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Abstract. In this work, we study stochastic quasi-Newton methods for
solving the non-linear and non-convex optimization problems arising in
the training of deep neural networks. We consider the limited memory
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update in the framework of
a trust-region approach. We provide an almost comprehensive overview of
recent improvements in quasi-Newton based training algorithms, such as
accurate selection of the initial Hessian approximation, efficient solution
of the trust-region subproblem with a direct method in high accuracy and
an overlap sampling strategy to assure stable quasi-Newton updating
by computing gradient differences based on this overlap. We provide
a comparison of the standard L-BFGS method with a variant of this
algorithm based on a modified secant condition which is theoretically
shown to provide an increased order of accuracy in the approximation
of the curvature of the Hessian. In our experiments, both quasi-Newton AQ1

updates exhibit comparable performances. Our results show that with
a fixed computational time budget the proposed quasi-Newton methods
provide comparable or better testing accuracy than the state of the art
first-order Adam optimizer. AQ2

Keywords: Quasi-Newton methods · Limited memory BFGS · Trust
region · Stochastic optimization · Deep neural networks

1 Introduction

Deep learning has become the leading technique for solving large-scale machine
learning problems. After a prolonged slow start, the advent of higher compu-
tational power and the introduction of GPU computing, have made possible
the training of neural networks with a high number of layers that have shown
impressive efficacy in image classification tasks, natural language processing and
text analytic, speech recognition and reinforcement learning among other fields.
Deep Learning problems are often posed as highly nonlinear and often non-
convex unconstrained optimization problems. For instance, in image classifica-
tion using a training dataset {(xi, yi)}Ni=1 in C classes with input xi ∈ IRd and
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2 M. Yousefi and Á. M. Calomardo

target yi ∈ IR, a deep neural network training refers to solving an empirical risk
minimization (ERM) problem that can be formulated as follows:

min
w∈IRn

F (w) :=
1
N

N∑

i=1

fi(w) (1)

where w ∈ IRn is the vector of trainable parameters, N is the number of obser-
vations in the training dataset and fi(w) := f(w;xi, yi) is a loss function quan-
tifying the prediction error for the ith observation of the training dataset.

Finding an efficient optimization algorithm for (1) has attracted many
researchers and a number of algorithms have been proposed both in the machine
learning and optimization literature. Since in large-scale machine learning prob-
lems (i.e. large n and N) the computation of the loss function F (w) and the
gradient ∇F (w) is expensive and the computation of the true Hessian ∇2F (w)
is not practical, stochastic first-order methods have been widely used in many DL
applications due to their low per-iteration cost, optimal complexity, easy imple-
mentation and proven efficiency in practice. The preferred method is the stochas-
tic gradient descent (SGD) method [6,37], and its variance-reduced [12,20,38]
and adaptive [13,21] variants. However, these methods due to the use of only
first-order gradient information come with several issues such as relatively-slow
convergence, highly sensitivity to the choice of hyper-parameter (e.g., step-length
and batch size). First-order methods can also find some difficulties in escaping
saddle points [43], and exhibit limited benefits of parallelism due to their usual
implementation with small mini-batches [24].

On the other hand, second order methods can often find good minima in
fewer steps due to their use of curvature information. The main second order
method incorporating the inverse Hessian matrix is Newton’s method [34] that
computes the next update step by wk+1 = wk −η∇2F (wk)−1∇F (wk). However,
Newton’s method presents serious computational and memory usage challenges
involved in the computation of the Hessian. Moreover, using exact Hessians will
result in algorithms that produce sequences moving towards saddle points, as
Newton’s method encourages rapid local convergence towards any stationary
point regardless of the curvature [11,23].

Quasi-Newton and Hessian-free methods are two techniques aimed at incor-
porating second order information without computing and storing the true Hes-
sian matrix. Hessian-free methods attempt to find an approximate Newton direc-
tion ∇2F (wk)−1∇F (wk) using conjugate gradient methods [4,28]. Nevertheless,
whether true Hessian matrix-vector products or subsampled variants of them,
see e.g. [42], are used, the iteration complexity of a (modified) CG algorithm
is significantly greater than that of a limited memory quasi-newton method. In
fact, quasi-Newton methods and their limited memory variants [34] attempt to
combine the speed of Newton’s method and the scalability of first-order meth-
ods. They construct Hessian approximations using only gradient information and
exhibit superlinear convergence.

