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Planning is one of the most studied problems in computer science. In this paper, we focus
on the timeline-based approach, where the domain is modeled by a set of independent,
but interacting, components, each one represented by a number of state variables, whose
behavior over time (timelines) is governed by a set of temporal constraints (transition
functions and synchronization rules). Whereas the time domain is usually assumed to be
discrete, here we address decidability and complexity issues for timeline-based planning
(TP) over dense time.
We first prove that dense TP is undecidable in the general case; then, we show that
decidability can be recovered by restricting to synchronization rules with a suitable future
semantics. More “tractable” settings can be obtained by additionally constraining the
form of intervals used in rules: EXPSPACE-completeness is obtained by avoiding singular
intervals, and PSPACE-completeness by admitting only intervals of the forms [0, a] and 
[b, +∞[. Finally, NP-completeness can be proved for dense TP with purely existential rules 
only.

1. Introduction

Timeline-based planning [20] (TP for short) represents an alternative to classic action-based planning. The latter aims at 
determining a sequence of actions that, given the initial state of the world and a goal, transforms, step by step, the state of 
the world until a state satisfying the goal is reached. TP can be viewed as a more declarative approach, that focuses on what 
has to happen in order to satisfy the goal rather than on what an agent has to do. In TP, the planning domain is modeled as 
a set of independent, but interacting, components, each one consisting of a number of state variables. The evolution of the 
values of state variables over time is described by means of a set of timelines (sequences of time intervals called tokens), and 
it is governed by a set of transition functions, one for each state variable, and a set of synchronization rules, that constrain 
the temporal relations among (the values of) state variables.

TP has been successfully exploited in a number of application domains, including space missions, constraint solving, 
and activity scheduling (see, e.g., [4,8,9,12,16,20]), but a systematic study of its expressiveness and complexity has been 
undertaken only very recently. The temporal domain is commonly assumed to be discrete. In [13], Gigante et al. showed 
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Table 1
Decidability and complexity of restrictions of the TP problem.

TP problem Future TP problem

Unrestricted Undecidable (Undecidable?) Non-primitive recursive-hard

Simple trigger rules Undecidable Decidable (non-primitive recursive)

Simple trigger rules, ? EXPSPACE-complete
non-singular intervals

Simple trigger rules, ? PSPACE-complete
intervals in Intv(0,∞)

Trigger-less rules only NP-complete //

that TP with bounded temporal relations and token durations, and no temporal horizon, is EXPSPACE-complete and expres-
sive enough to capture action-based temporal planning. Later, they proved that EXPSPACE-completeness still holds for TP 
with unbounded interval relations, and that the problem becomes NEXPTIME-complete if an upper bound to the temporal 
horizon is added [14].

In this paper, we study TP over a dense temporal domain, without resorting to any form of discretization, which is the 
commonly adopted “solution”. The reason why we assume the temporal domain to be dense is, basically, to increase expres-
siveness: dense time allows one to abstract away unnecessary details, often artificially added for the necessity of discretizing 
time, and to suitably represent actions with duration, accomplishments, and temporal aggregates.

The first result we establish is negative: we prove that TP over dense time, in its general formulation, is undecidable. 
So, we study suitable restrictions on the TP problem that make it possible to recover decidability. In fact, we do not only 
illustrate how decidability can be achieved, but we also show how to guarantee reasonable computational complexities, 
which are important for the concrete application of TP, by constraining the structure of synchronization rules.

In the general case, a synchronization rule allows a universal quantification over the tokens of a timeline (such a quan-
tification is called trigger). When a token is “selected” by a trigger, the rule allows one to compare tokens of the timelines 
both preceding (past) and following (future) the triggered token (trigger for short). The first restriction we consider limits 
the comparison to tokens following the triggered one (future semantics of trigger rules). The second imposes non-trigger 
tokens to appear at most once in the constraints set by the rule (simple trigger rules). Better complexity results can be 
obtained by restricting also the type of intervals used in rules in order to compare tokens.

Table 1 summarizes the decidability and complexity results proved in the following sections: we will consider suitable 
mixes of restrictions on TP involving trigger rules with future semantics, simple trigger rules, and intervals in atoms (of 
trigger rules) which are non-singular (a singular interval is an interval of the form [a, a]), or unbounded/left-closed with left 
endpoint 0 (the latter intervals are denoted by Intv(0,∞)).

Organization of the paper In Section 2, we introduce the TP framework. Then, in Section 3, we prove that TP is undecidable
in the general case, by a reduction from the halting problem for Minsky 2-counter machines. In the last part of the section, 
we discuss the non-primitive recursive-hardness of TP under the future semantics of trigger rules (such a result is formally 
demonstrated in Appendix A). Next, in Section 4, we first show that future TP with simple trigger rules is decidable (in 
non-primitive recursive time), and then we prove membership in EXPSPACE (resp., PSPACE) under the additional restriction 
to non-singular intervals (resp., intervals in Intv(0,∞)). Matching complexity lower bounds for the last two restrictions are 
given in C. Finally, in Section 5, we outline an NP algorithm for TP with trigger-less rules only (which have a purely existential 
form disallowing universal quantification/trigger) stemming from the results of the previous sections. With a trivial hardness 
proof, we also show TP with trigger-less rules to be NP-complete. This paper is an extended and revised version of [5–7].

2. The TP problem

Let N be the set of natural numbers (including 0) and R+ be the set of non-negative real numbers. Let Intv denote the
set of intervals of R+ (both open or closed) whose endpoints are in N ∪ {∞} (notice that Intv includes singular intervals
[a, a], with a ∈N). Moreover, let Intv(0,∞) be the set of non-singular intervals I ∈ Intv such that either I is unbounded, or I
is left-closed with left endpoint 0. Intervals in Intv(0,∞) can be represented by expressions of the form ∼ n, for some n ∈N
and ∼∈ {<, ≤, >, ≥}.

We now introduce the basic notions of the TP framework [10,13]. The domain knowledge is encoded by a set of state 
variables, whose behavior over time is described by transition functions and synchronization rules.

Definition 1. A state variable x is a triple x = (V x, Tx, Dx), where

• V x is the finite domain of the state variable x,
• Tx : V x → 2V x is the value transition function, which maps each v ∈ V x to the (possibly empty) set of successor values, and
• Dx : V x → Intv is the constraint (or duration) function that maps each v ∈ V x to an interval of Intv.
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Fig. 1. A multi-timeline for Example 2 where the timeline for variable xte is the sequence of tokens (not_ready, 2), (ready, 1.5), (not_ready, 2.7),

(ready, 1), (not_ready, 2.8), (ready, 1).

A token for a state variable x is a pair (v, d) consisting of a value v ∈ V x and a duration d ∈ R+ such that d ∈ Dx(v). 
Intuitively, a state variable represents a component of a system and a token for x represents an interval of time where the 
component takes the value v . If the interval is singular (i.e., it has duration 0), the token represents an instantaneous activity 
of the component (the state value is entered and exited instantaneously). In order to identify the variable a token refers to, 
we shall often denote (v, d) as (x, v, d). The behavior of a state variable x is specified by a timeline, which is a non-empty 
sequence of tokens π = (v0, d0) · · · (vn, dn) consistent with the value transition function Tx , namely, such that vi+1 ∈ Tx(vi)

for all 0 ≤ i < n. The start time s(π, i) and the end time e(π, i) of the i-th token of the timeline π are respectively defined 
as follows:

s(π, i) = 0 if i = 0, and s(π, i) =
i−1∑
h=0

dh otherwise; e(π, i) =
i∑

h=0

dh.

Given a finite set S V of state variables, a multi-timeline of S V is a mapping � assigning a (distinct) timeline to each 
state variable x ∈ S V .

Example 2. Let us consider a system consisting of three components (temperature sensor, processing unit, and data transmission 
unit) respectively modeled by the state variables x� = (V x�

, Tx�
, Dx�

), with � ∈ {te, p, tr}, where

• V xte = {ready, not_ready}, Txte (ready) = {not_ready}, Txte (not_ready) = {ready}, Dxte (ready) = [1, 2],
Dxte (not_ready) = [2, 3],

• V xp ={reading1, reading2, read0, read1, read2}, Txp (reading1) ={read0,read1}, Txp (read0) = {reading1},
Txp (read1) = {reading2}, Txp (reading2) = {read1,read2}, Txp (read2) = {read2}, Dxp (reading1) =
Dxp (reading2) = [1, 2], Dxp(read0) =Dxp (read1) =Dxp (read2) =[2, 3], and

• V xtr = {send}, Txtr(send) = {send}, Dxtr(send) = [2, 5].

The temperature sensor swaps between the state ready, where it senses the temperature of the environment, and the
state not_ready, where it possibly sends the temperature value to the processing unit. The processing unit receives two
temperature samples from the sensor, and sends the average value to the data transmission unit: in state readi , with 
i = 0, 1, 2, i samples have been already read; in state reading j , with j = 1, 2, it is attempting to read the j-th sample. A 
multi-timeline for the described system is reported in Fig. 1.

Multi-timelines of S V can be constrained by a set of synchronization rules, which relate tokens, possibly belonging 
to different timelines, through temporal constraints on the start/end times of tokens (time-point constraints) and on 
the difference between start/end times of tokens (interval constraints). The synchronization rules exploit an alphabet 
� = {o, o0, o1, o2, . . .} of token names to refer to the tokens along a multi-timeline, and are based on the notions of atom
and existential statement.
Atom. An atom ρ is either a clause of the form o1 ≤e1,e2

I o2 (interval atom), or a clause of the forms o1 ≤e1
I n or n ≤e1

I o1
(time-point atom), where o1, o2 ∈ �, I ∈ Intv, n ∈N , and e1, e2 ∈ {s, e} (s for start, e for end).

An atom ρ is evaluated with respect to a �-assignment λ� for a given multi-timeline �, which assigns to each token 
name o ∈ � a pair λ�(o) = (π, i), where π is a timeline of � and 0 ≤ i < |π | is a position along π (intuitively, (π, i) repre-
sents the token of � referenced by the name o). An interval atom o1 ≤e1,e2

I o2 is satisfied by λ� if e2(λ�(o2)) −e1(λ�(o1)) ∈ I . 
A point atom o ≤e

I n (resp., n ≤e
I o) is satisfied by λ� if n − e(λ�(o)) ∈ I (resp., e(λ�(o)) − n ∈ I).

Existential statement. An existential statement E for a finite set S V of state variables has the form E = ∃o1[x1 = v1] · · · ∃on[xn =
vn].C , where C is a conjunction of atoms, oi ∈ �, xi ∈ S V , and vi ∈ V xi , for 1 ≤ i ≤ n.
The elements oi[xi = vi] are called quantifiers. A token name used in C , but not occurring in any quantifier, is said to be 
free.

Given a �-assignment λ� for a multi-timeline � of S V , we say that λ� is consistent with the existential statement E if, for 
each quantifier oi[xi = vi], we have λ�(oi) = (π, h), where π = �(xi) and the h-th token of π has value vi . A multi-timeline 
� of S V satisfies E if there exists a �-assignment λ� for � consistent with E such that each atom in C is satisfied by λ� .

We can now introduce synchronization rules, which constrain tokens, possibly belonging to different timelines.
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Definition 3. A synchronization rule R for a finite set S V of state variables is a rule of one of the following forms: (trigger 
rules) o0[x0 = v0] → E1 ∨ E2 ∨ . . . ∨ Ek; (trigger-less rules) � → E1 ∨ E2 ∨ . . . ∨ Ek , where o0 ∈ �, x0 ∈ S V , v0 ∈ V x0 , and 
E1, . . . , Ek are existential statements. The quantifier o0[x0 = v0] in a trigger-rule is called trigger; we impose that only o0 may 
occur free in Ei , for all 1 ≤ i ≤ n. No token name may occur free in trigger-less rules. A trigger rule R is simple if, for each 
existential statement E of R and each token name o distinct from the trigger, there is at most one interval atom of E where 
o occurs.

Intuitively, the trigger o0[x0 = v0] acts as a universal quantifier, which states that for all the tokens of the timeline for x0, 
where x0 takes the value v0, at least one of the existential statements Ei must be satisfied. Trigger-less rules simply assert 
the satisfaction of some existential statement used to express initial conditions or goals, while trigger rules are much more 
powerful allowing the specification of invariants and response requirements. Simple trigger rules restrict the possibility of 
comparing multiple times the same token in an existential statement to trigger tokens only.

Example 4. Let us consider the system described in Example 2. The sensor and the processing unit respectively start in state 
not_ready and state reading1. This is enforced by the following two trigger-less rules:
� → ∃o[xte = not_ready].o ≤s

[0,0] 0 and � → ∃o[xp = reading1].o ≤s
[0,0] 0.

