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“Even with infinite computing power insufficient understanding limits its application; With
infinite computing power we have to understand things that we could in principle compute.”
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Abstract
Understanding Convective Organization and Seeking it Through Observations

by Alejandro Casallas Garcia

Idealized simulations of radiative-convective equilibrium (RCE) using cloud-resolving
models provide a controlled environment to investigate the influence of diabatic pro-
cesses on convective clustering. This clustering results in significant drying of the
free troposphere and heightened spatial variability in humidity, contributing to a
larger increase in outgoing longwave radiation, thus it has the potential of impact-
ing climate sensitivity. However, it’s crucial to note that convective clustering in
idealized models is influenced by the specific physical parameterizations employed.
Furthermore, limited studies have focused on unraveling the mechanisms underly-
ing clustering in observations. Addressing these gaps forms the foundation of this
research.

This study pursues two main objectives: firstly, to unravel the sensitivity of con-
vective self-aggregation (SA) to diverse physical parameterizations, and secondly,
to comprehend the characteristics of convective organization in observations, shed-
ding light on associated physical mechanisms. Studying organization is of profound
significance due to its impact on the radiation budget, climate feedbacks, hydrolog-
ical cycle, and extreme precipitation patterns, impacting society and climate.

Addressing the first objective, radiative-convective equilibrium simulations ex-
plore the effects of 24 parameterization combinations on aggregated and random
convective patterns. Key to our analysis is understanding the role of maximum free
convection distance (dclr), found crucial for SA, and its modulation by parameteri-
zations. SA predominantly emerges in scenarios with limited convective cores and
extensive dclr values (since they are anticorrelated), influenced by sub-grid scale mix-
ing, planetary boundary layer (PBL), and microphysics. Horizontal mixing primar-
ily influences SA by determining the size of convective cores, which is tight to their
number and spacing. On the other hand, the influence of microphysics primarily
stems from rain evaporation and its subsequent effects on Cold Pools (CPs). Surpris-
ingly, perturbations to ice cloud microphysics had a notably limited effect. Non-local
PBL schemes promote SA by enhancing low-level cloud cover, driven by intensified
vertical transport within convective cores, and strong entrainment from the bound-
ary layer top, due to stronger moisture gradients. The low cloud radiative forcing
drives a circulation that shortens the transport of moist static energy, disallowing
moisture to get to the driest regions, favoring SA. Moreover, the heightened low-
level cloud cover induces more significant cooling, requiring stronger subsidence
to maintain radiative equilibrium. This enhanced subsidence decreases convective
core counts, increasing dclr, and favoring SA.

For our second objective, we move beyond idealized models, utilizing state-
of-the-art observations, reanalysis data, advanced numerical models, and machine
learning techniques. Applying multivariate analysis typically used for SA, we exam-
ine convective organization and its impact on total column water vapor variability in
three mesoscale sized domains within the tropical western Pacific warm pool region,
lying either north of the equator (2-9N or 3-10N), or directly straddling the equa-
tor 3S-4N). During periods with limited SST gradients (boreal summer/autumn),
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convection tends to be random, with small horizontal humidity gradients. In pe-
riods with a weak zonal SST gradient (> 10−3Kkm−1, boreal winter/spring), ag-
gregated convection prevails, exhibiting larger humidity gradients, stronger outgo-
ing longwave radiation, and a drier atmosphere. Intermittent episodes of random
convection and smaller humidity gradients disrupt this pattern. A composite anal-
ysis of such events associates them with westward propagating convectively cou-
pled Rossby waves in the three regions, suggesting these waves play a key role in
mesoscale water vapor variability during boreal winter and spring, potentially in-
fluencing long-term variations in convective organization.

To further understand the mechanisms that lead and prevent the development
of convection organization. Our study leverages on realistic simulations, underscor-
ing the important role of humidity advection in orchestrating the organization and
disorganization of convection, with wind shear playing a dual role in either organiz-
ing or disorganizing convection, contingent on its strength and direction. In terms
of its characteristics, when convection is organized, the atmosphere is significantly
drier compared to the random state. Diabatic feedbacks consistently work to cluster
convection, but large-scale dynamics play a more important role in instigating and
disrupting organization over the warm pool region, since the large-scale dynamics
can export moist gross static energy from moist to dry regions, disallowing organiza-
tion. This research improve our understanding of the mechanisms that lead to SA in
idealized models. Also to bridge the gap between idealized models and real-world
tropical atmospheric dynamics, imparting valuable insights into the multifaceted
processes governing convective organization and its climatic implications.
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4.2 Mean seasonal variations in (a-b-c-d) relative humidity as a function
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dicated by colors and explain in the legend). Additionally, the mean
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and corresponding to the left y-axis, are presented alongside rainfall
data derived from GPM, shown in blue and associated with the right
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4.3 For the 2N-9N, 135E-145E study region during 2017-06-20 to 2017-08-
10. (a) Hovmöller plot of NOAAOI SST anomaly (depicted by colors)
against MIMIC TCWV retrieval percentile, featuring overlaid black
contours indicating areas of GPM IMERG precipitation at 5 mm hr−1.
(b) Hovmöller plot of MIMIC SST anomaly (represented by colors) rel-
ative to absolute TCWV, clipped between the 1st and 99th percentiles
to eliminate anomalous extremes, with percentile values depicted as
contours. (c) Time series of the SST-TCWV regression. (d) Domain
mean GPM IMERG precipitation rate. Green shading in panels b-d
highlights reversal events, signifying instances where the SST-TCWV
regression shifts from positive to negative for a duration of at least 24
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4.4 For the 2N-9N, 135E-145E study region during 2017-04-01 to 2017-05-
22. (a) Hovmöller plot of NOAAOI SST anomaly (depicted by colors)
against MIMIC TCWV retrieval percentile, featuring overlaid black
contours indicating areas of GPM IMERG precipitation at 5 mm hr−1.
(b) Hovmöller plot of MIMIC SST anomaly (represented by colors) rel-
ative to absolute TCWV, clipped between the 1st and 99th percentiles
to eliminate anomalous extremes, with percentile values depicted as
contours. (c) Time series of the SST-TCWV regression. (d) Domain
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4.5 Boxplot representations of SST anomalies are categorized based on
TCWV for: (a) a random and an organized state from results of the
slab ocean model of Tompkins and Semie (2021), (b) boreal summer/autumn
and winter/spring periods, and (c) boreal winter/spring reversals
and organized regimes, using Himawari and MIMIC datasets. Con-
sistent results are observed with NOAA OISST and ERA5 datasets
(not-shown). In each boxplot, the lower end represents the 25th per-
centile, the upper end shows the 75th percentile, and the middle line
indicates the median (50th percentile). The whiskers extend to the
10th and 90th percentiles. The white square inside the box represent
the mean of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Joint Probability Density Function (PDF) plots for (a-b) Boreal Win-
ter/Spring and (c-d) Summer/Autumn, illustrating (a-c) δ(TCWV)
and dSST

dTCWV f , and (b-d) TCWV 5th percentile and dSST
dTCWV f . Hexagons

colors represent the distribution of data points in each bin. The purple
vertical dashed line denotes the upper boundary threshold for consid-
ering a random event, while the blue vertical dashed line indicates the
lower boundary threshold for clustered convection. The black hor-
izontal dashed line represents the 48 kg m−2 TCWV threshold dis-
tinguishing convective and non-convective regions, as identified by
Mapes et al. (2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 (a-b) ERA5 relative humidity as function of latitude and height and (c-
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function of latitude, for the (a-c) organized and (b-d) reversal regimes
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4.8 (a) All-sky TOA all-sky OLR, (b) TOA OLR, (c) cloud fraction, and
(d) Interquartile Range (IQR) of TCWV as a function of dSST

dTCWV f quar-
tile for each study region (represented by box color). For reversal
and organized days, (e) all-sky TOA OLR, (f) clear-sky TOA OLR, (g)
cloud fraction, (h) IQR of TCWV, liquid water, and ice mixing ratio
are shown for (i) 2N-9N and 135E-145E, (j) 3N-10 and 147E-157E, and
(k) 3S-4N and 156E-166E. Each boxplot displays the 25th percentile at
the lower end, the 75th percentile at the upper end, and the median
(50th percentile) as the middle line. Whiskers extend to the 10th and
90th percentiles, with a white square inside the box representing the
mean of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Contributions to all-sky TOA OLR from SST, specific humidity (Hum),
temperature, and cloud components (liquid water, ice, and cloud frac-
tion) for (a-c-e) organized days replaced with reversal events and for
(b-d-f) reversal days replaced with organized events. The depicted re-
gions are (a-b) 2N-9N and 135E-145E, (c-d) 3N-10 and 147E-157E, and
(e-f) 3S-4N and 156E-166E. The x-axis represents the days on which
the replacement was performed. . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Mean anomalies of total atmospheric convergence (i.e., diabatic and
diabatic feedbacks), ordered by TCWV for (a) boreal summer/autumn,
(b) boreal winter/spring, and for boreal winter/spring (c) reversals
and (d) organized episodes. Notice that warming anomalies in the
atmosphere are represented by positive values. . . . . . . . . . . . . . . 71
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4.11 Contributions to LH surface flux perturbations in the reversal regime
are depicted for (a) the entire dataset, and separately for (b) boreal
summer-autumn and (c) winter-spring. Similarly, contributions are il-
lustrated for the organized regime, encompassing (c) the entire dataset,
and for boreal (b) summer-autumn and (c) winter-spring. These con-
tributions emanate from (g) wind speed perturbations, (h) humidity
(∆q), and (i) stability (∆T) differences. Thermodynamic perturbations
refer to the combined contribution of ∆T and ∆q terms. The calcula-
tions are executed using a random forest (RF) algorithm fitted to the
ERA5 dataset (refer to Section 4.3 for details). . . . . . . . . . . . . . . . 72

