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We experimentally study a gas of quantum degenerate 87Rb atoms throughout the full dimensional
crossover, from a one-dimensional (1D) system exhibiting phase fluctuations consistent with 1D theory to a
three-dimensional (3D) phase-coherent system, thereby smoothly interpolating between these distinct,
well-understood regimes. Using a hybrid trapping architecture combining an atom chip with a printed
circuit board, we continuously adjust the system’s dimensionality over a wide range while measuring the
phase fluctuations through the power spectrum of density ripples in time-of-flight expansion. Our
measurements confirm that the chemical potential μ controls the departure of the system from 3D and that
the fluctuations are dependent on both μ and the temperature T. Through a rigorous study we quantitatively
observe how inside the crossover the dependence on T gradually disappears as the system becomes 3D.
Throughout the entire crossover the fluctuations are shown to be determined by the relative occupation of
1D axial collective excitations.

The dimensionality of a system can have dramatic effects
on its properties, giving rise to a plethora of interesting
behavior. The nature of superfluid and superconducting
phase transitions is well known to be radically different in
systems of one, two, or three dimensions. The Mermin-
Wagner-Hohenberg theorem [1,2] dictates that at finite
temperature more than two dimensions are required for true
long-range order. The transition in two dimensions is
governed by a Kosterlitz-Thouless mechanism [3] of
topological origin, and for three dimensions it is the
paradigmatic example of symmetry breaking that is quali-
tatively well-described by mean-field theories. In one
dimension no such transition exists, but due to the
enhanced role of both quantum and thermal fluctuations
there is a richer set of physical regimes than in two or three
dimensions [4–6].
The stark contrast of transition phenomena makes the

study of a system that lies between twodistinct dimensions—
in a dimensional crossover—of great fundamental interest,
as well as offering the potential for practical applications. A
typical example is provided by layered superconductors,
either naturally occurring [7] or artificially controlled [8],
presenting instances of the 2D to3Dcrossover.While this has
been extensively studied, producing superconducting sam-
ples in the 1D to 3D crossover is technologically more
challenging, but remains a subject of intense research, with
the ultimate goal to realize new high-temperature super-
conductors [9–13]. Alternatively, the 1D to 3D crossover
could be partially accessedwith superfluid 4He inside carbon
nanotubes and nanopores, with the 1D regime being reached

when the transverse size becomes on the order of a few
angstroms [14,15]—which is currently very difficult to
obtain [16].
Conversely, ultracold atom experiments are naturally

suited to study the 1D to 3D crossover, where the external
trapping geometry can be flexibly tuned to constrain atomic
degrees of freedom, providing the means to effectively
manipulate the dimensionality. Examples include single
magnetically trapped systems [17], or arrays of systems
with tunable coupling in optical lattices [18]. In particular,
purely 1D systems can now be routinely formed by
employing the extremely tight traps generated by atom
chips [19–21]. A major difference to 3D systems is the
presence of both density [22,23] and phase fluctuations, the
latter having been studied by several experiments in various
limited regimes [24–29]. However, a comprehensive exper-
imental mapping of the phase fluctuations in the entire
crossover remains elusive, since few experiments have
access to the necessary tunability of trapping geometry,
atom number, and temperature.
Here, we map out the full 1D to 3D crossover by