A successful reading is possible only if the sensor and the processing unit are synchronized, namely, when a token of 
value reading j contains a token ready. (For a token o containing a token o′ , we write contains(o, o′) for o ≤s,s

[0,+∞[
o′ ∧o′ ≤e,e

[0,+∞[ o.) Analogously, the processing unit can send data to the transmitter only if a token with value send contains 
a token with value read2. If a reading attempt (a token reading1) is unsuccessful, it is followed by a token read0. (For 
a token o′ following a token o, we write next(o, o′) for o ≤e,s

[0,0] o′ .) If the reading attempt is successful the token contains a 
ready token and it is followed by a read1 token. To this end, we consider the trigger rule:

o[xp = reading1] → (∃o1[xp = read0].next(o, o1) ∨ ∃o2[xp = read1]∃o3[xte = ready].next(o, o2) ∧ contains(o, o3).
Notice that the trigger rule is not simple since the token name o3 occurs twice in the definition of contains(o, o3). A similar 
rule can be written for the second temperature sampling and for transmission. An example of system goal is the successful 
transmission of two reads encoded by the following trigger-less rule:

� → ∃o1[xp = read2]∃o2[xtr = send].(o2 ≤s,s
[0,+∞[ o1 ∧ o1 ≤e,e

[0,+∞[ o2).

Definition 5. Let � be a multi-timeline of a set S V of state variables. (i) Given a trigger-less rule R of S V , � satisfies R if 
� satisfies some existential statement of R. (ii) Given a trigger rule R of S V with trigger o0[x0 = v0], � satisfies R if, for 
every position i of the timeline π = �(x0) for x0 such that π(i) = (v0, d), there exists an existential statement E of R and 
a �-assignment λ� for � consistent with E such that λ�(o0) = (π, i) and λ� satisfies all the atoms of E .

In the following, we consider also a stronger notion of satisfaction, called satisfaction under the future semantics, which 
requires that all non-trigger tokens selected by some quantifier do not start strictly before the trigger token.

Definition 6. Given a trigger rule R = o0[x0 = v0] → E1 ∨ E2 ∨ . . . ∨ Ek , a multi-timeline � of S V satisfies R under the 
future semantics if � satisfies the trigger rule obtained from R by replacing, in each existential statement Ei = ∃o1[x1 =
v1] · · · ∃on[xn = vn].C , the conjunction of atoms C by C ∧ ∧n

i=1 o0 ≤s,s
[0,+∞[ oi .

With reference to Example 4, we observe that the occurrence in the trigger rule of contains(o, o3) which is by definition 
o ≤s,s

[0,+∞[ o3 ∧ o3 ≤e,e
[0,+∞[ o can be simplified under the future semantics to o3 ≤e,e

[0,+∞[ o since the first conjunct is imposed 
by the future semantics itself. This implies that the considered trigger rule which is not a simple rule in the general semantics 
can be converted to a simple rule in the future semantics.

A TP domain P = (S V , R) is specified by a finite set S V of state variables and a finite set R of synchronization rules for 
S V modeling their admissible behaviors. A plan for P = (S V , R) is a multi-timeline of S V satisfying all the rules in R . A 
future plan for P is defined in a similar way, but it requires the satisfaction of all trigger rules under the future semantics.

In the next sections, we will study the following decision problems:

• TP problem: given a TP domain P = (S V , R), is there a plan for P ?
• Future TP problem: given P = (S V , R), is there a future plan for P ?

3. TP over dense temporal domains is an undecidable problem

We start by settling an important negative result, namely, we show that the TP problem, in its full generality, is undecid-
able over dense temporal domains, even when a single state variable is involved. Undecidability is proved via a reduction from 
the halting problem for Minsky 2-counter machines [19]. The proof resembles the one for the satisfiability problem of Metric 
Temporal Logic (which will be formally introduced in Section 4), with both past and future temporal modalities, interpreted 
on dense time [3].
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As a preliminary step, we give a short account of Minsky 2-counter machines. A Minsky 2-counter machine (counter 
machine for short) is a tuple M = (Inst, �init, �halt) consisting of a finite set Inst of labeled instructions of the form � : ı , 
where � is a label and ı is an instruction for either (i) increasing counter h (ch := ch + 1; goto �r ), or (ii) decreasing counter 
h (if ch >0 then ch :=ch −1; goto �s else goto �t ), where h ∈ {1, 2}, �s �= �t , and �r (respectively, �s, �t ) is either a 
label of an instruction in Inst or the halting label �halt . Moreover, �init ∈ Inst is the label of a designated “initial”instruction.

An M-configuration is a triple of the form C = (�, n1, n2), where � is the label of an instruction (intuitively, the next 
instruction to be executed), and n1, n2 ∈N are the current values of the two counters c1 and c2, respectively.

M induces a transition relation M−→ over pairs of M-configurations: (i) for an instruction with label � increasing c1, 
we have (�, n1, n2) 

M−→ (�r, n1 + 1, n2), and (ii) for an instruction decreasing c1, we have (�, n1, n2) 
M−→ (�s, n1 − 1, n2)

if n1 > 0, and (�, 0, n2) 
M−→ (�t , 0, n2) otherwise (the same for c2). An M-computation is a finite sequence C1, . . . , Ck of 

M-configurations such that Ci
M−→ Ci+1 for all 1 ≤ i < k. M halts if there exists an M-computation starting at (�init, 0, 0) and 

leading to (�halt, n1, n2), for some n1, n2 ∈N . The halting problem for a counter machine M is to decide whether M halts. The 
problem was proved to be undecidable by Minsky [19].

Theorem 7. The TP problem over dense temporal domains is undecidable.

Proof. The proof consists of a reduction from the halting problem for Minsky 2-counter machines. For an instruction �, we 
use the following notation:

• for increments � : ch := ch + 1; goto �r , we define c(�) = ch and succ(�) = �r ;
• for decrements �: if ch > 0 then ch := ch − 1; goto �r else goto �s , we define c(�) = ch , dec(�) = �r , and zero(�) =

�s .

Moreover, let InstLab be the set of instruction labels, including �halt , and let Inc (resp., Dec) be the set of labels for increment 
(resp., decrement) instructions. We consider a counter machine M = (Inst, �init, �halt) assuming, w.l.o.g., that no instruction of 
M leads to �init , and that �init labels an increment instruction. We build in polynomial time a state variable xM = (V , T , D)

and a finite set R M of synchronization rules over xM such that M halts if and only if there is a plan for P = ({xM}, R M), i.e., 
a timeline for xM that satisfies all the rules in R M .

Encoding of M-computations. We start by defining the encoding of a computation of M as a timeline for xM . The finite 
domain of the state variable xM is the set of symbols V = V check ∪ V main , where

V check =
⋃

�∈InstLab

⋃
i,h∈{1,2}

⋃
opi∈{inci ,deci ,zeroi}

(
{(�,opi)} ∪ {(�,opi, ch)} ∪ {(�,opi, (ch,#))}

)
,

V main =
⋃

�∈Inc∪{�halt}

⋃
h∈{1,2}

(
{�} ∪ {(�, ch)}

)
∪

⋃
�∈Dec

⋃
�′∈{zero(�),dec(�)}

⋃
h∈{1,2}

(
{(�, �′)} ∪ {(�, �′, ch)} ∪ {(�, �′, (ch,#))}

)
.

For each h ∈ {1, 2}, we denote by V ch the set of V -values v of the form v = (�, c), v = (�, �′, c), or v = (�, op, c), with 
c ∈ {ch, (ch, #)}; if c = ch (resp., c = (ch, #)), we say that v is an unmarked (resp., marked) V ch -value.

An M-configuration is encoded by a finite word over V consisting of the concatenation of a check-code and a main-code.
The main-code wmain for an M-configuration (�, n1, n2), with � ∈ Inc ∪ {�halt}, n1 ≥ 0, and n2 ≥ 0, has the form wmain =

� · (�, c1)
n1 · (�, c2)

n2 .
In case of a decrement instruction label � ∈ Dec such that c(�) = c1, the main-code w ′

main has one of the following two
forms, depending on whether the value of c1 in the encoded configuration is equal to or greater than 0:

• either w ′
main = (�, zero(�)) · (�, zero(�), c2)

n2

• or w ′
main = (�, dec(�)) · (�, dec(�), (c1, #)) · (�, dec(�), c1)

n1 · (�, dec(�), c2)
n2 .

In the former case, w ′
main encodes the configuration (�, 0, n2); in the latter, the configuration (�, n1 + 1, n2). Note that,

in the second case, there is exactly one occurrence of a marked V c1 -value which intuitively “marks” the unit of the counter 
that will be removed by the decrement. The main-code for a decrement instruction label � with c(�) = c2 has two symmetric 
forms.

The check-code is used to trace both an M-configuration C and the type of instruction associated with the configuration 
C p preceding C in the considered computation. The type of instruction is given by the symbols inci , deci , and zeroi , with 
i ∈ {1, 2}: inci (resp., deci , zeroi ) means that C p is associated with an instruction that increases the counter ci (resp., 
decreases ci with ci greater than 0 in C p , decreases ci with ci equal to 0 in C p ).
5



Fig. 2. A computation-code with configuration-code for an instruction �i+1. Main-codes are highlighted in yellow and check-codes in cyan. Each square is a
token of a timeline for xM decorated with their start time and temporal constraints. The symbols c′

h , c̃h , c̃h#, and c′′
h , for h ∈ {1, 2}, stand respectively for 

(�i , ch), (�i+1, inc1, ch), (�i+1, inc1, (ch, #)), and (�i+1, ch). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

The check-code for an instruction label � ∈ InstLab and an inc1-operation has the form (�, inc1) · (�, inc1, (c1, #)) ·
(�, inc1, c1)

n1 (�, inc1, c2)
n2 and encodes the configuration (�, n1 + 1, n2). The marked occurrence of a V c1 -value represents 

the unit added to the counter by the increment. The check-code for an instruction label � ∈ InstLab and an operation 
op1 ∈ {dec1, zero1} for counter c1 has the form (�, op1) · (�, op1, c1)

n1 · (�, op1, c2)
n2 . where n1 = 0 if op1 = zero1. The 

check-code for � ∈ InstLab and op2 ∈ {dec2, zero2} for counter c2 is defined similarly.
A configuration-code is a word w = wcheck · wmain such that wcheck and wmain are a check-code and a main-code, re-

spectively, associated with the same instruction label. The configuration-code is well-formed if wcheck and wmain encode the 
same configuration. Fig. 2 depicts a configuration-code for the instruction �i+1 which increments c1.

A computation-code is a sequence of configuration-codes π = w1
check · w1

main· · · wn
check · wn

main such that, for all 1 ≤ j < n, 
the following holds (let �i be the label associated with wi

check · wi
main): (i) � j �= �halt; (ii) if � j ∈ Inc, with c(� j) = ch , then 

� j+1 = succ(� j) and w j+1
check is associated with the operation inch; (iii) if � j ∈ Dec, with c(� j) = ch , and the first symbol 

of w j
main is (� j, zero(� j)) (resp., (� j, dec(� j))), then � j+1 = zero(� j) (resp., � j+1 = dec(� j)) and w j+1

check is associated with 
operation zeroh (resp., dech).

The computation-code π is well-formed if, additionally, each configuration-code in π is well-formed and, for all 1 ≤ j < n, 
the following holds (we assume (�i, ni

1, n
i
2) to be the configuration encoded by wi

check · wi
main): (i) if � j ∈ Inc, with c(� j) = ch , 

then n j+1
h = n j

h +1 and n j+1
3−h = n j

3−h; (ii) if � j ∈ Dec, with c(� j) = ch , then n j+1
3−h = n j

3−h . Moreover, if w j+1
check is associated with

dech , then n j+1
h = n j

h − 1. A computation-code π is initial if it starts with the prefix (�init, zero1) · �init , and it is halting if it 
leads to a configuration-code associated with the halting label �halt . Clearly, a well-formed computation-code π encodes a 
computation of the machine M which halts if and only if there is an initial and halting well-formed computation-code.

Definition of xM and R M . In the following, we reduce the problem of checking the existence of an initial and halting well-
formed computation-code to a TP problem for a TP domain ({xM }, R M). The idea is to define a timeline for the state variable 
xM where the sequence of values of its tokens is a computation-code whose well-formedness is guaranteed by exploiting 
the duration of tokens and the synchronization rules in R M . Now, the untimed part (i.e., neglecting duration of tokens) 
of any plan for ({xM}, R M) is an initial and halting well-formed computation-code and M halts if and only such a plan 
exists. In more detail (see Fig. 2 for an intuition), each symbol of the computation-code is associated with a token with a 
(non-fixed) positive duration. The overall duration of the sequence of tokens corresponding to a check-code or a main-code 
amounts exactly to one time unit (dense time allows one to encode arbitrarily large values of counters in one time unit). In 
two adjacent check/main-codes, the time elapsed between the start times of corresponding elements in the representation 
of the value of a counter (see elements in Fig. 2 connected by horizontal lines) amounts exactly to one time unit. Such a 
constraint allows us to compare the values of counters in adjacent codes, either checking for equality, or simulating (by 
using marked symbols) increment and decrement operations.

Let us now formally define xM and R M . As for xM , we take xM = (V , T , D) such that D(v) = ]0, 1], for each v ∈ V . Note 
that the duration of any token in a timeline is greater than 0 and less than or equal to 1 (strict time monotonicity constraint). 
It is a tedious but straightforward task to define T of xM in such a way that the following requirement is fulfilled.

Claim 8. The untimed part of any timeline for xM , whose first token has value (�init, zero1), is a prefix of some initial 
computation-code. Moreover, (�init, zero1) /∈ T (v) for all v ∈ V .

Synchronization rules in R M ensure the following requirements.

