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Abstract. K3 surfaces play a prominent role in string theory and algebraic
geometry. The properties of their enumerative invariants have important
consequences in black hole physics and in number theory. To a K3 surface,
string theory associates an Elliptic genus, a certain partition function
directly related to the theory of Jacobi modular forms. A multiplicative
lift of the Elliptic genus produces another modular object, an Igusa cusp
form, which is the generating function of BPS invariants of K3×E. In this
note, we will discuss a refinement of this chain of ideas. The Elliptic genus
can be generalized to the so-called Hodge-Elliptic genus which is then
related to the counting of refined BPS states of K3×E. We show how such
BPS invariants can be computed explicitly in terms of different versions
of the Hodge-Elliptic genus, sometimes in closed form, and discuss some
generalizations.

Contents

1. Introduction 2732
2. K3 Surfaces, the Elliptic Genus and Enumerative Geometry 2734

2.1. Some Geometric Aspects of K3 Surfaces 2734
2.2. The Elliptic Genus 2735
2.3. Donaldson–Thomas Theory of K3 × E 2737
2.4. Enumerative Aspects of Jacobi Forms 2740

3. Hodge-Elliptic Genera on K3 Surfaces 2742
3.1. Refined Partition Functions 2743
3.2. BPS Jumping Loci 2745
3.3. The Orbifold Hodge-Elliptic Genus 2745
3.4. The Generic Hodge-Elliptic Genus 2746
3.5. The Complex Hodge-Elliptic Genus and Representation

Theory 2747
3.6. The Elliptic Genus Revisited 2750
3.7. The Complex Hodge-Elliptic Genus 2753

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-023-01375-1&domain=pdf
http://orcid.org/0000-0002-9940-3250


2732 M. Cirafici Ann. Henri Poincaré
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1. Introduction

String theory compactifications on K3 surfaces underlie a series of connec-
tions between gravitational physics, number theory and geometry. The Elliptic
genus, a certain partition function in conformal field theory, transforms as a
Jacobi modular form [39,47]; its coefficients are related to the irreducible rep-
resentations of the Mathieu group [23]; its multiplicative lift, a certain Siegel
modular form, counts BPS invariants which have the interpretation as black
hole microstates in supergravity [18,20]. See Refs. [3,38,44] for topical reviews.

In this note, we will focus on the connection with enumerative geometry
and investigate how it is modified when the Elliptic genus is replaced by the
Hodge-Elliptic genus, introduced in Kachru and Tripathy [32]. In particular,
we will focus on its relation with certain refined enumerative invariants of
K3×E, with E an elliptic curve, see also Cheng et al. [13]. The Hodge-Elliptic
genus for K3 is invariant under complex structure deformations, and therefore,
its multiplicative lift should lead to objects invariant under such deformations.

The Hodge-Elliptic genus is, however, not invariant over the K3 moduli
space, but jumps at specific jumping loci. The origin of these jumping phe-
nomena, different from wall-crossing, is that the Hodge-Elliptic genus is not an
index and is therefore sensitive to the appearance of boson-fermion pairs which
would leave an index invariant. Remarkably such an object is often computable
in closed form.

In this note, we will concentrate on three specific definitions of such
refined partition functions: the generic, the orbifold and the complex Hodge-
Elliptic genera. The generic Hodge-Elliptic genus was introduced in Wend-
land [46] and is conjectured to capture physically the refined partition function
at a generic point in the moduli space. It can be computed under reasonable
assumptions using conformal field theory methods and geometrically reflects
the use of the chiral de Rham complex to model twisted sigma models [35]. The
orbifold Hodge-Elliptic genus was introduced in Kachru and Tripathy [32] and
captures the physics at an orbifold point. It can be computed in closed form
and counts extra states with respect to the generic Hodge-Elliptic genus. The
complex Hodge-Elliptic genus was also introduced in Kachru and Tripathy [32]
as a refinement of the usual Elliptic genus, by replacing its geometric formu-
lation as the Euler characteristic of a certain bundle, with the weighted sum
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of the dimension of certain cohomology groups. Also, this partition function
contains extra states with respect to the generic Hodge-Elliptic genus. While
we could not determine precisely the locus in the K3 moduli space where such
states appear, it is reasonable to expect that an object invariant under com-
plex structure deformations does indeed occur physically as a refinement of
the Elliptic genus at some point of the moduli space. We therefore include it
in our analysis, and indeed one of our results is an explicit closed form for the
complex Hodge-Elliptic genus. In the process of doing so we also present an
explicit computation of the ordinary Elliptic genus, by direct integration from
its definition, which highlights the geometric origin of each of its terms. The
closed-form computation of the complex Hodge-Elliptic genus can be extended
to certain twining genera.

The Elliptic genus of a K3 surface determines the enumerative geometry
of reduced Donaldson–Thomas invariants of K3 × E. We investigate how this
relation is generalized in the case of the refined partition functions. Following
Kachru and Tripathy [32], we conjecture that the resulting generating functions
capture a refinement of ordinary Donaldson–Thomas theory. We exhibit closed-
form formulas for the first terms of the generating functions in all cases, and a
prescription to compute higher-order terms order by order. Interestingly, the
specific form of the generic Hodge-Elliptic genus suggests that the moonshine
phenomenon should be visible geometrically in the refined Donaldson–Thomas
theory.

Ordinary Donaldson–Thomas theory is blind to the moonshine phenom-
enon due to a subtle interplay between the coefficients of the Elliptic genus,
which we discuss in the text. It has been suggested in Kachru and Tripathy [36]
that the situation could be different in the refined theory. However, a closer
investigation reveals that this is not the case [27] for the generating function
introduced in Katz et al. [36], but leaves the door open for higher-order gen-
erating functions. Our results seem to imply that this is indeed the case.

This paper is organized as follows. Section 2 contains a brief review of
certain aspects of the geometry of K3 surfaces, of Elliptic genera and modular
forms, and of enumerative geometry. We also connect these aspects explic-
itly, by showing how the terms in the elliptic genus count certain curves and
how this counting is reflected in its (mock) modularity. In Sect. 3, we dis-
cuss Hodge-Elliptic genera and quickly review the orbifold and generic refined
partition sums. We also present an explicit closed-form derivation of the com-
plex Hodge-Elliptic genus; in order to do so we revisit the Elliptic genus and
compute it explicitly from its integral definition. In doing so, we elucidate the
geometric interpretation of each term as it arises from the characters of the
symmetric product of the tangent bundle to the K3. Finally, we show explic-
itly that each Hodge-Elliptic genus admits a refined decomposition in terms
of the holomorphic characters of the superconformal algebra. Section 4 con-
tains an explicit derivation in closed form of certain terms in a refinement of
Donaldson–Thomas theory, predicted using the Hodge-Elliptic genera. Higher-
order terms can be derived with a similar prescription order by order. Finally,
Sect. 5 extends the computation of the complex Hodge-Elliptic genus to certain
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twined case, obtained by working equivariantly with respect to certain finite-
order symplectic automorphisms of K3 surfaces. The last Sect. 6 summarizes
our findings and offers some discussions of open problems.

Two appendices contain some technical results. The supporting mathe-
matica file contains most of the computations hereby discussed [16].

2. K3 Surfaces, the Elliptic Genus and Enumerative Geometry

In this section, we review some aspects of the relation between K3 surfaces
and the elliptic genus. We will show how known facts about the Elliptic genus
can be put in direct relation with certain Donaldson–Thomas invariants.

2.1. Some Geometric Aspects of K3 Surfaces

Here, we review some facts about K3 and geometry which will be used along
the paper

Recall that for S a K3 surface H1(S,OS) = 0 and Ω2
S � OS . The cotan-

gent sheaf ΩS is locally free and of rank two, and its determinant is trivial
KS � OS . Furthermore, we have the isomorphism TS � ΩS . The Hodge
numbers are given by hp,q(S) = dimHq(S,Ωp

S). In particular hp,q = 1 for
(p, q) = (2, 0), (0, 2), (0, 0), (2, 2), h1,1 = 20, and all the other Hodge numbers
are vanishing. Note that h0(S,ΩS) = h0(S, TS) = 0 and there are no global
nontrivial vector fields on S.

For a rank r sheaf E on S, the splitting principle allows us to write the
Chern polynomial as

c(E ; t) =
r∏

i=1

(1 + ai t) , (2.1)

with t a formal parameter. The Chern character is given by

ch(E) = r + c1(E) +
1
2
(
c1(E)2 − 2c2(E)

)
=

r∑

i=1

eai , (2.2)

and the Todd class by

Todd(E) = 1 +
1
2
c1(E) +

1
12

(
c1(E)2 + c2(E)

)
=

r∏

i=1

ai

1 − e−ai
. (2.3)

The Euler characteristic of a sheaf E can be computed via the Riemann–Roch
theorem

χ(E) =
∫

ch(E)Todd(T ) , (2.4)

where T is the holomorphic tangent space to S. This theorem can be used
to compute geometrical quantities associated with the K3. For example, from
the fact that χ(O) = 2 we deduce an expression for the integral of the second
Chern class

χ(O) = 2 =
∫

ch(O)Todd(T ) =
1
12

∫
c2(T ) . (2.5)
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The tangent sheaf of a K3 surfaces satisfies

c(T ; t) = (1 + x t)(1 − x t) = 1 − x2 t (2.6)

and therefore ∫
x2 = −

∫
c2(T ) = −24 , (2.7)

a fact that we will use extensively when computing the Elliptic genus.

2.2. The Elliptic Genus

The definition of the Elliptic genus is rooted in conformal field theory. When
the string propagates in a Calabi–Yau variety, the worldsheet theory is de-
scribed by a N = 2 superconformal algebra. This algebra consists of two
copies, the left-moving and the right-moving sectors. If we let L0 and J0 de-
note, respectively, the zero modes of the Virasoro and R-symmetry current
generators, the Elliptic genus is defined as a trace over the RR sector

Ell(τ, z) = TrRR

(
(−1)J0+J0 yJ0 qL0− c

24 qL0− c
24

)
. (2.8)

We have introduced the notation q = e2π i τ and y = e2π i z. Due to supersym-
metry, this quantity is independent of τ and depends holomorphically on τ
and z. Physically the Elliptic genus counts RR states which are in the ground
state in the left-moving sector and are unconstrained in the right-moving sec-
tor. It can be understood as computing the dimensions of certain cohomology
groups graded by the L0 and J0 quantum numbers. The existence of an inner
automorphism of the superconformal algebra, the spectral flow, implies that
the Elliptic genus is a weak Jacobi form of weight zero and index m = c

6 , where
c is the central charge. The spectral flow symmetry also implies that Fourier
expansion of the Elliptic genus has the structure

Ell(τ, z) =
∑

n∈Z+, �∈Z

c (n, �) qn y� =
∑

n∈Z+, �∈Z

c
(
4mn − �2

)
qn y� (2.9)

since the combination of operators which is invariant under spectral flow is
precisely 4 mL0 − J2

0 .
In the case of a K3 surface, supersymmetry is enhanced and the Elliptic

genus is a weak Jacobi form of weight zero and index 1. The space of these
forms is one-dimensional and generated by the form φ0,1(τ, z). Explicitly the
Elliptic genus can be written as

Ell(τ, z) = 2φ0,1(τ, z) =
θ1(τ, z)2

η(τ)3
[24μ(τ, z) + H(τ)] . (2.10)

Here,

θ1(τ, z) = i q
1
8 y− 1

2

∞∏

n=1

(1 − qn)(1 − qn−1y)(1 − qny−1) , (2.11)

η(τ) = q
1
24

∞∏

n=1

(1 − qn) . (2.12)



2736 M. Cirafici Ann. Henri Poincaré

are a theta function and the Dedekind eta function. Furthermore, we have
introduced the Appell–Lerch sum

μ(τ, z) =
− i y

1
2

θ1(τ, z)

+∞∑

�=−∞

(−1)�y� q�(�+1)/2

1 − y q�
, (2.13)

and the function

H(τ) =
−2E2(τ) + 48F (2)

2

η(τ)3
= q− 1

8

(
−2 +

∞∑

n=1

cH(n)qn

)

= 2q− 1
8
(
−1 + 45q + 231q2 + 770q3 + · · ·

)
, (2.14)

where E2(τ) is the weight two (quasi-modular) Eisenstein series

E2(τ) = 1 − 24
∞∑

n=1

nqn

1 − qn
, (2.15)

and

F
(2)
2 (τ) =

∑

r−s=1mod2
r>s>0

(−1)r q
rs
2 . (2.16)

The function H(τ) is a mock modular form with shadow 24 η(τ)3. This
means that

Ĥ(τ) = H(τ) + 24(4 i )−1/2

∫ ∞

−τ

(z + τ)−1/2 η(−z)dz (2.17)

is a weight 1/2 modular form for SL(2;Z). Similarly, μ(τ, z) is a mock modular
form with shadow −η(τ)3, so that

μ̂(τ, z) = μ(τ, z) − (4 i )−1/2

∫ ∞

−τ

(z + τ)−1/2 η(−z)dz (2.18)

is a weight 1/2 modular form for SL(2;Z). A striking fact about (2.10) is that
the relative coefficients are such that the shadows of the two mock modular
forms cancel exactly and the full Elliptic genus is an ordinary Jacobi form. See
[18] for a more complete discussion.

