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ABSTRACT
Realistic stochastic modeling is increasingly requiring the use of
bounded noises. In this work, properties and relationships of com-
monly employed bounded stochastic processes are investigated
within a solid mathematical ground. Four families are object of
investigation: the Sine-Wiener (SW), the Doering–Cai–Lin (DCL), the
Tsallis–Stariolo–Borland (TSB), and the Kessler–Sørensen (KS) families.
We address mathematical questions on existence and uniqueness of
the processes defined through Stochastic Differential Equations,
which often conceal non-obvious behavior, and we explore the
behavior of the solutions near the boundaries of the state space.
The expression of the time-dependent probability density of the
Sine-Wiener noise is provided in closed form, and a close connection
with the Doering–Cai–Lin noise is shown. Further relationships
among the different families are explored, pathwise and in distribu-
tion. Finally, we illustrate an analogy between the Kessler–Sørensen
family and Bessel processes, which allows to relate the respective
local times at the boundaries.
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1. Introduction

The dynamics of a number of phenomena of the physical world, especially in biology,
are affected by intrinsic or extrinsic randomness, and in some cases by both. In bio-
physics and mathematical biology, the influence of extrinsic sources of stochasticity in
otherwise deterministic biological systems is frequently taken into account by elementar-
ily perturbing a deterministic system. Namely, the deterministic dynamical system that
is adopted in the absence of the above-mentioned sources is often perturbed by adding
stochastic fluctuations modeled with a Gaussian white noise or a colored Gaussian
perturbation.
This approach frequently allows to make analytical or semi-analytical inferences.

However, it can lead to artifacts, sometimes hidden. To give an example, as stressed in
[1–3], modeling the extrinsic perturbations affecting an antitumor cytotoxic therapy by
means of a white noise can allow the possibility that the therapy adds tumor cells
instead of killing them, as a consequence of the unbounded stochastic fluctuations. The
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unboundedness of the perturbation implies a second more subtle but equally relevant
artifact in the above model: the possibility of an excessive instantaneous killing of tumor
cells.
Another important limitation is the fact that white noise perturbations only apply to

parameters on which a system depends linearly, which severely limits their applicability.
The Ornstein–Uhlenbeck noise is an alternative to white noise which does not require
linear dependence; however, in many cases it is not a correct choice, e.g., see the models
described in [2]. Such examples suggest that, in many applications, Gaussian noises
should not be employed to model the real world randomness, due to their unbounded-
ness. An alternative strategy which is becoming increasingly important [3] consists in
modeling parametric perturbations by bounded noises: these allow to preserve the posi-
tiveness and boundedness of the perturbed parameters and can also be employed to
model the fluctuations on which a system depends nonlinearly.
In the last two decades, a large literature has been devoted to the application of

bounded stochastic processes to many scientific areas. For example: noise-induced tran-
sitions [4], stochastic resonance [5], Kramers problem [6], bifurcation theory [7], para-
metric resonance [8], fractional mechanics [9], nonlinear mechanics [10], chaotic
systems [11], tumor biophysics [2, 12], cell biology [13], ecology [14], environmental
sciences [15], interacting cellular populations [16], delayed systems [17], neurosciences
[18], chemistry [19], and population genetics [20]. However, the best known and oldest
example of bounded stochastic process is probably the dichotomous Markov noise, also
known as telegraph noise [15]. This process is not continuous, thus it is optimally
suited to model stochastic transitions of a system between two or more discrete states,
as in the important case of gene activation/deactivation [21].
In order to realistically model continuous stochastic fluctuations of a parameter, con-

tinuous stochastic processes are needed. The simplest recipe to get a continuous
bounded noise is to apply a continuous bounded function to any continuous stochastic
process. This is the approach used to generate one of most widely employed bounded
noises, the so called Sine-Wiener (SW) noise [22, 23]. Other popular families of
bounded stochastic processes are the Doering–Cai–Lin (DCL) [24, 25], the
Tsallis–Stariolo–Borland (TSB) [4] and the Kessler–Sørensen (KS) [26] families, which
are generated by means of appropriate stochastic differential equations. Given the
above-summarized increasing relevance of bounded stochastic processes, and since the
vast majority of works on these classes of models are of heuristic nature, in the follow-
ing we apply rigorous methods of stochastic analysis to investigate their properties and
to make new analytical inferences of practical interest.
After introducing the above-mentioned families and their main properties (Section

2), in Sections 3 and 4 we investigate the well-posedness of the SDEs defining the TSB
and DCL noises and the boundedness of their solutions, for different values of the rele-
vant parameters. In Section 5, we obtain the analytical expression of the time-dependent
density of the SW noise and hence assess the characteristic autocorrelation time, needed
for the process to be considered stationary in practical applications. Sections 6 and 7
explore similarities and differences among the first three families, both in the strong
(pathwise) and in the weak (in distribution) sense. In the last section, we show that the
KS family can be obtained as a transformation of the DCL family, but that the
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relationship is not one-to-one. Uniqueness and boundedness of the SDE can be lost
after the transformation, a fact that shares similarities with the theory of Bessel proc-
esses, as we shall show.

2. Different families of bounded noises

Let us first set the basic notation used throughout. Given a filtered probability space
ðX,F ,P, ðF tÞt�0Þ, in this article with the term Bounded Noise we denote a real stochas-
tic process X : X� ½0,1Þ ! R of nonzero finite quadratic variation which takes values
on a bounded interval I � R with probability one:

9 B > 0 : P jXtj < B 8 t � 0½ � ¼ 1: (1)

For the sake of simplicity, we shall always rescale X so that B¼ 1. Throughout this

work, we will denote by I the closed interval ½�1, 1� and by I8 its interior, I8 ¼ ð�1, 1Þ:
Remark. We have included the condition on the quadratic variation to identify stochas-
tic processes with a certain, quite canonical, level of roughness, so that it is reasonable
to call them “noise”. However, this definition does not aim to be comprehensive. It is
equally meaningful to call noise other irregular processes with different levels of rough-
ness, for instance bounded processes based on fractional Brownian motion in place of
Brownian motion; in such a case the quadratic variation may be zero or infinite or
could not exist, so the definition requires to be enlarged.
We now introduce different families of bounded noises generated via different meth-

ods, and concisely list their key properties. Proofs are provided in later sections.

2.1. The Sine-Wiener noise

A first simple method to generate a bounded noise X is to apply a bounded deterministic
function f to a stochastic process Y. In the recent literature of bounded noises [3, 23], the
case where f ðyÞ ¼ sin ðyÞ and the process Y is a rescaled Wiener process has mainly been
considered:

Xt ¼ sin

ffiffiffiffiffi
2
s

r
Wt

 !
, s > 0: (2)

This bounded stochastic process has first been introduced by Dimentberg [22] and will
be hereafter referred to as Sine-Wiener (SW) noise. The autocovariance function of the
process (also termed un-normalized autocorrelation function—see Appendix A, also for
the definition of characteristic autocorrelation time) can be computed from first princi-
ples. Its expression is as follows [23]:

RXXðs, tÞ ¼ E XsXt½ � ¼ 1
2

1� exp � 4s
s

� �� �
� exp � t � s

s

� �
, s < t: (3)

Hence, the parameter s is the characteristic autocorrelation time of the process. The sta-
tionary density of the Sine-Wiener noise is instead the following, shown in Figure 1:
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pstSWðxÞ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p : (4)

2.2. The Doering–Cai–Lin family

Another way of generating bounded noises is by means of Stochastic Differential
Equations (SDEs):

dXt ¼ lðXtÞdt þ rðXtÞdWt: (5)

A summary on existence and uniqueness of the solutions of SDEs is provided in
Appendix B. In this section, we concentrate on the case where the drift is linear and
decreasing: lðxÞ ¼ �ax, a > 0 [25]. In order to get a solution bounded in I ¼ ½�1, 1�,
the diffusion r must vanish at the boundaries. The most popular choice—introduced in
[24, 27] and adopted in [25]—is the following:

rðxÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
: (6)

Together with the introduction of appropriate parameters h and d, this yields the fol-
lowing family of SDEs which will be hereafter referred to as the Doering–Cai–Lin
(DCL) family:

dXt ¼ � 1
h
Xtdt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xt

2

hðdþ 1Þ

s
dWt , h > 0, d > �1: (7)

For any value of d and h as above, and any initial condition X0 2 I ¼ ½�1, 1�, this equa-
tion admits a unique strong solution bounded in I. The stationary probability density of
the DCL family depends on the parameter d only and reads as follows [24, 25]:

pstDCLðxÞ ¼ Z�1ð1� x2Þd, Z ¼
ffiffiffi
p

p
Cð1þ dÞ

Cð1:5þ dÞ : (8)

Notice the transition from unimodality to bimodality when going from positive to nega-
tive values of d (Figure 2). A closed analytical form of the autocovariance function of

Figure 1. Stationary probability density (4) of the Sine-Wiener noise.
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the DCL family is probably not available. However, as we shall prove in Section 4, the
characteristic autocorrelation time is equal to the positive parameter h.

