therefore, the Lentil strategy typically involves stress avoidance, inducing crop 

senescence and early maturity in response to excessive drought or heat stress (Shrestha et al. 

2006). 

The aim of this study is to evaluate the adaptability to extreme drought conditions experienced in 

Udine (NE Italy) of two cultivars of chickpea and lentil differing in terms of maturation period, 

also assessing yield and seeds quality. Furthermore, for one cultivar per species we tested the 

response to a gradient of irrigation conducted during the critical phase of grain-filling. For this 

purpose, we aim to combine the most used agronomical parameters, coupled with vegetation 

assessment by remote with multispectral and thermal data acquired by unmanned aerial system 

(UAS). 
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2 Materials and Methods 

2.1 Study area 

The experiment was conducted during the growing season 2022 in Udine (NE Italy) at the 

experimental farm “A. Servadei” of the University of Udine (46.03°N, 13.22°E), in a field that 

had previously been cultivated with soybean. Study area is shown in Figure 2.1. 

 

 

Figure 2.1. Study area of the experimental trials conducted in the experimental farm of the University of Udine 

during the growing season of 2022.  

 

Soil samples of the top layer (0-30cm) were carried out from 5 different points randomly 

selected in the experimental field. Soil samples were analyzed by Eurofins - Scientific 

Netherlands. Soil was classified as loam (43% sand, 21 % silt, and 25% clay), with 2.3 % of Soil 

Organic Carbon, 7.4 pH and 10 C/N. The soil has high microbial biomass (with low activity) and 
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fungi/bacteria ratio (0.7) is good in the term of the balanced turnover of the SOC. In fact SOC 

balance indicates a steady state supply of C equal to 12.1tC/ha/year, assuming an annual 

mineralization rate of 2.9% of the actual SOC (69t ha-1 in 0-0.25m soil layer). Deficiencies of 

Mn are foreseen for legumes; Fe, Zn, P and K plant available are evaluated rather low. The total 

Soil Water Holding Capacity (SWHC) for 0.25m soil depth is 52 mm and irrigation requirements 

is calculated of 30mm equal to 40% of depleted SWHC. 

 

2.2 Weather conditions 

Weather conditions in Udine during the 2022 growing season were particularly warm and dry 

(Figure 2.1). Compared to long term data (Figure 2.2 and Table 2.1), June and July were warmer, 

with mean temperature of +2.7°C in June and +3.2°C in July. Moreover, 2022 marked an 

anomalous drought year, with cumulative precipitation from March 1st   to July 31st of 237.1mm, 

60% less than the average from the same period (592.3mm).  

 

Figure 2.2. Weather conditions of the growing season in Udine during 2022. Sowing (March 29th and harvest (July 

26th ) are marked by arrows. Data collected by ARPA-OSMER weather station (Udine Sant’Osvaldo). 
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Table 2.1. Monthly comparison of mean temperature (Tmean), maximum temperature (Tmax),cumulative rainfall 

(Rain) and reference evapotranspiration (ET0) values for 2022 in Udine with average values of 2001 – 2021 period. 

Data collected by ARPA-OSMER weather station (Udine Sant’Osvaldo). 

Month 

Average 

Tmean 

°C 

Tmean 

°C 

Average 

Tmax 

°C 

Tmax 

°C 

Average 

rain 

mm 

Rain 

mm 

Average 

ET0 

mm 

ET0 

mm 

March 9.0 8.1 14.4 14.7 108.3 29.5 58.6 67.1 

April 13.4 11.8 19.1 17.3 113.3 88.8 86.0 78.7 

May 17.7 19.6 23.4 25.6 142.1 27.7 116.6 131.7 

June 21.9 24.6 27.8 31.1 116.0 81.4 139.9 162.5 

July 23.7 26.9 29.9 33.9 112.6 9.7 154.8 196.1 

TOT     592.3 237.1 555.9 636.1 

 

 2.3 Experimental design and crop management 

Chickpea (CH) and Lentil (LN) crops were tested considering two experimental factors: variety 

and irrigation amount. Two varieties were tested for each crop: Chickpea cvs Sultano and 

Maragià; lentil cvs. Itaca and Elsa. All varieties were provided by AgroService SpA, Italy.  

Chickpea Sultano and lentil Itaca were tested under four different post-flowering irrigation 

volumes defined as an increasing fraction of Full Irrigation (FI) of 30mm as follows: i) No 

irrigation (NI); ii) 10mm equivalent to 1/3 of Full Irrigation (1/3 FI); iii) 20mm equivalent to 2/3 

of FI (2/3 FI); iv) 30mm equivalent to Full Irrigation (FI). Full Irrigation of 30 mm is equivalent 

to 40% of the Soil Plant Available Water (i.e., the readily available soil water) in the 30cm upper 

soil layer. This amount was estimated by implementing a water retention soil model with soil 

characteristics and measured values of soil water content (see chapter 2). The irrigation dates 

were defined when the sum of daily reference crop Evapotranspiration (ET; Penman-Monteith 

equation in FAO56) was equal to 30mm. The irrigation dates resulted as it follows: June 16th, 

June 21st and June 28th.  

A detailed scheme of treatments is reported in Table 2.2. 

A total of 20 plots per species were sown, arranged according to a systematic experimental 

design replicated for 3+1 blocks, where all treatments were present in 3 out of 4 blocks, while 
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the last block was composed by varietal treatments only. Chickpea was sown in 15.2m2 plots (4 

rows with a row-distance of 0.38m at a length of 10m) at target plant density 60 plants m-2, while 

lentil was sown in 12m2 plots (8 rows with a row-distance of 0.15m at a length of 10m) with 250 

plants m2. 

 

Table 2.2. Summary of tested species with corresponding varieties, irrigation treatments, thousand seeds weight 

(TSW), germination percentage (G%), target plant densities and number of replicates. 

Species Variety 
Irrigation 

treatment 
TSW, g G% 

Target plant 

density 

# m-2 

Replicates 

Chickpea 

Maragià NI 393.9 80 

50 

4 

Sultano 

NI 

275.6 90 

7 

1/3 FI 3 

2/3 FI 3 

FI 3 

Lentil 

Elsa NI 49.4 85 

250 

4 

Itaca 

NI 

33.5 85 

7 

1/3 FI 3 

2/3 FI 3 

FI 3 

 

Crops were sown on 28/03/2022. Sown seeds amount was defined according to values of 

thousand seeds weight (TSW, g), germination rate (G%) and targeted plant density (see Table 

2.2). Target plant densities (plants m-2) were chickpea: 50; lentil: 250. Sown seeds were 

inoculated with specific Rhizobia; chickpea was inoculated with Mesorhizobium ciceri and lentil 

with Rhizobium leguminosarum. Rhizobia, provided by Agrifutur S.r.l. (Alfianello-Brescia, IT). 

Emergence was completed on 19/04/2022, while flowering occurred differently according to the 

variety, from 23/05/2022 to 30/05/2022. Harvest differed according to species and irrigation 

treatments. lentil was harvested from 06/07/2022 to 26/07/2022, while chickpea from 18/07/2022 

to 26/07/2022. 
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An emergency irrigation of 10mm was performed on all plots on 23/05/2023, while irrigation 

treatments were conducted on three dates in the second half of June: 16/06/2022, 21/06/2022, 

and 28/06/2022. 

Crops were grown under organic practices; no fertilization was applied, and weeding was weekly 

performed from beginning of May to half June through hand hoeing. 

 

2.4 Field measurements 

Soil water content (SWC, m2m-2) was monitored and analyzed continuously in real time from 

10/06/2022 to 20/07/2022. For this 6 ZL6 dataloggers with 22 EC-5 volumetric soil moisture 

sensors ((METER Group, Pullman, WA, USA)), were distributed at a depth of 15cm, among 

different irrigation treatments. 

Three aboveground biomass samplings have been conducted during the growing season, on: 

26/05/2022, 01/06/2022 and 15/06/2022. For each sampling we sampled an area of 0.38m2 in 

chickpea (2 rows with row-distance of 0.38m at a length of 0.5m) and 0.30m2 in lentil (4 rows 

with row-distance of 0.15m at a length of 0.5m). Aboveground fresh biomass (FW, kg m-1) was 

measured immediately with a field scale. Samples were then oven-dried at 70°C for 72h to 

measure aboveground dry biomass (DW, kg m-2). Crops dry matter content (DMC, g g-1) was 

then calculated as the ratio between DW and FW. 

Leaf Area Index (LAI, m2m-2) was monitored from flowering to harvest. A total of 6 

measurements were conducted, on: 26/05/2022, 01/6/2022, 07/06/2022, 15/06/2022, 21/06/2022 

and 28/06/2022. Measurements were done with the LI-COR LAI-2200C Plant Canopy Analizer. 

For each plot 2 sets of 10 measurements per row were conducted, following the diagonal 

transects’ protocol for row crops specified by the producer. 

Harvest was conducted differently according to the variety and the irrigation treatment. Harvests 

were done in the following order: lentil cv Elsa on 04/07/2022; lentil cv Itaca NI on 06/07/2022; 
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lentil 1/3 FI on 11/07/2022; chickpea cvs Maragià, Sultano NI and 1/3 FI on 18/07/2022; lentil 

and chickpea 2/3 FI and FI on 26/07/2022.  

For each plot, plant density (PD, plants m-2) was measured in a sampling area on 0.76m2 in 

chickpea (2 rows with row-distance of 0.38m at a length of 1m) and 0.3m2 in lentil (4 rows with 

row-distance of 0.15m at a length of 0.5m). A larger area of 1.52m2 in chickpea (2 rows with 

row-distance of 0.38m at a length of 2m) and 1.20m2 in lentil (4 rows with row-distance of 

0.15m at a length of 2m) was then sampled to measure DW and yield. Harvest Index (HI) was 

then calculated as: 

𝐻𝐼 =  
𝑦𝑖𝑒𝑙𝑑

𝑦𝑖𝑒𝑙𝑑 + 𝐷𝑊
 

 

2.5 CHN analysis and protein content 

Dry samples of crop residues and seeds were grounded into a fine powder with a ball mill to 

ensure uniformity in the sample. Nitrogen content (NC, g g-1) was then measured using Dumas’ 

combustion using a CN Elemental Analyser (Vario Microcube, © Elementar) coupled to a stable 

isotope ratio mass spectrometer (IRMS; Isoprime 100, © Elementar). 

A subsample of grounded samples was oven-dried at 120°C for 48h to determine the residual 

water content and subsequently correct the CHN measurements.  

Protein content (PC, g g-1) of seeds was then estimated as: 

𝑃𝐶 = 𝑁𝑐 ∗ 6.25 

where Nc is the Nitrogen content of seeds (g g-1) and 6.25 is the conversion factor to estimate the 

protein content based on the assumption that, on average, proteins contain approximately 16% 

Nitrogen. 

Protein yield (ton ha-1) was calculated as the product of yield for PC and Nitrogen stock (kg ha-1) 

as DW for NC. 
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2.6 Remote sensing of crops 

Multispectral data was periodically acquired with an unmanned aerial system (UAS) on a total of 

7 dates during growing season, on: 02/05/2022, 26/05/2022, 01/06/2022, 08/06/2022, 

15/06/2022, 30/06/2022 and 04/07/2022. Flights were conducted at 11:00 a.m. (LST) with a DJI 

P4 Multispectral drone equipped with 5 monochromatic sensors, acquiring reflected radiation in: 

Blue (450±16nm), Green (560±16nm), Red (650±16nm), Red-Edge (RE, 730±16nm) and Near-

Infrared (NIR, 840±26nm). Pictures of a Parrot official calibrated reflectance panel were also 

acquired before and after each flight, in order to correct the acquired images on the day’s lighting 

conditions and compare the results of different flights. Spectral data were mapped with spatial 

resolution of 2cm using Pix4D software. Georeferenced maps of the plots were created with R 

v2.0.1 software (R Core Team, 2021) with raster, tiff and rgdal libraries (Hijmans et al. 2013, 

Urbanek 2013, Bivand et al. 2021). In particular, the central area of each plot was cropped with 

vector masks of 0.76x6m in chickpea and 0.6x6m in lentil. Data were used to calculate the 

Normalized Difference Vegetation Index (NDVI, Rouse et al. 1974) as: 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

To prevent possible biases due to inhomogeneous or incomplete soil cover between rows, pixels 

with NDVI value lower than 0.05 were excluded.   

Crops’ Thermal data were also acquired with a Parrot ANAFI thermal drone, equipped with a 

Forward Looking Infrared (FLIR) Lepton 3.5 module camera on: 15/06/2022, 30/06/2022 and 

04/07/2022. Data acquisition was conducted immediately after multispectral data acquisition, 

and the geoprocessing was conducted with the same method. 

 

2.7 Statistical analysis 

All statistical analyses were conducted with the R v2.0.1 software (R Core Team 2021). Due to 

issues in data normality, homoscedasticity and inhomogeneity in data abundance, differences 
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among treatments of the same species were tested with Kruskal-Wallis H test and Dunn's Test 

for Multiple Comparisons as post hoc. 
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3 Results 

3.1 Soil water content 

Trends in soil water content during the 2022 growing season are represented in Figures 2.4-2.5. 

After irrigation in chickpea, SWC was higher in the irrigation treatment at FI, while in lentil 

measured values were similar among all treatments. 

 

Figure 2.4. Soil water content (15cm) measured during the growing season 2022 in Udine, in fields cultivated with 

Chickpea (CH) under different irrigation treatments. 

 

 

Figure 2.5. Soil water content (15cm) measured during the growing season 2022 in Udine, in fields cultivated with 

Lentil (LN) under different irrigation treatments. 
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3.2 Crop phenology and development 

Crops phenological development stages with corresponding thermal sums are reported in Table 

2.3. Phenological development was different among varieties. Among varietal treatments, 

chickpea cv Maragià and lentil cv Elsa reached flowering and harvest maturity earlier than 

chickpea cv Sultano and lentil cv Itaca. Since irrigation treatments were conducted after 

flowering, differences in phenological development occurred in terms of harvest maturity date, 

which was delayed as far as irrigation intensity increased. 

Trends in aboveground dry biomass measured during the growing season are graphically 

represented in Figures 2.6-2.7. No statistical difference was assessed between different 

treatments both in chickpea and lentil, however, it has to be noted that all measurements were 

conducted before the start of irrigation. In both species, highest values of DW were reached on 

15/06/2022. chickpea cv Maragià had a DW of 4.8±0.6ton ha-1 while cv Sultano ranged from 

4.4±0.6ton ha-1 to 5.4±1.4ton ha-1. In LN, cv Elsa had a DW of 4.6±0.4ton ha-1, while cv Itaca 

ranged from 4.8±0.6ton ha-1 to 5.7±0.4ton ha-1. 

Trends of dry matter content measured during the growing season are graphically represented in 

Figures 2.8-2.9. No statistical difference was assessed. As for DW, all measurements of DMC 

were conducted before the start of irrigation, hence all plots from different irrigation treatments 

follow the same trend. In lentil, DMC was tendentially higher in cv Elsa then Itaca, however 

difference is not statistically significant. 

Trends in LAI measured during the growing season are graphically represented in Figures 2.10-

2.11. In chickpea, higher values were measured at flowering, on 07/06/2022, when LAI was 

3.3±0.7m2m-2 in cv Maragià and ranged from 3.0±0.6m2m-2 to 3.2±0.4m2m-2 in cv Sultano. After 

irrigation treatments started, LAI decreased below 3m2m-2 in all treatments but irrigation 2/3 FI 

and irrigation FI, where trends in LAI remained stable. In lentil, higher values were measured 
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after flowering, on 15/06/2022, when LAI was 4.1±0.5m2m-2 in cv Elsa and ranged from 

3.7±0.3m2m-2 to 4.0±0.4m2m-2 in cv Itaca. 

 

Table 2.3. Overview of crops development during the growing season 2022 in Udine. For each phenological stage 

are reported the average date and corresponding Growing Degree Days (GDDs, base temperature = 0°C). 
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Figure 2.6. Aboveground dry biomass of chickpea (CH) treatments, measured during the 2022 growing season in 

Udine.  No statistical difference was assessed. 

 

 

Figure 2.7. Aboveground dry biomass of lentil (LN) treatments, measured during the 2022 growing season in 

Udine. No statistical difference was assessed. 
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Figure 2.8. Dry matter content of chickpea (CH) treatments, measured during the 2022 growing season in Udine.  

No statistical difference was assessed. 

 

 

Figure 2.9. Dry matter content of lentil (LN) treatments, measured during the 2022 growing season in Udine.  No 

statistical difference was assessed. 
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Figure 2.10. Leaf area index of chickpea (CH) treatments, measured during the 2022 growing season in Udine.  No 

statistical difference was assessed. Vertical bars correspond to days when irrigation treatment was provided. 

 

 

Figure 2.10. Leaf area index of lentil (LN) treatments, measured during the 2022 growing season in Udine.  No 

statistical difference was assessed. Vertical bars correspond to days when irrigation treatment was provided. 
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3.3 Harvest 

Plant density of crops is shown in Figure 2.11. Measured plant density corresponded to target 

plant densities (See Table 2.2). In chickpea, PD ranged from 50.9±7.7 plant m-2 (Sultano 1/3 FI) 

to 63.9±10.0 (Sultano NI), while in lentil from 232.5±67.8 (Elsa) to 287.8±35.3 (Itaca 1/3 FI). 

There was no statistical difference among treatments of the same species (p>0.05). 

 

 

Figure 2.11. Plant density of chickpea (CH) and lentil (LN) treatments, measured at harvest at the end of the 

growing season 2022 in Udine. No statistical difference was assessed (n.s.). 

 

Aboveground dry biomass measured at harvest is represented in Figure 2.12.  For both chickpea 

and lentil, irrigation treatments were significantly higher than not irrigated ones. However, no 

difference occurred among different irrigations. 

Yield measured at harvest is represented in Figure 2.13. Yield was tendentially higher in 

irrigated treatments, however, no statistical difference was assessed. In chickpea, yield was 

lower in cv Sultano not irrigated, with 2.0±0.4ton ha-1 and increased up to 2.8±0.2ton ha-1 in the 

irrigation at FI treatment. In lentil, lower values were measured in cv Elsa, with 0.9±0.1ton ha-1, 
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statistically different from cv Itaca under irrigation, which higher values were assessed in 

irrigation at 1/3 FI with 1.7±0.4ton ha-1. 

 

Figure 2.12. Aboveground dry biomass of chickpea (CH) and lentil (LN) treatments, measured at harvest at the end 

of the growing season 2022 in Udine. Statistical differences are denoted by different letters. *: p<0.05; **: p<0.01; 

***:p < 0.001. 

 

 

Figure 2.13. Yield of chickpea (CH) and lentil (LN) treatments, measured at harvest at the end of the growing 

season 2022 in Udine. Statistical differences are denoted by different letters. *: p<0.05; **: p<0.01; ***:p < 0.001; 

n.s.: not significant (p>0.05). 
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Harvest Index of chickpea and lentil treatments is reported in Figure 2.14. There were no 

statistical differences among treatments. In chickpea, HI ranged from 0.49±0.05 in cv Sultano 

irrigated 2/3 FI, to 0.58±0.05 in cv Maragià. In lentil, minimum values were observed in cv Elsa, 

with 0.34±0.04 and higher in cv Itaca not irrigated, with 0.41±0.03. 

