

Lithospheric modeling in Iran from gravity and magnetic data including seismic tomographic data: first results.

Gerardo Maurizio¹, Carla Braitenberg¹, Daniele Sampietro², and Martina Capponi²

1. Trieste University Trieste University, Dept. of Mathematics and Geosciences, Italy 2. Geomatics Research & Development srl, Lomazzo, Italy

- Inverted (density and susceptibility) and calculated (shear modulus) models
- (slice at at 20 km depth)

PICO presentation

Interactive outline

[1. Geological](#page-5-0) introduction [3. Conversion formula](#page-11-0)

[2. Datasets used](#page-7-0) 4. Results [& Conclusion](#page-15-0)

Tectonic setting

Iranian plateau: zone of continental deformation formed by the Arabian-Eurasian collision (25 Ma).

Evolution associated to opening and closure of Paleo- and Neo-Tethys oceans.

Iranian plateau formed with the coalescing of islandarcs and continental fragments of Gondwana.

Closing of Neo-Tethys and Arabian-Eurasian collision began in early Miocene.

Northward motion of Arabian plate formed the Zagros Fold Belt and Iranian Plateau NE of Bitlis-Zagros suture.

Iranian magmatism

*Urumieh Doktar magmatic arc (UDMA) is a magmatic outcrops area across Iran from NW to SE, parallel to Zagros belt

Magmatic outcrops

 $55:$ acid $\dddot{\bullet}$ ae

 $\dddot{\bullet}$ ai $\frac{1}{2}$ basic \cdot be $\dddot{\bullet}$ bi \Box CzMzi

 $\ddot{\bullet}$ CzMzv \cdot Czv $\dddot{\bullet}$, ie

 \blacksquare i 5.5 = inter \sim Io Mzi

 \therefore Mzo

 $MzPzi$ \cdot Mzv

 \Box pCmi \cdot pCmv

 \cdot Pzv \cdot \cdot Qv **DA** Ti

∵∵ To

 \ddotsc $\frac{1}{\sqrt{2}}$ vs

- Major volcanism in the area is Tertiary (along UDMA*, in the Lut block, and in the Central Domain following the principal tectonic lineaments).
- Mesozoic volcanism is also relevant, mainly in the north-west of the area, close to Urmia lake.
- Ophiolites outcrop in the Makran area and in Sistan subzone

Datasets used

• Seismic tomography (Kaviani et al., 2020)

Seismic tomography Resolution:

Spatial Resolution = 0.25° (~27 km) Vertical Resolution = 1 km to 7 km

Final Cube dimension (76x98x75):

Latitude = $25 \div 40$ °N: Longitude = $44 \div 63.4$ °E; Depth max = 105 km

We conserve vertical resolution from seismic original model. Final spatial resolution is 0.2° (~22 km)

Area covered by the regional tomography (black area). Green box is the area selected for this work.

- Kaviani et al., 2020, *Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography.* Geophysical Journal International, 221(2), 1349-1365.

- Zingerle, P., Pail, R., Gruber, T. *et al.* The combined global gravity field model XGM2019e. *J Geod* **94**, 66 (2020). <https://doi.org/10.1007/s00190-020-01398-0>

- Brian Meyer; Richard Saltus; and Arnaud Chulliat. 2017: EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5H70CVX

Magnetic observation (*EMAG2 v3*, measured at 4 km continuous altitude upon continents)

Gravity observation (XGM2019e, reduced by lower degree < 12)

- Irandoust, M. A., Priestley, K., & Sobouti, F. (2022). High-resolution lithospheric structure of the Zagros collision zone and Iranian Plateau. Journal of Geophysical Research: Solid Earth, 127, e2022JB025009. https://doi.org/10.1029/2022JB025009

- Mousavi, N., Ardestani, V.E., 2023, 3D map of surface heat flow, low-temperature basins and Curie point depth of the Iranian plateau: Hydrocarbon reservoirs and iron deposits, Journal of the Earth and Space Physics, 48(4), 137-150. https://doi.org/10.22059/jesphys.2023.348000.1007453

Curie depth (Mousavi & Ardestani, 2023)

Sediment base depth (*Irandoust et al.*, 2022)

Moho definition

Gradient Method (Tadiello & Braitenberg, 2021)

Determination of the Moho depth studying the vertical velocity variations for each node.

Research of the maximum vertical gradient, within a determined velocity range.

- Tadiello D. and Braitenberg C.; 2021: *Gravity modeling of the Alpine lithosphere affected by magmatism based on seismic tomography*. Solid Earth, 12(2), 539-561.

23

⁻ Thomas M. Brocher; Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust. Bulletin of the Seismological Society of America 2005;; 95 (6): 2081–2092. doi: https://doi.org/10.1785/0120050077

⁻ Connolly, J. A. D. (2009), The geodynamic equation of state: What and how, Geochem. Geophys. Geosyst., 10, Q10014, doi:10.1029/2009GC002540.

