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Abstract
In this paper, we analyze some properties of a sixth-order elliptic operator arising in the
framework of the strain gradient linear elasticity theory for nanoplates in flexural deformation.
We first rigorously deduce the weak formulation of the underlying Neumann problem as well
as its well posedness. Under some suitable smoothness assumptions on the coefficients and
on the geometry, we derive interior and boundary regularity estimates for the solution of the
Neumann problem. Finally, for the case of isotropic materials, we obtain new Strong Unique
Continuation results in the interior, in the form of doubling inequality and three spheres
inequality by a Carleman estimates approach.
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1 Introduction

In this work, we begin a line of research aimed at studying some recent models for two-
dimensional micro- and nanomechanical systems, which we will refer to as nanoplates.
In particular, here we deal with the formulation and well-posedness of the direct problem
describing the static equilibrium of a nanoplate under Neumann boundary conditions, and
we derive some unique continuation properties of the solutions to the equation of nanoplates
in bending. The latter properties, as is well known, constitute the essential tool for the study
of inverse boundary value problems.

Nanoplates are nowadays widespread as mass sensors, biomarkers or gas sensors, as well
as actuators for vibration control purposes [12, 15]. The plate typology, although less common
than nanobeams, has some inherent mechanical advantages that include robustness, which
is a relevant feature for fabrication and functionalization, and higher stiffness, which results
in higher frequencies and small free vibration energy dissipation in both fluid and gaseous
environments [6, 40]. Albeit the detection of added mass is one of the most popular issues
in applications [11, 16, 27], other notable inverse problems for nanoplates involve force
or pressure sensing from dynamic data [19]. In addition, there has recently been growing
interest in the development of diagnostic techniques for assessing the presence of defects in
nanoplates, thus paving theway for the extension ofmethods hitherto designed for large-scale
mechanical systems to the nanodimensional size as well [46].

The modeling of nanoplates presents specific requirements due to the presence of size
effects, and therefore, classical Continuum Mechanics, as a length-scale free theory, loses
its predictive capacity in this field. In the last two decades, various Generalized Contin-
uum Mechanics theories, such as Couple Stress, Nonlocal or Strain/Stress Gradient, have
been proposed to model nanostructures and, specifically, nanoplates within the linear elas-
ticity setting. Among these theories, the Simplified Strain Gradient Elasticity theory (SSGE)
developed by Lam et al. [22] has achieved a remarkable diffusion and has been applied to
a wide variety of one-dimensional nanostructures, see, among others contributions, [2, 21].
Some recent works address the study of Kirchhoff–Love’s nanoplates using SSGE [33, 43].
Let us begin by recalling the partial differential equation that expresses the static equilibrium
of a nanoplate in bending under vanishing body forces and couples. Let � be the middle
surface of a nanoplate having uniform thickness t , and let us denote by (x1, x2) the Cartesian
coordinates of a point of �. It turns out that the transverse displacement u = u(x1, x2) of
the nanoplate satisfies the sixth-order elliptic equation

∂2

∂xi∂x j

(
−(Pi jlm + Ph

i jlm)
∂2u

∂xl∂xm
+ ∂

∂xk

(
Qi jklmn

∂3u

∂xl∂xm∂xn

))
= 0 in �, (1.1)

where the summation over repeated indexes i, j, k, l, m, n = 1, 2 is assumed. Here, Pi jlm

are the Cartesian components of the fourth-order tensor describing the material response in
classical Kirchhoff–Love theory, whereas Ph

i jlm and Qi jklmn are the components of a fourth-
and sixth-order tensor, respectively, that account for the threematerial length scale parameters
in the SSGE. We refer to Sect. 3 for explicit expressions of the above tensors for an isotropic
material.

The mechanical model of the nanoplate is completed by specifying the conditions that
apply at the boundary of �. As it occurs in the classical Kirchhoff–Love’s theory of plates
[20], one of the subtle issues is the determination of the Neumann boundary conditions [44].
It should be noted that these conditions also play a crucial role in the formulation of inverse
boundary value problems, as they determine the correlation between assigned quantities and
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unknown quantities at the boundary. Neumann boundary conditions on a curved smooth
boundary were derived by Papargyri–Beskou [36] for Kirchhoff–Love nanoplates within
a simplified version of Mindlin’s theory with a single scale constant [28]. Unfortunately,
the transformation from the fixed system of Cartesian coordinates to the local system of
coordinates on the boundary used in [36] did not take into account of the possible variation
of the local natural basis (n, τ ) in case of curved boundary. Here, the vectors n, τ are the unit
outer normal and the unit tangent to the boundary, respectively. The oversight was present
also in the treatment by Lazopoulos [23], and in [34] only natural conditions on straight
portions of the boundary were considered.

In what follows, we refer to the mechanical Kirchhoff–Love’s nanoplate model proposed
in [19] within the SSGE elasticity, in which the Neumann conditions are correctly derived for
smooth boundary (see problem (3.2)–(3.5)). In Sect. 3, we propose an alternative, although
equivalent, determination of these boundary conditions (Lemma 3.2) and we develop the
variational formulation of the Neumann problem. We prove existence and uniqueness of the
solution (Proposition 3.4) and improved regularity at the interior (Theorem 3.9) and up to
the boundary (Theorem 3.5). These properties are derived within the framework of high-
order boundary value elliptic problems in variational form and are instrumental to the second
contribution of this paper, namely the quantitative unique continuation results obtained in
Sect. 4 and which we describe below.

First of all, let us recall some basic notions concerning theUniqueContinuation Properties.
We say that a linear partial differential equation

L(u) = 0 in B, (1.2)

where B ⊂ R
n is an open ball (or, more generally, is a connected open set) enjoys the Weak

Unique Continuation Property (WUCP) if the following property holds true: for any open
subset ω of B,

L(u) = 0 in B and u ≡ 0 inω,

imply u ≡ 0 in B.
We say that L enjoys the Strong Unique Continuation Property (SUCP) if the following

property holds true: for any point x0 ∈ B and for any solution u to (1.2) which satisfies

∫
B�(x0)

u2 = O
(
�N

)
, as � → 0, ∀N ∈ N,

it follows that

u ≡ 0, in B.

It is obvious that SUCP implies WUCP.
In the present paper, we are interested in quantitative versions of the SUCP.More precisely,

we are interested in doubling inequality, which typically takes the form∫
B2r (x0)

u2 ≤ C
∫

Br (x0)
u2, (1.3)

where C depends on u but not on r . As shown in [13], a consequence of doubling inequality
is the SUCP for solutions to (1.2).

Here, we will prove the doubling inequality for the sixth-order equation of nanoplates
(1.1) consisting of inhomogeneous isotropic material (see Sect. 4.1). As recalled above, the
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doubling inequality implies SUCP. A crucial point to derive the doubling inequality for the
nanoplate is to observe that the solution to Eq. (1.1), with the tensors Pi jlm , Ph

i jlm and Qi jklmn

given, respectively, by (3.7), (3.8) and (3.17), satisfies the following differential inequality

|�3u| ≤ M

(
|D�2u| +

4∑
k=0

|Dku|
)

, (1.4)

where M is a positive constant. Now, (1.4) tells us that our task of proving the doubling
inequality is certainly included in the more general issue of Unique Continuation Property
for equations whose principal part is a power of Laplace operator. The literature on this
subject is very extensive; here, we only remember some papers, namely those concerning
the WUCP [14, 25, 35, 37, 39, 45] and those concerning the SUCP [4, 8–10, 26, 29, 47].

A good part of the interest on the subject of WUCP for equations whose principal part is
�m arises from the fact that the operator �m has multiple complex characteristic for m ≥ 2,
m ∈ N; hence, the general theory of Carleman estimates, conceived by Hörmander [17], see
also [24], does not apply. Here, we recall that Carleman estimates were introduced in 1939
in [7] by the homonymous mathematician, to prove the uniqueness for a Cauchy problem for
elliptic systems in two variables with nonanalytic coefficients. Carleman estimates are today
the most powerful and general tool to study the Unique Continuation Property of PDEs.

As it has been proven in [39], the Unique Continuation Property for solutions to the
inequality

|�mu| ≤ M
h∑

k=0

|Dku|, (1.5)

holds true whenever h = [ 3m
2 ] (for every p ∈ R, [p] represents the integer part of p). In

particular, in our case we have m = 3, hence h = 4. On the other side, it was proven, see
[48, Ch. 2, Sect. 3] and [14, Sect. 5] and references therein, that there exists an operator of
the form

�3 + L5,

where L5 is a fifth-order operator with continuous coefficients (of complex values), for which
the unique continuation property fails. At the light of previous considerations, the case (1.4)
is, in some sense, an “intermediate case” for which the WUCP and even more, the SUCP is
worth to study.

Our main results are:

(a) a Carleman estimates for the cube Laplacian contained in Proposition 4.5 which has been
obtained by a careful iteration of the Carleman estimate with a suitable singular weight
for Laplace operator, see Proposition 4.1) (see also [31]).

(b) the derivation of a doubling inequality for solutions u to (1.4) in the form of (1.3), see
Corollary 4.10 for precise statement.

(c) three sphere inequalities derived by the above-mentioned doubling inequalities that as
widely illustrated in [5] are fundamental tools to obtain estimates of propagation of
smallness.

Quantitative estimates in the formof doubling inequalities and of three spheres inequalities
have shown to be extremely useful in the treatment of inverse boundary value problems
associated with the fourth-order elliptic equation of the classical Kirchhoff–Love plate in
bending [29]. In a subsequent paper [32], we plan to apply such estimates to diagnostic
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problems of non-destructive testing for elastic nanoplates, which are modeled as inverse
boundary value problems of determining, within a nanoplate �, the possible presence of
an inclusion made of different material from boundary measurements of Neumann data and
corresponding work-conjugate quantities. As a matter of fact, the doubling inequalities and
their connection with Ap weight lead the way to estimates of measure (area) of very general
unknown inclusions. We refer to [3] for the context of second order elliptic equations and
systems and to [4, 10, 30] for the context of fourth order plate equation.

The plan of the paper is as follows. In Sect. 2, we collect some notation and definitions.
In Sect. 3, we introduce the formulation of the direct problem for the nanoplate mechanical
model and we prove its well-posedness (Proposition 3.4). We further analyze the properties
of the solution to the nanoplate equilibrium problem by providing a global regularity result
(Theorem 3.5) and an improved regularity result in the interior (Theorem 3.9). The unique
continuation issues are contained in Sect. 4, where we first derive a Carleman estimate for
the cube Laplacian (Proposition 4.5). By such an estimates, we achieve a doubling inequality
for the solution (Theorem 4.8) and a refined version of it which allows us to deduce a three
Spheres inequality for the solution at hand (Corollary 4.10). In the Appendix, we perform
a change of variable argument to express the second-order derivative on boundary points in
terms of intrinsic coordinates (proof of Lemma 3.2).

2 Notation

Let P = (x1(P), x2(P)) be a point ofR2. We shall denote by Br (P) the disk inR2 of radius
r and center P and by Ra,b(P) the rectangle of center P and sides parallel to the coordinate
axes, of length 2a and 2b, namely

Ra,b(P) = {x = (x1, x2) | |x1 − x1(P)| < a, |x2 − x2(P)| < b}. (2.1)

Definition 2.1 (Ck,α regularity) Let � be a bounded domain in R2. Given k, α, with k ∈ N,
k ≥ 1, 0 < α ≤ 1, we say that a portion S of ∂� is of class Ck,α with constants r0, M0 > 0,
if, for any P ∈ S, there exists a rigid transformation of coordinates under which we have
P = 0 and

� ∩ Rr0,2M0r0 = {x ∈ Rr0,2M0r0 | x2 > g(x1)},
where g is a Ck,α function on [−r0, r0] satisfying

g(0) = g′(0) = 0, |g‖Ck,α([−r0,r0]) ≤ M0r0,

where

‖g‖Ck,α([−r0,r0]) =
k∑

i=0

r i
0 sup

[−r0,r0]
|g(i)| + rk+α

0 |g|k,α,

|g|k,α = sup
t,s∈[−r0,r0]

t �=s

|g(k)(t) − g(k)(s)|
|t − s|α .