 

Figure 2.14. Harvest Index calculated for chickpea (CH) and lentil (LN) treatments grown in Udine during the 

growing season 2022. No statistical difference was assessed (n.s., p>0.05) 

 

3.4 CHN analysis and protein content 

Results of CHN analysis are reported in Table 2.4 and graphically represented in Figures 2.15-

2.17. The protein content of seeds (Figure 2.15) was consistent across treatments of chickpea, 

which values ranged from 0.19±0.01g g-1 in cv Sultano irrigation 2/3 FI to 0.2±0.01g g-1 in the 

not-irrigated treatment of the same variety. On the contrary, significant differences were assessed 

in lentil, where protein content tended to decrease as the irrigation intensity increased. Minimum 

values were recorded in cv Itaca at FI with 0.23±0.01g g-1, while highest value in both cvs Itaca 

and Elsa not irrigated, with 0.26±0.01g g-1. 

Protein yield (Figure 2.16) was mostly similar among treatments in chickpea and no statistical 

difference was assessed. Lowest protein yield was measured in cvs Sultano and Maragià with 
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respectively 0.43±0.11ton ha-1 and 0.43±0.08ton ha-1, while higher value was measured in cv 

Sultano irrigated FI, with 0.56±0.07ton ha-1. In lentil, despite differences in protein content, 

protein yield was mostly driven by grain yield of different treatments. The cv Elsa was 

statistically different from all the other treatments, while no difference was assessed among 

irrigation treatments. Protein yield of Elsa was 0.22±0.04ton ha-1, while in Itaca it ranged from 

0.35±0.04ton ha-1 in the NI treatment, to 0.42±0.07ton ha-1 in 1/3 FI. 

In both species, Nitrogen stock (Figure 2.17) increase according to the irrigation intensity. In 

chickpea lower values were recorded in the NI treatments, with 15.1±3.5kg ha-1 in Maragià and 

15.9±2.4kg ha-1 in Sultano. These were statistically different from irrigation treatments at 2/3 FI 

and FI, with 23.5±0.4kg ha-1 and 24.1±6.1kg ha-1, respectively. In lentil values were generally 

higher than chickpea. Lowest Nitrogen stock ranged from 24.4±3.5kg ha-1 in n cv Elsa, to 

44.4±8.5kg ha-1 in Itaca 2/3 FI. 

 

Table 2.4. Mean values with corresponding standard deviation of protein content of seeds, protein yield and 

nitrogen stock of residuals measured in chickpea (CH) and lentil (LN) at the end of the growing season 2022 in 

Udine. Statistical differences are denoted by different letters, otherwise not significant. 

Species Treatment 
Protein content 

g g-1 

Protein Yield 

ton ha-1 

Nitrogen stock 

kg/ha 

CH 

Maragià 0.20±0.02 0.43±0.11 15.1±3.5 A 

Sultano NI 0.21±0.01 0.43±0.08 15.9±2.4 A 

Sultano 1/3 FI 0.20±0.01 0.53±0.03 18.0±1.0 AB 

Sultano 2/3 FI 0.19±0.01 0.47±0.05 23.5±0.4 B 

Sultano FI 0.20±0.01 0.56±0.07 24.1±6.1 B 

LN 

Elsa 0.26±0.01 a 0.22±0.04 a 24.4±3.5 a 

Itaca NI 0.26±0.01 a 0.35±0.04 b 25.0±4.7 a 

Itaca 1/3 FI 0.25±0.02 ab 0.42±0.07 b 34.8±8.1 b 

Itaca 2/3 FI 0.24±0.01 b 0.40±0.04 b 44.4±8.5 b 

Itaca FI 0.23±0.01 b 0.34±0.09 b 41.0±6.3 b 
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Figure 2.15. Protein content of seeds estimated for chickpea (CH, blue bars) and lentil (LN, yellow bars) treatments. 

No statistical difference was assessed (n.s.). 

 

 

Figure 2.16. Protein yield estimated for chickpea (CH, blue bars) and lentil (LN, yellow bars) treatments. Different 

letters denote significant differences. “n.s.” = not significant (p > 0.05). 
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Figure 2.17. Nitrogen stock of crop residues measured in chickpea (CH, blue bars) and lentil (LN, yellow bars) 

treatments. Different letters denote significant differences. 

 

3.5 Remote sensing of crops 

Values of NDVI measured during the growing season are listed in Table 2.4 and graphically 

represented in Figures 2.18-2.19. In chickpea, NDVI increased until it reached a plateau of 

approximately 0.80 around flowering (26/05/2022). Subsequently, the values slowly incremented 

and reached the maximum of 0.85 in all treatments on 15/06/2022. After irrigation started trend 

in NDVI decreased according to the irrigation intensity. Statistical differences were assessed 

both on 30/06/2022 and 04/07/2022. In particular, NI treatments of both cvs Sultano and 

Maragià were significantly different from irrigation treatments at 2/3 FI and FI. Moreover, 

irrigation at FI was statistically different from irrigation 2/3 FI and maintained an average NDVI 

of 0.75±0.03, still close to values at flowering. In lentil, NDVI values followed the same trends 

of chickpea. A plateau of around 0.8 was reached at flowering and maintained among the whole 

growing up to the beginning of irrigation. Decrease in NDVI began at first in cv Elsa, which was 

significantly different from the other treatments already on15/06/2022. After irrigation, decrease 
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in values was less pronounced with higher irrigation intensities. NI treatments were significantly 

lower than irrigation treatments and on 04/07/2022, Itaca 2/3 FI and FI were even significantly 

different from 1/3 FI. 

 

Figure 2.18. Normalized Difference Vegetation Index (NDVI) of chickpea (CH) treatments, measured during the 

2022 growing season in Udine. Vertical bars correspond to days when irrigation treatment was provided. *: p<0.05; 

**: p<0.01; ***: p<0.001, otherwise not significant. 

 

Figure 2.19. Normalized Difference Vegetation Index (NDVI) of lentil (LN) treatments, measured during the 2022 

growing season in Udine. Vertical bars correspond to days when irrigation treatment was provided. *: p<0.05; **: 

p<0.01; ***: p<0.001, otherwise not significant. 
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Table 2.4. Mean values with corresponding standard deviation of Normalized Difference Vegetation Index (NDV), 

measured in chickpea (CH) and lentil (LN) treatments during the growing season 2022 in Udine. Statistical 

differences are denoted by different letters, otherwise not significant. 
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Mean values and corresponding standard deviations of the difference between remotely sensed 

canopy temperature and air temperature (ΔT, °C) are listed in Table 2.5 and graphically 

represented in Figures 2.20-2.21. Data of lentil cv Itaca irrigated FI were discarded due to 

anomalous values abundance in UAS output. First measurement was conducted before starting 

the irrigation treatments and the last one (04/07/2022) six days after last irrigation. This period 

was particularly dry and hot, cumulative rainfall was 56.4mm, divided in two rainfall events of 

47.9mm (23/06/2022) and 6.9mm (21/06/2022), while the remaining precipitation occurred in 5 

different days with precipitation from 0.1mm to 0.6mm. Average minimum, mean and maximum 

temperatures were respectively 19.4°C, 26.2°C and 32.3°C. In chickpea (Figure 2.20), there was 

no difference before the start of irrigation, while the gap between irrigated and not irrigated 

treatments increased and ΔT in NI treatments were significantly higher than the irrigated ones. In 

lentil (Figure 2.21), differences between Elsa and Itaca occurred already before irrigation was 

provided. Then, ΔT of irrigated treatments were significantly lower than the NI ones. 

Table 2.5. Mean values with corresponding standard deviation of the difference between remptely sensed canopy 

temperature and air temperature (ΔT, °C), measured in chickpea (CH) and lentil (LN) treatments during the growing 

season 2022 in Udine. Statistical differences are denoted by different letters, otherwise not significant. 

Species Treatment 

ΔT, °C 

15/06/2022 30/06/2022 04/07/2022 

CH 

Maragià -1.1±0.7 4.0±3.2 AB 6.9±1.7 A 

Sultano NI -1.0±0.9 5.8±2.4 A 7.1±1.1 A 

Sultano 1/3 FI -1.8±0.5 2.6±1.5 AB 3.5±1.5 B 

Sultano 2/3 FI -1.0±0.3 0.8±0.8 B 0.4±1.0 B 

Sultano FI -1.0±0.7 -0.2±0.4 B 0.1±1.3 B 

LN 

Elsa 5.2±0.8 a 11.1±1.6 a 11.3±0.5 a 

Itaca NI 4.21±0.6 ab 10.8±1.8 a 10.8±1.7 a 

Itaca 1/3 FI 3.7±0.5 b 5.8±1.2 b 8.4±1.6 b 

Itaca 2/3 FI 3.1±0.3 b 3.1±0.5 c 6.1±0.8 b 

Itaca FI 3.9±0.1 b 2.0±0.9 c - 
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Figure 2.20. Difference between remotely sensed canopy temperature and air temperature (ΔT, °C) of chickpea 

(CH) treatments during the 2022 growing season in Udine. Vertical bars correspond to days when irrigation 

treatment was provided. *: p<0.05; **: p<0.01; ***: p<0.001, otherwise not significant. 

 

 

Figure 2.21. Difference between remotely sensed canopy temperature and air temperature (ΔT, °C) of lentil (LN) 

treatments during the 2022 growing season in Udine. Vertical bars correspond to days when irrigation treatment was 

provided. *: p<0.05; **: p<0.01; ***: p<0.001. 
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4 Discussion 

This study evaluates the performance of chickpea and lentil grown during the 2022 growing 

season in Udine, a year marked by extraordinary drought conditions. From sowing to harvest, 

cumulative precipitation was 234mm and the mean temperature was 19.8°C, with maximum 

temperatures exceeding 30°C on 46 out of the 121 days of cycle. Irrigation treatments started on 

16 June after 20 and 24 days flowering chickpea and lentil respectively (i.e., during the grain-

filling phase). There is no consensus if the drought occurring after flowering is the most critical 

for these crops (Sehgal et al. 2021, Vadez et al. 2021) or not (Sadras and Calderini 2020). 

Compared to the previous year 2021 (see Chapter 1), our results are quite promising and support 

the hypothesis that these crops are suitable for North of Italy, as they can ensure a satisfactory 

harvest even facing anomalous drought conditions. In fact, even if yields were slightly lower in 

growing season 2022 compared to 2021, no difference was observed between the no-irrigated 

and irrigated treatments. 

In chickpea, all treatments had yield higher than 2t ha-1 with high values of HI (>0.5) and protein 

content (~0.20) and showed a typical and stable TSW for each CV tested. None of the yield 

factors measured in cv Sultano (i.e. Plant density, TSW and seeds/plant not discussed here) was 

affected by the tested irrigation treatments. These results support the observations of the previous 

year except for the slightly lower yield, which may be attributed to the experienced stress before 

flowering and irrigation. An evident effect of irrigation was the delay of maturity observed for 

the 2/3FI and FI irrigated treatments. In fact, under drought conditions, chickpea tends to 

implement an avoidance strategy by reducing the duration of the seed formation phase 

(Devasirvatham and Tan 2018). This hypothesis is supported by the lower DWABV of the not-

irrigated chickpea at harvest.  

In irrigated treatments, it was observed an elongation of the flowering period, inducing new 

flowers and pods formation. This caused a phenomenon of seed maturity shifting, leading to 
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negative impacts in the quality of the harvest. This result confirms the observations of Mbarek et 

al. (2012) which tested various irrigation treatments and on eight varieties of Kabuli chickpea in 

Tunisia. By their result, they observed that despite being flowering regulated by genotype (Ellis 

et al. 1994), photoperiod and temperature (Roberts et al. 1995), irrigation amount may play a 

crucial role in flowering and maturity phases duration, with significant impacts in terms of seed 

quality production (Mbarek and Boujelben 2012). 

Despite the drought conditions of the 2022 growing season, not-irrigated lentil reached harvest 

maturity with a satisfying production. Average yields of not irrigated lentil were 0.85ton ha-1 in 

Elsa and 1.28 t ha-1 in Itaca, reaching up to 1.68 t ha-1 with irrigation. However, no difference 

was observed between not irrigated and irrigated treatments of Itaca. These results are quite 

promising, especially considering that in the previous year lentil was not harvested as drought 

conditions caused flowering abortion and did not produce grains (see Chapter 1). Moreover, 

irrigation had a notable effect on delaying the canopy senescence (see NDVI in fig. 2.19) and the 

harvest maturity. Not-irrigated Itaca was harvested on 06/07/2022 at 1867°C d-1, while 

treatments at 2/3 FI and FI were harvested on 26/07/2023 at 2397°C d-1. This result and NDVI 

confirm that the drought-resistance strategy of lentil typically involves drought or heat stress 

avoidance strategy by inducing crop senescence and early maturity (Shrestha et al. 2006). The 

irrigation did not affect any of the yield components factors measured in cv Itaca (i.e. Plant 

density, TSW and seeds/plant not discussed here).  

A noteworthy result is the protein content of lentil seeds. Higher values (26%,) were measured in 

the NI treatment of Itaca, while with irrigation, the protein content decreased up to 23% in the FI 

treatment. These values of protein contents range from 20.6% to 31.4% and support evidences 

reported in literature (e.g., Jarpa-Parra 2018). The decrease in protein content with increasing 

irrigation can be attributed to its effect of delaying protein accumulation while new seeds are 

setting-up. This irrigation effect on protein content was not observed for chickpea (see table 2.4). 

This phenomenon has been already reported for grain legumes (Farah et al. 1988, Silim et al. 
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1993, Thomson et al. 1997, and it is generally seen as a positive impact, as it usually leads to 

higher yields (Silim et al. 1993). Effectively, also in our study, even if it was not significant, it 

was observed an increase in yield which also leaded to a higher protein yield. However, it has to 

be taken into consideration that irrigation had a significant impact in terms of seed quality 

production, when a low protein content is a concern for the following steps of seed processing 

(e.g., protein extraction).  

As already stated in Chapter 1, scientific literature lacks evidence about using remote sensing 

data on grain legumes, as they are generally considered more challenging than other crops like 

cereals or oilseeds (Sadras et al. 2013). In this study, we used multispectral (NDVI index) and 

thermal data, to monitor crops performance during the growing season. For both crops it is 

possible to observe a divergence in NDVI trends among irrigation treatments. In fact, it is 

possible to observe varying senescence patterns caused by irrigation, with NDVI values 

decreasing faster in treatments receiving lower irrigation volumes. The suitability of MSP data 

and in particular of the NDVI index for detecting crop maturity monitoring has been 

demonstrated for several crops (Xie and Yand 2020), however evidence on chickpea and lentil 

are still few (Sankaran et al. 2015). Detecting senescence is however an important parameter to 

investigate, with important application in breeding activity (e.g. Lanke and Sadras 2016) and 

crop modeling (Lindsey et al. 2020). A detailed analysis of these data and their relationship with 

agronomic variables is reported in Chapter 3. 

Remotely sensed thermal data provided interesting insights for assessing varying levels of water 

stress among the treatments. In fact, the difference between canopy and air temperature (ΔT), 

significantly increased in the non-irrigated treatments, with ΔT being lower in the plots that 

received the higher irrigation amounts. This result agrees with many studies that have evaluated 

remotely sensed thermal data as a promising technology for monitoring and assessing crop water 

status (Khanal et al. 2017). Ezenne et al. (2019) used frequently measured thermal data to 

calculate a Crop Water Stress Index (CWSI) for monitoring and assessing crop water status. In a 
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recent study (Olivera-Guerra et al. 2020) long term series of remotely sensed thermal data by 

UAS and satellite, were used to implement an evapotranspiration model for estimating timing 

and amount of irrigation for crops. These data were coupled with derived water stress coefficient 

(Kc) to produce a very accurate model (R = 0.95). The results presented here may not be 

sufficient for modeling purposes. However, they offer valuable initial insights into the suitability 

of this technology for grain legumes, particularly chickpea and lentil, where literature is still 

limited. 
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5 Conclusions 

This study provides new evidence about irrigation of chickpea and lentil in North of Italy. The 

aim of this study was to evaluate the adaptability to extreme drought conditions experienced in 

NE Italy of chickpea and lentil. This was obtained by testing the performance of such crops 

treated under a gradient of irrigation conducted during the critical phase of grain-filling. This 

research was valuable for understanding the water requirements and drought tolerance of these 

crops, particularly in this region where the increasing occurrence of drought conditions during 

the summer period is a major concern.  

Our results support the adaptability of chickpea and lentil for this region (see chapter 1) and 

support the suitability of introducing these species in the agricultural rotations of the local 

farmers. In fact, despite the experienced conditions of prolonged drought of year 2022, coupled 

with high temperatures, both species performed well, and it has not been observed a statistical 

difference of yield between not-irrigated and irrigated treatments. 

 Chickpea yielded around 2.3ton ha-1 with an average protein content of 20% resulting in an 

overall protein yield of 480kg ha-1. Lentil yielded around 1.4ton ha-1 with an average protein 

content of 25% resulting in an overall protein yield of 350kg ha-1. 

In both crops, irrigation influenced crop phenology by extending the duration of the flowering 

seed setting and ripening stages.  

Only in lentil, this phenomenon resulted in a decrease of seed protein content as irrigation 

amounts increased.  

Use of remote sensing data was effective in monitoring crops development. The NDVI index and 

remotely sensed canopy temperature were efficient in detecting differences among treatments in 

term of senescence and water stress respectively. Future studies are suggested for relating such 

data with more accurate ground truth measurements of soil water status and crop responses. 
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Chapted 3. UAV remote sensing of agronomic 

parameters and yield in chickpea and lentil 

Keywords: grain legume, vegetation index, biomass, LAI, UAV 

 

 

Abstract 

Grain legumes cropping has been purposed as a pivotal practise for facing future issues in terms 

of food security and agroecosystem stability. Despite the importance of such cultures, literature 

lack of knowledge in monitoring grain legumes performance with remote sensing data. Hence, 

this study investigates these aspects in Chickpea (CH) and Lentil (LN), grown in Udine (Italy) 

during the growing season 2022. Crop dry biomass (BMAG), dry matter content (DMC) and leaf 

area index (LAI) were correlated with multispectral data acquired by unmanned aerial vehicle 

(UAV) on seven dates during the growing season. Near-infrared (NIR) band performed as the 

best proxy of LAI, while for DMC, best correlation was obtained with Normalized Difference 

Chlorophyll index (NDI). BMAG also was correlated with NDI, and correlation strength 

improved by implementing the cumulative elaboration of the index. Cumulative indices 

performed also as proxies of yield; best index was Modified Green-Red Vegetation Index 

(MGRVI). 
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1 Introduction 

The foreseen increase in drought occurrence and water scarcity due to climate change is 

expected to cause substantial reductions in crop yield, with consequent impacts for food 

availability and the economic system (Mabhaudhi et al., 2019). Since their high nutritional 

values, grain legumes have been proposed as a sustainable substitute for animal derived protein 

to promote food security and foster other agroecosystem services (Tilman et al., 2002). Chickpea 

and Lentil are currently two of the most important pulses cropped worldwide (De Ron et al., 

2017). Chickpea is ranked third in the global pulses production. Its use has widely increased in 

recent decades reaching a global production of over 17 Mt in 2018 (Grasso et al., 2022). Lentil is 

the fourth most important grain legume worldwide. Its success is due to the low input 

requirements in terms of water and nutrients. Its seeds are rich in nutritional components, with a 

protein content that can reach up to 30% (Romano et al., 2021). Despite the high potential of 

these crops in facing future issues for farming worldwide, the actual production is highly 

specialized and still relies on a restricted number of species for animal feed (FAO, 2021). Hence, 

the need to develop novel management strategies, in order to achieve competitive cropping 

systems. 