2.3. The Tsallis–Stariolo–Borland family

A different family of bounded noises, the Tsallis–Stariolo–Borland (TSB) family, can
again be obtained as solution to a parametric SDE. In the case considered here, the dif-
fusion of the process is constant, while the drift tends to infinity (thus repelling the

solution) as long as the boundaries of I8 ¼ ð�1, 1Þ are approached [4]:

dXt ¼ � 1
h

Xt

1� Xt
2
dt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q
h

r
dWt , h > 0, q < 1 : (9)

Questions of existence, uniqueness and boundedness of the solution to the above SDE
are strongly related to the particular value of q. In [28] it is shown that uniqueness and
boundedness are lost for q< 0, and a physical interpretation of the phenomenon is pro-
vided. For q 2 ½0, 1Þ, instead, Equation (9) admits a unique strong solution bounded in

I8 (as shown in Section 3), whose stationary density is given by

pstTSBðxÞ ¼ Z�1ð1� x2Þ 1
1�q, q 2 0, 1Þ:½ (10)

Notice that this has the same functional form of the DCL stationary density (8): here,
however, only unimodal densities are allowed by the condition q 2 ½0, 1Þ, as Figure 3
shows. Moreover, an approximate formula is available for the characteristic autocorrel-
ation time of the process [4]:

sTSB ’ 2
5� 3q

h: (11)

We conclude by only noticing that, by choosing the drift of equation (9) proportional
to tan ðxÞ, the following SDE is obtained, introduced in [26]:

dYt ¼ �a tan
p
2
Yt

� �
dt þ C dWt, a, C > 0: (12)

Figure 2. Stationary probability density (8) of the Doering–Cai–Lin family for different values
of d > �1:
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In Section 8, we recover this equation as a transformation of the DCL equation (7).
The properties of the SDE and its solution will be explored for the different values of a.

3. Well-posedness and boundedness of TSB equation (q‰½0, 1Þ)
The SDEs (7) and (9) defining the DCL and the TSB families share an important fea-
ture: their coefficients do not satisfy Lipschitz conditions. Hence, questions such as their
existence and uniqueness, as well as the boundedness of their solutions, need to be
investigated. We consider here the case of TSB equation, and investigate in detail the
DCL equation in Section 4. For the sake of self-containment, most of the stochastic
tools employed in the following analyses are summarized in Appendix C.

Theorem 3.1. Suppose q 2 ½0, 1Þ and set I8 ¼ ð�1, 1Þ. Then, for any x0 2 I8, there exists a
unique, strong solution Xt of the TSB equation (9) with initial condition x0. Moreover,

the solution does never leave the interval I8 with probability one.

Proof. While the diffusion of (9) is extremely regular, the drift presents two asymptotes

in ±1 and hence is not Lipschitz on I8 : However, it is locally Lipschitz: together with
the non-reachability of the boundaries, this will yield strong existence and uniqueness.
Let us formalize the reasoning.
For small e > 0, define le as the following continuous extension of l outside the

interval ð�1þ e, 1� eÞ :

leðxÞ ¼
lðxÞ if jxj � 1� e
lð1� eÞ if x � 1� e
lð�1þ eÞ if x � �1þ e

8<: (13)

Since le is Lipschitz on R, the stochastic differential equation

dXt ¼ leðXtÞdt þ
ffiffiffiffiffiffiffiffiffiffiffi
1� q
h

r
dWt (14)

has a unique (global in time) strong solution with initial condition x0. Now take e such

Figure 3. Stationary probability density (10) of the Tsallis–Stariolo–Borland family, for different values
of q 2 ½0, 1Þ:
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that jx0j < 1� e and denote by XðeÞ the solution of (14) corresponding to such e and
with initial condition x0. Moreover, set

Te ¼ infft � 0j jXðeÞ
t j � 1� eg:

Till the random time Te, the process XðeÞ is also a solution of the original TSB equation
(9). Hence, at least till Te, a solution to (9) exists and is unique (uniqueness is intrinsic-
ally a local problem). However, by means of the tools and results summarized in
Appendix C, we now show that with probability one a solution of the TSB equation
does never reach the endpoints of I, which will yield a unique global strong solution
of (9).
The scale function of the TSB equation (9), as computed in [28], reads as follows:

sðxÞ ¼
ðx
0
ð1� z2Þ� 1

1�q dz: (15)

Set a ¼ ð1� qÞ�1 : hence a � 1 since q 2 ½0, 1Þ: We have:

sð1Þ ¼
ð1
0

1
ð1� z2Þa dz ¼

ð1
0

1
ð1þ zÞað1� zÞa dz � 2�a

ð1
0

1
ð1� zÞa ¼ 1,

since a � 1: Similarly, sð�1Þ ¼ �1: Now, denote by T the first exit time from I8 of
the—locally well defined and unique—solution of the TSB equation: Theorem C.3(i)
assures that T is almost surely infinite. Hence, the locally unique strong solution of (9)

starting from x0 does never reach the endpoints of I8 with probability one, which trans-
lates into the fact that the local strong solution is global in time, and it does never leave

I8. This completes the proof. w

The case q< 0 has been investigated in detail in [28], where it is shown that the solu-
tion Xt would in this case reach the endpoints ±1 in finite time, almost surely. Notice
that the result of Theorem 3.1 can be extended to any random initial condition X0 with

state space in I8.

4. Properties of the DCL noise

In this section, we investigate questions concerning the strong existence, uniqueness
and boundedness of the DCL equation (7). Some technical results provided in [29] will
be exploited, but we shall discover in the end that the equation does not present irregu-
lar and unexpected behavior as in the case of the TSB equation. Although the sign of
the parameter d affects the behavior of the DCL trajectories near the boundaries 61, it
has no consequences on the uniqueness of the SDE and on the boundedness of
its solution.

4.1. Strong existence, uniqueness and boundedness

Let us first extend the coefficients of the DCL SDE (7) to the whole real line in a
bounded and H€older-continuous way, where results of Appendix B can be applied.
Once proven that the auxiliary equation has solutions which never leave the interval
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I ¼ ½�1, 1�, it will become clear that also the original SDE (7) has the desired proper-
ties, and that the particular extension of drift and diffusion outside I plays no role.
Hence, let us consider

dXt ¼ 1
h
lð1ÞðXtÞdt þ brð1ÞðXtÞdWt , (16)

where

lð1ÞðxÞ ¼
1 for x � �1
�x for jxj � 1
�1 for x � 1

8<: (17)

and

rð1ÞðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
for jxj � 1

0 for jxj � 1

(
(18)

The constant b is b ¼ ½hðdþ 1Þ��1
2, as in (7). This equation has the desired properties

of existence and uniqueness.

Theorem 4.1. For any given random variable X0 with state space I ¼ ½�1, 1�, strong
existence and uniqueness hold for the auxiliary equation (16) with initial condition X0.