Initialization. Every timeline starts with two tokens, of value (�init, zero1) and �init , respectively. Since no instruction leads to 
�init , by Claim 8 we only need two trigger-less rules: � → ∃ o[xM = (�init, zero1)]. � and � → ∃ o[xM = �init]. �.

Halting. Every timeline leads to a configuration-code associated with the halting label. By the rules for initialization and 
Claim 8, the following trigger-less rule suffices: � → ∃ o[xM = �halt]. �.

One time unit distance between consecutive control values. A control V -value corresponds to the first symbol of a main-code or 
a check-code, i.e., it is an element of V con = V \ (V c1 ∪ V c2 ). For each pair of tokens tk and tk′ along a timeline such that tk
and tk′ have a control V -value, tk precedes tk′ , and there is no token between tk and tk′ with a control V -value, it holds 
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that s(tk′) − s(tk) = 1. By Claim 8, strict time monotonicity, and halting requirements, it suffices to ensure that each token 
tk having a control V -value distinct from �halt is eventually followed by a token tk′ such that tk′ has a control V -value and 
s(tk′) − s(tk) = 1. To this end, for each v ∈ V con \ {�halt}, we add a trigger rule of the form: o[xM = v] → ∨

u∈Vcon
∃ o′[xM =

u]. o ≤s,s
[1,1] o′ .

Well-formedness of configuration-codes. For each configuration-code wcheck · wmain in a timeline and each counter ch , the value 
of ch in the main-code wmain and the check-code wcheck must coincide. By Claim 8 and the previous requirements, it suffices 
to ensure that (i) each token tk with a V ch -value in V check is eventually followed by a token tk′ with a V ch -value such that 
s(tk′) −s(tk) = 1, and (ii) each token tk with a V ch -value in V main is preceded at some point by a token tk′ with a V ch -value 
such that s(tk) −s(tk′) = 1. As for (i), for each v ∈ V ch ∩ V check , we add the rule: o[xM = v] → ∨

u∈Vch
∃ o′[xM = u]. o ≤s,s

[1,1] o′ , 
while for (ii), for each v ∈ V ch ∩ V main , we add the rule: o[xM = v] → ∨

u∈Vch
∃ o′[xM = u]. o′ ≤s,s

[1,1] o.

Increment and decrement. Increments and decrements must be correctly simulated. By Claim 8 and the previous require-
ments, we can assume that the untimed part π of a timeline is an initial and halting computation-code such that all 
configuration-codes occurring in π are well-formed.

Let wmain · wcheck be a subword occurring in π such that wmain (resp., wcheck) is a main-code (resp., check-code). Let �main
(resp., �check) be the instruction label associated with wmain (resp., wcheck) and for i = 1, 2, let nmain

i (resp., ncheck
i ) be the 

value of counter ci encoded by wmain (resp., wcheck). Let ch = c(�main). By construction, �main �= �halt , and either �main ∈ Inc
and �check = succ(�main), or �main ∈ Dec and �check ∈ {zero(�main), dec(�main)}. Moreover, if �main ∈Dec and �check =zero(�main), 
then ncheck

h = nmain
h = 0. Thus, it remains to ensure the following two requirements:

(*) if �main ∈ Inc, then ncheck
h = nmain

h + 1 and ncheck
3−h = nmain

3−h ;

(**) if �main ∈Dec, then ncheck
3−h = nmain

3−h , and whenever �check = dec(�main), then ncheck
h = nmain

h − 1.

By strict time monotonicity and one time unit distance between consecutive control values, it follows that require-
ments (*) and (**) are captured by the following rules, where Uci denotes the set of unmarked V ci -values, for i = 1, 2, and 
V init (resp., V halt) is the set of V -values associated with the label �init (resp., �halt). For each v ∈ (Uci ∩ V main) \ V halt , 
we add the rule: o[xM = v] → ∨

u∈Uci
∃ o′[xM = u]. o ≤s,s

[1,1] o′ , and for each v ∈ (Uci ∩ V check) \ V init , we add the rule:

o[xM = v] → ∨
u∈Uci

∃ o′[xM = u]. o′ ≤s,s
[1,1] o. This ends the proof. �

Note that since all the trigger rules used in the proof are simple, undecidability of the TP problem holds also under the 
restriction to simple trigger rules.

It is worth pointing out that trigger rules are necessary to ensure the well-formedness of configuration-codes and the 
increment/decrement requirements. Consider, for instance, the well-formedness rule. We can force every token with value 
in V ch (for h = 1, 2) in a wcheck code to be followed, one time instant later, by a token with value in V ch in the following 
wmain code. However, under the future semantics, the converse cannot be ensured. As a consequence, we could only enforce 
that if n is the value encoded for the counter ch in a check code, then the value encoded for ch in the following wmain
code is n′ with n ≤ n′ , whereas we had to ensure that n = n′ . For the same reason, under the future semantics, we can not 
correctly encode increments and decrements, thus losing the ability of capturing computations of (exact) Minsky machines. 
In fact, we shall prove that, under the future semantics, we can encode computations of the variant of Minsky machines 
called gainy counter machines [11], whose counters may “erroneously” increase. Since the halting problem for gainy counter 
machines is known to be non-primitive recursive [11], we can prove the non-primitive recursive-hardness of the future TP 
problem. The encoding of the gainy counter machines halting problem into the future TP problem, which is an adaptation 
of the above one for Minsky machines, is reported in Appendix A.

Theorem 9. The future TP problem is non-primitive recursive-hard also under one of the following two assumptions: either (i) the 
trigger rules are simple, or (ii) the intervals (occurring in atoms or constraint functions) are in Intv(0,∞) .

4. Decidability of future TP with simple trigger rules

In this section, we show that decidability of the TP problem can be recovered by using trigger rules which are both simple
and interpreted under the future semantics. If, in addition, the intervals occurring in trigger rules are non-singular (resp., are 
in Intv(0,∞)), the problem is in EXPSPACE (resp., in PSPACE). Decidability of future TP with arbitrary trigger rules remains an 
open problem (we conjecture undecidability). Decidability is proved in Subsection 4.2 by reducing the future TP problem 
with simple trigger rules to the decidable existential MC problem for Timed Automata (TA) [1] against Metric Temporal Logic 
(MTL) [18] over finite timed words (see [21]). We start recalling the basics of TA and MTL.

4.1. Timed automata and the logic MTL

Let � be a finite alphabet. A timed word w over � is a finite word w = (a0, τ0) · · · (an, τn) over � ×R+ (τi is called a 
timestamp and, intuitively, it represents the time when the “event” ai occurs) such that τi ≤ τi+1 for all 0 ≤ i < n (mono-
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tonicity requirement). We often denote the timed word w by (σ , τ ), where σ is the finite (untimed) word a0 · · ·an and τ is 
the sequence of timestamps τ0, . . . , τn . A timed language over � is a set of timed words over �.

Timed automata (TA) Let C be a finite set of clocks. A clock valuation is a function val : C →R+ that assigns a non-negative 
real value to each clock in C . Let t ∈R+ and Res ⊆ C (called reset set). For all c ∈ C , let (val + t) be the valuation for C such 
that (val + t)(c) = val(c) + t , and val[Res] be the valuation for C such that val[Res](c) = 0, if c ∈ Res, and val[Res](c) = val(c)
otherwise.

A clock constraint θ over C is a Boolean combination of atomic formulas of the form c ∈ I or c − c′ ∈ I , where c, c′ ∈ C
and I ∈ Intv. Given a clock valuation val and a clock constraint θ , val is said to satisfy θ , written val |= θ , if θ evaluates to 
true after replacing each occurrence of a clock c in θ by val(c), and interpreting Boolean connectives and membership to 
intervals in the standard way. We denote by �(C) the set of all possible clock constraints over C .

Definition 10. A timed automaton (TA) over � is a tuple A = (�, Q , q0, C,�, F ), where Q is a finite set of (control) states, 
q0 ∈ Q is the initial state, C is a finite set of clocks, F ⊆ Q is the set of accepting states, and � ⊆ Q × � × �(C) × 2C × Q
is the transition relation. The maximal constant of A is the greatest integer occurring as an endpoint of some interval in the 
clock constraints of the transitions of A.

A configuration of A is a pair (q, val), where q ∈ Q and val is a clock valuation for C . A run r of A on a timed word w =
(a0, τ0) · · · (an, τn) over � is a sequence of configurations r=(q0, val0) · · ·(qn+1, valn+1) starting from the initial configuration 
(q0, val0), with val0(c) = 0 for all c ∈ C (initialization requirement) and such that, for 0 ≤ i ≤ n, (i) (qi,ai, θ,Res,qi+1)∈�

for some θ ∈ �(C) and reset set Res, (ii) (vali + τi − τi−1) |= θ , and (iii) vali+1 = (vali + τi − τi−1)[Res], where τ−1 = 0
(consecution requirement).

The behavior of a TA A can be described as follows. Assume that A is in state q ∈ Q after reading the symbol (a′, τi)

at time τi and, at that time, the clock valuation is val. Upon reading (a, τi+1), A chooses a transition of the form δ =
(q, a, θ, Res, q′) ∈ � such that the constraint θ is fulfilled by (val + t), with t = τi+1 − τi . The control then changes from q
to q′ and val is updated in such a way as to record the amount of elapsed time t in the clock valuation, and to reset the 
clocks in Res, namely, val is updated to (val + t)[Res].

A run r is accepting if qn+1 ∈ F . The timed language LT (A) is the set of timed words w over � such that there is 
an accepting run of A on w . As shown in [1], given two TA A1 and A2, with s1 (resp., s2) states and k1 (resp., k2) 
clocks, the union (resp., intersection) automaton A∨ (resp., A∧) such that LT (A∨) = LT (A1) ∪ LT (A2) (resp., LT (A∧) =
LT (A1) ∩LT (A2)) can be effectively computed, and has s1 + s2 (resp., s1 · s2) states and k1 + k2 (resp., k1 + k2) clocks.

The logic MTL Metric Temporal Logic (MTL) extends LTL with time constraints on the until modality [18]. Let AP be a finite 
set of proposition letters. The set of MTL formulas ϕ over AP is defined by the grammar: ϕ ::= � | p | ϕ ∨ ϕ | ¬ϕ | ϕUIϕ , 
where p ∈ AP , I ∈ Intv, and UI is the strict timed until MTL modality.

MTL formulas over AP are interpreted on timed words over 2AP . Given an MTL formula ϕ , a timed word w = (σ , τ ) over 
2AP , and a position 0 ≤ i < |w|, the satisfaction relation (w, i) |= ϕ—meaning that ϕ holds at position i of w—is defined as 
follows (we omit the clauses for Boolean connectives):

• (w, i) |= p ⇐⇒ p ∈ σ(i),
• (w, i) |= ϕ1UIϕ2 ⇐⇒ there exists j > i such that τ j − τi ∈ I , (w, j) |= ϕ2, and (w, k) |= ϕ1 for all i < k < j.

A model of ϕ is a timed word w over 2AP such that (w, 0) |= ϕ . The timed language LT (ϕ) is the set of models of ϕ .
The existential MC problem for TA against MTL is the problem of checking, for a given TA A over 2AP and an MTL formula 

ϕ over AP , if LT (A) ∩LT (ϕ) �= ∅.
In the following, we use standard shortcuts such as FIϕ for ϕ ∨ (�UIϕ) (timed eventually) and GIϕ for ¬FI¬ϕ (timed 

always). We also consider two fragments of MTL, namely, MITL (Metric Interval Temporal Logic) and MITL(0,∞) [2]: MITL is 
obtained from MTL by allowing only non-singular intervals of Intv as subscripts of U, while MITL(0,∞) is obtained from MITL
by allowing only intervals in Intv(0,∞) . The maximal constant of an MTL formula ϕ is the greatest integer occurring as an 
endpoint of some interval of (the occurrences of) UI in ϕ .

4.2. Reduction to existential MC for TA against MTL

We now solve future TP with simple trigger rules by means of an exponential-time reduction to the existential MC 
problem for TA against MTL.

Let P = (S V , R) be an instance of the problem where the trigger rules in R are simple. The maximal constant of P , 
denoted by K P , is the greatest integer occurring in the atoms of the rules in R and in the constraint functions of the state 
variables in S V . The proposed reduction consists of three steps:

• first, we define an encoding of the multi-timelines of S V by means of timed words over 2AP for a suitable finite set AP
of proposition letters, and show how to construct a TA AS V over 2AP accepting such encodings;
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Fig. 3. Example of multi-timeline of S V = {x, y, z}. The timeline for x is (a1
1, 7), (a2

1, 5), (a3
1, 0), (a4

1, 7.9), (a5
1, . . .). Note that the third to-

ken has null duration. The encoding of the timeline for x is ({(begx,a1
1), p>}, 0)({(a1

1,a2
1), p>}, 7)({(a2

1,a3
1), p>}, 13)({(a3

1,a4
1), pasts

a3
1
, paste

a2
1
}, 13)

({(a4
1, a5

1), p>}, 20.9) · · · The encoding of the multi-timeline is ({(begx, a1
1), (begy , a1

2), (begz, a1
3), p>}, 0)({(a1

2, a2
2), p>}, 4)({(a1

1, a2
1), (a2

2, a3
2), p>}, 7)

({(a1
3, a1

3), p>}, 10.2)({(a2
1, a3

1), (a1
3, a2

3), p>}, 13)({(a3
1, a4

1), pasts
a3

1
, paste

a2
1
}, 13)({(a3

2, a2
2), p>}, 17.1) · · · .

