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Abstract

This paper proposes a stealthy integrity attack detection methodology for a class of nonlinear cyber-physical systems subject
to disturbances. An equivalent increment of the system at a time prior to the attack occurrence time is introduced, which
is theoretically proved to be effective to detect stealthy integrity attacks. A backward-in-time estimator is developed via the
fixed-point smoother design tool to exploit this equivalent increment and allow the detection of the attack. More specifically,
an asymptotically stable incremental system is introduced to characterize stealthy integrity attacks, and its backward-in-time
solution at a fixed time prior to the attack occurrence formulates the equivalent increment. When running reversely in time, the
divergence property of such an asymptotically stable incremental system enables the equivalent increment to detect stealthy
integrity attacks. A fixed-point smoother is introduced to estimate the unknown equivalent increment for a class of Lipschitz
nonlinear physical plants, such that the estimation error satisfies the H∞ performance objective. Based on the equivalent
increment and its estimation provided by the smoother, suitable residual and threshold signals are designed that allow the
detection of the attack, and a detectability analysis is conducted to rigorously characterize the class of detectable attacks.
Finally, a case study is presented to illustrate the effectiveness of the developed backward-in-time attack detection methodology.
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1 Introduction

Cyber-physical systems (CPS) have attracted significant
attention as a result of their wide applications, includ-
ing electric power transmission and distribution systems,
water and gas distribution systems and transportation
systems. CPS are complex systems, consolidating com-
puting and communication capabilities with monitoring
and control of physical entities (Cardenas, Amin, and
Sastry (2008)). Industrial control systems (ICS) oper-
ated through Supervisory Control and Data Acquisi-
tion (SCADA) systems are typical examples. Unfortu-
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nately, vulnerabilities to malicious cyber threats may de-
teriorate greatly the smooth operation of these systems
precisely due to the integration of cyber and physical
entities (Pasqualetti, Dorfler, and Bullo (2015)). Sev-
eral cyber attack events in CPS have taken place in
recent years, such as the Stuxnet worm attack on Ira-
nian nuclear facilities, the GPS spoofing attack on an
American unmanned aerial vehicle RQ-170 operated by
the United States Air Force and the Ukraine attack on
Ukrainian power distribution networks (for more details,
the reader can refer to Dibaji et al. (2019) and the refer-
ences therein). Therefore, motivated by increasing secu-
rity and safety demands, advanced malicious cyber at-
tack detection technologies are urgently required.

Cyber attacks are usually based on rational adver-
sary models for empowering intelligence and intent.
In the past decade, several survey papers such as
Teixeira, Shames, Sandberg, and Johansson (2015a);
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Teixeira, Sou, Sandberg, and Johansson (2015b);
Sánchez, Rotondo, Escobet, Puig, and Quevedo (2019);
Dibaji, Pirani, Flamholz, Annaswamy, Johansson, and
Chakrabortty (2019), have provided overviews of the
research on cyber attacks from a control perspective.
Integrity attacks, including replay attacks (Mo and Si-
nopoli (2009)), covert attacks (Smith (2015); Barboni,
Rezaee, Boem, and Parisini (2020)), zero-dynamics
attacks (Teixeira, Shames, Sandberg, and Johansson
(2015a)), false-data injection attacks (Zhang and Ye
(2020); An and Yang (2017)), are based on compromis-
ing sensor and actuator data transmission networks by
using malicious signals. Such integrity attacks are the
most researched type of cyber attacks in the systems
and control literature.

In terms of stealthiness, traditional anomaly detectors
such as fault diagnosis schemes in Ding (2013); Chen and
Patton (1999); Blanke, Kinnaert, Lunze, Staroswiecki,
and Schröder (2006) may not be able to detect integrity
attacks because they are by design stealthy to such de-
tectors. Anomaly detectors have been well-established,
aiming to decide whether the behavior of the monitored
system is healthy or faulty, and then, to identify the
source of the anomalous behavior. However, it is difficult
to directly extend current research results in anomaly
detection to the case of malicious attack detection. One
reason for this is the inherent limitation of anomaly de-
tectors, such as the usually large amplitude requirements
for the fault or attack signal so that sufficient discrep-
ancy is created that is able to be detected. If a malicious
attack is intelligently designed to generate residuals with
sufficiently small amplitude, then the attack can bypass
anomaly detectors without being detected. Another rea-
son is that integrity attacks affect the system behavior in
a specially designed way. Integrity attacks intelligently
compromise the smooth operation of the CPS using par-
ticularly designed attack signals, such that the outputs
remain unchanged in the presence of the attack, which
indicates that anomaly detectors based on system out-
puts may not be able to detect these attacks. Therefore,
detecting stealthy integrity attacks presents a key chal-
lenge in cyber-physical system security.

In the past decade, some model-based attack detection
methods have been proposed. Optimal attack detectors
in terms of probability have been proposed in Mo et al.
(2013); Ye and Zhang (2019). Adding watermarks to the
control inputs and then detecting them is the main idea
for detecting replay attacks in Mo and Sinopoli (2009)
and Romagnoli, Weerakkody, and Sinopoli (2019). How-
ever, additive watermarks may cause control perfor-
mance degradation. In order to deal with this drawback,
the authors in Ferrari and Teixeira (2017) propose a
sensor multiplicative watermark for detecting and iso-
lating replay attacks, and such a result is extended in
Ferrari and Teixeira (2021) to detect stealthy cyber at-
tacks. Another detection strategy based on modifying
the dynamics of the CPS loop is presented in Teix-

eira, Shames, Sandberg, and Johansson (2012); Hoehn
and Zhang (2016); Griffioen, Weerakkody, and Sinop-
oli (2021). Because covert attacks and zero-dynamics
attacks rely highly on accurate knowledge of the dy-
namics of the physical plants, such modifying closed-
loop dynamics approach provides an effective way to
reveal these attacks. In the case of linear time-invariant
systems, Teixeira, Shames, Sandberg, and Johansson
(2012) provide a method to detect zero-dynamics at-
tacks by modifying the physical system structure. A
moving target approach is proposed in Weerakkody and
Sinopoli (2015) using a linear time-varying system as
the moving target, and a nonlinear moving target is de-
veloped in Griffioen, Weerakkody, and Sinopoli (2021).
In addition, Hoehn and Zhang (2016) design a constant
modulation and a periodic modulation to change the
paths of the control data transmission. However, mod-
ifying the dynamics may be difficult to implement in
practice and may degrade the performance of the CPS.
Another way to detect integrity attacks is proposed in
Chen, Kar, and Moura (2016) by using initial state in-
formation. However, the requirement for the available
initial conditions of the states of the system limits its
practical application. System nonlinearities are usually
overseen by the aforementioned literature. Moreover,
control performance of the original closed-loop CPS are
usually negatively affected by the detection measures
such as watermarks and moving targets.

In this paper, a backward-in-time detection methodol-
ogy is proposed for a class of CPS with nonlinear phys-
ical plant by using only an analytical redundancy ap-
proach, which does not affect the control performance
of the original closed-loop CPS. The main idea behind
the proposed method is to exploit the estimated sys-
tem changes due to attacks at a fixed time prior to the
attack occurrence time. The design tool is an optimal
fixed-point smoother which in this paper is referred to
as the backward-in-time estimator. In particular, by in-
vestigating the asymptotic output-zeroing strategy for
generating stealthy integrity attacks, an asymptotically
stable incremental system due to such attacks is de-
rived for the class of nonlinear CPS considered in this
paper. An equivalent increment at a time prior to the
attack occurrence time is also formulated as the solu-
tion of such an incremental system. Based on the di-
vergence property of such solution running reversely in
time, the feasibility to detect stealthy integrity attacks
is rigorously investigated. However, such an equivalent
increment is unknown and should be estimated by us-
ing current time measurements. Taking advantage of
the backward-in-time estimation characteristics of fixed-
pointed smoothers, a fixed-point smoother is introduced
to estimate such an unknown equivalent increment. This
is done by considering that the physical plant belongs to
a class of Lipschitz nonlinear systems. In order to pos-
sess finite time horizon H∞ performance, the design pa-
rameters of the smoother are formulated as the solution
of a differential Riccati equation. Suitable residual and
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threshold signals are then designed based on the afore-
mentioned equivalent increment and its estimation pro-
vided by the smoother, which allows the detection of the
stealthy integrity attacks. Finally, a detectability anal-
ysis is rigorously conducted, which characterizes quan-
titatively the class of detectable attacks.

The rest of the paper is organized as follows. In Section
2, the problem formulation is given. In Section 3, the
equivalent change is defined, and its feasibility to detect
stealthy integrity attacks is presented. In Section 4, the
details of the backward-in-time detection methodology
along with the detectability analysis are described and
in Section 5, a case study is presented. Finally, some
conclusions are drawn in Section 6.