characterizing the phase fluctuations in individual degen-
erate Bose gases over a wide parameter space from a
chemically 1D system (i.e., with μ≲ ℏω⊥ where μ is the
zero temperature chemical potential and ω⊥ is the trans-
verse trapping frequency), through to the 3D regime with
μ ≫ ℏω⊥, where the fluctuations smoothly disappear.
Using a combination of an atom chip and printed circuit
board (PCB), we are able to control independently the axial
and radial confinement, allowing measurement of the phase
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fluctuations across a wide range of external trap aspect
ratios, in addition to studying a range of temperatures and
atom numbers. The in-trap phase fluctuations are studied
by observing the power spectrum of the density ripples
which form as the atomic cloud expands during time of
flight. It is well understood that when both μ, kBT ≪ ℏω⊥
the system is 1D, and in this regime our experimental
results agree well with 1D theoretical predictions [30]. For
larger μ=ℏω⊥ we observe an increasing divergence from
the 1D theory (Fig. 1). The common expectation derived
from a number of previous studies is that both kBT=ℏω⊥
and μ=ℏω⊥ are relevant in the crossover [21,22,28,31–35].
Here we provide a detailed quantitative study of the
interplay between these two parameters that has so far
been missing. Access to the dimensional crossover regime
is driven most strongly by the reduced chemical potential
μ̃ ¼ μ=ℏω⊥. Then, inside the crossover the fluctuations
become increasingly dependent on the reduced temperature
T̃ ¼ kBT=ℏω⊥ as the 1D regime is approached, but become
less sensitive to T̃ towards three dimensions. We show that
throughout the crossover the strength of the density ripples
is determined by the relative occupation of low-energy
axial excitations, and not by either μ̃ or T̃ alone.
Our experiment uses 87Rb atoms prepared in the

jF ¼ 2; mF ¼ 2i magnetic substate which are loaded into
a cylindrically symmetric Ioffe-Pritchard style wire H
trap. Transverse confinement (x-y plane) is realized by a
current-carrying wire on the atom chip together with
an external bias field. Independent axial confinement
(along z) is provided by two parallel wires on the PCB
below the atom chip. We vary the current in the trapping
wires to create a number of potentials with varying aspect
ratio κ ¼ ω⊥=ωz, with trapping frequencies in the range
ω⊥=2π ¼ ð570–1380Þ Hz transversely, and ωz=2π ¼
ð15–34Þ Hz axially.
After loading precooled atoms (∼10 μK) into theH trap,

condensates of approximately 105 atoms are produced after
1.5 s of radio-frequency (rf) evaporation, and are then held

in a 12 kHz rf shield [37] for a further 150 ms to ensure
thermal equilibrium (equating to several tens to hundreds of
collisions per particle for all traps considered [38]). An
additional adjustable hold time of up to 700 ms is applied
to allow for controllable losses through background
collisions, which varies the final atom number in the
range N ¼ ð0.5–10Þ × 104. By adjusting the final rf evapo-
rative cooling frequency the temperature of the sample
is set in the range T ¼ ð70–540Þ nK, corresponding to
T=Tc ¼ 0.5–0.8. Optical density (OD) images are acquired
via standard absorption imaging [39] with a probe beam
along the x direction after a time-of-flight ttof ¼ 34 ms.
To suppress undesirable diffraction fringes in the OD
images, we ensure optimal focusing of the imaging
objective following the technique described in [40] (see
Supplemental Material [36]). The insets in Fig. 1 show a set
of typical OD images exhibiting the density ripples of
varying strength dependent on dimensionality.
To quantitatively analyze the spatial frequency content of

the images, we calculate the power spectrum of the density
ripples using the following steps. First, several hundred OD
images of clouds under a chosen set of experimental
conditions are acquired and postselected such that the
standard deviation in atom number and temperature is
approximately 5% of the respective value of the set. The
thermal component of the gas is then fitted to each image to
obtain the temperature [41–43], and is then removed before
further analysis. Next, each column density image is
integrated along the remaining transverse direction of the
cloud (i.e., along y) to obtain the axial 1D line density niðzÞ,
which is then subtracted from the mean of the set hnðzÞi,
leaving only the residual line density δniðzÞ ¼ niðzÞ −
hnðzÞi for each individual shot i. We then Fourier-transform
these density residuals