Quasi-Newton and stochastic quasi-Newton methods to solve large opti-
mization problems arising in machine learning have been recently extensively
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A Stochastic Modified LBFGS-TR for Training DNNs 3

considered within the context of convex and non-convex optimization. For
instance, a stochastic Broyden-Fletcher-Goldfarb-Shanno and its limited mem-
ory variant (L-BFGS) were proposed for online convex optimization in [39].
Another stochastic L-BFGS method for solving strongly convex problems was
proposed in [9] that uses sampled Hessian-vector products rather than gradient
differences, which was proved in [33] to be linearly convergent by incorporating
the variance reduction technique (SVRG [20]) to alleviate the effect of noisy
gradients. A closely related variance reduced block L-BFGS method was pro-
posed in [19]. A regularized stochastic BFGS method was proposed in [30], and
an online L-BFGS method was proposed in [31] for strongly convex problems
and extended in [27] to incorporate SVRG variance reduction. For the solu-
tion of non-convex optimization problems arising in deep learning, a damped
L-BFGS method incorporating SVRG variance reduction was developed and its
convergence properties were studied in [40]. Stochastic quasi-Newton methods
use a subsampled Hessian approximation or/and subsampled gradient. Some of
these stochastic quasi-Newton algorithms employ fixed size batches and com-
pute stochastic gradient differences in a stable way, originally proposed in [39],
using the same batch at the beginning and at the end of the iteration. Since
this can potentially double the iteration complexity, an overlap batching strat-
egy was proposed to reduce the computational cost in [2] and tested also in
[3]. This strategy was further applied in [14,35]. Other stochastic quasi-Newton
methods have been considered that employ a progressive batching approach in
which the sample size is increased as the iteration progresses, see e.g. [5] and
references therein. Recently, in [17] a Kronecker-factored block diagonal BFGS
and L-BFGS method was proposed, that takes advantage of the structure of
feed-forward DNN training problems.

The main contribution of this work is as follows. As most of the previously
cited related works, we consider a limited memory variant of BFGS (L-BFGS),
one of the most popular quasi-Newton updates in Broyden’s class. We consider a
stochastic variant of L-BFGS obtained by fixed-size subsampling. We study also
a modified L-BFGS update obtained through a modified secant condition which
is theoretically shown to provide an increased order of accuracy in the approxima-
tion of the curvature of the Hessian. Both the original and the modified L-BFGS
quasi-Newton methods are used in a trust-region framework. We provide an
almost comprehensive overview of recent improvements in quasi-Newton based
training algorithms, such as accurate selection of the initial Hessian approxima-
tion, efficient solution of the trust-region subproblem with a direct method in
high accuracy and an overlap sampling strategy to assure stable quasi-Newton
updating by computing gradient differences based on this overlap. We exam-
ine the behaviour of the studied quasi-Newton methods in the training of deep
convolutional neural networks in a supervised learning application, image clas-
sification, and provide a comparison with a state of the art first-order method
such as Adam [21].

This paper is organized as follows. We provide an overview of the (limited
memory) BFGS method in Sect. 2 x. In Sect. 3 we introduce a modified L-BFGS
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4 M. Yousefi and Á. M. Calomardo

update obtained by imposing a different secant condition. We describe the use
of the modified L-BFGS method in a trust-region framework and its stochastic
variant in Sects. 4 and 5, respectively. Numerical result are reported in Sect. 6.
Finally, some of the conclusions of this study are included in Sect. 7.

2 An Overview on the L-BFGS Update

2.1 The BFGS Update

The BFGS update as Hessian approximation have the following general form

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+
yky

T
k

yTk sk
, k = 0, 1, . . . , (2)

and satisfies the standard secant condition

Bk+1sk = yk, (3)

where sk = pk and yk = ∇F (wt)−∇F (wk). The vector pk is the search direction
at iteration k and can be obtained in many different ways, for instance, using a
trust-region framework [10] which proposes a trial point

wt = wk + pk. (4)

The BFGS updates (2) using only gradient information to incorporate cur-
vature information generate symmetric positive definite matrices, i.e. Bk+1 � 0,
whenever the initial approximation B0 = γkI has the same property and the
curvature condition sTk yk > 0 holds. In this work, we skip updating Bk if the
following curvature condition is not satisfied for some small value of ε2 > 0:

sTk yk > ε2‖sk‖2. (5)

2.2 The L-BFGS Update and Its Compact Form

For large-scale optimization problems, the limited-memory BFGS (denoted by
L-BFGS) would be more efficient. In fact, for k ≥ r, the r most recent computed
pairs are stored in the following matrices