Notation: Consider a vector signal x(t) : R≥0 → Rn.
Then, x(t) ≡ 0 for t ∈ [t1, t2] ⊂ R≥0 means that x(t) = 0
identically for all t ∈ [t1, t2]; x(t) 6≡ 0 for t ∈ [t1, t2] ⊂
R≥0 means that x(t) 6= 0 for at least one time instant
t ∈ [t1, t2]. The 2-norm on a time interval [t1, t2], and
the root-mean-square (RMS) of the signal vector x(t)

are defined as ‖x(t)‖[t1,t2] = (
∫ t2
t1
xT (τ)x(τ)dτ)

1
2 and

‖x(t)‖RMS = ( 1
Tw

∫ t
t−Tw

xT (τ)x(τ)dτ)
1
2 , where Tw > 0

is the length of the time window. For t ∈ [t1, t2], we have
‖x(t)‖RMS ≤

1√
Tw
‖x(t)‖[t1,t2]. For a constant vector x ∈

Rn, ‖x‖ represents the Euclidean norm and is defined

as ‖x‖ = (xTx)
1
2 . Thus, for the constant vector x, we

have ‖x‖ = ‖x‖RMS. A continuous function α : [0, a)→
[0,∞) is said to belong to class K function if it is strictly
increasing and α(0) = 0. It is said to belong to class
K∞ if a = ∞ and α(r) → ∞ as r → ∞. A continuous
function β : [0, a)× [0,+∞)→ [0,∞) is said to belong
to class KL function if, for each fixed s, the mapping
β(r, s) belongs to class K function with respect to r and
for each fixed r, the mapping β(r, s) is decreasing with
respect to s and β(r, s)→ 0 as s→∞.

2 Problem Formulation

A general CPS subject to integrity type of cyber attacks
is shown in Fig. 1. It consists of a physical plant P, a
feedback controller C, an anomaly detector D, an actu-
ator communication network Na and a sensor commu-
nication network Ns. During an integrity cyber attack
event, the attack generation block attempts to compro-
mise the communication networks Na and Ns by inject-
ing false data au(t) and ay(t) respectively. In such an at-
tack scenario, the outputs of Na and Ns are respectively
described by

Na : ũ(t) = u(t) + Γuau(t), (1a)

Ns : ỹ(t) = y(t) + Γyay(t), (1b)

where ũ ∈ Rnu is the control data received by the
plant P, u ∈ Rnu is the control data computed by

Fig. 1. General architecture of CPS under potential integrity
cyber attacks.

the controller, ỹ ∈ Rny is the sensor measurements
received by the controller and the anomaly detector,
and y ∈ Rny is the sensor measurements of the plant
outputs transmitted by Ns. Let Ku ⊆ {1, · · · , nu} and
Ky ⊆ {1, · · · , ny} represent the disruption resources,
i.e., the set of actuator and sensor communication
channels that can be affected by the adversary. The
distribution matrices Γu ∈ Bnu×|Ku| and Γy ∈ Bny×|Ky|

(B , {0, 1}) are the binary incidence matrices mapping
the attack signal to the respective channels. The attack
signals are au(t) = [au,1(t), · · · , au,|Ku|(t)]

T ∈ R|Ku|

and ay(t) = [ay,1(t), · · · , ay,|Ky|(t)]
T ∈ R|Ky|. For each

i ∈ {1, · · · , |Ku|}, au,i(t) ≡ 0 for t ∈ R≥0 if no attack
occurs on the ith transmission channel of Na, and simi-
larly, for each j ∈ {1, · · · , |Ky|}, ay,j(t) ≡ 0 for t ∈ R≥0
if the jth transmission channel ofNs is not under attack.
We suppose that the attacks occur at some unknown
time instant T0, and hence, au(t) ≡ 0 and ay(t) ≡ 0
for t < T0. In the sequel, the combined attack vector is
denoted as a(t) , [aTu (t), aTy (t)]T ∈ R|Ku|+|Ky|.

2.1 Closed-loop CPS

The closed-loop CPS including C, P, Na and Ns are
jointly denoted by Σ. Based on (1), in the presence of
the integrity attack, Σ is described by

Σ :



ẋ(t) = Ax(t) + g(t, x) +Bu(t) +Baa(t)

+D1d(t),

u(t) = uc(t, ỹ(t), yref(t))

y(t) = Cx(t) +D2d(t),

ỹ(t) = y(t) +Daa(t),

(2)

where x ∈ X ⊂ Rnx is the state vector (X is a compact
subset of Rnx containing the origin) and yref(t) ∈ Rnref is
the output reference signal. In addition, d(t) ∈ Rnd rep-
resents the lumped disturbances and noise, which is as-
sumed to satisfy ‖d‖[t1,t2] ≤ ∆ for any t2− t1 ≤ T where
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∆ > 0 is a scalar known by the defender and T > 0 is
the evaluation time length. The matrices A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx , D1 ∈ Rnx×nd and D2 ∈
Rny×nd , Ba = [BΓu, 0nx×|Ky|] and Da = [0ny×|Ku|,Γy].
In addition, the pair (A,C) is observable. The function
g : R≥0 × Rnx → Rnx represents the nonlinearity of
the physical plant, which is known by the defender. The
function uc : R≥0 × Rny × Rnref → Rnu is an output
feedback control law (static or dynamic) such that in the
nominal case (d(t) ≡ 0 and a(t) ≡ 0 for t ∈ R≥0), the
closed-loop system can track yref asymptotically. More-
over, g and uc satisfy g(t, 0) = 0 and uc(t, 0, 0) = 0,
g(t, x) is piecewise continuous with respect to (w.r.t.) t
and continuously differentiable w.r.t. x.

2.2 Anomaly Detector

We consider an anomaly detector D equipped with a
residual generator r(t) and a constant threshold Jth.
Without loss of generality, it is supposed that the resid-
ual has a form as in Chen and Patton (1999) and is given
as follows:

D : r(t) = F (u(t), ỹ(t), yref(t))− ỹ(t), (3)

where F : Rnu × Rny × Rnref → Rny is a model-based
estimator to generate an estimate of ỹ(t). In the model-
based fault diagnosis literature, such as Chen and Pat-
ton (1999); Blanke, Kinnaert, Lunze, Staroswiecki, and
Schröder (2006); Ding (2013), model-based observers are
frequently used as such an estimator. With the evalu-
ation function J(t) = ‖r(t)‖RMS, the occurrence of an
attack is ascertained if at some time Td > T0, the evalu-
ation function J(t) exceeds the constant threshold Jth,
i.e.,

J(Td) > Jth, alarm triggering. (4)

Since the residual r(t) after the attack occurrence time
T0 (i.e., for t > T0) is used to detect attacks, we re-
fer to D as a forward-in-time detector in this paper.
The majority of fault detectors in the literature such
as in the books Chen and Patton (1999); Blanke et al.
(2006); Ding (2013), are forward-in-time detectors. How-
ever, stealthy integrity attacks can result in residuals
with sufficiently small amplitude, thereby passing such
forward-in-time detectors without being detected. Con-
sequently, it is necessary to develop new methodologies
to detect stealthy integrity attacks. It is worth pointing
out that there is no special requirement for the anomaly
detector D. Hence, D can be any anomaly detector with
a residual r(t) and a constant threshold Jth such that
J(t) ≤ Jth in the nominal case (no anomalies).

In order to distinguish the variables, the superscript n
is used in the normal case (attack free), while the super-
script a is used to denote the changes of the variables
due to attacks. For example, xn is the plant state in the
normal case and xa is the change of xn due to an attack,
i.e., xa , x− xn.

2.3 Stealthy Integrity Attacks

Let us consider the transient processes of the integrity
attacks such as replay attacks in Mo and Sinopoli
(2009), covert attacks in Barboni et al. (2020) and zero-
dynamics attacks in Teixeira et al. (2012, 2015a). The
change of ỹ due to a replay attack may converge asymp-
totically to zero. In the presence of a covert attack, the
change of ỹ also converges asymptotically to zero if the
initial condition of the covert agent is nonzero. In the
zero-dynamics attack case, if the non-exact values of
the states of the physical plant are used by the attacker,
then the value of ỹ may change instantaneously at the
attack initiating time and then, such a change may go
to zero asymptotically. Therefore, in some attack sce-
narios, the aforementioned attacks belong to a class
of undetectable attacks as defined in Pasqualetti et al.
(2013), but are not perfectly undetectable attacks as de-
fined in Milošević et al. (2020). The transient process
of the system outputs in the presence of the aforemen-
tioned class of undetectable attacks, in the context of
asymptotically stable closed-loop CPS, is characterized
in the following definition.