Proof. The diffusion (18) is, on I, the product of two bounded 1/2-H€older continuous
functions (

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
and

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
), and it is constant outside I. It is therefore 1/2-H€older

continuous itself, that is

jrðxÞ � rðyÞj2 � C jx � yj 8 x, y 2 R, (19)

for some constant C> 0 (C¼ 2 works). The same condition can be rewritten as

jrðxÞ � rðyÞj2 � qðjx � yjÞ 8 x, y 2 R, (20)

where the function qðzÞ ¼ Cz is such that 1=q in not integrable in any neighborhood of
zero. Hence Proposition B.5 in Appendix applies (the drift (17) is trivially Lipschitz-
continuous), which yields strong uniqueness for Equation (16).
In order to prove the existence of a strong solution for the same equation, thanks to

the Yamada–Watanabe theorem, it is enough to prove the existence of a weak solution.
Now, since X0 has support in I ¼ ½�1, 1�, for any choice of m> 1 we have

E jX0j2m
� �

� 1 < 1:

Moreover, both lð1Þ and rð1Þ are bounded and continuous, as per their definition in
(17), (18). Hence, Proposition B.6 ensures that a weak solution to (16) exists. Together
with the already proved pathwise uniqueness, Yamada–Watanabe yields strong existence
as well. This completes the proof. w

In order to prove strong existence and uniqueness of the original DCL equation (7),
we want to show that the unique strong solution of the slightly different equation (16)
never leaves the interval I, where the coefficients of both equations coincide. The
boundedness of the solution for positive values of d might be deduced from the results
of Section 4.2, where we show that in this case the trajectories do not even attain the
boundaries 6 1: However, for the remaining values of d the boundaries are reached,
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and proving directly that the solution is reflected to the interior of I is not
straightforward.
Therefore, in order to provide a more unified treatment, in Theorem 4.2 we prove

the boundedness of the DCL trajectories for all values of d, positive and negative, by
means of the so-called Comparison Theorem proposed in [29] (see Appendix,
Proposition B.8). Then, in Section 4.2, we analyze the behavior of the DCL trajectories
near the boundaries of its state space, for the different values of d.

Theorem 4.2. Let X0 be a random variable taking values in I ¼ ½�1, 1�. Then a unique
strong solution of the Doering–Cai–Lin SDE (7) with initial condition X0 exists and satis-
fies:

P Xt 2 I for all t � 0½ � ¼ 1:

Proof. Let us first prove the boundedness of the auxiliary equation (16), by means of
the comparison theorem in Appendix, Proposition B.8. To this end, let us denote by
Xð1Þ the unique strong solution (Theorem 4.1) of equation (16), with starting random

variable Xð1Þ
0 ¼ X0: Let us also denote by lð1ÞðxÞ the drift coefficient of such equation,

as in (17).
Now consider lð2ÞðxÞ as follows

lð2ÞðxÞ ¼
1 for x � �1
�x for � 1 � x � 0
0 for x � 0

, lð1ÞðxÞ � lð2ÞðxÞ 8 x 2 R,

8<:
and Xð2Þ

0 the constant random variable Xð2Þ
0 	 1: With a proof similar to the one of

Theorem 4.1, one shows that there exists a unique strong solution of the following sys-
tem:

dYt ¼ 1
h
bð2ÞðYtÞdt þ brðYtÞdWt

Y0 ¼ Xð2Þ
0

:

8<: (21)

Indeed, notice that the only difference in the new system is the drift, which is however
still Lipschitz-continuous and bounded as it is needed in the proof.

The process Xð2Þ
t 	 1 is a solution of (21), since lð2Þð1Þ ¼ rð1Þ ¼ 0 and clearly

dXð2Þ
t ¼ 0: Thus, Xð2Þ is the unique solution of that system. As already done earlier in

the proof, denote by Xð1Þ the solution of (16). All the hypotheses of the Comparison

Theorem B.8 hold (Xð1Þ
0 � Xð2Þ

0 clearly holds since jXð1Þ
0 j � 1 by assumption) and we

therefore get

P Xð1Þ
t � Xð2Þ

t 8 t � 0
h i

¼ 1, (22)

namely

P Xð1Þ
t � 1 8 t � 0

h i
¼ 1: (23)
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By means of a symmetrical reasoning, one shows that Xð1Þ
t � �1 holds with probability

one as well. Thus, the unique strong solution Xð1Þ
t of the auxiliary equation (16) with

starting condition Xð1Þ
0 ¼ X0 satisfies

P Xð1Þ
t 2 I 8 t � 0

h i
¼ 1:

Since the dynamics in I of the original DCL equation (7) coincides with that of equation

(16), and since we have just proven that the unique solution Xð1Þ
t to (16) starting in I

never leaves the interval, it follows that Xt 	 Xð1Þ
t is also the unique strong solution of

the DCL equation (7), and that Xt is confined in I. This completes the proof. w

4.2. Behavior near the boundaries

It has just been shown that the unique solution of SDE (7) starting in I ¼ ½�1, 1�
remains confined in I, independently of the value of d (provided of course d > �1).
Whether the solution reaches the boundaries ±1 depends however on the value of the
parameter d, as we are going to show.
First, however, a comparison with the TSB case is crucial. In that case, as shown in

[28], attaining the boundaries (q< 0) has major consequences on the uniqueness and
boundedness of the solution. In the case of the DCL SDE, instead, both the drift and
the diffusion of the SDE are well defined at ±1, and the unique solution of the SDE
remains bounded for any value of d and h (Theorem 4.2), even if the boundaries are
attained. However, knowing whether ±1 are attainable is of interest in itself as well as
in applied contexts, and will also be used in later sections of this work (e.g. Section 8).
In order to study the behavior of the noise near the boundaries of the state space,

results and tools summarized in Appendix C are employed. The scale function of the
DCL noise can easily be obtained by substituting the drift and diffusion of Equation (7)
into expression (C.2). One gets:

sðxÞ ¼
ðx
0

1

ð1� z2Þdþ1 dz: (24)

It can be noticed that this has the same functional form of the scale function of the
TSB noise for q 2 ½0, 1Þ, as in (15).

Theorem 4.3. Let I8 ¼ ð�1, 1Þ and Xt be the unique solution of the DCL SDE (7) with

initial condition X0 2 I8; Then:

i. If d � 0, the solution Xt will a.s. never reach the endpoints ±1
ii. If �1 < d < 0, the solution Xt will a.s. reach one of the endpoints ±1 in

finite time.

Proof. To prove the statement in the case d � 0, it is enough to observe that, in this case,

sð61Þ ¼ 61, (25)

where s(x) is as in (24). The claim then follows from Theorem C.3(i).
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As far as the case �1 < d < 0 is concerned, we have

jsð61Þj < 1: (26)

This is not enough to conclude that the endpoints of I are reached in finite time, and
one needs to resort to Theorem C.6, involving the speed measure of the noise and the
function v(x) as introduced in Definitions C.4 and C.5. A simple calculation reveals that
the speed measure associated with (7) is as follows:

mðdyÞ ¼ 2dy
r2ðyÞs0ðyÞ ¼ Cð1� y2Þddy: (27)

Hence, neglecting for simplicity the constant C, the function v(x) in (118) satisfies:

vð1Þ ¼
ð1
0
ðsð1Þ � sðyÞÞ mðdyÞ

¼
ð1
0

� ð1
y
ð1� z2Þ�ðdþ1Þ dz

�
ð1� y2Þd dy

�
ð1
0

ð1� zÞ�d

�d

				y
1

ð1� y2Þd dy

(28)

¼ � 1
d

ð1
0
ð1� yÞ�d ð1� y2Þd dy

¼ � 1
d

ð1
0
ð1þ yÞd dy < 1

(29)

The hypotheses dþ 1 > 0 and d < 0 have been exploited, respectively, in (28) and (29).
Being v(x) an even function, we also have

vð�1Þ ¼ vð1Þ < 1: (30)

By Theorem C.6(a), the time to reach one of the boundaries ±1 is almost surely finite.
This proves the second point of the statement, and completes the proof. w

5. Time-dependent density of the SW noise

Differently from the case of the TSB and the DCL noises, both defined as solutions to
an SDE, the SW noise (2) has an explicit analytic expression. We recall it below:

Xt ¼ sin

ffiffiffiffiffi
2
s

r
Wt

 !
, s > 0: (31)

The form of the SW stationary density is provided in Section 2, Equation (4). Here, we
derive the time-dependent density of the noise, from which the stationary density can
be recovered as limit as t tends to infinity. For convenience, we separately recall the fol-
lowing elementary result of probability theory.