4.12 Composite of 44 reversal states on boreal winter-spring months and
their related lags. The colors represent the OLR anomaly for each
of the lags. The contours are the SST and the arrows size represent
the WVF magnitude and their orientation shows the WVF direction.
Notice that each panel indicate the lag in number of days. The dashed
rectangle represents the study area between 2N-9N and 135E-145E. . . 74

4.13 Equatorial Rossby wave filtered (and deseasonalized) OLR compos-
ites of reversal states during boreal winter/spring months. The com-
posites depict (a) 44 events in the 2N-9N and 135E-145E region, (c)
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the 3S-4N and 156E-166E area. Wave activity for the (b) 2N-9N and
135E-145E, (d) 3N-10N and 147E-157E, and (f) 3S-4N and 156E-166E
regions as a function of TCWV variance for the entire Pacific during
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5.1 Graphical Abstract: Snapshots of organized and reversal states. Clouds,
depicted in colors, are accompanied by SST contours, wind arrows,
and convection cores marked by purple points (Vertical velocity > 1 m
s−1). Organized: Clouds are arranged in a line at the southern edge
of the domain, aligning with the warmest SST. Northeasterly winds
prevail, facilitating convection confinement to the southern domain.
Reversal: Clouds are disperse across the entire domain, with a no-
table concentration in colder regions. This dispersion is linked to a
moisture mode triggered by a Rossby wave, fostering a southerly flow
that transports moisture from the south into the domain. This influx
of moisture initiates new convection in the southern region, marked
by the presence of low clouds. . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Annual mean distribution of Precipitation (colors) and SST (contours)
for the study area. The SST contours start from 301.75 and increase
every 0.25K. The dashed rectangle delimits the outer domain (Lon:
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we used for all the calculations of this research. . . . . . . . . . . . . . . 80
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5.3 Hourly mean spatial anomaly of SST arranged as a function of TCWV
percentile (ERA5 data, see section 5.4 for details about the data) for
(a) MAM and (d) JJA season and their temporal average (c) and (f), re-
spectively. Columns are arranged in order of TCWV-%tile and then an
average of 81 columns is applied (no block averaging). Slope ( dSST

d f TCWV )
for (a) MAM and (e) JJA, the blue shading show examples of orga-
nized convection (i.e., 0.5*std larger than Slope mean), meanwhile the
purple shading show examples of reversal events (i.e., 0.5*std smaller
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tion on 2017-03-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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lags. The colors represent the OLR anomaly for each of the lags. The
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rectangle represents the study area, whose close-up is presented in
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5.6 TCWV (colors), SST (contours) and wind vector (arrows) mean from
WRF model for the (a) MAM and (b) JJA seasons. (c) Snapshot of or-
ganized convection on 2017-04-12 and (d) snapshot of a reversal event
on 2017-03-21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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the WRF model for each sensitivity experiment. The left (right) col-
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percentile for (a) MAM, (b) the MAM simulations but with reversals
Moisture Advection conditions, (c) as (b) but with organized Moisture
Adv. conditions and for (d) JJA. Columns are arranged in order and
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anomaly of atmosphere) ordered according to TCWV for (a) orga-
nized and (b) reversals conditions experiments. Both panels include
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5.10 Average (first to last day) of net radiative cooling (color shading), liq-
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10−4 kg kg−1) and ice water mixing ratio (purple contours marking
10−6, 3.10−5, and 10−5 kg kg−1) as a function of the TCWV percentile
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Moisture Adv. conditions, (c) JJA season and (d) as (b) but with re-
versals Moisture Adv. conditions. Black dashed contours show the
mass flux streamlines as defined by Bretherton et al. (2005). The bold
dashed lines represent the represent the -56, -63, and -70 in units of
10−2 kg m−2 s−1 to ilustrate that the strongest circulations persist
within intermediate humid and the moistest regions. . . . . . . . . . . 95

5.11 Slope calculated from the WRF output for (a) Moist Advection, (b)
Humidity, (c) Wind, (d) Zonal wind component, and (e) Meridional
wind component experiments. The darkcyan line represent the con-
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reversals(organized) conditions. . . . . . . . . . . . . . . . . . . . . . . . 96

5.12 Random Forest simulations for the MAM season in the period simu-
lated by WRF, for (a) Moisture Advection, (b) Moisture, (c) Wind, (d)
Zonal wind and (e) Meridional Wind. Dark-cyan lines represent the
control, the purple line represent the experiments that include rever-
sals conditions and the blue line the ones with organized conditions. . 100

5.13 RF simulations for the MAM season in the period simulated by WRF,
for (a) No Meridional-Shear. No Meridional (b) Low and (c) High Tro-
pospheric Shear, (d) No Zonal-Shear. No Zonal (e) Low and (f) High
Tropospheric Shear, and (g) No Shear. Dark-cyan lines represent the
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5.14 Slope IQR (75-25%-tile) as a function of Maximum Slope. The Slope
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rows indicate. The circles represent simulations that used organized
conditions, the stars the ones that use reversal conditions, and the
triangle is the control. The colors of the stars and the circles show
the variable that is selected to replace with the organized/reversal
condition. This means that if the simulation name in the legend is
Meridional wind, this is the variable that was replaced with the orga-
nized/reversals conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1 Example of the tracking algorithm, each panel shows a snapshot for
day 15 of the ThoYSU simulation, this day is selected to show big
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A.2 The plot shows daily dry patch composite means of the virtual po-
tential temperature anomalies (a), and the contributions to this vari-
able from the qv anomaly (b) and the temperature anomaly (c) of the
GCE-SM2-YSU experiment. The results are similar for the other runs
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LW Net (b) LW CRE, (c) LW Clear-Sky, (d) SW Net, (e) SW CRE, (f) SW
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dclr, (b) number of convective cores and (d) boundary layer relative
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tical velocity at 100m (W100) at the gust fronts of the Cold-Pools as a
function of mean dclr (from day 2 to 5). (d) Frequency of Cold-Pool
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on TCWV-%tile. For (a) Tho-SM2-YSU, (b) Tho-SM-BL, (c) GCE-SM2-
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B.1 Combined sum of the first three Principal Components (PCs) derived
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B.5 Average of TCWV (colors), SST (contours), and wind at 850 hPa (ar-
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B.13 Composite of 37 reversal states on boreal winter-spring months and
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Chapter 1

Introduction

1.1 Atmospheric Convection

Atmospheric convection is a crucial process influencing Earth’s climate, contributing
over 50% of tropical rainfall (e.g., Nesbitt et al. 2000; Betts and Jakob 2002). It plays a
vital role in maintaining the planet’s energy and hydrological balance by vertically
transporting energy and humidity. Defined as any motion driven by buoyancy and
governed by the Navier-Stokes equations, atmospheric convection involves complex
physical processes like phase changes, cloud microphysics, precipitation, and radi-
ation. It occurs across various spatial and temporal scales, broadly categorized into
two main types.

The first type of convection involves non-precipitating cumuli, arising from ver-
tical air currents that may lack the strength for droplets to reach precipitation size.
This limitation can be due to insufficient strength to penetrate into deeper atmo-
spheric layers or not reaching temperatures low enough for substantial condensa-
tion (Emanuel, 1994). In contrast, the second type includes convection leading to
precipitation, occurring when the atmosphere has high instability, which is charac-
terized by strong vertical velocities and elevated humidity levels (e.g., Sherwood
et al. 2010). In such cases, ascending air parcels from the surface reach upper at-
mospheric layers, where low temperatures induce condensation or freezing, leading
to the formation of precipitation. The resulting droplets or ice crystals then descend
due to their increased weight (Emanuel, 1994; Keil et al., 2008; Sherwood et al., 2010).
In this second category is deep convection, further discussed in the following para-
graphs.