δñiðqÞ ¼
Z

δniðzÞe−iqz dz; ð1Þ

FIG. 1. Measured density ripples power spectra (solid blue lines) for a number of traps through the 1D to 3D dimensional crossover,
ordered by μ̃¼μ=ℏω⊥ and T̃ ¼ kBT=ℏω⊥, with trapping frequencies from left to rightω⊥ ¼ 2π × ð1235; 1380; 1005; 800; 740; 395Þ Hz
and ωz ¼ 2π × ð16.1; 17.4; 16.9; 20.8; 23.2; 33.7Þ Hz. For comparison the theoretical predictions are shown, both with (red dash-dotted
lines) and without (black dashed lines) the effect of interactions during time of flight. Finite optical imaging resolution has been accounted
for by convolution with a Gaussian of width σpsf ¼ 4 μm (see Supplemental Material [36]). Shaded bands represent the statistical
uncertainty as 2 standard deviations from the mean, and are obtained via bootstrapping. Insets each depict a representative example of an
experimental OD image, showing an individual realization from the corresponding dataset.
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where q is the angular spatial frequency, and use δñiðqÞ to
calculate a dimensionless power spectrum for each indi-
vidual realization, normalized by atom number

jρiðqÞj2 ¼
1

τN2
i
jδñiðqÞj2; ð2Þ

where τ ¼ ωzttof . Note that dividing by τN2
i removes

dependencies on total atom number and system length
(see Supplemental Material [36]). Finally, we compute the
mean power spectrum for the ensemble hjρðqÞj2i, providing
a single spectrum for each set of experimental conditions.
Figure 1 shows examples of typical experimental data,

together with the corresponding density ripples spectra.
Parameters (N, T, ω⊥, ωz) are varied to move from a 3D
condensate with no visible density ripples to a deeply
quasicondensate regime with strong density ripples. The
theoretical predictions are generated using a stochastic
model for the in-trap phase distribution that reproduces
Bogoliubov results [44], and has been applied successfully
in the 1D [45,46], 2D [47], and elongated 3D (if the phase
varies only axially) regimes [48]. Many such realizations of
a one-dimensional phase ϕðzÞ are generated and imprinted
onto the zero-temperature ground state wave function
ψðrÞ ¼ ffiffiffiffiffiffiffiffiffi

nðrÞp
eiϕðzÞ, constituting an ensemble of initial

states (see Supplemental Material [36]). To obtain the
density profiles after time of flight in the absence of
interactions during expansion, we numerically propagate
the initial states using the free Schrödinger equation. The
density ripple power spectra are then extracted in the same
manner as for the experimental data. In order to account for
modifications due to the effects of mean-field interactions,
we additionally propagate the same initial states using the
full 3D Gross-Pitaevskii equation (GPE), with the corre-
sponding spectra also shown in Fig. 1 for comparison. Such
simulations are computationally demanding, and so an
analytic hydrodynamic scaling approach has been previ-
ously used for clouds with minimal axial expansion
(although with a discrepancy between the simulated and
measured size of the fluctuations) [25]. Alternatively,
experiments can be restricted to the simpler case in which
it is valid to neglect interactions during expansion, limiting
studies to high aspect ratios of typically ≳100 [27,49]. We
note that in this case a simple analytic expression for the
power spectrum is available [30], and can be extended to
account for inhomogeneous density profiles using a local
density approximation [29]. Here, using the combination of
a graphics processing unit together with the algorithm
developed in Ref. [50] we are able to directly simulate the
full TOF expansion, including mean-field interactions, for
several thousands of realizations.
At the 1D side of the crossover (μ̃≲ 1) the quasicon-

densates display large phase fluctuations and both theo-
retical models show excellent agreement with each other
and with the experimental data in Fig. 1, justifying a