Weuse the convention to normalize all norms in such a way that their terms are dimensionally
homogeneous and coincide with the standard definition when the dimensional parameter
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equals one. For instance, given a function u : � → R we denote

‖u‖Hk (�) = r−1
0

(
k∑

i=0

r2i
0

∫
�

|Di u|2
) 1

2

with
∫

�

|Dku|2 =
∫

�

∑
|α|=k

|Dαu|2 (2.2)

and so on for boundary and trace norms. For any h > 0, we set

�h = {x ∈ � dist(x, ∂�) > h}.
Given a bounded domain � in R

2 such that ∂� is of class Ck,α , we consider as positive the
orientation of the boundary induced by the outer unit normal n in the following sense. Given
a point P ∈ ∂�, let us denote by τ = τ(P) the unit tangent at the boundary in P obtained by
applying to n a counterclockwise rotation of angle π

2 , that is τ = e3 × n, where × denotes
the vector product in R3 and {e1, e2, e3} is the canonical basis in R3.

Given any connected component C of ∂� and fixed a point P0 ∈ C, let us define as positive
the orientation of C associated with an arclength parameterization ψ(s) = (x1(s), x2(s)),
s ∈ [0, l(C)], such that ψ(0) = P0 and ψ ′(s) = τ(ψ(s)). Here, l(C) denotes the length of C.

Throughout the paper, we denote by w,α , α = 1, 2, w,s , and w,n the derivatives of a
function w with respect to the xα variable, to the arclength s and to the normal direction n,
respectively, and similarly for higher order derivatives.

We denote byM2,M3 the Banach spaces of second-order and the third-order tensors and
by M̂2, M̂3 the corresponding subspaces of tensors having components invariant with respect
to permutations of the indexes.

Let L(X , Y ) be the space of bounded linear operators between Banach spaces X and Y .
Given K ∈ L(M2,M2) and A, B ∈ M

2, we use the following notation

(KA)i j =
2∑

l,m=1

Ki jlm Alm, A · B =
2∑

i, j=1

Ai j Bi j . (2.3)

Similarly, given K ∈ L(M3,M3) and A, B ∈ M
3, we denote

(KA)i jk =
2∑

l,m,n=1

Ki jklmn Almn, A · B =
2∑

i, j,k=1

Ai jk Bi jk . (2.4)

Moreover, for any A ∈ M
n with n = 2, 3 we shall denote

|A| = (A · A)
1
2 . (2.5)

The linear space of the infinitesimal rigid displacements is defined as

R2 =
{

r(x) = c + W x, c ∈ R
2, W ∈ M

2, W + W T = 0
}

. (2.6)

Throughout the paper, summation over repeated indexes is assumed.

3 The Neumann problem

3.1 Nanoplate mechanical model

Let us consider a nanoplate � × (− t
2 ,

t
2

)
, where the middle surface � is a bounded domain

ofR2, and the thickness t is constant and small with respect to diam(�), i.e., t << diam(�).

123



Strong unique continuation and global.. 241

We assume that the boundary ∂� of � is of class C2,1, with constants r0, M0. Moreover,
given M1 > 0,

|�| ≤ M1r20 . (3.1)

The material of the nanoplate is assumed to be linearly elastic, inhomogeneous, center-
symmetric and isotropic, according to the simplified version of Toupin [41, 42] and Mindlin
and Eshel [28] theories proposed by Lam et al. [22].

Under the kinematic framework of the Kirchhoff–Love theory, and for infinitesimal defor-
mation, the statistical equilibrium problem of the nanoplate loaded at the boundary and under
vanishing body forces is described by the following Neumann boundary value problem [19]:

(Mαβ + M
h
αβγ,γ ),αβ = 0 in �, (3.2)

(Mαβ + M
h
αβγ,γ ),αnβ + ((Mαβ + M

h
αβγ,γ )nατβ),s + (M

h
αβγ τατβnγ ),ss

−(M
h
αβγ nγ (τα,sτβ − nα,snβ)),s = −V̂ on ∂�, (3.3)

(Mαβ + M
h
αβγ,γ )nαnβ + (M

h
αβγ nγ (ταnβ + τβnα)),s − M

h
αβγ nγ (nα,sτβ)

= M̂n on ∂�, (3.4)

M
h
αβγ nαnβnγ = −M̂h

n on ∂�. (3.5)

The functions Mαβ = Mαβ(u), M
h
αβγ = M

h
αβγ (u), α, β, γ = 1, 2, in the above equations

are the Cartesian components of the couple tensor M = (Mαβ) and the high-order couple

tensor M
h = (M

h
αβγ ), respectively, corresponding to the transverse displacement u(x1, x2),

u : � → R, of the point (x1, x2) = x belonging to the middle surface of the nanoplate. To
simplify the notation, the dependence of these quantities on u is not explicitly indicated in
(3.2)–(3.5) and in what follows.

As shown in [19], the functions Mαβ are given by

Mαβ = −(Pαβγ δ + Ph
αβγ δ)u,γ δ, (3.6)

where the fourth-order tensors P = P(x) ∈ L∞(�,L(M̂2, M̂2)), P
h = P

h(x) ∈
L∞(�,L(M̂2, M̂2)) have Cartesian components Pαβγ δ , Ph

αβγ δ given by

Pαβγ δ = B((1 − ν)δαγ δβδ + νδαβδγ δ), (3.7)

Ph
αβγ δ = (2a2 + 5a1)δαγ δβδ + (−a1 − a2 + a0)δαβδγ δ. (3.8)

It is easy to verify that, for every A, B ∈ M̂
2,

PA · B = PB · A, P
h A · B = P

h B · A, a.e. in �, (3.9)

The bending stiffness (per unit length) B = B(x) is given by the function

B(x) = t3E(x)

12(1 − ν2(x))
, (3.10)

where the Young’s modulus E and the Poisson’s coefficient ν of the material can be written
in terms of the Lamé moduli μ and λ as follows

E(x) = μ(x)(2μ(x) + 3λ(x))

μ(x) + λ(x)
, ν(x) = λ(x)

2(μ(x) + λ(x))
. (3.11)
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On μ and λ, we assume the following ellipticity conditions:

μ(x) ≥ α0 > 0, 2μ(x) + 3λ(x) ≥ γ0 > 0 a.e. in �, (3.12)

where α0, γ0 are positive constants.
The coefficients ai (x), i = 0, 1, 2, are given by (see [19])

a0(x) = 2μ(x)t l20, a1(x) = 2

15
μ(x)t l21, a2(x) = μ(x)t l22, (3.13)

where the material length scale parameters li are assumed to be positive constants. Denoting

l = min{l0, l1, l2}, (3.14)

by (3.12)–(3.14), we have

ai (x) ≥ tl2αh
0 > 0, i = 0, 1, 2, a.e. in �, (3.15)

where αh
0 = 2

15α0.

The functions M
h
i jk (i, j, k = 1, 2) are given by

M
h
i jk = Qi jklmnu,lmn, (3.16)

where the sixth-order tensor Q = Q(x) ∈ L∞(�,L(M̂3, M̂3)) can be expressed as follows
(i, j, k, l, m, n = 1, 2)

Qi jklmn = 1

3
(b0 − 3b1)δi jδknδlm + 1

6
(b0 − 3b1)(δik(δ jlδmn + δ jmδln)

+δ jk(δilδmn + δimδln)) + Q8(δkn(δilδ jm + δimδ jl))

+Q9(δ jn(δilδkm + δimδkl) + δin(δ jlδkm + δ jmδkl)), (3.17)

where

2(Q8 + 2Q9) = 5b1, (3.18)

b0(x) = 2μ(x)
t3

12
l20, b1(x) = 2

5
μ(x)

t3

12
l21 a.e. in �. (3.19)

Note that, by (3.17)–(3.18), the constitutive Eq. (3.16) become

M
h
i jk = 1

3
(b0 − 3b1)(δi j u,mmk + δiku,mmj + δ jku,mmi ) + 5b1u,i jk . (3.20)

It is easy to verify that, for every A, B ∈ M̂
3,

QA · B = QB · A, a.e. in �. (3.21)

The functions V̂ (shear force), M̂n (bending moment) and M̂h
n (high-order bending moment)

appearing in the equilibrium boundary Eqs. (3.3)–(3.5) are the work conjugate actions to

the deflection u, to the normal derivative ∂u
∂n and to the second normal derivative ∂2u

∂n2
at

the boundary ∂�, respectively. On these quantities, we require the following regularity
conditions

V̂ ∈ H−5/2(∂�), M̂n ∈ H−3/2(∂�), M̂h
n ∈ H−1/2(∂�). (3.22)

In order to simplify our notation, throughout the paper we will denote by C, C1, C2, . . .

positive constants which may vary from line to line.
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3.2 Variational formulation and well-posedness of the Neumann problem

In view of the variational formulation of the equilibrium problem (3.2)–(3.5), we recall the
following ellipticity result.

Lemma 3.1 (Strong convexity of the strain energy density; [19]) Let the tensors P, Ph ∈
L∞(�,L(M̂2, M̂2)) and Q ∈ L∞(�,L(M̂3, M̂3)) be given by (3.7), (3.8) and (3.17)–
(3.19), respectively, with Lamé moduli λ, μ satisfying (3.12).

For every w ∈ H3(�), we have

(P + P
h)D2w · D2w ≥ t(t2 + l2)ξP|D2w|2 a.e. in �, (3.23)

QD3w · D3w ≥ t3l2ξQ|D3w|2 a.e. in �, (3.24)

where ξP, ξQ are positive constants only depending on α0 and γ0, and l has been defined in
(3.14).

In order to introduce the variational formulation of the Neumann problem (3.2)–(3.5), we
need to derive an expression of the derivatives with respect to the Cartesian variables at
boundary points in terms of the derivatives with respect to local variables. We shall need the
following lemma, whose proof is postponed in Appendix.

Lemma 3.2 Let � be a bounded domain inR2 of C2 class, and let w ∈ H3(�). The following
change of variables formulas holds on ∂�:

w,β = w,n nβ + w,s τβ a.e. on ∂�, (3.25)

w,αβ = w,ss τατβ + w,nn nαnβ + w,sn (ταnβ + τβnα)

+w,s (τβτα,s −nβnα,s ) + w,n τβnα,s a.e. on ∂�. (3.26)

We are now in position to deduce the weak formulation of the problem (3.2)–(3.5). By
multiplying Eq. (3.2) by a test function w ∈ H3(�) and integrating by parts three times, we
get ∫

�

−Mαβ(u)w,αβ + M
h
αβγ (u)w,αβγ =

∫
∂�

(Mαβ(u) + M
h
αβγ,γ (u)),αnβw

−
∫

∂�

(Mαβ(u) + M
h
αβγ,γ (u))nαw,β +

∫
∂�

M
h
αβγ (u)nγ w,αβ . (3.27)

By using formulas (3.25) and (3.26) in the second and third boundary integral on the right
hand side of (3.27), respectively, we end up with∫

�

−Mαβ(u)w,αβ + M
h
αβγ (u)w,αβγ

=
∫

∂�

(Mαβ(u) + M
h
αβγ,γ (u)),αnβw

+
∫

∂�

[(Mαβ(u) + M
h
αβγ,γ (u))nατβ + (M

h
αβγ (u)nγ τατβ),s

−M
h
αβγ (u)nγ (τα,s τβ − nα,s nβ)],sw +

∫
∂�

{−(Mαβ(u) + M
h
αβγ,γ (u))nαnβ

+M
h
αβγ (u))nγ nα,sτβ − [M

h
αβγ (u))nγ (ταnβ + τβnα)],s}w,n

+
∫

∂�

M
h
αβγ (u))nαnβnγ w,nn .
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Hence, taking into account the boundary conditions (3.3)–(3.5), the latter implies that∫
�

−Mαβ(u)w,αβ + M
h
αβγ (u)w,αβγ = −

∫
∂�

V̂ w + M̂nw,n +M̂h
n w,nn . (3.28)

By expressing the derivative w,n and w,nn at the boundary with respect to Cartesian
coordinates and taking into account (5.7), we can rewrite (3.28) as follows∫

�

−Mαβ(u)w,αβ + M
h
αβγ (u)w,αβγ = −

∫
∂�

V̂ w + M̂nnαw,α +M̂h
n nαnβw,αβ .