For this purpose, remotely sensed data has been widely adopted, with particular concern to crop 

modelling, which plays a fundamental role in policymaking and land management (Kasampalis 

et al., 2018). Indeed, remote sensing data have been used as proxies of many physiological and 

agronomic parameters like crop biomass (Seo et al., 2019), leaf area index (Kross et al., 2015), 

nitrogen uptake (Holzhauser et al., 2022), and yield (Gao et al., 2018). In particular, the 

increasing availability of times-series data enabled the calculation of cumulative vegetation 

indices, increasing the accuracy in parameters prediction. Mkhabela et al. (2005), used decadal 

Normalized Difference Vegetation Index (NDVI) from satellite data, to forecast maize’s yield. 

Their results highlighted that most accurate predictions have been assessed using data from two 
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months before harvest. Similar results have been obtained in a further study by the same authors, 

where they used the same method to forecast yield of barley, canola, field peas and spring wheat, 

grown on the Canadian Prairies (Mkhabela et al., 2011). Recently, Panek and Gozdowski (2021) 

investigated the possibility of predicting wheat and barley yield, with cumulative NDVI data 

from 2000 to 2018, in 20 European countries. Their results suggest that the use of cumulative 

vegetation indices allows the assessment of more reliable predictions for grain yields. 

Despite the use of remote sensing data which has been widely used in some of the most cropped 

species (e.g. maize – Mkhabela et al., 2005; rice – Huang et al., 2013; wheat - Kancheva et al., 

2007), evidences on pulse crops are poor and mainly focused on soybean (Kross et al., 2015, 

Gao et al., 2018, Seo et al., 2019). Hence, the objectives of this study were to investigate the 

possibility to correlate remotely sensed data with crop biomass, dry matter content, leaf area 

index and yield, in chickpea and lentil grown under different irrigation management. 
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2 Materials and Methods 

2.1 Experimental design 

The experiment was conducted during the growing season 2022 in Udine (NE Italy), at the 

experimental farm of the University of Udine (46.03N, 13.22E), in a field that had previously 

been cultivated with soybean. Chickpea (CH, Cicer arietinum) cv. Sultano and Lentil (LN, Lens 

culinaris) cv. Itaca were sown on 28/03/2022. Both varieties were provided by AgroService 

SpA, Italy. Chickpea was sown in 15.2m2 plots (4 rows with a row-distance of 0.38m at a length 

of 10m) at target plant density 60 plants/m2, while lentil was sown in 12m2 plots (8 rows with a 

row-distance of 0.15m at a length of 10m) with 250 plants/m2. 

Plots were arranged according to a systematic experimental design replicated for three blocks. A 

total of 12 plots per species were sown, in order to compare 4 irrigation treatments: i) Not 

irrigated; ii) Irrigated with 10 mm; iii) 20 mm; iv) 30mm. The 30mm irrigation volume is 

equivalent to full recovery of Field Capacity (FI) soil moisture in the 30 cm upper layer of soil 

when the sum of daily reference crop Evapotranspiration (ET; Penman-Monteith equation in 

FAO56) is equal to 30mm. Each treatment was replicated for 3 plots. First irrigation was done on 

16/05/2022 at 20 and 24 days after beginning of flowering of lentil and chickpea, respectively. 

The other two irrigations were on 21/06/2022 and 28/06/2022. Emergence for both crops was 

fully completed on 19/04/2022. Hand hoeing weeding was conducted weekly, to prevent 

possible biases in the spectral response of crops due to weeds presence. Harvest differed 

according to species and irrigation treatments. lentil was harvested from 06/07/2022 to 

26/07/2022, while chickpea from 18/07/2022 to 26/07/2022.  

 

2.2 Multispectral data 

Multispectral data were acquired on seven dates during the growing season: 02/05/2022, 

26/05/2022, 01/06/2022, 08/06/2022, 15/06/2022, 30/06/2022, 04/07/2022. Flights were 
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conducted at 11:00 a.m. (LST) with a DJI P4 Multispectral drone equipped with 5 

monochromatic sensors, acquiring reflected radiation in: Blue (450±16nm), Green (560±16nm), 

Red (650±16nm), Red-Edge (RE, 730±16nm) and Near-Infrared (NIR, 840±26nm). Spectral data 

were mapped with spatial resolution of 2cm using Pix4D software. Georeferenced maps of the 

plots were created with R software by cropping the central area of each plot with a 0.76x6m 

mask in chickpea and 0.6x6m mask in lentil. To prevent possible biases due to inhomogeneous 

or incomplete soil cover between rows, pixels with NDVI value lower than 0.05 were excluded.  

Multispectral data were used to calculate the most used multispectral (MSP) and RGB 

Vegetation Indices (VIs) as proxies of productivity, crop biomass and green biomass. (Table 

3.1). Then, cumulative indices (CVIs), were calculated as the integral of the time dependent 

spline function of each VI. 

Table 3.1. List of vegetation indices tested, with corresponding abbreviations and equations. 

Classification Index Label Equation Reference 

Single bands 

Blue B   

Green G   

Red R   

Red Edge RE   

Near-Infrared NIR   

Multispectral indices 

Simple ratio RVI RVI = R / NIR Pearson and Miller, 1972 

Normalized Difference 

Vegetation Index 
NDVI 

NDVI= (NIR – R) / (NIR 

+ R) 
Rouse et al., 1974 

Green NDVI GNDVI 
GNDVI = (NIR – G) / 

(NIR + G) 
Gitelson et al., 1996 

Normalized Difference 
Chlorophyll Index 

NDI 
NDI = (NIR – RE) / (NIR 
+ RE) 

Gitelson and Merzlyak, 
1994 

Soil-Adjusted Vegetation 

Index 
SAVI 

SAVI = (1+L) * (NIR – 

R) / (NIR + R + L) 
Huete et al., 1988 

RGB indices 

Excess Green Vegetation 

Index 
ExG ExG = (2*G)-R-B Woebbecke et al., 1995 

Excess Red Vegetation 
Index 

ExR 
ExR = (1.4*R-
G)/(R+G+B) 

Meyer and Neto, 2008 

Excess Green minus Red 

Vegetation Index 
ExGR ExGR = ExG – ExR Neto, 2004 

Green-Red Vegetation 

Index 
GRVI GRVI = (G-R)/(G+R) Tucker, 1979 

Modified GRVI MGRVI 
MGRVI = (G2 – R2)/(G2 
+ R2) 

Bendig et al., 2015 
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2.3 Crop Measurements 

Above ground crops biomass (BMAG, g m-2) has been assessed immediately after UAV flights on 

three dates: 26/05/2022, 01/06/2022 and 15/06/2022. From the central rows of each plot an area 

of 0.38m2 in chickpea and 0.3m2 in lentil was harvested for BMAG. The fresh weight (FW, g) 

was measured in field with a portable balance and then oven-dried at 70°C for 72h to measure 

the dry weight (DW, g). Dry matter content (DMC, g g-1) was calculated as the ratio of DW to 

FW. 

Grain yields were determined on the central rows of each plot for an area of 1.5- 2 m2 at harvest 

dates. The not irrigated and 10mm irrigation treatments of both species were harvested at the 

earliest dates.  

Leaf Area Index (LAI) was measured with LAI-2200C Plant Canopy Analyzer (LI-COR 

Biosciences, Lincoln, Nebraska, USA) as the mean of 10 measurements per plot. LAI was 

assessed on five out of seven flight-dates: 26/05/2022, 01/06/2022, 08/06/2022, 15/06/2022 and 

30/06/2022.  

 

2.4 Statistical analysis 

Statistical analyses were conducted with R software. Due to normality, homoscedasticity and 

independence issues, relationship between measured variables and indices were tested separately 

for each species, by Spearman’s rank correlations, according to the methodology of Marusig et 

al. (2020). In particular, single correlations were tested between measured agronomical 

parameters and VI or CVI averages at the plot level. Being a non-cumulative variable, DMC was 

correlated with VIs only. BMAG and LAI were correlated with both VIs and CVIs, while yield 

with CVIs only (calculated till the last UAV-flight, i.e., 04/07/2022). Critical value for 

significance (α) was set to 0.05. 
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3 Results 

Best Spearman’s rank correlations between remotely sensed VIs or CVIs and measured 

agronomical parameters are summarized in Table 3.2 and represented in Figure 3.1. 

BMAG had the highest correlation coefficients and significances with VIs. In particular, the 

Normalized Difference Chlorophyll Index (NDI) calculated at each date was most correlated 

with BMAG. The cumulated data (cNDI) increased the correlation strength up to 0.90 in lentil 

(Figure 3.1a,b). NDI also performed as the best proxy for DMC, with correlation coefficients 

higher than 0.70 (Figure 3.1c), 

 

Table 3.2. The most significant Spearman’s rank correlation coefficients (ρ) between measured variables and 

vegetation indices (VIs) or cumulative vegetation indices (CVIs). Significance: *: p<0.05; **: p<0.01; ***: 

p<0.001; in parenthesis number of data; n.s. = not significant; n.a. = not applicable. 

Measured Variable Vis  CVIs 

BMAG  NDI cNDI 

CH  0.83***  0.87***  

LN  0.87*** 0.90*** 

DMC NDI  

CH  0.79*** n.a. 

LN  0.72*** n.a. 

LAI NIR cNIR 

CH  0.59*** n.s. 

LN  0.64*** n.s. 

Yield  cMGRVI 

CH  n.a. 0.65** 

LN  n.a. 0.75** 
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Figure 3.1. Best correlations assessed between remotely sensed and field-measured agronomical parameters with 

respective Spearman’s correlation coefficients (ρ) and statistical significance: a) dry biomass vs Normalized 

Difference Chlorophyll Index (NDI); b) dry biomass vs cumulative NDI (cNDI); c) dry matter content (DMC) vs 

NDI; d) leaf area index (LAI) vs NIR band; e) yield vs cumulative Modified Green-Red Vegetation Index 

(cMGRVI). *: p<0.05; **: p<0.01; ***: p<0.001. 
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Best correlation with LAI for both species, was assessed with the near-infrared (NIR) band 

alone. In fact, correlations with other VIs were lower or not significant. Moreover, no statistical 

significant correlation was assessed for LAI with any CVI (Table 3.2). 

CVIs were successfully related to crops yield. Best results were obtained with cumulative 

Modified Green-Red Vegetation Index (cMGRVI), an RGB derived VIs. Correlations between 

indices and yield were the ones with higher discrepancy of results between chickpea (ρ = 0.65) 

and lentil (ρ = 0.75). This result may be due to the reduced data amount (12 data, one per plot), 

or to the longer timespan between the last UAV-flight (04/07/2022) and harvest, especially in 

irrigated plots, where harvest maturity was reached 22 days later.  
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4 Discussion 

Estimation of agronomic parameters with remote sensing data is nowadays a widespread practice 

for the most widely cropped species (Huang et al., 2013, Kross et al., 2015, Panek and 

Godzowski, 2021). However, relationships between field-measured variables and remotely 

sensed ones are generally assessed without considering time-series variability (Holzhauser et al., 

2022) or rely on a restricted selection of indices, (e.g., the Normalized Difference Vegetation 

Index) (Seo et al., 2019). The data suggest that some VIs data elaboration as cumulative index 

may improve the estimation of cumulative variables like biomass and yield. For this, it is 

suggested that the choice of the type of VI may differ according to the intrinsic property 

(cumulative or not cumulative) of the variable of interest like above-ground biomass (BMAG) or 

yield and LAI respectively. 

Normalized Difference Chlorophyll Index (NDI) performed as the best predictor for both BMAG 

and DMC. NDI is in fact calculated as a normalized difference of NIR and Red Edge (RE) 

bands, which are related to canopy structure and water status, respectively (Sun et al., 2019, 

Holzhauser et al., 2022). Moreover, even if single-date correlations were considerable, the use of 

cumulative NDI (cNDI), improved correlation with biomass in both species. Similar results have 

been reported in the literature (e.g. Gao et al., 2018, Seo et al., 2019). However, this 

methodology is still poorly adopted.  

In contrast, LAI was not correlated with any cumulated vegetation index (CVI). In fact, canopy 

growth was generally limited after flowering and green LAI tended to decrease during the 

maturation phase, due to leaf senescence and loss, or accelerated by drought or other stresses. 

Moreover, best correlations between LAI and remotely sensed information were achieved with 

NIR band alone. This result is in accordance with an investigation conducted by Kira et al. 

(2016), which coupled LAI and hyperspectral reflectance measurements in corn and soybean for 
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8 years, suggesting that NIR band is one of the most informative and suitable bands to be used as 

a proxy of leaf and canopy structure. 

Stronger correlations between CVIs and yield were assessed in lentil then chickpea. This result 

may be due to the longer timespan that occurred between the last UAV flight and the harvest 

date. In fact, chickpea was generally harvested later than lentil, and especially in the irrigated 

plots, the treatment significantly delayed crop senescence. Similar issues have been reported in 

various studies investigating the same topic, reporting indeed that better yield forecasts should be 

assessed using data from at least the last months before harvest (Mkhabela et al., 2005, 

Mkhabela et al., 2011, Gao et al., 2018). However, significant correlations were assessed with 

cumulative Modified Green-Red Vegetation Index (cMGRVI). 
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5 Conclusions 

This paper provides additional evidence about the possibility to monitor crop biomass, dry 

matter content, leaf area index and yield, in chickpea and lentil, with remotely sensed data 

provided by UAV. The Normalized Difference Chlorophyll Index performed as the best 

predictor of dry-matter content throughout the growing season. 

Significant correlations were also assessed between remotely sensed data with LAI and the Near-

Infrared band. 

The cumulative vegetation indices are strongly correlated with cumulative variables like crop 

biomass and yield. 
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1 Introduction 

Climate change effects are foreseen to negatively affect crop yield and yield stability, with 

consequent impacts in terms of food security. Hence, the current agricultural system, based on 

poorly diversified cropping is no more reputed a reliable approach for sustainable food 

production (Raseduzzaman and Jensen 2017). A more suitable and resilient approach consists in 

crop diversification. Among the diversification practices, a particular interest is devoted to 

intercropping, practice based on the cultivation of multiple crops in the same field (Brooker et al. 

2015). Intercropping does not only diversify the income for the farmers, but it has also been 

demonstrated to improve soil health (Yang et al. 2020), increase the resource use efficiency 

(Jensen et al. 2020) and water utilization (Yin et al. 2020), promote weed suppression (Gu et al. 

2021) and enhance yield stability (Raseduzzaman and Jensen 2017). 

Intercropping has been widely investigated, as it has been demonstrated be an effective strategy 

for mitigating weeds competition as intercropped plants are more effective at competing for 

resources (Gu et al. 2021). Furthermore, in intercropping systems, weed management is 

frequently achieved by incorporating companion species with allelopathic properties. These 

species are able to produce and release natural compounds, known as allelochemicals, into their 

environment. These allelochemicals can have both stimulatory and inhibitory effects on the 

growth and development of other nearby plants (Jabran et al. 2015). Some widespread 

allelopathic crops are barley, brassica, buckwheat, mustard, oat, rice, rye and sunflower (Jabran 

2017). Intercropping of grain legumes with allelopathic crops has been demonstrated being 

successful in many consociations like chickpea and wheat (Banik et al. 2006), as well as lentil 

with wheat and oat (Fernandez et al. 2015). 

In this study, we focused on buckwheat (Fagopyrum esculentum) a widespread crop cultivated in 

a wide range of geographical regions thanks to its adaptability to different climates and growing 

conditions (Ahmet et al. 2014), as a companion crop for grain legumes. Because of its 
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allelopathic properties, buckwheat had been traditionally used by farmers for weed management, 

however, despite its weed suppressing activity has been widely investigated, the mechanisms of 

action have not been clearly identified yet (Falquet et al. 2015). It has been widely demonstrated 

that buckwheat residues incorporation in soil has a significant effect on weeds suppression 

(Kumar et al. 2008, 2009a, 2009b, Szwed et al. 2019). Up to our knowledge, quantification of 

allelochemicals of buckwheat has been conducted only for plant residues, seed flour and soils 

with incorporated plant residues (Table 4.1). Literature about allelopathic effects promoted by 

root exudates production is scarce (e.g. Biszczak et al. 2020, Cheriere et al. 2020) or denies this 

hypothesis (Wirth and Geller 2016). Moreover, literature on buckwheat as a companion crop for 

grain legumes in intercropping is limited (Wang et al. 2012, Biszczak et al. 2020, Cheriere et al. 

2020, 2023). 

In this study, we examined the interactions between buckwheat, weeds, and crops, with 

particular focus on grain legumes. We conducted multiple trials, varying in complexity, to 

evaluate how buckwheat interacts with the other species. The hypothesis of this study is that 

allelopathic substances produced by buckwheat are released into the environment in the form of 

root exudates and that these have a significant inhibitory effect on weeds while causing minimal 

harm to crops. 
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2 Materials and Methods 

Buckwheat capability to produce allelochemicals has been widely documented (Table 4.1), 

however, examples of intercropping with this species are scarce and the allelopathic effect in 

consociation has been poorly investigated (Table 4.2). 

To test the capability of buckwheat to produce and discharge allelochemicals into the 

environment to suppress weed growth, we set up a multiple level experiment: i) An in-vitro 

germination assay to test the impact of buckwheat water extracts on weed and crop seeds; ii) A 

pot experiment to determine whether the potential plant-suppression effects identified in the 

germination experiment may be observed in soil conditions; iii) A field trial to assess the weed 

control effectiveness of buckwheat both in the inter-row spaces and within the rows of grain 

legumes. 
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Table 4.1. List of allelochemicals detected in buckwheat. For each compound we specified the class, the measured 

average concentration, the analyzed matrix, and the reference. 