Deep convection is distinguished by the upward movement of air parcels from
the surface to the middle and upper troposphere, where condensation and melting
processes transpire (e.g., Sherwood et al. 2010). The development of this convection
type necessitates a moist anomaly and is closely linked to regional moisture sources
within the atmosphere. To comprehend the nature of deep convection, it is imper-
ative to dive into a multitude of processes integral to this phenomenon, which are
outlined below:

(i) An air parcel that is warmer than its surroundings ascends, as it is less dense,
exhibiting increased buoyancy. While the parcel ascends (due to sufficient buoy-
ancy), it will expand and cool, becoming saturated, leading to condensation and
freezing. This phase releases latent heat, providing additional energy for the par-
cel to reach the level of neutral buoyancy (LNB). At the LNB, strong stability and
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turbulent mixing processes transpire at the cloud boundaries (Emanuel, 1991). Con-
currently, the ascending parcel induces a decrease in pressure below the cloud, ne-
cessitating the convergence of other parcels to this region due to mass conservation
(Holton, 2004). (ii) On the journey to reach the upper troposphere, a substantial
proportion of water vapor within the parcel condenses to form water droplets that
can precipitate. The remaining portion of water vapor and cloud condensate is de-
trained at the LNB. (iii) The upward in-cloud convective mass flux is balanced by
compensating subsidence in the environment. This downward motion adiabati-
cally warms the surrounding air. The cloud anvil influences the radiation balance
through two mechanisms: reducing the emittance of infrared radiation (warming
the atmosphere) and increasing cloud albedo (lowering surface temperature) (Hart-
mann, 2016). (iv) At this juncture, mid-troposphere downdrafts initiate, propelling
cold and dry air to the boundary layer, resulting in strong surface gust fronts (cold
pools). These gust fronts have the potential to trigger new convective events through
both dynamical (Droegemeier and Wilhelmson, 1985; Fuglestvedt and Haerter, 2020)
and thermodynamical (Tompkins, 2001b) processes.

Convection, driven by instabilities, seeks to restore environmental stability by
heating and moistening the free troposphere. Its impact on crucial processes in-
volves altering the radiation budget through anvil formation, releasing latent heat,
and shaping moisture distribution via updrafts and downdrafts. Furthermore, con-
vection plays a vital role in precipitation patterns, dynamically contributing to the
hydrological cycle. A comprehensive understanding of atmospheric convection is
essential for enhancing models and refining parameterizations. Notably, one char-
acteristic of convection is its capability of organizing into clusters, which has a strong
potential to impact climate sensitivity (Bony et al., 2015). Given the challenges faced
by General Circulation Models (GCMs) in accurately representing the organization
of convection into clusters across scales ranging from 100 km to 10000 km, it becomes
imperative to dive deeper into this process and its underlying mechanisms, which
is the aim of this research.

1.2 Radiative Convective Equilibrium

Before describing the significance of convective organization, it’s essential to de-
scribe the Radiative Convective Equilibrium (RCE) framework, which establishes
the foundational state for convective organization studies. RCE represents the statis-
tical equilibrium achieved by the atmosphere and surface when lateral energy trans-
port is removed, balancing convective heating and radiative cooling (Wing et al.,
2017). Widely used as an idealization of the tropical atmosphere, especially on large
scales (Wing and Emanuel, 2014), RCE provides a valuable tool for simplifying the
study of convection and its interactions. Convection, typically connecting to the
environment by transporting moisture and heat throughout the troposphere, influ-
ences the radiation budget through its anvils. Researchers have employed RCE in
one-, two-, and three-dimensional models to enhance our understanding of convec-
tion (Manabe and Strickler, 1964; Nakajima and Matsuno, 1988; Held et al., 1993;
Rennó et al., 1994; Tompkins and Craig, 1998a,b; Muller and Held, 2012; Wing and
Emanuel, 2014; Tompkins and Semie, 2017; Muller et al., 2022a). In this context, RCE
allows for the examination of the tropical atmosphere in an idealized setup, where
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convective latent heating compensates for net radiative cooling in the free tropo-
sphere, and large-scale motions are absent.

RCE was initially employed by Manabe and Strickler (1964) in a single-column
model (1D) to study the influence of atmospheric absorbers and convection on the
thermal structure of the atmosphere. Subsequent researchers expanded its scope
to include 2D (e.g., Held et al. 1993; Nakajima and Matsuno 1988; Grabowski and
Moncrieff 2001, 2004a) and 3D models (e.g., Tompkins and Craig 1998a; Bretherton
et al. 2005; Khairoutdinov and Emanuel 2013; Wing and Emanuel 2014; Hohenegger
and Stevens 2018a) to unravel convection characteristics inadequately represented
in GCM parameterizations. With technological advancements, modern RCE models
span hundreds of kilometers and reach planetary scales in three dimensions (e.g.,
Arnold and Randall 2015; Bretherton and Khairoutdinov 2015; Müller and Hoheneg-
ger 2020a). The key advantage of RCE simulations lies in their ability to comprehend
interactions among surface fluxes, the radiation budget (including longwave –LW–
and shortwave –SW– components), advection processes, moisture, and sea surface
temperature (SST), impacting convection (Wing et al., 2017). RCE facilitates experi-
ment denial and sensitivity studies, aiding in determining the role of various vari-
ables in convection representation.

1.3 Convective Organization

Convective clouds exhibit a propensity to cluster. Several factors contribute to this
behavior. For instance, convection tends to concentrate in regions with the warmest
SSTs. These areas experience lower pressure, leading to convergence, thereby pro-
moting the initiation and persistence of convection in the same location (e.g., Wool-
nough et al. 2000; Tompkins 2001a; Shamekh et al. 2020b,a; Tompkins and Semie
2021). Another organizing factor is the vertical wind shear, leading to the formation
of squall lines (Thorpe et al., 1982; Rotunno et al., 1988; Emanuel, 1994; Weisman
and Rotunno, 2004; Helfer and Nuijens, 2021; Abramian et al., 2022a) and promoting
new convection. In cases of wind shear, rain may fall away from updrafts, creating a
moist environment that does not inhibit the development of nearby convection (e.g.,
Rotunno et al. 1988; Abramian et al. 2022b).

Another form of organization is self-aggregation (SA), wherein convection or-
ganizes into clusters without external forcing. Three decades ago, this noteworthy
phenomenon emerged in RCE simulations—one that global models struggle to accu-
rately represent (Tobin et al., 2013). Convective SA, illustrated in Figure 1.1, was first
observed by Held et al. (1993) in a two-dimensional model. Despite homogeneous
conditions in the model’s initialization, they noted that convection spontaneously
organized into clusters, moistening proximate regions while inducing dryness in
distant areas. Subsequently, Tompkins and Craig (1998a) identified the same phe-
nomenon in a three-dimensional model setup, investigating its sensitivity to radia-
tion. They found that homogenizing heating rates horizontally led to a breakdown
of the cluster state into a more random configuration.

Following these first studies, researchers focused on understanding several as-
pects of convective SA. Muller and Held (2012) explored the sensitivity of SA to
domain and grid sizes, advective processes (such as cold pools) feedbacks, and the



4 Chapter 1. Introduction

role of low clouds. They found that SA strongly depends on domain size and reso-
lution. This sensitivity to domain size was further elucidated by Yanase et al. (2020),
who discovered that convection clusters because subsidence induces cooling and
drying, generating a circulation that transports moisture from dry to moist regions.
In smaller domains, convection is so closely packed that this circulation can’t over-
come the one produced by cold pools (CPs), which form due to evaporative cooling.
Regarding resolution, Biagioli and Tompkins (2023a) showed, in a simple stochastic
model similar to that of Craig and Mack (2013) and Windmiller and Craig (2019), that
improved resolution increases the number of updraft cores, reducing subsidence re-
gions and hindering aggregation.

Regarding the diabatic feedbacks, Wing and Emanuel (2014) used a Moist Static
Energy (MSE) budget, to report that the LW feedback is the most influential, and sur-
face fluxes initially act to aggregate convection but work against it once aggregation
is established. Other authors, such as Tompkins (2001c), focused on the water vapor
feedback, highlighting its thermodynamic role in clustering convection, showing
that the water vapor feedback emerges as a crucial variable, acting as both a precur-
sor and sustainer of convective aggregation (Sherwood et al., 2010).

Studies also explore the impact of SST on convection behavior and its onset time
(Bretherton et al., 2005; Hohenegger and Stevens, 2016a; Tompkins and Semie, 2021).
Additionally, previous research have focused on how different sub-grid scale pa-
rameterizations influence convection behavior (Tompkins and Semie, 2017). These
investigations form the foundation for understanding mechanisms that can induce
or inhibit clustering, serving as crucial steps toward developing parameterizations
that incorporate this phenomenon.

1.3.1 Mechanisms

This section explores processes that contribute to convective SA in non-rotating RCE
simulations, for example, surface fluxes, radiation, and moisture feedbacks, play
crucial roles in convective SA.