(3.29)

Choosing as test function w = 1, w = x1, w = x2 in (3.29), we obtain the following three
compatibility conditions∫

∂�

V̂ = 0,
∫

∂�

V̂ x1 + M̂nn1 = 0,
∫

∂�

V̂ x2 + M̂nn2 = 0. (3.30)

Let us denote

a(u, w) =
∫

�

−Mαβ(u)w,αβ +M
h
αβγ (u)w,αβγ , (3.31)

L(w) = −
∫

∂�

V̂ w + M̂nw,n +M̂h
n w,nn , (3.32)

L̃(w) = −
∫

∂�

V̂ w + M̂nnαw,α +M̂h
n nαnβw,αβ . (3.33)

Let us notice that, by (3.28) and (3.29), we have that L(w) = L̃(w) for any w ∈ H3(�).
The variational formulation of the Neumann problem (3.2)–(3.5) is as follows.

Definition 3.3 (Weak formulation of the Neumann problem)
A function w ∈ H3(�) satisfying

a(u, w) = L(w), for every w ∈ H3(�), (3.34)

is called a weak solution to the Neumann problem (3.2)–(3.5).

From this definition, it is evident that, given a weak solution u, also u + l is a solution, for
every affine function l. Therefore, in order to uniquely identify the solution, we assume the
following normalization conditions∫

�

u = 0,
∫

�

u,α = 0, α = 1, 2. (3.35)

Proposition 3.4 (Well-posedness of the Neumann problem) Let � be a bounded domain
in R

2 with boundary ∂� of class C2,1 with constant r0, M0. Let the tensors P, Ph ∈
L∞(�,L(M̂2, M̂2)) and Q ∈ L∞(�,L(M̂3, M̂3)) be given by (3.7), (3.8) and (3.17)–
(3.19), respectively, with Lamé moduli λ, μ satisfying (3.12). Let V̂ ∈ H−5/2(∂�), M̂n ∈
H−3/2(∂�), M̂h

n ∈ H−1/2(∂�) such that the compatibility conditions (3.30) are satisfied.
Problem (3.2)–(3.5) admits a unique weak solution u ∈ H3(�) satisfying (3.35). Moreover,

‖u‖H3(�) ≤ C
(
‖V̂ ‖H−5/2(∂�) + r−1

0 ‖M̂n‖H−3/2(∂�) + r−2
0 ‖M̂h

n ‖H−1/2(∂�)

)
(3.36)
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where C > 0 only depends on M0, M1, t
r0

, l
r0

, ξP, ξQ (as defined in Lemma 3.1). Furthermore,
any weak solution to problem (3.2)–(3.5) is of the form u + e, where e is an affine function.

Proof We introduce the subspace H(�) of H3(�) defined by

H(�) = {v ∈ H3(�) :
∫

�

v = 0,
∫

�

v,α = 0, α = 1, 2}, (3.37)

endowed with the usual ‖·‖H3(�) norm. By the standard Poincaré inequality (see for instance
[29, Proposition 3.3]), we have that

r0
2
∫

�

|D2v|2 + r0
4
∫

�

|D3v|2 ≤ ‖v‖2H3(�)

≤ C

(
r0

2
∫

�

|D2v|2 + r0
4
∫

�

|D3v|2
)

(3.38)

where C > 0 is a constant only depending on M0, M1.
We consider the continuous bilinear form

a : H(�) × H(�) → R, (3.39)

where a is defined in (3.31). By Lemma 3.1 and (3.38), we have that, for every w ∈ H(�),

a(w,w) ≥ C

(
r30

∫
�

|D2w|2 + r50

∫
�

|D3w|2
)

≥ Cr0‖w‖2H3(�)
, (3.40)

with C > 0 only depending on t
r0
, l

r0
, ξP, ξQ, M0, M1. Hence, we may infer that the bilinear

form a is coercive. By standard trace inequalities, we have that for any w ∈ H(�)

|L̃(w)| ≤ Cr0
(
‖V̂ ‖H−5/2(∂�) + r−1

0 ‖M̂n‖H−3/2(∂�) + r−2
0 ‖M̂h

n ‖H−1/2(∂�)

)
‖w‖H3(�), (3.41)

with C > 0 only depending on M0, M1. From the latter, we deduce that L̃ is a continuous
functional on H(�). By the Lax–Milgram Theorem, we can infer that there exists a unique
u ∈ H(�) such that

a(u, w) = L̃(w), for any w ∈ H(�). (3.42)

Given any g ∈ H3(�), there exists w ∈ H(�) and an affine function e(x1, x2) = a + bx1 +
cx2 such that

g(x1, x2) = w(x1, x2) + a + bx1 + cx2. (3.43)

Byusing the compatibility conditions (3.30), (3.42) extends to every test function g ∈ H3(�),
that is u is the desired weak solution to problem (3.2)–(3.5). By using the weak solution u as
test function in (3.42) and combining (3.40), (3.41), we get (3.36). Finally, let us assume that
v ∈ H3(�) is a weak solution to (3.2)–(3.5). Hence, a(u − v,w) = 0, for any w ∈ H3(�)

and choosing as test function w = u − v and by Lemma 3.1 we deduce that ‖D2(u −
v)‖L2(�) = 0, meaning that u − v is an affine function a.e. in �. ��
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3.3 Advanced regularity

We conclude Sect. 3 with a global regularity result.

Theorem 3.5 (Global H4-regularity) Let � be a bounded domain in R
2 with boundary ∂�

of class C3,1 with constants r0, M0, and satisfying (3.1). Let u ∈ H3(�) be the weak solu-
tion of the Neumann problem (3.2)–(3.5) satisfying (3.35), where V̂ ∈ H−3/2(∂�), M̂n ∈
H−1/2(∂�), M̂h

n ∈ H1/2(∂�) are such that the compatibility conditions (3.30) are sat-
isfied. Assume that P, Ph defined in (3.7), (3.8) are of class C0,1(�) and satisfy the strong
convexity condition (3.23). Moreover, let us assume that Q, defined in (3.17), is of class
C0,1(�) and satisfies the strong convexity condition (3.24).

Then, u ∈ H4(�) and

‖u‖H4(�) ≤ C
(
‖V̂ ‖H−3/2(∂�) + r−1

0 ‖M̂n‖H−1/2(∂�) + r−2
0 ‖M̂h

n ‖H1/2(∂�)

)
, (3.44)

where C > 0 only depends on M0, M1, t
r0

, l
r0

, ξQ, ξP, ‖P‖C0,1(�), ‖Ph‖C0,1(�), ‖Q‖C0,1(�).

The proof of Theorem 3.5 is based on the following two results, the proof of which is given
at the end of this section.

Theorem 3.6 (Interior regularity) Let Bσ be an open ball in R
2 centered at the origin and

with radius σ . Let u ∈ H3(Bσ ) be such that

a(u, ϕ) = 0, for every ϕ ∈ H3
0 (Bσ ), (3.45)

where

a(u, ϕ) =
∫

Bσ

(P + P
h)D2u · D2ϕ + QD3u · D3ϕ. (3.46)

The tensors P,Ph ∈ C0,1(Bσ ), Q ∈ C0,1(Bσ ) defined in (3.7), (3.8), (3.17) satisfy the strong
convexity conditions (3.23), (3.24), respectively.

Then, u ∈ H4(B σ
2
) and we have

‖u‖H4(B σ
2

) ≤ C‖u‖H3(Bσ ), (3.47)

where C > 0 only depends on t
r0

, l
r0

, ξQ, ξP, ‖P‖C0,1(Bσ ), ‖Ph‖C0,1(Bσ ), ‖Q‖C0,1(Bσ ).

Theorem 3.7 (Boundary regularity) Let us denote by B+
σ the hemidisk {(x1, x2) ∈ R

2| x21 +
x22 < σ 2, x2 > 0} and let �σ = {(x1, x2) ∈ R

2| − σ < x1 < σ, x2 = 0}, �+
σ = ∂ B+

σ \�σ .
Let u ∈ H3(B+

σ ) be such that

a+(u, ϕ) = l+(ϕ), for every ϕ ∈ H3
�+

σ
(B+

σ ), (3.48)

where H3
�+

σ
(B+

σ ) = {g ∈ H3(B+
σ )| g = 0, ∂g

∂n = 0, ∂2g
∂n2

= 0 on �+
σ },

a+(u, ϕ) = aE+(u, ϕ) + aK+(u, ϕ), (3.49)

aE+(u, ϕ) =
∫

B+
1

2∑
i, j=1

E
(i, j) Di u · D jϕ, (3.50)

aK+(u, ϕ) =
∫

B+
1

3∑
i, j=1

K
(i, j) Di u · D jϕ, (3.51)
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and l+(·) is a continuous functional on H3
�+

σ
(B+

σ ) such that

|l+(ϕ)| ≤ G‖ϕ‖H2(B+
σ ) for every ϕ ∈ H3

�+
σ
(B+

σ ), (3.52)

where G is a positive constant and E
(i, j) ∈ L(Mi ,M j ), i, j = 1, 2 (M1 ≡ R

2), K(i, j) ∈
L(Mi ,M j ), i, j = 1, 2, 3, f ∈ L2(B+

σ ). Let the tensor fields E(i, j), K(i, j) be of C0,1 class

in B+
σ satisfying

2∑
i, j=1

σ 4−(i+ j)‖E(i, j)‖
C0,1(B+

σ )
≤ E, (3.53)

3∑
i, j=1

σ 6−(i+ j)‖K(i, j)‖
C0,1(B+

σ )
≤ K , (3.54)

for some positive constants E, K . Moreover, let E(2,2) and K
(3,3) satisfy the symmetry condi-

tions (3.9) and (3.21), respectively, and the strong convexity conditions E(2,2) D2w · D2w ≥
ξE|D2w|2, K(3,3) D3w · D3w ≥ ξK|D3w|2 in B+

σ , for every w ∈ H3(B+
σ ), where ξE, ξK are

positive constants.
Then, u ∈ H4(B+

σ
2
) and we have

‖u‖H4(B+
σ
2

) ≤ C
(

G + ‖u‖H3(B+
σ )

)
, (3.55)

where C > 0 only depends on ξK, ξE, E, K .

Proof of Theorem 3.5 Without loss of generality, we can assume r0 = 1.
By the regularity of ∂�, we can construct a finite collection of open sets �0, �̃1, . . . , �̃N

and, for every j , j = 1, . . . , N , a homeomorphism T( j) of C3,1 class which maps � j =
�̃ j ∩� into B+

1 ,� j ∩∂� into�1 and ∂� j ∩� into�+
1 , such that� = �0∪

(
∪N

j=1T
−1
( j) (B+

1
2
)

)
,

�0 ⊂ �δ0 , where δ0 > 0 only depends on M0. Note that here we have used the notation
introduced in Theorem 3.7 for �1 and �+

1 . By the regularity of ∂� and (3.1), the number N
is controlled by a constant only depending on M0 and M1.