Class Compound Concentration Matrix Reference 

Alkaloid 

2-piperidinemethanol Not specified Plant residues Iqbal et al 2003 

4-piperidone Not specified Plant residues Iqbal et al 2003 

Fagomine Not specified Plant residues Iqbal et al 2003 

Benzenoids Iso-vanilic acid Not specified Plant residues Szwed et al 2020 

Dihydroxybenzoic 

acid 

Protocatechuic acid Not specified Plant residues Szwed et al 2020 

Vanillic acid Not specified Plant residues Szwed et al 2020 

Fatty acid 

Arachidic acid 
Not specified Plant residues Tsuzuki et al. 1987 

18 mg/g Flour Bonfaccia et al 2003 

Behenic acid 
Not specified Plant residues Tsuzuki et al. 1987 

11 mg/g Flour Bonfaccia et al 2003 

Palmitic acid 
Not specified Plant residues Tsuzuki et al. 1987 

156 mg/g Flour Bonfaccia et al 2003 

Stearic acid 
Not specified Plant residues Tsuzuki et al. 1987 

20 mg/g Flour Bonfaccia et al 2003 

Flavonoid 

(-)-Epicatechin 0.98 mg/g Plant residues Golisz et al. 2007 

(+)-Catechin 0.22 mg/g Plant residues Iqbal et al 2003 

Apigenin 11 mg/g Soil with incorporated residues Szwed et al 2020 

Kaempferol Not specified Plant residues Szwed et al 2020 

Luteolin Not specified Plant residues Szwed et al 2020 

Quercetin 0.5 mg/g Plant residues Golisz et al 2008 

Rutin 50 mg/g Plant residues Golisz et al 2008 

Hydroxycinnamic 

acid 

m-Coumaric acid 75 mg/g Soil with incorporated residues Szwed et al 2020 

o-Coumaric acid 185 mg/g Soil with incorporated residues Szwed et al 2020 

p-Coumaric acid 79 mg/g Soil with incorporated residues Szwed et al 2020 

Phenolic acid 

Caffeic acid 0.11 mg/g Plant residues Golisz et al. 2007 

Chlorogenic acid 1.79 mg/g Plant residues Golisz et al. 2007 

Ferulic acid 0.05 mg/g Plant residues Golisz et al 2008 

Gallic acid 0.42 mg/g Plant residues Golisz et al. 2007 

Syringic acid Not specified Plant residues Szwed et al 2020 

Phenylpropanoid  Sinapic acid Not specified Plant residues Szwed et al 2020 
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Table 4.2. List of the papers reporting field trials investigating intercropping with buckwheat.  

Companion crops Intercropping type Aim Reference 

Alfalfa 

  

row intercropping Enchance/Optimize productivity Başaran et al. 2018 

row intercropping Enchance/Optimize productivity Basan et al. 2020 

strip cropping Enchance/Optimize productivity Gao et al. 2022 

bell pepper strip cropping Integrated Pest Management Bickerton et al. 2012 

Broccoli strip cropping Integrated Pest Management Ponti et al. 2007 

Cabbage 

  

strip cropping Integrated Pest Management Al-Doghairi et al. 2004 

strip cropping Integrated Pest Management Nilsson et al. 2012 

strip cropping Integrated Pest Management Pandey et al. 2019 

Cotton strip cropping Integrated Pest Management Li et al. 2019 

Fenugreek 

  

row intercropping Enchance/Optimize productivity Salehi et al. 2017 

row intercropping Enchance/Optimize productivity Salehi et al. 2018 

row intercropping Enchance/Optimize productivity Salehi et al. 2019 

Lentil mixed cropping Weed control Wang et al. 2012 

Maize strip-relay intercropping Enchance/Optimize productivity Zhongmin et al. 1990 

Onion mixed cropping Integrated Pest Management Trdan et al. 2006 

Potato strip-relay intercropping Enchance/Optimize productivity Zhongmin et al. 1990 

Soybean 

row and mixed intercropping weed control Cheriere et al. 2020 

strip-relay intercropping Weed control Biszczak et al. 2020 

row intercropping Enchance/Optimize productivity Ponte et al. 2022 

intercropping Weed control Cheriere et al. 2023 

Squash strip cropping Integrated Pest Management Razze et al. 2016 

Sunflower row intercropping Weed control Latify et al. 2017 

Zucchini  
cover crop Integrated Pest Management Manandhar et al. 2009 

cover crop Integrated Pest Management Manandhar et al. 2011 

 

 

2.1 Buckwheat water extracts effect on seeds germination 

2.1.1 Experimental Design 

A germination test in petri dishes has been carried out in spring 2023, to test the allelopathic 

effect of buckwheat extracts on seed germination of various crops and weeds. A total of 11 

species were tested, 5 crops: chickpea (Cicer arietinum, CH), lentil (Lens culinaris, LN), 

soybean (Glycine max, SB), quinoa (Chenopodium quinoa, QN) and barley (Hordeum vulgare, 

BR); 4 weeds: red pigweed (Amaranthus retroflexus, AR), cockspur (Echinochloa crus-galli, 

EC), couch grass (Cynodon dactylon, CD) and foxtail millet (Setaria italica, SI); 2 model 

species: tobacco (Nicotiana tabacum, TB) and garden cress (Lepidium sativum, CR). A detailed 
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summary of species with corresponding information is reported in Table 4.3. Seeds of crops and 

model species were provided by Agrifutur S.r.l. (Alfianello-Brescia, IT) or by the seeds stock of 

the experimental farm “A. Servadei” of the University of Udine, while weeds’ seeds were 

collected in the fields of the experimental farms on 07/10/ 2022 and conserved in a dark and dry 

environment after a two-weeks vernalization. 

Each species was tested under three different treatments: control (CNT); buckwheat water 

extracts at concentration 1:10 (1g of buckwheat residues and 10ml of water – d10); buckwheat 

water extracts at concentration 1:5 (1g of buckwheat residues and 5ml of water – d05). For 

detailed information about buckwheat extracts see section 2.1.2. 

Germination tests were conducted in sterile petri dishes with diameter of 90mm or 150mm, 

according to the seed size. For each petri dish we tested 15 seeds soaked in 10ml of water/extract 

poured onto filter paper. For each combination crop x treatment, we tested five replicates. The 

seeds were germinated in a growth chamber at the laboratories of the University of Udine. The 

incubation period lasted for 7 days with a 12-hour light-dark alternation, maintained at 25°C and 

20°C, respectively. 

 

Table 4.3. List of investigated species in the germination tests with corresponding abbreviations and thousand seeds 

weight (TSW). 

Common name Scientific name Abbreviation TSW, g 

Chickpea Cicer arietinum CH 467 

Lentil Lens culinaris LN 47 

Soybean Glycine max SB 159 

Quinoa  Chenopodium quinoa QN 3.2 

Orzo Hordeum vulgare BR 49.2 

Red Pigweed Amaranthus retroflexus AR 0.43 

Cockspur Echinochloa crus-galli EC 1.63 

Couchgrass Cynodon dactylon CD 0.68 

Foxtail millet Setaria italica SI 2.03 

Tabacco Nicotiana tabacum TB 0.3 

Garden cress Lepidium sativum CR 0.35 
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2.1.2 Buckwheat extracts preparation 

Buckwheat extracts were obtained by adapting the protocol of Carrubba et al. (2020). Buckwheat 

plants were collected on 20/10/2022, in the fields of a farm situated in Buttrio (Udine, Italy, 

45.98° N, 13.39°E), when plants were at full bloom. We collected the entire plants, including the 

root system and the retained soil layer. Plant material was dried in oven at 60°C for 72h and then 

ground in multiple steps, from blade mill to ball mill. The obtained product was stored in paper 

bags in dark conditions at room temperature until its use.  

Water extracts were prepared by soaking 200g of product in 1l of distilled water (weight/volume 

ratio of 1:5) and stirring at 150 rounds per minute for 5h. Water extracts were strained with filter 

paper and refrigerated at 4°C until used. Water extract at 1:10 rate was obtained by diluting the 

prepared extract (1:5) with an equivalent volume of pure water. 

 

2.1.3 Measurements 

Measurements were conducted according to the protocols of Emino and Warman (2004). After 7 

days of incubation, we counted the number of seeds germinated (NG) and estimated the 

germination percentage (G%, %). Seeds were then photographed on graph paper and primary root 

length (LR) measured with the ImageJ v1.54d software (Schindelin et al. 2012). We calculated 

the Relative Seed Germination (RSG, %) and the Relative Root Growth (RRG, %) as: 

𝑅𝑆𝐺 =  
𝑁𝐺 

𝑀𝑒𝑎𝑛 𝑁𝐺  𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟)
 × 100 

𝑅𝑅𝐺 =  
𝐿𝑅

𝑀𝑒𝑎𝑛 𝐿𝑅 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟)
 × 100 

The Germination Index (GI, %) was then calculated as: 

𝐺𝐼 =  
𝑅𝑆𝐺 × 𝑅𝑅𝐺

100
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2.1.4. Allelochemical analysis 

Samples of ground buckwheat and a d05 solution were analyzed using high-performance liquid 

chromatography to assess the content of two of the most abundant allelochemicals found in this 

species according to literature: Quercetin and Rutin. The sample of ground buckwheat (200mg) 

was extracted with 15ml of CH3OH:H2O (80:20), agitated using a vortex, sonicated for 20 

minutes, centrifuged for 20 minutes at 6000 rpm, and filtered through syringe filters (PTFE 

0.2μm, 25 mm). Samples of d05 solution were only filtered through syringe filters and directly 

injected in HPLC. The quantification was carried out using an external standard calibration 

curve. The chromatographic conditions were as follows: flow rate: 0.8ml/min; mobile phase: 

CH3OH:H3PO4 0.4% (50:50); injection volume: 25μl; column: Spherisorb ODS 2 5μm (Waters) 

maintained at 30°C; Detector: a diode-array detector (PDA) set at 360nm. For each matrix, 3 

replicates were analyzed. 

 

2.1.5 Statistical analysis 

Statistical analysis was conducted with the R v2.0.1 software (R Core Team, 2021). After data 

normality and homoscedasticity check, differences among treatments of the same species were 

tested by one way analysis of variance (ANOVA) and Tukey’s Honest Significance Difference 

test as post hoc. 

 

2.2 Plants-consociation effect in a controlled environment – A greenhouse experiment 

2.2.1 Esperimental Design 

We set up a pot experiment aimed to: 1) test whether buckwheat may provide weed-control 

services by allelopathy or competition for resources; 2) evaluate if possible plant-suppression 

effects reported by the germination experiment can be observed in soil.  
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The experiment was conducted in a greenhouse at the facilities of the University of Udine during 

spring 2023. Crops’ seeds were provided by Agrifutur S.r.l., while weeds seeds were previously 

collected in field (see section 2.1.1). A total of four species were tested, two crops: chickpea cv 

Sultano and lentil cv Itaca; and two weeds: velvetleaf (Abutilon theophrasti – AT) and red 

pigweed (Amaranthus retroflwxus – AR). Each species was tested under three experimental 

treatments: monoculture (MC), intercropped with buckwheat (IC) and grown in staircase device 

(SD), an experimental tool specifically designed to separate the effect of allelopathy from 

competition by watering plants with percolated water from pots containing pure buckwheat 

stands (Mahé et al. 2022). All treatments were tested for four replicates and placed according to 

a randomized block design (Figure 4.1). Since the experimental protocol included three 

destructive samplings, the MC and IC treatments, were replicated three times, while for SD it 

was not possible due to logistical issues in making the devices itself and a single block was set.. 

Due to insufficient space in the greenhouse for the staircase device, pots for SD treatment (both 

buckwheat and investigated species) were placed in a different area of the greenhouse, covered 

by a permanent shading net. 

Sowing was conducted on 21/04/2023. Seeds were sown in 13.5l pots, with surface area of 

225cm2 (15cm x 15cm). Pots were filled with clay-loam sifted soil (clay 28%, silt 30% and sand 

42%), with pH 5.01, organic Carbon 13.8mg g-1, total Nitrogen content 0.16%, organic matter 

2.4%, cation exchange capacity 15.09meq/100g and Phosphorus concentration 20mg kg-1. 

buckwheat, lentil, pigweed, and velvetleaf were sown at a density of 4 plants per pot in pure 

stands (MC and SD), and at 2 plants per plot when intercropped (IC). Chickpea was sown at 2 

plants per pot in the pure stands and one plant per pot when intercropped. 
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Figure 4.1. Experimental design of chickpea (CH), lentil (LN), red rigweed (AR) and velvetleaf (AT) tested under 

monoculture (MC), intercropped (IC) with buckwheat (BW) and with staircase device (SD). Grey boxes denote BW 

pots placed on top of the SD. 

 

Emergence occurred on 24/04/2023 in chickpea and lentil, and on 26/04/2023 in A. retroflexus 

and A. theophrasti. Plants were then irrigated 3 times per week with 0.5l per pot. In SD, pure 

stands of buckwheat were grown in pots with perforated saucers. Plants were fully irrigated (~1-

1.5l per pot) and leached water was collected into a sink through a funnel with a filter and then 

used for irrigation with the same volumes of the other treatments. Temperature in the greenhouse 

was hourly monitored from 02/05/2023 until the end of the experiment, with an EL-USB 

datalogger (Laskar Electronics, Whiteparish, UK). The datalogger was placed in a semi-open 

box to prevent overheating due to irradiation. Temperature between sowing and datalogger 

installation was estimated with a polynomial regression model, based on the greenhouse 

temperature as a function of the air temperature recorded by the ARPA-OSMER weather station 

of Udine Sant’Osvaldo (R2 = 0.90). 
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The pots were consistently weeded to avoid potential biases arising from the presence of weeds 

not under investigation. 

 

2.2.2 Measurements 

A total of three samplings were conducted, based on buckwheat phenology: on 16/05/2023 at 

fifth full leaf development; on 06/06/2023 at full bloom; on 26/06/2023, at seeding onset. SD 

treatment was sampled only on last sampling. At each sampling, plants were removed from the 

soil and roots carefully cleaned. Plants height (HP, cm) and primary root length (LR, cm) were 

measured, then root system was separated from the shoot and dried in oven at 60°C for 72h to 

measure aboveground dry biomass (DWABV, g plant-1) and root dry biomass (DWR, g plant-1). 

Growth rate (GR, cm d-1) and the Competitive Balance Index (CBI, Wilson 1988) were then 

calculated as: 

𝐺𝑅 =  
𝐻𝑃𝑎𝑡 𝑡2 −  𝐻𝑃 𝑎𝑡 𝑡1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
 

𝐶𝐵𝐼𝑥 = ln(

𝐷𝑊𝐴𝐵𝑉  𝑜𝑓 𝑥 𝑖𝑛 𝐼𝐶
𝑚𝑒𝑎𝑛 𝐷𝑊𝐴𝐵𝑉 𝑜𝑓 𝑥 𝑖𝑛 𝑀𝐶

𝐷𝑊𝐴𝐵𝑉 𝑜𝑓 𝐵𝑊 𝑖𝑛 𝐼𝐶
𝑚𝑒𝑎𝑛 𝐷𝑊𝐴𝐵𝑉 𝑜𝑓 𝐵𝑊 𝑖𝑛 𝑀𝐶

) 

where x is the single species. 

Furthermore, at the last irrigation and at harvest, samples of leached water and soil were 

collected and subsequently frozen at -20°C. Samples will be analysed using high-performance 

liquid chromatography (HPLC) to determine the content in Rutin and Quercetin, produced by 

BW. 

 

2.2.3. Allelochemical analysis 

During the final irrigation, samples of leached water were collected and refrigerated. 

Additionally, soil samples were collected from each pot during the final sampling and 
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refrigerated alongside the leached water samples. The leached water samples were analyzed 

using high-performance liquid chromatography (HPLC) to determine the content of Quercetin 

and Rutin. Analysis of the soil samples has not been conducted at this time. The HPLC analysis 

followed the protocol described in section 2.1.4. 

 

2.2.4 Statistical analysis 

Statistical analysis was conducted with the R software. For the first two samplings, after data 

check for normality and homoscedasticity, orthogonal contrasts were tested with one way 

ANOVA, to test differences between treatments among the same species, while one way 

ANOVA and Tukey’s Honest Significant Difference test as post hoc were used for testing 

differences among buckwheat treatments. On the last measurement, one way ANOVA and 

Tukey’s test were used for each species. 

 

2.3 Crops intercropping for weed management – A field experiment 

2.3.1 Study area and experimental design 

The trials were carried out during the growing season 2023 at the experimental farm “A. 

Servadei” of the University of Udine (Udine, IT, Figure 4.2.), in a field next to were trials in 

2022 took place (refer to Chapter 2 section 2.1), previously cultivated with maize. 
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Figure 4.2. Study area of the field trials 2023 on intercropping buckwheat with lentil and chickpea. 

 

Chickpea cv Sultano and lentil cv Itaca were tested in consociation with buckwheat cv Panda. 

Crops were tested under different intercropping layouts: 1) alternate rows (AR), where crop and 

buckwheat were sown in separate rows; within-row intercropping (WR), where crops were sown 

in the same row. Plots of both legume and buckwheat in monoculture were also included as 

controls (MC). In the WR layout, buckwheat was sown at two different plant densities: i) 25% of 

the monoculture sowing density, tested in both chickpea and lentil; ii) 50% of monoculture 

sowing density, tested in chickpea only. A detailed summary of the experimental treatments is 

reported in Table 4.2. 

Crops were sown on 29/03/2023. Crops were sown in two separate adjacent areas, following a 

completely randomized plot design (Figure 4.2) with four replicated per treatment. Plot area was 

10.88m2, divided in 4 rows with a row-distance of 0.34m at a length of 8m in MC and WR, and 8 

rows with a row-distance of 0.17m at a length of 8m in AR. Since the spatial separation of crops, 

buckwheat treatment as monoculture was replicated two times, one for each area. Crops in 

monoculture were sown at a plant density of 45 plants m-2 in chickpea, 120 plants m-2 in lentil 
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and 200 plants m-2 in buckwheat. Plant density of buckwheat was halved in the AR and scaled 

accordingly in the WR (see Table 4.4).  

 

Table 4.4. Summary of the experimental design tested in Udine during the season 2023. For each treatment we 

specified the plant density (PD) of legume (chickpea or lentil) and buckwheat. 

Species Variety Treatment / Intercrop ID 
PD of legume 

# m-2 

PD of buckwheat 

# m-2 

Chickpea Sultano 

Control/Monoculture CH 40 - 

Alternate rows CHBWAR 40 100 

Within-row at 25% CHBW25% 40 50 

Within-row at 50% CHBW50% 40 100 

Lentil Itaca 

Control/Monoculture LN 120 - 

Alternate rows LNBWAR 120 100 

Within-row at 25% LNBW25% 120 50 

Buckwheat Panda Control/Monoculture BW - 200 

 

For all crops emergence was completed on 10/04/2023. Flowering occurred on 10/05/2023 in 

buckwheat, on 01/06/2023 in LN and on 06/06/2023 in CH. LN was harvested on 10/07/2023, 

while chickpea on 24/07/2023. Crops were grown under organic agriculture practices. No 

irrigation or fertilization was provided, and weeding was performed once on 05/05/2023 by 

manual hoeing, only in pure legumes and WR treatments (i.e. all plots with row distance 0.34m) 

 

2.3.2 Weather condition 

Weather of 2023 in Udine is represented in Figure 4.3 and monthly mean values are reported in 

Table 4.3. The weather conditions of the 2023 season in Udine were quite representative of the 

average climate, except for the month of July, when rainfall occurrence was particularly 

abundant, reaching a cumulative of 251.5mm, higher than the average of 112.6mm (Table 4.5). 
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Figure 4.3. Weather conditions of the growing season 2023 in Udine. Sowing and harvest are marked by arrows. 

Data collected by ARPA-OSMER weather station (Udine Sant’Osvaldo). 

 

Table 4.5. Monthly comparison of mean temperature and cumulative precipitation of 2023 in Udine with average 

values from data collected between 2001 and 2021. Data collected by ARPA-OSMER weather station (Udine 

Sant’Osvaldo). 