Surface Fluxes

Surface fluxes can promote aggregation through positive feedback, as indicated by
prior research (e.g., Tompkins and Craig 1998a; Bretherton et al. 2005; Muller and
Held 2012; Wing and Emanuel 2014), although this mechanism is not essential for
the occurrence of aggregation. Sensitivity analyses have demonstrated that homog-
enizing surface fluxes can lead to aggregation, depending on factors like domain
size, since larger domains favor clustering (Muller and Held, 2012), radiative feed-
back (Tompkins and Craig, 1998a), and the imposed background surface fluxes (Hol-
loway and Woolnough, 2016). While surface fluxes can support aggregation, they
are insufficient to cluster convection without radiative feedback, at least for current
SST temperatures (≈ 301 K to 305 K). An important feature of surface fluxes, is their
positive and negative feedback with SA (Wing and Emanuel, 2014). The positive
feedback tends to prevail in the initial stages of simulations, before aggregation de-
velops, and transitions to negative feedback when convection is clustered. This sur-
face fluxes feedback pattern is also observed in models with slab oceans (Tompkins
and Semie, 2021). Positive feedback arises from stronger winds in moist regions, in-
creasing surface fluxes and enhancing convective organization. In contrast, negative
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FIGURE 1.1: Snapshot of outgoing long wave radiation (OLR) at (a) day
10 and (b) day 80 of an RCE simulation at 305K. Available in Wing and

Emanuel (2014).

feedback results from air-sea enthalpy disequilibrium, leading to reduced surface
fluxes in moist regions.

Longwave Radiation

The LW radiation feedback has been extensively studied as it plays a crucial role in
the occurrence of aggregation, as demonstrated by various researchers (e.g., Tomp-
kins and Craig 1998a; Bretherton et al. 2005; Muller and Held 2012; Emanuel et al.
2014; Wing and Emanuel 2014; Muller and Bony 2015; Coppin and Bony 2015; Shamekh
et al. 2020a). Mechanism denial experiments and the MSE budget have been em-
ployed to investigate this feedback. In the early stages, the LW radiation feedback
with clouds is the key driver of SA, but gradually the LW-water vapor feedback be-
comes significant as a dry patch emerges where convection is suppressed, leading to
a considerable increase in radiative cooling. This cooling process induces a shallow
circulation that can further promote the organization of convection (e.g., Yang 2019).
The circulation driven by radiative cooling involves low-level clouds in dry regions
transporting MSE upgradient through subsidence and advection from the surface
of dry areas to the moist convective zones, enhancing the clustering of convection
(Coppin and Bony, 2015; Holloway and Woolnough, 2016). Another outcome of the
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LW radiation feedback is the diabatic effect, causing a decrease in MSE in dry re-
gions (due to cooling) and an increase in moist regions (e.g., Yao et al. 2022). The
shallow circulation and the reinforcement of the MSE gradient create a strong posi-
tive feedback, favoring clustering (Shamekh et al., 2020a).

Unlike surface latent heat flux feedback, LW radiation represents a positive feed-
back throughout the entire simulation (Wing and Emanuel, 2014). The radiative
cooling rates are nevertheless sensitive to the choice of radiation and microphysics
schemes (Wing and Cronin, 2016). This sensitivity implies that SA can be influenced
by various aspects of the parameterizations employed in models, as demonstrated
by Tompkins and Semie (2017) and Cerlini et al. (2023) concerning, for example,
sub-grid scale mixing.

Shortwave Radiation

SW radiation, unlike LW radiation, appears to play a secondary role in the aggrega-
tion of convection. Some authors (e.g., Muller and Held 2012; Holloway and Wool-
nough 2016) have suggested that SW radiation may have a negative (albeit weak)
feedback on aggregation due to down-gradient transport of MSE induced by heat-
ing anomalies driven by deep clouds. Conversely, SW radiation exhibits positive
feedback resulting from its diabatic effect and the reduction of SW radiative cooling
in clear sky dry regions (Wing and Cronin, 2016). This positive feedback in the dry
regions is due to MSE transport, but in the moist regions, it can counteract aggrega-
tion due to the effects of deep convection on the upper troposphere. It is important
to note that this feedback is not crucial for the occurrence of clustering. The im-
pact of SW radiation feedbacks is stronger in simulations using a reactive slab ocean
as a lower boundary condition, rather than spatially fixed SSTs, which is discussed
below.

Advective Processes

There is no consensus in the literature regarding the feedback generated by advec-
tive processes. Questions persist about whether these processes can induce SA or if
they work to sustain and amplify it. Several authors have tackled these questions,
identifying two crucial elements in this feedback: a shallow circulation resulting
from radiative cooling at the tops of low clouds in dry regions, and changes in MSE
variance due to advective processes.

In the first process, the shallow circulation is an indirect effect of radiation. Low-
level clouds in dry regions create radiative cooling at their tops, leading to the trans-
port of MSE from dry to moist regions, promoting convection clusters (Muller and
Held, 2012; Coppin and Bony, 2015; Muller and Bony, 2015). In the second process,
Wing and Emanuel (2014) found that the feedback is positive after aggregation oc-
curs but negative during its initiation. These findings are complemented by Wing
and Cronin (2016), who used MSE variance to show that, when convection clus-
ters, MSE is exported from moist to dry regions (negative feedback). However, even
in cases where MSE variance produce a negative feedback, a shallow circulation
can still enhance convection (Coppin and Bony, 2015). Further insights from Hol-
loway and Woolnough (2016) indicate that this shallow circulation is balanced by
other advection terms, suggesting it is produced and enhanced by horizontal heat-
ing anomalies due to convection rather than radiative cooling. On the other hand,
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Yanase et al. (2020) suggest that advective processes, such as those produced by CPs,
may prevent clustering, by acting as a negative feedback.

Water Vapor

Moisture feedbacks are as crucial as radiation feedback in influencing SA. In the ab-
sence of radiation feedback, moisture alone can initiate and sustain SA (Craig and
Mack, 2013; Coppin and Bony, 2015). Moisture exhibits positive feedback with ag-
gregation, as increased moisture stimulates more convection (Sherwood et al., 2010),
and convection produces more moisture in its vicinity, creating a feedback. Tomp-
kins (2001c) highlights that water vapor plays a vital role in determining convection
locations, with a dry atmosphere strongly impeding convection due to convective
inhibition (CIN) and a moist atmosphere favoring convection due to the convec-
tive available potential energy (CAPE). Additionally, convection tends to occur over
warmer SSTs and is suppressed over colder SSTs because the air above colder SSTs
dries out due to subsidence countering convection. Altering the positions of hot and
cold spots does not immediately initiate convection; instead, it triggers an advective
moisture process that subsequently leads to convection, emphasizing the vital role
of water vapor in convective aggregation.

This crucial feedback mechanism is still not entirely understood, and studies uti-
lizing sensitivity and denial experiments have sought to unveil the underlying phys-
ical processes governing this water vapor feedback. For instance, increasing precip-
itation efficiency enhances convection by boosting instability in the free troposphere
(Emanuel et al., 2014). Another key mechanism is that, in a moist environment,
an ascending parcel will lose less buoyancy on entrainment mixing as a result of re-
duced evaporative cooling (Tompkins, 2001c; Mapes and Neale, 2011; Holloway and
Woolnough, 2016; Wing et al., 2017; Yang, 2019). The presence of CPs is also integral
to the water vapor feedback, as they redistribute humidity. In their absence, aggre-
gation is favored (Muller and Held, 2012; Jeevanjee and Romps, 2013; Muller and
Bony, 2015), as moist regions continuously receive moisture due to reduced mixing
of dry and moist air, and the evaporative cooling circulation that disfavors aggrega-
tion (Yanase et al., 2020) would not develop. While CP sensitivity has been explored
by various authors through the removal of rain evaporation, resulting in strong clus-
tering even without radiative feedbacks, changes in rain evaporation could affect
convective heating (Yang, 2018), convective downdrafts, and surface fluxes, all cru-
cial for organization (Holloway and Woolnough, 2016; Holloway, 2017). This implies
that further research is necessary to comprehend the role of CPs in the development
of aggregation.

Sea Surface Temperature

Convection can occur across a broad spectrum of SSTs, ranging from snowball Earth
temperatures (Abbot, 2014) to scenarios with an SST of 310 K (Wing and Emanuel
2014; Wing and Cronin 2016). Wing and Emanuel (2014) determined that aggrega-
tion does not manifest at temperatures below 300 K but can occur at temperatures
as high as 310 K. However, this conclusion was drawn from research employing
a fixed SST, necessitating further investigation into this threshold. Other studies
have replaced the fixed SST with an interactive slab ocean to disentangle the char-
acteristics and feedback of convective SA with SST variations. Initial slab ocean
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experiments (Tompkins, 2001a,c; Bretherton et al., 2005; Reed et al., 2015; Hoheneg-
ger and Stevens, 2016a) found that convection clustering onset occurs later in slab
oceans compared to fixed SSTs. This delay may arise from different processes in the
boundary layer that decelerate the clustering of convection without preventing its
occurrence (Tompkins and Semie, 2021).