• next, we build an MTL formula ϕ∀ over AP such that for each multi-timeline � of S V and encoding w� of �, w� is a
model of ϕ∀ if and only if � satisfies all the trigger rules in R under the future semantics;

• finally, we construct a TA A∃ over 2AP such that for each multi-timeline � of S V and encoding w� of �, w� is accepted
by A∃ if and only if � satisfies all the trigger-less rules in R .

Hence, there is a future plan for P = (S V , R) iff LT (AS V ) ∩LT (A∃) ∩LT (ϕ∀) �= ∅.
For each x ∈ S V , we let x = (V x, Tx, Dx). Given an interval I ∈ Intv and n ∈ N , let n + I (resp., n − I) denote the set of 

non-negative real numbers τ ∈R+ such that τ − n ∈ I (resp., n − τ ∈ I). Note that n + I (resp., n − I) is a (possibly empty) 
interval in Intv whose endpoints can be trivially calculated. For an atom ρ in R involving a time constant (time-point atom), 
let I(ρ) be the interval in Intv defined as follows: if ρ has the form o ≤e

I n (resp., n ≤e
I o), then I(ρ) =n −I (resp., I(ρ) =n +I). 

Finally, let IntvR be the set of intervals J ∈ Intv such that J = I(ρ) for some time-point atom ρ occurring in a trigger rule 
of R .

Encodings of multi-timelines of S V For any pair of distinct state variables x and x′ , we assume the sets V x ∪ V x′ = ∅. To
encode multi-timelines of S V , we make use of the set AP = (

⋃
x∈S V Mainx) ∪ Deriv of proposition letters, where

Mainx = (({begx} ∪ V x) × V x) ∪ (V x × {endx}) and Deriv = IntvR ∪ {p>} ∪
⋃

x∈S V

⋃
v∈V x

{pasts
v ,paste

v}.

Intuitively, we use proposition letters in Mainx to encode a token along a timeline for x. Proposition letters in Deriv enrich 
the encoding in order to translate simple trigger rules in MTL formulas under the future semantics (see below). The tags 
begx and endx in Mainx are used to mark the start and the end of a timeline for x. A token tk with value v along a timeline 
for x is encoded by two events: the start-event (occurring at the start time of tk) and the end-event (occurring at the end 
time of tk). The start-event of tk is specified by a main proposition letter of the form (v p, v), where either v p = begx (tk is 
the first token of the timeline) or v p is the value of the token for x preceding tk. The end-event of tk is instead specified 
by a main proposition letter of the form (v, vs), where either vs = endx (tk is the last token of the timeline) or vs is the 
value of the token for x following tk. An example of encoding is given in Fig. 3.

Let us consider now the proposition letters in Deriv. The elements in IntvR reflect the semantics of the time-point atoms 
in the trigger rules of R: for each I ∈ IntvR , I holds at the current position if the current timestamp τ satisfies τ ∈ I . 
The proposition letter p> is used to mark a timestamp whenever it is strictly greater than the previous one. Finally, a 
proposition letter pasts

v (resp., paste
v ) is used to mark a timestamp τ whenever it is preceded by a token of value v starting 

(resp., ending) at the same time τ . An encoding of a timeline for x is a timed word w over 2Mainx∪Deriv of the form

w = ({(begx, v0)} ∪ S0, τ0)({(v0, v1)} ∪ S1, τ1) · · · ({(vn, endx)} ∪ Sn+1, τn+1)

where, for all 0 ≤ i ≤ n + 1, Si ⊆ Deriv, and (i) vi+1 ∈ Tx(vi) for i < n; (ii) τ0 = 0 and τi+1 − τi ∈ Dx(vi) for i ≤ n; (iii) Si ∩
IntvR is the set of intervals I ∈ IntvR such that τi ∈ I; (iv) p> ∈ Si if and only if either i = 0 or τi > τi−1; (v) for all v ∈ V x , 
pasts

v ∈ Si (resp., paste
v ∈ Si ) if and only if there is 0 ≤ h < i such that τh = τi and v = vh (resp., τh = τi , v = vh−1, and 

h > 0). Note that the length of w is at least 2. The given timed word w encodes the timeline for x of length n + 1 given 
by π = (v0, τ1)(v1, τ2 − τ1) · · · (vn, τn+1 − τn). The timestamps τi and τi+1 represent the start and the end time of the i-th 
token of the timeline π (0 ≤ i ≤ n). See again Fig. 3 for an example.

Next, we define the encoding of a multi-timeline of S V . For P ⊆ AP and x ∈ S V , let P [x] = P \ ⋃
y∈S V \{x} Mainy . An 

encoding of a multi-timeline of S V is a timed word w over 2AP of the form w = (P0, τ0) · · · (Pn, τn) such that (i) for all 
x ∈ S V , the timed word obtained from (P0[x], τ0) · · · (Pn[x], τn) by removing the pairs (Pi[x], τi) such that Pi[x] ∩ Mainx = ∅
is an encoding of a timeline for x, and (ii) P0[x] ∩ Mainx �= ∅ for all x ∈ S V (initialization). See again Fig. 3 for an example 
of the encoding of a multi-timeline.

We now construct a TA AS V over 2AP accepting the encodings of the multi-timelines of S V (see the proof of the next 
proposition).
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Proposition 11. A TA AS V over 2AP , with 2O (
∑

x∈S V |V x|) states, |S V | + 2 clocks, and maximal constant O (K P ), such that LT (AS V )

is the set of encodings of the multi-timelines of S V , can be built in exponential time.

Proof. Let us fix an ordering S V = {x1, . . . , xN } of the state variables. Let H = Deriv \ (IntvR ∪ {p>}) and V ′
i = V xi ∪

{begxi
, endxi }, for all 1 ≤ i ≤ N .

The TA AS V = (2AP , Q , q0, C, �, F ) is defined as follows.

• The set of states is given by Q = V ′
1 × . . . × V ′

N × 2H . Intuitively, for a state (v1, . . . , v N , H), the i-th component vi
keeps track of the value of the last (start-event for a) token for xi read so far if vi /∈ {begxi

, endxi }. If vi = begxi
(resp.,

vi = endxi ), then no start-event for a token for xi has been read so far (resp., no start-event for a token for xi can be
read). Moreover, the last component H of the state keeps track of past token events occurring at a timestamp coinciding
with the last timestamp.

• q0 = (begx1
, . . . , begxN

, ∅) and F = {(endx1 , . . . , endxN , H) | H ⊆H}.
• The set of clocks C is given by C = {c1, . . . , cN , c>, cglob}. We have a clock ci for each state variable xi , which is used to

check that the duration of a token for xi with value v is in Dxi (v). Moreover, c> is a clock which is always reset and is
used to capture the meaning of proposition letter p> , whereas cglob is a clock that measures the current (global) time
and is never reset.

• The relation � consists of the transitions

((v1, ..., v N , H), P , θ1 ∧ . . . ∧ θN ∧ θ> ∧ θglob, Res, (v ′
1, ..., v ′

N , H ′)) such that

– if (v1, ..., v N , H) =q0, then P ∩ Mainx �=∅ for all x ∈ S V (initialization);
– for all 1 ≤ i ≤ N , it holds that

∗ either P ∩ Mainxi = ∅, v ′
i = vi , θi = �, and ci /∈ Res (intuitively, no event associated with xi occurs in this case),

∗ or P ∩ Mainxi = (vi, v ′
i) (and thus vi �= endxi ), v ′

i ∈ Txi (vi), if both vi ∈ V xi and v ′
i ∈ V xi , ci ∈ Res, and θi = ci ∈

Dxi (vi) (resp., θi = ci ∈ [0, 0]) if vi �= begxi
(resp., if vi = begxi

);

– cglob /∈ Res, θglob = ∧
I∈P∩IntvR

cglob ∈ I ∧∧
I∈IntvR \P (cglob ∈ −→

I ∨ cglob ∈ ←−
I ) where, for each I ∈ IntvR \ P , 

−→
I and 

←−
I are

(possibly empty) maximal intervals in R+ disjoint from I (e.g., if I = [3, 5[, then 
←−
I = [0, 3[, −→I = [5, +∞[ ). Note

that 
−→
I , 

←−
I ∈ Intv. Recall that for all I ∈ IntvR , I is in P if and only if the current time (given by cglob) is in I;

– c>∈Res; moreover, if (v1, ..., v N , H) =q0, then p>∈ P and θ>=�, else either p>∈ P and θ>=c>∈]0, +∞[, or p> /∈ P
and θ>=c>∈[0, 0];

– P ∩H = ∅ if p> ∈ P ; otherwise, P ∩H = H ;
– for all x ∈ S V and v ∈V x , pasts

v ∈H ′ (resp., paste
v ∈H ′) if and only if either P ∩ Mainxi has the form (v, v) (resp., (v , v)),

or p> /∈ P and pasts
v ∈H (resp., paste

v ∈H). �
Encoding of simple trigger rules by MTL formulas We now build an MTL formula ϕ∀ over AP for simple trigger rules in R
under the future semantics.

Proposition 12. An MTL formula ϕ∀ , with maximal constant O (K P ), such that for each multi-timeline � of S V and encoding w� of 
�, w� is a model of ϕ∀ if and only if � satisfies all the simple trigger rules in R, under the future semantics, can be built in linear time.
The formula ϕ∀ has O (|R| · N A · NE · (|IntvR |+(

∑
x∈S V |V x|)2

)
) distinct subformulas, where N A (resp., NE ) is the maximum number 

of atoms (resp., existential statements) in a trigger rule of R. The formula ϕ∀ is an MITL (resp., MITL(0,∞)) formula if the intervals in 
the trigger rules are non-singular (resp., belong to Intv(0,∞)).

Proof. We first introduce some auxiliary propositional formulas. Let x ∈ S V and v ∈ V x; ψ(s, v) and ψ(e, v) are two propo-
sitional formulas over Mainx defined as:

ψ(s, v) = (begx, v) ∨
∨

u∈V x

(u, v), ψ(e, v) = (v, endx) ∨
∨

u∈V x

(v, u).

Intuitively, ψ(s, v) (resp., ψ(e, v)) states that a start-event (resp., end-event) for a token for x with value v occurs at the 
current time. We also introduce the formula ψ¬x = ¬ 

∨
m∈Mainx

m asserting that no event for a token for x occurs at the 
current time. Finally, given an MTL formula θ , we define the MTL formula EqTime(θ) = θ ∨ [¬p>U≥0(¬p> ∧ θ)], which 
is satisfied by an encoding of a multi-timeline at the current time if θ eventually holds at a position whose timestamp 
coincides with the current timestamp.

The MTL formula ϕ∀ has a conjunct ϕR for each trigger rule R ∈ R . Let R be a trigger rule of the form ot[xt = vt] →
E1∨E2∨. . .∨Ek .
10



Then, we have ϕR = G≥0
(
ψ(s, vt) →

k∨
i=1

�Ei

)
, where �Ei ensures the fulfillment of Ei under the future semantics (1 ≤ i ≤k).

Let E ∈ {E1, . . . , Ek}, O be the set of token names existentially quantified in E , A be the set of interval atoms in E , and, 
for each o ∈ O , val(o) be the value of the token referenced by o in the associated quantifier. In the construction of �E , 
we crucially exploit the assumption that R is simple: for each token name o ∈ O , there is at most one interval atom in A
where o occurs.

For each token name o ∈ {ot} ∪ O , we denote by Intvs
o (resp., Intve

o) the set of intervals J ∈ Intv such that J = I(ρ)

for some time-point atom ρ occurring in E , which imposes a time constraint on the start (resp., end) time of the token 
referenced by o. Note that Intvs

o, Intve
o ⊆ AP , and we exploit the propositional formulas ξ s

o = ∧
I∈Intvs

o
I and ξe

o = ∧
I∈Intve

o
I to 

ensure the fulfillment of the time constraints imposed by the time-point atoms associated with the token o.

The MTL formula �E (recall that E ∈ {E1, . . . , Ek}) is defined as follows:

�E = ξ s
ot

∧ [ψ¬xt U≥0(ψ(e, vt) ∧ ξe
ot

)] ∧
∧
ρ∈A

χρ,

where, for each ρ ∈ A, the formula χρ captures the future semantics of ρ .
The construction of χρ depends on the form of ρ . We distinguish 4 cases.

• ρ = o ≤e1,e2
I ot and o �= ot . We assume 0 ∈ I (the other case being simpler). First, let e2 = s. Under the future semantics, 

ρ holds if and only if the start time of the trigger token ot coincides with the e1-time of o. Hence, we have that
χρ = ξ

e1
o ∧ (

paste1
val(o)

∨ EqTime(ψ(e1, val(o)))
)
.

If e2 = e, then χρ = [
ψ¬xt U≥0{ξ e1

o ∧ ψ(e1, val(o)) ∧ ψ¬xt ∧ (ψ¬xt UIψ(e, vt))}
] ∨ [

(ψ(e1, val(o)) ∨ paste1
val(o)

) ∧ ξ
e1
o ∧(

EqTime(ψ(e, vt)) ∨ (ψ¬xt ∧ (ψ¬xt UIψ(e, vt)))
)] ∨ [

ψ¬xt U≥0{ψ(e, vt) ∧ EqTime(ψ(e1, val(o)) ∧ ξ
e1
o )}].