Sk :=
[
sk−r . . . sk−1

]
, Yk :=

[
yk−r . . . yk−1

]
. (6)

Using (6), the L-BFGS matrix Bk (2) can be represented in the following
compact form [34]

Bk = B0 + ΨkMkΨ
T
k , k = 1, 2, . . . , (7)

where B0 = γkI � 0 and

Ψk =
[
B0Sk Yk

]
, Mk =

[−STk B0Sk −Lk
−LTk Dk

]−1

. (8)

In (8), matrices Lk, Uk and Dk are respectively the strictly lower triangular
part, the strictly upper triangular part and the diagonal part of the following
matrix splitting

STk Yk = Lk +Dk + Uk. (9)
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A Stochastic Modified LBFGS-TR for Training DNNs 5

2.3 The Initialization of the L-BFGS Update

The initial matrix B0 is often set to some multiple of the identity matrix. A
heuristic and conventional method to choose this multiple is

γk =
yTk−1yk−1

yTk−1sk−1
:= γhk . (10)

The quotient of (10) is an approximation to an eigenvalue of ∇2F (wk) and
appears to be the most successful method, in practice, to generate initial Hessian
approximations [34]. However, in a non-convex DL optimization, the choice of γk
should be carefully operated to avoid the introduction of false negative curvature
[14,35]. To this end, an extra condition can be imposed on γk to avoid pTkBkpk <
0 while pTk∇2(wk)pk > 0. The hyper-parameter γk is selected in (0, λ̂) where λ̂
is the smallest eigenvalue of the following generalized eigenvalue problem

(Lk +Dk + LTk )u = λSTk Sku, (11)

with Lk and Dk defined in (9). If λ̂ ≤ 0, then γk can be set to γhk .

3 A Modified L-BFGS Update

A modified BFGS update, and a consequently modified L-BFGS algorithm, can
be proposed by rewriting (3) as a modified secant condition

Bk+1sk = y∗
k, (12)

where (sk, y∗
k) gives better curvature information than (sk, yk) for updating

Bk+1. Therefore, in a similar fashion as described in the previous section, a
modified L-BFGS update can be constructed by using y∗

k in place of yk.
Let ψk = 2(Fk−Fk+1)+(gk+gk+1)T sk. In [41], the vector y∗

k was constructed
as

y∗
k = yk +

ψk
‖sk‖2

sk. (13)

Definition (13) together with (12) provides more accurate curvature informa-
tion. In fact, it can be proved that

sTk (∇2F (wk+1)sk − y∗
k) =

1
3
sTk (Tk+1sk)sk +O(‖sk‖4),

sTk (∇2F (wk+1)sk − yk) =
1
2
sTk (Tk+1sk)sk +O(‖sk‖4),

(14)

where Tk+1 is the tensor of the objective function F at wk+1 in the Taylor series
expansion

Fk = Fk+1 − gTk+1sk +
1
2
sTk∇2F (wk+1)sk − 1

6
sTk (Tk+1sk) sk +O(‖sk‖4). (15)

In [29], a simple modification of (13) was proposed as y∗
k = yk +

sign(ψk) ψk

‖sk‖2 sk to handle the case ψk < 0. We show below that this modifi-
cation does not provide any improvement.
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6 M. Yousefi and Á. M. Calomardo

3.1 Sign Correction

Considering the Eq. in (14) together yields

ψk =
1
6
sTk (Tk+1sk)sk +O(‖sk‖4). (16)

Let ψk < 0. Therefore, we have sTk y
∗
k = sTk yk − ψk which leads to derive

sTk∇2 F (wk+1)sk − sTk y
∗
k = sTk∇2 F (wk+1)sk − (

sTk yk + ψk
)

+ 2ψk

=
2
3
sTk (Tk+1sk) sk +O(‖sk‖4).

(17)

Equation (17) shows that the dominant error is even worse than the one in
(14). Therefore, we suggest to use yk whenever ψk < 0; otherwise we can use y∗

k.

3.2 A New Modified Secant Condition

Writing the Taylor series expansion for gk and premultiplying it by sTk lead to

sTk gk = sTk gk+1 − sTk∇2 F (wk+1)sk +
1
2
sTk (Tk+1sk) sk +O(‖sk‖4). (18)

Combining Eq. (15) and (18) together yields that the third order term dis-
appears and

sTk∇2 F (wk+1)sk = 6(Fk − Fk+1) + 3sTk (gk+1 + gk) + sTk yk +O(‖sk‖4)

= 3ψk + sTk yk +O(‖sk‖4),
(19)

which suggests the choice of

y∗
k =

3ψk
‖sk‖2

sk + yk. (20)

Obviously, the new vector y∗
k in Eq. (20) provides better curvature approxi-

mation (the error is of order O(|sk|4) instead of O(|sk|3)) than the one defined
in equation (13).