Statistical inference

- Before applying Brocher's Equation, we try to simplify it with statistical inference.
- Applying Fischer's Law, we have demonstrated the possibility to delete the last term of the equation.

We found other parameters and defined a new relation for the $V_p \rightarrow$ density conversion:

Results of the Brocher's relation (y-axis) with empirical velocity (x-axis) : Black line represent the original relation, dashed lines represent our test, starting from five coefficients and eliminating ones at every iteration.

 $\rho = 1$, $6026 {V_p} - 0$, $4164 {V_p^2} + 0$, $0493 {V_p^3} - 0$, $0020 {V_p^4}$

Density inversion with Bayesian approach

• A probabilistic **Bayesian approach** is proposed for the joint gravity-magnetic inversion. It searches, from the a-priori model, the density distribution that minimizes the gravity and magnetic residuals.

$$
P(\rho, \chi, \mathbf{L} | \Delta g^o, \Delta B^o) \propto \exp\left\{-\left(\Delta g^o - A_g \rho\right)^T \mathbf{C}_{\Delta g}^{-1} (\Delta g^o - A_g \rho) - \left(\Delta B^o - A_B \chi\right)^T \mathbf{C}_{\Delta B}^{-1} (\Delta B^o - A_B \chi) - \right.\left. - \frac{1}{\sigma_{\rho_\ell}^2} (\rho - \overline{\rho}_\ell)^2 - \frac{1}{\sigma_{\chi_\ell}^2} (\chi - \overline{\chi}_\ell)^2 - \gamma \sum_{i=1}^N s^2 (L_i, \ell_i^o) - \lambda \sum_{i=1}^N \sum_{j \in \Delta_i} q^2 (L_i, L_j) \right\} \cdot \delta_{\left[\overline{\rho}_\ell | 3\sigma_{\rho_\ell}^2\right]}(\rho) \delta_{\left[\overline{\chi}_\ell | 3\sigma_{\chi_\ell}^2\right]}(\chi)
$$

- Marchetti, P., Sampietro, D., Capponi, M., Rossi, L., Reguzzoni, M., Porzio, F., Sansò, F. et al. (2019) *Lithological constrained gravity inversion. A Bayesian approach*. In: 81st EAGE Conference and Exhibition 2019. EAGE Publishing BV, 1–5

- Sansò, Fernando, and Daniele Sampietro. Analysis of the gravity field: Direct and inverse problems. Springer Nature, 2022.

- Sampietro, D., Capponi, M., Maurizio, G. (2022) *3D Bayesian Inversion of Potential Fields: The Quebec Oka Carbonatite Complex Case Study. Geosciences 2022, 12, 382. https://doi.org/10.3390/geosciences12100382*

- Thomas M. Brocher; Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust. Bulletin of the Seismological Society of America 2005;; 95 (6): 2081–2092. doi:https://doi.org/10.1785/0120050077

Elastic parameters calculation

• We use the final density model to calculate some elastic parameters.

 $\mu = V_s^2 \rho$ **(Shear modulus)**

- $\lambda = \rho(V_p^2 2V_s^2)$ (1st Lame parameter)
- $\sigma = \lambda/[2(\lambda + \mu)]$ (Poisson's ratio)

 $P = P_t + \sum \Delta P_i$

i

Inversion results

• Field residuals

Std: 15 nT Std: 7 mGal

Discussion of inverted density

• Upper crustal density partly correlates with magmatic outcrops

Crustal average density Depth: 20 km

Discussion of inverted density

2 563.9

• Lower crustal density vs Tethyan suture:

Paleo-Tethyan suture corresponds to a high-density trend.

Neo-Tethyan suture bounds a lowdensity area from an higher density zone

Crustal average density

• Density vs strike-slip faulting. Rotation of Birjand block helped by the presence of the high-density body.

- Rashidi, A., Shahpasandzadeh, M., Braitenberg, C., *Late Cenozoic to Present Kinematic of the North to Eastern Iran Orogen: Accommodating Opposite Sense of Fault Blocks Rotation*. Remote Sens. 2022, 14, 4048. https://doi.org/10.3390/rs14164048

Discussion of inverted susceptibility

Crustal average susceptibility

.

0,000381

- High magnetization corresponds to west northwest presence of magmatic bodies.
- Highly magnetized body is detected in Central Iran and in Makran subduction zone.

Discussion of calculated shear modulus

Strike-Slip faults

- \rightleftharpoons Dextral \equiv Sinistral
- Earthquakes [0-30 km] \bullet
- Shear modulus GPa 26.66
- Location of superficial earthquakes perfectly matches less rigid superficial areas.
- Exception is Caspian Sea. It is close to aseismic but has low 26.66 12.05 12.05

Depth: 20km

Conclusion

- Bayesian joint gravity-magnetic inversion has defined a reliable 3D density and magnetic susceptibility model.
- The density variations match the geologically expected variations well.
- The seismic velocity and density has produced a rigidity model with significant variations. The more deformable areas are those with higher crustal seismicity.