Month 

Mean 

temperature in 

2023 

°C 

Average mean 

temperature 

from 2001 to 

2021 

°C 

Cumulative 

precipitation in 

2022 

mm 

Average 

cumulative 

precipitation 

from 2001 to 

2021 

mm 

March 10.3 9.0 124.3 108.3 

April 11.9 13.4 117.2 113.3 

May 18.0 17.7 128.7 142.1 

June 22.1 21.9 91.7 116.0 

July 23.7 23.7 251.5 112.6 

Total   713.4 593.2 

 

2.3.3 Field measurements 

Prior to hoeing, on 04/05/2023 a vegetation sampling has been conducted. For each plot, two 

quadrats of 0.35m2 (0.35m x 0.7m) were randomly placed. For each quadrat we identified weed 

species and estimated the percentage of soil cover for both weeds and crops. A second vegetation 

sampling was performed one month later, on 07/06/2023, to evaluate the effectiveness of 
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weeding or not, combined with the treatment. Data collected was used to calculate the Shannon 

Diversity Index (H index) as: 

𝐻 𝑖𝑛𝑑𝑒𝑥 =  ∑ 𝑝𝑖 ln (𝑝𝑖)

𝑠

𝑖=1

 

where pi is the proportion of the ith species within the sampled community. 

Then, on the same date, at crops flowering, HP was measured on 5 plants per plot, and one of the 

quadrats per plot was sampled, to measure DWABV lentil, chickpea, buckwheat and weeds, after 

drying the plants in oven at 70°C for 72h. 

At harvest, two different samplings were conducted. A first sampling was conducted on the 

second quadrat, with the same protocol used at flowering. Dry samples were threshed to estimate 

DWABV and yield and calculate the Harvest Index (HI), as: 

𝐻𝐼 =  
𝑌𝑖𝑒𝑙𝑑

𝐷𝑊𝐴𝐵𝑉 + 𝑌𝑖𝑒𝑙𝑑
 

A second sampling was conducted on a more representative area of 1.36m2 (0.68m x 2m). Plants 

were sampled and air-dried in a polytunnel for a weed and then dried to measure yield. 

 

2.3.4 Statistical analysis 

Statistical analyses were conducted with the R software (R Core Team 2021). After data check 

for normality and homoscedasticity, statistical differences among treatments were assessed 

separately for each crop (chickpea, lentil, buckwheat) with One Way Analysis of Variance 

(ANOVA) and Tukey Honest Significance Difference test as post hoc.  
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3 Results 

3.1 Germination tests 

Results of germination tests are summarized in Tables 4.6 and 4.7. Due to excessive presence of 

molds, for tobacco it was not possible to measure LR and estimate Relative Root Growth (RRG) 

and calculate the Germination Index (GI), however it was still possible to count germinated 

seeds and calculate Relative Seed Germination (RSG). 

Statistically significant reductions in germination percentage (G%) of seeds have been observed 

in most of the species. The only species where no difference in G% or RSG were C. dactylon and 

E. crus-galli for weeds, and soybean for crops. Higher reductions were observed in A. 

retroflexus, chickpea, cress and tobacco, where in d05 treatment no seed germinated. On the 

contrary, S. italica was the only species where root length (LR) and RRG were not significantly 

affected by the treatments. Hence, by looking at the overall result, differences in GI were 

assessed in all species and there seem to be a general and indiscriminate effect of germination 

inhibition by buckwheat extracts on all species. This effect seems to not be related to seed weight 

(Figure 4.4). The only exception was observed in quinoa, where despite the significant reduction 

in seeds germination, with the d10 treatment LR was higher than control, however difference was 

not statistically significant.  

 

Figure 4.4. Scatter plot of mean values of germination index as a function of thousand seed weight (TSW). a) 

germination index measured at d10 treatment; b) germination index measured at d05 treatment. 
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Table 4.6. Mean values with corresponding standard deviations of germination percentage and root length measured 

during the experimentation. Statistical differences are denoted by different letters, otherwise not specified. 

Significance: *: p < 0.05; **: p < 0.01; ***: p < 0.001; n.s.: not significant. 

Category Species Treatment 
Germination 

% 

Root length 

cm 

Weed 

A retroflexus 

Control 52.0 ± 20.8 a 

*** 

24.0 ± 6.7 a 

*** d10 12.0 ± 13.7 b 5.9 ± 6.4 b 

d05 0.0 ± 0.0 c 0.0 ± 0.0 c 

C. dactylon 

Control 92.0 ± 3.0 

n.s. 

27.0 ± 3.1 a 

*** d10 78.7 ± 9.9 14.9 ± 1.3 b 

d05 77.3 ± 17.4 8.9 ± 3.1 c 

E. crus-galli 

Control 73.3 ± 4.7 

n.s. 

30.9 ± 2.6 a 

*** d10 64.0 ± 10.1 19.1 ± 5.7 b 

d05 42.7 ± 31.1 9.7 ± 5.7 c 

S. italica 

Control 45.3 ± 25.6 a 

* 

5.9 ± 1.7 

n.s. d10 24.0 ± 23.9 b 5.2 ± 3.2 

d05 8.0 ± 5.6 c 4.2 ± 2.6 

Crop 

Barley 

Control 81.3 ± 7.3 ab 

* 

67.2 ± 12.2 a 

*** d10 94.7 ± 7.3 a 17.8 ± 1.7 b 

d05 68.0 ± 18.5 b 18.8 ± 4.3 b 

Chickpea 

Control 52.0 ± 14.5 a 

*** 

31.5 ± 11.4 a 

** d10 21.3 ± 19.1 b 23.6 ± 19.3 b 

d05 0.0 ± 0.0 c 0.0 ± 0.0 c 

Lentil 

Control 92.0 ± 3.0 a 

** 

72.0 ± 3.1 a 

*** d10 70.7 ± 13.8 b 38.7 ± 4.7 b 

d05 61.3 ± 15.2 b 26.8 ± 5.1 b 

Quinoa 

Control 54.7 ± 13.7 a 

* 

11.6 ± 2.4 ab 

* d10 36.0 ± 7.6 b 19.6 ± 3.9 a 

d05 6.7 ± 6.7 c 8.5 ± 7.8 b 

Soybean 

Control 76.0 ± 10.1  

n.s. 

35.2 ± 12.0 a 

* d10 72.0 ± 14.5 26.8 ± 9.9 ab 

d05 64.0 ± 13.8 16.8 ± 3.1 b 

Model species 

Garden cress 

Control 97.3 ± 3.7 a 

*** 

79.1 ± 24.0 a 

*** d10 84.0 ± 10.1 b 12.4 ± 1.7 b 

d05 0.0 ± 0.0 c 0.0 ± 0.0 c 

Tobacco 

Control 74.7 ± 7.3 a 

*** 

- 

 d10 37.3 ± 23.9 b - 

d05 0.0 ± 0.0 c - 
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Table 4.7. Mean values with corresponding standard deviations of Relative Seed Germination (RSG), Relative Root 

Growth (RRG) and Germination Index (GI), measured during the experimentation. Statistical differences are 

denoted by different letters, otherwise not specified. 

Category Species Treatment 
RSG 

% 

RRG 

% 

GI 

% 

Weed 

A retroflexus 

Control 100.0 ± 39.9 a 

*** 

100.0 ± 28.0 a 

*** 

104.7 ± 51.0 a 

*** d10 23.1 ± 26.3 b 24.5 ± 26.5 b 8.0 ± 7.7 b 

d05 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 

C. dactylon 

Control 100.0 ± 3.2  

n.s. 

100.0 ± 11.5 a 

*** 

100.3 ± 14.1 a 

*** d10 85.5 ± 10.7  55.0 ± 4.9 b 46.7 ± 4.4 b 

d05 84.1 ± 18.9   32.9 ± 11.6 c 27.5 ± 9.2 c 

E. crus-galli 

Control 100.0 ± 6.4   

n.s. 

100.0 ± 8.2 a 

*** 

100.1 ± 11.0 a 

*** d10 87.3 ± 13.8   61.8 ± 18.5 b 55.1 ± 23.3 b 

d05 58.2 ± 42.4   31.4 ± 18.5 c 23.6 ± 18.9 c 

S. italica 

Control 100.0 ± 56.4 a 

* 

100.0 ± 28.7  

n.s. 

97.1 ± 57.5 a 

* d10 52.9 ± 52.6 ab 88.4 ± 54.5  57.0 ± 52.6 ab 

d05 17.6 ± 12.3 b 70.8 ± 43.6 15.9 ± 12.7 b 

Crop 

Barley 

Control 100.0 ± 9.0 ab 

* 

100.0 ± 18.1 a 

*** 

100.6 ± 23.8 a 

*** d10 116.4 ± 9.0 a 26.5 ± 2.5 b 30.9 ± 3.8 b 

d05 83.6 ± 22.7 b 28.0 ± 6.5 b 23.9 ± 10.9 b 

Chickpea 

Control 100.0 ± 27.8 a 

*** 

100.0 ± 36.3 a 

*** 

98.7 ± 40.5 a 

*** d10 41.0 ± 36.7 b 75.0 ± 61.4 b 31.8 ± 26.5 b 

d05 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 

Lentil 

Control 100.0 ± 3.2 a 

** 

100.0 ± 4.3 a 

*** 

100.0 ± 6.1 a 

*** d10 76.8 ± 15.0 b 53.8 ± 6.5 b 41.0 ± 8.2 b 

d05 66.7 ± 16.5 b 37.2 ± 7.0 c 24.8 ± 8.5 c 

Quinoa 

Control 100.0 ± 25.0 a 

*** 

100.0 ± 20.7 

n.s. 

97.2 ± 20.7 a 

* d10 65.9 ± 13.9 b 169.3 ± 33.8 110.9 ± 26.4 a 

d05 12.2 ± 12.2 c 73.3 ± 66.9 14.9 ± 15.0 b 

Soybean 

Control 100.0 ± 13.3  

n.s. 

100.0 ± 34.2 a 

* 

97.9 ± 26.7 a 

* d10 94.7 ± 19.0  76.3 ± 28.0 ab 75.9 ± 41.6 ab 

d05 84.2 ± 18.2 47.7 ± 8.9 b 40.9 ± 13.9 b 

Model 

species 

Garden cress 

Control 100.0 ± 3.8 a 

*** 

100.0 ± 30.3 a 

*** 

100.2 ± 31.9 a 

*** d10 86.3 ± 10.4 b 15.7 ± 2.1 b 13.6 ± 2.6 b 

d05 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 

Tobacco 

Control 100.0 ± 9.8 a 

*** 

- 

 

- 

 d10 50.0 ± 31.9 b - - 

d05 0.0 ± 0.0 c - - 
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3.2 Greenhouse experimentation results 

Greenhouse temperature during the growing season was generally high (Figure 4.5). Mean 

temperature was 26.5°C and maximum temperature reached 53.5°C. Out of the total measured 

data, the temperature was higher than 25°C for 49.2% of the time, higher than 30°C for 30%, and 

higher than 40°C for 10.3% of the time (approximatively two and a half hours per day). Even if 

periodically and abundantly watered, plants did probably suffer from heat stress and buckwheat 

and A. retroflexus were the only species which did flowering.  

Measurements were conducted according to buckwheat phenology, at fifth full leaf development 

when growing degree (GDDs) days reached 541°C d-1 (Base temperature = 0°C), full buckwheat 

bloom at 1139°C d-1 and seeding onset at 1713°C d-1. 

 

 

Figure 4.5. Minimum, mean and maximum temperature measured in the greenhouse during the experiment. 

 

 

 

 

 



122 

 

 

Plants heights at different measurements are reported in Table 4.8. Significant differences in 

plant height (HP) were assessed at first sampling in chickpea and buckwheat, however plants 

were so small that such differences might be neglected. At second sampling, differences were 

assessed in chickpea and A. theophrasti. In chickpea, plants in monoculture (MC) were 

approximatively 47% higher than in intercropping (IC), while in A. hteophrasti, plants in MC 

were 35% higher than in IC. At the last sampling, differences in chickpea were no more 

assessed. Final HP of lentil in IC was statistically lower than in MC and A. theophrasti was the 

only species where plants in staircase device (SD) treatment were less developed than the others. 

However, this result might be due to the effect of the shading net where plants of SD were 

placed. 

Table 4.8. Plants height measured in buckwheat (BW), chickpea (CH), lentil (LN), A. retroflexus (AR) and A. 

theophrasti (AT) under three different treatments: monoculture (MC), intercropping (IC) and staircase device (SD). 

Statistical differences assessed by Tukey’s post hoc test are specified by letters. Significance: *: p < 0.05; **: p < 

0.01; ***: p < 0.001; n.s.: not significant. 

Species Treatment 
Plant height, cm 

16/05/23 06/06/23 26/06/23 

CH 

MC 22.5 ± 2.0 
** 

54.7 ± 6.1 
*** 

60.4 ± 5.3 

n.s. IC 19.0 ± 2.2 37.0 ± 3.8 47.4 ± 14.5 

SD  56.1 ± 6.3 

LN 

MC 20.1 ± 0.8 
n.s. 

36.5 ± 5.7 
n.s. 

44.3 ± 3.2 a 

*** IC 19.1 ± 2.5 29.5 ± 4.9 29.8 ± 3.2 b 

SD  42.0 ± 1.8 a 

AR 

MC 4.7 ± 0.7 
n.s. 

34.5 ± 7.6 
n.s. 

52.6 ± 7.5 

n.s. IC 5.9 ± 1.1 27.3 ± 1.8 43.0 ± 15.6 

SD  44.6 ± 6.8 

AT 

MC 6.8 ± 1.1 
n.s. 

41.6 ± 4.6 
** 

60.6 ± 3.4 a 

*** IC 8.0 ± 1.3 30.9 ± 6.9 57.4 ± 2.7 a 

SD  47.3 ± 3.4 b 

BW 

MC 22.9 ± 3.9 a 

** 

62.1 ± 5.3 

n.s. 

84.2 ± 14.1 

n.s. 

IC with CH 25.4 ± 3.6 a 66.4 ± 4.9 95.3 ± 6.4 

IC with AR 33.6 ± 1.9 b 66.1 ± 7.0 91.3 ± 20.9 

IC with LN 25.8 ± 1.3 a 64.3 ± 3.5 95.9 ± 6.6 

IC with AT 24.8 ± 5.5 a 67.3 ± 5.7 83.6 ± 9.8 

SD  87.4 ± 20.4 
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Measured root lengths are reported in Table 4.9. Differences were assessed only at last 

measurement in chickpea and buckwheat. In chickpea, plants of SD treatment had significantly 

deeper roots, 17.0 ± 3.0cm in SD versus 10.9 ± 0.8cm in monoculture. This result may be due to 

the predominantly heliophilous nature of chickpea, being forced to grow in a shaded 

environment. In this condition the plant interprets reduced light as a signal that it is in 

competition with neighboring plants for access to limited light resource. 

 

 

Table 4.9. Root length measured in buckwheat (BW), chickpea (CH), lentil (LN), A. retroflexus (AR) and A. 

theophrasti (AT) under three different treatments: monoculture (MC), intercropping (IC) and staircase device (SD). 

Statistical differences assessed by Tukey’s post hoc test are specified by letters. Significance: *: p < 0.05; **: p < 

0.01; ***: p < 0.001; n.s.: not significant. 

Species Treatment 
Root length, cm 

16/05/23 06/06/23 26/06/23 

CH 

MC 11.1 ± 1.5 
n.s. 

16.1 ± 0.3 
n.s. 

10.9 ± 0.8 a 

** IC 10.0 ± 1.8 15.3 ± 3.2 10.1 ± 1.5 a 

SD  17.0 ± 3.0 b 

LN 

MC 11.3 ± 0.7 
n.s. 

12.3 ± 1.2 
n.s. 

16.2 ± 2.2 

n.s. IC 11.1 ± 2.4 10.2 ± 1.1 13.3 ± 0.7 

SD  15.7 ± 1.9 

AR 

MC 5.8 ± 0.7 
n.s. 

14.9 ± 0.7 
n.s. 

19.6 ± 3.6 

n.s. IC 6.3 ± 0.6 12.8 ± 1.1 17.6 ± 2.8 

SD  19.8 ± 3.8 

AT 

MC 8.6 ± 1.0 
n.s. 

13.3 ± 1.6 
n.s. 

17.2 ± 2.1 

n.s. IC 7.8 ± 0.6 13.0 ± 2.2 17.2 ± 3.2 

SD  17.4 ± 2.8 

BW 

MC 7.3 ± 0.3 

n.s. 

10.9 ± 0.8 

n.s. 

9.0 ± 0.6 a 

* 

IC with CH 9.3 ± 0.6 10.5 ± 4.4 8.6 ± 2.2 a 

IC with AR 8.4 ± 2.1 10.2 ± 0.7 14.8 ± 2.2 b 

IC with LN 9.6 ± 1.4 10.4 ± 0.4 12.2 ± 2.3 ab 

IC with AT 8.3 ± 0.6 11.7 ± 2.4 13.2 ± 4.1 ab 

SD  12.4 ± 1.8 ab 
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Measured values of aboveground dry biomass (DWABV) are listed in Table 4.10. At first 

sampling, statistical differences occurred only among buckwheat treatments, as DWABV of 

buckwheat in MC was significantly lower than in IC, however this condition did not occur in the 

following samplings. In all other species, DWABV in MC was significantly higher than in IC, 

with the exception of A. retroflexus, when difference was not statistically significant on 

26/06/23. DWABV of plants under SD treatment were lower in chickpea and A. theophrasti. 

However, as already noticed, this result may be due to the shading of plants under SD treatment. 

 

Table 4.10. Aboveground dry biomass measured in buckwheat (BW), chickpea (CH), lentil (LN), A. retroflexus 

(AR) and A. theophrasti (AT) under three different treatments: monoculture (MC), intercropping (IC) and staircase 

device (SD). Statistical differences assessed by Tukey’s post hoc test are specified by letters. Significance: *: p < 

0.05; **: p < 0.01; ***: p < 0.001; n.s.: not significant. 

Species Treatment 
Aboveground dry biomass, g plant-1 

16/05/23 06/06/23 26/06/23 

CH 

MC 0.19 ± 0.04 
n.s. 

1.4 ± 0.4 
*** 

3.3 ± 0.8 a 

* IC 0.14 ± 0.05 0.8 ± 0.1 2.0 ± 0.4 b 

SD  2.0 ± 0.5 b 

LN 

MC 0.08 ± 0.01 
n.s. 

0.5 ± 0.1 
*** 

1.4 ± 0.3 a 

*** IC 0.07 ± 0.02 0.2 ± 0.0 0.4 ± 0.0 b 

SD  1.1 ± 0.1 a 

AR 

MC 0.02 ± 0.01 
n.s. 

1.3 ± 0.3 
** 

4.0 ± 1.5 

n.s. IC 0.04 ± 0.02 0.6 ± 0.0 2.5 ± 1.1  

SD  3.4 ± 0.7 

AT 

MC 0.07 ± 0.02 
n.s. 

1.0 ± 0.1 
* 

4.5 ± 0.5 a 

*** IC 0.06 ± 0.02 0.5 ± 0.2 3.9 ± 0.2 a 

SD  2.8 ± 0.3 b 

BW 

MC 0.18 ± 0.08 a 

*** 

1.3 ± 0.3 

n.s. 

2.7 ± 0.7 

n.s. 