Definition 1. An integrity attack a(t) initiated at time
T0, i.e., a(t) 6≡0 for t ≥ T0, is considered as stealthy with
respect to the anomaly detector D if

(a) ‖ỹ(t)− ỹn(t)‖ → 0 as t→ +∞;
(b) 0 < ‖ỹ(t) − ỹn(t)‖RMS ≤ δ for t ≥ T0 where δ is a

sufficiently small scalar so that J(t) ≤ Jth. �

Remark 1. Condition (a) describes the asymptotic con-
vergence of the transient process of the system outputs in
the presence of the class of aforementioned undetectable
attacks. Such a condition may be a result of the asymp-
totic stability of the closed-loop CPS, which is usually
overseen in the related literature since the controllers
are usually not taken into consideration. Condition (b)
limits the maximum amplitude of the increments of the
outputs under the attack such that it remains stealthy
with respect to the anomaly detector D. ∇
Remark 2. Undetectable attacks in Pasqualetti et al.
(2013), perfectly undetectable attacks in Milošević et al.
(2020) and stealthy integrity attacks defined in Defini-
tion 1 satisfy the inclusion-exclusion relation depicted in
Fig. 2. Both perfectly undetectable attacks and stealthy

Fig. 2. Inclusion-exclusion relation among undetectable at-
tacks, perfectly undetectable attacks and stealthy integrity
attacks.

integrity attacks belong to undetectable attacks, but
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perfectly undetectable attacks and stealthy integrity
attacks are independent and have no intersection. It
should be noted that more disruption resources (i.e.,
larger number of disruption resources |Ku| + |Ky|, see
Milošević et al. (2020)), are required by an attacker to
launch perfectly undetectable attacks than in the case
of the stealthy integrity attacks according to Definition
1 in this paper. For example, the disruption resources
including all the sensor and actuator communication
channels, i.e., |Ku|+ |Ky| = nu+ny, are required by the
perfectly undetectable covert attacks in Smith (2011).
This indicates that the stealthy integrity attacks accord-
ing to Definition 1 are easier to be realized and more
practical for attackers in real-life applications. Hence,
this paper considers only the case of stealthy integrity
attacks defined in Definition 1 rather than the class of
perfectly undetectable attacks. ∇
Remark 3. The stealthy integrity attacks satisfying Def-
inition 1 are able to drive the system out of a safe region,
and hence possess the same attack capability to com-
promise CPS as the zero-dynamics attacks in Teixeira
et al. (2015a). For more details, the interested reader is
referred to Teixeira et al. (2012, 2015a); Smith (2011);
Barboni et al. (2020). ∇

Output zeroing strategies are widely used for generating
integrity attacks for linear CPS such as Teixeira et al.
(2012); Weerakkody et al. (2017). Such a strategy is also
proved in Zhang et al. (2020) to be effective for the class
of nonlinear CPS considered in this paper.In the sequel,
we briefly present the output zeroing strategy in a system
splitting manner.
1) Output zeroing strategy. By splitting the state x and
the output ỹ(t) in (2) into x = x1 + z and ỹ = ỹ1 + ỹ2,
the system Σ in (2) can be split into Σ1 and Σ2 for t ≥ T0
where

Σ1 :

{
ẋ1(t) = Ax1(t) +Baa(t),

ỹ1(t) = Cx1(t) +Daa(t), x1(T0) = −z0,
(5)

Σ2 :

{
ż(t) = Az(t) + g(t, x) +Bu(t) +D1d(t),

ỹ2(t) = Cz(t) +D2d(t), z(T0) = x(T0) + z0,

(6)

where z0 ∈ Rnx is a constant nonzero vector determined
by the attack signal a(t). It should be noted that x1(T0)
and z(T0) are chosen such that x1(T0) + z(T0) = x(T0).
Thus, the stealthy attack strategy for the nonlinear CPS
(2) is proposed as follows:

ỹ1(t) = Cx1(t) +Daa(t) = 0, x1(T0) = −z0 6= 0, (7a)

g(t, x1 + z) = g(t, z), ∀ t ≥ T0, (7b)

where the initial condition z0 is the state-zero direction
and is discussed in detail later. The equation (7a) char-
acterizes the output zeroing strategy for linear CPS in
Pasqualetti et al. (2013) and (7b) is introduced such

that x1(t) is decoupled with g(t, x), thereby avoiding the
negative effects of the nonlinear function g(t, x) on the
system output ỹ in the presence of the attacks. A non-
trivial a(t) satisfying (7a) exists if and only if the sys-
tem Σ1, with any control input matrices Ba and Da,
is not strongly observable 1 . Moreover, x1(t) must be-
long to the weakly unobservable subspace V(Σ1), i.e.,
x1(t) ∈ V(Σ1) for t ≥ T0. In addition, according to the
extended differential mean value theorem in Zemouche
et al. (2005), we have g(t, x1 + z) − g(t, z) = ∂g

∂xx1(t).
Thus, to guarantee (7b), x1(t) must belong to the ker-

nel subspace K(g) = ker( ∂g∂x ), i.e., x1(t) ∈ K(g) for
t ≥ T0. Instead of using the time-varying kernel sub-
space K(g), a linear time-invariant subspace H of K(g)
is introduced. Hence, to guarantee (7b), one way is to
guarantee that x1(t) belongs to the largest controlled
invariant subspace VH(Σ1) of Σ1 contained in H, i.e.,
x1(t) ∈ VH(Σ1) for t ≥ T0. Many types of nonlinear
function g(t, x) can satisfy (7b). Two intuitive examples
are given in the following: 1) g(t, x) = [x22, x2 sin(x2)]T

with x = [x1, x2]T . In this example, g(t, x) is indepen-
dent of x1 and H = K(g) = Im[1, 0]T ; 2) g(t, x) =
[x1x3 + x2x3, x1x4 + x2x4, x3x4, sin(x3x4)]T where x =

[x1, x2, x3, x4]T . In this example, ∂g(t,x)
∂x1

= ∂g(t,x)
∂x2

and

H = K(g) = Im[1,−1, 0, 0]T .

The state-zero direction z0 is proposed to satisfy

z0 ∈ V0 , V(Σ1) ∩ VH(Σ1), 0 < ‖z0‖ ≤ δ0, (8)

where δ0 > 0 is a sufficiently small scalar. Using such a
nontrivial z0, the state of Σ2 jumps immediately from
x(T0) to z(T0) = x(T0) + z0 when an attack satisfying
(7a) and (7b) is initiated at T0. Hence, ỹ(t) = ỹ2(t) also
has a jump at T0, allowing to detect the imposed stealthy
integrity attacks.

Remark 4. A specific attack model satisfying the strat-
egy (7a) and (7b) is given as follows:

a(t) = Faξ(t), ξ̇(t) = (A+BaFa)ξ(t), ξ(T0) = z0,

where z0 satisfies (8) and Fa satisfies (A + BaFa)V0 ⊂
V0, (C + DaFa)V0 = 0. Note that the attack model
can be considered as an extension of the one generat-
ing zero-dynamics attacks. Similar to the requirements
for generating zero-dynamics attacks, the initial state z0
in the above attack model satisfies some geometric re-
strictions (see (8)) such that the system outputs are not
changed (or slightly changed) in the presence of the gen-
erated attacks. In addition, it is worth pointing out that
ξ(T0) = z0 is the only excitation resource for the attack
model and thus, z0 must be nonzero. ∇

1 Trentelman et al. (2012)The system Σ1 is strongly observ-
able if for all z0 ∈ Rnx and any input a(t), y1(t) = 0 for
t ≥ T0 implies z0 = 0.
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In order to guarantee (7a) and (7b) simultaneously, we
have the following assumption.
Assumption 1. The attacker has the following model
knowledge: the matrices A, BΓu (or Ba), C and a linear
subspace H of the kernel subspace K(g); and the follow-
ing disruption resources: the communication channels
Ku ⊆ {1, · · · , nu} and Ky ⊆ {1, · · · , ny}, such that an
x1(t) 6≡ 0 satisfying (7a) and (7b) exists. Moreover, the
state-zero direction z0 is chosen by the attacker to sat-
isfy (8). H

Remark 5. The existence of an x1(t) 6≡ 0 satisfying (7a)
and (7b) in Assumption 1 is equivalent to the existence
of an attack a(t) 6≡ 0 such that (7a) and (7b) hold, which
can be guaranteed by V0 = V(Σ1) ∩ VH(Σ1) 6= ∅. The
model knowledge in terms of g(t, x) and disruption re-
sources Ku and Ky determine VH(Σ1) and V(Σ1) re-
spectively. Therefore, the attacker should have sufficient
model knowledge and the disruption resources such that
V(Σ1) ∩ VH(Σ1) 6= ∅. In addition, it is worth pointing
out that even in the absence of Assumption 1, if the in-
cremental system due to an attack can be expressed in
the specific form (10) shown in the sequel, then the at-
tack detection methodology developed in this paper can
still detect it. Developing more relaxed conditions than
the conditions (7a) and (7b) in Assumption 1 for gen-
erating stealthy integrity attack constitutes one of our
future works. ∇

2) Incremental system. In the sequel, the incremental
system of Σ due to an attack satisfying (7a) and (7b) will
be derived. Let xa, ỹa and ua be the changes of x, ỹ and
u respectively due to the attack, i.e., xa , x− xn, ỹa ,
ỹ− ỹn and ua , u−un. According to the splitting of the
system Σ shown in (5) and (6), the incremental system
Σa of Σ can be split into the incremental systems Σa1 of
Σ1 and Σa2 of Σ2, i.e., xa and ỹa are split into xa(t) =
xa1(t)+za(t) and ỹa(t) = ỹa1 (t)+ỹa2 (t) respectively, where

Σa1 :

{
ẋa1(t) = Axa1(t) +Baa(t),

ỹa1 (t) = Cxa1(t) +Daa(t), xa1(T0) = −z0,
(9)

Σa2 :

{
ża(t) = ζ(t, za),

ỹa2 (t) = Cza(t), za(T0) = z0,
(10)

where ζ(t, za) , Aza(t) + g(t, z) − g(t, zn) + Bua(t) =

Aza(t)+ ∂g
∂z z

a(t)+Bua(t)(see footnote 2 ). Note that the

2 In Σa
2 , g(t, z) − g(t, zn) is replaced with ∂g

∂z
za(t) since

g(t, z)− g(t, zn) = ∂g
∂z

za(t) where

∂g

∂z
,


∂g1
∂z1

··· ∂g1
∂zn

...
. . .