Geometrically, the Elliptic genus is the holomorphic Euler characteristics
of a certain sheaf, constructed out of a sheaf E on a variety Y . If we denote
r = rank E and d = dimC Y , then

Ell(Y ; τ, z) = i r−dq(r−d)/12 y−r/2χ (Y,E) , (2.19)

where explicitly

E =
∞⊗

n=1

Λ−yqn−1E ⊗
∞⊗

n=1

Λ−y−1qnE∨ ⊗
∞⊗

n=1

SqnTY ⊗
∞⊗

n=1

Sqn T ∗
Y , (2.20)

and we have introduced the notation

Λq E =
d⊕

k=0

qk Λk E , Sq E =
∞⊕

k=0

qk SkE . (2.21)



Vol. 25 (2024) Hodge-Elliptic genera, K3 Surfaces 2737

We will often drop the explicit dependence on Y from the notation when it is
clear from the context. In the following, we will take E = TY the holomorphic
tangent bundle. In the case of a K3 surface, we will simply call this T . By
using the Riemann–Roch theorem, the Elliptic genus can be written as

Ell(Y ; τ, z) =
1
y

∫
ch(E)Todd(T ) . (2.22)

The Elliptic genus captures information about certain BPS states in com-
pactifications of the type II string on K3 × E Dijkgraaf et al. [20], where E is
an elliptic curve. These are states corresponding to the partition function of
the second quantized string theory on K3 × E. The argument of [20] identifies
such a partition function with the partition function of a single string which
propagates on the symmetric product. The latter is expressed as

∞∑

n=0

pn Ell (Hilbn(K3); τ, z) = p
ϕ10,1(τ, z)
Φ10(σ, z, τ)

(2.23)

in terms of the Siegel modular form of weight 10, computed as a multiplicative
lift of the Elliptic genus

Φ10(σ, z, τ) = p q y
∏

(n,m,s)>0

(1 − pn ys qm)c(n m,s) , (2.24)

where the product is over all s ∈ Z and n,m ≥ 0 such that one of the following
two conditions holds

• n > 0 or m > 0,
• n = m = 0 and s < 0.

Note that the function (2.24) is symmetric in the exchange p ↔ q. Finally, the
Jacobi form ϕ10,1(τ, z) which appears in (2.23) can also be thought of as the
generating function of χy genera

∞∑

n=0

qn χ−y (Hilbn(K3)) =
∞∏

k=1

1
(1 − y qk)2 (1 − qk)20 (1 − qky−1)2

= q
y − 2 + y−1

ϕ10,1(τ, z)
(2.25)

with

χy(Y ) =
∑

p,q

(−1)qhp,q(Y )yp . (2.26)

2.3. Donaldson–Thomas Theory of K3 × E

Donaldson–Thomas theory is the mathematical formalism underlying BPS
states formed by bound states of D-branes with electric and magnetic charges.
In its simplest version, one considers bound states of a single D6 brane with a
gas of D2-D0 branes on a Calabi–Yau X. These configurations are parametrized
by the Hilbert scheme

HilbC,n(X) = {Z ⊂ X | [Z] = C ∈ H2(X), n = χ(OZ)} . (2.27)
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The Donaldson–Thomas invariant is defined via virtual integration over this
moduli space

DTC,n(X) =
∫

[HilbC,n(X)]vir
1 . (2.28)

In the case at hand X = K3 × E, with E an elliptic curve. This is the main
example that we will consider and therefore we shall often omit the specifica-
tion of the variety X from the notation. In this case, one can parametrize the
curve C as C = β + dE, where β is (the push-forward of) a primitive curve
in the K3 with β2 = 〈β, β〉 = 2h − 2, in terms of the intersection pairing. In
this case, all the relevant invariants vanish; this follows from the localization
formulas, since the torus E acts on itself, and therefore on the moduli space,
freely. Physically this vanishing is related to the presence of an extra fermionic
zero mode K3 × E compactifications.

To avoid this problem, the relevant moduli space is the quotient of the
Hilbert scheme HilbC,n(K3 × E)/E. Then, one can introduce (reduced) BPS
invariants as DTh,d,n(X) := DTβ+dE,n(X) corresponding to the Hilbert scheme
Hilbh,d,n(X) := Hilbβ+dE,n(X)/E. It is useful to encode this information in
the generating function

DT(X) =
∞∑

h=0

DTh(X)ph−1 =
∑

h,d≥0,n∈Z

DTh,d,n(X)ph−1qd−1(−y)n (2.29)

where we have introduced the counting parameter p = e2π i σ.
The counting parameters have the following physical interpretation. BPS

states on X are parametrized by a certain vector of electric and magnetic
charges. However, due to T-duality this information is redundant, and only
three T-duality invariant scalar combinations of the charges are physical, as
reviewed, for example, in Sen [44]. By an appropriate T-duality rotation, we
can parametrize the T-duality invariant charges as

Q2 = qaCabqb = 2h − 2 P 2 = −2q1p
0 = −2d Q · P = p0q0 = n

(2.30)

which are then the parameters which enter in the generating function (2.29).
Here, p0 = 1 is the D6 brane charge, q0 = n the number of D0 branes and the
remaining q1 and qa with a = 2, . . . , 23 are the charges of D2 branes wrapping
the elliptic curve or 2-cycles in the K3, respectively. Here, Cab is the signature
(3, 19) intersection product on H2(K3). Note that in the generating function
(2.29) the functions DTh have fixed electric charge Q, which is different from
what one normally does in the physics literature. The geometrical reason for
this is that it is easier to count invariants by fixing the curve class in the K3
and summing over the covering of the elliptic curve than vice versa. Ultimately
this should be just a matter of conventions since the generating function is
symmetric in the exchange p ↔ q.
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The generating function of reduced Donaldson–Thomas invariants is con-
jecturally given by Bryan [8]

DT(K3 × E) = − 1
Φ10(σ, z, τ)

(2.31)

in terms of the Siegel modular form (2.24). See also [9,10]. The Gromov–Witten
formulation of this conjecture [37,42] was proven in [43].

In particular, Bryan proves Bryan [8]

DT0(K3 × E) = −1
q

y

(1 − y)2

∞∏

m=1

(1 − qm)−20

(1 − y qm)−2(1 − y−1 qm)−2 = − 1
ϕ10,1(τ, z)

, (2.32)

DT1(K3 × E) = −24
q

∞∏

m=1

(1 − qm)−24

⎛

⎝ 1
12

+
y

(1 − y)2
+

∞∑

d=1

∑

k|d
k(yk − 2 + y−k) qd

⎞

⎠ , (2.33)

by a direct toric localization computation. This is quite remarkable since K3 is
not a toric manifold. However, the relevant moduli space admits a stratification
where each stratum is separately toric, even if the torus action does not glue
to a globally defined action. These results, as we will see momentarily, give a
very good control on the precise geometric interpretation of every BPS state.

In particular, since the sum in (2.23) starts from n = 0 and since Hilb1

(K3) = K3, we find

Ell(K3; τ, z) =
DT1

DT0
. (2.34)

We will now use this fact to derive a few non-trivial identities.
Noting that

θ2
1(τ, z)
η3(τ)

= −q
1
8

(1−y)2

y

∞∏
m=1

(1−y qm)2(1−qm 1
y )2

(1−qn) , (2.35)

we can then rewrite the Elliptic genus as

Ell(τ, z) =
(

θ2
1

η3

)(
−24

η3

)⎛

⎝ 1
12

+
y

(1 − y)2
+

∞∑

d=1

∑

k|d
k(yk − 2 + y−k) qd

⎞

⎠

=
(

θ2
1

η3

)(
−24

η3

)
℘(τ, y) (2.36)

where dove ℘(τ, y) is the Weierstrass ℘-function. Let us consider this expression
term by term and compare it with (2.10). It is easy to see that

∞∑

d=1

∑

k|d
k(−2) qd =

∞∑

m=1

∞∑

k=1

k(−2) qm k = −2
∞∑

n=1

n qn

(1 − qn)
(2.37)
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and therefore

− 24
η3(τ)

⎛

⎝ 1
12

+
∞∑

d=1

∑

k|d
k(−2) qd

⎞

⎠

= − 24
η3(τ)

(
1
12

− 2
∞∑

n=1

nqn

(1 − qn)

)
= −2

E2(τ)
η3(τ)

. (2.38)

By comparing with the known expression of the Elliptic genus, we deduce the
fairly non-trivial identity

− 24
η3(τ)

⎛

⎝ y

(1 − y)2
+

∞∑

d=1

∑

k|d
k(yk + y−k) qd

⎞

⎠

= 24μ(q, y) + 24
2F

(2)
2 (τ)

η3(τ)
(2.39)

which we will use in the following. Note that for this identity to hold it is crucial
that the 2F

(2)
2 (τ)/η3(τ) term cancels the y-independent terms in the Appell–

Lerch sum (2.13), since in the left-hand side every term in the q-expansion
has a y-dependent coefficient. The above relation can also be proven indirectly
using modularity, by using the fact that the ratio of Jacobi forms ϕ0,1/ϕ−2,1

is proportional to the Weierstrass ℘-function, see Dabholkar et al. [18], for
example.

The function H(τ) (2.14), whose coefficient encodes the dimensions of
certain irreducible representations of the Mathieu group M24, does not ap-
pear to have an independent geometrical interpretation. This fact underlies
the difficulty in finding a geometric interpretation of the Mathieu group rep-
resentations. We will discuss more aspects of the geometry of curves in the
target space K3 × E momentarily.

2.4. Enumerative Aspects of Jacobi Forms

We will now give an example of what kind of information we can gain from
the explicit expression of the enumerative invariants (2.32). It was shown in
Dabholkar et al. [18] that the coefficients of the expansion of 1/Φ10 at fixed
magnetic charges are meromorphic Jacobi forms. These can be decomposed
into a finite part, a certain finite linear combination of classical theta series
where the coefficients are mock modular forms, and a polar part, that is com-
pletely determined by the poles of the original meromorphic Jacobi form. Phys-
ically the finite part counts microstates associated with immortal black holes,
defined over all the moduli space, while the polar part captures the degen-
eracies associated with two centered black holes. While this decomposition is
perfectly clear from the point of view of modular forms, it begs for a geomet-
ric explanation. For example, one can ask what is the enumerative content of
single-centered black holes, or if we can give a precise mapping between enu-
merative invariants and black hole microstates. In other words, given a certain
Donaldson–Thomas invariant, possibly in terms of a moduli space of schemes,
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how can we know in purely geometrical terms if it corresponds to a single
center black hole or not?

In our case the situation is slightly different, since we are considering the
coefficients of the expansion of 1/Φ10 at fixed electric charges; nevertheless,
Φ10 is symmetric under this exchange and the results of Dabholkar et al. [18]
formally still hold. Such an expansion is somewhat unnatural from the physical
point of view and possibly needs a clearer interpretation. (Possibly it holds in
a different region of the moduli space). Nevertheless, we will show explicitly
such decomposition for DT1.

Before addressing the issue, let us clarify the geometrical content of the
generating functions (2.32), following [8]. Consider X = K3 × E and let p1,2

be the projections onto the first and second factors. Then, a curve C is called
vertical if its projection p2 : C −→ E has degree zero, so that the curve lies in
K3 × pt. Similarly a curve C is called horizontal if the projection p1 : C −→
K3 has degree zero. A curve which is neither vertical nor horizontal is called
diagonal. This classification determines a decomposition

Hilbh,d,n(X) = Hilbh,d,n
vert (X) × Hilbh,d,n

diag (X) . (2.40)

This decomposition follows from the fact that since β is irreducible, any sub-
scheme Z will have a unique component which is either diagonal or vertical,
while all the other components are horizontal. In particular, if h = 0, only
vertical components are possible.

Let us now focus on the DT1 contribution. Consider the vertical part in
the decomposition (2.40). In the case h = 1, we have β2 = 0. Equivalently
the K3 are elliptically fibered and β is the class of the fiber. The fibration
S −→ P

1 has 24 singular fibers. As proven in Bryan [8], the computation
of the BPS invariants receives contributions from subschemes whose unique
vertical component is a smooth fiber:

− 22
∞∏

m=1

(1 − qm)−24
, (2.41)

where 22 is the Euler characteristics of the base P
1 minus 24 points, and from

subschemes whose unique vertical component is a nodal fiber:

24
∞∏

m=1

(1 − qm)−24

⎡

⎣1 +
y

(1 − y)2
+

∞∑

d=1

∑

k|d
k(yk + y−k) qd

⎤

⎦ . (2.42)

To these, one must add the contribution from the diagonal curves

24
∞∏

m=1

(1 − qm)−24
∞∑

d=1

∑

k|d
(−2k) qd (2.43)

These three terms give a concrete geometrical interpretation of (2.33). We will
now show how precisely these terms contribute to the black hole partition
function. It follows from Dabholkar et al. [18] that we expect that each DTh
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splits into a polar part

DTP
h =

p24(h + 1)
η24(τ)

∑

s∈Z

qhs2+s y2hs+1

(1 − qh y)2
, (2.44)

and a finite part DTF
h = DTh − DT

(P )
h . Indeed in our case

DT1 = DT0 Ell = −2
ϕ0,1

ϕ10,1
= −2

ϕ0,1

ϕ−2,1

1
η(τ)24

. (2.45)

Then, we have (from Dabholkar et al. [18] eq 8.54; both ϕ0,1 and ϕ−2,1 here
are defined with the opposite sign as there)

ϕ0,1

ϕ−2,1
= 12Av(0)

[
y

(1 − y)2

]
+ E2(τ) , (2.46)

where

Av(m)[f(y)] =
∑

k

qmk+2 y2kmf(qky) (2.47)

is the averaging operator. In our case, it is easy to see that

Av(0)

[
y

(1 − y)2

]
=

∑

s∈Z

qsy

(1 − qsy)2
=

y

(y − 1)2
+

∞∑

d=1

∑

k|d
k
(
yk + y−k

)
qd

(2.48)

We conclude that

DT
(P )
1 = − 24

η(τ)24
Av(0)

[
y

(1 − y)2

]
(2.49)

DT
(F )
1 = − 2

η(τ)24
E2(τ) (2.50)

Now, we have an explicit enumerative interpretation of the Jacobi form DT1:
The BPS states counted by the finite part correspond to the diagonal curves
(2.43) as well as those curves whose vertical component is a smooth fiber (2.41)
or a nodal curve without points, that is, the y0 term in (2.42). The rest of the
vertical curves in (2.42) are associated with the polar part.