4 The Modified L-BFGS Trust Region Method

Let L-BFGS-TR define the L-BFGS trust region method in which the current
parameter vector wk at iteration k is updated by a search direction obtained
using a Hessian approximations Bk for which the standard secant condition (3)
holds. In a similar fashion, we describe in this section the modified L-BFGS trust
region method (M-LBFGS-TR) in which the Hessian approximations Bk satisfy
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A Stochastic Modified LBFGS-TR for Training DNNs 7

the modified secant condition (12). In solving (1), both trust-region methods
using a Hessian approximation satisfying either the standard (3) or the modified
(12) secant condition, generate a sequence of iterates (4) in which pk is obtained
by solving the following trust-region subproblem:

pk = arg min
p∈IRn

Qk(p) :=
1
2
pTBkp+ gTk p s.t. ‖p‖2 ≤ δk, (21)

for some trust-region radius δk > 0, where gk := ∇F (wk) and Bk ≈ ∇2F (wk).
The acceptance of the trial (4) is based on the ratio between the actual

reduction in the objective function of (1) and the reduction predicted by the
quadratic model, that is

ρk =
F (wk) − F (wt)
Qk(0) −Qk(pk)

. (22)

Since the denominator in (22) is nonnegative, if ρk is positive, the new iterate
wk+1 will be computed as in (4) as wk+1 := wt; otherwise, wk+1 := wk. The
process of adjustment of the trust-region radius at each iteration is described in
Algorithm 2.

According to [7,8] the subproblem (21) can be efficiently solved if Bk is
chosen to be a quasi-Newton matrix. Let Bk be a (modified) L-BFGS Hessian
approximation in compact form (7). As described in [15,32], the global solution
of (21) is characterized by the following theorem

Theorem 1. Let δ be a given positive constant. A vector p∗ is a global solution
of the trust region problem (21) if and only if ‖p∗‖2 ≤ δ and there exists a unique
σ∗ ≥ 0 such that Bk + σ∗I is positive semi-definite with

(Bk + σ∗I)p∗ = −gk, σ∗(δk − ‖p∗‖2) = 0. (23)

Moreover, if Bk+σ∗I is positive definite, then the global minimizer is unique.

Following [1,7,35], the solution of the trust-region subproblem (21) can be
computed as

p∗ := p(σ∗) = − 1
τk

(
I − Ψk

(
τkM

−1
k + ΨTk Ψk

)−1
ΨTk

)
gk. (24)

where τk = γk + σ∗. This direct formula can be obtained by exploiting the
spectral decomposition of the coefficient matrix Bk+σ∗I and its inversion using
the Sherman-Morrison-Woodbury formula [34].

Algorithm 1 describes the process of solving the trust-region subproblem. It
is based on the strategies described in the subsequent paragraphs. For further
details see [1,7,35].
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8 M. Yousefi and Á. M. Calomardo

Algorithm 1. Trust-Region Subproblem Solution.
1: Inputs: Current Ψ � Ψk, M−1 � M−1

k , γ � γk, δ � δk and g � gk
2: Compute the thin QR factorization of Ψ with factors Q and R
3: Compute the spectral decomposition of matrix RMRT = UΛ̂UT

4: Set: the reordered matrix Λ̂ = diag(λ̂1, . . . , λ̂k) such that λ̂1 ≤ . . . ≤ λ̂k
5: Compute the spectral decomposition of Bk as Λ1 = Λ̂ + γI
6: Let: λmin = min{λ1, γ}
7: Compute P‖ = QU
8: Compute g‖ = PT

‖ g

9: Compute aj = (g‖)j and ak+1 =
√‖g‖2

2 − ‖g‖‖2
2

10: if φ(0) ≥ 0 then
11: Set: σ∗ = 0
12: Compute p∗ with (26) as solution of (Bk + σ∗I)p = −g
13: else
14: Compute a root σ∗ ∈ (0, ∞) of (28) by Newton’s method
15: Compute p∗ with (26) as solution of (Bk + σ∗I)p = −g
16: end if

Algorithm 2. Trust-Region Radius Adjustment
1: Inputs: Current iteration k, δk, ρk, 0 < τ2 < 0.5 < τ3 < 1, 0 < η2 ≤ 0.5,