The first disjunct (in square brackets) considers the case where the e1-event of token o occurs strictly between the 
start-event and the end-event of the trigger token ot (along the encoding of a multi-timeline of S V ). The second disjunct 
considers the case where the e1-event of o precedes the start-event of ot : under the future semantics, it holds that the 
e1-time of o coincides with the start time of ot . Finally, the third disjunct considers the case where the e1-event of o
follows the end-event of ot (hence, the corresponding timestamps must coincide).

• ρ = ot ≤e1,e2
I o and o �= ot . We assume e1 = e and 0 ∈ I (the other cases being simpler). Then,

χρ = [
ψ¬xt U≥0(ψ(e, ut) ∧ FI (ψ(e2, val(o)) ∧ ξ

e2
o ))

] ∨ [
ψ¬xt U≥0(ψ(e, ut) ∧ paste2

val(o)
∧ ξ

e2
o )

]
,

where the second disjunct deals with the case where the e2-time of o coincides with the end time of ot , but the e2-event 
of o occurs before the end-event of ot .

• ρ = ot ≤e1,e2
I ot . This case is straightforward and we omit the details.

• ρ = o1 ≤e1,e2
I o2, o1 �= ot , and o2 �= ot . We assume o1 �= o2 and 0 ∈ I (the other cases being simpler). Then,

χρ = [
paste1

val(o1)
∧ ξ

e1
o ∧ FI (ψ(e2, val(o2)) ∧ ξ

e2
o )

]∨[
F≥0{ψ(e1, val(o1)) ∧ ξ

e1
o ∧ FI (ψ(e2, val(o2)) ∧ ξ

e2
o )}]∨[

paste1
val(o1)

∧ ξ
e1
o ∧ paste2

val(o2)
∧ ξ

e2
o

]∨[
paste2

val(o2)
∧ ξ

e2
o ∧ EqTime(ψ(e1, val(o1)) ∧ ξ

e1
o )

]∨[
F≥0{ψ(e2, val(o2)) ∧ ξ

e2
o ∧ EqTime(ψ(e1, val(o1)) ∧ ξ

e1
o )}].

The first two disjuncts deal with the cases where (under the future semantics) the e1-event of o1 precedes the e2-event 
of o2, while the last three disjuncts consider the dual situation. In the latter three cases, the e1-time of o1 and the 
e2-time of o2 are equal.

Note that the MTL formula ϕ∀ is an MITL formula (resp., MITL(0,∞) formula) if the intervals in the trigger rules are non-
singular (resp., belong to Intv(0,∞)). �
Encoding of trigger-less rules by a TA We now deal with trigger-less rules. We start by noting that an existential statement 
E in a trigger-less rule requires the existence of an a priori bounded number of temporal events satisfying mutual temporal 
relations (namely, in the worst case, the start time and end time of all tokens associated with some quantifier of E). 
Thus, we can build a TA for E which guesses such a chain of events by non-deterministically resetting some clocks, and 
then checks the temporal relations in E by suitable clock constraints over the mentioned clocks. By the closure of TA under 
language union [1], we can then build a TA for the whole trigger-less rule. Additionally, by exploiting the closure of TA under 
intersection, we build a TA accepting (encodings of) multi-timelines satisfying all trigger-less rules. We refer to Appendix B
for the proof of the next proposition, where we show how to build such a TA.
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Proposition 13. A TA A∃ over 2AP such that, for each multi-timeline � of S V and encoding w� of �, w� is accepted by A∃ if and 
only if � satisfies all the trigger-less rules in R can be built in exponential time. A∃ has 2O (Nq) states, O (Nq) clocks, and maximal 
constant O (K P ), where Nq is the overall number of quantifiers in the trigger-less rules of R.

Conclusion of the construction The next theorem follows from Propositions 11, 12, 13, and well-known results about TA and 
MTL over finite timed words [1,21].

Theorem 14. The future TP problem with simple trigger rules is decidable (with non-primitive recursive complexity). Moreover, if 
the intervals in the atoms of the trigger rules are non-singular (resp., belong to Intv(0,∞)), then the problem is in EXPSPACE (resp., 
PSPACE).

Proof. Let P = (S V , R) be an instance of the problem with maximal constant K P . Moreover, let Nv =∑
x∈S V |V x|, Nq be the 

overall number of quantifiers in the trigger-less rules of R , and N A (resp., NE ) be the maximum number of atoms (resp., 
existential statements) in a trigger rule of R .

By Propositions 11, 12, 13, and the closure of TA under language intersection,

• we can build a TA AP —namely, the intersection of AS V from Proposition 11 and A∃ from Proposition 13—having
2O (Nq+Nv ) states, O (Nq + |S V |) clocks, and maximal constant O (K P ),

• and an MTL formula ϕ∀ , with O (|R| · N A · NE · (|IntvR | + N2
v)) distinct subformulas and maximal constant O (K P ),

such that there exists a future plan for P if and only if LT (AP ) ∩LT (ϕ∀) �= ∅. By [21], checking non-emptiness of LT (AP ) ∩
LT (ϕ∀) is decidable. Thus, the first claim of the theorem holds.

As for the second claim, let us assume the intervals in the trigger rules to be non-singular (resp., to belong to 
Intv(0,∞)). By Proposition 12, ϕ∀ is an MITL (resp., MITL(0,∞)) formula. By [2], one can build a TA A∀ accepting LT (ϕ∀)
with 2O (K P ·|R|·N A ·NE ·(|IntvR |+N2

v )) states, O (K P · |R| · N A · NE · (|IntvR | + N2
v)) clocks (resp., 2O (|R|·N A ·NE ·(|IntvR |+N2

v )) states, 
O (|R| · N A · NE · (|IntvR | + N2

v)) clocks), and maximal constant O (K P ). Non-emptiness of a TA A can be solved by an 
NPSPACE = PSPACE search algorithm over the region automaton of A (see [1]), which uses work space logarithmic in the 
number of states of A and polynomial in the number of clocks and in the length of the encoding of the maximal constant 
of A [1]. Thus, since AP , A∀ , and the intersection A∧ of AP and A∀ can be built on the fly—i.e., by looking at their 
� transitions one can determine, given a state q, a successor q′ and the connecting transition along with the constraints 
and clocks to reset—and the search in the region automaton of A∧ can be done without explicitly building A∧ , the claim 
follows. �

As a matter of fact, future TP with simple trigger rules and non-singular intervals in the atoms of trigger rules (resp., 
intervals in Intv(0,∞)) can be proved to be EXPSPACE-complete (resp., PSPACE-complete). We refer the reader to C for the 
corresponding proofs of hardness.

5. TP with trigger-less rules only is NP-complete

In this section, we focus on planning domains where only trigger-less rules are allowed, and describe a TP planning
algorithm that requires a polynomial number of (non-deterministic) computation steps. Trigger-less rules are useful, for 
instance, to express initial and intermediate conditions as well as reachability goals. We start showing that there exist 
instances of the problem that do not admit a polynomial-size plan. It immediately follows that the problem cannot be solved 
by a non-deterministic guessing (and check) of a suitable polynomial-size multi-timeline certificate.

Exponential-size plans for TP with trigger-less rules. Consider the following planning domain. Let p(i) be the i-th prime num-
ber, say, p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5,. . . . For i = 1, . . . , n, we define xi as the variable ({vi}, {(vi, vi)}, Dxi ) with 
Dxi (vi) = [p(i), p(i)]. The rule � → ∃o1[x1 = v1] · · · ∃on[xn = vn]. ∧n−1

i=1 oi ≤e,e
[0,0] oi+1 requires the existence of a “synchro-

nization point”, where n tokens (one for each variable) have their ends “aligned”. Due to the allowed token durations, the 
first such time point is 

∏n
i=1 p(i) ≥ 2n−1. Hence, in any plan, the timeline for x1 features at least 2n−1 tokens that clearly 

cannot be enumerated in polynomial time.

The above considered TP problem shows that there is no trivial guess-and-check NP algorithm for TP with trigger-less 
rules only. In the following, we provide a (nontrivial) non-deterministic polynomial-time algorithm, proving that the problem 
actually belongs to NP (it can be proved to be NP-hard by an easy reduction from the Hamiltonian path problem).

We preliminarily have to derive a bounded horizon (namely, a bounded end time of the last token) for the plans of a 
(any) instance of TP with trigger-less rules, that is, if an instance P = (S V , R) admits a plan, then P also has a plan whose 
horizon is no greater than a given bound. Analogously, we have to fix a bound on the maximum number of tokens in a plan. 
Both bounds can be obtained from the TA constructions done in the proof of Theorem 14. Since only trigger-less rules are 
allowed, we restrict our attention to the TA AP , i.e., the intersection of the TA AS V for the variables in S V (Proposition 11) 
and the TA A∃ for the trigger-less rules in R (Proposition 13). AP accepts all and only the encodings w� of multi-timelines 
12



Fig. 4. In a multi-timeline of S V ={x, y, z}, we non-deterministically place some tokens, which are associated with quantifiers (they are depicted as rectan-
gles).

� of S V satisfying all the trigger-less rules in R , and it has αs =2O (Nq+∑
x∈S V |V x|) states, αc = O (Nq + |S V |) clocks, and

maximum constant αK = O (K p), where Nq is the number of quantifiers in the trigger-less rules of R .
The algorithm to check TA for emptiness applied to AP visits the (untimed) region automaton for AP [1], which features 

α = αs · O (αc ! · 2αc · 22N2
q · (2αK + 2)αc ) states (the factor 22N2

q accounts for diagonal clock constraints in AP ), looking for 
a path from the initial state to a final state, whose length is clearly bounded by the number of states. We observe that 
each edge/transition of the region automaton in such a path corresponds, in the worst case, to the start point of a token 
for each timeline for the variables in S V (i.e., assuming that all these tokens start simultaneously). This yields a bound on 
the number of tokens equal to α · |S V |. A bound on the horizon of the plan equal to α · |S V | · (αK + 1) can be derived as 
well, as each transition taken in AP may let pass at most αK + 1 time units, where αK is the maximum constant to which 
a (any) clock is compared.

Given these bounds, the proposed algorithm consists of two main steps which rest on the following observations: (i) each 
trigger-less rule requires the existence of an a priori bounded number of temporal events satisfying synchronization relations 
(in the worst case, the start time and end time of all tokens associated with the quantifiers of one of its existential state-
ments); (ii) apart from these events, timelines for different state variables evolve independently of each other. To deal with 
(i), we non-deterministically choose and place such temporal events along timelines; as for (ii), in between any pair of 
“so-positioned” events, we guarantee that each timeline correctly evolves independently of the other ones. See Fig. 4 for a 
graphical intuition.

Non-deterministic token positioning The algorithm starts by non-deterministically choosing, for each trigger-less rule in R , a 
disjunct—discharging all the others (if any). Then, for each quantifier oi [xi = vi] of such a disjunct, it generates the integer 
part of both the start and the end time (denoted by sint (oi) and eint(oi), respectively) of the token associated with oi . 
For simplicity, we assume that all quantifiers refer to distinct tokens. It is not difficult to extend the algorithm to possibly 
associate -by a non-deterministic choice- two or more quantifiers with the same token (it would suffice to rewrite with a 
common fresh name all the occurrences of quantifiers in the rules associated with the same token). Note that all start/end 
time sint(oi) and eint(oi), being less than or equal to α · |S V | · (αK + 1) (the finite horizon bound), have an integer part that 
can be encoded with a polynomial number of bits and can be generated in polynomial time. Once the integer part of the 
start/end time of the tokens has been fixed, to determine the relationship among tokens we have to fix also an ordering of 
the associated fractional parts. We denote them by s f rac(oi) and e f rac(oi). The algorithm non-deterministically generates an 
order of all such fractional parts. In particular, we have to specify, for every token start/end time, whether it is an integer 
(i.e., s f rac(oi) = 0 / e f rac(oi) = 0) or not (i.e., s f rac(oi) > 0 / e f rac(oi) > 0). Every such combination can be generated in 
polynomial time.

Some trivial correctness requirements have to be checked, that is, we need to check that each token is assigned an end 
time greater than or equal to its start time (i.e., for all oi , sint(oi) ≤ eint(oi)), and two different tokens for the same variable 
do not overlap. Since all the constants appearing in atoms are integers, it is routine to prove that, if we choose two different 
assignments of the start/end time of tokens associated with quantifiers which are indistinguishable for (i) all the integer 
parts, (ii) zeroness/non-zeroness of the fractional parts, and (iii) the order of the fractional parts, then the satisfaction of 
the atoms in the trigger-less rules does not change for the two different assignments.

Enforcing legal token durations and timeline evolutions The second step of the algorithm checks that (1) all the tokens previ-
ously associated with a quantifier have a legal duration, and (2) there is a legal timeline evolution between pairs of adjacent 
tokens associated with quantifiers over the same variable (two tokens are said adjacent when there is not another token 
in the timeline associated with a quantifier in between them). All the requirements are expressed as constraints of a lin-
ear problem, which can be solved in deterministic polynomial time (e.g., using the ellipsoid algorithm). When needed, we 
use strict inequalities, which are not allowed, in general, in linear programs. We shall describe later how to convert strict 
inequalities into “equivalent” non-strict ones.