The set �0 can be covered by a finite number of balls contained in �. Therefore, using
the local interior regularity result of Theorem 3.6, we have that u ∈ H4(�0) and

‖u‖H4(�0)
≤ C‖u‖H3(�), (3.56)

where C > 0 only depends on t , l, M1, ξQ, ξP, ‖P‖C0,1(�), ‖Ph‖C0,1(�), ‖Q‖C0,1(�).
We now fix j , 1 ≤ j ≤ N , and we determine an estimate analogous to (3.56) in � j .
Let us define

H3
∂� j ∩�(� j ) = {

f ∈ H3(� j )| h = h,n = h,nn = 0 on ∂� j ∩ �
}
. (3.57)

The function u ∈ H3(�), solution of (3.2)–(3.5), satisfies∫
� j

(P + P
h)D2u · D2ϕ + QD3u · D3ϕ = L+(ϕ) for every ϕ ∈ H3

∂� j ∩�(� j ),

(3.58)

where

L+(ϕ) = −
∫

� j ∪∂�

V̂ ϕ + M̂nϕ,n +M̂h
n ϕ,nn . (3.59)
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Hereinafter, to simplify the notation, we denote T( j) by T , and we define

y = T (x), y ∈ B+
1 , (3.60)

x = T −1(y), x ∈ � j , (3.61)

v(y) = u(T −1(y)), (3.62)

ψ(y) = ϕ(T −1(y)), ψ ∈ H3
�+
1
(B+

1 ). (3.63)

By changing the variables in (3.58) according to (3.60), the function v belongs to H3(B+
1 )

and satisfies
∫

B+
1

2∑
i, j=1

E
(i, j) Div · D jψ +

3∑
i, j=1

K
(i, j) Div · D jψ = L+(ψ)

for every ψ ∈ H3
�+
1
(B+

1 ), (3.64)

where

L+(ψ) = −
∫

�1

(
V̂ψ + M̂n ST Dψ · ST ν|S−T n|

+M̂h
n

(
RDψ + ST D2ψS

)
ST ν · ST ν|S−T n|2

)
|Sτ |−1, (3.65)

with

V̂(y) = V̂ (T −1(y)), (3.66)

M̂n = M̂n(T −1(y)), (3.67)

M̂h
n = M̂h

n (T −1(y)) (3.68)

and

Skr = ∂Tk

∂xr
, Rksr = ∂2Tk

∂xs∂xr
. (3.69)

Here, ν is the outer unit normal to B+
1 . As shown in [29] (Proposition 8.2), the expressions of

the tensorsE(i, j) ∈ L(Mi ,M j ), i, j = 1, 2, (M1 ≡ R
2) can be deduced passing to Cartesian

coordinates, namely

2∑
i, j=1

E
(i, j) Div · D jψ = (Pi jrs + Ph

i jrs)(Skr Slsv,kl + Rkrsv,k)

(Smi Snjψ,mn + Rni jψ,n) |det S|−1 .

(3.70)

By the regularity assumptions on P, Ph and the regularity of the boundary ∂�, the tensors

E
(i, j) belong to C0,1(B+

1 ), i, j = 1, 2. Moreover, by the properties of P and P
h , the fourth-

order tensor E(2,2) satisfies the symmetry conditions

E (2,2)
mnkl = E (2,2)

klmn = E (2,2)
klnm, m, n, k, l = 1, 2, in B+

1 (3.71)

and the strong convexity condition

E
(2,2) A · A ≥ ξ∗

E
|A|2 in B+

1 ,

(3.72)
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for every 2 × 2 symmetric matrix A, where ξ∗
E

> 0 is a constant only depending on t , l, M0

and ξE.
The term in (3.64) involving the tensors K(i, j) ∈ L(Mi ,M j ) can be analyzed similarly.

We have

3∑
i, j=1

K
(i, j) Div · D jψ = Qi jklmn(Sαl Sβm Sγ nv,αβγ + Tlmnαβv,αβ + Zlmnαv,α)

·(Sδi Sε j Sϑkv,δεϑ + Ti jkτχψ,τχ + Zi jkτψ,τ ) |det S|−1 ,

(3.73)

where

Tlmnαβ = Rαln Sβm + Rβmn Sαl + Rαml Sβn, (3.74)

Zlmnα = ∂3Tα

∂xl∂xm∂xn
. (3.75)

By the regularity assumptions on Q and on the boundary ∂�, the tensors K(i, j) belong to

C0,1(B+
1 ), i, j = 1, 3.

The sixth-order tensor K(3,3) satisfies the symmetry conditions (3.21) and the strong
convexity condition

(Claim A) K
(3,3) A · A ≥ ξ∗

K
|A|2 in B+

1 , (3.76)

for every A ∈ M̂
3, where ξ∗

K
> 0 is a constant only depending on t , l, M0 and ξQ. A proof

of Claim A is presented at the end of this proof.
By the regularity of theNeumann data, by the Poincaré inequality and by trace inequalities,

we have

|L+(ψ)| ≤ C
(‖V̂‖H−3/2(�1)

‖ψ‖H3/2(�1)
+ ‖M̂n‖H−1/2(�1)

‖Dψ‖H1/2(�1)

+‖M̂h
n‖H1/2(�1)

(‖Dψ‖H−1/2(�1)
+ ‖D2ψ‖H−1/2(�1)

))

≤ C
(
‖V̂‖H−3/2(�1)

+ ‖M̂n‖H−1/2(�1)
+ ‖M̂h

n‖H1/2(�1)

)
‖ψ‖H2(B+

1 ),

(3.77)

for every ψ ∈ H3
�+
1
(B+

1 ), where C > 0 only depends on M0.

Finally, by the regularity result up to the boundary, see Theorem 3.7, we have that v ∈
H4(B+

1
2
) and

‖v‖H4(B+
1
2
) ≤ C

(
‖V̂‖H−3/2(�1)

+ ‖M̂n‖H−1/2(�1)
+ ‖M̂h

n‖H1/2(�1)
+ ‖v‖H3(B+

1 )

)
,

(3.78)

and, by applying the homeomorphism T , we have

‖u‖H4(�
j, 12

) ≤ C
(
‖V̂ ‖H−3/2(� j ∪∂�) + ‖M̂n‖H−1/2(� j ∪∂�)

+‖M̂h
n ‖H1/2(� j ∪∂�) + ‖u‖H3(� j )

)
, (3.79)
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where � j, 12
= T −1(B+

1
2
) and C > 0 only depends on t , l, M0, M1, ξQ, ‖P‖C0,1(�),

‖Ph‖C0,1(�), ‖Q‖C0,1(�). Then, estimate (3.44) follows by (3.56), (3.79) and (3.36). ��

Proof of Claim A Let us notice that, for every A ∈ M̂
3, the matrix A given by

Almn = Sαl Sβm Sγ n Aαβγ (3.80)

belongs to M̂
3. Therefore, by the strong convexity of Q, we have

K
(3,3) A · A = QA · A |det S|−1 ≥ ξ∗

Q
|A|2 in B+

1 , (3.81)

for every A ∈ M̂
3, where ξ∗

Q
> 0 is a constant only depending on t , l, M0 and ξQ. To

conclude, it is enough to prove that there exists a constant C > 0 such that

|A|2 ≥ C |A|2 in B+
1 , (3.82)

for every A ∈ M̂
3. Noting that Ai jk = δiαδ jβδkγ Aαβγ and δiα = ((ST )−1)il Sαl , we have

|A|2 = Ai jk Ai jk = �pl�qm�rnAlmnApqr , (3.83)

where � = S−1S−T . By applying Cauchy–Schwarz’s inequality iteratively and observing

that |�| ≤ C in B+
1 , it is found that |A|2 ≤ c|A|2, where c > 0 only depends on M0, which

implies (3.82). ��
Proof of Theorem 3.6 Without loss of regularity, we can assume σ = 1. Let ϑ ∈ C∞

0 (R2)

be a function such that 0 ≤ ϑ(x) ≤ 1 in R
2, with ϑ ≡ 1 in Bρ , ϑ ≡ 0 in R

2\Bσ0 and
|Dkϑ | ≤ C , k = 1, . . . , 4, where ρ = 1

2 , σ0 = 1
2 (ρ + 1) = 3

4 and C > 0 is an absolute
constant.

Let s ∈ R \ {0}, and let us introduce the difference operator in the αth direction as

(τα,sv)(x) = v(x + seα) − v(x)

s
, α = 1, 2, (3.84)

for any function v. In what follows, we shall assume that |s| ≤ 1
16 .

For every function ϕ ∈ H3
0 (B1), let us still denote by ϕ ∈ H3(R2) its extension to the

planeR2 obtained by assuming ϕ ≡ 0 inR2\B1. Let us notice that, for every smooth function
ψ and α = 1, 2, we have

Dβτα,s(ψ) = τα,s(Dβψ), (3.85)

where Dβ = Dβ1
1 Dβ2

2 = ∂β1

∂x
β1
1

∂β2

∂x
β2
2

, β = (β1, β2).

Let us start by elaborating the term in a(u, ϕ) containing the third-order derivatives, with
u replaced by τα,s(ϑu).

We have

(ϑu),αβγ = ϑu,αβγ + (ϑ,αu,βγ + ϑ,βu,αγ + ϑ,γ u,αβ)

+(ϑ,αβu,γ + ϑ,αγ u,β + ϑ,βγ u,α) + ϑ,αβγ u

or, equivalently, in compact notation

D3(ϑu) = ϑ D3u + Dϑ ⊗ D2u + D2ϑ ⊗ Du + u D3ϑ. (3.86)

Therefore, we have
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∫
B1

QD3(τα,s(ϑu)) · D3ϕ =
∫

B1

Q(τα,s(ϑ D3u)) · D3ϕ

+
∫

B1

Q(τα,s(Dϑ ⊗ D2u + D2ϑ ⊗ Du)) · D3ϕ

+
∫

B1

Q(τα,s(u D3ϑ)) · D3ϕ ≡ I1 + I2 + I3. (3.87)

Let us estimate I2. By the definition of τα,s , we have

τα,s(Dϑ ⊗ D2u + D2ϑ ⊗ Du) = Dϑ(x + seα) ⊗ τα,s(D2u) + τα,s(Dϑ) ⊗ D2u

+D2ϑ(x + seα) ⊗ τα,s(Du) + τα,s(D2ϑ) ⊗ Du

and then

|I2| ≤ C‖u‖H3(B1)
‖D3ϕ‖L2(B1)

, (3.88)

where C > 0 only depends on ‖Q‖L∞(B1)
. Similarly, we have

|I3| ≤ C‖u‖H1(B1)
‖D3ϕ‖L2(B1)

, (3.89)

where C > 0 only depends on ‖Q‖L∞(B1)
.

Let us rewrite the term I1 as follows

I1 =
∫

B1

Q(τα,s(ϑ D3u)) · D3ϕ =
∫

B1

τα,s(Q(ϑ D3u)) · D3ϕ

−
∫

B1

(τα,sQ)(x)(ϑ D3u)(x + seα) · D3ϕ ≡ I ′
1 + I ′′

1 , (3.90)

where

|I ′′
1 | ≤ C‖D3u‖L2(B1)

‖D3ϕ‖L2(B1)
, (3.91)

with a constant C > 0 only depending on ‖Q‖C0,1(B1)
. By integrating by parts, and recalling

that ϕ ∈ H3
0 (B1), we have

I ′
1 =

∫
B1

τα,s(Q(ϑ D3u)) · D3ϕ = −
∫

B1

Q(ϑ D3u) · (τα,−s(D3ϕ))

= −
∫

B1

Q(D3u) · (ϑτα,−s(D3ϕ)) = −
∫

B1

Q(D3u) · D3(ϑτα,−sϕ)

+
∫

B1

Q(D3u) · (D3ϑ(τα,−sϕ) + Dϑ ⊗ D2(τα,−sϕ) + D2ϑ ⊗ D(τα,−sϕ)
)

= −
∫

B1

Q(D3u) · D3(ϑτα,−sϕ) + Ĩ ′
1. (3.92)

By Poincaré’s inequality in H3
0 (B1), we have

| Ĩ ′
1| ≤ C‖D3u‖L2(B1)

‖D3ϕ‖L2(B1)
, (3.93)

where C > 0 only depends on ‖Q‖L∞(B1)
.

By using (3.88), (3.89), (3.92), (3.93) in (3.87), we have, for every ϕ ∈ H3
0 (B1),∫

B1

QD3(τα,s(ϑu)) · D3ϕ = −
∫

B1

Q(D3u) · D3(ϑτα,−sϕ) + rQ, (3.94)
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with

|rQ| ≤ C‖u‖H3(B1)
‖D3ϕ‖L2(B1)

, (3.95)

where C > 0 only depends on ‖Q‖C0,1(B1)
.