...
∂gn
∂z1

··· ∂gn
∂zn

,
with gi being the ith element of g, and zi being the ith
element of z.

systems (5) and (9) have the same dynamics and initial
conditions. Thus, under the condition (7a), we can ob-
tain that ỹa1 (t) = 0 for t ≥ T0. Hence, ỹa(t) = ỹa2 (t) and
in the presence of a stealthy integrity attack satisfying
(7a) and (7b), the increment ỹa(t) can be described
by the output ỹa2 (t) of Σa2 in (10). Therefore, to satisfy
condition (a) of Definition 1, the following additional
restriction on the incremental system (10) is required.

Assumption 2. The system Σa2 in (10) is uniformly
asymptotically stable for za ∈ X . H

Remark 6. Assumption 2 indicates that ỹa(t) converges
to zero asymptotically and hence, condition (a) in Defi-
nition 1 is satisfied. In fact, Assumption 2 is an implicit
stability restriction on the system Σ in (2). Based on the
equivalence between asymptotic stability and incremen-
tally asymptotic stability given in Angeli (2002), a suffi-
cient condition to guarantee Assumption 2 is that in the
nominal case and for yref(t) ≡ 0 for t ≥ 0, Σ is asymp-
totically stable. Regarding the incremental stability, the
interested reader is referred to Angeli (2002). ∇
Remark 7. Similar to the attack strategy in Pasqualetti
et al. (2013, 2015), the attack strategy (7) is able to gen-
erate replay attacks, zero-dynamics attacks and covert
attacks in the scenarios that these attacks are stealthy
but not completely stealthy (see the stealthy integrity
attacks in Fig. 2). It is worth pointing out that in the
scenarios where the attacker can access only part of
the actuator and sensor communication channels, (i.e.,
|Ku| < nu and |Ky| < ny), the covert attack signals
au(t) and ay(t) may need to be specifically designed us-
ing the attack strategy (7) with a nonzero z0. Regard-
ing the specific conditions on Ku and Ky that are re-
quired, so that the covert attack signals au and ay can
be generated by the attack strategy (7) with a nonzero
z0, this will be dealt with in future work. In the presence
of the aforementioned replay attacks, zero-dynamics at-
tacks and covert attacks, the incremental system can be
characterized by (10) with a nonzero z0. Hence, the de-
veloped methodology presented in the sequel is effective
in detecting replay attacks and zero-dynamics attacks,
and is also able to detect covert attacks in the case that
the covert attack signals au and ay are generated by the
attack strategy (7) with a nonzero z0. In addition, for
the stealth multiplicative attacks in Na and Eun (2018),
since such attacks are completely stealthy, the detection
methodology developed in this paper may not be able to
detect them. Additional approaches such as active detec-
tion methodologies should be exploited to detect these
attacks, which is a future research direction. ∇

In the rest of this paper, “stealthy integrity attacks” is
refer to the attacks satisfying Definition 1 and generated
based on the output zeroing strategy characterized by
(7a), (7b) and (8). Moreover, in the following sections,
the incremental system Σa2 satisfying Assumption 2 will
be exploited to detect the stealthy integrity attacks.
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3 Feasibility Analysis of Equivalent Change to
Trigger Alarms

The detection scheme to be developed is a backward-
in-time detector. Backward-in-time detectors are differ-
ent from forward-in-time detectors in terms of the time
instant at which the system states are estimated. Tra-
ditional forward-in-time detectors estimate the system
states at the time instant posterior to the attack occur-
rence time, while backward-in-time detectors estimate
the system states at the time instant prior to the at-
tack occurrence time. Backward-in-time detectors are in-
herently more suitable for dealing with the stealthiness
problems. Intuitively, when running reversely in time, a
stable system with a system matrix A becomes an un-
stable amplifier with −A. A change of the system state
occurs after an attack happens. The equivalent change
(mathematically defined later) at a time prior to the
attack occurrence time, is recovered by this stable sys-
tem running reversely in time, and thus, is an amplified
quantity of the change. Backward-in-time detectors use
this equivalent change for detecting stealthy integrity at-
tacks that otherwise would remain undetected. Next, we
investigate the equivalent change to show that although
the true change can not trigger any alarms in an attack
case, the equivalent change can.

The solution to the differential system (10) can be de-
scribed by the time-dependent flow of the vector field ζ.
In particular, the solution at any time t + T0 for t ∈ R
starting at time T0 with initial condition za(T0), which
is collectively defined as (T0, z

a(T0)), can be described
by za(t+ T0) = ψ(t, T0, z

a(T0)). Such a solution satis-
fies the following equation, that is for any τ, t ∈ R,

dψ(t, T0, z
a(T0))

dt
= ζ (t+ T0, ψ(t, T0, z

a(T0))) , (11)

za(τ + t+ T0) = ψ(τ, t+ T0, ψ(t, T0, z
a(T0))

= ψ(τ + t, T0, z
a(T0)). (12)

In addition, if the initial condition za(T0) = 0, then the
solution za(t) = 0 identically for t ≥ T0, i.e.,

ψ(t− T0, T0, 0) = 0, ∀ t ∈ R. (13)

More details about the flows of vector fields can be found
in Isidori (2013). The equation (12) explicitly indicates
that for any time instant τ + t + T0 < T0, the solution
za(τ + t + T0) does exist. Also, based on (11), for two
time instants tb and t satisfying tb < t, za(tb) and za(t)
have the following relation:

za(tb) = ψ(tb − t, t, za(t)), (14)

za(t) = ψ(t− tb, tb, za(tb)). (15)

Subsequently, based on (14), the equivalent quantity of
za at a time tb is defined as follows.

Definition 2. For the state za(t) of the system (10)
starting at (T0, z

a(T0)), its equivalent quantity at the
time tb where tb < T0 ≤ t, recovered based on za(t), is
defined by

za(tb|t) , ψ(tb − t, t, za(t)), (16)

where za(tb|t) denotes the equivalent quantity of za at
tb recovered based on the quantity of za(t). �

To intuitively explain the above definition, we consider a
special example that the system (10) is a linear system,
i.e., ża = Aza. In this case, za(tb|t) in (16) can be written
as za(tb|t) = exp(A(tb− t))za(t) = exp(−A(t− tb))za(t)
where tb < t. This example shows that when time runs
backwards, a stable system with a system matrix A be-
comes an unstable amplifier with system matrix−A. The
properties of the equivalent quantity za(tb|t) in (16) are
summarized in the following lemma. To this end, based
on Assumption 2, za(t) can be bounded as follows

‖za(t)‖ ≤ β (‖z0‖ , t− T0) ,∀ t ≥ T0, (17)

where β is a KL class function deduced based on As-
sumption 2.

Lemma 1. The equivalent quantity za(tb|t) in (16) has
the following properties:
(a) For any time t ≥ T0, a fixed time tb such that tb <
T0 ≤ t, and any z0 ∈ Rnx , the quantity za(tb|t) is a
constant vector with respect to the time t, i.e.,

d za(tb|t)
d t

= 0, ∀ t ≥ T0. (18)

(b) In the non-attack case, za(tb|t) satisfies

d za(tb|t)
d t

= 0, za(tb|t) = 0, ∀ t < T0. (19)

(c) In the presence of a stealthy integrity attack at T0,
if T0 ∈ [tb, ts] where ts is a fixed time instant, then for a
fixed time tb, there exists a K class function ρts such that

‖za(tb|t)‖ ≤ ρ−1ts (δ0), ∀ t ≥ T0, (20)

where the function ρ−1ts represents the inverse of the func-
tion ρts defined by

ρts(δ0) , β(δ0, ts − tb), ∀ δ0 ≥ 0, (21)

with δ0 being given in (8), and β being given in (17). �

Proof. (a) By using (12) for τ = −T0, we have

za(t) = ψ(t− T0, T0, za(T0)).
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Then, by using (14), za(tb|t) defined by (16) can be writ-
ten as

za(tb|t) = ψ(tb − t, t, za(t))

= ψ(tb − t, t, ψ(t− T0, T0, za(T0))).

By using the corresponding relation between the first
line and the second line in (12), we obtain that

za(tb|t) = ψ(tb − T0, T0, za(T0)). (22)

Since both tb and T0 are fixed time instants, and z0 is
also fixed, ψ(tb − T0, T0, z0) is fixed, hence za(tb|t) is a
constant vector, and (18) follows.
(b) In the non-attack case, no change happens, i.e.,
za(t) = 0, then za(T0) = 0 (in this case, T0 can be any
time instant). Then it follows from (22) and (13) that
za(tb|t) = ψ(tb − T0, T0, 0) = 0.
(c) From (17) and za(T0) = z0, za(tb) satisfies

‖z0‖ = ‖za(T0)‖ ≤ β(‖za(tb|t)‖, T0 − tb), ∀ t ≥ tb.

Let ρT0(x) be a K class function defined by ρT0(x) ,
β(x, T0 − tb)), ∀ x ≥ 0, and ρ−1T0

(x) be its inverse func-

tion (note that ρ−1T0
(x) is also a K class function). Then,

we can derive ‖z0‖ = ‖za(T0)‖ ≤ ρT0(‖za(tb|t)‖), and
further, for z0 satisfying (8), we have

‖za(tb|t)‖ ≤ ρ−1T0
(‖z0‖) ≤ ρ−1T0

(δ0).

Since for the scalar δ0, β(δ0, ts − tb) ≤ β(δ0, T0 − tb),
then ρ−1ts (δ0) ≥ ρ−1T0

(δ0). Thus, we have

‖za(tb|t)‖ ≤ ρ−1T0
(‖z0‖) ≤ ρ−1ts (δ0).