We start by associating non-negative variables αoi ,s, αoi ,e with the fractional parts of the start/end times s f rac(oi), 
e f rac(oi) of each token for a quantifier oi[xi = vi] adding the linear constraints 0 ≤ αoi ,s < 1 and 0 ≤ αoi ,e < 1. In addition, 
we introduce linear constraints to ensure that the values of αoi ,s and αoi ,e respect the order of the fractional parts guessed in 
the first step. Next, to enforce requirement (1), for any quantifier oi[xi = vi], we set a ≤ (eint(oi) +αoi ,e) − (sint(oi) +αoi ,s) ≤
b, where Dxi (vi) = [a, b]. Clearly, strict (<) inequalities must be used for a left/right open interval.
13



Fig. 5. A legal timeline evolution between a pair of tokens for oi [xi = vi ] and o j [xi = v j ].

In the following we focus on the existence of a legal timeline evolution between a pair of adjacent tokens associated with 
quantifiers, say, oi[xi = vi] and o j[xi = v j] (requirement (2)). The case of a legal timeline evolution leading to the first token 
associated with a quantifier can be treated analogously. Each state variable xi = (V i, Ti, Di) can be seen as a directed graph 
G = (V i, Ei), with Ei = {(u, v) | u ∈ V i, v ∈ Ti(u)} and Di a function associating with each vertex v ∈ V i a duration range. 
We have to decide if there exist (i) a path in G , v0 · v1 · · · vn−1 · vn , where vertices can occur repeatedly, and v0 ∈ Ti(vi)

and vn , with v j ∈ Ti(vn), are non-deterministically generated, and (ii) a list of non-negative real values d0, . . . , dn such that ∑n
t=0 dt = (sint(o j) + αo j ,s) − (eint(oi) + αoi ,e), and for all s = 0, . . . , n, ds ∈ Di(vs). See Fig. 5 for a graphical hint.
To find the solution path, we guess a set of integers Pα′ = {α′

u,v | (u, v) ∈ Ei}. Intuitively, α′
u,v ≥ 0 is the number of times 

the solution path traverses the edge (u, v) in G . Since every time an edge is traversed a new token starts, each α′
u,v is 

bounded by the number of tokens, i.e., by α · |S V | and then its binary encoding of can be generated in polynomial time. Now, 
we have to check whether there is a path in G from v0 to vn where the set of edges in the path is Pα′,> = {(u, v) | α′

u,v > 0}
and the number of occurrences of an edge (u, v) in the path is precisely α′

u,v (we call it a Pα′ -path). The solution of the 
problem is obtained by considering an Eulerian path problem in a multigraph G Pα′ = (V i, E ′

i), where E ′
i is a multiset of

edges such that the underling set of edges is Pα′,> and the multiplicity of each edge (u, v) ∈ Pα′,> is α′
u,v . Clearly, there 

is a Pα′ -path from v0 to vn in G if and only if there exists an Eulerian path from v0 to vn in G Pα′ . The existence of the 
Eulerian path can expressed using linear constraints by exploiting the following characterization.

Theorem 15. [17] Let G ′ = (V ′, E ′) be a directed multigraph (E ′ is a multiset). G ′ has a (directed) Eulerian path from v0 to vn iff: 
(i) the undirected version of G ′ is connected and (ii) |{(u, v) ∈ E ′}| = |{(v, w) ∈ E ′}| for all v ∈ V ′ \ {v0, vn}; (iii) |{(u, v0) ∈ E ′}| =
|{(v0, w) ∈E ′}| −1; (iv) |{(u, vn) ∈E ′}| =|{(vn, w) ∈E ′}| +1.

Then, we perform the following 4 deterministic steps.

1. We consider the subset E ′ = {(u, v) ∈ Ti | α′
u,v > 0} of edges of G , and we check if E ′ induces a strongly (undirected)

connected subgraph of G .
2. We check if (i)

∑
(u,v0)∈E ′α′

u,v0
=∑

(v0,w)∈E ′α′
v0,w − 1, (ii)

∑
(u,vn)∈E ′α′

u,vn
=∑

(vn,w)∈E ′α′
vn,w + 1, (iii)

∑
(u,v)∈E ′α′

u,v =∑
(v,w)∈E ′α′

v,w for v ∈V i \{v0, vn}.
3. For all v ∈ V i \ {v0}, we define yv = ∑

(u,v)∈E ′ α′
u,v (yv is the number of times the solution path gets into v). Moreover, 

yv0 = ∑
(v0,u)∈E ′ α′

v0,u .
4. We define the non-negative real variables zv , for every v ∈ V i (zv is the total waiting time of the path on the node v),

subject to the constraints a · yv ≤ zv ≤ b · yv , where Di(v) = [a, b] (an analogous constraint is added for open intervals).
Finally, we set

∑
v∈V i

zv = (sint(o j) + αo j ,s) − (eint(oi) + αoi ,e).

Steps 1 and 2 check that the chosen values α′
u,v allow a directed Eulerian path from v0 to vn in a multigraph, as guaranteed

by Theorem 15. Steps 3 and 4 evaluate the waiting times of the path in some vertex v with duration interval [a, b]. If the 
solution path visits the vertex yv times, every visit must take at least a and at most b time units. Hence, the overall visiting 
time is in between a · yv and b · yv . Vice versa, if the total visiting time is in between a · yv and b · yv , it can be split into 
yv intervals, each one falling into [a, b].

The algorithm ends by solving the linear program over the variables αoi ,s , αoi ,e , for each quantifier oi[xi = vi], and the 
variables zv , for each pair of adjacent tokens in the same timeline for xi and v ∈ V i , subject to the respective constraints. 
To conform to linear programming, we have to replace all strict inequalities with non-strict ones. It is straightforward to 
observe that all constraints involving strict inequalities we have are of (or can easily be converted into) the following forms: 
ξ s < ηq + k or ξ s > ηq + k, where s and q are variables, and ξ , η, k are constants. We replace them, respectively, by 
ξ s − ηq − k + βt ≤ 0 and ξ s − ηq − k − βt ≥ 0, where βt is an additional fresh non-negative variable, which is local to a 
single constraint. The original inequality and the new one are equivalent if and only if βt is a small enough positive number. 
Moreover, we add another non-negative variable, say r, which is subject to a constraint r ≤ βt , for each of the introduced 
variables βt (i.e., r is less than or equal to the minimum of all βt ’s). Finally, we maximize the value of r when solving 
the linear program. We have that max r > 0 if and only if there is an admissible solution where the values of all βt ’s are 
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positive (and thus the original strict inequalities hold true). This ends the description of the algorithm which proves that 
the TP problem with trigger-less rules is in NP.

Hardness can be easily proved by a reduction from the problem of the existence of a hamiltonian path in a directed 
graph.

Proposition 16. The TP problem with trigger-less rules only is NP-hard (under polynomial-time reductions).

Proof. Let G = (V , E), with |V | = n, be a directed graph. We let x = (V x, Tx, Dx), where V x = V , Tx encodes E , and Dx(v) =
[1, 1] for all v ∈ V x , and we add the following trigger-less rules, one for each v ∈ V x: � → ∃o[x = v].o ≥s

[0,n−1] 0. The rule 
for v ∈ V requires that there is a token (x, v, 1) in the timeline for x, which starts no later than n − 1. It is easy to check 
that G contains a hamiltonian path iff there is a plan for the defined planning domain. �

The following theorem immediately follows.

Theorem 17. The TP problem with trigger-less rules only is NP-complete.

6. Conclusions and future work

In this paper, we addressed the TP problem over dense temporal domains. Timelines over discrete time have been exten-
sively and fruitfully used in temporal planning. Moving from discrete to dense time is important for expressiveness: dense 
time allows one not to deal with unnecessary (or even artificially “forced”) details and to properly express properties such 
as accomplishments, actions with duration, and temporal aggregates. Since TP over dense time turns out to be undecidable 
in its general form, we have identified and studied “intermediate” decidable cases of the problem, which suitably constrain 
the structure of synchronization rules. By restricting also the type of intervals used in trigger rules, better complexity re-
sults (EXPSPACE and PSPACE) can be obtained. Finally, if only trigger-less rules are allowed, TP over dense time becomes 
NP-complete. As for future work, we shall investigate open issues pointed out in Table 1.
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Appendix A. Non-primitive recursive-hardness of future TP

Theorem (9). The future TP problem is non-primitive recursive-hard also under one of the following two assumptions: either (1) the 
trigger rules are simple, or (2) the intervals (occurring in atoms or constraint functions) are in Intv(0,∞) .

The proof is by a polynomial-time reduction from the halting problem for gainy counter machines [11], a variant of Minsky 
machines, whose counters may erroneously increase. The machine is a tuple M = (Q , qinit, qhalt, n, �), where:

• Q is a finite set of (control) locations/states, qinit ∈ Q is the initial location, and qhalt ∈ Q is the halting location,
• n ∈N \ {0} is the number of counters of M , and
• � ⊆ Q × L × Q is a transition relation over the instruction set L = {inc, dec, zero} × {1, . . . , n}.

We adopt the following notational conventions. For an instruction op ∈ L, let c(op) ∈ {1, . . . , n} be the counter associated 
with op. For a transition δ ∈ � of the form δ = (q, op, q′), we define from(δ) = q, op(δ) = op, c(δ) = c(op), and to(δ) = q′ . 
We denote by opinit the instruction (zero, 1). W.l.o.g., we make these assumptions: (i) for each transition δ ∈ �, from(δ) �=
qhalt and to(δ) �= qinit; (ii) there is exactly one transition in �, denoted δinit , having as source the initial location qinit . 
An M-configuration is a pair (q, ν) consisting of a location q ∈ Q and a counter valuation ν : {1, . . . , n} → N . Given two 
valuations ν and ν ′ , we write ν ≥ ν ′ if and only if ν(c) ≥ ν ′(c) for all c ∈ {1, . . . , n}.

Under the exact semantics (with no errors), M induces a transition relation, denoted by −→, over pairs of M-configura-
tions and instructions, defined as follows: for configurations (q, ν) and (q′, ν ′), and instructions op ∈ L, we have 
(q, ν) 

op−→ (q′, ν ′) if the following holds, where c ∈ {1, . . . , n} is the counter associated with the instruction op:

• (q, op, q′) ∈ � and ν ′(c′) = ν(c′) for all c′ ∈ {1, . . . , n} \ {c};
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• ν ′(c) = ν(c) + 1 if op = (inc, c);
• ν ′(c) = ν(c) − 1 if op = (dec, c) (in particular, it has to be v(c) > 0);
• ν ′(c) = ν(c) = 0 if op = (zero, c).

The gainy semantics is obtained from the exact one by allowing increment errors. Formally, M induces a transi-
tion relation, denoted by −→gainy , defined as follows: for configurations (q, ν) and (q′, ν ′), and instructions op ∈ L, we 
have (q, ν) 

op−→gainy (q′, ν ′) if the following holds, where c = c(op) is the counter associated with the instruction op: 
(q, ν) 

op−→gainy (q′, ν ′) iff there are valuations ν+ and ν ′+ such that ν+ ≥ ν , (q, ν+) 
op−→ (q′, ν ′+), and ν ′ ≥ ν ′+ . Equivalently, 

(q, ν) 
op−→gainy (q′, ν ′) iff the following conditions hold:

• (q, op, q′) ∈ � and ν ′(c′) ≥ ν(c′) for all c′ ∈ {1, . . . , n} \ {c};
• ν ′(c) ≥ ν(c) + 1 if op = (inc, c);
• ν ′(c) ≥ ν(c) − 1 if op = (dec, c);
• ν(c) = 0 if op = (zero, c).

A (gainy) M-computation is a finite sequence of the form:

(q0, ν0)
op0−→gainy (q1, ν1)

op1−→gainy · · · opk−1−→gainy (qk, νk).

M halts if there exists an M-computation starting at the initial configuration (qinit, νinit), where νinit(c) = 0 for all c ∈
{1, . . . , n}, and leading to some halting configuration (qhalt, ν). Given a gainy counter machine M , the halting problem for M
is to decide whether M halts, and it was shown to be decidable and non-primitive recursive [11].

We now prove the following result, from which Theorem 9 directly follows.

Proposition 18. One can construct in polynomial time a TP domain P = ({xM}, R M) where the trigger rules in R M are simple (resp., 
the intervals in P are in Intv(0,∞)) such that M halts iff there is a future plan for P .

Proof. We focus on the reduction where the intervals in P are in Intv(0,∞) . At the end of the proof, we show how to adapt 
the construction for the case of simple trigger rules with arbitrary intervals.
Encoding of M-computations. First, we define a suitable encoding of a computation of M as a timeline for xM . For this, we 
exploit the finite set of symbols V = V main ∪ V sec ∪ V dummy corresponding to the finite domain of the state variable xM . The 
set of main values V main is given by

V main = {(δ,op) ∈ � × L | op �= (inc, c) if op(δ) = (zero, c)}.
Intuitively, in the encoding, a main value (δ, op) keeps track of the transition δ used in the current step of the computation, 
while op represents the instruction exploited in the previous computation step (if any). The set of secondary values V sec is 
defined as V sec = V main × {1, . . . , n} × 2{#inc,#dec} , where #inc and #dec are two special symbols used as markers. V sec is used 
for encoding counter values, as shown later. Finally, the set of dummy values is V dummy = (V main ∪ V sec) × {dummy}; their 
use will be clear when we introduce synchronization rules: they are used to specify punctual time constraints by means of 
non-simple trigger rules over intervals in Intv(0,∞) .