By proceeding similarly with the term in a(u, ϕ) containing the second-order derivatives
(with u replaced by τα,s(ϑu)), for every ϕ ∈ H3

0 (B1) we have∫
B1

(P + P
h)D2(τα,s(ϑu)) · D2ϕ = −

∫
B1

(P + P
h)(D2u) · D2(ϑτα,−sϕ) + rP,

(3.96)

with

|rP| ≤ C‖u‖H2(B1)
‖D2ϕ‖L2(B1)

, (3.97)

where C > 0 only depends on ‖P‖C0,1(B1)
, ‖Ph‖C0,1(B1)

.

By (3.94)–(3.97), for every ϕ ∈ H3
0 (B1) we have

a(τα,s(ϑu), ϕ) = −a(u, ϑτα,−sϕ) + r , (3.98)

where, by Poincaré’s inequality,

|r | ≤ C‖u‖H3(B1)
‖D3ϕ‖L2(B1)

(3.99)

and C > 0 only depends on ‖P‖C0,1(B1)
, ‖Ph‖C0,1(B1)

, ‖Q‖C0,1(B1)
. The function ϑτα,−sϕ ∈

H3
0 (B1) is a test function and then, by the weak formulation of the problem (3.45), for every

ϕ ∈ H3
0 (B1) we have

a(τα,s(ϑu), ϕ) ≤ C‖D3ϕ‖L2(B1)
‖u‖H3(B1)

, (3.100)

where C > 0 only depends on ‖P‖C0,1(B1)
, ‖Ph‖C0,1(B1)

, ‖Q‖C0,1(B1)
.

Let us take ϕ = τα,s(ϑu). By the strong convexity of the strain energy (see Lemma 3.1),
for every s such that |s| ≤ 1

16 we have

‖D3τα,s(ϑu)‖L2(B1)
≤ C‖u‖H3(B1)

(3.101)

and, therefore,

‖D4u‖L2(B 1
2
) ≤ C‖u‖H3(B1)

, (3.102)

where C > 0 only depends on t , l, ξQ, ‖P‖C0,1(B1)
, ‖Ph‖C0,1(B1)

, ‖Q‖C0,1(B1)
. ��

Proof of Theorem 3.7 Let us assume for simplicity σ = 1. Let us denote by ϑ ∈ C∞
0 (R2)

a function such that 0 ≤ ϑ(x) ≤ 1 for every x ∈ R
2, ϑ ≡ 1 in Bρ , ϑ ≡ 0 in R

2\Bσ0 ,
|Dkϑ | ≤ C , k = 1, . . . , 4, where ρ = 1

2 , σ0 = 1
2 (ρ + 1) = 3

4 , and C > 0 is an absolute
constant.

For every function ϕ ∈ H2
�+
1
(B+

1 ), we still denote by ϕ ∈ H2(R+
2 ) its extension to R

2+
obtained by assuming ϕ ≡ 0 in R

2+\B+
1 . Let s ∈ R\{0}, with |s| ≤ 1

16 . Let us notice that if
u ∈ H3(B+

1 ), then τ1,s(ϑu) ∈ H3
�+
1
(B+

1 ).

We shall firstly derive an estimate of the tangential derivative ∂
∂x1

D3u.
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By using arguments analogous to those adopted to prove (3.98), (3.99) in the study of the
interior regularity, for every ϕ ∈ H3

�+
1
(B+

1 ), we have

a+(τ1,s(ϑu), ϕ) = −a+(u, ϑτ1,−sϕ) + r+, (3.103)

where, by Poincaré’s inequality applied on H3
�+
1
(B+

1 ),

|r+| ≤ C‖u‖H3(B+
1 )‖D3ϕ‖L2(B+

1 ), (3.104)

with a constant C > 0 only depending on E and K . The function ϑτ1,−sϕ ∈ H3
�+
1
(B+

1 ) is

a test function and then, by (3.103), (3.104), by the weak formulation of the problem (3.48)
and by Poincaré’s inequality in H3

�+
1
(B+

1 ), for every ϕ ∈ H3
�+
1
(B+

1 ) we have

|a+(τ1,s(ϑu), ϕ)| ≤ C
(

G + ‖u‖H3(B+
1 )

)
‖D3ϕ‖L2(B+

1 ), (3.105)

where C > 0 only depends on E and K .
We now estimate from below a+(ψ,ψ) for every ψ ∈ H3

�+
1
(B+

1 ). We write

a+(ψ,ψ) =
∫

B+
1

K
(3,3) D3ψ · D3ψ + R(ψ,ψ), (3.106)

where

R(ψ,ψ) = aE+(ψ,ψ) +
∫

B+
1

3∑
i, j=1;i+ j<6

K
(i, j) Diψ · D jψ. (3.107)

By Poincaré’s inequality in H3
�+
1
(B+

1 ) and by the standard inequality 2ab ≤ εa2 + ε−1b2

for every a, b ∈ R and ε > 0, the remainder R(ψ,ψ) can be estimated as follows

|R(ψ,ψ)| ≤ C

(
ε‖D3ψ‖2

L2(B+
1 )

+
(
1 + 1

ε

)
‖D2ψ‖2

L2(B+
1 )

)
(3.108)

for every ψ ∈ H3
�+
1
(B+

1 ), where C > 0 only depends on E and K . Taking ψ = τ1,s(ϑu), by

the strong convexity of K(3,3) and choosing ε small enough in (3.108), we have

a+(τ1,s(ϑu), τ1,s(ϑu)) ≥ C2‖D3(τ1,s(ϑu))‖2
L2(B+

1 )
− C3‖D2(τ1,s(ϑu))‖2

L2(B+
1 )

(3.109)

where C2 > 0, C3 > 0 only depend on ξK, E , K . By (3.105) (with ϕ = τ1,s(ϑu)) and
(3.109), for every s such that |s| ≤ 1/16, we have

‖D3(τ1,s(ϑu))‖2
L2(B+

1 )
≤ C‖D3(τ1,s(ϑu))‖L2(B+

1 )

(
G + ‖u‖H3(B+

1 )

)

+C‖u‖2
H3(B+

1 )
, (3.110)

which implies ∥∥∥∥ ∂

∂x1
D3u

∥∥∥∥
L2(B+

ρ )

≤ C
(

G + ‖u‖H3(B+
1 )

)
, (3.111)

where C > 0 only depends on ξK, E , K .
To obtain an analogous estimate for the normal derivative ∂

∂x2
D3u, we use the following

lemma.
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Lemma 3.8 [1, Lemma 9.3] Assume that the function v ∈ L2(B+
σ ) has weak tangential

derivative ∂v
∂x1

∈ L2(B+
σ ) and there exists a constant K0 > 0 such that

∣∣∣∣∣
∫

B+
σ

v
∂3ϕ

∂x32

∣∣∣∣∣ ≤ K0‖ϕ‖H2(B+
σ ), for every ϕ ∈ C∞

0 (B+
σ ). (3.112)

Then, for every ρ < σ , v ∈ H1(B+
ρ ) and

‖v‖H1(B+
ρ ) ≤ C

(
K0 + ‖v‖L2(B+

σ ) + σ

∥∥∥∥ ∂v

∂x1

∥∥∥∥
L2(B+

σ )

)
, (3.113)

where C > 0 only depends on ρ
σ

.

Inwhat follows, we shall consider test functionsϕ ∈ C∞
0 (B+

σ0
), where σ0 = 3/4 (and σ = 1).

From the expression (3.49) of a+(u, ϕ), we have∫
B+

σ0

K (3,3)
222lmnu,lmnϕ,222 = a+(u, ϕ) −

∫
B+

σ0

∑
(i, j,k)�=(2,2,2)

K (3,3)
i jklmnu,lmnϕ,i jk

−
∫

B+
σ0

2∑
i, j=1

E
(i, j) Di u · D jϕ

−
∫

B+
1

∑
(i, j)�=(3,3)

K
(i, j) Di u · D jϕ. (3.114)

Let us estimate the terms on the right-hand side of (3.114). By the weak formulation (3.48),
we have

|a+(u, ϕ)| ≤ G‖ϕ‖H2(B+
σ0 ). (3.115)

Let us consider the second term on the right hand side of (3.114). Since (i, j, k) �= (2, 2, 2),
without loss of generality we can assume k = 1. Integrating by parts with respect to x1, for
every ϕ ∈ C∞

0 (B+
σ0

) we have
∫

B+
σ0

K (3,3)
i j1lmnu,lmnϕ,i j1 = −

∫
B+

σ0

(K (3,3)
i j1lmnu,lmn),1ϕ,i j

= −
∫

B+
σ0

K (3,3)
i j1lmn,1u,lmnϕ,i j − K (3,3)

i j1lmnu,lmn1ϕ,i j (3.116)

and therefore, by (3.111) and Hölder’s inequality, we have∣∣∣∣∣
∫

B+
σ0

K (3,3)
i j1lmnu,lmnϕ,i j1

∣∣∣∣∣ ≤ C(G + ‖u‖H3(B+
1 ))‖D2ϕ‖L2(B+

σ0 ), (3.117)

where C > 0 only depends on ξK, E , K .
By using Poincaré’s inequality in C∞

0 (B+
σ0

), the terms involving E
(i, j) in (3.114) can be

estimated as follows∣∣∣∣∣∣
∫

B+
σ0

2∑
i, j=1

E
(i, j) Di u · D jϕ

∣∣∣∣∣∣ ≤ C‖u‖H2(B+
1 )‖D2ϕ‖L2(B+

σ0 ), (3.118)
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where C > 0 only depends on E . The estimate of the terms in (3.114) involving K
(i, j) is

easy, with the exception of those terms which involve D3ϕ (that is j = 3). These integrals
can be estimated by integrating by parts and discharging one derivative from ϕ to u. Let us
consider the term with K

(2,3), the analysis of the term with K
(1,3) being similar. Passing to

Cartesian coordinates and integrating by parts, for every ϕ ∈ C∞
0 (B+

σ0
) we have

∣∣∣∣∣
∫

B+
σ0

K
(2,3) D2u · D3ϕ

∣∣∣∣∣ =
∣∣∣∣∣
∫

B+
σ0

K (2,3)
i jklmu,lmϕ,i jk

∣∣∣∣∣
=

∣∣∣∣∣
∫

B+
σ0

(K (2,3)
i jklmu,lm),kϕ,i j

∣∣∣∣∣
≤ C‖u‖H3(B+

1 )‖D2ϕ‖L2(B+
σ0 ), (3.119)

where C > 0 only depends on K . Therefore, by using (3.115), (3.117)–(3.119) in (3.114),
for every ϕ ∈ C∞

0 (B+
σ0

) we obtain
∣∣∣∣∣
∫

B+
σ0

K (3,3)
222lmnu,lmnϕ,222

∣∣∣∣∣ ≤ C(G + ‖u‖H3(B+
1 ))‖ϕ‖H2(B+

σ0 ), (3.120)

where C > 0 only depends on ξK, E , K .
Let us define

v =
2∑

l,m,n=1

K (3,3)
222lmnu,lmn . (3.121)

By Lemma 3.8, for every ρ < σ0, the function v belongs to H1(B+
ρ ) and, by (3.111),

‖v‖H1(B+
ρ ) ≤ C

(
G + ‖u‖H3(B+

1 )

)
, (3.122)

where C > 0 only depends on ξK, E , K . By the ellipticity of the tensor K(3,3), K (3,3)
222222 > 0

and then

u,222 = (K (3,3)
222222)

−1

⎛
⎝v −

∑
(l,m,n)�=(2,2,2)

K (3,3)
222lmnu,lmn

⎞
⎠ . (3.123)

By (3.111), we deduce that u,222 ∈ H1(B+
ρ ), with

‖u,2222 ‖L2(B+
ρ ) ≤ C

(
G + ‖u‖H3(B+

1 )

)
, (3.124)

whereC > 0 only depends on ξK, E , K . Finally, by (3.111) and (3.124) we obtain the wished
inequality

‖u‖H4(B+
ρ ) ≤ C

(
G + ‖u‖H3(B+

1 )

)
, (3.125)

where C > 0 only depends on ξK, E , K . ��
We conclude this section with an improved interior regularity result, which will be useful

in dealing with the unique continuation properties obtained in Sect. 4.1.
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Theorem 3.9 (Improved interior regularity) Let Bσ be an open ball in R
2 centered at the

origin and with radius σ . Let u ∈ H3(Bσ ) be such that

a(u, ϕ) = 0 for every ϕ ∈ H3
0 (Bσ ), (3.126)

with

a(u, ϕ) =
∫

Bσ

(P + P
h)D2u · D2ϕ + QD3u · D3ϕ, (3.127)

where the tensors P,Ph ∈ C1,1(Bσ ,L(M̂2, M̂2)), Q ∈ C2,1(Bσ ,L(M̂3, M̂3)) defined in
(3.7), (3.8), (3.17) satisfy the strong convexity conditions (3.23), (3.24), respectively.