Lemma 5.1 (Transformation of densities). Let I, J 
 R be two real intervals, Z : X ! I a
random variable on the probability space ðX,F ,PÞ, and F : I ! J a diffeomorphism of real
intervals. If qZ : I ! ½0, þ1Þ is the density of Z, then the random variable X ¼ FðZÞ has
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density qX : J ! ½0, þ1Þ given by

qXðxÞ ¼
qZ
�
F�1ðxÞ

�
			F0�F�1ðxÞ

�			 : (32)

Proposition 5.2. Let W : X ! R be a real random variable with density qW, and set
X ¼ sin ðWÞ. Then, the density of X is given by:

qXðxÞ ¼
qZðarcsinðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p , (33)

where

qZðzÞ ¼
X1
k¼�1

qWðð�1Þkz þ kpÞ: (34)

Proof. Let us first define a random variable

Z : X ! � p
2
,
p
2


 �
(35)

as follows. For each x 2 X, consider the only z 2 ½� p
2 ,

p
2� such that sin ðzÞ ¼

sin ðWðxÞÞ; hence define ZðxÞ ¼ z: Thus we have:

XðxÞ ¼ sin ðWðxÞÞ ¼ sin ðZðxÞÞ 8x 2 X : (36)

The density of Z can be written as

qZðzÞ ¼
X

w2GðzÞ
qWðwÞ, (37)

where G(z) is the set of all w 2 R such that sin ðwÞ ¼ sin ðzÞ, z 2 ½� p
2 ,

p
2�: These are:

� w ¼ z þ 2kp, k 2 Z (in the first or fourth quadrant);
� w ¼ ðp� zÞ þ 2kp ¼ �z þ ð2kþ 1Þp, k 2 Z (in the second or third quadrant).

With a unifying expression,

GðzÞ ¼ fð�1Þkz þ kp j k 2 Z g: (38)

Thus, the density of Z takes the form (34). Since the function FðzÞ ¼ sin ðzÞ is a diffeo-
morphism between the intervals ½�p=2, p=2� and ½�1, 1�, Lemma 5.1 applied to X ¼
FðZÞ yields

qXðxÞ ¼
qZðarcsinðxÞÞ

j cos ðarcsinðxÞÞj ¼
qZðarcsinðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ,

as it was to be proved. w

Remark. Notice that Equation (34) can be written as

qZðzÞ ¼ wðzÞ þ wðp� zÞ, (39)
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where

wðzÞ ¼
X1
k¼�1

qWðz þ 2kpÞ: (40)

We will use this later in this section.
Proposition 5.2 can easily be applied to the case where W is a Gaussian random vari-

able, in order to obtain an explicit expression of the time-dependent density of the SW
noise. The following Jacobi theta function allows us to write the SW density in a com-
pact and elegant form.

Definition 5.3. The function

#3ðz, qÞ ¼
X1
k¼�1

qk
2
exp ð2ikzÞ (41)

is the third version of the Jacobi theta function, where z 2 C, q 2 R and jqj < 1 [30].

Theorem 5.4. The time-dependent density of the Sine-Wiener noise (31) has the following
form:

pSWðx, tÞ ¼
#3

z
2 , e

�t=s
� �

þ #3
p�z
2 , e�t=s

� �
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p , (42)

where z ¼ arcsinðxÞ:

Proof. At time t, the SW noise (31) is the random variable

X ¼ sin ðWÞ , W � Nð0, 2t=sÞ : (43)

For convenience of notation, let us set r2 ¼ 2t=s: Equation (33) of Proposition 5.2 and
Equation (39) then yield

pSWðx, tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ½wr2ðzÞ þ wr2ðp� zÞ�, (44)

where z ¼ arcsinðxÞ and, according to (40),

wr2ðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2pr2

p
X1
k¼�1

exp �ðz þ 2kpÞ2
2r2

� �
: (45)

The expression for wr2 can be linked to the Jacobi #3 function by means of the Poisson
transform, as shown in formula (4.4) of [31]. This reads:ffiffiffiffiffiffi

pa
p X1

k¼�1
exp

�
� aðuþ kpÞ2

�
¼
X1
k¼�1

exp � k2

a

� �
exp ð2ikuÞ, a > 0: (46)

This last equation for u ¼ z=2 reads as follows:

2p

ffiffiffiffiffiffiffiffi
a=4
p

r X1
k¼�1

exp � a
4
ðz þ 2kpÞ2

� �
¼ #3

z
2
, e�1=a

� �
: (47)
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Setting 4=a ¼ 2r2 and recalling Equation (45) yields

2p wr2ðzÞ ¼ #3
z
2
, e�r2=2

� �
: (48)

Substituting this expression for wr2 back into Equation (44), and recalling that r2 ¼
2t=s, leads to Equation (42) and completes the proof. w

The analytic expression of pSWðt, xÞ in (42) can also be used to write down the station-
ary density of the noise and to assess its characteristic autocorrelation time. If time t tends
to infinity, both addends of the numerator of (42) tend to the constant one: indeed,

lim
q!0

#3ðz, qÞ ¼ 1 8 z 2 C ,

as it can be seen by definition (41). Thus, the stationary density of the SW noise is

pstSWðxÞ ¼ lim
t!1 pSWðt, xÞ ¼ 1þ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p , (49)

as stated in (4). Moreover, the convergence takes place at the same speed at which the
exponential function e�t=s attains zero (again by definition in (41), one sees that the #3

function tends to 1 linearly in q, as q tends to 0). Hence, by definition, s is the charac-
teristic autocorrelation time of the process: the full expression of its autocovariance has
been presented in (3).

6. Relationship between SW and DCL

The stationary density (49) of the SW noise is the same as the one of the DCL noise—
Equation (8)—in the case d ¼ � 1=2: This raises the question of whether the two
noises, SW and DCL with d ¼ � 1=2, share further properties. To investigate this, it
appears convenient to apply Itô’s formula in order to find the SDE satisfied by the SW
noise, and compare this to the one of the DCL case with d ¼ � 1=2:

Lemma 6.1. The SW process Xt in (31) satisfies the following SDE:

dXt ¼ � 1
s

Xt dt þ
ffiffiffi
2
s

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xt

2
p

sgn
�
cos ð

ffiffiffiffiffiffiffi
2=s

p
WtÞ

�
dWt : (50)

Proof. Let us apply Itô’s lemma to the process Xt ¼ FðZtÞ, where FðzÞ ¼ sin z and Zt ¼ffiffiffiffiffiffiffi
2=s

p
Wt: We have:

F0ðZtÞ ¼ cos ðZtÞ ¼ sgn
�
cos ðZtÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FðZtÞ2

q
F00ðZtÞ ¼ � sin ðZtÞ ¼ �FðZtÞ

8<: (51)

and therefore

dXt ¼ F0ðZtÞ dZt þ 1
2

F00ðZtÞr2Z dt

¼ sgn
�
cos ð

ffiffiffiffiffiffiffi
2=s

p
WtÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xt

2
p ffiffiffi

2
s

r
dWt þ 1

2
ð�XtÞ 2s dt :

(52)
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This coincides with expression (50). w

The SDE (50) is very similar to the one of the DCL noise in (7) for d ¼ � 1=2,
which we rewrite for convenience:

dXt ¼ � 1
s
Xtdt þ

ffiffiffi
2
s

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xt

2
p

dWt , s > 0: (53)

The drift is the same in both cases, while the two diffusions differ by the factor

sgn cos
ffiffiffiffiffiffiffi
2=s

p
Wt

� �� �
: However, being the square of this factor constantly equal to

one, the two processes share the same Fokker-Planck equation: this yields the same
time-dependent density for the two processes, if the initial distribution is the same. In
fact, this yields the same overall law for the two processes, as we show in Theorem 6.2.