This example shows that by carefully analyzing the interplay between
modularity and geometry we can give a very explicit description of the BPS
states.

3. Hodge-Elliptic Genera on K3 Surfaces

In this section, we introduce various Hodge-Elliptic genera for K3 surfaces, fol-
lowing [32,46], and discuss some of their properties. The Hodge-Elliptic genus
is invariant under complex structure deformations but depends sensitively on
the Kähler structure. The orbifold Hodge-Elliptic genus [32] corresponds to
K3 surfaces which are resolutions of a certain quotient, while the generic con-
formal field theoretic Hodge-Elliptic genus [46] is conjectured to capture the
large radius conformal field theory. Both are explicitly computable. We also
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discuss the complex Hodge-Elliptic genus [32] and express it in closed form by
using representation theory arguments. In passing we also clarify the structure
of each contribution to the Elliptic genus from bundles on K3.

3.1. Refined Partition Functions

Counting functions of BPS states can usually be refined by keeping track of
additional quantum numbers. For example, the function 1/ϕ10,1 can be in-
terpreted as counting 1/4-BPS states in type II string compactifications on
K3 × E with fixed electric charge and transforming in a certain spin represen-
tation of SU(2)L. The function ϕ10,1 admits a refinement which was derived
by Katz, Klemm and Pandharipande [36]

φKKP (τ, z, ν) = q (y
1
2 u

1
2 − y− 1

2 u− 1
2 )(y− 1

2 u
1
2 − y

1
2 u− 1

2 )

×
∏

m=1

(1 − qm)20(1 − qmu y)(1 − qmu y−1)

× (1 − qmy u−1)(1 − qmu−1y−1) , (3.1)

where we have introduced the new counting parameter u = e2π i ν . Physically
1/φKKP (τ, z, ν) refines the counting of 1/ϕ10,1 in the sense that the fugacity
u keeps track of the spin representation now in SU(2)R. This function has also
a geometrical interpretation as

∑

n≥0

χHodge (HilbnK3) qn =
q (u − y − y−1 + u−1)

φKKP (τ, z, ν)

=
∞∏

k=1

(1 − qk)−20(1 − u y qk)−1(1 − u−1y qk)−1

× (1 − u y−1qk)−1(1 − u−1y−1qk)−1 (3.2)

where the Hodge polynomial for a variety Y is given by

χhodge(Y ) = u−d/2 y−d/2
∑

p,q

(−u)q (−y)p hp,q(Y ) (3.3)

For a K3 surface, χHodge(K3) = 1/(uy) + y/u + 20 + u/y + y u, which reduces
to χy(K3) = 2 y + 20 + 2/y for u = 1.

Precisely as the generating function ϕ10,1 admits the refinement φKKP ,
also the elliptic genus and the associated generating functions can be refined.
Kachru and Tripathy [32] introduce the conformal field theory Hodge-Elliptic
genus as a refinement of the Elliptic genus

H -Ell(τ, z, ν) = Tr
(
(−1)J0+J0 yJ0uJ0qL0− c

24

)

=
∑

n,s,m

c (n, �,m) qny�um . (3.4)

The trace is taken only over states which are arbitrary in the left-moving sector
but in a Ramond ground state in the right-moving sector. Such a quantity
takes its name from the fact that its first term in the q expansion is the Hodge
polynomial of the K3. It is, however, not a genus in the strict mathematical
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sense. (For example, it is non-vanishing on the torus.) This quantity is moduli
dependent and jumps over the Calabi–Yau moduli space, for example, at those
points where the left chiral CFT algebra is enhanced.

At first sight, (3.4) is similar to (2.8) and the variable u appears to play
a role similar to the variable y. Therefore, it is tempting to promote it to an
elliptic variable and try to interpret (3.4) as a Jacobi form with two elliptic
variables. However, this symmetry is not really there, due to the fact that the
trace is taken only over those states which are in a Ramond ground state in
the right-moving sector. As a consequence, the range of values of the variable
m in (3.4) is restricted to a finite number (we will see that m = −1, 0, 1 with
the appropriate normalization) and (3.4) is only a Laurent polynomial in u.
This argument, however, does not rule out that u could transform in a more
complicated way under the modular group. In this paper, we take the simplest
route and assume that u is invariant under the modular group.

The Hodge-Elliptic genus can also be given a geometric definition on a
variety Y using the geometric realization of the Elliptic genus as the Euler
characteristic of the sheaf (2.20) [32]:

H -Ellc(Y ; τ, z, ν) = i r−dq(r−d)/12 y−r/2 u−d/2

r∑

j=0

(−u)j dim Hj

(
Y,

∞⊗

n=1

Λ−yqn−1E ⊗
∞⊗

n=1

Λ−y−1qnE∨ ⊗
∞⊗

n=1

SqnTX ⊗
∞⊗

n=1

Sqn T ∗
X

)
. (3.5)

As for the Elliptic genus, we will only consider the case where Y is a K3
surface and E = T its holomorphic tangent bundle. We will refer to this as the
complex Hodge-Elliptic genus. In general, a direct computation of the Hodge-
Elliptic genus will give different results when carried out at different points of
the moduli space, as we will discuss momentarily. Remarkably in certain cases
the Hodge-Elliptic genus is known in closed form. A direct computation of
(3.4) was done in Kachru and Tripathy [32] at a certain orbifold point and in
Wendland [46] in the strict large radius limit. We will refer to these as H -Ellorb

and H -Ellg; when writing H -Ell without any further specification we refer to
properties which hold for each of the Hodge-Elliptic genera described so far.

The main interest of this paper is how Hodge-Elliptic genera are related
to enumerative geometry. As shown in Kachru and Tripathy [32], essentially
following the argument of Dijkgraaf et al. [20] one can define a generating
function

∞∑

k=0

pk H -Ell
(
Hilb[k](K3)

)
=

∏

r>0,s≥0,t,v

1
(1 − qsytpruv)c(r s,t,v)

=
p φKKP (τ, z, ν)
Φref(τ, z, ν, σ)

. (3.6)

The authors of Kachru and Tripathy [32] conjecture that this Φref(τ, z, ν, σ)
is the generating function of motivic/refined Donaldson–Thomas invariants.
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Since it is defined in terms of the Hodge-Elliptic genus, its precise form will de-
pend on the Calabi–Yau moduli. In this note, we will study various Φref(τ, z, ν, σ)
corresponding to different version of the Hodge-Elliptic genus and use it to
make prediction for enumerative invariants. These matters will be discussed
in Sect. 4.

3.2. BPS Jumping Loci

The flavored partition function (3.4) is not an index and can exhibit jumping
behavior at certain points in the moduli space [33,34]. This behavior is gener-
ically different from wall-crossing and is due to the unprotected nature of the
new partition function. For example, the indexed count can differ from the
flavored partition function at generic points in the moduli space due to the
presence of boson-fermion pairs (where the statistics refers to the fermion num-
ber appearing in the index, so typically we really are talking about different
multiplets) whose contribution to the Elliptic genus cancels exactly. Addition-
ally, an extra chiral current can appear at special points in the moduli space,
leading to more state appearing (always in Bose–Fermi pairs to leave the in-
dexed count invariant). A physical interpretation could be that for special loci
in the moduli space some particles in the full spectrum are now annihilated
by a certain supercharge (or a combination thereof). Another difference with
wall-crossing is that jumping loci are typically of higher codimension.

For example, the moduli space of type IIA compactification on K3 sur-
faces has the form of a locally symmetric space

M(p, q) = O(p, q;Z)\O(p, q;R)/ (O(p) × O(q)) (3.7)

which can be understood as the moduli space of lattices Γp,q of signature
(p, q). By adopting this perspective, the appearance of extra chiral currents
corresponds to loci in the moduli space where the lattice generated by a col-
lection of k vectors becomes purely left moving, corresponding to subvarieties
of the form M(p, q − k) ⊂ M(p, q) and called special cycles. In algebraic ge-
ometry, such loci where the rank of the lattice changes abruptly are known as
Noether–Lefschetz loci, or generalization thereof, and are often Shimura vari-
eties. Remarkably the formal generating functions of these loci, that is sums
whose coefficients are special cycles, are in certain cases (mock) modular forms
valued in H•(M(p, q)) [34].

3.3. The Orbifold Hodge-Elliptic Genus

In Kachru and Tripathy [32], the Hodge-Elliptic genus is computed at a certain
point in the moduli space where the K3 is a resolution of the quotient of T4 (a
product of two square tori with unit volume) by the Z2 inversion. Using CFT
techniques, one finds explicitly1

H -Ellorb(K3) = 8

[
−

(
θ1(τ, z)
θ∗
1(τ, 0)

u−1/2 − u1/2

2

)2

+
(

θ2(τ, z)
θ2(τ, 0)

u−1/2 + u1/2

2

)2

1The sign difference with Kachru and Tripathy [32] is due to a different convention in the
definition of θ1(τ, z).
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+
(

θ3(τ, z)
θ3(τ, 0)

)2

+
(

θ4(τ, z)
θ4(τ, 0)

)2
]

(3.8)

with θ∗
1(τ, 0) = −2q1/8

∏∞
n=1(1 − qn)3. We can rewrite this as

H -Ellorb(K3) = 2
(

1
u

+ u − 2
)(

−
(

θ1(τ, z)
θ∗
1(τ, 0)

)2

+
(

θ2(τ, z)
θ2(τ, 0)

)2
)

+ 2ϕ0,1(τ, z)

= 2
(

1
u

+ u − 2
)(

1
4
ϕ−2,1(τ, z) +

(
θ2(τ, z)
θ2(τ, 0)

)2
)

+ 2ϕ0,1(τ, z)

(3.9)

Define the function2 ΛN (τ) ∈ M2(Γ0(N)) as

ΛN (q) = N
d
dq

log
(

η(qN )
η(q)

)
=

N

24
(NE2(Nτ) − E2(τ)) (3.10)

Then, using the identity [21]
(

θ2(τ, z)
θ2(τ, 0)

)2

=
1
12

ϕ0,1(τ, z) + 2Λ2(τ)ϕ−2,1(τ, z) (3.11)

one can write

H -Ellorb(K3) =
(

5
3

+
1
6u

+
u

6

)
ϕ0,1(τ, z)

−
(

1 − 1
2u

− u

2

)
(1 + 8Λ2(τ)) ϕ−2,1(τ, z) (3.12)

=
1
24

(
2
u

+ 20 + 2u
)
Ell(τ, z)

+
(

1 − 1
2u

− u

2

)
θ1(τ, z)2

η(τ)6
(1 + 8Λ2(τ)) (3.13)

which has the structure of the sum of two Jacobi forms with coefficients which
are u-dependent and a weight 2 modular form on Γ0(2).

3.4. The Generic Hodge-Elliptic Genus

The generic conformal field theory Hodge-Elliptic genus corresponds to the
partition function (3.4) computed in the infinite volume limit. It was computed
in Wendland [46] by a careful analysis of the space of ground states and of the
representation theory of the superconformal algebra. The result is

H -Ellg(τ, z, ν) = Ell(τ, z) +
(

2 − 1
u

− u

)
θ1(τ, z)2

η(τ)3
[
q−1/8 − 2μ(τ, z)

]

(3.14)

where the second term on the right-hand side is proportional to the character
ch 1

4 , 12
(τ, z) of the superconformal algebra, which will, however, appear later

2Here M2(Γ0(N)) denotes the space of weight 2 modular forms on Γ0(N), the congruence
subgroup of the modular group of level N . Also, recall that Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂
SL(2;Z) and Γ(N ′) ⊂ Γ(N) whenever N |N ′. If Γ ⊂ Γ′, then Mk(Γ′) ⊂ Mk(Γ).
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on. The latter can also be written as the quantity η(τ)3
[
q−1/8 − 2μ(τ, z)

]

multiplying the Jacobi form ϕ−2,1(τ, z) = θ1(τ, z)2/η(τ)6. Therefore, also the
generic Hodge-Elliptic genus has the structure of the sum of two Jacobi forms
with u-dependent coefficients. However, now the u-dependent part spoils the
modular properties, due to the presence of the term q−1/8 and of the mock
modular form μ(τ, z).