0.5 < η3 < 1 < η4

2: if ρk > τ3 then
3: if ‖pk‖ ≤ η3δk then
4: δk+1 = δk
5: else
6: δk+1 = η4δk
7: end if
8: else if τ2 ≤ ρk ≤ τ3 then
9: δk+1 = δk

10: else
11: δk+1 = η2δk
12: end if

The Spectral Decomposition of Matrix Bk +σ∗I. Computing the thin QR
factorization of matrix Ψk, Ψk = QkRk, where, for k ≥ r, Qk ∈ R

n×2r and Rk ∈
R

2r×2r, and the cheap spectral decomposition of the 2r × 2r matrix RkMkR
T
k

as RkMkR
T
k = UkΛ̂U

T
k , where Uk and Λ̂ = diag(λ̂1, . . . , λ̂2r) are respectively

orthogonal and diagonal matrices, leads to

Bk = B0 +QkRkMkR
T
kQ

T
k = γkI +QkUkΛ̂U

T
k Q

T
k .

Now, let P‖ � QkUk and P⊥ � (QkUk)⊥ where (.)⊥ denotes orthogonal
complement. By Theorem 2.2.1 in [18], we have

PTP = PPT = I
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A Stochastic Modified LBFGS-TR for Training DNNs 9

where P �
[
P‖ P⊥

] ∈ R
n×n is an orthogonal matrix. Therefore, the spectral

decomposition of Bk is obtained as

Bk = PΛPT , Λ �
[
Λ1 0
0 Λ2

]
, (25)

where

Λ1 = Λ̂+ γkI = diag(λ̂1 + γk, λ̂2 + γk, . . . , λ̂2k + γk),
Λ2 = γkI.

We assume the eigenvalues are increasingly ordered.

The inversion of Bk +σ∗I. Let τk = γk +σ. Applying the Sherman-Morrison-
Woodbury formula [34] to compute the inverse of the coefficient matrix Bk+σ∗I
leads to

p(σ) = −(Bk + σI)−1gk = − 1
τk

(
I − Ψk

(
τkM

−1
k + ΨTk Ψk

)−1
ΨTk

)
gk. (26)

By (25) and (26), we have

‖p(σ)‖ =

√√√√
{

k∑

i=1

(g‖)2i
(λi + σ)2

}
+

‖g⊥‖2

(γk + σ)2
, (27)

where

g‖ = PT‖ g,

‖g⊥‖2 = ‖g‖2 − ‖g‖‖2.

Assume pu � p(0) is the solution of the first optimality condition (Bk +
σI)p(σ) = −gk, for which σ = 0 makes the second optimality condition σ(δk −
‖p(σ)‖2) = 0 holds. If ‖pu‖ ≤ δ, using (26) we have (σ∗, p∗) = (0, pu) = (0, p(0)).
If ‖pu‖ > δ, then p∗ must lie on the boundary of the trust-region to make the
second optimality condition hold. To impose this, σ∗ must be the root of the
following equation:

φ(σ) � 1
‖p(σ)‖ − 1

δ
= 0, (28)

and can be determined by Newton’s method, e.g. the variant proposed in [7].
The global solution of the trust-region subproblem is then (σ∗, p∗) = (σ∗, p(σ∗)).
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10 M. Yousefi and Á. M. Calomardo

Algorithm 3. Stochastic M-LBFGS-TR
1: Inputs: w0 ∈ R

n, number of multi-batches N̄ , number of epochs epochmax, overlap set
size os, r, ε1, ε2, τ1 > 0, S0 = Y0 = [.], k = 0, epoch = 0

2: while k ≥ 0 do

3: if k = 0 then

4: Take subsets O−1 and O0 of size os for the initial multi-batch J0

5: Compute F
O−1
0 , g

O−1
0 and FO0

0 , gO0
0 by (29) and then FJ00 , gJ00 by (30)

6: else
7: Take the second subset Ok of size os for the multi-batch Jk
8: Compute F

Ok
k , g

Ok
k by (29), and then F

Jk
k , g

Jk
k by (30)

9: if mod(k + 1, N̄) = 0 then
10: Shuffle the data without replacement for next epoch and epoch = epoch + 1
11: end if

12: end if

13: if ‖gJk
k ‖ ≤ ε1 or epoch > epochmax then

14: return

15: end if

16: if k = 0 or Sk = [.] then

17: Compute pk = −δk g
Jk
k

‖gJk
k

‖
18: else
19: Compute pk using Algorithm 1

20: end if
21: Compute trial wt = wk + pk and F

Ok
t , g

Ok
t by (29)