Given a word w ∈ V ∗ , we denote by ||w|| the length of the word obtained from w by removing dummy symbols. For 
c ∈ {1, . . . , n} and vmain = (δ, op) ∈ V main , the set Tag(c, vmain) of markers of counter c for the main value vmain is the subset of 
{#inc, #dec} defined as follows: (i) #inc ∈ Tag(c, vmain) iff op = (inc, c); (ii) #dec ∈ Tag(c, vmain) iff op(δ) = (dec, c);

A c-code for the main value vmain = (δ, op) is a finite word wc over V such that either (i) wc is empty and 
#inc /∈ Tag(c, vmain), or (ii) op(δ) �= (zero, c) and wc = (vmain, c, Tag(c, vmain))(vmain, c, ∅, dummy)h0 · (vmain, c, ∅) · (vmain, c, ∅,

dummy)h1 · · · (vmain, c, ∅) · (vmain, c, ∅, dummy)hn for some n ≥ 0 and h0, h1, . . . ,hn ≥ 0. The c-code wc encodes the value for 
the counter c given by ||wc||. Intuitively, wc can be seen as an interleaving of secondary values with dummy ones (they 
have technical use without encoding any counter value).

A configuration-code w for a main value vmain = (δ, op) ∈ V main is a finite word over V of the form w = vmain ·
(vmain, dummy)h · w1 · · · wn , where h ≥ 0 and for each counter c ∈ {1, . . . , n}, wc is a c-code for the main value vmain . 
The configuration-code w encodes the M-configuration (from(δ), ν), where ν(c) = ||wc|| for all c ∈ {1, . . . , n}. Note that if 
op(δ) = (zero, c), then ν(c) = 0 and op �= (inc, c). The marker #inc occurs in w iff op is an increment instruction, and in such 
a case #inc marks the first symbol of the encoding wc(op) of counter c(op). Intuitively, if the operation performed in the 
previous step increments counter c, then the tag #inc “marks” the unit of the counter c in the current configuration which 
has been added by the increment.

The marker #dec occurs in w iff δ is a decrement instruction and the value of counter c(δ) in w is non-zero; in such a 
case, #dec marks the first symbol of the encoding wc(δ) of counter c(δ). Intuitively, if the operation to be performed in the 
current step decrements counter c and the current value of c is non-zero, then the tag #dec marks the unit of the counter 
c in the current configuration which has to be removed by the decrement.
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A computation-code is a sequence of configuration-codes π = w(δ0,op0) · · · w(δk,opk) , where, for all 0 ≤ i ≤ k, w(δi ,opi) is a 
configuration-code with main value (δi, opi), and whenever i < k, it holds that to(δi) = from(δi+1) and op(δi) = opi+1. Note 
that by our assumptions to(δi) �= qhalt for all 0 ≤ i < k, and δ j �= δinit for all 0 < j ≤ k. The computation-code π is initial if 
the first configuration-code w(δ0,op0) is (δinit, opinit) (which encodes the initial configuration), and it is halting if for the last 
configuration-code w(δk,opk) in π , it holds that to(δk) = qhalt . For all 0 ≤ i ≤ k, let (qi, νi) be the M-configuration encoded by 
the configuration-code w(δi ,opi) and ci = c(δi). The computation-code π is well-formed if, additionally, for all 0 ≤ j ≤ k − 1, 
the following conditions hold:

• ν j+1(c) ≥ ν j(c) for all c ∈ {1, . . . , n} \ {c j} (gainy monotonicity);
• ν j+1(c j) ≥ ν j(c j) + 1 if op(δ j) = (inc, c j) (increment requirement);
• ν j+1(c j) ≥ ν j(c j) − 1 if op(δ j) = (dec, c j) (decrement requirement).

Clearly, M halts iff there is an initial and halting well-formed computation-code.
Definition of xM and R M . We now define a state variable xM and a set R M of synchronization rules for xM with intervals in 
Intv(0,∞) such that the untimed part of any future plan for P = ({xM}, R M) is an initial and halting well-formed computation-
code. Thus, M halts if and only if there is a future plan of P .

Formally, the state variable xM is given by xM = (V , T , D) where, for each v ∈ V , D(v) = ]0, ∞[ if v /∈ V dummy , and 
D(v) = [0, ∞[ otherwise: we require that the duration of a non-dummy token is always greater than zero (strict time 
monotonicity). The value transition function T of xM ensures the following.

Claim 19. The untimed part of any timeline for xM whose first token has value (δinit, opinit) corresponds to a prefix of some 
initial computation-code. Moreover, (δinit, opinit) /∈ T (v) for all v ∈ V .

The definition of T is easy and omitted. Let V halt = {(δ, op) ∈ V main | to(δ) = qhalt}. By Claim 19 and the assumption that 
from(δ) �= qhalt for each transition δ ∈ �, to ensure the initialization and halting requirements, it suffices to enforce the 
timeline to feature a token with value (δinit, opinit) and a token with value in V halt . This is captured by the trigger-less rules 
� → ∃o[xM = (δinit, opinit)]. � and � → ∨

v∈V halt
∃o[xM = v]. �.

The well-formedness requirement is captured by the trigger rules in R M which express the following punctual time 
constraints.

• 2-Time distance between consecutive main values: the overall duration of the sequence of tokens corresponding to a
configuration-code amounts exactly to 2 time units. By Claim 19, strict time monotonicity, and the halting requirement,
it suffices to ensure that each token tk having a main value in V main \ V halt is eventually followed by a token tk′ such
that tk′ has a main value and s(tk′) − s(tk) = 2. To this aim, for each v ∈ V main \ V halt , we have the following non-simple
trigger rule with intervals in Intv(0,∞) which uses a dummy token for capturing the punctual time constraint:

o[xM = v] →
∨

u∈V main

∨
ud∈V dummy

∃o′[xM = u]∃od[xM = ud].o ≤s,s
[1,+∞[ od ∧ od ≤s,s

[1,+∞[ o′ ∧ o ≤s,s
[0,2] o′.

• For a counter c ∈ {1, . . . , n}, let us denote as V c ⊆ V sec the set of secondary values given by V main × {c} × 2{#inc,#dec} . We
require that each token tk with a V c-value of the form ((δ, op), c, Tag) such that c �= c(δ) and to(δ) �= qhalt is eventually
followed by a token tk′ with a V c-value such that s(tk′) − s(tk) = 2. Note that our encoding, Claim 19, strict time
monotonicity, and 2-Time distance between consecutive main values guarantee that the previous requirement captures
gainy monotonicity. Thus, for each counter c and v ∈ V c such that v is of the form ((δ, op), c, Tag), where c �= c(δ) and
to(δ) �= qhalt , we have the following non-simple trigger rule over Intv(0,∞):

o[xM = v] →
∨

u∈Vc

∨
ud∈V dummy

∃o′[xM = u]∃od[xM = ud].o ≤s,s
[1,+∞[ od ∧ od ≤s,s

[1,+∞[ o′ ∧ o ≤s,s
[0,2] o′.

• For capturing the increment and decrement requirements, by construction, we enforce that: (i) each token tk with a
V c-value of the form ((δ, op), c, Tag) such that to(δ) �= qhalt and δ = (inc, c) is eventually followed by a token tk′ with
a V c-value which is not marked by #inc such that s(tk′) − s(tk) = 2; (ii) each token tk with a V c-value of the form
((δ, op), c, Tag) such that to(δ) �= qhalt , δ = (dec, c), and #dec /∈ Tag is eventually followed by a token tk′ with a V c -value
such that s(tk′) − s(tk) = 2. These requirements can be expressed by non-simple trigger rules with intervals in Intv(0,∞)

similar to the previous ones.

Finally, to prove Proposition 18 for the case of simple trigger rules with arbitrary intervals, it suffices to remove the dummy 
values and replace the conjunction o ≤s,s

[1,+∞[ od ∧ od ≤s,s
[1,+∞[ o′ ∧ o ≤s,s

[0,2] o′ in the previous trigger rules with the “punctual” 
atom o ≤s,s

[2,2] o′ , whose interval at the subscript is singular.
This concludes the proof of Proposition 18. �
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Appendix B. Proof of Proposition 13

Proposition 13. A TA A∃ over 2AP such that, for each multi-timeline � of S V and encoding w� of �, w� is accepted by A∃ if and 
only if � satisfies all the trigger-less rules in R can be built in exponential time. A∃ has 2O (Nq) states, O (Nq) clocks, and maximal 
constant O (K P ), where Nq is the overall number of quantifiers in the trigger-less rules of R .

Proof. Let E be an existential statement for S V such that no token name appears free in E . We first show how to construct 
a TA AE over 2AP such that for each multi-timeline � of S V and encoding w� of �, w� is accepted by AE iff � satisfies 
E . Then, we exploit the well-known closure of TA under language union and language intersection to prove the proposition.

Let O be the set of token names existentially quantified in the existential statement E and, for each o ∈ O , let val(o) be 
the value of the token referenced by o in the associated quantifier. For each token name o ∈ O , we denote by Intvs

o (resp., 
Intve

o) the set of intervals J ∈ Intv such that J = I(ρ) for some time-point atom ρ occurring in E which imposes a time 
constraint on the start time (resp., end time) of the token referenced by o.

We first outline the construction of AE . We associate two clocks with each token name o ∈ O , namely cs
o and ce

o which, 
intuitively, are reset when the token chosen for o starts and ends, respectively. The clocks cs

o and ce
o are non-deterministically 

reset when a start-event for val(o) and the related end-event occur along an encoding of a multi-timeline. The automaton 
AE ensures that the clocks cs

o and ce
o are reset exactly once. AE moves to an accepting state only if all the clocks cs

o
and ce

o for each o ∈ O have been reset and the time constraints that encode the interval atoms in E are fulfilled. To deal 
with time-point atoms, we also exploit, like in the previous proofs, a global clock cglob which measures the current time 
and is never reset: whenever the clock cs

o (resp., ce
o) is reset, we require that the clock constraint 

∧
I∈Intvs

o
cglob ∈ I (resp., ∧

I∈Intve
o

cglob ∈ I) is fulfilled. The TA AE = (2AP , Q , q0, C, �, F ) is formally defined as follows.

• The set C of clocks is {cglob} ∪ ⋃
o∈O {cs

o, ce
o}.

• The set of states is 2C\{cglob} and q0 is ∅. Intuitively, a state keeps track of the clocks in C \ {cglob} which have been reset
so far.

• The set of final states F is given by the singleton {C \ {cglob}}. In such a state all clocks different from cglob have been
reset.

• The transition relation � consists of the transitions (C1, P, θ ∧ θglob, Res, C2) such that either (i) C1 = C \ {cglob}, C2 = C1,
Res = ∅, θ = �, and θglob = � (intuitively AE loops unconditionally in its final state), or (ii) C1 ⊂ C \ {cglob}, C2 ⊇ C1 (AE
has not reached its final state yet), and the following conditions hold:

– for each cs
o ∈ C2 \ C1, there is a main proposition in P of the form (v ′, val(o)) for some v ′ .

– for each o ∈ O , ce
o ∈ C2 \ C1 if and only if cs

o ∈ C1 and (val(o), v ′) ∈ P for some v ′ .
– if C2 ⊂ C \ {cglob} (in this case AE is not transitioning to its final state), then θ = �.

Conversely, if C2 = C \ {cglob} (here AE moves to the final state), then θ = ∧
ρ∈A code(ρ), where A is the set of 

interval atoms of E and for each interval atom ρ ∈ A of the form o1 ≤e1,e2
I o2, the clock constraint code(ρ) is defined 

as follows:

∗ if ce2
o2 /∈ C1 and ce1

o1 /∈ C1, then code(ρ) = ce2
o2 − ce1

o1 ∈ I (in this case, both ce2
o2 and ce1

o1 are reset simultaneously 
by the transition to the final state C2, meaning that o2’s e2-event and o1’s e1-event have the same timestamp; 
hence it must be that ce2

o2 − ce1
o1 = 0 ∈ I for the atom to be satisfied);

∗ if ce2
o2 ∈ C1 and ce1

o1 ∈ C1, then code(ρ) = ce1
o1 − ce2

o2 ∈ I;
∗ if ce2

o2 ∈ C1 and ce1
o1 /∈ C1, then code(ρ) = ce2

o2 ∈ [0, 0] ∧ ce2
o2 ∈ I (o2’s e2-event and o1’s e1-event must have the 

same timestamp; as before, it must be that 0 ∈ I);
∗ if ce2

o2 /∈ C1 and ce1
o1 ∈ C1, then code(ρ) = ce1

o1 ∈ I .

– θglob =
∧

ce
o∈C2\C1

∧
I∈Intve

o

cglob ∈ I and Res = C2 \ C1.

Note that AE has 2O (m) states, O (m) clocks and maximal constant O (K ), with m the number of quantifiers in E and K the 
maximal constant in E .