Remarkably (3.14) has a geometric interpretation in terms of the chiral
de Rham complex Ωch of K3 introduced in Malikov [40]. Recall that the chiral
de Rham complex is a sheaf of vertex operator algebras obtained by gluing
together local (bc−βγ)-systems. Taking the sheaf homology H•(K3,Ωch) pro-
vides a model for the sigma model Hilbert space of states. Then, it is shown
in Wendland [46] that

H -Ellg(τ, z, ν) = (y u)−1
2∑

j=0

(−u)j TrHj(K3,Ωch)

(
(−1)J0yJ0qL0− 1

2J0

)

(3.15)

where the combination L0 − 1
2J0 signals that the chiral de Rham complex

carries the action of a topologically twisted superconformal algebra.
By using (2.10), we can write (3.14) in a form similar to (3.13)

H -Ellg(τ, z, ν) =
1
24

(
20 +

2
u

+ 2u

)
Ell(τ, z)

+
(

2 − 1
u

− u

)
θ1(τ, z)2

η(τ)3

[
1
12

H(τ) + q− 1
8

]
. (3.16)

3.5. The Complex Hodge-Elliptic Genus and Representation Theory

We will now outline a procedure to compute (3.5) directly from the definition,
as an expansion in q. The idea is to reduce the computation to a sum of factors
which can be read of from the ordinary elliptic genus expansion, with different
weights.

A K3 surface has strict SU(2) holonomy and therefore SU(2) acts on the
tangent space T . By using the splitting principle, we can write the character
ch(T ) = t+1/t which is then identified with the character of the fundamental
representation of SU(2). In the case of SU(2) characters, one can compute
explicitly the generating function

∑

n=0

snχn(t) =
1

(1 − st)(1 − s
t )

. (3.17)

We can think of t as a one-dimensional module under the action of the diagonal
U(1) ⊂ SU(2). Here χn(t) = tn+1−t−n−1

t−t−1 =
∑n

i=0 t2i−n.
Now, we look explicitly at the bundle E in (2.20). It has a form of a

direct sum of bundles whose coefficients are weighted by qn. The antisymmetric
factors only contain a finite number of terms. We can then write
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E =
∞⊗

n=1

(
O − yqn−1T + y2q2(n−1)O

)(
O − qn

y
T +

q2n

y2
O
)

(
⊕

k=0

qnkSk(T )

)(
⊕

l=0

qnlSl(T )

)
. (3.18)

Under the SU(2) action Sk(T ) corresponds to the character χk. The reason
why it is useful to think in this terms is that H0(X,SmT ) = 0 ∀m > 0, by
a classic result of Kobayashi. Therefore to compute the Hodge-Elliptic genus,
it is sufficient to single out the terms which admit global sections. The terms
which do not admit global sections have trivial H0 and therefore by Serre’s
duality trivial H2. The strategy of the computation is to use the representation
theory of SU(2) to decompose a generic term T k into terms which admit global
sections (that are given by O and correspond to the trivial representation) and
terms which do not (which have the form SmT and correspond to non-trivial
characters). Note that products of terms of the form SmT may contain a copy
of the trivial bundle in their decomposition.

In order to extract the full contribution of the trivial bundle, we will
formally write

∞⊕

k=0

qnkSkT =
1

1 − T qn + q2n
= exp

(
− log(1 − T qn + q2n)

)
. (3.19)

More precisely, we formally identify T with the character of the fundamental
representation of SU(2) and interpret the above formula as a formal power
series in its generator. This rewriting is convenient since now by expanding we
have succeeded in writing E as a direct sum whose summands are all of the
form T k for some k ∈ N.

Now to extract the contribution of the trivial bundle O, we have to use
repeatedly the tensor product decomposition rules, recalling that T transforms
as the character of the fundamental representation under the SU(2) action.
One starts by T ⊗ T = O ⊕ S2T , where the second factor does not admit
global sections and can therefore be discarded. Tensoring again by T one gets
T 3 = 2T ⊕ S3T . Similarly, T 4 = 2O ⊕ 3S2T ⊕ S4T . It is easy to see that
any time we tensor T k with k odd with T , and the resulting decomposition of
T k+1 has one O factor whose coefficient is the same as the coefficient of the
T factor in the decomposition of T k. Similarly, any time we tensor T n with
n even with T , the decomposition T n+1 has one T factor whose coefficient is
the sum of the coefficients of O and S2T in T n. The coefficient of S2T in T n

is, however, the sum of the coefficients of T and S3T in T n−1. All these facts
follow immediately from the tensor product decomposition of products of the
fundamental representation. In summary we see that

T 2i = Ci O ⊕ · · ·
T 2i+1 = Ci+1 T ⊕ · · · (3.20)
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where i ∈ N and Ci = (2i)!
(i+1)!i! is the ith Catalan number. The dots denote

terms which are sums of factors of the form SkT with k > 1.
We are finally ready to put all of our results together. The Hodge-elliptic

genus has two contributions: the contribution from the Sk>0TX bundles, which
is equal to their contribution to the elliptic genus (the u factor cancels with
the overall 1/u normalization of (3.5)) since for these bundles only H1 is non-
trivial; and the contribution from the OX factors which by Serre duality is
equal to their contribution to the elliptic genus weighted by 1

2

(
u + 1

u

)
, since

for these bundles only H0 and H2 are non-trivial and they are weighted,
respectively, by 1/u and u.

Therefore, an equivalent and perhaps simpler way of computing the Hodge-
elliptic genus is to compute the ordinary elliptic genus and add the contribution
of the trivial bundles weighted by 1

2

(
u + 1

u

)
− 1. We formally express this by

writing

H -Ellc(τ, z, ν) = Ell(τ, z) −
[
1 − 1

2

(
u +

1
u

)]
Ell(τ, z)

∣∣∣∣
OX

(3.21)

where Ell(τ, z)
∣∣
OX

is the contribution to the Elliptic genus from the flat bundle
OX , and this equation is intended as an equivalence between formal power
series.

This strategy can be easily implemented to compute H -Ellc(τ, z, ν) as a
power series in q

H -Ellc(τ, z, ν) =

(
uy +

u

y
+

y

u
+

1

uy
+ 20

)

+ q

(
uy +

y

u
+

u

y
+

1

uy
− 2u − 2

u

+20y2 +
20

y2
− 130y − 130

y
+ 220

)

+ q2
(

uy3 +
y3

u
+

u

y3
+

1

uy3
− 2uy2 − 2y2

u

− 2u

y2
− 2

uy2
+ 4uy +

4y

u
+

4u

y
+

4

uy

−6u − 6

u
+ 220y2 +

220

y2
− 1034y − 1034

y
+ 1628

)

+ q3
(

uy3 +
y3

u
+

u

y3
+

1

uy3
− 6uy2 − 6y2

u
− 6u

y2
− 6

uy2

+ 13uy +
13y

u
+

13u

y
+

13

uy
− 16u − 16

u
− 130y3 − 130

y3

+1628y2 +
1628

y2
− 5530y − 5530

y
+ 8064

)
+ · · · (3.22)

We will show momentarily how to obtain H -Ellc(τ, z, ν) in closed form, by
finding a way to implement the above arguments systematically. Before that
we have to revisit the computation of the Elliptic genus.
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3.6. The Elliptic Genus Revisited

The Elliptic genus integrand is determined, up to a normalization, by the
Chern character of the bundle (2.20). By using (3.19), we can write

1
y
ch(E) =

1
y

∞∏

n=1

(
1 − y

ζ qn−1
)(

1 − ζ
y qn

)(
1 − 1

yζ qn
) (

1 − y ζqn−1
)

(1 − ζqn)2
(
1 − 1

ζ qn
)2 (3.23)

where we have used the splitting principle to write ch(T ) = ζ + 1/ζ, where
ζ = ex and x is the integration variable. Now, following [17] we use the following
denominator formulas from Kac and Wakimoto [31] (see Example 4.1)

∑

j∈Z

ζj

1 − qj

y

=
ζ

1 − ζ

∞∏

n=1

(1 − qn)2
(
1 − ζ

y qn
)(

1 − y
ζ qn−1

)

(1 − ζ qn)
(
1 − 1

ζ qn
)(

1 − 1
y qn

)
(1 − y qn−1)

∑

j∈Z

ζj

1 − y qj
=

1
1 − ζ

∞∏

n=1

(1 − qn)2
(
1 − ζ y qn−1

) (
1 − 1

y ζ qn
)

(1 − ζ qn)
(
1 − 1

ζ qn
)(

1 − 1
y qn

)
(1 − y qn−1)

(3.24)

Noting that

θ2
1(τ, z) = −q

1
4
1
y

∞∏

n=1

(1 − qn)2
(
1 − y qn−1

)2
(

1 − 1
y
qn

)2

η6(τ) = q
1
4

∞∏

n=1

(1 − qn)6 , (3.25)

we can now write (3.23) as

1
y
ch(E) = − (1 − ζ)2

ζ

θ2
1(τ, z)
η(τ)6

∑

i,j∈Z

ζi+j

(1 − y qj)(1 − 1
y qi)

= −θ1(τ, z)2

η(τ)6

∑

N∈Z

∑

i∈Z

ζN−1 − 2ζN + ζN+1

(1 − y qi)(1 − 1
y qN−i)

= −θ1(τ, z)
η(τ)3

∑

N∈Z

ζN (sN+2(τ, z) − 2sN+1(τ, z) + sN (τ, z)) (3.26)

by changing summation variable i+j = N . In the last step, we have introduced
the functions

sN (τ, z) =
θ1(τ, z)
η(τ)3

∑

i∈Z

1
(1 − yqi)(1 − 1

y qN−1−i)
. (3.27)

As we have discussed, we would like to rewrite the Chern character of E in a
form where the contribution from each SNT bundle is highlighted:

1
y
ch(E) =

∞∑

N=0

ch(SNT )FN (τ, z) (3.28)
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in terms of certain functions FN to be determined by comparing with (3.28).
In order to do so note that on the right-hand side of (3.28) the coefficient of
ζk is of the form

∑∞
i=k F2i. Therefore, it follows that we can obtain FN by

taking the difference between the coefficient of ζN and the coefficient of ζN+2

in (3.26), since all the other terms cancel. Therefore,

FN (τ, z) = −θ1(τ, z)
η(τ)3

(sN (τ, z) − 2sN+1(τ, z) + 2sN+3(τ, z) − sN+4(τ, z)) (3.29)

In particular, now we know how to isolate the trivial character which corre-
sponds to the contribution of the trivial bundle.

We prove in Appendix A that

sN (τ, z) =
θ1(τ, z)
η(τ)3

s̃N (τ) + δN,1 θ1(τ, z)μ(τ, z) (3.30)

with

s̃N (τ) =

⎧
⎪⎪⎨

⎪⎪⎩

q
1−q if N = 0 ,

2F
(2)
2 (τ) if N = 1 ,

N−1
1−qN−1 otherwise.

(3.31)

Therefore, we can write the full Elliptic genus as

Ell(τ, z) =
1
y

∫
ch(E)Todd(T ) =

∞∑

N=0

FN (τ, z)
∫

ch(SNT )Todd(T ) .

(3.32)

The integration is now elementary:
∫

ch(SNT )Todd(T ) =
∫

e(N+1)x − e−(N+1)x

ex − e−x

−x2

(1 − ex)(1 − e−x)

=
1
12

(2N3 + 6N2 + 3N − 1)
∫

x2 = −2(2N3 + 6N2 + 3N − 1) (3.33)

where we have used (2.7).
We conclude that the Elliptic genus can be written as

Ell(τ, z) = −
∞∑

N=0

2(2N3 + 6N2 + 3N − 1) FN (τ, z) . (3.34)

It is convenient to rearrange terms as
∞∑

N=0

2(2N3 + 6N2 + 3N − 1) (sN (τ, z) − 2sN+1(τ, z) + 2sN+3(τ, z) − sN+4(τ, z))

= −2s0(τ, z) + 24s1(τ, z) + 50s2(τ, z) + 48
∞∑

N=3

sN (τ, z) . (3.35)
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The first three contributions can be checked directly. All the other follow from
some boring but straightforward algebra
(
2(2N3 + 6N2 + 3N − 1)

)
− 2

(
2(2(N − 1)3 + 6(N − 1)2 + 3(N − 1) − 1)

)

+ 2
(
2(2(N − 3)3 + 6(N − 3)2 + 3(N − 3) − 1)

)

−
(
2(2(N − 4)3 + 6(N − 4)2 + 3(N − 4) − 1)

)
= 48 . (3.36)

To summarize, we have shown

Ell(τ, z) =
θ1(τ, z)2

η(τ)3[
1

η(τ)3

(
−2s̃0 + 24s̃1 + 50s̃2 + 48

∞∑

N=3

s̃N

)
+ 24μ(τ, z)

]
.

(3.37)

Furthermore, the combination

−2s̃0 + 50s̃2 + 48
∞∑

N=3

s̃N = 2 + 48
1

1 − q
+ 48

∞∑

n=2

n

1 − qn
= −2E2(τ) , (3.38)

gives the Eisenstein series E2(τ). Indeed the latter can be written as3

E2 = 1 − 24
∞∑

n=1

nqn

1 − qn
= 1 − 24

∞∑

n=1

(
n

1 − qn
− n

1 − qn

1 − qn

)

= 1 − 24

( ∞∑

n=1

n

1 − qn
+

1
12

)

= −1 − 24
∞∑

n=1

n

1 − qn
(3.39)

where we have used
∑∞

n=1 n = ζ(−1) = − 1
12 in terms of the analytically

continued Riemann zeta function ζ(s). By putting everything together, we
finally have

Ell(τ, z) =
θ1(τ, z)2

η(τ)3

(
−2E2(τ) + 48F (2)

2 (τ)
η(τ)3

+ 24μ(τ, z)

)
(3.40)

as expected.
The above result was obtained by using the zeta function regularization.