22: Compute (sk, yk) = (wt − wk, g
Ok
t − g

Ok
k ) and ρk = (F

Ok
t − F

Ok
k )/Q(pk)

23: Compute ψk = (F
Ok
k − F

Ok
t ) + sTk (g

Ok
k + g

Ok
t )

24: if sign(ψk) > 0 then

25: yk = yk + 3ψk
‖sk‖2 sk

26: end if
27: if ρk ≥ τ1 then
28: wk+1 = wt
29: else

30: wk+1 = wk
31: end if
32: Update δk using Algorithm 2
33: if sTk yk > ε2‖sk‖2 then

34: if k ≤ r then
35: Store: sk and yk as new column in Sk+1 and Yk+1

36: else

37: Keep: only the r recent {sj , yj}kj=k−l+1 in Sk+1 and Yk+1

38: end if
39: Compute the smallest eigenvalue λ̂ of the problem (11)

40: if λ̂ > 0 then
41: γk+1 = max{1, 0.9λ̂} ∈ (0, λ̂)

42: else

43: Compute γhk as
yT

k−1yk−1

yT
k−1sk−1

and set γk+1 = max{1, γhk }
44: end if

45: Compute Ψk+1 and M−1
k+1 using (8)

46: else

47: Set γk+1 = γk, Ψk+1 = Ψk and M−1
k+1 = M−1

k
48: end if
49: k = k + 1
50: end while
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A Stochastic Modified LBFGS-TR for Training DNNs 11

5 Stochastic M-LBFGS-TR

In the stochastic setting, the training set is divided into multiple subsets called
batches. The process of selecting a single batch, computing a subsampled gradi-
ent and loss for it and then updating the parameters create one single iteration
of a stochastic algorithm. This process is repeated for each batch iteratively until
one epoch, that is one pass through all data samples, is completed. After each
epoch, the dataset is shuffled and new batches are generated.

Let Jk be a random subset of data at iteration k, whose size and index
set of the samples included are denoted by |Jk| and J idxk , respectively. In this
work, samples are drawn without replacement for batches with fixed size. The
subsampled loss and gradient are computed as follows

F
Jk
k := FJk (wk) =

1

|Jk|
∑

i∈Jidx
k

fi(wk), g
Jk
k := ∇FJk (wk) =

1

|Jk|
∑

i∈Jidx
k

∇fi(wk). (29)

In the stochastic L-BFGS-TR (sL-BFGS-TR) algorithm, when the batch Jk
changes from one iteration to the next, the updates might be unstable since
different data points are used to evaluate the gradient at the beginning (at wk)
and at the end of the iteration (at wt), so that the gradient difference employed
to update the Hessian approximation is computed as yk = g

Jk+1
t − gJk

k . To
overcome this problem, a remedy suggested in [39] consists in using the same
multi-batch Jk for computing yk = gJk

t −gJk

k which requires double function and
gradient evaluations at wk and wt. Another sampling strategy was proposed in
[2] to compute yk = gOk

t − gOk

k where Ok = Jk ∩ Jk+1 
= ∅ such that the overlap
set Ok should not be insignificant. Similarly, in the stochastic M-LBFGS-TR
(sM-LBFGS-TR) algorithm, when ψk > 0, the modified vector y∗

k is computed
as in (20) with ψk = (FOk

k − FOk
t ) + (gOk

k + gOk
t )T sk.

In this work, we take a particular variant of this approach referred as half
overlap sampling where Jk = Ok−1 ∪ Ok and |Jk| = 2|Ok|. With this sampling
strategy, the overall loss and gradients in (29) are computed as

F Jk

k =
1
2
(FOk−1
k + FOk

k ), gJk

k =
1
2
(gOk−1
k + gOk

k ). (30)

This requires two function and gradient evaluations on the overlap set of the
current batch. The stochastic M-LBFGS-TR training algorithm is outlined in
Algorithm 3.

Besides the previously indicated function and gradient evaluations, which
constitute the predominant cost, the per iteration complexity of both sL-BFGS-
TR and sM-LBFGS-TR algorithms consists in 2rn + O(r3) operations needed
to update Bk, and in the trust-region framework, 2(4r + 1)n + O(r2) flops to
compute Q(p) needed for ρ evaluation and to obtain the search direction p(σ)
using the direct formula described in (24). We also have the cost of computing
a QR factorization and a cheap eigenvalue decomposition requiring O(nr2) and
O(r3) operations, respectively.
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12 M. Yousefi and Á. M. Calomardo

Computing the numerator in (22) using subsampled function differences as
F Jk
t − F Jk

k requires double function evaluation at the beginning and at the end
of the iteration. Experimentally, we examined that using overlap Ok in place
of Jk provides a more affordable cost per iteration without any detriment in
the attainable training accuracy. In support of this statement we have included
Fig. 5.