IC with CH 0.35 ± 0.08 b 2.2 ± 0.4 3.9 ± 0.7 

IC with AR 0.54 ± 0.06 b 2.0 ± 0.4 3.3 ± 0.6 

IC with LN 0.29 ± 0.08 b 1.9 ± 0.5 3.8 ± 0.5 

IC with AT 0.30 ± 0.09 b 2.0 ± 0.5 2.6 ± 0.5 

SD  2.5 ± 0.4 

 

 

 



125 

 

Measured values of root dry biomass (DWR) are reported in Table 4.11. Values measured in 

buckwheat on 06/06/23 were omitted because of anomalous values, probably due to issues in 

roots cleaning with consequent bias of soil still attached to roots. Statistical differences on 

06/06/23 were assessed in A. retroflexus only, however these did not occur at the following 

sampling. At the last sampling, under IC treatment DWR was significantly lower in lentil, while 

for A. theophrasti there was a reduction in the SD treatment.  

 

Table 4.11. Root dry biomass measured in buckwheat (BW), chickpea (CH), lentil (LN), A. retroflexus (AR) and A. 

theophrasti (AT) under three different treatments: monoculture (MC), intercropping (IC) and staircase device (SD). 

Statistical differences assessed by Tukey’s post hoc test are specified by letters. Significance: *: p < 0.05; **: p < 

0.01; ***: p < 0.001; n.s.: not significant. 

Species Treatment 
Root dry biomass, g plant-1 

16/05/23 06/06/23 26/06/23 

CH 

MC 0.13 ± 0.05 
n.s. 

0.24 ± 0.09 
n.s. 

0.27 ± 0.02 

n.s. IC 0.18 ± 0.08 0.15 ± 0.06 0.21 ± 0.03 

SD  0.24 ± 0.03 

LN 

MC 0.04 ± 0.01 
n.s. 

0.07 ± 0.02 
n.s. 

0.11 ± 0.03 a 

** IC 0.03 ± 0.01 0.05 ± 0.00 0.05 ± 0.01 b 

SD  0.11 ± 0.01 a 

AR 

MC 0.02 ± 0.01 
n.s. 

0.32 ± 0.12 
** 

0.74 ± 0.14 

n.s. IC 0.01 ± 0.01 0.17 ± 0.05 0.68 ± 0.24 

SD  0.61 ± 0.16 

AT 

MC 0.02 ± 0.01 
n.s. 

0.15 ± 0.04 
n.s. 

0.53 ± 0.05 a 

* IC 0.02 ± 0.01 0.18 ± 0.04 0.49 ± 0.09 ab 

SD  0.36 ± 0.06 b 

BW 

MC 0.05 ± 0.02 

n.s. 

- 

 

0.27 ± 0.07 

n.s. 

IC with CH 0.08 ± 0.02 - 0.30 ± 0.07 

IC with AR 0.16 ± 0.15 - 0.24 ± 0.02 

IC with LN 0.06 ± 0.01 - 0.33 ± 0.01 

IC with AT 0.09 ± 0.04 - 0.27 ± 0.04 

SD  0.24 ± 0.03 
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Competitive Balance Index (CBI) calculated from DWABV of various species in IC, is graphically 

represented in Figure 4.6. Among all the growing season, highest CBI values were measured in 

buckwheat, which acted like the most competitive species (CBI > 0). This result is interesting if 

compared to previous data. In fact, buckwheat was the species with generally the lowest values 

of LR and DWABV. Moreover, due to heat stress, buckwheat plants tended to be prostrate, so we 

exclude a competitive effect due to shading of the companion species. 

 

 

Figure 4.6. Competitive Balance Index of A. retroflexus (AR), A. theophrasti (AT), chickpea (CH) and lentil (LN) 

calculated from aboveground dry biomass measured on a) 16/05/2023; b) 06/06/2023; c) 26/06/2023. 
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Calculated growth rate (GR) values are reported in Table 4.12. Since HP in SD treatment was 

measured only at last sampling, it was not possible to include that treatment. Furthermore, the 

calculation of GR was assessed on mean data for each treatment as plants underwent into 

destructive samplings, no confidence interval or statistic was assessed.  

In general, it is possible to observe the four tested species, GR values are lower in IC than in 

MC. This is particularly evident in the second considered period (GRT1-T2), where also CBI 

values were the lowest.  

 

Table 4.12. Growth rate (GR) from sowing to 16/05/23 (GRT0-T1), from 16/05/23 to 06/06/23 (GRT1-T2) and from 

06/06/23 to 26/06/23 (GRT2-T3) calculated from measured plant heights of buckwheat (BW), chickpea (CH), lentil 

(LN), A. retroflexus (AR) and A. theophrasti (AT) under monoculture (MC) and intercropping (IC) treatments. 

Species Treatment GRT0-T1, cm d-1 GRT1-T2, cm d-1 GRT2-T3, cm d-1 

CH 
MC 1.25 1.53 0.28 

IC 1.06 0.86 0.52 

LN 
MC 1.12 0.78 0.39 

IC 1.06 0.49 0.02 

AR 
MC 0.26 1.42 0.91 

IC 0.33 1.02 0.79 

AT 
MC 0.38 1.66 0.95 

IC 0.44 1.09 1.33 

BW 

MC 1.27 1.87 1.10 

IC with CH 1.87 1.55 1.26 

IC with AR 1.38 2.02 0.82 

IC with LN 1.41 1.96 1.44 

IC with AT 1.43 1.83 1.58 

 

 

3.3 Field trials results 

Measured plant densities are reported in Table 4.13. No crop reached the target plant density 

(PD) (see Table 4.2) and despite the sowing density of seeds was equal, germination was higher 

in chickpea and lentil in monoculture. Worst germination occurred in buckwheat, where we 

recorded a plant density of approximatively 25% of the target one. Moreover, in chickpea under 

treatment within-row (WR) at 50%, plant densituy of buckwheat was lower than at 25%.  
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Table 4.13. Plant density of chickpea (CH), lentil (LN) and buckwheat (BW) measured at flowering. 

Experiment Treatment / Intercrop ID 
PD of legume 

# m-2 

PD of buckwheat 

# m-2 

Chickpea 

Control/Monoculture CH 35.4 ± 4.2 - 

Alternate rows CHBWAR 29.4 ± 7.8 24.9 ± 7.7 

Within-row at 25% CHBW25% 31.5 ± 5.9 31.5 ± 5.0 

Within-row at 50% CHBW50% 29.4 ± 6.7 24.9 ± 7.4 

BW Control/Monoculture BW - 50.4 ± 11.2 

 

Lentil 

Control/Monoculture LN 91.4 ± 14.5 - 

Alternate rows LNBWAR 77.7 ± 12.1 28.7 ± 6.13 

Within-row at 25% LNBW25% 75.6 ± 9.6 19.3 ± 3.8 

BW Control/Monoculture BW - 59.5 ± 7.5 

 

A total of 20 weeds were identified during the vegetation samplings. The five most common 

weeds and their percentage of occurrence are reported in Table 4.14, while percentage of soil 

cover of the two most common ones (Chenopodium album and Galinsoga parviflora) among 

treatments are listed in Table 4.15. Significant differences were assessed for C. album only in 

lentil experiments in the post-weeding assessment, where abundance was higher in buckwheat in 

monoculture. A similar result occurred for G. parviflora, which abundance was significantly 

higher in buckwheat in monoculture in the chickpea experiment.  

 

Table 4.14. Percentage of occurrence of the most prevalent weeds in plots of chickpea (CH) and lentil (LN) 

experimental areas.  

Species 

Percentage of occurrence 

Before hoeing After hoeing 

CH experiment LN experiment CH experiment LN experiment 

Chenopodium album 100% 100% 92.5% 100% 

Galinsoga parviflora 97.5% 93.7% 100% 90.6% 

Stellaria media 80% 59.4% 652.5% 56.2% 

Lamium purpureum 80% 71.8% 50% 40.6% 

Viola arvensis 75% 40.6% 67.5% 56.2% 
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Table 4.15. Mean values with standard deviation of estimated percentage of soil cover of Chenopodium album and 

Galinsoga parviflora among different treatments of chickpea (CH) and lentil (LN) experiments. Significance: *: p < 

0.05; **: p < 0.01; ***: p < 0.001; n.s.: not significant. 

Experiment Treatment 

Percentage of soil cover, % 

Chenopodium album Galinsoga parviflora 

Before Hoeing Sign After Hoeing Sign Before Hoeing Sign After Hoeing Sign 

CH 

CH 1.7 ± 0.6 

n.s. 

3.9 ± 3.7 

n.s. 

1.9 ± 0.8 

n.s. 

10.6 ± 10.9 a 

** 

CHBWAR     * 3.7 ± 3.6 20.8 ± 24.3 1.7 ± 1.6 13.3 ± 23.3 a 

CHBW50%     3.4 ± 3.1 7.50± 6.9 1.6 ± 1.1 3.8 ± 2.5 a 

CHBW25%     2.7 ± 1.4 4.4 ± 2.8 1.5 ± 1.0 5.3 ± 6.0 a 

BW              * 2.1 ± 0.7 11.6 ± 13.0 1.8 ± 1.2 36.0 ± 29.3 b 

 

LN 

LN 13.6 ± 8.9 

n.s. 

14.1 ± 10.7 a 

** 

3.4 ± 10.4 

n.s. 

2.8 ± 9.0 

n.s. 

LNBWAR     * 5.4 ± 9.0 11.6 ± 8.5 a 2.5 ± 3.3 10.6 ± 12.2 

LNBW25% 6.4 ± 4.1 12.5 ± 9.6 a 4.5 ± 6.0 6.1 ± 8.5 

BW              * 11.9 ± 6.1  29.9 ± 8.4 b 0.7 ± 0.7 10.2 ± 5.6 

* Treatments where hoeing was not conducted. 

 

Shanno Diversity index (H) of weed values are reported in Table 4.16. Differences were assessed 

only in chickpea, where diversity was significantly lower in the WR treatment at 50%. After 

weeding, no difference was more assessed. In lentil no difference was observed both before and 

after weeding. 

Aboveground dry biomass (DWABV) at flowering is reported in Table 4.17. In chickpea, crop 

biomass was significantly higher in monoculture (MC) and reached the minimum in CHBW50%, 

where also lower plant density has also been assessed. Buckwheat biomass in chickpea was 

higher in MC, and reached the minimum in the alternate-row (AR) layout. Weeds biomass was 

significantly higher in AR and pure buckwheat, and gradually decreased reaching the minimum 

in pure chickpea and CHBW50%. In lentil, no statistical difference was assessed except for weed 

biomass, where DWABV of weeds was significantly higher in pure buckwheat and minimum 

values were measured in pure lentil. 
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Measured plant height values at flowering are reported in Table 4.18. Statistical differences were 

assessed in chickpea, where plant of the AR treatment were significantly shorter than the other 

treatments. No statistical difference was assessed in lentil or in buckwheat among all treatments. 

 

Table 4.16. Mean values with standard deviation of Shannon Diversity Index (H) calculated on weed comunitites of 

different treatments of chickpea (CH) and lentil (LN) experiments. Significance: *: p < 0.05; **: p < 0.01; ***: p < 

0.001; n.s.: not significant. 

Experiment Treatment 

Weed H index 

Before Hoeing Sign After Hoeing Sign 

CH 

CH 1.45 ± 0.18 a 

* 

1.02 ± 0.39 

n.s. 

CHBWAR * 1.21 ± 0.39 ab 0.99 ± 0.59 

CHBW25%     1.20 ± 0.22 ab 1.12 ± 0.43 

CHBW50%     0.93 ± 0.36 b 0.94 ± 0.30 

BW           * 1.20 ± 0.31 ab 0.88 ± 0.41 

 

LN 

LN 0.60 ± 0.27 

n.s. 

0.72 ± 0.34 

n.s. 
LNBWAR  1.02 ± 0.42 0.99 ± 0.21 

LNBW25% 1.02 ± 0.34 0.90 ± 0.35 

BW 0.70 ± 0.44 1.03 ± 0.20 

* Treatments where hoeing was not conducted. 

 

Table 4.17. Mean values with standard deviation of aboveground dry biomass (DWABV) of crop (chickpea or lentil), 

buckwheat (BW) and weeds, measured at flowering in different treatments of chickpea (CH) and lentil (LN) 

experiments. Significance: *: p < 0.05; **: p < 0.01; ***: p < 0.001; n.s.: not significant. 

Experiment Treatment 
Crop DWABV 

g m-2 Sign 
BW DWABV 

g m-2 Sign 
Weeds DWABV 

g m-2 Sign 

CH 

CH 50.8 ± 2.3 a 

* 

- 

* 

27.0 ± 7.4 bc 

** 

CHBWAR  34.6 ± 15.5 ab 10.2 ± 3.6 b 56.7 ± 19.1 a 

CHBW25%     34.0 ± 10.7 ab 17.8 ± 10.4 ab 31.6 ± 11.1 bc 

CHBW50%     27.5 ± 5.6 b 30.3 ± 11.0 ab 23.8 ± 7.6 c 

BW     - 35.4 ± 12.3 a 50.2 ± 11.7 ab 

 

LN 

LN 113.6 ± 11.2 

n.s. 

- 

n.s. 

21.9 ± 2.9 b 

*** 
LNBWAR  87.7 ± 15.4 13.7 ± 7.7 35.9 ± 6.02 b 

LNBW25% 62.9 ± 44.2 13.5 ± 7.5 26.9 ± 14.1 b 

BW - 21.0 ± 0.3 68.5 ± 17.5 a 
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Table 4.18. Mean values with standard deviation of plant height measured at flowering in different treatments of 

chickpea (CH) and lentil (LN) experiments. Significance: *: p < 0.05; **: p < 0.01; ***: p < 0.001; n.s.: not 

significant. 

Experiment Treatment Crop plant height, cm Sign BW plant height, cm Sign 

CH 

CH 50.4 ± 4.3 a 

*** 

- 

n.s. 

CHBWAR  42.4 ± 4.8 b 53.6 ± 8.8 

CHBW25%     47.0 ± 5.5 a 54.3 ± 7.7 

CHBW50%     50.7 ± 4.2 a 56.8 ± 5.1 

BW     - 57.4 ± 7.1 

LN 

LN 39.4 ± 2.4 

n.s. 

- 

n.s. 
LNBWAR  40.7 ± 4.0 54.5 ± 8.4 

LNBW25% 40.1 ± 2.6 53.7 ± 7.0 

BW - 52.0 ± 6.4 

 

Aboveground dry biomass measured at harvest is graphically represented in Figures 4.7-4.8. In 

the chickpea experiment (Figure 4.6), no difference was assessed among DWABV of both 

chickpea and buckwheat in different treatments. Although, Weeds DWABV was significantly 

higher in pure buckwheat plots. The same trend was observed in lentil. In fact, no difference was 

assessed among crop biomass in different treatments, however, weeds DWABV was significantly 

higher in pure buckwheat. About buckwheat biomass, it was higher in pure buckwheat, where 

also plant density was higher (see Table 4.13). 

Measured values of yield are represented in Figures 4.9-4.10. In chickpea, lower legume was 

observed in the AR layout, with 0.44 ± 0.12ton ha-1, significantly lower from the other 

treatments where yield reached a maximum of 1.24 ± 0.18ton ha-1 in pure crop. Buckwheat yield 

was also lower in CHBWAR and CHBW25%, however, values were not significantly different 

from buckwheat in monoculture. In lentil, no difference was assessed in terms of legume yield 

among different treatments. Measured values were generally high, with a minimum of 2.05 ± 

0.18ton ha-1 in LNBWAR and a maximum of 2.40 ± 0.22ton ha-1 as pure strains.  
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Measured yield generally followed the same trend of DWABV. Hence, we did not observe any 

difference for any crop in terms of Harvest Index (Figures 4.11-4.12). HI values were 

approximatively 0.40 in chickpea and buckwheat, and 0.50 in lentil. 

 

Figure 4.7. Aboveground dry biomass of chickpea (blue boxes and letters), buckwheat (green boxes and letters) and 

weeds (red boxes and letters), measured at harvest in treatments of the chickpea experiment. Statistical differences 

are denoted by different letters.  

 

Figure 4.8. Aboveground dry biomass of lentil (yellow boxes and letters), buckwheat (green boxes and letters) and 

weeds (red boxes and letters), measured at harvest in treatments of the lentil experiment. Statistical differences are 

denoted by different letters.  
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Figure 4.9. Yield of chickpea (blue boxes and letters) and buckwheat (green boxes and letters) measured at harvest 

in treatments of the chickpea experiment. Statistical differences are denoted by different letters.  

 

 

Figure 4.10. Yield of lentil (yellow boxes and letters) and buckwheat (green boxes and letters) measured at harvest 

in treatments of the lentil experiment. Statistical differences are denoted by different letters.  
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Figure 4.11. Harvest Index of chickpea (blue boxes and letters) and buckwheat (green boxes and letters) measured 

at harvest in treatments of the chickpea experiment. No statistical difference was assessed.  

 

 

 

Figure 4.12. Harvest Index of lentil (yellow boxes and letters) and buckwheat (green boxes and letters) measured at 

harvest in treatments of the lentil experiment. No statistical difference was assessed. 
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3.4. Allelochemical analysis 

Measured values of Rutin and Quercetin are listed in Table 4.19. Both allelochemicals were 

quantified in grinded buckwheat and in the water extract prepared for the in-vitro 

experimentation (d05), while Rutin was not detected in leached water from the greenhouse 

experimentation. Extraction of allelochemicals from water resulted extremely inefficient for 

dissolving allelochemicals into solution. However, in terms of concentration per volume of 

solution, Quercetin values were mostly similar, while Rutin in water was approximatively 20% 

compared to the quantified amount of the grinded buckwheat. 

 

Table 4.19. Mean values with corresponding standard deviations of Rutin and Quercetin quantified by HPLC 

analysis. Values are reported both as a concentration in the analyzed solution (mg l-1) and referred to the weight of 

buckwheat (BW) used for the extraction (mg g-1). 

Sample 

Rutin Quercetin 

mg l-1 mg g-1 mg l-1 mg g-1 

Water extract 1:5 6.15 ± 0.12 0.03 ± 0.001 1.35 ± 0.04 0.007 ± 0.0002 

Grinded BW  

(extracted in CH3OH) 
30.11 ± 1.56 1. 78 ± 0.02 1.45 ± 0.03 0.09 ± 0.002 

Leached water 0  1.05 ± 0.07  
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4 Discussion 

4.1. Effect of aqueous buckwheat extract on seed germination. 

In this trial, we tested the effect of buckwheat water extracts on the germination of seeds of 

crops, weeds, and model species. We tested water extracts at two different concentrations: i) d10 

– more diluted (buckwheat and water at 1:10 weight/volume ratio); ii) d05 – more concentrated 

(buckwheat and water at 1:5 weight/volume ratio). A consistent source of bias in this experiment 

may attributed to molds, which occurred even though the petri dishes were sterile, and the seeds 

were sterilized before incubation. The cause of contamination is probably due to the buckwheat 

extract, which was not possible to sterilize. However, this problem primarily affected few 

species, and was notably in tobacco, where it was not possible to measure the root length.  