One may wonder if this procedure introduces ambiguities in the final expres-
sion; for example, a different prescription could shift the Eisenstein function by
a constant. However, such shifts are not compatible with modular invariance,
which apparently forces this specific form of regularization. Nevertheless, it
would be desirable to find a better argument which does not assume modular
invariance, for example, by avoiding divergent expressions altogether.

3Note that this identity does not hold as a truncated expansion, because of the analytical
continuation.
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3.7. The Complex Hodge-Elliptic Genus

We have just shown that

Ell(τ, z) =
1
y
χ(E) =

1
y

2∑

j=0

(−1)j dim Hj(E)

=
∞∑

N=0

FN (τ, z)
2∑

j=0

(−1)j dim Hj(SNT ) . (3.41)

Similarly, we can write for the complex Hodge-Elliptic genus

H -Ellc(τ, z, ν) =
1
yu

2∑

j=0

(−u)j dim Hj(E)

=
∞∑

N=0

FN (τ, z)
(

1
u

dim H0
(
SNT

)
− dim H1

(
SNT

)
+ u dim H2

(
SNT

))

=
1
2

(
u +

1
u

)
F0(τ, z)χ(O) +

∞∑

N=1

FN (τ, z)χ(SNT )

= Ell(τ, z) −
[
1 − 1

2

(
u +

1
u

)]
F0(τ, z)χ(O) (3.42)

where we have used
1
u

dim H0
(
SNT

)
− dim H1

(
SNT

)
+ u dim H2

(
SNT

)

=

⎧
⎨

⎩

1
2

(
1
u + u

)
χ(O) if N = 0

χ(SNT ) if N = 0
(3.43)

Now, we can compute the trivial bundle contribution
[
1 − 1

2

(
u +

1

u

)]
F0(τ, z) χ(O)

=

[
1 − 1

2

(
u +

1

u

)] [(
−2

θ1(τ, z)2

η(τ)6

)(
q

1 − q
+

4

1 − q2
− 3

1 − q3
− 4F

(2)
2 (τ)

)

+4
θ1(τ, z)2

η(τ)3
μ(τ, z)

]

=

[
−2 + u +

1

u

]
θ1(τ, z)2

η(τ)6

(
1 + 2q + 6q2 + 2q3 + q4

(1 − q)(1 + q)(1 + q + q2)
− 4F

(2)
2 (τ)

)

+

[
4 − 2

(
u +

1

u

)]
θ1(τ, z)2

η(τ)3
μ(τ, z) (3.44)

Finally, putting everything together we conclude that

H -Ellc(τ, z, ν;K3) =
θ1(q, y)2

η(q)3

[(
20 + 2

(
1
u

+ u

))
μ(q, y) + H(q)

]

+
(

2 −
(

1
u

+ u

))
θ1(q, y)2

η(q)6

(
1 + 2q + 6q2 + 2q3 + q4

(1 − q)(1 + q)(1 + q + q2)
− 4F

(2)
2 (τ)

)

(3.45)



2754 M. Cirafici Ann. Henri Poincaré

Equivalently, we can use the definition (2.14) to write

H -Ellc(τ, z, ν;K3) =
1
24

(
20 + 2

(
u +

1
u

))
Ell(τ, z)

+
(

2 −
(

1
u

+ u

))
θ1(τ, z)2

η(τ)6

(
1 + 2q + 6q2 + 2q3 + q4

(1 − q)(1 + q)(1 + q + q2)
− 1

6
E2(τ)

)

(3.46)

Recall that μ(τ, z) and H(τ) are mock modular forms with shadows −η(τ)3 and
24η(τ)3. Remarkably the u-dependence factors out in the first line and again
the two shadows cancel exactly to give a Jacobi form with a u-dependent
coefficient which reduces to one in the limit u → 1. In the second line,
ϕ−2,1 = −θ2

1/η6 is also a Jacobi form, and E2(τ) is a quasi-modular form,
and it transforms as a modular form of weight 2 when we add −3/πIm(τ).
Modular properties are, however, spoiled by the presence of the rational func-
tion.

Note that the form (3.46) of the u-dependent factor 1
24

(
20 + 2u + 2

u

)

multiplying the Elliptic genus plus a correction is common to all Hodge-Elliptic
genera.

3.8. Character Decomposition and Mathieu Moonshine

Among the connections between string theory and number theory, perhaps
one of the most striking is the observation by Eguchi, Ooguri and Tachikawa
[23] that certain coefficients in the character expansion of the Elliptic genus
are twice the dimensions of certain irreducible representations of the largest
Mathieu group M24. We would like to investigate how this statement is modi-
fied when the Elliptic genus is refined into its Hodge-Elliptic counterpart. The
main motivation in doing so is that often in string theory refined enumerative
invariant helps to understand the Hilbert space of BPS states4 and could help
in identifying the physical and geometrical reason the Mathieu group appears.
We will now show directly that all the Hodge-Elliptic genera we have seen
can be decomposed as a sum over the same superconformal characters as the
Elliptic genus with u dependent coefficients.

The Elliptic genus admits the following decomposition [23]

Ell(τ ; z) = 20 ch 1
4 ,0(τ ; z) − 2 ch 1

4 , 12
(τ ; z) +

∞∑

n=1

cH(n) ch 1
4+n, 12

(τ, z) (3.47)

in terms of the characters of the superconformal algebra. These have the form

chh,�(τ, z) = TrVh,�

(
(−1)J0 yJ0qL0− c

24
)

, (3.48)

where an irreducible representation Vh,� of the N = 4 algebra is labeled by
the quantum numbers h and �, the eigenvalues of L0 and J3

0 , respectively.
For central charge c = 6, the massless representations have quantum numbers

4On general ground one expects that the categorification of Donaldson–Thomas invariants
will provide a model for the Hilbert space of BPS states. Making sense of this statement is
one of the goals of Donaldson–Thomas theory.
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(h, �) = (1
4 , 0) and (h, �) = (1

4 , 1
2 ), while the massive representations have

(h, �) = (1
4 + n, 0) with n = 1, 2, . . . . Their characters are [24–26]

ch 1
4 ,0(τ ; z) =

θ1(τ ; z)2

η(τ)3
μ(τ, z) ,

ch 1
4 , 12

(τ ; z) = q− 1
8
θ1(τ ; z)2

η(τ)3
− 2

θ1(τ ; z)2

η(τ)3
μ(τ, z) ,

ch 1
4+n, 12

(τ ; z) = q− 1
8+n θ1(τ ; z)2

η(τ)3
. (3.49)

In (3.47), the coefficients cH(n) are defined via (2.14), or equivalently

∞∑

n=1

cH(n) ch 1
4+n, 12

(τ, z) =
θ1(τ ; z)2

η(τ)3
H(τ) + 2q− 1

8
θ1(τ ; z)2

η(τ)3
. (3.50)

Now, let us consider the Hodge-Elliptic genera (3.46), (3.13) and (3.14).
Differently from (3.47), the Hodge-Elliptic genus will involve also right-moving
characters of the form

chh,�(τ , ν) = TrVh,�

(
(−1)J0 uJ0qL0− c

24

)
. (3.51)

However, since the sum is constrained to states with L0 = c
24 , the net effect

is that we expect a decomposition similar to that of (3.47) whose coefficients
depend now on the fugacity u. In the following, we will exhibit explicitly this
structure for the three Hodge-Elliptic partition functions we know in closed
form. The results have the form of a refined Mathieu moonshine. It is natural
to hope that the u-dependent coefficients can now be interpreted as a refined
trace over the M24 module which appear in the decomposition (3.47). Indeed
from the geometrical point of view in the complex and generic definitions
(3.5) and (3.16), the refinement consists in an extra parameter which weight
differently the cohomology groups. We will see that this structure is preserved
in the holomorphic character decomposition.

Consider first the complex Hodge-Elliptic genus (3.46). Using the defini-
tions of the characters and (3.47), we see that

H -Ellc(τ, z, ν) = 20 ch 1
4 ,0(τ ; z) + 2

(
1
u

+ u

)
θ1(τ, z)2

η(τ)3
μ(τ, z)+

+
1
24

(
20 + 2

(
u +

1
u

))[ ∞∑

n=1

cH(n) ch 1
4+n, 12

(τ, z) − 2q− 1
8
θ1(τ ; z)2

η(τ)3

]

+
(

2 −
(

1
u

+ u

))
θ1(τ, z)2

η(q)6

(
1 + 2q + 6q2 + 2q3 + q4

(1 − q)(1 + q)(1 + q + q2)
− 1

6
E2(τ)

)
.

(3.52)

Adding and subtracting ( 1
u + u)q− 1

8
θ1(τ,z)2

η(τ)3 , we can write
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H -Ellc(τ, z, ν) = 20 ch 1
4 ,0(τ ; z) −

(
1
u

+ u

)
ch 1

4 , 12
(τ ; z)

+
1
24

(
20 + 2u +

2
u

) ∞∑

n=1

cH(n) ch 1
4+n, 12

(τ, z)

+
(

2 − 1
u

− u

)
q− 1

8
θ1(τ, z)2

η(τ)3
[

q1/8

η(τ)3

(
1 + 2q + 6q2 + 2q3 + q4

(1 − q)(1 + q)(1 + q + q2)
− 1

6
E2(τ)

)
− 5

6

]

(3.53)

We can interpret the second line as a correction to the coefficients cH(n).
Indeed, it is clear that the terms in square brackets have a q expansion without
constant term, since in the q expansion the zeroth-order terms coming from
the rational function and from the Eisenstein series precisely cancel the 5/6
factor:

[
q1/8

η(τ)3

(
1 + 2q + 6q2 + 2q3 + q4

(1 − q)(1 + q)(1 + q + q2)
− 1

6
E2(τ)

)
− 5

6

]

=
∞∑

n=1

aH(n)qn

=
15
2

q +
79
2

q2 +
385
3

q3 +
761
2

q4 + 969q5

+
13927

6
q6 +

10293
2

q7 + 10936q8 + · · · . (3.54)

Therefore, the whole expression can be understood as a correction to the co-
efficients of the characters ch 1

4+n, 12
. We can write the complex Hodge-Elliptic

genus as

H -Ellc(τ, z, ν) = 20 ch 1
4 ,0(τ : z) −

(
1
u

+ u

)
ch 1

4 , 12
(τ ; z)

+
∞∑

n=1

c̃H(n) ch 1
4+n, 12

(τ, z) (3.55)

where now the coefficients

c̃H(u;n) =
(

1
24

(
20 + 2u +

2
u

)
cH(n) +

(
2 − 1

u
− u

)
aH(n)

)
(3.56)

are functions of u.
Equivalently, we could have started from the expression (3.45) and ob-

tained

H -Ellc(τ, z, ν) = 20 ch 1
4 ,0(τ ; z) −

(
1
u

+ u

)
ch 1

4 , 12
(τ ; z)

+
∞∑

n=1

cH(n) ch 1
4+n, 12

(τ, z)
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+
(

2 − 1
u

− u

)
q− 1

8
θ1(τ, z)2

η(τ)3

×
[

q1/8

η(τ)3

(
1 + 2q + 6q2 + 2q3 + q4

(1 − q)(1 + q)(1 + q + q2)
− 4F

(2)
2 (τ)

)
− 1

]

(3.57)

Now, the term in square brackets has an integral expansion in q without con-
stant term

[
q1/8

η(τ)3

(
1 + 2q + 6q2 + 2q3 + q4

(1 − q)(1 + q)(1 + q + q2)
− 4F

(2)
2 (τ)

)
− 1

]
=

∞∑

n=1

bH(n)qn

= q2 + q4 + 3q5 + 2q6 + 6q7 + 11q8 + 13q9 + 24q10 + · · · (3.58)

so that the whole expression can be understood as a shift of the coefficients of
the characters ch 1

4+n, 12
. We can therefore write the Hodge-Elliptic genus as

H -Ell = 20 ch 1
4 ,0(τ : z) −

(
1
u

+ u

)
ch 1

4 , 12
(τ ; z) +

∞∑

n=1

c̃H(n) ch 1
4+n, 12

(τ, z)

(3.59)

where now

c̃H(u;n) =
(

cH(n) +
(

2 − 1
u

− u

)
bH(n)

)
(3.60)

and clearly coincide with (3.56). Regardless of which expression for these co-
efficients we find more convenient, we can write down the first few terms

∞∑

n=1

c̃H(u;n) ch 1
4+n, 12

= 2
[
45q + q2

(
232 − u

2
− 1

2u

)
+ 770q3 + q4

(
2278 − u

2
− 1

2u

)

+ q5

(
5799 − 3u

2
− 3

2u

)

+ q6

(
13917 − u − 1

u

)
+ q7

(
30849 − 3u − 3

u

)

+ q8

(
65561 − 11u

2
− 11

2u

)
+ q9

(
132838 − 13u

2
− 13

2u

)

+q10

(
260592 − 12u − 12

u

)
+ · · ·

]
. (3.61)

It remains to be understood if these coefficients have any interpretation in the
context of Mathieu Moonshine.

Also, the orbifold Hodge-Elliptic genus (3.13) can be written in terms of
the superconformal characters
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H -Ellorb(τ, z, ν) =
1
24

(
2
u

+ 20 + 2u
)

[
20 ch 1

4 ,0(τ, z) − 2ch 1
4 , 12

(τ, z) +
∞∑

n=1

cH(n)ch 1
4+n, 12

(τ, z)

]

+
(

1 − 1
2u

− u

2

)
θ1(τ, z)2

η(τ)3
q− 1

8

[
q

1
8

η(τ)3
(1 + 8Λ2(τ))

]
.