Then, u ∈ H6(B σ
8
) and we have

‖u‖H6(B σ
8

) ≤ C‖u‖H3(Bσ ), (3.128)

where C > 0 only depends on t
r0

, l
r0

, ξQ, ξP, ‖P‖C1,1(Bσ ), ‖Ph‖C1,1(Bσ ), ‖Q‖C2,1(Bσ ).

Proof We can assume, without loss of generality, σ = 1. By Theorem 3.6, we know that
u ∈ H4(B 1

2
). Therefore, differentiating (3.2) with respect to x p , p = 1, 2, and integrating

by parts, we obtain

a(u,p, ϕ) = lp(ϕ) for every ϕ ∈ H3
0 (B 1

2
), (3.129)

where a(·, ·) is defined in (3.127) and

lp(ϕ) =
∫

B 1
2

(Pi jlm + Ph
i jlm),pu,lmϕ,i j − (Qi jklmn,pu,lmn),iϕ, jk . (3.130)

By the regularity assumptions on the coefficients and (3.47), we have

|lp(ϕ)| ≤ C‖u‖H3(B1)
‖D2ϕ‖L2(B 1

2
), (3.131)

where C > 0 is a constant only depending on t , l, ξQ, ξP, ‖P‖C0,1(B1)
, ‖Ph‖C0,1(B1)

,
‖Q‖C1,1(B1)

.
At this point, by (3.129) and (3.131), we can use arguments analogous to those adopted

in the proof of (3.98) (with u replaced by u,p) to obtain

‖D5u‖L2(B 1
4
) ≤ C‖u‖H3(B1)

. (3.132)

Finally, estimate (3.128) follows by iterating once more the above procedure. ��
Remark 3.10 Let us notice that, as it is evident from the proofs, Proposition 3.4, Theorem
3.5 and Theorem 3.9 extend to the anisotropic case, for P, Ph , Q satisfying the symmetry
conditions (3.9), (3.21), and the strong convexity conditions (3.23), (3.24).

4 Doubling and three spheres inequalities

In this section,we derive unique continuation results in the formof three-spheres and doubling
inequalities for solutions to the differential inequality

|�3u| ≤ M(|D�2u| +
4∑

k=0

|Dku|) in B1 (4.1)
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where M is a positive constant. Let us notice that the solutions to (3.2), with P,Ph and
Q given by (3.7), (3.8) and (3.17), respectively, satisfy (4.1); see Lemma 4.6 for a precise
statement. Our method is based on Carleman estimates.

4.1 Carleman estimates

We shall need the following results, see [31], Proposition 5.1 and inequality (5.46) in the
proof of Proposition 3.5, respectively.

Proposition 4.1 (Carleman estimate for �) Let ε ∈ (
0, 1

2

]
. Let us define

ρ(x) = φε (|x |) , for x ∈ B1 \ {0}, (4.2)

where

φε(s) = s

(1 + sε)1/ε
. (4.3)

Then, there exist τ0 > 1, C > 1, only depending on ε, such that for every τ ≥ τ0 and for
every u ∈ C∞

0 (B1\{0})

C
∫

ρ4−2τ |�u|2dx ≥
1∑

k=0

τ 3−2k
∫

ρ2k+ε−2τ |Dku|2dx . (4.4)

Furthermore, we have

C
∫

ρ4−2τ |�u|2dx ≥ τ 2r
∫

ρ−1−2τ u2dx

+
1∑

k=0

τ 3−2k
∫

ρ2k+ε−2τ |Dku|2dx (4.5)

for every τ ≥ τ0, for every r ∈ (0, 1) and for every u ∈ C∞
0 (B1 \ Br/4).

Remark 4.2 Let us notice that
s

21/ε
≤ φε ≤ s, ∀s, 0 ≤ s ≤ 1,

|x |
21/ε

≤ ρ(x) ≤ |x |, ∀x ∈ B1. (4.6)

Proposition 4.3 (Carleman estimate for �2) Let ε ∈ (
0, 1

2

)
. Let ρ and φε the same functions

defined in Proposition 4.1. Then, there exist absolute constants τ > 1, C > 1 depending on
ε only, such that

3∑
k=0

τ 6−2k
∫

ρ2k+2ε−2τ |DkU |2dx ≤ C
∫

ρ8−2τ (�2U )2dx, (4.7)

for every τ ≥ τ and for every U ∈ C∞
0 (B1\{0}).

Lemma 4.4 Given ζ ∈ C2(B1\{0}) and u ∈ C∞
0 (B1\{0}), the following identities

hold true:
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∫
ζu�u = −

∫
(ζ |Du|2 + (Du · Dζ )u), (4.8a)

∫
ζ

2∑
j,k=1

|∂ jku|2 =
∫

(−D2ζ Du · Du + �ζ |Du|2 + ζ(�u)2), (4.8b)

∫
ζ

2∑
i, j,k=1

|∂i jku|2 = −
∫

ζ�u�2u

+
∫

(−tr(D2u D2ζ D2u) + �ζ |D2u|2 + 1

2
�ζ(�u)2). (4.8c)

For a proof of the above identities, see [29, pp. 2351–2352].

Proposition 4.5 (Carleman estimate for �3) Let ε ∈ (
0, 1

5

]
. Let ρ and φε the same functions

defined in Proposition 4.1.
Then, there exist constants τ > 1, C > 1 and R1 ∈ (0, 1] only depending on ε such that

C
∫

ρ4−2τ |�3u|2dx ≥ τ

∫
ρ2+ε−2τ

∣∣D�2u
∣∣2 dx

+
4∑

k=0

τ 9−2k
∫

ρ2k+5ε−8−2τ |Dku|2dx, (4.9)

for every τ ≥ τ and for every u ∈ C∞
0 (BR1\ {0}).

Furthermore, we have

C
∫

ρ4−2τ |�3u|2dx ≥ τ

∫
ρ2+ε−2τ

∣∣D�2u
∣∣2 dx +

4∑
k=0

τ 9−2k
∫

ρ2k+5ε−8−2τ |Dku|2dx

+τ 6r3
∫

ρ−11−2τ u2dx, (4.10)

for every τ ≥ τ , for every r ∈ (0, R1) and for every u ∈ C∞
0 (BR1\ Br/4).

Proof Let us apply estimate (4.4) to �3u = �
(
�2u

)
to obtain (for brevity we omit dx in

the integrals)

C
∫

ρ4−2τ |�3u|2 ≥ τ

∫
ρ2+ε−2τ

∣∣D�2u
∣∣2 + τ 3

∫
ρε−2τ

∣∣�2u
∣∣2 , (4.11)

for every τ ≥ τ0 and for every u ∈ C∞
0 (B1\{0}), where C depends on ε only. Now, in order

to estimate from below the second term at right hand side of (4.11), we apply estimate (4.7).
To do this, we change τ in 4 − ε

2 + τ in (4.7). We have

C
∫

ρε−2τ |�2u|2 ≥
3∑

k=0

τ 6−2k
∫

ρ2k+3ε−8−2τ |Dku|2, (4.12)

for every τ ≥ τ and for every u ∈ C∞
0 (B1\{0}). By (4.11) and (4.12), we get

C
∫

ρ4−2τ |�3u|2 ≥ τ

∫
ρ2+ε−2τ

∣∣D�2u
∣∣2 + τ 3

2

∫
ρε−2τ

∣∣�2u
∣∣2

+1

2

3∑
k=0

τ 9−2k
∫

ρ2k+3ε−8−2τ |Dku|2. (4.13)
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Now, we need to estimate from below the second term on the right hand side of (4.13). By
(4.8b) (just writing �u instead of u), we have∫

ζ(�2u)2 =
∫

ζ |D2�u|2 −
∫ (

�ζ |D�u|2 − D2ζ D�u · D�u
)
. (4.14)

Furthermore, let σ ≥ ε be a number that we will choose later. Since ρ ≤ 1, we have trivially∫
ρε−2τ

∣∣�2u
∣∣2 ≥

∫
ρσ−2τ

∣∣�2u
∣∣2 . (4.15)

Now, by choosing

ζ = ρσ−2τ ,

we have for τ ≥ 1
∣∣D2ζ

∣∣ ≤ Cτ 2ρ−2+σ−2τ ,

where C > 0 only depends on ε.
Hence, by (4.14) and (4.15) we have∫

ρε−2τ
∣∣�2u

∣∣2 ≥ ∫
ρσ−2τ

∣∣D2�u
∣∣2 − C∗τ 2

∫
ρ−2+σ−2τ

∣∣D3u
∣∣2 , (4.16)

where C∗ only depends on ε. By (4.16), we have trivially

τ 3
∫

ρε−2τ
∣∣�2u

∣∣2 ≥ τ

∫
ρε−2τ

∣∣�2u
∣∣2 ≥ τ

∫
ρσ−2τ

∣∣D2�u
∣∣2

−C∗τ 3
∫

ρ−2+σ−2τ
∣∣D3u

∣∣2 . (4.17)

Now, by (4.13) and (4.17) we have

C
∫

ρ4−2τ |�3u|2 ≥ τ

∫
ρ2+ε−2τ

∣∣D�2u
∣∣2 + τ

∫
ρσ−2τ

∣∣D2�u
∣∣2

+
(

−C∗τ 3
∫

ρ−2+σ−2τ
∣∣D3u

∣∣2 + τ 3
∫

ρ−2+3ε−2τ
∣∣D3u

∣∣2)
︸ ︷︷ ︸

J

+
2∑

k=0

τ 9−2k
∫

ρ2k+3ε−8−2τ |Dku|2dx, (4.18)

for every τ ≥ τ and for every u ∈ C∞
0 (B1\{0}). Now, let us choose

σ = 4ε

and denote

R0 = (1/2C∗)1/ε .

Taking into account (4.6), we have, for every u ∈ C∞
0 (BR0\{0}),

J = τ 3
∫ (−C∗ρε + 1

)
ρ−2+3ε−2τ

∣∣D3u
∣∣2 ≥ τ 3

2

∫
ρ−2+3ε−2τ

∣∣D3u
∣∣2 . (4.19)
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By (4.18) and (4.19), we get

C
∫

ρ4−2τ |�3u|2 ≥ τ

∫
ρ2+ε−2τ

∣∣D�2u
∣∣2 + τ

∫
ρ4ε−2τ

∣∣D2�u
∣∣2

+
3∑

k=0

τ 9−2k
∫

ρ2k+3ε−8−2τ |Dku|2, (4.20)

for every τ ≥ τ and for every u ∈ C∞
0 (BR0\{0}).