Theorem 6.2. The SW noise (31) and the DCL noise with d ¼ 1
2 in (53) are the same pro-

cess in distribution.

Proof. Let us define the process

eWt ¼
ðt
0
sgn
�
cos ð

ffiffiffiffiffiffiffi
2=s

p
WsÞ

�
dWs, (54)

so that the SW SDE (50) can be rewritten as

dXt ¼ � 1
s
Xtdt þ

ffiffiffi
2
s

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xt

2
p

d eWt: (55)

We can exploit the classical martingale characterization of Brownian Motion due to

Paul L�evy [32, 33, Theorem 3.16], to show that eW is still a Brownian Motion. Indeed,eWt is a (continuous) martingale, since it is the stochastic integral of a bounded function
[29, 33] and its quadratic variation can be computed as:

eW , eW� �
t ¼

ðt
0

h
sgn
�
cos ð

ffiffiffiffiffiffiffi
2=s

p
WsÞ

�i2
ds ¼

ðt
0
1 ds ¼ t: (56)

eWt is therefore a continuous martingale with quadratic variation equal to t: thanks to
L�evy’s characterization, it is a Brownian Motion.
Equations (53) and (55) therefore represent the same SDE, only driven by different

Brownian Motions. Hence, their unique strong solutions (Theorem 4.2) have the same
law, as it was to be proved. w

As a consequence of Theorem 6.2, any property related to the law of the SW process
also holds for the DCL process Xt with d ¼ �1=2 and X0 ¼ 0: For example, it follows
that the autocovariance function of Xt is given by expression (3) and its characteristic
autocorrelation time by s (called h in the original SDE (7)). This last property holds in
more generality, for all values of d.

Theorem 6.3. The autocovariance function RXX of the Doering–Cai–Lin noise (7), start-
ing from any symmetric X0 2 ½�1, 1�, satisfies the following inequality for all d > �1:
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jRXXðs, tÞj � exp � t � s
h

� �
8 s � t 2 0,1Þ:½ (57)

Hence, the characteristic autocorrelation time of the process is equal to the positive par-
ameter h.

Proof. Let us denote the diffusion coefficient of the DCL equation (7) by rðxÞ /ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
: For fixed s � t, we can write Equation (7) in its integral form starting from

time s, and then multiply both sides by Xs. We obtain:

XtXs ¼ Xs
2 þ

ðt
s
� 1
h
XrXs dr þ

ðt
s
rðXrÞXs dWr: (58)

Since both the diffusion rð�Þ and the DCL process Xt are bounded, the stochastic inte-
gral on the right-hand side of (58) has zero mean. Thus, by taking the expectation of
both sides of (58), we get

RXXðs, tÞ :¼ E½XsXt� ¼ RXXðs, sÞ þ
ðt
s
� 1
h

RXXðs, rÞ dr: (59)

Let us now set FðtÞ ¼ RXXðs, tÞ as a function of t only, for fixed s. Equation (59) repre-
sents the integral form of the ODE

F0ðtÞ ¼ � 1
h

FðtÞ, (60)

which yields

FðtÞ ¼ FðsÞ exp � t � s
h

� �
: (61)

Now simply observe that

jFðsÞj ¼ j E½Xs
2� j � 1 (62)

since the process Xs is itself bounded by 1. The claim immediately follows by taking the
absolute value of expression (61). w

7. Relationship between DCL and TSB

Driven by the result of Theorem 6.2, it is natural to investigate whether similar relation-
ships can be found between the DCL noise X and the TSB noise Y. We do not simply
investigate here whether the two processes have the same law; we address the more gen-
eral question of whether a C2 bijection F exists, such that the transformed process F(X)
and the process Y have the same law. To this aim, we preliminary relate the trajectories
of F(X) and Y. Hence, in general, let

dXt ¼ aðXtÞdt þ cðXtÞdWt (63)

and

dYt ¼ aðYtÞdt þ cðYtÞdWt (64)

be two stochastic differential equations, each admitting a unique strong solution
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bounded in I ¼ ½�1, 1�: Let also F 2 C2ðI, IÞ be a bijection of I. Thanks to Itô’s formula,
if FðXtÞ ¼ Yt holds, then F represents a solution to the following system of ordinary dif-
ferential equations:

1
2

F00ðxÞ c2ðxÞ þ F0ðxÞ aðxÞ ¼ a
�
FðxÞ

�
(65)

F0ðxÞ cðxÞ ¼ c
�
FðxÞ

�
: (66)

Proposition 7.1 then follows.

Proposition 7.1. Let Xt and Yt denote the DCL and the TSB processes with initial condi-

tions X0,Y0 2 I8. There exists no bijection F 2 C2ðI8 , I8Þ such that, almost surely, Yt ¼
FðXtÞ for all t � 0:

Proof. Suppose by contradiction such an F exists. Then, the two ODEs (65) and (66)
hold, where

aðxÞ ¼ � 1
h

x, cðxÞ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
, (67)

aðyÞ ¼ � 1
h

y
1� y2

, cðyÞ ¼ g, (68)

and

g2 ¼ 1� q
h

, b2 ¼ 1
hðdþ 1Þ : (69)

Compare indeed with the coefficients of the SDEs (7) and (9). Equation (66) reads

F0ðxÞ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
¼ g, (70)

which yields

FðxÞ ¼ Fð0Þ þ g
b
arcsinðxÞ: (71)

Since F is a bijection of the interval I8 ¼ ð�1, 1Þ, we immediately deduce that Fð0Þ ¼ 0
and g=b ¼ 2=p :

FðxÞ ¼ 2
p
arcsinðxÞ: (72)

Such a function F does not however satisfy the second-order linear ODE (65): after sim-
plifying, this indeed reads

C
p

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼ p=2 arcsinðxÞ
p2=4 � arcsin2ðxÞ , (73)

where C ¼ ð2dþ 1Þ=ðdþ 1Þ : it can be checked that Equation (73) cannot hold for all

x 2 I8 (for example by checking that the ratio between the two sides of (73) has non-
zero derivative). This completes the proof. w

Proposition 7.1 excludes coincidence of the two processes F(X) and Y. This, however,
still allows the possibility that the laws of the two processes coincide, although the two
processes have different paths. The following result excludes this case, hence showing
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that both the dynamics and the law of the DCL and TSB processes are intrinsically dif-
ferent, even after a transformation that is smooth in the interior of I.

Theorem 7.2. Let X and Y denote the DCL and the TSB process, respectively. There is no

bijection F 2 C2ðI8 , I8Þ such that F(X) and Y share the same law.