Hence, the inequality (20) follows.

Remark 8. Result (a) in Lemma 1 indicates that for a
fixed tb < T0 < t, za(tb|t) is a constant vector as za(t)
converges to zero asymptotically. Intuitively, za(tb|t) is
the analytical value of za(t) at the fixed time instant tb,
which is constant, since za(t) is the solution of the dif-
ferential equation in (10) and its value at the fixed time
instant tb is constant. The residual r(t) of the detector
D in (3) converges to zero if the increment za(t) goes
to zero asymptotically, which is one reason that typi-
cal forward-in-time detectors such as D can not detect
stealthy integrity attacks. The property of za(tb|t) shown
in result (a) implies that za(tb|t) provides an effective
way to solve the aforementioned problem of forward-in-
time detectors in detecting stealthy integrity attacks. A
well designed residual based on za(tb|t) can retain a con-
stant vector value as za(t) converges to zero asymptoti-
cally, thereby providing the possibility to detect stealthy
integrity attacks. In addition, it should be noted that
the control law uc affects the function ρts in (21). Since
the control law uc can affect the dynamics of the system

Σa2 in (10) through ua, it can also influence the value of
za(tb|t) defined in (16) and the function β in (17). Thus,
based on (21) in Lemma 1, uc can affect the function
ρts , which will then affect the estimation of za(tb|t) (see
(34) in the next section). ∇

In the sequel, we will prove that za(tb|t) can be used to
trigger alarms in the presence of an attack, while not be-
ing impacted in the non-attack case. We start by defin-
ing the new residual. By using za(tb|t), the equivalent
change of ỹa(t) is given by

ỹa(tb|t) , Cza(tb|t). (23)

Then, a new residual, referred to as backward-in-time
residual and denoted by r (tb|t), is proposed as follows:

r (tb|t) , r(tb) + ỹa(tb|t). (24)

The feasibility theorem is presented in the following.

Theorem 1. For the system (10), the equivalent quan-
tity za(tb|t) in (16) and the residual r (tb|t) in (24) sat-
isfy the following boundedness properties regarding the
stealthy attacks considered in this paper:
(a) In the absence of an attack, the backward-in-time
residual satisfies

‖r (tb|t) ‖RMS ≤ Jth, ∀ tb < T0 ≤ t, (25)

where Jth is the threshold given in (4).
(b) In the presence of a stealthy integrity attack, and
under Assumption 2, there exists a time instant tb < T0
such that the backward-in-time residual satisfies

‖r(tb|t)‖RMS > Jth, ∀ t ≥ T0. (26)

Moreover, for the fixed times tb and T0 ∈ [tb, ts], and z0
satisfying (8), za(tb|t) is bounded by

Jth + ‖r(tb)‖
‖C‖

< ‖za(tb|t)‖ ≤ ρ−1ts (δ0), (27)

where δ0 is given in (8). �

Proof. (a) Based on Lemma 1, in the absence of an at-
tack, za(tb|t) = 0. From (23), ỹa(tb|t) = 0 and thus,
r (tb|t) = r(tb). Since at time tb < T0, no attack is
present, ‖r(tb)‖RMS ≤ Jth and inequality (25) follows.
(b) Based on the definition of uniformly asymptotic
stability in Khalil (2001), given the system (10) satis-
fying Assumption 2, we can deduce that for any η >
supt≥T0

‖za(t)‖, there always exists a T1 = T1(η) > 0
such that

∃ tb ≤ T0 − T1, ‖za(tb|t)‖ > η, ∀ ‖za(t)‖ ≤ η.
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Since η > supt≥T0
‖za(t)‖, then a sufficiently large η

exists that additionally satisfies ‖C‖η ≥ Jth + ‖r(tb)‖
where Jth + ‖r(tb)‖ > ‖C‖ supt≥T0

‖za(t)‖ due to the
stealthiness of the attack. Thus, we can obtain

∃ tb ≤ T0−T1, ‖ỹa(tb|t)‖ > Jth+‖r(tb)‖, ∀ ‖za(t)‖ ≤ η.
(28)

where ỹa(tb|t) is defined in (23). Note that based on the
result (a) in Lemma 1 and (23), ỹa(tb|t) is a constant
vector, and from (24), r(tb|t) is a constant vector as
well. Therefore, ‖ỹa(tb|t)‖ = ‖ỹa(tb|t)‖RMS, ‖r(tb)‖ =
‖r(tb)‖RMS and ‖r(tb|t)‖ = ‖r(tb|t)‖RMS. Thus, from
(24) and (28), and using the triangle inequality of vector
norms, we have

‖r(tb|t)‖RMS ≥ ‖ỹa(tb|t)‖RMS − ‖r(tb)‖RMS > Jth.

Hence, the inequality (26) follows. Moreover, from
‖ỹa(tb|t)‖ = ‖Cza(tb|t)‖ > Jth + ‖r(tb)‖, the left hand
side of (27) follows. The right hand side follows directly
from (20) in Lemma 1.

From Theorem 1, we conclude that equivalent changes
are able to trigger alarms in the presence of stealthy
integrity attacks. However, it should be noted that the
equivalent change za(tb|t) is not available to the de-
fender. One reason is that it may be very difficult or im-
possible to explicitly find the analytical solution to or-
dinary differential equation (11) due to the gradient of
g(t, z) in (10) (see ζ(t, za) below (10)). Another reason
is that za(t) is not available to the defender. Therefore,
a task of the backward-in-time detector is to construct a
procedure for estimating the equivalent changes. In the
following, an optimal fixed-point smoother will be de-
signed to estimate the equivalent change za(tb|t).

4 H∞ Fixed-point Smoothing Scheme

A fixed-point smoother provides an on-line backward-
in-time estimation procedure, yielding an estimate of a
signal at the current time instant using past and cur-
rent observed measurements at the first stage and then
updating it using the observed measurements as time
progresses. Therefore, fixed-point smoothing provides
a useful tool for estimating the equivalent change at
a fixed time. Fixed-point smoothers for linear systems
has been well studied in Meditch (1967); Simon (2006);
Einicke (2019) and references therein, and H∞ fixed-
point smoothers have been established in Shaked and
Theodor (1992); Theodor and Shaked (1994); Einicke
(2019). However, H∞ fixed-point smoothers for nonlin-
ear systems have not been well studied, and to the au-
thors’ best knowledge, fixed-point smoothers have not
been used for detecting malicious cyber attacks. In the
sequel, a particular H∞ fixed-point smoother for a class
of Lipschitz nonlinear systems is designed with the task
to estimate the equivalent change za(tb|t).

To this end, some preliminaries are given. A finite-time
horizon detection scheme operating in [tb, ts] is designed
in the sequel. Such a detection scheme is sequentially im-
plemented (repeatedly with possible partial overlapping
time intervals) in the practical application and thus, tb
and ts are updated in each repetition. A simple example
is given in Fig. 3 to show the implementation and up-
date approach. It can be seen that in the 1st repetition,
tb,1 = t1 and ts,1 = t4, in the second repetition tb and ts
are updated by tb,2 = t2 and ts,2 = t5, and in the third
application, tb,3 = t3 and ts,3 = t6. Moreover, the at-
tack occurrence time T0 is located between tb,3 and ts,3,
i.e., T0 ∈ [tb,3, ts,3], and hence belongs to the third rep-
etition. Both tb,i and ts,i for all repetitions can be set
off-line by the designer. A simple way is to set the tb,i
every Ts seconds with a sequential overlapping window
of length 2Ts seconds. Then, the 1st repetition is con-
ducted in the interval [0, 2Ts], the second in [Ts, 3Ts] and
the third in [2Ts, 4Ts]. So in this example, at any given
time instant after Ts, two repetitions run in parallel. In

Fig. 3. Example of the sequential implementation for a finite–
time horizon detection scheme and the update approach for
tb and ts.

addition, the computation burden of the implementa-
tion approach in a finite time duration is determined by
the amount of the repetitions during this time duration,
which is affected by the length of the time duration be-
tween two repetitions (i.e., tb,2 − tb,1 and tb,3 − tb,2). In
general, the scheme allows one or more repetitions to
be active at any given time, which is determined by the
designer. Therefore, in the practical application of the
sequential implementation approach, the computation
burden should be considered in determining the imple-
mentation frequency of the repetitions.

Hence, by using such a sequential implementation ap-
proach, we can consider that a time interval [tb, ts] in-
cluding the attack occurrence time instant T0 and satis-
fying result (b) of Theorem 1 always exists. Therefore,
it is reasonable to study only the case that the attack
occurrence time satisfies

T0 ∈ [tb, ts], (29)

and consider that result (b) in Theorem 1 is satisfied

9



so that the attack is detectable in the context of the
equivalent change at the time tb.

Remark 9. In the proposed implementation approach,
the detection scheme is repeatedly implemented in a
reasonably short time after the start of the previous
repetition, leading to partially overlapping repetition
time interval, i.e., tb,i+1 ∈ [tb,i, ts,i] and ts,i+1 > ts,i,
i = 1, 2, 3, · · · , N where tb,i and ts,i indicate the start
time and the end time tb and ts of the ith repetition
respectively. Such an approach facilitates the condition
that the length between T0 and tb is sufficiently large
such that result (b) in Theorem 1 can be guaranteed.
Note that at any given time more than one repetition
may be running (e.g., in Fig. 3, in the time interval
[t3, t4], three repetitions are active). ∇

In addition, we make the following assumption regard-
ing the nonlinear function g.