Through HPLC analyses, we quantified the actual presence and abundance of two of the main 

allelochemicals in buckwheat, Quercetin and Rutin. The measured values for both compounds 

are extremely low, approximately 50 times lower than the values reported in the literature (Table 

4.1). However, buckwheat extracts had a generally remarkable effect on all tested species, both 

in terms of seed germination and root elongation, resulting in significant differences in estimated 

germination index. Since the extract dose per Petri dish was the same for every species, we 

hypothesized that this effect might be due to the size of the seed, which determines its 

susceptibility, Although, neither Germination Index at d10 and d05 were related to the thousand 

seed weight (TSW) and for example C. dactylon (TSW of 0.68g) was the second less susceptible 

species, while in chickpea (TSW of 467g) at d05 no one seed germinated.  

Species response was quite different between the d10 (more diluted) and d05 (more 

concentrated) treatments, both in terms of germination and root length. For example, among 

weeds, seed germination was not strongly reduced in C. dactylon and E. crus-galli both in d10 

and d05, while root length was approximatively halved compared to the control. On the other 

hand, in S. italica, the Relative Seed Germination was significantly affected while in the d05 
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treatment the Relative Root Growth was approximatively 70%. However, in general, all species 

were heavily affected by buckwheat extracts. Excluding quinoa values at d10, for which root 

length values are anomalous, the less suppressed species was soybean with a GI of 75.9 at d10 

and 40.9% at d05. At d10, the three most resistant species after soybean where weeds, S. italica 

(GI 57.0%), E. crus-galli (GI 55.1%) and C. dactylon (GI 46.7%). At d05 there was not such 

trend and all species resulted heavily affected by the extract.  

Up to our knowledge, this is the first study investigating this methodology for buckwheat. 

Nevertheless, it has been demonstrated the efficacy of buckwheat in suppressing multiple 

species. Evidence has been widely provided for weeds (Golisz et al. 2007, Kumar et al. 2009, 

Falquet et al. 2015, Wirth and Gfeller 2016), however knowledge is still limited for crops 

(Kalinova et al. 2005, 2007), especially major crops (Cheriere et al. 2020). This study represents 

a first assessment of this aspect, more investigations are required, with the possibility of also 

including reference toxic chemicals generally used in germination tests (e.g. Sodium Chloride, 

Copper Sulfate, Potassium Dichromate) to compare buckwheat extracts toxicity with a standard 

reference 

 

4.2 Intercropping with buckwheat in controlled conditions 

In this trial we set up a pot experiment in a controlled environment (greenhouse) to evaluate the 

allelopathic effect of buckwheat, consociated with two weeds: A. retroflexus and A. theophrasti 

and two grain legumes: chickpea and lentil. To distinguish between competition and allelopathy, 

we also tested each species with a staircase device experimental design, where plants were 

grown in monoculture and irrigated with leached water from pots containing pure buckwheat. 

This methodology has been reputed one of the most solid in distinguishing the effect of 

allelopathy from competition (Mahé et al. 2022). 
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Through HPLC analysis, we determined that there was no Rutin in the leached water used for 

irrigating the pots in the staircase device treatment. However, the Quercetin concentration is 

comparable to the one measured in the water extract d05 used for the in-vitro experimentation. 

A significant reduction in aboveground dry biomass was observed in chickpea and lentil under 

intercrop treatment, and in chickpea and A. theophrasti under staircase device treatment. While 

we cannot exclude the possibility of shading effects in chickpea irrigated with leached water 

from buckwheat, the lack of differences in plant height in chickpea suggests that this issue may 

be negligible and implies a potential inhibition effect on this crop due to allelopathy. 

Furthermore, based on the results of in-vitro experiments, chickpea appears to be one of the more 

sensitive crops to buckwheat allelochemicals. The same conclusions may not apply to the results 

for A. theophrasti. In fact, in the staircase device treatment, it exhibited a significant reduction in 

aboveground dry biomass, plant height and root length, a phenomenon not observed in the 

intercropping treatment. Therefore, we suggest that shading may have been a significant factor 

affecting this crop, potentially introducing bias into the measurements conducted in the staircase 

device treatment. The most affected species in the intercropping treatment was lentil. Compared 

to the control, lentil in consociation exhibited a significant reduction in both aboveground and 

root dry biomass, which did not occur in the staircase deivce treatment. It is likely that this crop 

may have suffered from competition by buckwheat. 

No effect was observed in any treatment for A. retroflexus. This result confirms the observations 

of Wirth and Geller (2016), who tested A. retroflexus and lettuce in both field and pots 

experiments using soils where buckwheat had previously been grown for varying durations. By 

their results, there was no influence of buckwheat on germination and development of both 

species. In contrast, Falquet et al. (2014) provided conflicting evidence. In their pot experiment, 

they examined the effects of buckwheat intercropped with A. retroflexus, highlighting a 

significant inhibitory impact due to competitive shading effect and root interaction (potentially 

allelopathy). 
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It's interesting to note that according to the Competitive Balance Index, resulted being the most 

competitive species in every sampling (Figure 4.6). However, it is difficult to distinguish 

competitive traits in this species, as buckwheat plants exhibited limited canopy extension and 

prostrate growth tendency, which results in a relatively weak shading effect on nearby plants. 

Moreover, based on our results, buckwheat was the species with the shallowest roots, a trait 

generally related to scarce competition for resources (Violle et al. 2009). This data is further 

supported by the calculated growth rate values, which are generally higher for species in 

monoculture compared to intercropping, especially during the period between first and second 

sampling. This result supports the observations on lettuce, which growth was inhibited by the 

allelochemicals produced during the early growth stages of buckwheat (Kalinova et al. 2005, 

Kato-Noguchi et al. 2007). Accomplishing for the unfavorable conditions of the experiment, we 

suggest that it might have been particularly challenging to observe a prominent allelopathic 

effect of buckwheat. Nevertheless, this result represents an interesting insight that may be 

explored by further investigation.  

 

4.3. Intercropping with buckwheat for weed management in field. 

We set up a field trial to test the allelopathic properties of buckwheat when intercropped with 

grain legumes, with the aim of mitigating the competitive effect exerted by weeds. The 

hypothesis of the experiment was that the allelochemicals produced by buckwheat are sufficient 

to replace weeding, which represents a major issue in organic agriculture. Weeding by hoeing 

was conducted 25 days after crops emergence. Is efficacy was evaluated one month later, at 

legumes flowering (58 days after crops emergence) and at harvest. 

In terms of weeds diversity, there was no difference in any treatment, whether hoeing was 

performed or not. As confirmed by calculated Shannon Diversity Index, the weed community 

had a limited diversity, with few dominant species. Both at flowering and harvest, weeds 
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biomass was mostly affected by hoeing. At flowering and harvest, aboveground dry biomass of 

weeds was significantly higher in the alternate-row treatment and in pure buckwheat within 

chickpea treatments, while within lentil, only in pure buckwheat. This result may be due partially 

attributed to the not-executed hoeing in those treatments and partially to variations in soil cover. 

In fact, the soil cover in buckwheat was notably lower than in plots with legumes, hence favoring 

weeds growth. These results refute our hypothesis and support that there was not any significant 

effect in weeds inhibition, neither for specific species. Our findings are in line with the 

observations of Wirth and Geller (2016), who did not observe any inhibition in growth of A. 

retroflexus and lettuce immediately sown in a field where buckwheat was cropped for varying 

durations. However, in literature, several studies support the inhibitory effect of buckwheat on 

several weeds (Tominaga and Uezu 1995, Hayashi 1999, Kalinova et al. 2005, Kumar et al. 

2009, Falquet et al. 2015). According to our results, C. album was the dominant weed, occurring 

in 100% of plots. This result is in contrast with previous research, suggesting that C. album, 

together with E. crus-galli and Portulaca oleracea should be strongly inhibited (Tominaga and 

Uezu 1995, Hayashi 1999). 

In terms of crops productivity, intercropping with buckwheat did not significantly affect crops 

aboveground dry biomass and yield but in the alternate-row layout for chickpea. This result is 

likely due to the absence of weeding in that treatment, hence may be caused by a higher weed 

competition. However, even if biomass of weeds was higher in the chickpea-buckwheat 

alternate-row layout, difference with hoed treatments was quite low and not significantly 

different. Since results of the previously discussed experiments, chickpea has performed as a 

possible susceptible species by buckwheat allelochemicals. A further result supporting this 

hypothesis consists in the measured plant density, which was lower in both crops when 

intercropped with buckwheat, even if the sown amount of seeds was the same. It is known that 

buckwheat might be able to produce and release several allelochemicals already during 

germination and early development (Lee et al. 2004, Iqbal et al. 2003, Kalinova et al. 2005, 
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Falquet et al. 2014). Accomplishing for this evidence, we can rule out a possible inhibition of 

crops by allelopathy from interaction with buckwheat, however, further investigations are 

required to better evaluate this aspect.  
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5 Conclusions 

Water extracts of buckwheat inhibited the germination of seeds in all tested species. Germination 

inhibition occurred in terms of both reduced germination rate and root elongation. The 

occurrence of molds due to contamination from the buckwheat extract itself was a main source 

of bias. Nevertheless, results of this experiment are promising, and potential applications of these 

extracts may involve the production of bioherbicides. Further investigation may consider 

including treatments with a standard toxin or conventional herbicide to better assess the scale of 

the inhibitory effect exerted by the extract.  

The pot trial conducted in the greenhouse did not provide significant evidence of the allelopathic 

activity of buckwheat in association with weeds or crops. The experiment was constrained by the 

availability of only low-quality soil and greenhouse infrastructure issues, which led to shading in 

one treatment and overheating. A possible allelopathic effect may have occurred in chickpea and 

A. theophrasti. Nevertheless, buckwheat resulted as the most competitive species, reducing the 

growth of all species when in association. Given the limited canopy extension of buckwheat, 

which exhibited a prostrate growth tendency and shallow roots, we hypothesize that the 

competitive effect exerted by this species should have been quite limited.  

Field trials did not support the hypothesis that consociation with buckwheat is an effective 

strategy to mitigate weed competition. According to vegetation sampling results, there was no 

noticeable effect on containing weed infestation, and the most prevalent species was C. album, 

which, according to literature, should be particularly sensitive to buckwheat allelochemicals. 

Overall, weed management through hoeing proved to be a more efficient strategy. In treatments 

without weeding, buckwheat did not inhibit weed growth, and crop yield was significantly 

reduced. Further investigation is still needed, and future perspectives may involve testing the 

allelopathic effect of buckwheat by applying relay intercropping, where buckwheat is sown 

before the companion legume.  
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1 Introduction 

Thanks to the increase in accessibility of remote sensing technology, thematic maps have gained 

significant appeal among researchers (Ok et al. 2012). While the use of such tools has gained 

high value for comprehending the land use and cover attributes of land surface, interesting 

applications involve the classification of agricultural landscapes, determination of land use areas 

and the detection of crop residues in agricultural fields (Daughtry et al. 2006, Huang and Fipps 

2006, Stehman and Miliken 2007, Duro et al. 2012). Such applications may play a fundamental 

role in assessing many important aspects related to land use like soil erosion (Ganasri et al. 

2016), weed management (Huang et al. 2018) crops stress (Sun et al. 2019) yield (Bu et al. 

2017), and also quantifying important ecological services like Carbon stock (Guo et al. 2021).  

For this purpose, image classification algorithms have been developed, in order to face diverse 

applications and classification challenges. These algorithms are in various categories according 

to their mechanism of classification. The simplest ones are pixel-based algorithms, like 

Maximum Likelihood Classification (MLC), which assign a class to each pixel in an image 

based on its spectral characteristics (Horning 2010). More complex are object-based algorithms, 

which use different object features (e.g. spectral reflectance, shape and texture), and the 

relationship among different objects to assign a specific label for grouped pixels (Gitas et al., 

2004). Classification models are applied across a broad spectrum of applications, including 

precision agriculture, crop management decision-making, monitoring and modeling food 

production and security (Bad and Kayaalp 2021. In precision agriculture, they play a crucial role 

in aiding informed decisions related to crop management (Mishra et al. 2016). Additionally, they 

find applications in land use planning and ecosystem services assessment, aiding in 

environmental protection efforts by monitoring land use changes and assessing the impact of 

agriculture on natural resources (Liakos et al. 2018). 
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Recently, a wide ensemble of machine learning-based algorithms has been developed, as an 

alternative to conventional pixel-based and object-based methods, resulting more accurate and 

reliable models for image classification purpose (Ok et al. 2012). Conversely to the usual 

approaches, machine learning methods do not rely on parametric statistics, as they do not require 

data distribution and independence assumptions. These methods are data driven and are 

structured to “learn” the relationship between data predictor and response (Breiman 2001, 

Horning 2010).  

The most widely used machine learning-based algorithms are Random Forest models. Their 

classification algorithm is considered being particularly effective as it is poorly sensitive to noise 

and tends to not overfit (Belgiu and Drăguţ 2016). These models have been successfully used to 

classify many features like crops (Tatsumi et al. 2015), invasive species (Cutler et al. 2007, Jay 

et al. 2009) and crop residues (Barnes et al. 2021). Random Forest models are typically applied 

to satellite data, utilizing spectral bands and derived variables. These variables are often obtained 

through calculations of multispectral indices or tasseled cap transformation (e.g. Long et al. 

2013, Hao et al. 2015, Tatsumi et al. 2015,2016). As an example, Hao et al. (2015) utilized 

MODIS satellite time series data to develop a Random Forest (RF) model for classifying 9 

different crop types in the agricultural landscape in the Central Great Plains of Kansas. The 

model was fed with multispectral indices (NDVI and NDWI) as well as phenological metrics 

derived from spectral data. By their results, the NDVI contributed as the most significant 

features for crop mapping, which concurs with the most part of literature on the subject (Huang 

et al. 2021). 

Despite the widespread use of these models, to our knowledge, there is no evidence of their use 

on crops investigated in the various trials of this thesis. Hence, we conducted a study aimed to 

classify chickpea (Cicer arietinum), faba bean (Vicia faba), lentil (Lens culinaris) and quinoa 

(Chenopodium quinoa) by applying Random Forest modelling techniques with multispectral and 

photogrammetric data acquired by unmanned aerial system (UAS) in Italy and Netherlands. The 
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hypothesis of this study is that it is possible to implement a Random Forest classification model 

capable of automatically distinguishing these crops. To achieve this goal, we aim to evaluate the 

models’ performance by combining both spectral and photogrammetric information. 
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2 Materials and Methods 

2.1 Study areas 

The study took place in 2021 by exploiting two different varietal studies conducted in Udine (IT) 

and Lelystad (NL). Crops investigated were chickpea, faba bean, lentil and quinoa (Figure 5.1). 

 

 

Figure 5.1. Study areas in the pilot farms in Italy (IT) and Netherlands (NL), where Chickpea, Fava bean, Lentil and 

Quinoa were tested in 2021. 

 

2.1.1 Italy 

In Italy the study was conducted in Udine (46°02’12’’N – 13°13’23’’E).  The climate is 

Continental, with warm summers (mean temperature higher than 20°C) and relatively cold 

winters. Average cumulated precipitation exceeds 1400mm, regularly distributed along the year 

and occurring abundantly in autumn (data from ARPA-OSMER, reference period 2000-2022).  

The experimental trial took place in a field situated at the experimental farm “Antonio Servadei” 

of the University of Udine on loam soil (36%sand. 35% silt 22% clay, 7% gravel), having 1.9% 

of Soil Organic Carbon, 6.8 pH and 9 C/N. The soil has a low fungi/bacteria ratio of 0.5 and 

microbial activity is low. The SOC balance indicates a steady state supply of C equal to 1.6 tC 

ha-1 year-1 assuming an annual mineralization rate of 2.9% of the actual SOC. Deficiencies of Mn 



151 

 

are foreseen for legumes; Fe, Zn, P and K plant available are evaluated rather low. The soil 

Water Holding capacity (at 0.25m depth) is 52mm. 

Crops under investigation were: chickpea, faba bean and lentil. Treatments were sown following 

a randomized block design, replicated in three blocks, in plots of 12.6m2. A detailed summary of 

the experimental design is reported in Table 5.1 and for more information refer to chapter 1. 

 

2.1.2 Netherlands 

In Netherlands the experimentation was conducted in Lelystad (52°32'51"N - 5°34'39"E). The 

climate is Oceanic, with fresh summers (mean temperature generally lower than 18°C) and cold 

winters. Average cumulated precipitation is approximatively 650mm, regularly distributed along 

the year (data from Royal Netherlands Meteorological Institute https://dataplatform.knmi.nl, 

reference period 2014-2021).  

The experimental trials took place in a field located at the experimental farm “Waiboerhoeve” of 

Delphy B.V., on loam soil (46% of sand, 32% of silt and 15% of clay) with neutral acidity (pH 

7.5) and medium-low fertility (total Nitrogen stock 2.6x103kg ha-1, C/N ratio 11, N-supplying 

capability 45kg ha-1, available Phosphorus for plants 1.9kg ha-1).  

Crops tested were chickpea, faba bean, lentil and quinoa. Treatments were sown following a 

randomized block design, where each treatment was replicated in four plots, one per block. Plot 

dimensions were 18m2 (6 rows with row-distance of 0.25m at a length of 12m). A detailed 

summary of the experimental design is reported in Table 5.1.  
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Table 5.1. Experimental conditions for field trials in Italy and Netherlands 

Study site Italy – Udine Netherlands 

Sowing date Chickoea: 30/03/2021 

Faba bean: 30/03/2021 

Lentil: 30/03/2021 

Chickoea: 08/06/2021 

Faba bean: 26/04/2021 

Lentil: 08/06/2021 

Quinoa: 26/04/2021 

Soil type Loam Loam 

Sowing density Chickpea: 45 plant m-2 

Faba bean: 35 plants m-2 

Lentil: 120 plants m-2 

Chickpea: 40 plants m-2 

Faba bean: 80 plants m-2 

Lentil: 135 plants m-2 

Quinoa: 100 plants m-2 

Plot size 12.6m2 18m2 

Cultivars / Accessions / Treatments Chickpea: Eq.3279, Eq.3282, Eq.3283, 

Eq.3284, Sultano, Sultano + Eq.3282, 

Sultano + Eq.3284 

Faba bean: Alexia, Fanfare, Fuego, GL 

Emilia, Lynx, Taifun, Tiffany 

Lentil: Anicia, Flora, Itaca 

Chickpea: Eq.3279, Eq.3280, Eq.3282, 

Eq.3283, Eq.3284, Eq.1396, Sultano 

Faba bean: Alexia, Fanfare, Fuego, GL 

Emilia, Lynx, Tiffany 

Lentil: Anicia, Flora, Itaca, Paula 

Quinoa: Eq.1002, Eq.1002 fertilized, 

Eq.1010, Puno, Titicaca, Titicaca 

fertilized, Zeno 

Emergence (>80%) Chickpea: 14/04/2021 

Faba bean: 14/04/2021 

Lentil: 14/04/2021 

Chickpea: 17/06/2021 

Faba bean: 09/05/2021 

Lentil: 17/06/2021 

Quinoa: 09/05/2021 

Flowering (>80%) Chickpea: 01-07/06/2021 

Faba bean: 01-07/06/2021 

Lentil: 01-07/06/2021 

Chickpea: 13/07/2021 

Faba bean: 09/06/2021 

Lentil: 13/07/2021 

Quinoa: 07/06/2021 

Harvest Maturity Chickpea: 29/07/2021 

Faba bean: 16/07/2021 

Lentil: not reached 

Chickpea: 24/09/2021 

Faba bean: 28/08/2021 

Lentil: 10/10/2021 

Quinoa: 16/08/2021 

Weeding Periodically, hand hoeing Periodically, hand hoeing 
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2.2 Remote sensing data acquisition 

Altum and multispectral (MSP) data were acquired during the growing season on four dates in 

Italy: 21/05/2021, 04/06/2021, 23/06/2021, 05/07/2021, and on five dates in Netherlands: 

16/06/2021, 09/07/2021, 24/04/2021, 05/07/2021, 18/08/2021. Data were acquired with a 

MicaSense RedEdge MX camera (MicaSense Inc., Seattle, WA, USA) equipped on a DJI 

Matrice 210 v2 UAV (SZ DJI Technology Co. Ltd., Shenzenm, China). In the Netherlands, same 

data were acquired with a MicaSense Altum camera equipped on a DJI Zenmuse P1 UAV. Both 

MSP cameras acquired reflected radiation in: Blue (450±16nm), Green (560±16nm), Red 

(650±16nm), Red-Edge (RE, 730±16nm) and Near-Infrared (NIR, 840±26nm).  