Shamekh et al. (2020b) demonstrated that organization is responsive to SST hotspots.
They introduced a hotspot at the center of the domain, leading to the clustering of
convection in that area due to convergence. Further work of Shamekh et al. (2020a)
revealed that in an interactive slab ocean, dry patches emerge and are subsequently
strengthened by a positive surface pressure anomaly associated with a negative
moist anomaly, induced by radiative cooling from subsidence. To establish this, the
authors decomposed buoyancy components into temperature and humidity, illus-
trating that as the dry patches initiate, the negative moisture anomaly surpasses the
positive temperature anomaly and sustains the growth of the dry patch due to its
close correlation with surface pressure—an insight previously alluded to by Yang
(2018) and corroborated by Yao et al. (2022) using the MSE framework.

Another approach to investigate the relationship between SST and convective
organization, particularly the aggregation onset, was undertaken by Tompkins and
Semie (2021). They employed an ensemble of simulations employing an adaptive
Q-flux method designed to prevent any drift in domain-mean temperatures while
enabling the surface to respond to diurnal forcing. They utilized an interactive slab
ocean model that simulates a vertically uniform temperature with a fixed mixed
layer depth, allowing the SST to depend on LH and SH fluxes, as well as radiative
fluxes.

They concluded that an interactive ocean delays the onset of organization, and
this delay varies according to the ocean layer depth, with smaller ocean depths re-
sulting in larger clustering delays. They also observed that higher temperature gra-
dients between the cloudy and clear sky regions affect the MSE and buoyancy gradi-
ents due to LH and SH fluxes, determining the location of convective triggering and
clusters. While the LH flux acts as a negative feedback for convective clustering, it
is not sufficient to prevent it. An important aspect of Tompkins and Semie (2021)’s
research is the demonstration of the relationship between SST anomalies and total
column water vapor (TCWV), which open avenues for interesting studies seeking
organization in observations, as explored further in Chapters 4 and 5.

1.3.2 RCEMIP

The RCEMIP protocol is described by Wing et al. (2018). The project consists of a
set of multiple simulations from different models with consistent configurations to
assess their similarities and further understand SA and its consequences for climate.
The idea is to perform simulations in different domains (i.e., long channels, large
squares, and small squares). The small domains are used as a control since SA is not
expected to develop there (Muller and Held, 2012; Yanase et al., 2020; Biagioli and
Tompkins, 2023a). To include climate change scenarios and understand how aggre-
gation could be a part of the climate sensitivity, the protocol contemplates different
SST temperatures (the models are run with a constant SST).
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According to Wing et al. (2020), models align on several SA aspects. As clus-
ters form, the troposphere tends to become drier and warmer, tightly linked to the
hydrological cycle. Another consensus emerges around the rise in OLR with in-
creased clustering, indicating heightened climate sensitivity, since more energy is
escaping the earth. Regarding clouds, models agree that when aggregation devel-
ops, the anvils height ascent and their temperature increases. Models also suggest
that higher SST expedite this increase, especially during the clustering phase. Anvil
cloud fraction tends to decrease with warming and aggregation, although around
30% of the models lack consensus on this aspect. However, models indicate mini-
mal to negligible changes in mid-level and low-level cloud fractions.

Following the delineation of areas where models align regarding aggregation, it
is crucial to address discrepancies, as they bear significance for this thesis. A pri-
mary source of disparity lies in the choice of aggregation metrics, where varying
results emerge depending on the metric employed (Wing, 2019). Even within a sin-
gle model, metrics may yield conflicting indications of clustering and randomness,
posing a challenge in diagnosing the impact of convection (Biagioli and Tompkins,
2023b). This issue assumes particular importance when characterizing changes in
clustering with warming, as no consistent patterns emerge. The spread in outcomes
cannot be attributed solely to metric choices; it also stems from the fact that half of
the models exhibit increased aggregation with warming, while the remaining mod-
els demonstrate a decline (Wing et al., 2020). These findings underscore two critical
challenges: the need for improved methods to quantify aggregation and the real-
ization that, even within a consistent and sufficiently large setup conducive to de-
velop clusters (e.g., Muller and Held 2012, Yanase et al. 2020), aggregation could not
develop. This suggests sensitivity to factors such as parameterizations, as demon-
strated by earlier studies (e.g., Wing and Cronin 2016; Tompkins and Semie 2017; Shi
and Fan 2021; Huang and Wu 2022) highlighting the capacity of certain parameters
to modify clustering characteristics.

In the realm of climate sensitivity, the RCEMIP project has unveiled crucial in-
sights. Becker and Wing (2020) demonstrated that climate sensitivity is markedly
influenced by changes in convective clustering with warming. The capacity of ag-
gregation to either increase or decrease with warming stands as a vital factor in
determining climate feedback. The study also reveal that lower climate sensitivities
often coincide with an upswing in shallow cloud fraction. These two factors account
for 70% to 80% of the spread in model climate sensitivity. Emphasizing the need
for precise representation of SA and shallow convection in parameterizations is cru-
cial for more accurate climate sensitivity estimations. Moreover, Becker and Wing
(2020) underscored the significance of the moisture memory feedback, particularly
in future climate scenarios marked by a saturation deficit. This underscores the im-
perative of ensuring that parameterizations can faithfully reproduce this feedback.
The Becker and Wing (2020) study highlighted that parameterizations, especially in
their treatment of radiation, clouds, and moisture, may wield a crucial influence on
the emergence and persistence of SA, something we expand upon in Chapter 3.

1.3.3 Organization in Observations

Convective SA, observed in Cloud Resolving Models (CRMs), is crucial for explain-
ing various convective structures like tropical cyclones or the Madden-Julian Oscilla-
tion (MJO). For this, one question arises: does this phenomenon occur in real-world
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observations or is it just a model artifact? Despite efforts to identify convective orga-
nization, studying organization at mesoscales in observational data has been limited
(Holloway et al., 2017), with mostly previous work focusing on larger scale convec-
tively coupled waves, such as Rossby and Kelvin waves as well as other forms of
convective organization such as the MJO, tropical cyclones and even the Hadley and
Walker circulations. Some of these larger scale forms of organization are clearly vis-
ible in Figure 1.2, which displays a visible Earth image, revealing diverse convective
organization types. This visual evidence suggests convective organization occurs in
different natural systems over different spatial scales.

Concerning convective organization, Tobin et al. (2012) and Tobin et al. (2013) ob-
served that the number of clusters in a domain influences domain-wide properties,
such as larger OLR and reduced humidity with fewer cores, akin to CRMs. They
also noted discrepancies between organization in models and observations. In ide-
alized models, surface fluxes were larger outside convection, a pattern not distinctly
observed in real-world data. Tobin et al. (2012) reported increased surface fluxes in
both convective and non-convective regions, while Tobin et al. (2013) found no sen-
sitivity of surface fluxes to organization at smaller scales.

From the work of Tobin et al. (2012, 2013), numerous studies have endeavored to
quantify convective organization in the atmosphere (Holloway et al., 2017; Beucler
et al., 2019). Tobin et al. (2012, 2013) introduced the simple convective aggregation
index (SCAI), incorporating parameters such as the number and distance between
clusters. While subsequent research has refined and expanded on these indices (see,
Coppin and Bony 2015; Wing and Cronin 2016; Tompkins and Semie 2017; White
et al. 2018; Popp and Bony 2019; Retsch et al. 2020; Hohenegger and Jakob 2020;
Beucler et al. 2020; Brune et al. 2021, among others), it has become evident that the
degree of organization is contingent upon the specific index employed (Wing, 2019;
Pscheidt et al., 2019; Biagioli and Tompkins, 2023b). This underscores the impor-
tance of exploring novel indices and methodologies to quantify organization, par-
ticularly in the natural environment where understanding atmospheric phenomena
on a large scale is crucial.

Following the comprehensive review by Holloway et al. (2017), a substantial
body of literature has focused into quantifying and examining convective organi-
zation and their implications for the radiation budget and the hydrological cycle.
Convective organization can impact the hydrological cycle by inducing atmospheric
drying (Hohenegger and Jakob, 2020). Moreover, it influences extreme precipita-
tion events (Semie and Bony, 2020; Pendergrass, 2020; Bläckberg and Singh, 2022;
Angulo-Umana and Kim, 2023) and the broadening of rain belts (Popp and Bony,
2019). The work of Vogel et al. (2022) suggested that SA feedbacks have the po-
tential to produce a net moisture convergence, which would help explain correla-
tions between vertical velocity and relative humidity that are critical for compre-
hending the trade cumulus feedback. In observational studies of organization and
its consequences, Semie and Bony (2020) and Angulo-Umana and Kim (2023) em-
ployed the organization index (Iorg) from Tompkins and Semie (2017). Utilizing the
fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis (ERA5) product (Hersbach et al., 2020), Angulo-Umana and Kim (2023)
revealed that strong clustering leads to more intense precipitation events due to an
increase in convective precipitation rate. This underscores the significance of accu-
rately representing organization in parameterized models used for climate change
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FIGURE 1.2: Visible satellite image of convective organization in long,
medium, and large scales. Available in Holloway et al. (2017) and in

http://www.sat.dundee.ac.uk/

simulations.