Assumption 3. The function g(t, x) is locally Lipschitz
with respect to x, i.e.,

‖g(t, x)− g(t, x̂)‖ ≤ l‖x− x̂‖, ∀ x, x̂ ∈ X ,

where l is the known Lipschitz constant. H

Remark 10. The Lipschitz condition in Assumption 3 is
only needed for the fixed-point smoother design in the
sequel. In the absence of the Lipschitz condition, the
results in Lemma 1 and Theorem 1 still hold. Fixed-point
smoother design for a more general class of nonlinear
systems constitutes an aspect of our future works. ∇

4.1 Fixed-point Smoother Design

In this part, one of the repetition of the aforementioned
sequential implementation is considered, and the time
duration is denoted as [tb, ts]. In addition, we assume
ts − tb ≤ T such that ‖d(t)‖[ts,tb] ≤ ∆. We start by
designing a fixed-point smoother working in the finite-
time interval [tb, ts] for estimating za(tb|t). Following the
state augmentation design approach of the fixed-point
smoother in Simon (2006); Einicke (2019), a new state
variable is introduced as follows:

φ(t) , za(tb|τ), τ ≥ T0, ∀ t ≥ tb. (30)

Since tb satisfies result (b) in Theorem 1, then φ(t) satis-
fies the inequality (27). Moreover, since za(tb|τ) satisfies
(18) in Lemma 1 for τ ≥ T0, then we have

d φ(t)

d t
= φ̇(t) = 0, ∀ t ∈ [tb, ts]. (31)

The smoother is designed based on the equivalent system
Σ2 given in (6) in the presence of an attack. It should
be noted that, as analyzed after equation (10), Σ2 can
describe the dynamics of the system Σ in the attack

scenario, i.e., t ≥ T0. Moreover, since Σ2 and Σ with
a(t) = 0 have the same dynamics, Σ2 can also represent
the dynamics of the system Σ in the attack-free time
duration, i.e., for t < T0. Therefore, referring to the
structure of Σ2, the fixed-point smoother over the time
interval [tb, ts] is designed as follows:

S :



˙̂z(t) = Aẑ(t) + g (t, ẑ) +Bu(t)

−Kz(t) (ỹ(t)− Cẑ(t)) ,
˙̂
φ(t) = −Kφ(t) (ỹ(t)− Cẑ(t)) ,

ˆ̃ya(tb|t) = Cφ̂(t),

(32)

where ẑ ∈ Rnx is the estimate of the state z of the system

Σ2, φ̂ ∈ Rnx is the estimate of φ, and ˆ̃ya(tb|t) ∈ Rny is the
estimate of ỹa(tb|t) in (23). Moreover, Kz(t) ∈ Rnx×ny

and Kφ(t) ∈ Rnx×ny are time-varying gain matrices to
be optimized in the next subsection.

This smoother is activated at the time tb and lasts until
ts. Different from the standard fixed-point smoother in

Einicke (2019); Simon (2006), the initial conditions φ̂(tb)
and ẑ(tb) should be specially designed. Specifically, the

initial condition φ̂(tb) is chosen to be close to the true
value of φ(t), i.e., satisfying the inequality (27), and in

addition, φ̂(tb) must not trigger any alarm at t = tb. In
order not to trigger any alarm at tb, based on the residual
defined in (24), the following condition must be satisfied:

‖r(tb) + ˆ̃ya(tb|tb)‖ = ‖r(tb) + Cφ̂(tb)‖ ≤ Ĵth where Ĵth
is the new threshold to be determined later. Therefore,

‖φ̂(tb)‖ ≤ Ĵth−‖r(tb)‖
‖C‖ and by combining (27), we have

Jth+‖r(tb)‖
‖C‖ < ‖φ̂(tb)‖ ≤ min

{
Ĵth−‖r(tb)‖
‖C‖ , ρ−1ts (δ0)

}
,

where δ0 is given in (8). Based on the aforementioned

selection of φ̂(tb), one can yield

‖φ̂(tb)− φ(tb)‖ ≤ δ1, (33)

where

δ1 , min

{
Ĵth − ‖r(tb)‖
‖C‖

, ρ−1ts (δ0)

}
+ ρ−1ts (δ0), (34)

with δ0 being given in (8). Moreover, the initial con-
dition ẑ(tb) is chosen by considering the confidence in
the knowledge of z(tb). In order to guarantee that ẑ(tb)

and φ̂(tb) have the same confidence in the knowledge of
z(tb) and φ(tb) respectively (further explanation on this
is given in the sequel), ẑ(tb) is also chosen to satisfy

‖z(tb)− ẑ(tb)‖ ≤ δ1. (35)

Note that there is no attack at the time tb (see (29))
and a well designed observer such as the observer of the
anomaly detector D can provide an accurate estimate of
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the state z(tb). Hence, z(tb) is considered as known by
the defender in selecting ẑ(tb) satisfying (35).

4.2 Optimal Parameters Design

The optimization problem arises due to the presence of
the disturbances in the system. To this end, a compact
form of the estimation error system is given. Some no-
tations are first introduced as follows:

Ā , diag(A, 0), C̄1 , [C, 0], C̄2 , [0, C], (36)

ḡT (t, z, ẑ) , (g(t, z)− g(t, ẑ))T [Inx
, 0], (37)

KT (t) , [KT
z (t),KT

φ (t)], D̄1 , [DT
1 , 0]T . (38)

By defining ez(t) , z(t) − ẑ(t) and eφ(t) , φ(t) − φ̂(t)
as the estimation errors of z and φ respectively, a com-
pact error is defined as follows: eT (t) , [eTz (t), eTφ (t)].

Moreover, let ey(t) , ỹa(tb|t)− ˆ̃ya(tb|t) denote the esti-
mation error of ỹa(tb|t). Then, from (28), (31) and (32),
the error system can be obtained as follows:

E :


ė(t) = (Ā+K(t)C̄1)e(t) + ḡ(t, z(t), ẑ(t))

+[D̄1 +K(t)D2]d(t),

ey(t) = C̄2e(t).

(39)

Next, the estimation of the backward-in-time residual
r (tb|t) in (24) is constructed. Based on (24), the esti-
mation is proposed by using the estimated equivalent
change ˆ̃ya(tb|t) provided by the smoother S as

r̂ (tb|t) , r(tb) + ˆ̃ya(tb|t). (40)

From ˆ̃ya(tb|t) = ỹa(tb|t)− ey(t), r̂ (tb|t) can be split into

r̂ (tb|t) = r(tb) + ỹa(tb|t)− ey(t)

= r (tb|t)− ey(t). (41)

Motivated by the optimal residual design methodology
in Ding (2013), r̂ (tb|t) is to be optimized to achieve
the H∞ performance with respect to the disturbance
d(t). More specifically, according to (41), since r (tb|t)
is fixed, the optimization problem is formulated as de-
signing Kz(t) and Kφ(t) to satisfy the H∞ performance
given as follows:

‖ey(t)‖2[tb,ts]
eT (tb)Θe(tb) + ‖d(t)‖2[tb,ts]

≤ γ2, (42)

where γ > 0 is the H∞ performance index and Θ =
ΘT ≥ 0 has the following structure:

Θ =
1

4

[
Θ0 Θ0

Θ0 Θ0

]
, (43)

where Θ0 = ΘT
0 > 0. It is worth pointing out that the

special structure of Θ reflects the same confidence in
the knowledge of the initial conditions ez(tb) and eφ(tb),

which is a result of the same bounds of φ(tb)− φ̂(tb) and
z(tb) − ẑ(tb) given in (33) and (35) respectively. The
conditions for guaranteeing the H∞ performance (42)
are given in the following theorem.

Theorem 2. Suppose that Assumption 3 holds. Then,
for a given performance index γ > 0, the estimation error
system E (39) satisfies the H∞ performance (42) if there
exists a solution Q(t) = QT (t) ≥ 0 in the time interval
[tb, ts] to the following differential Riccati equation:

Q̇ =
(
Ā− D̄1D

T
2 R
−1C̄1

)
Q+Q

(
Ā− D̄1D

T
2 R
−1C̄1

)T
−Q

(
C̄T1 R

−1C̄1 − µ−2l2Enx − γ−2C̄T2 C̄2

)
Q

+ µ2Enx
+ D̄1

(
I −DT

2 R
−1D2

)
D̄T

1 , (44)

where µ is any positive scalar, R = D2D
T
2 , Enx =

[Inx , 0]T [Inx , 0] and

Q(tb) =

[
Θ−10 Θ−10

Θ−10 Θ−10

]
.

Then, Kz(t) and Kφ(t) in (32) are obtained as

Kz(t) = [Inx
, 0]K(t), Kφ = [0, Inx

]K(t), (45)

where K(t) is given by

K(t) =
(
QC̄T1 + D̄1D

T
2

)
R−1. (46)

�

Proof. See Appendix: Proof of Theorem 2.