(3.62)

The term on the second line has a q expansion which starts with a constant
term. We can, however, write it in terms of the superconformal characters as

θ1(τ, z)2

η(τ)3
q− 1

8

[
q

1
8

η(τ)3
(1 + 8Λ2(τ))

]
=

θ1(τ, z)2

η(τ)3
q− 1

8

[
5
3

+
∞∑

n=1

dH(n)qn

]

=
5
3

(
ch 1

4 , 12
(τ, z) + 2ch 1

4 ,0(τ, z)
)

+
∞∑

n=1

dH(n)ch 1
4+n, 12

(τ, z) (3.63)

where
∞∑

n=1

dH(n)qn = 21q + 79q2 +
878
3

q3 + 789q4 + 2068q5 +
14449

3
q6 + . . .

(3.64)

which has no constant term. Putting everything together, the orbifold Hodge-
Elliptic genus has the simple expression

H -Ellorb(τ, z, ν) = 20 ch 1
4 ,0(τ, z) −

(
1
u

+ u

)
ch 1

4 , 12
(τ, z)

+
∞∑

n=1

c̃orb
H (n) ch 1

4+n, 12
(τ, z) (3.65)

where

c̃H(u, n) =
1

24

(
2

u
+ 20 + 2u

)
cH(n) +

(
1 − 1

2u
− u

2

)
dH(n)

= 2

[
q

(
48 − 3u

2
− 3

2u

)
+ q2

(
232 − u

2
− 1

2u

)
+ q3

(
788 − 9u − 9

u

)

+ q4
(

2292 − 15u

2
− 15

2u

)
+ q5

(
5864 − 34u − 34

u

)

+ q6
(

14004 − 89u

2
− 89

2u

)
+ q7

(
31092 − 249u

2
− 249

2u

)

+ q8
(

65908 − 179u − 179

u

)

+q9
(

133624 − 799u

2
− 799

2u

)
+ q10

(
261804 − 618u − 618

u

)
+ · · ·

]

(3.66)
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Finally, let us consider the generic Hodge-Elliptic genus (3.14)

H -Ellg(τ, z, ν) = Ell(τ, z) +

(
2 − 1

u
− u

)
ch 1

4 ,
1
2
(τ, z)

= 20 ch 1
4 ,0

(τ ; z) −
(

u +
1

u

)
ch 1

4 ,
1
2
(τ ; z) +

∞∑

n=1

cH(n) ch 1
4+n, 1

2
(τ, z) .

(3.67)

In the case only, the coefficient of ch 1
4 , 12

(τ ; z) is modified.
Overall, we find that the Hodge-Elliptic genera we have consider always

admit a character expansion of the form (3.47) but where now the coefficients
are u dependent.

4. Refined Dyons and Enumerative Geometry

In this section, we will discuss a refined version of the counting function Φ10

and use it to make some predictions for enumerative geometry. We will discuss
this procedure in general, and then, we will specialize to the several Hodge-
Elliptic genera we have encountered in the previous Section. To each one, we
can associate a different set of enumerative invariants, conjecturally related by
wall-crossing.

Now that we have an explicit form for the Hodge-Elliptic partition func-
tion, we can use it to define a refined version of the Igusa cusp form Φ10. We
expand the Hodge-Elliptic genus as

H -Ell(τ, z, ν) =
∑

s,t,v

c(s, t, v) qs yt uv , (4.1)

and use the coefficients of the expansion to define the function

Φref(τ, z, ν, σ) = p q y
∏

(s,t,r,v)>0

(
1 − qsytpruv

)c(r s,t,v)

= p q y

(
1 − u

y

)(
1 − 1

uy

) ∏

s>0,r>0
(t,v)∈Z

(
1 − qsytpruv

)c(r s,t,v)
,

(4.2)

where the notation (s, t, r, v) > 0 means that the product is over all the t, v ∈ Z

and s, r ≥ 0 such that one of the following two conditions hold

• s > 0 or r > 0,
• s = r = 0 and t < 0.

Note that by definition the range of v is just v = −1, 0, 1 since otherwise
the coefficients c(r s, t, v) vanish, by direct inspection of the Hodge-Elliptic
genera. Of course the function Φref will contain arbitrary powers of u. We also
stress that the function Φref so defined, including the range of indices, is again
formally symmetric for the exchange of q and p.
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Then, the main conjecture of Kachru and Tripathy [32] is that

Φref(τ, z, ν, σ) = − 1
DTref

(4.3)

where

DTref =
∞∑

h=0

DTref
h (K3 × E) ph−1 =

∑
DTref

h,d,n ph−1qd−1(−y)n (4.4)

is the generating function of (reduced) refined Donaldson–Thomas invariants
for K3 × E.

This conjecture requires, however, some explanation. Since the Hodge-
Elliptic genus depends on the Kähler moduli, the same is true for the generat-
ing function of refined BPS invariants. While the unrefined partition function
already has some mild wall-crossing behavior when crossing codimension 1
walls of marginal stability, the refined partition function is expected to be sen-
sitive also to BPS jumping loci, higher codimension loci in the moduli space
where certain extra BPS states appear, leaving the rest of the spectrum un-
changed [32–34]. Across such loci the full generating function is expected to
change also for N = 4 compactifications.

The origin of this phenomenon is the fact that the Hodge-Elliptic genus is
not an index and in particular jumps at points in the moduli space where extra
chiral currents appear. For example, the generic Hodge-Elliptic genus should
capture the physics of the infinite volume limit, while the orbifold Hodge-
Elliptic genus is defined at a particular point where the orbifold T

4/Z2 is
resolved. Therefore, one expects, and indeed finds, two distinct partition func-
tions DTref . Less clear is the situation for the complex Hodge-Elliptic genus for
which a certain SU(2) vertex operator algebra extends the N = 4 supercon-
formal algebra [17]. Since this quantity is independent of complex structure
deformations [32,46] and explicitly computable, it is natural to expect that
it captures the physics somewhere in the K3 moduli space. Unfortunately, we
could not find explicitly this locus or show its existence; at this stage this is
only a conjecture as no deformation of the large radius sigma model is known
which would lead to such a point.

Geometrically, we expect the BPS invariants to be defined in terms of
the intersection theory of the reduced Hilbert scheme Hilbh,d,n(X)/E. Let us
denote by Mγ the relevant moduli spaces for a charge vector γ. The general
problem in extracting enumerative invariants from the spaces Mγ is that these
are poorly understood with several singularities and branches of different di-
mensions. If Mγ were smooth, one could define the refined Donaldson–Thomas
invariants as χu genera of such moduli spaces, appropriately normalized. Fol-
lowing [32], it is natural to identify the invariants DTref

h,d,n with motivic invari-
ants. Roughly speaking, one considers [Mγ ] as a class in the abelian K-theory
group of varieties, generated by isomorphism classes of complex varieties mod-
ulo the scissor relations, extended by L

−1, the formal inverse of the Lefschetz
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motive (the class of the affine line). Taking the symmetrized Poincaré polyno-
mials

DTref
h,d,n = P([Mγ ]) ∈ Q[u, u−1] (4.5)

provides a working definition for the refined invariants.
It is tempting to speculate that such objects could more naturally be

obtained in terms of the M2-brane index, defined in [41] for smooth toric
manifolds and in [15] in noncommutative chambers. Indeed, it was shown in
Nekrasov and Okounkov [8] that the unrefined invariants with h = 0, 1 can be
computed directly via toric localization. While the compact geometry is not
toric, there exist in this case a stratification of the relevant moduli spaces where
each strata is separately toric. Roughly speaking, the strategy of Refs. [15,41]
is to perform the localization computation by keeping all the toric weights and
then identifying the product of all the toric weights with the refined parameter.
Such product is kept finite in a scaling limit which sends all the weights to
zero or to infinity. While in Nekrasov and Okounkov [8] the toric action is
different in each strata, one can speculate that a refined parameter introduced
in this way should be identified across different strata and would correspond
to a square root of the canonical bundle of K3×E. We leave such speculations
for future work.

Regrettably, speculations notwithstanding, we do not have a precise defi-
nition of the refined invariants nor we understand how to precisely associate a
counting function with a point in the moduli space. Presumably, this would en-
tail introducing a theory of stability conditions on the reduced Hilbert scheme
of K3×E. In this note, we take a working approach and compute such invari-
ants in the hope that this could help clarifying their geometrical meaning.

It is worth mentioning that certain refined BPS invariants can also be
derived by duality constraints [1,2]. As already discussed in Sect. 2.4 in order
to compare with the geometrical results of Bryan [8], we use an expansion in
a different variable from what is commonly used in the literature. This give
results which are not immediately comparable, although we hope to return to
this problem in the future. Finally, in Sen [45] it was proposed to interpret
the counting of refined invariants from a representation theory perspective as
a refinement of a certain helicity supertrace.

Let us go back to the definition (4.3) and try to elucidate its structure.
As in Katz et al. [32], we have

∞∑

k=0

pk H -Ell
(
Hilb[k](K3)

)
=

∏

r>0,s≥0,t,v

1
(1 − qsytpruv)c(r s,t,v)

=
p φKKP (τ, z, ν)
Φref(τ, z, ν, σ)

. (4.6)
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Note that
∏

r>0,s≥0,t,v

(1 − qsytpruv)c(r s,t,v)

= exp
∑

r≥1

∑

s≥0

∑

t,v∈Z

c(r s, t, v) log
(
1 − qsytpruv

)

= exp
∑

r≥1

∑

s≥0

∑

t,v∈Z

c(r s, t, v)

(
−

∞∑

d=1

qdsydtpdrudv

d

)

= exp

⎛

⎝−
∑

r≥1

∑

s≥0

∑

t,v∈Z

∞∑

d|(r,s,t,v)

1
d
c

(
rs

d2
,
t

d
,
v

d

)
qsytpruv

⎞

⎠ . (4.7)

Equivalently

Φref(τ, z, ν, σ) = p φKKP (τ, z, ν) exp

(
−

∞∑

r=1

pr (H -Ell|Vr) (τ, z, ν, σ)

)
(4.8)

where we have introduced the Hecke-like operators

Vr :
∑

s,t,v

c(s, t, v)qsytuv −→
∑

s≥0

∑

t,v∈Z

∞∑

d|(r,s,t,v)

1
d
c

(
rs

d2
,
t

d
,
v

d

)
qsytuv

(4.9)

which implement the plethystic symmetrization. If we introduce the notation

ζr = (H -Ell|Vr) (τ, z, ν, σ) (4.10)

, we can then express

H -Ell(Hilb[m]) = sm(ζ1, . . . , ζm) (4.11)

in terms of the Schur polynomials (for the symmetric representations). The
first few are

s1(ζ1) = ζ1 ,

s2(ζ1, ζ2) =
1
2
ζ2
1 + ζ2 ,

s3(ζ1, ζ2, ζ3) =
1
6
ζ3
1 + ζ1ζ2 + ζ3 . (4.12)

Explicitly now

H -Ell
(
Hilb[1](K3)

)
= H -Ell(τ, z, ν) ,

H -Ell
(
Hilb[2](K3)

)
=

1

2
H -Ell(τ, z, ν)2 +

1

2

×
[
H -Ell

(τ

2
, z, ν

)
+ H -Ell(2τ, 2z, 2ν) + H -Ell

(
τ + 1

2
, z, ν

)]
,

H -Ell
(
Hilb[3](K3)

)
=

1

6
H -Ell(τ, z, ν)3

+
1

2
H -Ell(τ, z, ν)
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×
[
H -Ell

(τ

2
, z, ν

)
+ H -Ell(2τ, 2z, 2ν) + H -Ell

(
τ + 1

2
, z, ν

)]

+
1

3

[
H -Ell

(τ

3
, z, ν

)
+ H -Ell(3τ, 3z, 3ν) + H -Ell

(
τ + 1

3
, z, ν

)

+ H -Ell

(
τ + 2

3
, z, ν

)]
. (4.13)

In particular, comparing term to term

DTref =
1
p
DTref

0 + DTref
1 + p DTref

2 + · · ·

= −1
p

1
φKKP (τ, z, ν)

(
H -Ell

(
Hilb[0](K3)

)

+pH -Ell
(
Hilb[1](K3)

)
+ p2 H -Ell

(
Hilb[2](K3)

)
+ · · ·

)
(4.14)

we see that we can write explicitly the refined invariants in terms of the Hodge-
Elliptic genus and its powers (computed at different values of the arguments)

DTref0 = − 1

φKKP (τ, z, ν)
,

DTref1 = DTref0 H -Ell(τ, z, ν) ,

DTref2 = DTref0

1

2[
H -Ell(τ, z, ν)2 + H -Ell

(τ

2
, z, ν

)
+ H -Ell(2τ, 2z, 2ν) + H -Ell

(
τ + 1

2
, z, ν

)]
.

(4.15)

Using the explicit form of the Hodge-Elliptic genus, we have a prediction for
the full series of refined Donaldson–Thomas invariants, order by order. Now,
we will specialize to different version of the Hodge-Elliptic genus and try to
extract geometrical information from the counting functions.

The first prediction was actually proven in Katz et al. [36]

DTref
0 = − 1

φKKP (τ, z, ν)
=

1
η(τ)18 θ1(τ, z + ν) θ1(τ, z − ν)

(4.16)

and is universal, independent of the particular Hodge-Elliptic genus one is
considering.