We note that computing ψk in sM-LBFGS-TR does not impose any addi-
tional cost because it uses subsampled loss and gradient values corresponding to
Ok which have been already evaluated in the previous iteration.

6 Experiments

We summarize in this section the behaviour of the described quasi-Newton opti-
mization algorithms sL-BFGS-TR [35] and sM-LBFGS-TR on the training of
two deep neural networks with different architectures for image classification of
the benchmark datasets MNIST and CIFAR10 (see [22,25]). We used Glorot
(Xavier) approach [16] for initializing the learning parameters. The architecture
of the networks, which contain batch normalization layers, is described below.

– LeNet-5. A well known convolutional neural network designed for handwrit-
ten and machine-printed character recognition [26]. By solving an optimiza-
tion problem for w ∈ R

431,080, LeNet-5 with the following architecture is
trained with the MNIST dataset:

• Input layer with a 28 × 28 × 1 image.
• Convolutional layer with 20 filters of 5×5 size, stride 1 followed by ReLU.
• Max pooling layer with a 2 × 2 and stride 2.
• Convolutional layer with 50 filters of 5×5 size, stride 1 followed by ReLU.
• Max pooling layer with a 2 × 2 and stride 2.
• Fully connected layer with 500 neurons followed by ReLU.
• Fully connected layer with 10 neurons followed by softmax.

– ConvNet3FC2. Motivated by [36], we define a CNN with 3 intermediate
convolutional networks (ConvNet) and 2 fully connected networks (FC). This
network with the structure defined below, is trained with CIFAR10 by solving
an optimization problem for w ∈ R

3,525,162:
• Input layer with a 32 × 32 × 3 image with Z-score normalization1

• Convolutional layer with 32 filters of 5 × 5 size, stride 1 and padding 2.
• Batch normalization layer followed by ReLU.
• Max pooling layer with a 2 × 2 window and stride 1.
• Convolutional layer with 32 filters of 5 × 5 size, stride 1 and padding 2.
• Batch normalization layer followed by ReLU.
• Max pooling layer with a 2 × 2 window and stride 1.
• Convolutional layer with 64 filters of 5 × 5 size, stride 1 and padding 2.
• Batch normalization layer followed by ReLU.

1 Z-score normalization produces a dataset whose mean and standard deviation is zero
and one, respectively.
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• Max pooling layer with a 2 × 2 window and stride 1.
• Fully connected layer with 64 neurons.
• Batch normalization layer followed by ReLU.
• Fully connected layer with 10 neurons followed by softmax.

All experiments were run on an Ubuntu Linux server virtual machine with 32
CPUs and 128GB RAM using MATLAB and its deep learning toolbox. We pro-
vide a comparison with the most popular first-order method Adam implemented
using the MATLAB built-in function adamupdate by a grid search tuning effort
on learning rates and batch sizes. The best learning rate for all batch sizes was
found to be 10−3. The limited memory parameter for both quasi-Newton meth-
ods was set to r = 20. We obtained comparable results using different values
of r ∈ {5, 10, 15, 20} but we did not include these results here due to space
limitation issues. Other hyperparameters for L-BFGS-TR and M-LBFGS-TR
algorithms are ε1 = 10−5, ε2 = 10−2, γ0 = 1, τ1 = 10−6, τ2 = 0.1, τ3 = 0.75,
η2 = 0.5, η3 = 0.8, η4 = 2.

We have investigated the effect of the batch size on the performance of the
different training algorithms. The networks were trained for a maximum num-
ber of epochs. The program stops before that limit if 100% accuracy has been
reached. Figure 1 and 2 show the evolution of loss and accuracy for different batch
sizes |Jk| ∈ {100, 500, 2000, 5000} in the classification of MNIST and CIFAR10,
respectively. The results corresponding to the smallest batch size for the MNIST
dataset are reported within the first epoch only to facilitate the comparison. All
the loss and accuracy evolution curves have been filtered by a fixed display fre-
quency. This frequency, when indicated, corresponds to how many iterations per
epoch have not been displayed. We observe from Fig. 1 and 2 that, for both prob-
lems, both sL-BFGS-TR and sM-LBFGS-TR perform better than tuned Adam
independently of the batch size. In all the experiments, sM-LBFGS-TR exhibits
comparable performance with respect to sL-BFGS-TR. Neither sL-BFGS-TR
nor sM-LBFGS-TR are strongly influenced by batch size. Large multi-batch sizes
can be employed without a considerable loss of accuracy even though the perfor-
mance of both methods decreases when larger batch sizes are used, due to the
smaller number of iterations per epoch (smaller number of parameters updates).
Adam performs very well in both problems providing comparable accuracies to
the ones yielded by second-order methods even if it is less accurate when large
batch sizes are used.