Furthermore, Semie and Bony (2020) discovered that organized convection re-
sults in more intense extreme precipitation, both over the ocean and land. The
most intense precipitation occurs over land, and also over warm SST regions, with
a stronger organization corresponding to increased local precipitation. This empha-
sizes the importance of accurate representation of convective organization not only
over the ocean but also over land (Hohenegger and Stevens, 2018a). Further, Pen-
dergrass (2020) not only establishes a correlation between extreme precipitation like-
lihood and the degree of organization but also notes that mean precipitation could
increase with more clustered convection. Underscoring the need for a better under-
standing of the mechanisms driving this relationship, as it holds crucial implications
for climate change adaptation policies.

Continuing with precipitation-related investigations, Popp and Bony (2019) demon-
strated that increased zonal clustering of convection at the equator leads to a merid-
ional widening of the tropical rain belt. The study indicated that this meridional shift
in the rain belt is entirely attributable to the zonal organization of convection. Fur-
thermore, the authors observed a broadening of the Intertropical Convergence Zone
(ITCZ) when convection exhibits greater zonal organization, signifying a conver-
gence of substantial moisture into convective regions and, likely, a drier subtropical
zone. In alignment with this, Beucler et al. (2020), utilizing the moist margin index,
and Hohenegger and Jakob (2020), employing a convergence lines index, demon-
strate that enhanced organization of the Atlantic ITCZ results in increased tropical
moisture and drier subtropics—a phenomenon extensively observed in idealized
models that manifest convective self-aggregation (Müller and Hohenegger, 2020b).

The influence of convective organization on humidity has notable implications,
as drier atmospheres are less opaque (Galewsky et al., 2023), leading to an antic-
ipated increase in LW clear-sky radiation. Thus LW all-sky radiation should also
be influenced by the degree of organization. Investigating these radiative changes,
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Bony et al. (2020) found that convection exhibits organization in observations and
plays a crucial role in the radiation budget of the large-scale tropics. Their study
revealed that convective organization, in conjunction with lower-tropospheric sta-
bility, accounts for over 60% of the variance in the net radiative budget of the entire
tropics. Consequently, comprehending the mechanisms governing convective or-
ganization becomes essential, particularly as it raises concerns about how this phe-
nomenon might evolve in warmer climates and the potential consequences thereof.
In light of this, questions arise concerning whether the sensitivity of humidity and
the radiative budget to organization remains consistent at the grid-box scales of
GCMs, and if the mechanisms orchestrating convection at these scales mirror those
observed in CRMs.

A relatively recent and under explored approach involves utilizing realistic sim-
ulations to unravel the mechanisms behind convective organization and its impact
on the domain mean. Notably, Brune et al. (2018) employed realistic high-resolution
simulations to develop an index based on wavelets, enabling the quantification of
convective organization and its dynamical properties such as CAPE and wind shear.
Through observations and new realistic simulations in the tropical Atlantic, Brune
et al. (2020) demonstrated the association between organization, wind shear, and
CAPE, revealing that precipitation intensity correlates with TCWV, upper-level di-
vergence, and maximum vertical wind speed. Similarly, Pscheidt et al. (2019) uti-
lized realistic simulations to showcase the model’s capability in measuring the de-
gree of organization and capturing certain organizational aspects, such as the corre-
lation between the number of convective objects and precipitable water, consistent
with Tobin et al. (2012).

The studies aforementioned, focused on examining the properties of organized
events rather than diving into the mechanisms that drive organization and com-
paring them with idealized studies. Holloway (2017) took a different approach by
investigating the similarities between idealized simulations and realistic simulations
for 15 organized cases, using an MSE budget. Conducting sensitivity experiments
that altered factors such as rain evaporation, surface fluxes, and radiation feedback
without changing the boundary conditions, he sought to quantify whether the mech-
anisms leading to organization in idealized simulations were applicable in more
realistic settings. The findings indicated the significance of radiation feedback for
organization to develop, with a decrease in organization observed when the radia-
tive feedback was turned off, aligning with results from idealized simulations. The
forcings showed positive radiative feedbacks and negative surface fluxes feedback,
consistent with idealized studies. This approach not only explores the common-
alities between organization in idealized and realistic scenarios but also quantifies
potential differences between them.

1.4 Questions to be answered

Here, we outline the key questions that this project seeks to address, providing intro-
ductory context for each. It’s worth noting that these questions may lead to further
inquiries, which, while not explicitly outlined here, will be explored within their
respective chapters.
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1.4.1 Question 1: What is the sensitivity of self-aggregation to the model
subgrid-scale parameterizations?

As discussed in section 1.3.2, convective SA does not consistently occur in domains
of the same size, indicating the presence of other influencing factors that require
investigation. Wing and Cronin (2016), Tompkins and Semie (2017), and Shi and
Fan (2021) demonstrated that the choice of radiative scheme, sub-grid scale mix-
ing, and microphysics scheme significantly impacts the degree of organization in
simulations. The sensitivity of convection to these parameters can lead to either
highly clustered or randomly distributed patterns. Considering these observations
and the insights from RCEMIP, Becker and Wing (2020) emphasized the necessity of
a detailed physical examination to comprehend the substantial variations observed
across different models. However, the investigation of the sensitivity of SA to pa-
rameterization schemes is still relatively underexplored.

This is why Question 1 of this thesis revolves around this topic. The objective is
to conduct a series of experiments aimed at comprehending the underlying mecha-
nisms that either promote or hinder SA and how these are impacted by model pa-
rameterization choices. Chapter 2 will first introduce the model used for these exper-
iments and relevant parameterization schemes investigated. Subsequently, Chapter
3 will present an analysis of idealized RCE simulations to identify the most impor-
tant parameters influencing SA. The simulations will encompass various combina-
tions of microphysical schemes, sub-grid scale mixing, and PBL. This comprehensive
set of experiments aims to unravel the distinct roles of these parameters in SA. The
analysis will show that model disparities are linked to the influence of parameter-
izations on the number of convective cores and maximum free convective distance
(Biagioli and Tompkins, 2023a).

1.4.2 Seeking organization in observations and realistic model simula-
tions

This work endeavors to discern patterns of convective organization in observations
and understand their defining characteristics. In this section, we present the two
questions that encapsulate our inquiry and underscore their significance.

• Question 2: Can we find convective organization in a GCM grid-box sized do-
main? And if so, what are its impact on the hydrological and radiative budget?

As detailed in Section 1.3.3, numerous endeavors have been devoted to quanti-
fying the spontaneous organization of convection in nature. Many of these efforts
utilize various indices, such as the number of convective clusters, providing initial
glimpses into the presence of organization in nature. However, further work is es-
sential to refine the quantification of organization and investigate the relevance of
the same forcings observed in CRMs to real atmospheric conditions. The challenge
in spatially defining indexes arises from the absence of cloud core measurements (Bi-
agioli and Tompkins, 2023b). Holloway et al. (2017) reports that other ways to seek
for organization in nature could be to search for some of its characteristics (e.g., wa-
ter vapor variance). In Chapter 4, we expand on this notion by exploring organiza-
tion through the SST-TCWV relationship in the Pacific Warm Pool, since in idealized
models with an interactive slab ocean, convective clusters align with the warmest
SSTs in the moistest regions of the domain (Tompkins and Semie, 2021). Conversely,
when this relationship is inverted, leading to the warmest SSTs in the driest domain
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zones, convection assumes a random configuration. With this relationship we could
explore the mechanims and feedbacks that lead to organization, and quantify the
impact of clustering convection in the domain humidity and radiative budget.

• Question 3: Can realistic simulations help to understand the mechanisms that
organize or disorganize convection in a mesoscale sized domain??

In addressing Question 2, we will show that organization occurs in nature and
yields significant consequences for domain mean properties. Revealing that diabatic
forcings alone are not always sufficient to induce convective clustering, particularly
in boreal summer/autumn and intermittently in boreal winter/spring. In Chapter 5,
we dive into both scenarios—organized/random in boreal winter/spring and ran-
dom in boreal summer/autumn—to enhance our comprehension of the character-
istics fostering organization and those impeding it. Our focus extends to events ca-
pable of disrupting convection clusters, as these instances may constitute a missing
element in convective parameterizations. Leveraging on realistic CRM simulations
and sensitivity experiments (Holloway, 2017), involving modifications to bound-
ary conditions and Machine Learning (ML) experiments we aim to understand the
mechanisms that drive clustered and random convection, and also the ones that lead
to the disbanded of convection clusters.

Each of the three questions delineated here corresponds to a distinct article in
preparation for publication. Consequently, the related chapters are self-contained
and can be understood independently. Subsequently, a concluding chapter summa-
rizes the thesis and provides concluding remarks, shedding light on the addressed
aspects and introducing new questions emerging from our findings. Additionally,
Appendix D offers a concise summary of additional publications produced during
the Ph.D., elucidating their connection to the methods developed in the thesis along
with respective citations.
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Chapter 2

Model description

This section will describe the model’s main characteristics, such as the governing
equations. We also detail some of the related parameterization schemes used to
perform the simulations and report the model’s important technical features.