Proof. Let us denote by a(x) and c(x) the drift and the diffusion of the DCL noise X, and
by aðyÞ and cðyÞ the drift and the diffusion of the TSB noise Y. Explicit expressions are

provided in (67), (68), (69). Define eYt :¼ FðXtÞ: The process eY satisfies an SDE with drift

eaðyÞ ¼ 1
2

F00ðxÞ c2ðxÞ þ F0ðxÞ aðxÞjx¼F�1ðyÞ (74)

and diffusion ecðyÞ ¼ F0ðxÞ cðxÞjx¼F�1ðyÞ : (75)

The solutions to this SDE and to the SDE defining Yt have the same law if and only ifeaðyÞ ¼ aðyÞ (76)ec2ðyÞ ¼ c2ðyÞ (77)

(see [34]). Equation (77) reads �
F0ðxÞ

�2
b2ð1� x2Þ ¼ g2: (78)

This means that at every x 2 I8 we must have

F0ðxÞ ¼ � g

b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p or F0ðxÞ ¼ þ g

b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p , (79)

the sign possibly depending on the point x. However, the function F0 is continuous on

I8 and it never vanishes, hence it is either always positive or always negative, according
to whether the bijection F is increasing or decreasing. In each of the two cases, the final
part of the Proof of Proposition 7.1 applies. Either choice of sign in (79) leads to a solu-
tion F which does not satisfy the second order ODE (76), which indeed in both cases
reads as in (73). By contradiction, this completes the proof. w

8. The Kessler–Sørensen SDE

8.1. KS as transformation of DCL (d � 0)

In Section 7, we have shown that any deterministic transformation of the DCL noise
cannot have the same law as the TSB noise. However, imposing that the transformed
noise satisfies an SDE with constant diffusion (as the TSB noise does) yields to the SDE
(12), whose properties are investigated in this Section. The hypothesis d � 0 plays a cru-
cial role in the following result.

Proposition 8.1. Let Xt be the DCL noise where d � 0, and define Yt ¼ FðXtÞ, where F is

a C2 bijection of the open interval I8 ¼ ð�1, 1Þ. If Yt satisfies an SDE with constant diffu-
sion, then
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FðxÞ ¼ 2
p
arcsinðxÞ (80)

and the SDE is

dYt ¼ � f
ph

tan
p
2
Yt

� �
dt þ 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdþ 1Þp dWt , (81)

where h is positive and the quantity f ¼ f ðdÞ reads as follows:

f ¼ 2dþ 1
dþ 1

: (82)

We will refer to Equation (81) as to the Kessler–Sørensen SDE [26].

Proof. Let us consider the DCL noise Xt with associated drift a(x) and diffusion c(x) as
follows:

aðxÞ ¼ � 1
h

x, cðxÞ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
, (83)

where

b2 ¼ 1
hðdþ 1Þ : (84)

The drift aðyÞ and diffusion cðyÞ of the process Yt satisfy Equations (65) and (66): Itô’s
formula indeed applies since Theorem 4.3(i) guarantees that in the case d � 0 the pro-

cess takes values in the open interval I8 , where the function F is C2 by hypothesis. By
imposing that the diffusion cðyÞ be a constant C, Equation (66) reads

F0ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
¼ C

b
: (85)

By imposing Fð0Þ ¼ 0 and C=b ¼ 2=p in order for the range of F to be I8 ¼ ð�1, 1Þ,
this gives

FðxÞ ¼ 2
p
arcsinðxÞ and cðyÞ 	 C ¼ 2 b

p
: (86)

These expressions coincide with the function F in (80) and with the diffusion of SDE
(81). It only remains to show that the drift aðyÞ of the SDE satisfied by Yt is the one of
Equation (81): for this, we can use the second order ODE (65). A simple substitution of
a, c, F, F0 and F00 from (83) and (86) leads to:

a
2
p

arcsinðxÞ
� �

¼ � f
ph

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p , where f ¼ 2dþ 1
dþ 1

: (87)

Hence,

aðyÞ ¼ � f
ph

sin ðpy=2Þ
j cos ðpy=2Þj ¼ � f

ph
tan

p
2

y
� �

, (88)

since cos ð/Þ > 0 if / 2 ð�p=2, p=2Þ: This completes the proof. w

In Proposition 8.1 we assumed d � 0, hence the process Yt ¼ FðXtÞ does not attain
±1. In this case, Equation (81) has not only strong existence, but also pathwise
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uniqueness, since the coefficients of the SDE are locally Lipschitz in the open interval
ð�1, 1Þ : see Section 3 for the proof of the same result applied to the TSB equation. The
scenario for the d < 0 case is instead different and is investigated in the next section.

8.2. Non-uniqueness after transformation (d<0)

If d < 0, the DCL process X attains the boundaries ±1 almost surely; hence, Itô’s for-
mula cannot be applied to the function F in (80) since this is not C2 on the closed
interval I ¼ ½�1, 1�: Nonetheless, one may still explore the behavior of the SDE (81) for
negative values of d, acknowledging that this may not be the same SDE obtained after
transforming the SDE (7) through F. A computation of the scale function s(y) and the
speed measure m(dy) associated to the SDE (81) reveals that

sðyÞ ¼
ðy
0

cos
p
2
z

� �� ��ð2dþ1Þ
dz (89)

and

mðdyÞ / cos
p
2
y

� �� �2dþ1

dy: (90)

Hence, with the tools summarized in Appendix C, one sees that for

� 1
2
< d < 0 , (91)

i.e. 0 < f ðdÞ < 1, the solution to (81) attains the boundaries with probability one.
Following the lines of [28], uniqueness and boundedness are lost. Notice that the same
conclusion holds true even more in the case

�1 < d � � 1
2
, (92)

where the coefficient f ðdÞ appearing in the drift of (81) is negative (thus even the deter-
ministic force alone actively drives the noise towards the boundaries).
On the other hand, recall that, under either of conditions (91) or (92), strong unique-

ness holds for the DCL SDE (7), and the solution Xt does attain the boundaries ±1. It is
then possible to investigate which SDE the transformed process Yt ¼ FðXtÞ satisfies in
each of the two cases, where F is as in Equation (80). In analogy with the theory of
Bessel processes, we think that under condition (91) the process Yt still satisfies the
same SDE (81) as in the case d > 0, while under condition (92) the process satisfies a
more difficult equation in which a local time appears. We do not enter here all the
details of this more difficult case, which involves the computation of the local time of
Xt, before Itô–Tanaka’s formula for non-smooth functions can be applied. In Section
8.3, we explain the connection with Bessel processes, and clarify the heuristic reasons
behind our considerations when d < 0:
Notice, however, that the above provides an explicit example of an interesting sto-

chastic phenomenon. Indeed, if

� 1
2
< d < 0, (93)
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we saw that Equation (7) has strong existence and uniqueness, while uniqueness is lost
for the transformed SDE (81). Boundedness is lost as well after the transformation, as
pointed out immediately after Equation (91). However, by calling Xt the unique strong
solution of (7), the process

Yt ¼ 2
p
arcsinðXtÞ (94)

does represent a bounded strong solution to the SDE (81). Other solutions, not
bounded in ½�1, 1�, are also present in accordance with the non-uniqueness.
This result establishes a further analogy with the case of Bessel processes. The

squared Bessel process B2
t satisfies an SDE for which strong uniqueness is well known

to hold. However, the SDE obtained by transforming the latter through the square root
function is satisfied not only by the process Bt , but also by other processes which are
not constrained in ½0, þ1Þ: This is shown by Cherny in [35]. More on the analogy
between the KS family and the Bessel family is provided in the following section. In the
following proposition, we summarize the results of this section about the
Kessler–Sørensen SDE.

Proposition 8.2. Consider the Kessler–Sørensen SDE (81) and define I8 ¼ ð�1, 1Þ:

1. If d � 0, then the equation has strong existence and uniqueness, and for any ini-
tial condition Y0 2 I8 the solution Yt remains in I8 for all times t > 0 with prob-
ability one.

2. If d < 0, the SDE has neither weak nor strong uniqueness and any solution Yt

starting in I8 attains of the boundaries of I8 in finite time with probability one.
However, if �1=2 < d < 0, one strong solution is given by

Yt ¼ 2
p
arcsinðXtÞ (95)

where Xt is the unique strong solution to the DCL equation (7) with parameter d.