Given a trigger-less rule R = � → E1 ∨ E2 ∨ . . . ∨ Ek , we construct the TA AR resulting from the union of the automata 
AE1 , . . . , AEk . Then the TA A∃ is obtained as intersection of the automata AR , for all R ∈ R being trigger-less rules. By [1], 
A∃ has 2O (Nq) states, O (Nq) clocks, and maximal constant O (K P ), where Nq is the overall number of quantifiers in the 
trigger-less rules of R . �
Appendix C. Future TP with simple trigger rules and non-singular intervals: hardness

In this section, we first consider the future TP problem with simple trigger rules and non-singular intervals, and prove 
that it is EXPSPACE-hard by a polynomial-time reduction from the domino-tiling problem for grids with rows of single exponen-
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Fig. C.6. A (generic) instance of the domino-tiling problem, where di
j denotes f (i, j).

Fig. C.7. A timeline encoding the ordered concatenation of the rows of a tiling. Red lines represent the horizontal and vertical constraints among domino-
types.

tial length, which is known to be EXPSPACE-complete [15]. Hardness holds also when only a single state variable is involved. 
By putting together Theorem 14, EXPSPACE-completeness of the problem follows.

We start by introducing the domino-tiling problem for grids with rows of single exponential length. An instance I of such 
a problem is a tuple I = (C, �, n, dinit, dfinal), where C is a finite set of colors, � ⊆ C4 is a set of tuples (cdown, cleft, cup, cright)

of four colors, called domino-types, n > 0 is a natural number encoded in unary, and dinit, dfinal ∈ � are two distinguished 
domino-types (respectively, the initial and final domino-types). The size of I is defined as |C | +|�| +n. Intuitively, a tiling of 
a grid is a color labeling of the edges of each cell (see Fig. C.6). Formally, a tiling of I is a mapping f : [0, k] ×[0, 2n −1] → �, 
for some k ≥ 0, that satisfies the following constraints:

• two adjacent cells in a row have the same color on the shared edge, namely, for all (i, j) ∈ [0, k] × [0, 2n − 2],
[ f (i, j)]right = [ f (i, j + 1)]left (horizontal requirement);

• two adjacent cells in a column have the same color on the shared edge, namely, for all (i, j) ∈ [0, k − 1] × [0, 2n − 1],
[ f (i, j)]up = [ f (i + 1, j)]down (vertical requirement);

• f (0, 0) = dinit (initialization requirement) and f (k, 2n − 1) = dfinal (acceptance requirement).

Checking the existence (respectively, non-existence) of a tiling of I is an EXPSPACE-complete problem [15]. We can now
prove the following.

Theorem 20. The future TP problem, even with one state variable, with simple trigger rules and non-singular intervals is 
EXPSPACE-hard (under polynomial-time reductions).

Proof. For the reduction, we define the state variable y = (V , T , D) where:

• V = {$, $′} ∪ � (with $, $′ /∈ �),
• T ($) = � and T ($′) = {$′},
• for d ∈ � \ {dfinal}, T (d) = {$} ∪ {d′ ∈ � | [d]right = [d′]left},
• T (dfinal) = {$, $′} ∪ {d′ ∈ � | [dfinal]right = [d′]left},
• for all v ∈ V , D(v) = [2, +∞[.

Basically, the domain of the state variable y contains all domino-types, as well as two auxiliary symbols $ and $′ . The idea 
is encoding a tiling by the concatenation of its rows, separated by an occurrence of $. The last row is terminated by $′ .

More precisely, each cell of the grid is encoded by (the value of) a token having duration 2. A row of the grid is then 
represented by the sequence of tokens of its cells, ordered by increasing column index. Finally, a full tiling is just given 
by the timeline for y obtained by concatenating the sequences of tokens of all rows, ordered by increasing row index. See 
Fig. C.7 for an example.

We observe that T guarantees the horizontal constraint among domino-types, and that it allows only occurrences of $′
after the first $′ .
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We start with the following simple trigger rules, one for each v ∈ V : o[y = v] → o ≤s,e
[0,2] o. These, paired with the 

constraint function D , enforce the duration of all tokens to be exactly 2. This is done for technical convenience: intuitively, 
since we exclude singular intervals, requiring, for instance, that a token o′ starts t instants of time after the end of o, with 
t ∈ [�, � + 1] and even � ∈N , boils down to o′ starting exactly � instants after the end of o. We also observe that, given the 
constant token duration, in this proof the density of the time domain does not play any role.

We now define the following synchronization rules (of which all trigger ones are simple and future). The next ones 
state (together) that the first occurrence of (a token having value) $ starts exactly at 2 · 2n: � → ∃o[y = $].o ≥s

[0,1] 2 · 2n , 
and o[y = $] → o ≥s

[0,+∞[ 2 · 2n . Thus, all tokens before such a first occurrence of $ have a value in �. Every occurrence 
of $ must be followed, after exactly 2 · 2n instants of time (namely, after 2n tokens), by another occurrence of $ or of $′: 
o[y = $] → (∃o′[y = $].o ≤e,s

[2·2n,2·2n+1] o′) ∨ (∃o′′[y = $′].o ≤e,s
[2·2n,2·2n+1] o′′).

Now we force every token with value d ∈ � either (i) to be followed, after 2 · 2n instants, by another token with value 
d′ ∈ �, in particular, satisfying the vertical requirement, i.e., [d]up = [d′]down , or (ii) to be in the last row (which is terminated 
by $′). For each d ∈ �,

o[y = d] →
(∨

d′∈�, [d]up=[d′]down

∃o′[y = d′].o ≤e,s
[2·2n,2·2n+1] o′) ∨ (∃o′′[y = $′].o ≤e,s

[0,2·2n−2] o′′).

It is straightforward to check that the above defined rules along with the horizontal constraint guaranteed by the function 
T , enforce the following property.

Proposition 21. There exists k′ ∈N+ such that all tokens with value $ end at all and only times k · 2(2n + 1), for 1 ≤ k < k′ . Moreover 
the first token with value $′ ends at time k′ · 2(2n + 1). All other tokens having end time less than k′ · 2(2n + 1) have value in � and 
satisfy the horizontal and vertical constraints.

The initialization and acceptance requirements are set by means of the following pair of trigger-less rules: � → ∃o[y =
dinit].o ≥s

[0,1] 0 and � → ∃o[y = dfinal]∃o′[y = $′].o ≤e,s
[0,1] o′ . The former rule states that a token with value dinit must start 

at t = 0, the latter that a token with value dfinal must occur just before the terminator of the last row $′ . To conclude the 
proof, we observe that the state variable y = (V , T , D) and all synchronization rules can be generated in polynomial time in 
the size of the instance I of the domino-tiling problem (in particular, all interval bounds and time constants of time-point 
atoms have a value, encoded in binary, which is in O (2n)). �

We now focus on the case with intervals in Intv(0,∞) , proving that the problem is PSPACE-hard (and thus PSPACE-comp-
lete by Theorem 14) by reducing periodic SAT [Papadimitriou, 1994] to it in polynomial time.

We recall the periodic SAT problem. We are given a Boolean formula ϕ in conjunctive normal form, defined over two sets of 
variables, � = {x1, . . . , xn} and �+1 = {x+1

1 , . . . , x+1
n }, namely, ϕ = ∧m

t=1

( ∨
x∈(�∪�+1)∩L+

t

x ∨
∨

x∈(�∪�+1)∩L−
t

¬x 
)

, where m is the number 

of conjuncts of ϕ and, for 1 ≤ t ≤ m, L+
t (resp., L−

t ) is the set of variables occurring non-negated (resp., negated) in the t-th 
conjunct of ϕ . Moreover, the formula ϕ j , for j ∈N \ {0}, is defined as ϕ in which we replace each variable xi ∈ � by a fresh 
one x j

i , and x+1
i ∈ �+1 by x j+1

i .
Periodic SAT is then the problem of deciding the satisfiability of the (infinite-length) formula � = ∧

j∈N\{0} ϕ j , that is, de-

ciding the existence of a truth assignment of (infinitely many) variables x j
i , for i = 1, . . . , n, j ∈N \{0}, satisfying �. Periodic 

SAT is PSPACE-complete; in particular membership to such a class is proved by showing that one can equivalently check 
the satisfiability of the (finite-length) formula � f = ∧22n+1

j=1 ϕ j . Intuitively, 22n is the number of possible truth assignments 
to variables of � ∪�+1, thus, after 22n + 1 copies of ϕ , we can find a repeated assignment: from that point, we can just loop 
through the previous assignments. We now reduce periodic SAT to our problem. Hardness also holds when only a single 
state variable is involved, and also restricting to intervals of the form [0, a].

Theorem 22. The future TP problem, even with one state variable, with simple trigger rules and intervals [0, a], a ∈ N \ {0}, is 
PSPACE-hard (under polynomial-time reductions).

Proof. Let us define the state variable y = (V , T , D), where

• V = {$, ̃$, stop} ∪ {x�
i , x⊥

i , x̃i
�
, x̃i

⊥ | i = 1, . . . , n},

• T ($) = {x�
1 , x⊥

1 }, T ($̃) = {x̃1
�
, x̃1

⊥} and T (stop) = {stop},
• for i = 1, . . . , n − 1, T (x�

i ) = T (x⊥
i ) = {x�

i+1, x
⊥
i+1},

• for i = 1, . . . , n − 1, T (x̃i
�
) = T (x̃i

⊥
) = { ˜xi+1

�
, ˜xi+1

⊥},
• T (x�

n ) = T (x⊥
n ) = {$̃, stop},

• T (x̃n
�
) = T (x̃n

⊥
) = {$, stop}, and

• for all v ∈ V , D(v) = [2, +∞[.
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Fig. C.8. Let the formula ϕ be defined over two sets of variables, � = {x1, x2, x3, x4} and �+1 = {x+1
1 , x+1

2 , x+1
3 , x+1

4 }. The j-th copy (we assume j is odd) of

ϕ , i.e., ϕ j , is satisfied by the assignment x j
1 �→ �, x j

2 �→ �, x j
3 �→ ⊥, x j

4 �→ �, x j+1
1 �→ �, x j+1

2 �→ ⊥, x j+1
3 �→ �, x j+1

4 �→ ⊥. The analogous for ϕ j+1.

Intuitively, we represent an assignment of variables x j
i by means of a timeline for y: after every occurrence of the symbol 

$, n tokens are present, one for each xi , and the value x�
i (resp., x⊥

i ) represents a positive (resp., negative) assignment of x j
i , 

for some odd j ≥ 1. Then, there is an occurrence of $̃, after which n more tokens occur, again one for each xi , and the value 
x̃i

� (resp., x̃i
⊥) represents a positive (resp., negative) assignment of x j

i , for some even j ≥ 2. See Fig. C.8 for an example. We 
start with the next simple trigger rules, one for each v ∈ V : o[y = v] → o ≤s,e

[0,2] o. Paired with the constraint function D , 
they enforce all tokens’ durations to be exactly 2 (as in the previous proof). Then We add the following rules:

• � → ∃o[y = $].o ≥s
[0,1] 0;

• � → ∃o[y = $̃].o ≥s
[0,1] (22n + 1) · 2(n + 1);

• � → ∃o[y = stop].o ≥s
[0,1] (22n + 2) · 2(n + 1).

They respectively impose that (i) a token with value $ starts exactly at t = 0 (recall that the duration of every token 
is 2); (ii) there exists a token with value $̃ starting at t = (22n + 1) · 2(n + 1); (iii) a token with value stop starts at 
t = (22n +2) ·2(n +1). We are forcing the timeline to encode truth assignments for variables x1

1, . . . , x1
n, . . . , x22n+2

1 , . . . , x22n+2
n : 

as a matter of fact, we will decide satisfiability of the finite formula � f = ∧22n+1
j=1 ϕ j , which is equivalent to �.

We now consider the following rules, which enforce the satisfaction of each ϕ j or, equivalently, of ϕ over the assignments 
of (x j

1, . . . , x
j
n, x j+1

1 , . . . , x j+1
n ).

For the t-th conjunct of ϕ , we define the future simple rule:

o[y = $̃] → (∨
xi∈�∩L+

t

∃o′[y = x̃i
�].o ≤e,s

[0,4n] o′) ∨
(∨

x+1
i ∈�+1∩L+

t

∃o′[y = x�
i ].o ≤e,s

[0,4n] o′) ∨

(∨
xi∈�∩L−

t

∃o′[y = x̃i
⊥].o ≤e,s

[0,4n] o′) ∨
(∨

x+1
i ∈�+1∩L−

t

∃o′[y = x⊥
i ].o ≤e,s

[0,4n] o′) ∨

∃o′′[y = stop].o ≤e,s
[0,2n] o′′.

Basically, this rule (the rule where the trigger has value $ being analogous) states that, after every occurrence of $̃, a token 
o′ , making true at least a (positive or negative) literal in the conjunct, must occur by 4n time instants (i.e., before the 
following occurrence of $̃). The disjunct ∃o′′[y = stop].o ≤e,s

[0,2n] o′′ is present just to avoid evaluating ϕ on the n tokens
before (the first occurrence of) stop.

The variable y and all synchronization rules can be generated in time polynomial in |ϕ| (in particular, all interval bounds 
and time constants of time-point atoms have a value, encoded in binary, in O (22n)). �

By Theorem 14 and Theorem 22, PSPACE-completeness of future TP with simple trigger rules and intervals in Intv(0,∞)

follows.
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