2.1 Governing equations

The Weather Research Forecast (WRF) model version 4.2.2 (Skamarock et al., 2019)
is used as a cloud resolving model (CRM) both in an idealized and realistic exper-
imental setups. The model has a dynamical core that numerically integrates the
non-hydrostatic, compressible Euler equations in their flux form. Euler equations
have been generalized based on the vertical coordinate to account for terrain per-
turbations. To generalize the vertical coordinate, the WRF model follows the hybrid
sigma-pressure vertical coordinate, as described in Park et al. (2013), which gives the
equation (2.1).

pd = B(η)(ps − pt) + [η − B(η)](p0 − pt) + pt (2.1)

Where η = (pd− pt)(ps− pt)−1 and represents the terrain-following hybrid sigma-
pressure vertical coordinate. pd is the dry hydrostatic pressure, ps and pt correspond
to the values of pd in the surface and in the top boundary, respectively. p0 is the
sea-level reference pressure and B(η) is the relative weighting between the terrain
following the sigma coordinate and the pressure coordinate and have the form of
equation (2.2)

B(η) = c1 + c2η + c3η2 + c4η3 (2.2)

In which the values of c depend on pure pressure values of η. This is a new fea-
ture in the WRF model, that provides a better simulation results, especially when
there is land or different topography features in the domain, as seen in Figure 2.1b
of Skamarock et al. (2019).

To define the Euler equations in flux form it is necessary to account not only for
the vertical coordinate but also for the vertical coordinate metric (µd, equation 2.6 in
Skamarock et al. 2019), the wind flux, the potential temperature flux and the mixing
ratio of the moisture variables. Variables that are described in equation (2.3)

V = µdv = (U, V, W); Ω = µdω; Θm = µdθm; Qm = µdqm (2.3)

Where v = (u, v, w) are the covariant velocities of the wind, ω is the contravari-
ant vertical velocity, Θm is the moist potential temperature, and Qm represents the
mixing ratios of each moist variable (e.g. ice, liquid water condensate, water vapor).



16 Chapter 2. Model description

The geopotential (φ = gz) is also a prognostic variable, but is not described here
since it is not a conserved quantity (Skamarock et al., 2019).

Using the vertical coordinate, the wind, and potential temperature in flux form,
we can express the governing Euler equations as from equations (2.4) to (2.10). We
can also express the diagnostic equation of dry hydrostatic pressure (equation 2.11)
and the diagnostic equation for the total atmospheric pressure (equation 2.12).

FU =
∂U
∂t

+ (∇ ·Vu) + µdα
∂p
∂x

+ αρd
∂p
∂η

∂φ

∂x
(2.4)

FV =
∂V
∂t

+ (∇ ·Vv) + µdα
∂p
∂y

+ αρd
∂p
∂η

∂φ

∂y
(2.5)

FW =
∂W
∂t

+ (∇ ·Vw)− g[αρd
∂p
∂η
− µd] (2.6)

Fθm =
∂Θm

∂t
+ (∇ ·Vθm) (2.7)

∂µd

∂t
+ (∇ ·V) = 0 (2.8)

∂φ

∂t
+ µ−1

d [(V · ∇φ)− gW] = 0 (2.9)

FQm =
∂Qm

∂t
+ (∇ ·Vqm) (2.10)

∂φ

∂t
= −αdµd (2.11)

p = p0(
Rdθm

p0αd
)γ (2.12)

In these equations, g is the gravitational force, αd is the specific volume of dry
air, and α is the inverse of the density accounting for the moist and the dry air.
γ = CpC−1

v is the heat capacity ratio of the dry air, ρd is the density of dry air, and Rd
is the dry air constant. The forcing terms of the model are FU , FV , FW , Fθm , FQm and
appear due to the model physics (e.g. cloud microphysics, turbulence). For specific
details about these equations and the way to solve them numerically consult Ska-
marock et al. (2019).

2.2 WRF Technical features

WRF model uses the Third-order Runge-Kutta (RK3) and the high-frequency acous-
tic modes to integrate the Euler equations in time and prevent numerical instabilities
(Wicker and Skamarock, 2002). To implement this integration, the model uses the
Arakawa C-grid staggering for every variable and the changes made in the spatial
grid (∆x and ∆y) resolution that accounts for the sphere projections and the verti-
cal levels. The time step reported in equation (2.13) depends on the Courant number
and also on the choice of the advection scheme since higher-order advection schemes
require smaller time steps.
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∆tmax <
Crtheory√

3
∆x

umax
(2.13)

In which ∆tmax is the largest time step that can be selected without numerical
instabilities, Crtheory is the Courant number taking from theory (Wicker and Ska-
marock, 2002) and umax is the maximum velocity expected in the simulation (Ska-
marock et al., 2019). It is important to mention that for convective permitting reso-
lutions it is better to reduce the time step even more (≈ 25%) to prevent instabilities
since the updraft velocities can produce errors in the numerical integration.

The WRF model has 6 different advection order schemes. For the even-order
(2nd, 4th and 6th) advection schemes, operators are centered spatially and do not take
into account any implicit diffusivity apart from the one that the RK3 integration
has. Conversely, odd-order (3rd and 5th) advection schemes are upwind-biased and
their discretization is naturally diffusive, which means that the odd-order advection
terms are equivalent to the next-order even-order scheme but with a dissipation term
of this even-order scheme and a constant similar to the Courant number (Wicker
and Skamarock, 2002). In this research, we use the 5th order advection scheme for
the horizontal scalar and momentum fields and the 3rd order scheme for the vertical
scalar and momentum fields as recommended by Skamarock et al. (2019). Another
important feature is the Rayleigh damping that is used to remove or smooth the
vertically propagated gravity waves (Klemp et al., 2008; Skamarock et al., 2019) to
prevent nonphysical wave reflections in the upper boundaries of the domain.

2.3 Parameterizations

2.3.1 Radiation schemes

The Rapid Radiative Transfer Model for General Circulation Models (RRTMG) scheme,
utilized in all conducted runs, represents an enhancement by Iacono et al. (2008) over
the previous scheme developed by Mlawer et al. (1997). Employing a k-distribution
integration method and gas spectral bands tables, RRTMG represents both LW and
SW radiation transfer associated with different gases and accounting for clouds. The
scheme assumes a cloud particle effective radii that is consistent with the micro-
physics scheme. A significant refinement involves addressing uncertainties in the
top of the atmosphere (TOA) downward LW flux produced above the model top.
The RRTMG scheme has undergone rigorous testing and is widely regarded as one
of the most precise in the field (Iacono et al., 2008).

2.3.2 Surface Layer schemes

These surface layer schemes govern the friction velocities and exchange coefficients
crucial for computing moisture and surface heat fluxes from both land-ocean and
boundary layer surfaces. In scenarios featuring an exclusive ocean surface, the
surface layer scheme independently computes surface fields, differing from land
surfaces where the scheme serves as input for moisture and heat flux calculations.
All schemes adhere to the Monin-Obukhov similarity theory (Monin and Obukhov,
1954), incorporating variations in stability functions to determine surface exchange
coefficients for momentum, moisture, and heat, as detailed in equations (2.14) and
(2.15) (e.g., Paulson 1970; Webb 1970; Dyer and Hicks 1970).
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φM(zL−1) = kvzu−1
∗

∂u
∂z

(2.14)

φH(zL−1) = kvzθ−1
v∗

∂θv

∂z
(2.15)

Here, φM and φH are the momentum and turbulent heat flux similarity functions,
respectively. L is the Monin-Obukhov length scale, kv is the Von Karman constant,
u∗ is the friction velocity, θv∗ is the scaling temperature and θv is the potential tem-
perature. The similarity functions depend on the bulk Richardson number (Rbulk)
which describes the turbulent state of the atmosphere as in equation (2.16).

(zaL−1) = Rbulk(1− 5Rbulk)
−1 ln(

za

z0
) (2.16)

Where za and z0 are the vertical coordinate inside the boundary layer and in the
ground, respectively. On the other hand, the eddy diffusivity exchange coefficients
for momentum (KM) and heat fluxes (KH) are define in equations (2.17) and (2.18)
(Monin and Obukhov, 1954).

KM =
kvzu∗

φM(zL−1)
(2.17)

KH =
kvzu∗

φH(zL−1)
(2.18)

Where KM and KH are related to the turbulent Prandtl number (Prt), as show in
equation (2.19) (Monin and Obukhov, 1954).