In order to obtain the term with
∣∣D4u

∣∣2, we use again (4.8b) in the following form (just
writing ∂2hku, h, k = 1, 2 instead of u)∫

ζ(�∂2hku)2 =
∫

ζ
∣∣D2∂2hku

∣∣2 −
∫ (

�ζ
∣∣D∂2hku

∣∣2 − D2ζ D∂2hku · D∂2hku
)

(4.21)

for h, k = 1, 2. By choosing

ζ = ρ5ε−2τ

, we have ∣∣D2ζ
∣∣ ≤ Cτ 2ρ−2+5ε−2τ ,

where C > 0 only depends on ε. Hence, by (4.21), we have

τ

∫
ρ4ε−2τ

∣∣D2�u
∣∣2 ≥ τ

∫
ρ5ε−2τ

∣∣D2�u
∣∣2

≥ τ

∫
ρ5ε−2τ

∣∣D4u
∣∣2 − C̃τ 3

∫
ρ−2+5ε−2τ

∣∣D3u
∣∣2 . (4.22)

By (4.20) and (4.22), we have that

C
∫

ρ4−2τ |�3u|2 ≥ τ

∫
ρ2+ε−2τ

∣∣D�2u
∣∣2 + τ

∫
ρ5ε−2τ

∣∣D4u
∣∣2

+τ 3
∫ (−C̃ρ2ε + 1

)
ρ−2+3ε−2τ

∣∣D3u
∣∣2

︸ ︷︷ ︸
J̃

+
2∑

k=0

τ 9−2k
∫

ρ2k+3ε−8−2τ |Dku|2. (4.23)

Let

R1 = min
{

R0,
(
1/2C̃

)1/2ε}
.

Taking into account (4.6), we have, for every u ∈ C∞
0 (BR1\{0}),

J̃ = τ 3
∫ (−C̃ρ2ε + 1

)
ρ−2+3ε−2τ

∣∣D3u
∣∣2 ≥ τ 3

2

∫
ρ−2+3ε−2τ

∣∣D3u
∣∣2 . (4.24)

By (4.23) and (4.24), we get

C
∫

ρ4−2τ |�3u|2 ≥ τ

∫
ρ2+ε−2τ

∣∣D�2u
∣∣2

+
4∑

k=0

τ 9−2k
∫

ρ2k+5ε−8−2τ |Dku|2, (4.25)
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for every τ ≥ τ and for every u ∈ C∞
0 (BR1\{0}). Hence, (4.9) is proved.

Now, we prove (4.10). Let us apply (4.5) in the following form

τ 2r
∫

ρ−1−2τ v2dx ≤ C
∫

ρ4−2τ |�v|2, (4.26)

for every v ∈ C∞
0 (BR1 \ Br/4).

If v = �2u, then (4.26) gives∫
ρ4−2τ |�3u|2dx ≥ C−1τ 2r

∫
ρ−1−2τ |�2u|2. (4.27)

If v = �u, then (4.26) gives∫
ρ−1−2τ |�2u|2 =

∫
ρ
4−2

(
5
2+τ

)
|�2u|2 ≥ C−1τ 2r

∫
ρ−6−2τ |�u|2

= C−1τ 2r
∫

ρ4−2(5+τ)|�u|2

≥ C−2τ 4r2
∫

ρ−11−2τ u2. (4.28)

Hence, by (4.27) and (4.28) we get∫
ρ4−2τ |�3u|2 ≥ C−3τ 6r3

∫
ρ−11−2τ u2dx, (4.29)

for every u ∈ C∞
0 (BR1 \ Br/4) and τ ≥ τ .

Finally, by (4.25) and (4.29) we obtain (4.10). ��

4.2 Doubling and three sphere inequalities

Lemma 4.6 Let P,Ph ∈ C1,1(B1,L(M̂2, M̂2)),Q ∈ C2,1(B1,L(M̂3, M̂3)) be given by
(3.7), (3.8), (3.17) and satisfying the strong convexity conditions (3.23), (3.24), respectively.

Let u ∈ H6(B1) be a weak solution to (3.2). Then, there exists a constant M > 0 depending
on M2, α0, t, l only, such that

|�3u| ≤ M

(
|D�2u| +

4∑
k=0

|Dku|
)

in B1, (4.30)

where M2 = ‖P‖C1,1(B1)
+ ‖Ph‖C1,1(B1)

+ ‖Q‖C2,1(B1)
.

Proof The proof follows by a differentiating argument and formulas (3.20). ��
Lemma 4.7 (Caccioppoli-type inequality) Let K be a positive number, and let us assume that
u ∈ H6(B1) satisfies the inequality

∣∣�3u
∣∣ ≤ K

5∑
k=0

∣∣∣Dku
∣∣∣ . (4.31)

Then, for every r , 0 < r < 1, we have

‖Dhu‖L2(B r
2
) ≤ C

rh
‖u‖L2(Br )

, ∀h = 1, . . . , 6, (4.32)

where C is a constant only depending on K .
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Proof We apply [18, Th. 17.1.3] to the sixth-order elliptic operator �3 obtaining that, for
any r ∈ (0, 1) and k = 0, 1, . . . , 6, we have

∥∥∥dk(x)Dku
∥∥∥

L2(Br )
≤ C

(∥∥d6(x)�3u
∥∥

L2(Br )
+ ‖u‖L2(Br )

) k
6 ‖u‖1−

k
6

L2(Br )
, (4.33)

where

d(x) = dist (x, ∂ Br ) = r − |x |, x ∈ Br

and C > 0 is an absolute constant.
By applying Young inequality

aβb1−β ≤ βεa + (1 − β)ε
− β

1−β b,

for every a, b ≥ 0, β ∈ [0, 1), ε > 0, and by using (4.31) and (4.33), we get

5∑
k=0

∫
Br

d2k(x)

∣∣∣Dku
∣∣∣2 dx ≤ Cε2

∫
Br

d12(x)|�3u|2dx + Cε ‖u‖2L2(Br )

≤ C K 2ε2
5∑

k=0

∫
Br

d12(x)

∣∣∣Dku
∣∣∣2 dx

+Cε ‖u‖2L2(Br )
, (4.34)

where C > 0 is an absolute constant and Cε > 0 depends on ε only. Hence, we have

5∑
k=0

∫
Br

(
1 − C K 2ε2d12−2k(x)

)
d2k(x)

∣∣∣Dku
∣∣∣2 ≤ Cε ‖u‖2L2(Br )

. (4.35)

Now, if ε =
(

1
2C K 2

)1/2
, then

1 − C K 2ε2d12−2k(x) ≥ 1 − C K 2ε2 ≥ 1

2
, k = 0, 1, . . . , 5.

Hence, we have

5∑
k=0

( r

2

)2k
∫

Br/2

∣∣∣Dku
∣∣∣2 dx ≤

5∑
k=0

∫
Br

d2k(x)

∣∣∣Dku
∣∣∣2 dx ≤ C ‖u‖2L2(Br )

. (4.36)

Furthermore, by (4.33) for k = 6, (4.36) and (4.31) we get∫
Br

d12(x)
∣∣D6u

∣∣2 dx ≤ C
∫

Br

d12(x)|�3u|2dx + C ‖u‖2L2(Br )

≤ C
5∑

k=0

∫
Br

d12(x)

∣∣∣Dku
∣∣∣2 dx + C ‖u‖2L2(Br )

≤ C ‖u‖2L2(Br )
, (4.37)

where C > 0 depends on K only.
Now, by (4.36) and (4.37) we have
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6∑
k=0

( r

2

)2k
∫

Br/2

∣∣∣Dku
∣∣∣2 dx ≤

6∑
k=0

∫
Br

d2k(x)

∣∣∣Dku
∣∣∣2 dx ≤ C ‖u‖2L2(Br )

(4.38)

and (4.32) follows. ��
Theorem 4.8 (Doubling inequality) Let M be a positive number and R1 the number
introduced in Proposition 4.5. Assume that U ∈ H6 (B1) satisfy

∣∣�3U
∣∣ ≤ M

(∣∣D�2U
∣∣ +

4∑
k=0

∣∣∣DkU
∣∣∣
)

. (4.39)

There exists C > 1, only depending on M, such that, for every r < R1
28

we have
∫

B2r

U 2 ≤ C N k
∫

Br

U 2 (4.40)

where

N =
∫

BR1
U 2

∫
BR1/27

U 2
(4.41)

(with k = 8).

Lemma 4.9 Let U ∈ H6 (B1) satisfy (4.39). Then, there exists an absolute constant R1 ∈
(0, 1] such that for every R and for every r such that 0 < 2r < R < R1

2 , we have

R(2r)−2τ
∫

B2r

U 2 + R1−2τ
∫

BR

U 2

≤ C M
2

[( r

27

)−2τ
∫

Br

U 2 +
(

R1

26

)−2τ ∫
BR1

U 2

]
, (4.42)

for every τ ≥ τ̃ ≥ 1, with τ̃ depending on M only and C a positive absolute constant.

Proof Let r , R satisfy

0 < 2r < R <
R1

2
. (4.43)

Let η ∈ C∞
0 ((0, R1)) such that

0 ≤ η ≤ 1, (4.44)

η = 0 in
(
0,

r

4

)
∪
(
2

3
R1, 1

)
, η = 1 in

[
r

2
,

R1

2

]
, (4.45)

∣∣∣∣dkη

dtk
(t)

∣∣∣∣ ≤ Cr−k in
( r

4
,

r

2

)
, for 0 ≤ k ≤ 6, (4.46)

∣∣∣∣dkη

dtk
(t)

∣∣∣∣ ≤ C R−k
1 in

(
R1

2
,
2R1

3

)
, for 0 ≤ k ≤ 6. (4.47)

Let us define

ξ(x) = η(|x |). (4.48)
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Let us fix ε = 1
5 , and let us shift τ in τ − 4 in estimate (4.10), by adjusting the exponent of

such an estimate, we have

τ 6r3
∫

BR1

ρ−3−2τ u2dx + τ

∫
BR1

ρ11−2τ
∣∣D�2u

∣∣2 +
4∑

k=0

τ 9−2k
∫

BR1

ρ2k+1−2τ |Dku|2

≤ C
∫

BR1

ρ12−2τ |�3u|2, (4.49)

for every τ ≥ τ , for every r ∈ (0, R1) and for every u ∈ C∞
0 (BR1\ Br/4), where R1 has been

introduced in Proposition 4.5 and is an absolute constant since here we have chosen ε = 1
5 .

By a density argument, we may apply the Carleman estimate (4.49) to u = ξU , obtaining

τ 6r3
∫

BR1

ρ−3−2τ ξ2U 2dx + τ

∫
BR1

ρ11−2τ
∣∣D�2(ξU )

∣∣2

+
4∑

k=0

τ 9−2k
∫

BR1

ρ2k+1−2τ |Dk(ξU )|2 ≤ C
∫

BR1

ρ12−2τ |�3(ξU )|2 (4.50)

for τ ≥ τ and C an absolute constant. Since we have

∣∣�3(ξU )
∣∣2 ≤ 2ξ2

∣∣�3U
∣∣2 + C

5∑
k=0

∣∣∣DkU
∣∣∣2 ∣∣∣D6−kξ

∣∣∣2 , (4.51)

denoting

J0 =
∫

Br/2\Br/4

ρ12−2τ
5∑

k=0

(
rk−6|DkU |

)2
, (4.52)

J1 =
∫

B2R1/3\BR1/2

ρ12−2τ
5∑

k=0

(Rk−6
1 |DkU |)2, (4.53)

we have

τ 6r3
∫

BR1

ρ−3−2τ ξ2U 2dx + τ

∫
BR1

ρ11−2τ
∣∣D�2(ξU )

∣∣2

+
4∑

k=0

τ 9−2k
∫

BR1

ρ2k+1−2τ |Dk(ξU )|2 ≤ C
∫

BR1

ρ12−2τ |�3U |2 + C J0 + C J1,

(4.54)

for τ ≥ τ , with C an absolute constant.
Now, by using (4.43)–(4.48), (4.51), performing a trivial estimate from below of the left

hand side of (4.54) and a trivial estimate from above of the right hand side of (4.54), we get

τ 6r3
∫

BR1

ρ−3−2τ |ξU |2 + τ

∫
BR1/2\Br/2

ρ11−2τ
∣∣D�2U

∣∣2

+
4∑

k=0

τ 9−2k
∫

BR1/2\Br/2

ρ2k+1−2τ |DkU |2 ≤ C M2
∫

BR1/2\Br/2

ρ12−2τ |D�2U |2
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+C M2
∫

BR1/2\Br/2

4∑
k=0

τ 8−2k
∫

BR1/2\Br/2

ρ3 · ρ2k+1−2τ |DkU |2 + C M
2
(J0 + J1),

(4.55)

for τ ≥ τ , with C an absolute constant and M = √
M2 + 1.