noninteracting expansion in this regime. The fluctuations at
the 3D end of the crossover are suppressed [26,51], as
expected for a true 3D BEC with long-range order, with full
phase coherence across the ensemble even at finite temper-
ature [52–55]. Between these two well-understood distinct
regimes, we measure significant fluctuations even when
μ̃; T̃ ≪ 1 is not satisfied, consistent with previous results
[24,25] where it was found that such systems can acquire
some 1D characteristics (typical of a quasicondensate) [48]
when the phase coherence length is smaller than the extent
of the sample [56]. Neither theoretical model fully accounts
for the observed reduction in amplitude—however the
inclusion of interactions captures well the shift in peak
position to lower spatial frequency. The experimentally
measured power spectra smoothly interpolate between the
expectations for the 1D and 3D limits, with progressively
closer agreement with the 1D stochastic model as the 1D
regime is approached. Towards the 3D limit, the 1D
theory [29,30,44,46,57] becomes less valid, which mani-
fests in the gradual suppression of the phase fluctuations as
compared to the 1D theory extrapolated outside of its
validity regime. Possible driving mechanisms include
increased coherence due to the number of occupied trans-
verse modes and/or the change from a phase coherence
length to volume. Such details require further theoretical
investigation, whether through calculation of higher order
Bogoliubov modes or a stochastic Gross-Pitaevskii finite
temperature approach [58,59].
We extract the position of the first maximum qpk and the

peak amplitude hjρðqpkÞj2i. These are obtained by fitting
the experimental spectra with the analytic result provided
in [29]—as we are only interested in matching the func-
tional form of the spectra all fitting parameters (T, N, ttof ,
and the width of the imaging point spread function σpsf )
are unconstrained. The relevance of the peak position is
discussed in the Supplemental Material [36]. The
average peak amplitude hjρðqpkÞj2i is a pertinent quantity
to monitor in the crossover regime as it directly relates
to the strength of the fluctuations in-trap—and thus,
indirectly, the dimensionality of the system—while being
only affected by interactions during time-of-flight
expansion towards the 3D regime [60]. While studying
the peak amplitude as a function of μ̃ and T̃, in addition,
to put our Letter into context of earlier studies
[24,25,27,28,51,61,62], we also monitor the dependency
of hjρðqpkÞj2i on the trap aspect ratio κ ¼ ω⊥=ωz, as well
as the ratio of cloud length to the thermal phase coherence
length L̃ ¼ L=λT , where λT ¼ 2ℏ2nð0Þ=mkBT. Note that L̃
is equivalent to ascribing a threshold temperature Tϕ ¼
ℏ2n0=mkBL [48] below which phase fluctuations are
suppressed, as has been used in previous literature
[28,63,64]. The results are shown in Fig. 2.
Figure 2(a) shows that at fixed κ the size of the

fluctuations can vary dramatically, i.e., the dimensionality
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is not solely driven by κ in agreement with the current
understanding that this is not a critical parameter. In a 1D
gas at finite temperature, the two-point phase correlation
decays exponentially with a characteristic length scale of
λT . In practice, experiments explore systems with finite
length L, so that L̃ becomes a quantity determining whether
or not phase fluctuations are actually observed [48,56,63].
For L̃≲ 1 a 1D system can have the appearance of a 3D
system, but this can be interpreted as a finite size effect
rather than a consequence of changed dimensionality. In an
actual 3D gas, the quantity λT loses its physical signifi-
cance and phase fluctuations are strongly suppressed as
long as T is below the critical temperature for condensa-
tion. Figure 2(b) shows an expected reduction of
hjρðqpkÞj2i as L̃ decreases. At higher values of L̃, a spread
of values for hjρðqpkÞj2i occurs, supporting the notion that
L̃ on its own is not indicative of the dimensionality, since
our data show that chemically 1D clouds can have the same
L̃ as clouds in the 1D to 3D crossover.

Figure 2(c) shows the amplitude of the phase fluctua-
tions over the μ̃–T̃ parameter space explored. Here the
chemical potential is determined from a local density
approximation μ̃ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4anð0Þp
− 1�. These data indi-

cate that T̃ plays little role in determining the size of the
fluctuations when the system is chemically 3D. For
example, when μ̃≳ 4.5 the fluctuations are always small
despite the large variation in T̃ (interestingly, a recent
numerical study of the 2D to 3D crossover found that
effects of reduced dimensionality become observable
below a similar threshold of μ̃ ∼ 4 [65]). However, when
μ̃ decreases the importance of T̃ on the fluctuations in the
system increases, as can be seen in the inset of Fig. 2(c).
These observations indicate that in the crossover regime
the role of μ̃ dominates that of T̃, quantitatively supporting
previous qualitative statements in the literature [17,32].
Since it is understood that fluctuations of the phase arise