8.3. Local time: analogy with the Bessel process

In this last section, we provide a justification of the claims which have not been proven
in Section 8.2 about the process Yt in (95) and the SDE (81). Consider the DCL process
Xt in a neighborhood of x¼ 1, where the function F ¼ 2=p arcsinðxÞ is irregular (the
case near x ¼ – 1 is identical). To emphasize this viewpoint, consider the auxiliary pro-
cess

Zt ¼ 1� Xt 2 ½0, 2�, (96)

solution of

dZt ¼ 1
h
ð1� ZtÞdt þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Zt

hðdþ 1Þ

s0@ 1A ffiffiffiffiffi
Zt

p
dWt : (97)

There is a paradigmatic equation in the literature, similar to (97), for which several facts
have been understood. This is the equation for the squared Bessel process B2

t [29],
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which we denote here by eZt for convenience of analogy with Zt:

deZt ¼ eddt þ 2
ffiffiffiffiffieZt

q
dWt: (98)

For any initial condition in ð0,1Þ, this equation admits a unique strong solution B2
t

taking values in ½0,1Þ: For integer values of ed, the process Bt, square root of such

solution, can be realized as the norm of a ed-dimensional Brownian Motion (see [29],
Chapter XI §1).
As a preliminary step, therefore, let us apply a time-change to reduce Equation (97)

to a form as close as possible to (98).

Lemma 8.3. For k ¼ 2hðdþ 1Þ, the process ZðkÞ
t :¼ Zkt satisfies the equation

dZðkÞ
t ¼ ed�1� ZðkÞ

t

�
dt þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ZðkÞ

t

2

s ffiffiffiffiffiffiffiffi
ZðkÞ
t

q
dWðkÞ

t (99)

where

WðkÞ
t :¼ � 1ffiffiffi

k
p Wkt (100)

is a standard Brownian motion and ed ¼ 2ðdþ 1Þ: (101)

Let us now translate known results for the squared Bessel process eZt into results for

our process ZðkÞ
t , being sure that, close to z¼ 0, the drift and the diffusion of ZðkÞ

t

behave as the ones of eZt :

edð1� zÞ � ed and 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z

2

r ffiffiffi
z

p � 2
ffiffiffi
z

p
if z � 0 : (102)

The results claimed here on the squared Bessel process are taken from [29] Chapter XI
§1, in particular Proposition 1.5. We assume to start with an initial condition greater
than zero.

� For ed < 2, namely d < 0, the point z¼ 0 is reached almost surely, but it is
instantaneously reflected and the local time at zero, L0t , is zero.

� For ed � 2, namely d � 0 , z¼ 0 is never reached; hence, trivially, L0t is zero.

Let us continue with a translation of results, for the process Yt in (95). Given the iden-
tity (96), we have

Yt ¼ /ðZtÞ
where

/ðzÞ ¼ 2
p
arcsinð1� zÞ: (103)

The function /ðzÞ near z ¼ 0þ behaves like 1� c
ffiffiffi
z

p
for a suitable constant c. Indeed,

by solving /ðzÞ ¼ r around r ¼ 1�, we find
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z ¼ 1� sin
p
2
r

� �
z � 1

8
p2ð1� rÞ2

r � 1� 2
ffiffiffi
2

p

p

ffiffiffi
z

p
:

(104)

Hence, at the second order,

/ðzÞ � 1� 2
ffiffiffi
2

p

p

ffiffiffi
z

p
: (105)

Therefore, investigating Yt ¼ /ðZtÞ near z ¼ 0þ (that is, y ¼ 1�) is qualitatively analo-
gous to investigating the process

ffiffiffiffiffi
Zt

p
near 0. In turn, the latter has the same behavior

as the Bessel process Bt ¼
ffiffiffiffiffieZt

q
due to the analogy illustrated in (102).

The following facts are translation of known results about the process Bt (see [29],
Chapter XI, Exercise 1.26) for our process Yt. They recover the claims of Section 8.2
about the SDE satisfied by the process Yt in the case d < 0:

� For ed > 1, namely d > � 1
2 , the process Yt ¼ /ðZtÞ satisfies the Equation (81)

expected on the ground of Itô’s formula.
� For ed � 1, namely d � � 1

2 , the process Yt satisfies an identity which involves a
local time.

A short review of similar results about Bessel processes can also be found in [36].

9. Concluding remarks

Realistic stochastic modeling of natural phenomena is increasingly requiring the use of
bounded stochastic processes. Indeed, these are important to avoid to obtain results that
are mathematically correct but contain artifacts from the application point of view. An
heuristic approach is often adopted in the literature of modeling with bounded noises,
which can however lead to misleading results. An example has been stressed in [28],
where it is shown that an apparently bounded process can in reality be unbounded for
some important range of its parameters. Thus, it is important to put the applications of
bounded noises on firmer mathematical ground. In this work, we pursue this aim in
the case of commonly employed bounded noises: the Sine-Wiener noise, the
Doering–Cai–Lin family, and the Tsallis–Stariolo–Borland family. In the last section, we
also investigate mathematical properties of an additional family, the
Kessler–Sørensen family.
Specifically, we have characterized the range of parameters of the DCL and TSB fami-

lies which give rise to strongly unique and bounded solutions. In the case of the DCL
family, we have also shown that positive values of the parameter d generate trajectories
which never even attain the boundary of the state space. Moreover, we have analytically
inferred the time evolution of the SW density for the first time and have shown that
the noise can be recovered as a particular case of the DCL noise. We have investigated
the relationships between the SDEs defining the DCL and the TSB families, showing
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that the two noises are intrinsically different from both a strong (pathwise) and a weak
(in law) point of view. In addition, this investigation has lead to the SDE already intro-
duced in an example of an earlier work of Kessler and Sørensen [26]. We have shown
that the SDE can be obtained as a deterministic transformation of DCL SDE, only, how-
ever, for positive values of the parameter d. Boundedness and uniqueness of the trans-
formed SDE are instead lost in the case d < 0, in analogy with the case of
Bessel processes.
As future lines of research, we mention two interesting points which we are investi-

gating. The first concerns a rigorous mathematical approach to the numerical simula-
tions of SDEs which generate bounded noises. Indeed, the tendency of the simulated
trajectories to go outside their theoretical bounds, due to the necessary numerical dis-
cretization, makes the simulation stiff. The second one refers to the fact that all proc-
esses here investigated are endowed with symmetric stationary densities, whereas in the
real world the stochastic fluctuations can be asymmetric.
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Appendix A

Autocorrelation time

Definition A.1. Let X be a zero-mean stochastic process endowed with second order moments.
The autocovariance function of X is the two variable function

RXXðs, tÞ ¼ E XsXt½ � ¼ CovðXs,XtÞ, s, t � 0: (106)

Notice that in statistical physics this is also termed (un-normalized) autocorrelation function
[37], which can cause some ambiguities. A stationary autocovariance function is one where
RXXðs, tÞ only depends on the quantity jt � sj: If

9 s > 0 : jRXXðs, tÞj � jRXXðs, sÞj exp � jt � sj
s

� �
(107)

at least for s, t � K (for some K> 0), then the smallest of such s will be referred to as the charac-
teristic autocorrelation time of the process X.

Appendix B

Existence and uniqueness of SDE solutions

Definition B.1. We write a Stochastic Differential Equation (SDE) in the form

dXt ¼ lðXtÞdt þ rðXtÞdWt , (108)
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where Wt is a standard Wiener Process on a filtered probability space ðX,P, ðF tÞt�0Þ. The coeffi-
cients l, r : I ! R, where I � R, are called drift and diffusion, respectively.

Definition B.2. A solution of (108) consists of a filtered probability space and a pair (X, W)
such that the integral form (109) of the SDE holds with probability one, uniformly in t:

Xt ¼ X0 þ
ðt
0
lðXsÞds þ

ðt
0
rðXsÞdWs: (109)

A solution of (108) is called a strong solution if the process X is adapted to the filtration gener-
ated by the Brownian motion W. Otherwise, it is simply called a weak solution.

Definition B.3. There is weak uniqueness or uniqueness in law for a SDE if, whenever two sol-
utions (X, W) and ðeX , eWÞ possibly defined on different spaces are such that X0 and eX0 have the
same distribution, then the whole laws of X and eX coincide.