Consider first the complex Hodge-Elliptic partition function (3.45). Mul-
tiplying it by (4.16) and using the identities (2.38) and (2.39), we find the
prediction

DTref,c
1 = −

(
θ1(q, y)2

θ1(q, uy) θ1(q, y
u )

)
1

η(q)24

[(
20 + 2u +

2
u

)

⎛

⎝1 +
y

(1 − y)2
+

∞∑

d=1

∑

k|d
k(yk + y−k) qd

⎞

⎠
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−
(

18 + 2u +
2
u

)
+ 24

∞∑

d=1

∑

k|d
k(−2) qd +

(
2 − 1

u
− u

)

(
q4 + 2q3 + 6q2 + 2q + 1

(q − 1)(q + 1)(q2 + q + 1)

)]
. (4.17)

One of the effects of the refinement is to produce an overall ratio of theta
functions. We see that the vertical curves with nodal fibers are refined also by
a multiplicative factor

(
20 + 2u + 2

u

)
, which replaces the 24 which counts the

number of singular fibers. This factor is replaced by
(
18 + 2u + 2

u

)
for smooth

vertical curves. The refinement of the diagonal curves is more complicated.
The contribution from the diagonal curves captured by the Eisenstein series
should really be paired with the rational function, since they are the only q-
dependent terms without any y-dependence (up to the constant term in the
expansion of the rational function). Indeed, we show in Appendix B that the
rational function can be interpreted as shifting the first terms in the Eisenstein
sum, when this is rephrased in terms of cyclotomic polynomials. However, we
do not have a simple geometrical interpretation of this.

Consider now the Kummer surface, the Z2 orbifold of complex two-tori.
In this case, we consider the orbifold Hodge-Elliptic partition function (3.13)
multiplied by (4.16). By using again the identities (2.38) and (2.39), we find
the prediction

DTref,orb
1 = −

(
θ1(q, y)2

θ1(q, uy) θ1(q, y
u )

)
1

η(q)24

[(
20 + 2u +

2
u

)

⎛

⎝1 +
y

(1 − y)2
+

∞∑

d=1

∑

k|d
k(yk + y−k) qd

⎞

⎠

−
(

20 + u +
1
u

)
+

(
28 − 2

u
− 2u

)⎛

⎝
∞∑

d=1

∑

k|d
k(−2) qd

⎞

⎠

−
(

16 − 8
u

− 8u

)⎛

⎝
∞∑

d=1

∑

k|d
k(−2) q2d

⎞

⎠

⎤

⎦ (4.18)

We see that the contribution of the vertical curves with nodal fibers has the
same structure as in the previous case (4.17), while now smooth vertical curves
contribute with a weight

(
20 + u + 1

u

)
. More complicated is the situation for

diagonal curves. Similarly to what happens in (4.17), the effect of the refine-
ment on diagonal curves involves correcting the coefficients of the Eisenstein
series by u-dependent shifts. As above it is not clear what is the geometrical
interpretation.

Finally, let us consider the generic Hodge-Elliptic genus (3.16). As before
multiplying by (4.16), we obtain
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DTref,g
1 = −

(
θ1(τ, z)2

θ1(τ, z + ν) θ1(τ, z − ν)

)
1

η(τ)24

[
− 22

24

(
20 +

2
u

+ 2u

)

+
(

20 +
2
u

+ 2u

) ∞∑

d=1

∑

k|d
(−2k) qd +

(
20 + 2u +

2
u

)

⎛

⎝1 +
y

(1 − y)2
+

∞∑

d=1

∑

k|d
k(yk + y−k) qd

⎞

⎠

−
(

2 − 1
u

− u

)
η3(τ)

(
1
12

H(τ) + q− 1
8

)]
(4.19)

The first two lines are a simple multiplicative refinement of the Elliptic genus,
and we recognize immediately the contributions of the various types of curves.
The last line is more challenging to interpret. Also in the two previous cases,
one can start with a multiplicative refinement of the Elliptic genus, as in (3.46)
or (3.13), but then the extra terms conspire precisely to alter the weights
of the contributions of various curves. Here, the situation is different, due
to the appearance of the function H(τ). As we have remarked in Sect. 2.3,
this function has a clear interpretation in terms of the geometry of K3 × E
only when in combination with the Appell–Lerch sum μ(τ, z). Its appearance
in the refined Donaldson–Thomas generating function leads to the surprising
prediction that in the refined setting its coefficients, which are related to the
dimensions of the irreducible representations of the Mathieu group M24, should
have a direct geometric representation in terms of the reduced Hilbert scheme
on K3 × E. Note that this does not happen in φKKP (τ, z, ν) but only in
the higher-order terms in the Donaldson–Thomas expansion. Furthermore, the
term (2 − 1

u − u) guarantees that the unrefined theory is blind to the action
of M24 on the Hilbert space of BPS states.

Consider now the Hilbert space decomposition Hh=1 =
⊕

d,n Hd,nqd−1

(−y)n where the Donaldson–Thomas invariant is interpreted as a refined Wit-
ten index associated to each Hilbert space subfactor. Each Hd,n can be in turn
decomposed as a sum of factors according to the structure of (4.19) and (4.16),
for example, by keeping track of the diagonal and vertical curve contributions.
Due to the presence of the function H(τ) in (4.19), we see that one of these
factors carries the action of the Mathieu group. It would be interesting to
develop this further.

Higher-order enumerative invariants can be computed similarly, using the
expansion (4.14). The first few orders for DTref

2 and DTref
3 for all three Hodge-

Elliptic genera can be found in the supporting mathematica file [16].
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Table 1. Data characterizing the non-trivial minimal sub-
groups and their T̃g(τ) functions

Conjugacy
class

Number of
fixed points

Eigenvalues at the fixed points T̃g(τ)

2A 8 8 × (−1, −1) 16Λ2

3A 6 6 × (ζ3, ζ−1
3 ) 6Λ3

4B 4 4 × ( i , − i ) 4 (−Λ2 + Λ4)

5A 4 2 ×(ζ5, ζ−1
5 ) and 2 × (ζ25 , ζ−2

5 ) 2Λ5

6A 2 2 ×(ζ6, ζ−1
6 ) 2 (−Λ2 − Λ3 + Λ6)

7AB 3 (ζ7, ζ−1
7 ), (ζ27 , ζ−2

7 ) and (ζ37 , ζ−3
7 ) Λ7

8A 2 (ζ8, ζ−1
8 ) and (ζ38 , ζ−3

8 ) −Λ4 + Λ8

5. The Mathieu Group and Twined Complex Hodge-Elliptic
Genera

In this section, we will consider the case where there is a finite symmetry group
G which commutes with the superconformal symmetries of the model. In this
case, one can define the elliptic genus twined by g ∈ G, see [14,22,28,29] for a
sample of the literature. We can generalize (2.8) and define the elliptic genus
twined by any g ∈ G as

Ellg = TrHRR

(
g (−1)J0+J0yJ0qL0− c

24 qL0− c
24

)
. (5.1)

In this section, we will introduce twined complex Hodge-Elliptic genera and
compute explicitly several examples.

In particular, there is a class of twining genera which are induced by
certain geometric automorphisms of K3 surfaces. A geometric automorphism
which acts trivially on the holomorphic 2-forms of the K3 is called symplectic.
The automorphisms which have finite order, so that they only have isolated
fixed points, are classified and correspond to certain subgroups of the Mathieu
group M23, with certain conditions. The non-trivial minimal subgroups are
given in the following table, together with their atlas names as elements of
M24, the number of fixed points and their eigenvalues at the fixed point:

The corresponding Elliptic genus can be computed as before, with the
result

Ellg(τ, z) =
1
12

χg(K3)ϕ0,1(τ, z) + T̃g(τ)ϕ−2,1(τ, z) (5.2)

where χg(K3), counting the number of fixed points, and the function T̃g(τ)
can be read off table 1. The functions ΛN (τ) were introduced in (3.10).

This result follows from the fixed point formula applied to the integral
(3.32) by writing

∫
ch(SNT )Todd(T ) =

∑

λi

χN (λi)
(1 − λi)

(
1 − λ−1

i

) , (5.3)
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where the eigenvalues λi can be read off table (1), and χN denotes the SU(2)
characters. The result can be compactly written as an equivariant Euler char-
acteristic

Ellg(τ, z) =
∞∑

N=0

FN (τ, z)
∑

λi

χN (λi)
(1 − λi)

(
1 − λ−1

i

) , (5.4)

where the function FN (τ, z) was defined in (3.29) in terms of the functions
(3.30) and (3.31). The computation proceeds as in Section 3.6. For example,
in the case [g] = 2A

Ell[g]=2A(τ, z) =
θ1(τ, z)2

η(τ)3
[

1

η(τ)3

(
−2s̃0(τ) + 8s̃1(τ) − 14s̃2(τ) + 16

∞∑

N=3

(−1)N+1s̃N (τ)

)
+ 8μ(τ, z)

]
.

(5.5)

The quantity in round brackets can be written as

8s̃1(τ) +
1
3

(
−2s̃0(τ) + 50s̃2(τ) + 48

∞∑

N=3

s̃N (τ)

)

− 1
3

(
4s̃0(τ) + 92s̃2(τ) + 96

∞∑

N=2

s̃2N (τ)

)

=
1
3
(−2E2(τ) + 48F (2)

2 (τ)) − 16Λ2(τ) (5.6)

where we have repeatedly used the analytical continuation5
∑∞

n=1 n = −1/12
and (3.39) to write

16Λ2(τ) =
4
3

(
−1 − 48

∞∑

n=1

n

1 − q2n
+ 24

∞∑

n=1

n

1 − qn

)

=
4
3

(
−1 +

24
1 − q

+ 24
∞∑

N=1

2N − 1
1 − q2N−1

)

=
1
3

(
4s̃0(τ) + 92s̃2(τ) + 96

∞∑

N=2

s̃2N (τ)

)
. (5.7)

By putting everything together, we can write

Ell[g]=2A(τ, z) =
1
3
Ell(τ, z) − 16Λ2(τ)

θ1(τ, z)2

η(τ)6

=
χ[g]=2A(K3)

12
ϕ0,1(τ, z) + 16Λ2(τ)ϕ−2,1(τ, z) .

(5.8)

The remaining cases can all be treated similarly and are left to the reader.

5We stress again that the above identities do not hold in a truncated form.
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We can now define a twining Hodge-Elliptic genus as

H -Ellg(τ, z, ν) = Tr
(
g (−1)J0+J0yJ0uJ0qL0− c

24

)
(5.9)

where as before the right movers are in the ground states. Geometrically, we
can start from the relation (3.42) to define

H -Ellg(τ, z, ν) = Ellg(τ, z) −
[
1 − 1

2

(
u +

1
u

)]
F0(τ, z)χg(O) . (5.10)

The computation of the complex Hodge-Elliptic genus proceeds as in Sect. 3.7,
by weighting the contribution of the flat bundles with an appropriate factor.
The flat bundle contribution is the N = 0 term in the sum (5.4). One can see
by direct computation that this term is the same for all conjugacy classes and
is determined by the combination

− 2s̃0(τ) + 4s̃1(τ) − 4s̃3(τ) + 2s̃4(τ) . (5.11)

Then, repeating the computations of Sect. 3.7 step by step now gives the flat
bundle contribution

Flat(τ, z) =
1
2

θ1(q, y)2

η(q)3
8μ(q, y) +

θ1(q, y)2

η(q)6

×
[
2(1 + 2 q + 6 q2 + 2 q3 + q4)
(q − 1)(q + 1)(1 + q + q2)

+ 8F
(2)
2 (q)

]
(5.12)

so that the Hodge-Elliptic twining genera are given by

HEllg(K3) =
1
12

χg(K3)ϕ0,1 + T̃g ϕ−2,1 −
(

1 − 1
2

(
u +

1
u

))
Fl(q, y)

(5.13)

Equivalently, we can rewrite this as

HEllg(K3) =
1
24

χg,u(K3)Ellg(τ, z) + T̃g ϕ−2,1

− 2
(

1 − 1
2

(
u +

1
u

))
θ1(τ, z)2

η(τ)6

[
(1 + 2 q + 6 q2 + 2 q3 + q4)
(q − 1)(q + 1)(1 + q + q2)

+
1
6
E2(τ)

]

(5.14)

in terms of the equivariant χu genus

χg,u(K3) =
1
u

∑

λi

(1 − uλi)
(
1 − uλ−1

i

)

(1 − λi)
(
1 − λ−1

i

) = 2u + χg(K3) − 4 +
2
u

(5.15)

evaluated by localization.

6. Conclusions

In this note, we have studied the implications of three Hodge-Elliptic genera for
the refined enumerative geometry of K3 × E. We have found explicit formulas
showing how the ordinary Donaldson–Thomas sums are modified, in the pro-
cess elucidating also certain aspects of the ordinary Elliptic genus. The results
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should function as a starting point to study refinements of Donaldson–Thomas
theory on K3 × E. We conclude with a few comments and open problems:

• It would be very interesting to reproduce the results obtained here via
a direct localization computation. As already mentioned in the text, a
possible strategy is to use the full K-theory vertex and afterward take a
certain scaling limit of the toric weights. A reason this could work is that
the localization computation of the ordinary enumerative invariants is
carried on by using a stratification of the moduli space, where strata are
separately toric. While the toric action will not glue globally, the scaling
limit should individuate a parameter associated with the square root of
the canonical bundle and therefore should make sense globally. Note that
there are several possible scaling limits of the toric weights, a fact perhaps
explaining why different versions of the Hodge-Elliptic genus can appear.

• We do not really understand the modular properties of Hodge-Elliptic
genera. They fail to be modular but in a very specific way. It would be
interesting to explore this issue further.