Images were acquired with a multicamera system at 1 Hz frequency with minimum overlap of 

80%. Pictures of the MicaSense calibrated reflectance panel were also acquired before and after 

each flight, in order to correct the acquired images on the day’s lighting conditions and compare 

the results of different flights. 

Spectral data were mapped with spatial resolution of 2cm using Agisoft Metashape v.1.5.2 

software (Agisoft LLC, 2019). Georeferenced maps of the plots were created with R software by 

cropping the central area of each plot with a 500x500m mask. In order to prevent possible biases 

due to inhomogeneous or incomplete soil cover between rows, pixels with NDVI*height (cm) 

value lower than 0.1 were excluded.   

Multispectral data were used to calculate an ensemble of the most used multispectral (MSP) and 

RGB Vegetation Indices (VIs) in literature. All VIs used are listed in Table 5.2. 

In addition, Digital Elevation Models (DEMs, Figure 5.2) and Digital Terrain Models (DTMs) 

were generated in order to calculate the photogrammetric canopy volume (VC, m3m-2) as: 

𝑉𝐶 =
∑(𝐻𝑝𝑥 − 𝐻𝑔) ∗ 𝐴𝑝𝑥

𝐴𝑚
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where Hpx is the pixel height (m) referenced to the Digital Elevation Model, Hg is the ground 

level (m) referenced to the Digital Terrain Model, Apx is the pixel area (m2) and Am is the area of 

the mask, equal to 16.32m2 (1.6 width x 6m length). 

 

 

 

  

Figure 5.2. Examples of digital elevation models of the experimental fields of chickpea (CH) and faba bean (FB) in 

Udine, generated from the data acquired on 04/06/2023. 
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Table 5.2. List of spectral bands and vegetation indices tested, with corresponding abbreviations, equations and 

references. 

Classification Parameter Abbreviation Equation Reference 

Single bands 

  

  

  

  

Blue B    

Green G    

Red R    

Red Edge RE    

Near-Infrared NIR    

Simple ratio Simple Ratio Vegetation Index RVI RVI = R / NIR 
Pearson and Miller 

1972 

MSP indices 

  

  

  

  

  

  

  

  

  

  

  

  

  

Normalized Difference Vegetation 

Index 
NDVI 

NDVI= (NIR – R) / 

(NIR + R) 
Rouse et al. 1974 

Green NDVI GNDVI 
GNDVI = (NIR – G) / 

(NIR + G) 
Gitelson et al. 1996 

Renormalized Difference 

Vegetation Index 
RDVI 

RDVI = (NIR – R) / 

(NIR + R)0.5 
Roujean and Breon 

1996  

Nonlinear Vegetation Index NLI 
NLI = (NIR2-R) / 

(NIR2+R) 
Goel and Quin 1994 

Normalized Difference Chlorophyll 

Index 
NDI 

NDI = (NIR – RE) / 

(NIR + RE) 
Gitelson and Merzlyak, 

1994 

Soil-Adjusted Vegetation Index SAVI 
SAVI = ((1 + L) * 

(NIR – R)) / 

(NIR + R + L) 
Huete et al., 1988 

Green SAVI GSAVI 
GSAVI = ((1 + L) * 

(NIR – G) ) / 

(NIR + G + L) 
Sripada 1995 

Oprimized SAVI OSAVI 
OSAVI = (NIR – R) / 

(NIR + R + 

0.16) 
Rondeaux et al. 1996 

Infrared Percentage Vegetation 

Index 
IPVI 

IPVI = (NIR) / (R + 

NIR) 
Crippen 1990 

Modified Triangular Vegetation 

Index 
MTVI1 

MTVI1 = 1.2 * 

(1.2*(NIR – G) 

– 2.5*(R – G)) 
Haboudane et al. 2004 

Modified Triangular Vegetation 

Index 
MTVI2 

MTVI2 = MTVI1 / 

(((2*NIR+1)2 – 

(6*NIR-

(5*R0.5))0.5 – 0.5 

) 

Eitel et al. 2007 

Modified Red Edge Simple Ratio MRESR 
MRESR = (NIR – B) / 

(RE – B) 
Sims and Gamon 2002 

Red MRESR rMRESR 
rMRESR = (NIR – R) / 

(RE – R) 
/ 

RGB indices 

  

  

  

  

  

Excess Blue Vegetation Index ExB 
ExB = (1.4*B-

G)/(R+G+B) 
Mao et al. 2003 

Excess Green Vegetation Index ExG ExG = (2*G)-R-B 
Woebbecke et al., 

1995 

Excess Red Vegetation Index ExR 
ExR = (1.4*R-

G)/(R+G+B) 
Meyer and Neto, 2008 

Excess Green minus Red 

Vegetation Index 
ExGR ExGR = ExG – ExR Neto, 2004 

Green Leaf Index GLI 
GLI = (2*G-R-B)/(-R-

B) 
Louhaichi et al. 2001 

Green-Red Vegetation Index GRVI GRVI = (G-R)/(G+R) Tucker, 1979 

Modified GRVI MGRVI 
MGRVI = (G2 – 

R2)/(G2 + R2) 
Bendig et al., 2015 
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2.3 Crops Classification 

All the analyses and elaborations were conducted with the R v2.0.1 software (R Core Team, 

2021) with the “randomForest” package (Liaw and Weiner 2002). 

Remote sensing data at plot level was used to implement multiple random forest classification 

models. A base model (RFbase) was run, implementing as predictive features the acquired five 

spectral bands and VC. To evaluate whether MSP bands elaboration as VIs may provide new 

information for classification purposes, a comprehensive model (RFall) was run including all the 

calculated VIs as predictive features. A minimum model (RFmin) was then elaborated by 

implementing only the most significant features, selected by lack of correlation (Pearson’s R < 

0.65) and performance in terms of local importance in the RFall model. 

To improve models’ performance, we tested multiple combinations of number of trees to grow 

(N): from 300 to 1500; and variables randomly sampled at each split (m): from 3 to X-1 (where 

X is the total amount of input variables). Each model was implemented by randomly splitting the 

dataset into two subsets: i) training: 70% of observations; ii) test: 30% of observations. Best 

models were selected by assessing global performance by reiteration of the whole process 1000 

times, for each combination of model x N x m. 
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3 Results 

Oprimal models’ performances are summarized in Table 5.3. All models’ performance were 

notable, with low values of out-of-bag error (≤0.10) and high values of accuracy (≥0.90), kappa 

((≥0.86) and sensitivity ((≥0.89). Despite differences between model types are low, there is a 

general improvement along the three-steps procedure. The Implementation of spectral bands 

elaboration through VIs increased models’ performance, but the best results were obtained with 

RFmin by using a restricted selection of features. 

 

Table 5.3. Performance of Random Forest models for Crops’ Classification, according to the assessed optimal 

number of trees to grow (N) and variables randomly sampled at each split (m). 

Model 
N° of 

features 
N m 

OOB 

error 
Accuracy Kappa Sensitivity 

Computati

onal time 

(s) 

RFbase 6 400 3 0.10 0.90 0.86 0.89 0.056 

RFall 28 700 12 0.09 0.91 0.87 0.90 0.249 

RFmin 6 600 2 0.08 0..93 0.90 0.92 0.085 

 

 

Local importances of the five best predictors for each model type, expressed as mean model 

accuracy decrease (%), are represented in Figure 5.2. This result is quite interesting and strongly 

supports the hypothesis of the study. Among spectral bands, the RE is the most recurring, one, 

being in the second position in RFbase and third in the remaining ones. About VIs, rMRESR 

index performed as the best. This result is quite interesting as this index does not saturate and 

contains both information of NIR and RE referred to R. Furthermore, the ExB index also 

performed well. Being an RGB index, this result suggests the suitability of RGB techniques for 

this purpose, however it has to be noticed that most important information used has been 

provided by the infrared region. 
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Figure 5.2. Ordered local importance of the five best predictors for each Random Forest model. Abbreviations: RF 

– Random Forest; VC – Canopy volume; RE – Red Edge; NIR – Near infrared; - G – Green; R – Red; rMRESR – 

red Modified Red Edge Simple Ratio; - ExB – Excess Blue vegetation index.  
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4 Discussion 

Crop classification models are highly useful for a variety of applications in agriculture, 

environmental monitoring, and food security. These models leverage machine learning and 

remote sensing technologies to identify and classify different types of crops in a given area (Ok 

et al. 2012). Among various classification algorithms, Random Forest (RF) has been assessed as 

one of the most performing and suitable for agricultural landscape (Ok et al. 2012).  

In our study, we tested an ensemble of RF models that incorporated both spectral features and a 

structural feature, the canopy volume (VC). All of our models performed notably, with high 

accuracy (>0.90) and low error (<0.10). Surprisingly among the best predictors, the NDVI never 

occurred and was actually discarded from the variables included in the RFmin model, which was 

the most performing one. However, there is ample literature supporting the use of alternative 

vegetation indices over NDVI due to its documented issues with saturation, sensitivity to soil 

background, and variability among different phenological phase (Huang et al. 2021). Long et al. 

(2013) used multispectral data from Landsat satellite to implement various RF models to classify 

the agricultural landscape of northeast Montana. From their results, NDVI never performed as a 

significant variable for this purpose. In another study conducted with Landsat 7 multispectral 

data to feed RF classification models for agricultural types in south Peru, it resulted that the 

mode and sum of the Enhanced Vegetation Index outperformed NDVI in importance for crop 

class separability (Tatsumi et al. 2015). 

Interestingly, canopy volume resulted being the most important variable in all models. Up to our 

knowledge there is no evidence in literature on the use of this parameter in automatic 

classification, however there is some evidence where structural acquired by synthetic aperture 

radar (SAR) significantly improve models accuracy. Sonobe et al. (2014) classified various crop 

types in the western Tokachi plain (Hokkaido, Japan) with RF models implemented with 

radiometric data acquired from TerraSAR-X satellite. Their results demonstrate that 
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incorporation of such variable increased classification accuracy to more than 0.91, supporting the 

importance of structural (i.e. dual-polarimetric) data for this purpose. 

Since the requirement of a high amount of data for automatic classification models, such 

techniques are generally conducted by using sensed data from satellite rather than UAS (Ma et 

al. 2017). Despite the use of unmanned vehicles and the acquisition of this data in agriculture has 

exponentially increased in the last decade (Tsouros et al. 2019), classification models with UAS-

acquired features generally rely on hyperspectral data (Wang et al. 2022) or are not applied to 

agricultural landscape (Feng et al. 2015, Guo et al. 2022). In this study, we have purposed a 

novel methodology for the automated classification of crops using commonly used precision 

agriculture data. Despite this research was limited in data availability, the used technique under 

the studied conditions shows to be effective. Further research and the integration of new data are 

still required and may lead to interesting results, also investigating new crop types. 
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5 Conclusions 

We set up a study aimed to automatically classify chickpea, lentil, faba bean and quinoa by 

implementing a Random Forest classification model. We achieved this foal by implementing the 

models both with spectral and photogrammetric remote sensing data, collected by unmanned 

aerial system. Models were improved in a multi-step workflow which allowed us to remove 

redundant and noisy information, in order to achieve the minimum and most performing one. 

The presented study supports the hypothesis that, despite being the investigated species all 

annual crops, mostly similar from a spectral point of view, the generated Random Forest models 

are a useful tool, able to classify the investigated protein crops. It allows to effectively combine 

data of crops in different sites and phenology stages. The best predictor in all models was the 

photogrammetric canopy volume. The integration of Vegetation Indices, particularly rMRESR, 

significantly improved crops classification, however, an accurate selection should be conducted 

to avoid information redundancy and limit the required computational power. 
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General Conclusions 

In this thesis we report a series of experimental trials aimed to validate the practices to optimize 

the protein crops production in organic agriculture, in the Friuli-Venezia Giulia region (NE 

Italy). 

In Chapter 1 we reported a study aimed to evaluate the adaptability of chickpea, faba bean and 

lentil to Friuli region. Our results showed that chickpea could be a suitable species for this 

region, and among the varieties screened, Sultano was the best in terms of both yield and protein 

production. In faba bean, all cultivars underperformed, probably due to occurrence of biotic 

stress (i.e. botrytis and rust), however the protein content of seeds was high. Lentil was not 

harvested due to lack of grains production, which may be due to stress-induced abortion of 

flowers.  

In Chapter 2, we present a field trial conducted on chickpea and lentil. The aim of the trial was to 

assess the adaptability of these crops to drought, which was particularly intense during the 2022 

growing season. To this end, we tested the response of both crops to an irrigation gradient 

applied during the critical grain filling phase. Despite the conditions of extended drought 

combined with high temperatures, both chickpeas and lentils proved fairly drought resistant. 

Both crops had good average yields and protein production. Irrigation did not have significant 

effects on grain production, but it extended the flowering phase. This had a negative effect on 

seed quality. The plants continued to flower during the irrigation period, which resulted in an 

uneven ripening of the crop at harvest time. Remote sensing data has been used effectively to 

monitor crops’ water stress and development. For this end, NDVI index and canopy temperature 

measure via thermal imager were efficient in detecting differences among irrigation treatments in 

term of stress and senescence.  

In Chapter 3 we investigated the relationship between crop’s measured traits (i.e., Leaf Area 

Index and aboveground biomass) and multispectral data acquired during the 2022 summer 
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season. The aim of the study was to evaluate possible correlations between these data, also 

elaborating cumulative vegetation indices, calculated as the integral of the time dependent spline 

function of each spectral index. Results highlighted that for different parameters of chickpea and 

lentil, there is a certain discordance about the best index. The Normalized Difference 

Chlorophyll Index resulted being the best proxy of crop biomass while reflectance in the near 

infrared was associated with leaf area index. Moreover, the use of cumulative vegetation indices 

significantly improved correlations with crop biomass and allowed a good yield’s estimate 

throughout the growing season.  

In Chapter 4, we present a study to evaluate the allelopathic effect of intercropped buckwheat on 

chickpeas and lentils, in order to validate this new technique of weed control in these crops. We 

investigated several allelopathic effects of buckwheat on weeds and crops. The germination of 

seeds was studied in Petri dishes, the initial growth of plants in pots (greenhouse) and the overall 

response of the system up to the harvest of the crop was studied in a field plot experiment. 

Results of Petri dishes’ study showed that water extracts of buckwheat inhibited the seed 

germination in all tested species, being of particular interest for potential applications in the 

production of bioherbicides. No significant allelopathic activity of buckwheat on initial weed or 

crop growth was observed in greenhouse pots. Despite its low competitive potential, buckwheat 

reduced the initial growth of all species when mixed. The field trials did not support the 

hypothesis that intercropping with buckwheat is an effective technique for reducing weed 

competition; in fact, weed control by hoeing was found to be the best practice. However, this 

research had to face limitations and further investigation is still needed. 

In Chapter 5, we present a side project that has been carried out in 2021 in Udine, Italy, and 

Lelystad, the Netherlands, to implement a Random Forest classification model for chickpeas, 

lentils, faba beans, and quinoa, based on multispectral and photogrammetry data.  

The results are in support of the fact that this technique is a useful tool capable of classification 

with high accuracy at the species level.  
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Of particular interest was the unprecedented use of photogrammetric canopy volume among the 

input variables of the classification model. This variable was the most relevant in all the models 

tested. In addition, the integration of vegetation indices significantly improved crop 

classification. The careful selection of the input variables avoids the redundancy of the 

information and reduces the computational power required. 

The European Union's Common Agricultural Policy (CAP) aims to ensure a fair standard of 

living for farmers, stabilise agricultural markets, provide consumers with a safe and affordable 

food supply and promote sustainable agriculture. Within this framework, organic farming is 

recognised as a key strategy for promoting environmental sustainability, preserving biodiversity 

and meeting increasing consumer demand for healthy products. The CAP has evolved over the 

years to meet changing economic circumstances and the needs and demands of citizens. To this 

end, the Farm to Fork Strategy and the Biodiversity Strategy are cornerstones of the European 

Green Deal. One of the key principles of this framework is that farmers should work in a 

sustainable and environmentally friendly way, preserving our soils and biodiversity, while being 

economically viable.  

With this in mind, a key objective of the Smart Protein HO2020 project and our research in 

general has been to promote organic farming, which is recognised as a key practice for 

improving environmental sustainability and food safety.  

Organic farming is based on a systemic agroecological approach.  

Organic methods are not as effective as conventional methods in preventing yield losses due to 

pests, weed diseases and nutrients. More research is required to effectively address this problem, 

which limits the uptake of organic farming by farmers. 

Research presented in this thesis supports the hypothesis of the investigated species, particularly 

chickpea and lentil, being suitable crops for the NE Italia region. In this Region, and in EU 

countries, the economic competitiveness of cereals and oil rich crops is very strong and largely 

explains farmers' lack of interest in other crops like protein-rich crops ones. 
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Both chickpea and lentil particularly performed in terms of adaptability to water and heat stress 

and yielded particularly well both in terms of seed and protein production. The conducted 

activity of cultivar screening highlighted the need to continue breeding and cultivar selection for 

diverse pedo-climatic region.  

Within the European framework for agricultural and environmental sustainability, The 

Sustainable Use of Pesticides Directive (Directive 2009/128/EC) establishes a framework for 

community action to achieve the sustainable use of pesticides. The directive indicates the 

Integrated Pest Management as a key approach to minimize the impact of pests on agriculture, 

human health, and the environment. Integrated Pest Management involves the coordinated use of 

various methods and strategies to reduce the risks associated with pesticide use, protect human 

health and the environment, and promote alternative, non-chemical methods of pest and weed 

control. This is obtained through an ensemble of cultural practises including mechanical and 

physical control, biological control and use of cover crops and smother crops. 

In our research, we performed an implementation strategy of intercropping with a smother crop 

(buckwheat) for weed management. Our trials did not support the hypothesis of consociation 

with buckwheat being an efficient practice to control weed competition. However, the presented 

research is still limited to the first year of trials and the experiments were affected by various 

methodological and technical biases which will be taken into account in future experiments.  

 

 

 

 

 