Let us move on the left of (4.55) the first and the second term on the right of (4.55) and
we obtain

τ 6r3
∫

BR1

ρ−3−2τ |ξU |2 +
∫

BR1/2\Br/2

(
τ − C M2ρ

)
ρ11−2τ

∣∣D�2U
∣∣2

+
4∑

k=0

∫
BR1/2\Br/2

τ 8−2k (τ − C M2ρ3) ρ2k+1−2τ |DkU |2

≤ C M
2
(J0 + J1), (4.56)

for τ ≥ τ , where C is the same constant that appears in (4.55).
Now, taking into account that ρ ≤ 1 in BR1 , by (4.56) we obtain

τ 6r3
∫

BR1

ρ−3−2τ |ξU |2 + τ

2

∫
BR1/2\Br/2

ρ11−2τ
∣∣D�2U

∣∣2

+1

2

4∑
k=0

τ 9−2k
∫

BR1/2\Br/2

ρ2k+1−2τ |DkU |2

≤ C M
2
(J0 + J1), (4.57)

for τ ≥ τ̃ , where (recall that τ ≥ 1)

τ̃ = max
{
2C M

2
, τ

}
.

Let us estimate J0 and J1.
We start by observing that by (4.6) for any x ∈ Br/2\Br/4 we have that

r

27
≤ ρ(x) ≤ r

2
. (4.58)

From (4.32), (4.52) and (4.58), we have

J0 =
∫

Br/2\Br/4

ρ12−2τ
5∑

k=0

(
rk−6|DkU |

)2 ≤ C
( r

27

)−2τ 5∑
k=0

∫
Br/2

(
rk |DkU |

)2

≤ C
( r

27

)−2τ
∫

Br

U 2, (4.59)

where C depends on M .
Similarly, we observe that by (4.6) for any x ∈ B2R1/3\BR1/2 we have that

R1

26
≤ ρ(x) ≤ 2R1

3
. (4.60)

Again from (4.32), (4.53) and (4.60), we have

J1 ≤ C

(
R1

26

)−2τ ∫
BR1

U 2. (4.61)
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By (4.57), (4.59), (4.61), we have

τ 6r3
∫

BR1

ρ−3−2τ |ξU |2 + τ 9
∫

BR1/2\Br/2

ρ1−2τ U 2

≤ C M
2

(( r

27

)−2τ
∫

Br

U 2 +
(

R1

26

)−2τ ∫
BR1

U 2

)
, (4.62)

for every τ ≥ τ̃ .
Now, recalling that 2r < R < R1

2 , by (4.44) (4.45), we have trivially

τ 6r3
∫

BR1

ρ−3−2τ |ξU |2 ≥ 1

8
(2r)−2τ

∫
B2r \Br/2

U 2, (4.63)

and

τ 9
∫

BR1/2\Br/2

ρ1−2τ U 2 ≥ (R)1−2τ
∫

BR\Br/2

U 2. (4.64)

By (4.62), (4.63) and (4.64), we have

(2r)−2τ
∫

B2r \Br/2

U 2 + R1−2τ
∫

BR\Br/2

U 2

≤ C M
2

[( r

27

)−2τ
∫

Br

U 2 +
(

R1

26

)−2τ ∫
BR1

U 2

]
, (4.65)

for every τ ≥ τ̃ . Now, adding 2R(2r)−2τ
∫

Br/2
U 2 to both sides of (4.65) we get the wished

estimate (4.42) for r < R/2 and R < R1
2 . ��

Proof of Theorem 4.8 Let us fix R = R1
27

in (4.42) obtaining

R1

27
(2r)−2τ

∫
B2r

U 2 +
(

R1

27

)1−2τ ∫
BR1/27

U 2

≤ C M
2

[( r

27

)−2τ
∫

Br

U 2 +
(

R1

26

)−2τ ∫
BR1

U 2

]
, (4.66)

for every τ ≥ τ̃ , where τ̃ depends on M only and C is an absolute constants.
Now, choosing τ = τ0, where

τ0 = τ̃ + log4
27C M

2
N

R1
(4.67)

and

N =
∫

BR1
U 2

∫
BR1/27

U 2
(4.68)

we have (
R1

27

)1−2τ ∫
BR1/27

U 2 ≥ C M
2
(

R1

26

)−2τ ∫
BR1

U 2.
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Hence, by (4.66), we obtain

R1

27
(2r)−2τ0

∫
B2r

U 2 ≤ C M
2
( r

27

)−2τ0
∫

Br

U 2, (4.69)

where C is an absolute constant. Using (4.67) and (4.69), we have∫
B2r

U 2 ≤ C N k
∫

Br

U 2, (4.70)

where C depends on M only and k = 8.
The proof is complete. ��

Corollary 4.10 (Doubling inequality and three sphere inequality) Assume that U ∈ H6 (B1)

satisfies inequality (4.39).
Then, there exists an absolute constant R1 ∈ (0, 1] such that for every r ≤ s ≤ R1

28
, we

have

∫
Bs

U 2 ≤ C N k
( s

r

)log2(C N k
) ∫

Br

U 2, (4.71)

where N is given by (4.41) and the constant C > 0 only depends on M.
In addition, if 2r ≤ s ≤ R1

28
, then we have

∫
Bs

U 2 ≤
(

C
∫

BR1

U 2

)1−θ̃ (s,r) (∫
Br

U 2
)θ̃ (s,r)

, (4.72)

where

θ̃ (s, r) = 1

1 + 2k log2
s
r

and the constant C > 0 only depends on M.

Proof Let us prove (4.71). Let r < s ≤ R1
28
. Denote

j = [
log2

(
sr−1)] ,

(where, for every a ∈ R
+, [a] denotes the integer part of a). We have

2 j r ≤ s < 2 j+1r .

By iteration, (4.40) gives

∫
Bs

U 2 ≤
∫

B2 j+1r

U 2 ≤
(

C N k
) j+1

∫
Br

U 2 ≤ C N k
( s

r

)log2(C N k )
∫

Br

U 2

and (4.71) follows. Now, let us prove (4.72). By elementary properties of logarithm function
and by (4.71), we have, for 2r ≤ s ≤ R1

28
,

∫
Bs

U 2 ≤
(

C N k
)2 log2 s

r
∫

Br

U 2, (4.73)
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Now, by (4.41), we have trivially

N =
∫

BR1
U 2

∫
B R1

27

U 2
≤

∫
BR1

U 2

∫
Bs

U 2
.

By the last inequality and by (4.73), we have

(∫
Bs

U 2
)1+2klog2

s
r ≤

(
C

∫
BR1

U 2

)2k log2
s
r ∫

Br

U 2

which implies (4.72). ��
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5 Appendix

Proof of Lemma 3.2 Formula (3.25) is standard. By a density argument, it is not restrictive to
assume w ∈ C2(�). Let s be an arclength defined on ∂�. Locally ∂� is represented either
as (ξ1, g(ξ1)), or as (g(ξ2), ξ2), with g ∈ C2[a, b]. To fix ideas, let us assume that ∂� is
locally represented as (ξ1, g(ξ1)). The arclength s, up to an additive constant, is given by

s(ξ1) = ±
∫ ξ1

a

√
1 + (g′(t))2dt

the sign depending on the fact that the domain � is described locally either as {x =
(x1, x2) | x2 > g(x1)} or as {x = (x1, x2) | x2 < g(x1)}, respectively.

To fix ideas, let us consider the first situation, so that we have

s′(ξ1) =
√
1 + (g′(ξ1))2, ξ ′

1(s) = 1√
1 + (g′(ξ1(s)))2

. (5.1)

The unit tangent and outer normal vector at (ξ1, g(ξ1)) are given by

τ =
(

1√
1 + (g′(ξ1))2

,
g′(ξ1)√

1 + (g′(ξ1))2
,

)
, (5.2)

n =
(

g′(ξ1)√
1 + (g′(ξ1))2

,
−1√

1 + (g′(ξ1))2

)
. (5.3)
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It is useful to notice that n1 = τ2, n2 = −τ1.
We have

τ1,s = −n2,s = −g′g′′

(1 + (g′)2)2
|ξ1(s), τ2,s = n1,s = g′′

(1 + (g′)2)2
|ξ1(s). (5.4)

Recalling that the curvature K is given by

K = g′′

(1 + (g′)2)3/2
|ξ1(s), (5.5)

we can rewrite the above formulas in the following form

nα,s = Kτα, τα,s = −Knα. (5.6)

Let us introduce a local coordinate system (y1, y2) = (s, z), where s is the arclength
parameter and z is the shift along the direction of the outer unit normal n. Let us consider the
following map

x = ϕ(y), (x1, x2) = ϕ(y1, y2) = ϕ(s, z) s ∈ I , z ∈ (−δ, δ),

ϕ(s, z) = (ξ1(s), g(ξ1(s))) + zn

=
(

ξ1(s) + z
g′(ξ1(s))√

1 + (g′(ξ1(s)))2
, g(ξ1(s)) − z

1√
1 + (g′(ξ1(s)))2

)
.

where I is an open interval and δ is a positive constant.
The Jacobian matrix of ϕ is

Jϕ(s, z) =
⎛
⎜⎝

1√
1+(g′)2

+ zg′′
(1+(g′)2)2

g′√
1+(g′)2

g′
(

1√
1+(g′)2

+ zg′′
(1+(g′)2)2

)
−1√
1+(g′)2

⎞
⎟⎠ , (5.7)

where g′ and g′′ have to be computed in ξ1(s).
The determinant of the above matrix is given by

det(Jϕ) = −1 − zg′′

(1 + (g′)2)3/2
.

Notice that det(Jϕ) �= 0 in a suitable neighborhood of I × {0}, whose image through the
map ϕ is a neighborhood of a portion of ∂�.

Therefore, ϕ is locally invertible, and let f its inverse:

y = f (x), (s, z) = (y1, y2) = f (x1, x2) = ( f1(x1, x2), f2(x1, x2)).

The Jacobian matrix of f is

J f (x1, x2) =
⎛
⎝

(√
1 + (g′)2 + zg′′

1+(g′)2
)−1

g′
(√

1 + (g′)2 + zg′′
1+(g′)2

)−1

g′√
1+(g′)2

−1√
1+(g′)2

⎞
⎠ , (5.8)

where g′ and g′′ have to be computed in ξ1( f1(x1, x2)) and z has to be computed in f2(x1, x2).
Let us recall the following formula (see for instance [38, p. 458, formula (7.101)])

w,αβ (x) =
2∑

i, j=1

w,yi y j (y) fi ,xβ (x) fi ,xα (x) +
2∑

i, j=1

w,yi (y) f j ,xα (x)( fi ,xβ ),y j (y)
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= I + I I , (5.9)

where y = f (x). Replacing y1 and y2 with s and z, respectively, and noticing that (·),n = (·),z

at boundary points, we have that

I = w,ss τατβ + w,nn nαnβ + w,sn (ταnβ + τβnα), (5.10)

I I = w,s
(
τα( f1,xβ ),s +nα( f1,xβ ),z

) + w,n
(
τα( f2,xβ ),s +nα( f2,xβ ),z

)
. (5.11)

Recalling (5.4) and (5.6), we can compute at boundary points (z = 0)

f ( f1,xβ ),s = τβ,s = −Knβ, ( f1,xβ ),z = −nβ,s = −Kτβ, (5.12)

( f2,xβ ),s = nβ,s = Kτβ, ( f2,xβ ),z = 0. (5.13)

Therefore, we have

I I = w,s (τατβ,s −nαnβ,s ) + w,n ταnβ,s = w,s (−Kταnβ − Knατβ) + w,n Kτατβ =
= w,s (τβτα,s −nβnα,s ) + w,n τβnα,s (5.14)

and from (5.10) and the above formula we have (3.26). If ∂� is locally represented as
(g(ξ2), ξ2), by inverting the role of the variables, we directly get (3.26). ��
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