due to excitations in the system, we now examine the data
in terms of the occupation of these modes, for predicting
the strength of the phase fluctuations. Excitations of the
quasi-condensate can be split into two categories—high-
energy (ϵj > ℏω⊥), and low-energy (ϵj < ℏω⊥) axial
excitations. The latter exhibit a 1D character, with wave-
lengths larger than the radial size of the cloud but smaller
than its axial size [48]. Thus, only the low-energy excita-
tions contribute to fluctuations of the phase. The axial
spectrum of low-energy excitations for an elongated 3D
condensate is ϵj ¼ ℏωz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 3Þ=4p

[66], and if kBT ≫
ℏωz the occupation of each mode j can be approximated to
Nj ¼ kBT=ϵj. We propose that the relevant quantity is the
relative population of 1D excitations present in the system,
N1D=N, where

N1D ¼
Xϵj<ℏω⊥

j

kBT=ϵj: ð3Þ

This quantity compares the number of quasiparticles
contributing to the phase fluctuations with the total number
of atoms in the quasicondensate, which we expect to be
related to the contrast of the observed density ripples and
therefore hjρðqpkÞj2i. The relationship is shown in Fig. 3,
where we observe a monotonic universal dependency. In
contrast to when the data are plotted against κ or L̃ (Fig. 2),
it is striking that our data, which cover a broad experimental
parameter space, now appear to collapse onto a single,
approximately linear curve. This is a strong indication that
N1D=N is the more relevant quantity for predicting the
strength of the phase fluctuations.
In conclusion, we have performed a detailed experimen-

tal study of the onset of phase fluctuations in degenerate
Bose gases in equilibrium throughout the full 1D to 3D
dimensional crossover. We observe that the previously
developed 1D stochastic model correctly describes the

FIG. 2. Dependence of the amplitude of the phase fluctuations
on (a) the aspect ratio of the trapping potential κ, and (b) the ratio
of system length to phase coherence length L̃. (c) Visualisation
of the parameter space explored in terms of T̃ and μ̃. The color
scale represents the peak amplitude of the power spectrum
hjρðqpkÞj2i for the measured data. Shaded bands indicate the data
used for the line graphs in the inset. (Inset) Peak amplitude
versus T̃ for (blue circles) μ̃ > 4.5, (green diamonds) μ̃ ∼ 3.4,
and (red squares) μ̃ ∼ 2.3. All error bars show the statistical
uncertainty as two standard deviations from the mean, and are
obtained by bootstrapping.
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data only in one dimension, but exhibits a gradual departure
from the experimental data as the dimensionality is tuned
towards three dimensions. On the 3D side, an almost
complete suppression of fluctuations is measured, as
expected for a coherent 3D BEC. We confirm the expect-
ation that μ̃ determines whether the system exhibits 1D
character. We find that for μ̃≲ 4.5 the gas displays phase
fluctuations with a strength that is then also clearly
dependent on T̃. In contrast, for larger values of μ̃ the
system appears effectively 3D regardless of T̃—as
expected, since in three dimensions long-range order is
possible even at finite temperature. The temperature
dependence in the low-μ̃ regime is understood in terms
of the number of low-energy axial modes that can be
populated, and that the fluctuations can indeed be measured
by the relative population of these modes. Studies such as
this which investigate the point at which a system passes
through a dimensional crossover are of general interest—
especially in other fields when particular regimes can be
technically difficult to access. An important extension to
this Letter will be to realize a similar experiment in a
nonequilibrium setting with rapid changes from 1D to 3D
and vice versa. It would also be of great interest to
experimentally explore all possible crossovers involving
any dimension, from 0D (where excitations are frozen
along all directions) to 3D. Such a setup can be realized
with cold atom systems by combining established tech-
niques, including atom chips and optical-dipole traps.
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