Definition B.4. There is strong uniqueness or pathwise uniqueness for a SDE if for every two
strong solutions (X,W) and ðeX , eWÞ defined on the same probability space, and with X0 ¼ eX0

P-a.s., the processes X and eX are indistinguishable (that is, P½Xt ¼ eXt 8 t � 0� ¼ 1).
Although Lipschitz growth of the coefficients is a standard sufficient condition for strong

existence and uniqueness of a SDE, these can also be obtained under weaker assumptions. We
state here some technical results on the case of bounded or H€older functions, which are exploited
in Section 4. Proofs can be found in [29, 33].

Proposition B.5. ([29] Theorem 3.5, Chap. IX). Let l and r be the drift and diffusion coeffi-
cients of an SDE. Suppose that l is Lipschitz continuous and that r satisfies

jrðxÞ � rðyÞj2 � qðjx� yjÞ, (110)

where q : ð0,1Þ ! ð0,1Þ is such thatðe
0

1
qðzÞ dz ¼ 1 8 e > 0: (111)

Then, strong uniqueness holds for the SDE.

Proposition B.6. Let l, r : R ! R be bounded and continuous functions, and X0 a random
variable with

E jX0j2m
� �

< 1 (112)

for some m> 1. Then, there exists a weak solution of the SDE

dXt ¼ lðXtÞdt þ rðXtÞdWt

with initial condition X0.

Theorem B.7. (Yamada-Watanabe, 1971). Suppose pathwise uniqueness holds for a SDE and
that a weak solution also exists. Then, a strong solution of the SDE also exists (such solution being
unique in the strong sense thanks to the first assumption).

Proposition B.8 (Comparison theorem, [29] Chap. IX §3). Let

dXt ¼ lðiÞðXtÞ dt þ rðXtÞ dWt for i ¼ 1, 2 (113)

be two stochastic differential equations, whose coefficients satisfy:

STOCHASTIC ANALYSIS AND APPLICATIONS 27

27



i. jrðxÞ � rðyÞj2 � qðjx� yjÞ, qðzÞ as in (111),
ii. at least one between lð1Þ and lð2Þ satisfies a Lipschitz condition, and the inequality lð1ÞðxÞ �

lð2ÞðxÞ holds everywhere.
Further, let XðiÞ

0 be two random variables, with Xð1Þ
0 � Xð2Þ

0 P-a.s., and let XðiÞ be solutions of

(113) with starting conditions XðiÞ
0 , for i¼ 1, 2. Then,

P Xð1Þ
t � Xð2Þ

t for all t � 0
h i

¼ 1:

Appendix C

Attaining the boundaries of the state space

In the following, we provide necessary and sufficient conditions to establish whether a stochastic
process with bounded state space I does or does not attain the boundaries of I. We limit our-
selves to the definitions and results of interest for this work, and refer the reader, for example, to
[33] Chapter 5.5 and [29] Chapter VII §3 for proofs.

In the following, I � R denotes a bounded open, semi-open or closed real interval, I8 ¼ ðl, rÞ
its interior, and x0 2 I8 the deterministic initial condition of a stochastic process Xt with state
space I. For x 2 I, the first time the process X hits x will be denoted by

Tx ¼ infft � 0jXt ¼ xg:

Definition C.1. A function s : I ! R is called a scale function for the process X (with X0 	 x0)
if it is strictly increasing and, for any a < x0 < b 2 I, it holds

P Ta < Tb½ � ¼ sðbÞ � sðx0Þ
sðbÞ � sðaÞ :

Remark. If s(x) is a scale function, also esðxÞ ¼ asðxÞ þ b is a scale function for any a > 0 and
b 2 R: Hence, we can arbitrarily set sðx0Þ ¼ 0: Monotonicity then implies s(a) < 0, s(b) > 0.

Roughly speaking, the modulus of the scale function at a point x quantifies the “inaccessibility”
of that point when starting from x0. The bigger jsðxÞj is with respect to jsðyÞj, the less likely x is
reached before y. The scale function of a process can be easily calculated if the infinitesimal gen-
erator of the process is known, or if the process is solution of an SDE. Here, we consider the
second case, and suppose that Xt is a (weak) solution of

dXt ¼ lðXtÞdt þ rðXtÞdWt (114)

where

r2ðxÞ > 0 for x 2 I


(115)

8 x 2 I

, 9 e > 0 :

ðxþe

x�e

1þ jlðyÞj
r2ðyÞ dy < 1: (116)

Notice that, if the coefficients are continuous in I and (115) holds true, then the local integrabil-
ity condition (116) is trivially fulfilled.

Proposition C.2. Let X be a weak solution of (114) where l and r satisfy (115) and (116).
Then, the scale function s(x) can be computed as

sðxÞ ¼
ðx
c
exp �

ðy
c
2
lðzÞ
r2ðzÞ dz

� �
dy, c 2 I

8
: (117)
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Theorem C.3, proved in [33], Chap. 5, Prop. 5.22, relates the finiteness of the scale function to
the attainability of the boundaries. Even if the endpoints l or r are not in I, we shall use the fol-
lowing notation:

sðlÞ ¼ lim
x!lþ

sðxÞ, sðrÞ ¼ lim
x!r�

sðxÞ:

Theorem C.3. Let X be a weak solution of SDE (114), under conditions (115), (116), with initial
condition x0 2 I8. Moreover, call T the random time

T :¼ infft � 0j Xt 62 I
 ¼ ðl, rÞg ¼ Tl�Tr:

Then:

i. if both jsðlÞj, jsðrÞj ¼ 1,

P T ¼ 1½ � ¼ 1 ¼ P inf
t�0

Xt ¼ l
h i ¼ P sup

t�0
Xt ¼ r

h i
;

ii. if both jsðlÞj, jsðrÞj < 1,

P lim
t!T

Xt ¼ l
h i ¼ sðrÞ � sðx0Þ

sðrÞ � sðlÞ ¼ 1� P lim
t!T

Xt ¼ r
h i

;

iii. if jsðlÞj < 1, jsðrÞj ¼ 1,

P lim
t!T

Xt ¼ l
h i ¼ 1 ¼ P sup

t�0
Xt < r

h i
;

iv. if jsðlÞj ¼ 1, jsðrÞj < 1,

P lim
t!T

Xt ¼ r
h i ¼ 1 ¼ P inf

t�0
Xt > l

h i
:

Case (i) of previous theorem guarantees that, if s explodes at both endpoints, then the process
never reaches the endpoints (i.e, T is infinite). However, no conclusion about the finiteness of T
can be drawn in any of the three other cases. To present equivalent conditions to the almost
surely finiteness of T, other two definitions are needed.

Definition C.4. Suppose the process X solves (114), under conditions (115), (116), and let s(x)
be the scale function associated with X. The speed measure associated with the process X and the
scale function s is the measure on ðI,BðRÞÞ given by

mðdxÞ ¼ 2dx
s0ðxÞr2ðxÞ , x 2 I:

Definition C.5. By denoting with s(x) the scale function and m(dx) the speed measure of a
process X, we set

vðxÞ :¼
ðx
c
ðsðxÞ � sðyÞÞ mðdyÞ, x 2 I: (118)

Notice that v(x) is always positive and its finiteness does not depend on the choice of c.
The following theorem provides a characterization of the almost sure finiteness of T ([33],

Chap. 5, Prop. 5.32).

Theorem C.6. Under the usual assumptions (115), (116), T is almost surely finite if and only if
one of the following mutually exclusive conditions holds:
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a. both vðlÞ < 1 and vðrÞ < 1,
b. vðlÞ < 1 and vðrÞ ¼ 1, but also sðrÞ ¼ 1,
c. vðrÞ < 1 and vðlÞ ¼ 1, but also sðlÞ ¼ �1:

Moreover, in case (a), the stronger condition E½T� < 1 holds true.
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