• The relation between jumping phenomena, wall-crossing and the analytic
properties of the refined BPS counting function should be established
precisely.

• An intriguing aspect of the construction is the appearance of the function
H(τ) whose coefficients are related to the representations of the Mathieu
group M24. This function appears in the generic Hodge-Elliptic genus
and therefore in the enumerative geometry of K3 × E. In contrast with
what happens in the case of the Elliptic genus, in the refinement this
function appears unpaired with the Appell–Lerch sum μ(τ, z). In the
unrefined case, the combination of these two functions decomposes in a
non-trivial way to capture the geometry of curves in the target space.
Unfortunately in this decomposition the individual coefficients are mixed
up and all information of the representations of M24 is lost. Apparently,
this is not the case for the generic Hodge-Elliptic genus. Our results imply
that it should be possible to see the Mathieu Moonshine phenomenon
geometrically when one considers refined invariants which have nonzero
indices in both the K3 and the elliptic curve directions. This phenomenon
appears only starting from DT1 but persists at higher orders.

• As we have explained, it is natural to conjecture that the refined partition
functions that we have constructed in the course of the paper are related
to a refinement of Donaldson–Thomas theory. This leads naturally to the
further conjecture that the refined counting of BPS states is related to
the refined topological string. As was conjectured in Oberdieck and Pand-
haripande [42] and then proven in Oberdieck and Pixton [43], the BPS
counting function Φ10 can be expressed in terms of the (disconnected,
reduced) Gromov–Witten invariants.

One can define the generating function

GW =
∑

g∈Z

∑

h≥0

∑

d≥0

GWg,h,d λ2 g−2ph−1qd−1 (6.1)
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where the labels have the same meaning as in (2.29). The generating
function of Gromov–Witten invariants is related to the Igusa cusp form as

GW = − 1
Φ10

(6.2)

where the genus counting parameter λ appears in the right-hand side via
the substitution q = −e i λ.

It is natural to propose that the GW-DT correspondence also holds
in the refined setting for K3 × E. This corresponds to considering the
N = 4 string on the Ω-background and taking an appropriate limit [41].
That such a construction should be possible is suggested by the fact that
in the Donaldson–Thomas side the relevant moduli space admits a strati-
fication where each strata admits a toric action, even if this does not glue
globally. Since the GW-DT correspondence should hold in the large vol-
ume limit, it should be compared with the chiral Hodge-Elliptic genus.
As an aside comment, it is an interesting open problem to define the
worldsheet theory of the refined N = 4 topological string, generalizing
the construction of [4].

• We have computed certain twining complex Hodge-Elliptic genera as-
sociated with geometrical automorphisms of K3 surfaces. It would be
interesting to extend this computation to all the available twisted-twined
genera, as well as the generic and orbifold Hodge-Elliptic genera, to pre-
dict enumerative invariants which would refine the partition functions
computed in Refs. [11,12,19,30].
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A Some Technical Identities

In this appendix, we prove some of the technical identities used in the main
text

Lemma A.1. The following identities hold
k∑

i=−k

1

(1 − yqi)(1 − q−i−1

y )
=

q

(1 − qk+1y)(1 − qk

y )

q2k+1 − 1

q − 1
, (A.2)

k∑

i=−k

1

(1 − yqi)(1 − qN−1−i

y )
=

N−2∑

i=0

1

(1 − qk−iy)(1 − qk+(N−1)−i

y )

q2k+(N−1)−2i − 1

qN−1 − 1
,

(A.3)

for k ≥ 0 and N ≥ 2.

Proof. Consider first (A.2). We prove it by induction. Setting k = 0, we see
1

1 − y

1
1 − 1

qy

=
1

1 − qy

1
1 − 1

y

q , (A.4)

which indeed holds. Now, we assume that (A.2) holds for a certain k and we
prove the identity for k+1. For k+1, we use the induction hypothesis to write
the left-hand side of (A.2) as

k+1∑

i=−k−1

1

(1 − yqi)(1 − q−i−1

y )

=
1

1 − q−k−1y

1

1 − qk

y

+
q

(1 − qk+1y)(1 − qk

y )

q2k+1 − 1
q − 1

+
1

1 − qk+1y

1

1 − q−k−2

y

=
q

(1 − qk+2y)(1 − qk+1

y )

q2k+3 − 1
q − 1

, (A.5)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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which holds by direct computation.
Consider now (A.3). Again we proceed by induction. For k = 0, we have

to prove the identity

1
(1 − y)

1

(1 − qN−1

y )
=

N−2∑

i=0

1
(1 − q−iy)

1

(1 − qN−1−i

y )

qN−1−2i − 1
qN−1 − 1

, (A.6)

or equivalently

qN−1 − 1
1 − y

1

1 − qN−1

y

=
N−2∑

i=0

qN−1−2i − 1
1 − q−iy

1

1 − qN−1−i

y

. (A.7)

This identity holds if and only if the following identity

N−2∑

i=1

qN−1−2i − 1
1 − q−iy

1

1 − qN−1−i

y

= 0 (A.8)

is true and only the i = 0 term in the sum is non-trivial. To prove this, let us
consider separately the cases where N is odd or even.

If N is odd, we can split the sum as

N−2∑

i=1

=

N−3
2∑

i=1

+
∑

i= N−1
2

+
N−2∑

i= N+1
2

(A.9)

The middle term is identically zero, since q(N−1)−2i equals 1 when i = N−1
2 .

To evaluate the last term, let us relabel i = (N − 1) − j. Then, since

qN−1−2i − 1
1 − q−iy

1

1 − qN−1−i

y

=
qN−1−2((N−1)−j) − 1

1 − q−((N−1)−j)y

1

1 − qN−1−((N−1)−j)

y

= −qN−1−2j − 1
1 − q−jy

1

1 − qN−1−j

y

, (A.10)

the first and third sums cancel exactly and (A.8) is proven.
Consider now N even. Now, we simply split

N−2∑

i=1

=

N−2
2∑

i=1

+
N−2∑

i= N−2
2 +1

. (A.11)

By using the same relabeling i = (N − 1) − j, we see that again the sums
cancel each other. Therefore, the first step of the induction is proven.

Now, let us assume that the identity (A.3) holds for a generic k. To
simplify the exposition introduces the notation

gk,N (i) =
1

(1 − qk−iy)(1 − qk+(N−1)−i

y )

q2k+(N−1)−2i − 1
qN−1 − 1

. (A.12)
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Using the induction hypothesis, we can write
k+1∑

i=−k−1

1

(1 − yqi)(1 − qN−i−1

y )
=

1

(1 − yq−k−1)(1 − qN+k

y )

+
N−2∑

i=0

gk,N (i) +
1

(1 − yqk+1)(1 − qN−2−k

y )
. (A.13)

We have to prove that this is equivalent to
∑N−2

i=0 gk+1,N (i). However, since
in gk,N (i), k and i only appear in the combination k − i, it is easy to see that∑N−2

i=0 gk+1,N (i) =
∑N−2

i=0 gk,N (i − 1). Therefore, we have to prove that

1

(1 − yq−k−1)(1 − qN+k

y )
+

N−2∑

i=0

gk,N (i)

+
1

(1 − yqk+1)(1 − qN−2−k

y )
−

N−2∑

i=0

gk,N (i − 1) = 0 . (A.14)

It is easy to see that
N−2∑

i=0

(gk,N (i) − gk,N (i − 1)) = gk,N (N − 2) − gk,N (−1) (A.15)

since the terms in the sum cancel pairwise. Then, it is only a matter of brute
force to show that the identity

1

(1 − yq−k−1)(1 − qN+k

y )
+

1

(1 − yqk+1)(1 − qN−2−k

y )

+gk,N (N − 2) − gk,N (−1) = 0 (A.16)

holds. �

We now can prove our

Proposition A.17. We have that

s̃0(τ) =
q

1 − q
, (A.18)

s̃N (τ) =
N − 1

1 − qN−1
, (A.19)

where N ≥ 2

Proof. By definition, we have

s̃M (τ) = lim
k→∞

k∑

i=−k

1

(1 − yqi)(1 − qN−1−i

y )
, (A.20)

with M = 0 or M ≥ 2. By the results of the previous lemma

s̃0(τ) = lim
k→∞

1

(1 − qk+1y)(1 − qk

y )
q
q2k+1 − 1

q − 1
, (A.21)
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s̃N (τ) = lim
k→∞

N−2∑

i=0

1

(1 − qk−iy)(1 − qk+(N−1)−i

y )

q2k+(N−1)−2i − 1
qN−1 − 1

. (A.22)

To take the limit, recall that q = e2π i τ is an analytic function of τ defined in
the upper half plane. Therefore, limk→∞ qk = 0 since the oscillatory part is
bounded.

Then, the result (A.18) follows immediately. To derive (A.19), we com-
mute the limit with the finite sum and evaluate the limit at N and i fixed. Each
limit gives the result 1

1−qN−1 ; evaluating the finite sum gives the result. �

Finally, we have

Proposition A.23. We have the following identity

s1(τ, z) =
θ1(τ, z)
η(τ)3

2F
(2)
2 (τ) + θ1(τ, z)μ(τ, z) . (A.24)

Proof. From the definition of s1(τ, z), we have

s1(τ, z) =
θ1(τ, z)
η3(τ)

∑

i∈Z

1
(1 − yqi)(1 − 1

y q−i)
= −θ1(τ, z)

η3(τ)

∑

i∈Z

yqi

(1 − yqi)2
.

(A.25)

We can write
∑

i∈Z

yqi

(1 − yqi)2
=

y

(1 − y)2
+

∞∑

i=1

yqi

(1 − yqi)2
+

∞∑

i=1

yq−i

(1 − yq−i)2
. (A.26)

By using the expansions

xy

(1 − xy)2
=

∞∑

n=1

nxnyn ,
x−1y

(1 − x−1y)2
=

∞∑

n=1

n
xn

yn
, (A.27)

we find
∞∑

i=1

yqi

(1 − yqi)2
+

∞∑

i=1

yq−i

(1 − yq−i)2

=
∞∑

i=1

∞∑

n=1

n

(
yn +

1
yn

)
qni

=
∞∑

d=1

∑

d|k
k

(
yk +

1
yk

)
qd . (A.28)

Putting all together, we see

s1(τ, z) = −θ1(τ, z)
η3(τ)

⎛

⎝ y

(1 − y)2
+

∞∑

d=1

∑

d|k
k

(
yk +

1
yk

)
qd

⎞

⎠ (A.29)

and the proposition follows from the identity (2.39) �
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B The Eisenstein Series E2(τ ) and the Cyclotomic Polynomials

To have a different perspective on the rational function in (3.46), let us consider
a truncated expansion of the Eisenstein series E2(τ) in terms of cyclotomic
polynomials. Recall that the cyclotomic polynomials are defined as

Φn(x) =
∏

1≤k≤n

gcd(k,n)=1

(
x − e2π i k

n

)
. (B.1)

In particular, one has

xn − 1 =
∏

d|n
Φd(x) . (B.2)

Consider now the following truncation of the Eisenstein series

E
(N)
2 (τ) = 1 − 24

N∑

n=1

nqn

1 − qn
= 1 − 24

N∑

n=1

n

1 − qn
+ 24

N∑

n=1

n . (B.3)

Using (B.2), we can write

− n

1 − qn
= n

∏

d|n

1
Φd(q)

. (B.4)

It is easy to see that

n
∏

d|n

1
Φd(q)

=
∑

d|n

Reminder (q Φ′
d(q); Φd(q))

Φd(q)
, (B.5)

expressed in terms of the reminder of the division of the polynomial q Φ′
d(q)

by Φd(q). Indeed by taking the logarithmic derivative of (B.2), one finds

n qn

∏
d|n Φd(q)

=
∑

d|n

q Φ′
d(q)

Φd(q)
, (B.6)

which implies by adding and subtracting 1 to the numerator on the left-hand
side

n∏
d|n Φd(q)

= −n +
∑

d|n

q Φ′
d(q)

Φd(q)
. (B.7)

The result follows from the fact that
q Φ′

d(q)
Φd(q)

= φ(d) +
Reminder (q Φ′

d(q); Φd(q))
Φd(q)

(B.8)

which, for example, can be seen directly using the long polynomial division
algorithm. Here, φ(d) denotes the degree of Φd(q). Finally, (B.5) follows by
substituting (B.8) into (B.7) and using

∑
d|n φ(d) = n.

Therefore, we can write

E
(N)
2 (τ) = 1 + 24

N∑

n=1

∑

d|n

Reminder (q Φ′
d(q); Φd(q))

Φd(q)
+ 24

N∑

n=1

n



2776 M. Cirafici Ann. Henri Poincaré

= 1 + 24
N∑

n=1

rN (n)
Reminder (q Φ′

n(q); Φn(q))
Φn(q)

+ 24
N∑

n=1

n , (B.9)

where the coefficients rN (n) count the number of times an integer n appears
as a divisor of the set of integers {1, . . . , N}

rN (n) = Coeff

⎛

⎝
N∑

k=1

∑

i|k
xi ; xn

⎞

⎠ . (B.10)

Since we can write
q4 + 2q3 + 6q2 + 2q + 1

(q − 1)(q + 1)(q2 + q + 1)
= −1 − 2

1
Φ1(q)

− 2
1

Φ2(q)

+
Reminder (q Φ′

3(q); Φ3(q))
Φ3(q)

, (B.11)

the rational function can be thought of as a shift of the first coefficients of the
Eisenstein series.
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