4.3 Residual Evaluation Function and Threshold Gen-
eration

In the context of fault diagnosis, detection residuals are
evaluated to form evaluation functions (see, e.g., Ding
(2013)). This paper also designs the evaluation function
by evaluating the residual r̂(tb|t) in (40). In the design
of the residual evaluation function, the normalization
problem should be considered. The residual evaluation
is a function such that when there is no attack, the func-
tion output is close or equal to zero (similar to residual
evaluations in fault diagnosis schemes, in the absence of
faults). Based on this requirement, the following evalu-
ation function is proposed:

Ĵ (tb|t) , ‖r̂ (tb|t) ‖RMS − ‖r(tb) + Cφ̂(tb)‖RMS, (47)
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where the residual r̂ (tb|t) is defined in (40) is a time-
varying function and is sensitive to attacks. The term

‖r(tb) + Cφ̂(tb)‖RMS is included in Ĵ (tb|t) since it
constitutes a correction term (constant bias) required
for normalization purposes, in order to guarantee that
Ĵ (tb|t) is close to zero in the absence of attacks. The
following lemma is given to show the boundedness prop-
erties of Ĵ (tb|t) in the absence of an attack.

Lemma 2. In the absence of an attack, the evaluation
function Ĵ (tb|t) in (47) satisfies

Ĵ (tb|t) ≤ Ĵth, ∀ t ≥ T0,

where Ĵth is given by

Ĵth , Jth + k1 − ‖r(tb) + Cφ̂(tb)‖RMS, (48)

with k1 being specified by

k1 ,

√
γ2

Tw
(λmax(Θ0)δ21 + ∆2). (49)

�

Proof. According to (41) and (47), by using the triangle

inequality, Ĵ (tb|t) satisfies

Ĵ (tb|t) ≤ ‖r(tb)‖RMS + ‖ey(t)‖RMS

+ ‖ỹa(tb|t)‖RMS − ‖r(tb) + Cφ̂(tb)‖RMS. (50)

Based on Lemma 1, in the absence of an attack,
ỹa(tb|t) = 0 and thus, Ĵth is chosen as

Ĵth = sup
ỹa(tb|t)=0, t≥tb

Ĵ (tb|t)

=‖r(tb)‖RMS + sup
t≥tb
‖ey(t)‖RMS

− ‖r(tb) + Cφ̂(tb)‖RMS. (51)

Note that when no attack is present, ‖r(tb)‖RMS ≤ Jth.
Next, the supremum ‖ey‖RMS will be derived based on
the H∞ performance of the smoother S. From Theorem
2, one can derive that

‖ey(t)‖2[tb,ts] ≤ γ
2
(
eT (tb)Θe(tb) + ‖d(t)‖2[tb,ts]

)
.

From (33), (35) and the structure of Θ in (43), we have

eT (tb)Θe(tb) = eTz (tb)Θ0ez(tb) ≤ λmax(Θ0)δ21 .

From ‖d(t)‖[ts,tb] ≤ ∆ and the fact that ‖ey‖2RMS ≤
1
Tw
‖ey‖2[tb,ts], we have ‖ey‖2RMS ≤ k21 where k1 is given

by (49). Hence, from (51) and (49), the threshold Ĵth in
(48) can be obtained.

Therefore, the above design and analysis can be sum-
marized by the following theorem.

Theorem 3. (Robustness). Under Assumptions 1-3,
when the CPS and the anomaly detector (Σ,D) described
by (2), (3) and (4) undergo a stealthy integrity attack, the
detection decision scheme, characterized by the smoother
S (32) with the optimal parameters (45), residual (40),
evaluation function (47) and threshold (48), guarantees
that there is no false alarm before the occurrence of the
attack, i.e., Ĵ (tb|t) ≤ Ĵth for tb ≤ t < T0. �

Subsequently, if Ĵ(tb|t) > Ĵth for some t ≥ T0 > tb,
an alarm is triggered and indicates the presence of an
attack. The detection time Td is defined as the first time
instant when Ĵ(tb|t) > Ĵth for a given tb < T0, i.e.,

Td(tb) , inf
{
t ≥ T0

∣∣∣Ĵ(tb|t) > Ĵth

}
. (52)

4.4 Detectability Analysis

In this part, the attack detectability analysis is con-
ducted. The detectability analysis constitutes a theoret-
ical result that characterizes quantitively and implicitly
the class of stealthy integrity attacks that can be de-
tected by the proposed scheme. The detectability anal-
ysis is a theoretical tool that is used correspondingly
in the detection of faults, since it provides intuition
about the characteristics of detectable faults (see, e.g.,
Keliris, Polycarpou, and Parisini (2017); Zhang, Poly-
carpou, and Parisini (2010); Zhang, Jiang, Yan, and
Shen (2019); Wu, Jiang, and Lu (2017)).

Theorem 4. (Detectability) Under Assumptions 1-3,
for the CPS and the anomaly detector (Σ, D) described
in (2), (3) and (4), the attack detection decision scheme,
characterized by the smoother S (32) with the optimal pa-
rameters (45), residual (40), evaluation (47) and thresh-
old (48), guarantees that a stealthy integrity attack can

be detected at a time Td ≥ T0 > tb, i.e., Ĵ(tb|Td) > Ĵth,
if the following condition holds:

‖r(tb|t)‖RMS > Jth + 2k1, (53)

where Jth is given in (4) and k1 is defined in (49). �

Proof. For r̂ (tb|Td) = r (tb|Td)− ey(t) given in (41), we
have

‖r̂(tb|Td)‖RMS ≥ ‖r(tb|t)‖RMS − ‖ey(t)‖RMS.

12



Fig. 4. Diagram of the implementation for the backward-in-time detection scheme.

According to (47) and (48), to detect an attack at the
time instant Td, the following inequality should hold:

‖r̂ (tb|Td) ‖RMS > Jth + k1.

Then, a sufficient condition can be obtained as follows:

‖r(tb|t)‖RMS > Jth + k1 + ‖ey(t)‖RMS.

Hence, from ‖ey‖RMS ≤ k1, the sufficient condition (53)
follows.

Remark 11. Compared with the inequality (26) in the
result (b) of Theorem 1, (53) has the additional term
2k1, which is the result of using the fixed-point smoother
to estimate za(tb|t). Note that k1 defined in (49) is the
upper bound of ‖ey‖RMS. Based on H∞ property of the
estimation error system (39), k1 in the right hand side of
(53) is fixed in the presence of any disturbance satisfying
‖d‖[tb,ts] ≤ ∆. It should also be noted that r(tb|t) in (53)
can be increased to any required value in the presence
of the attack via selecting a finite tb (see result (b) in
Theorem 1). Therefore, the detectability of the proposed
attack detection methodology can be as high as possible
by making r(tb|t) sufficiently large via the selection of a
finite tb. ∇

Fig. 4 illustrates the implementation of the backward-
in-time attack detection scheme developed in this paper.
A common information block that includes a forward-
in-time detector D and the parameter selection and op-
timization scheme, is shared among the N repetitions of
the backward-in-time detectors (blue box). The anomaly
detector D is activated once at t = 0 and is always in
parallel with all repetitions. Each repetition includes a
smoother (32), which indicates that the smoother (32) is
activated N times and the differential Riccati equation
(44) is solved N times. The common parameter selec-
tion and optimization block is done off-line and provides

every repetition of the backward-in-time detector with
the necessary information before it is initiated. The ith
backward-in-time detector includes a backward-in-time
estimator block and a detection scheme block that run
on-line during the time interval [tb,i, ts,i] in real time,
which provides the occurrence information of attacks
that potentially occur in the time interval [tb,i, ts,i].

5 Case Study

In this section, the longitudinal navigation mathemati-
cal model of an air breathing hypersonic vehicle is con-
sidered. Such a model is a simple numerical example
for illustration purposes. Unmanned hypersonic vehicles
are vulnerable to such as GPS spoofing attacks which
can affect not only the control input but also the output
measurements of the navigation system. Based on the
control-design model in Fiorentini et al. (2009) and by
considering altitude, angle of attack and pitch rate as the
states, and sinusoidal and cosine of flight-path angle as
the control inputs, the longitudinal navigation dynam-
ics can be written in the form Σ where x = [x1, x2, x3]T

with x1, x2 and x3 representing the altitude, angle of
attack and pitch rate, respectively. The system matrices
are given as follows:

A =
[
0 0 0
0 0.7586 106

0 2.6489 −1.6197

]
× 10−6, D1 =

[
0 0 0
0 0 0
1 0 0

]
,

B =
[
1.5 0
0 6.5333
0 0

]
× 10−4, C = [ 0.1 0 0

0.1 1000 0 ] , D2 = [ 0 1 0
0 1 1 ] .

It can be verified that the pair (A,C) is observ-
able. In addition, the nonlinear function is g(t, x) =
[0, g2(t, x), g3(t, x)]T where g2(t, x) = 3.6412×10−9 sin(x2)
and g3(t, x) = −3.0475× 10−4x22− 4.8088× 10−5x22x3 +
2.1334× 10−6x2x3.

Suppose that the available resources to the attacker is
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Γu = Γy = I2. Then, we can calculate that x1(t) ∈
Im[1, 0, 0]T satisfies (7a) and (7b) and thus, Assumption
1 is satisfied. Moreover, the control law uc is given by

uc(t, ỹ, yref) = K1

∫ t
0
([1, 0]ỹ − yref)dt + K2ỹ, where the

reference signal is yref = 1.1× 105 ft and

K1 =
[
0.67×10−4

0
0

]
, K2 =

[
−0.11739 0

0 −2.6955×106
0 −517.2942

]
.