Figure 4 displays the variability of the obtained test accuracy computed over
five runs with random seeds. It can be seen that the results are reliable and that
first-order methods exhibit larger variability than the two quasi-Newton algo-
rithms. According to the complexity analysis performed in the former section,
we found that the training time of both second-order methods is larger than
that of the first-order one (see Table 1). Nevertheless, we underline the fact
that, as Fig. 3 illustrates, with a fixed computational time budget the proposed
quasi-Newton methods provide comparable or better testing accuracy than the
first-order Adam optimizer.
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14 M. Yousefi and Á. M. Calomardo

Fig. 1. MNIST: Evolution of the training and testing loss and accuracy using Stochastic
Quasi-Newton based methods and tuned Adam for different batch sizes.
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Fig. 2. CIFAR10: Evolution of the Training and Testing Loss and Accuracy using
Stochastic Quasi-Newton based Methods and Tuned Adam for different Batch Sizes.
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16 M. Yousefi and Á. M. Calomardo

Fig. 3. Testing accuracy of Stochastic Quasi-Based methods and Tuned Adam versus
training CPU time (in Seconds).

Table 1. Training time of the methods for kmax Iterations.

CIFAR10 (kmax = 100) MNIST (kmax = 200)

bs = 500 bs = 5000 bs = 500 bs = 5000

Adam 00:18:30 00:41:24 00:03:30 00:07:46

sL-BFGS-TR 00:32:04 00:55:04 00:09:35 00:13:45

sM-LBFGS-TR 00:32:06 00:54:46 00:09:42 00:13:40

Fig. 4. Error Bars of stochastic Quasi-Based methods and Tuned Adam: variability of
the test accuracy in the format “mean ± Standard Deviation” computed over five runs
with random seeds.
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Fig. 5. CIFAR10: Evolution of the Training and Testing Loss and Accuracy using
Quasi-Newton Methods with Different Sample Sets (Ok or Jk) to Compute Subsampled
Loss Function Differences Needed to Compute ρk in (22).

7 Conclusions

In this work, we have considered stochastic limited memory BFGS quasi-Newton
methods to solve nonlinear and non-convex optimization problems arising in the
training of deep neural networks. Our implementation incorporates an accu-
rate selection of the initial Hessian approximation and stable quasi-Newton
updates are obtained by a sampling strategy with overlap. We have provided
a comparison of the standard L-BFGS method with a variant of this algorithm
based on a modified secant condition which is theoretically shown to provide
an increased order of accuracy in the approximation of the curvature of the
Hessian. In our experiments, on image classification problems with MNIST and
CIFAR10 datasets, both sL-BFGS-TR and sM-LBFGS-TR exhibit comparable
performances. Moreover, the results included in this paper illustrate that these
methods converge faster than tuned Adam and perform better for larger batch
sizes which are favorable for parallel computing. Restricted to the experiments
with the largest considered batch size, the results show that with a fixed compu-
tational time budget the proposed quasi-Newton methods provide comparable
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18 M. Yousefi and Á. M. Calomardo

or better testing accuracy than the first-order Adam optimizer. Nevertheless,
despite their better convergence properties and the advantage of not requiring
time-consuming tuning effort needed instead for Adam, the iteration complexity
is high, since two loss and gradient evaluations are required at each iteration.
Future research will be devoted to devising sampling strategies that reduce the
number of loss and gradient evaluations per iteration. Future work will con-
sists also in comparing the efficiency of the proposed stochastic L-BFGS opti-
mizers with the recently introduced Kronecker-factored block diagonal L-BFGS
described in [17] for feed-forward networks. Finally, another interesting future
line of research we are currently undergoing is the analysis of whether symmetric
rank one (SR1) updates, allowing for indefinite Hessian approximations, could
potentially outperform L-BFGS in the task of high dimensional optimization in
deep neural network training.
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