It can be verified that the control law uc can asymptot-
ically stabilize the navigation system in the non-attack
case and yref ≡ 0 for t ≥ 0, and hence, Assumption 2
is satisfied. In addition, in the region X = [0, 135000]×
[−π/3, π/3]× [−π/3, π/3], we have ‖g(t, x)− g(t, ẑ)‖ ≤
0.0183‖x− ẑ‖ and thus, the Lipschitz constant l in As-
sumption 3 is l = 0.0183 and Assumption 3 holds.

For the simulation purpose, the initial condition of
the state x is given by [1.0 × 106 ft, 0.1 rad, 0.2 rad]T ,
the disturbance is given by d(t) = [0.003 cos(3t +
0.2), 180 + 20 sin(40t), 0.063 sin(10t + 0.2)]T . Thus, we
have ‖d(t)‖[0,10] ≤ 2000 and ∆ is 2000. The anomaly
detector D is designed based on Ding (2013). The resid-
ual is designed to satisfy the optimal H∞ performance,
i.e., ‖r(t)‖[0,10] ≤ 11‖d(t)‖[0,10], and thus the threshold

is calculated as Jth = 11∆/
√
Tw = 3.113 × 104 where

Tw = 0.5. The attack signal a(t) used in this simulation
is generated by the attack model in Remark 4 where z0
and Fa are chosen as

z0 =
[
2000
0
0

]
, Fa =

[
0 0 0
0 0 0
−0.1 0 0
−0.1 0 0

]
.

Such an attack is initiated at T0 = 6 s. The attack signal
is shown in Fig. 5, and yref(t), ỹ(t) and ỹn(t) are pre-
sented in Fig. 6. The detection results using the anomaly
detector D is shown in Fig. 7.
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Fig. 5. Time responses of the attack signal a(t).

Fig. 6 shows that the control law uc can drive the output
ỹ1 to the reference yref asymptotically, which indicates
that the control law uc achieves its objective. It can also
be observed from Fig. 6 that the altitude measurement
ỹ1 changes slightly, the increment ỹa1 is small enough
and converges to zero asymptotically. Moreover, the in-
crement ỹa2 is zero identically. As shown in Fig. 7, such
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Fig. 6. Time responses of the sensor measurements ỹ and
ỹn received from Ns in the attack case and healthy case
respectively, the reference signal yref , and the change ỹa.
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Fig. 7. Time responses of the residual r(t), the evaluation
function J(t) and the threshold Jth of the anomaly detector
D.

changes can not be detected by the anomaly detector D
since J(t) < Jth for t > T0. Therefore, such an attack
satisfies Definition 1 and remains stealthy with respect
to the detector D.

The time tb is chosen as tb = 2 s. At the time tb, r(tb) =
[−13.95,−14.28]T . Based on the designed uc, the related
comparison function β(‖z0‖, t− T0) in (17) is

β(‖z0‖, t− T0) = exp(−0.4(t− T0))‖z0‖.

The time ts = 10 s, then, ρts(x) and ρ−1ts (x) based on
the function β are respectively derived by

ρts(x) = exp(−3.3)x, ρ−1ts (x) = exp(3.3)x.

With respect to the given anomaly detector D, it can
be determined through simulation that if ‖z0‖ ≤ 30000,
then the integrity attacks generated by the attack model
in Remark 4 are stealthy. Thus, the defender knows that
the attacker has to select a z0 satisfying ‖z0‖ < 30000
in (8), to maintain the stealthiness of the integrity at-
tacks with respect to the anomaly detector D. Hence, in
this simulation, we select δ0 = 30000. Then, ρ−1ts (δ0) =

exp(3.3)δ0 = 8.1338 × 105. Thus, based on Theorem 1,
we have

7.1720× 105 < ‖za(tb|t)‖ ≤ 8.1338× 105.
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Fig. 8. Time responses of the residual r̂(2|t), the evaluation

function Ĵ(2|t) and the threshold Ĵth.

In the following, we proceed with the design of the
smoother S. The initial condition ẑ(tb) is chosen as

ẑ(tb) = [7.8294 × 105, 0.3913, 0.3358]T and φ̂(tb) is

chosen as φ̂(tb) = [8.1000× 105, 0, 0]T . The H∞ perfor-
mance index is given by γ = 15 and the Θ0 is selected as
Θ0 = 0.605I3. By solving the differential Riccati equa-
tion (44), the solution Q(t) is obtained. Thus, Kz(t) and
Kφ(t) are determined based on the solution Q(t). Thus,
the optimal fixed-point smoother is determined as well
and ỹa(z|t) is estimated. Therefore, the residual is

r̂(2|t) = r(2) + ˆ̃ya(2|t).

Moreover, based on (49), k1 = 9.7540 × 104 and hence

based on (48), the threshold Ĵth is Ĵth = 6.6268× 103.

The detection results using the above determined
backward-in-time detector are shown in Fig. 8. It can
be seen that the stealthy integrity attack is detected
at about Td = 6.2s, since the residual evaluation func-
tion Ĵ(2|Td) exceeds the threshold Ĵth. In addition, the
residuals r̂1(2|t) and r̂2(2|t) shown in Fig. 8, regardless
of the fluctuations due to disturbances, retain their val-
ues as constant vectors, which verifies the result (a) in
Lemma 1.

6 Conclusions

In this paper, a stealthy integrity attack detection
methodology has been proposed for a class of nonlin-
ear CPS. An equivalent increment of the system at a
time prior to the attack occurrence time has been de-
fined and its effectiveness to detect stealthy integrity
attacks has been investigated. A backward-in-time de-
tector based on an H∞ fixed-point smoother has been
proposed as the tool to estimate the unknown equiva-
lent increment. Based on the aforementioned findings,
the detection scheme has been designed and rigorously
investigated by conducting a detectability analysis. Fi-
nally, a simulation case study has presented to show the
effectiveness of the developed detection methodology.
Future research efforts will be devoted to distinguish
between fault anomalies and stealthy integrity attacks.

Appendix: Proof of Theorem 2

Proof. Based on Assumption 3, ‖ḡ(t, z, ẑ)‖ ≤ l‖ez(t)‖,
and it then follows from eT (t) = [eTz (t), eTφ (t)] that

ḡT (t, z, ẑ)ḡ(t, z, ẑ) ≤ l2eT (t)Enx
e(t). (A.1)

From (42), the H∞ performance can be guaranteed if
J(γ) ≤ 0 in the worst case where

J(γ) =

∫ ts

tb

γ−2eTy (t)ey(t)− d(t)T d(t) dt− eT0 Θe0.

In the sequel, the task is to prove that with the K(t)
given in Theorem 2, J(γ) ≤ 0 in the worst case.

From (A.1) and along the dynamics of the estimation
error system (39), we can obtain

J(γ) =

∫ ts

tb

[
d eTPe

dt
+ γ−2eTy ey − dT d] dt+ eTP (tb)e

− eTP (ts)e− eT0 Θe0

≤
∫ ts

tb

[eT (Ṗ + (Ā+KC̄1)TP + P (Ā+KC̄1))e

+ µ2eTPEnx
Pe+ eT (µ−2l2Enx

+ γ−2C̄T2 C̄2)e

+ eTP (D̄1 +KD2)(D̄1 +KD2)TPe

− (d− eTP (D̄1 +KD2))T ·
(d− eTP (D̄1 +KD2))] dt

+ eTP (tb)e− eTP (ts)e− eT0 Θe0,

where the following inequality is used:

2eTP ḡ ≤ µ2eTP [Inx
, 0]T [Inx

, 0]Pe+ µ−2ḡT ḡ

= µ2eTPEnx
Pe+ µ−2eTEnx

e.

We now choose aP (t) satisfying the following differential
Riccati equation on the time interval [tb, ts]:

−Ṗ =
(
Ā+KC̄1

)T
P + P

(
Ā+KC̄1

)
+ P

(
µ2Enx + (D̄1 +KD2)(D̄1 +KD2)T

)
P

+ µ−2l2Enx
+ γ−2C̄T2 C̄2, (A.2)

P (tb) = Θ + ∆Θ, (A.3)

where ∆Θ is introduced to avoid the singularity of P (tb),
which is given as follows:

∆Θ =
1

ε

[
I −I
−I I

]
, ε→ 0.

It then can be verified that in the worst case d =
eTP (D̄1 + KD2), J(γ) ≤ 0. Hence, the inequality (42)
follows.
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In the following, the procedure to derive (44) and (46)
from (A.2) and (A.3) is presented. Let Q(t) = P−1(t)
for t ∈ [tb, ts]. Then,

Q(tb) = lim
ε→0

(Θ + ∆Θ)−1 =

[
Θ−10 Θ−10

Θ−10 Θ−10

]
. (A.4)

Moreover, it follows from (A.2) that

Q̇ = QĀT + ĀQ+Q
(
µ−2l2Enx + γ−2C̄T2 C̄2

)
Q

+ µ2Enx
+ D̄1D̄

T
1

+
(
KT −R−1

(
C̄1Q+D2D̄

T
1

))T
R·(

KT −R−1
(
C̄1Q+D2D̄

T
1

))
−
(
C̄1Q+D2D̄

T
1

)T
R−1

(
C̄1Q+D2D̄

T
1

)
. (A.5)

Then, by substituting K(t) in (46) into (A.5), (44) can
be obtained.

Hence, Theorem 2 is proved.
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