KH

KM
=

1
Prt

> 1 (2.19)

2.3.3 Sub-Grid Scale Mixing schemes

General Description

GCM models that are not run in the large eddy simulation setup have to use tur-
bulence parameterizations to account for the subgrid atmospheric mixing caused by
eddy diffusion processes. For this, the schemes try to represent the turbulent mixing
assuming that an adiabatically conserved quantity (θ f ) turbulent flux is related to
its own gradient as shown in equation (2.20). Note that the important factor in the
turbulence flow is related to the vertical component of the momentum equations as
described by many authors (e.g. Holton 2004)

w′θ′f = −kd
dθ f

dz
(2.20)

Here, w′θ′f is the vertical flux, kd is the eddy diffusion coefficient and θ f is the
horizontal turbulent mean of the advected items.

We have selected three widely used sub-grid scale schemes, consistent with the
ones detailed by Tompkins and Semie (2017): Smagorinsky-2D (Smag2), Smagorinsky-
3D (Smag3) (Smagorinsky, 1963), and the Turbulent Kinetic Energy (TKE) scheme
(Skamarock et al., 2019). Smag2 exclusively operates horizontally, addressing tur-
bulent kinetic energy generated from horizontal shear, with vertical mixing handled
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by the PBL scheme. On the other hand, Smag3 calculates mixing using both full
3D wind shear and static stability, allowing it to represent also vertical mixing, and
function independently of a PBL scheme if necessary, although mixing is only lo-
cal. The TKE scheme (Skamarock et al., 2019) employs a 1.5 closure for horizontal
and vertical mixing. Its prognostic equation encompasses essential elements such as
shear production, buoyancy, transports, and dissipation terms. These schemes have
exhibited divergent outcomes in previous studies, reflecting variations in entrain-
ment and horizontal mixing magnitudes Tompkins and Semie (2017). To capture
this variability, we incorporate them into our study with different PBL and micro-
physical schemes. The subsequent sections provide succinct explanations for each
of these three schemes.

Smagorinsky 2D

The Smag2 scheme calculates the horizontal eddy viscosity coefficient (Kh). In Ska-
marock et al. (2019), they defined Kh as in equation (2.21). Notice that the scheme
only treats the shear generation of horizontal winds which means that the vertical
mixing is done by the PBL scheme.

Kh = C2
s I2

h [0.25(D11 − D22)
2 + D12

xy
]0.5 (2.21)

where 0.25(D11 − D22)2 is the tension term and D12
xy represents the shear strain

deformation, as explained in detail by Smagorinsky (1963). Cs is a constant rep-
resenting the efficiency of eddy transportation. On the other hand, Ih = (∆x∆y)0.5

depends on the horizontal grid size and is the horizontal eddy viscosity length scale.
D represents the wind deformation, in which D11 = 2 du

dx , D22 = 2 dv
dy , D12 = du

dy + dv
dx

being average over x and y grid points.

Smagorinsky 3D

The Smag3 is a generalization of the 2D scheme (Skamarock et al., 2019) described
by Smagorinsky (1963). This 3D scheme used the wind shear and the static stabil-
ity to specify the values of the eddy diffusion coefficient (Kh,v following Skamarock
et al. (2019) notation) in both the horizontal and vertical resolutions. The scheme
calculates the eddy mixing as presented in equation (2.22)

Kh,v = C2
s I2

h,vmax[0, (D2 − N2P−1
r )0.5] (2.22)

Where Ih,v is the horizontal and vertical eddy mixing length scale that can be cal-
culated with an anisotropic or isotropic option, depending on the grid size. N is the
Brunt-Vaisala frequency, Pr accounts for the Prandtl number, and D2 is represented
in equation (2.23).

D2 =
1
2
[D2

11 + D2
22 + D2

33] + (D12
xy
)2 + (D13

xη
)2 + (D23

yη
)2 (2.23)

In which D11, D12, D22 are described in Smag2, D33 = 0.5 dw
dx , D13 = dw

dx and
D23 = dw

dy . Note that the D13 and D23 are averaged in x and η and y and η grid
points, respectively. It is important to reckon that in our experiments ∆z << ∆x, ∆y,
so the turbulence is anisotropic and yields that Ih = (∆x∆y)0.5 and Iv = ∆z.
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Turbulent Kinetic Energy

The TKE [e = 0.5(u
′2 + v

′2 +w
′2)] 1.5 closure calculates the eddy viscosity coefficient

as shown in equation (2.24). Notice that as in the Smag3 scheme the TKE scheme
represents the horizontal and vertical mixing and in the anisotropic case the Ih is
also equal to the Smag3 scheme. On the other hand, Ck is a constant that typically is
chosen to be between 0.15 and 0.25.

Khv = Ck Ih,ve0.5 (2.24)

The prognostic equation depends on shear production (S in equation 2.25), buoy-
ancy (depicted as ρbuo, and defined in equation 2.26), and dissipation (Ddiss in equa-
tion 2.27). This means that the 3D wind shear vector (S) completely contributes to
mixing in addition to the vertical stability and knowing at each time-step the value
of e.

S = KhD2
11 + KhD2

22 + KvD2
33 + KhD2

12
xy
+ KvD2

13
xη

+ KvD2
23

yη
(2.25)

where the variables are already shown in the Smag2 and Smag3 in equations
(2.21) and (2.23).

ρbuo = −KvN2 (2.26)

where N2 is the Brunt-Vaisala frequency and the computation is shown in detail
by Skamarock et al. (2019).

Ddiss = −
[

1.9Ck +
max(0, 0.93− 1.9Ck)l

∆s

]
e

3
2

l
(2.27)

where ∆s = (∆x∆y∆z)
1
3 , and l = min(∆s, 0.76e0.5N−1), and Ck is the same as in

equation (2.24). It should be noted that although a 3D Smagorinski scheme could
be derived from the TKE scheme by assuming local equilibrium in the momentum
variance equations, this is not the case for the WRF implemented schemes due to
different varying constants and closure assumptions between the two approaches.
As the Smag3 is not the diagnostic equivalent equation of TKE, the domain and time
mean mixing from both schemes will differ (Tompkins and Semie, 2017).

2.3.4 Planetary Boundary Layer

The PBL schemes, designed to characterize vertical subgrid-scale fluxes generated
by eddy transport throughout the atmospheric column, operate in a one-dimensional
framework. These schemes ascertain fluxes within both the well-mixed bound-
ary layer and the stable layer, consequently influencing the evolution of moisture,
temperature, and horizontal momentum across the entire atmospheric column (Ska-
marock et al., 2019).

Yonsei University Scheme - YSU

The YSU scheme, an advancement of Hong and Pan (1996) and widely employed
in numerical simulations (Noh et al., 2003; Hu et al., 2010), stands out as a non-
local mixing model featuring counter-gradient flux terms in the boundary layer, as
outlined in equation (2.28). Notably, the scheme incorporates an explicit treatment of
the entrainment layer at the PBL top, a feature validated by Noh et al. (2003) in Large
Eddy Simulation (LES) runs. The explicit handling of the PBL top contributes to
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realistic moisture representation, distinguishing it from other PBL schemes (Potvin
et al., 2020). This, and the non-local mixing capability enables the YSU scheme to
better represent the PBL structure, while local vertical mixing is used throughout
the rest of the troposphere. The evolution of any prognostic scalar, C, is given by

∂C
∂t

=
∂

∂z
[Kc(

∂C
∂z
− γc)− (w′c′)h(zh−1)3] (2.28)

where Kc is the eddy diffusivity coefficient, γc is a correction to the local gra-
dient, (w′c′)h account for the flux in the inversion layer. h is the PBL height and
it is defined as the level of minimum flux at the inversion level, and the component
−(w′c′)h(zh−1)3 is the asymptotic entrainment flux term at the inversion layer which
is the explicit treatment component of the entrainment processes in the boundary
layer.

Bougeault-Lacarrere Scheme - BouLac

The BouLac PBL scheme (Bougeault and Lacarrere, 1989), derived from Therry and
Lacarrère (1989), is a 1.5-order local scheme that incorporates a prognostic TKE
equation (see equation 8 in their paper). This parameterization captures second-
order moments (w′X′) using an eddy coefficient approximation expressed as w′X′ =
−Kc

∂X
∂z , where X is substituted with either wind components or kinetic energy. The

scheme calculates upward and downward length scales for the PBL’s top and bot-
tom, selecting the one yielding the smallest scale. Known for its effectiveness in
modeling complex terrains and urban scenarios, the BouLac scheme demonstrates
precision in representing PBL height on such terrains (Segura et al., 2021). However,
local schemes like BouLac may struggle to adequately mix moisture within convec-
tive cores (Hu et al., 2010).

2.3.5 Microphysics scheme

Microphysics schemes in the WRF model handle the atmosphere’s water, cloud,
and precipitation processes. With a plethora of schemes to choose from, including
bulk, bin, and spectral (some with double-moment), these parameterizations vary
in their methods of calculating moisture variables and can classify moisture into
different classes based on ice and mixed-phase processes. The inclusion of mixed-
phase schemes becomes crucial in high-resolution simulations where updrafts are
resolved, accounting for interactions among water particles in different states and
facilitating the production of new substances like hail or graupel (Skamarock et al.,
2019).

WRF Single Moment 6-class Scheme - WSM6

The WSM6 microphysics scheme, built upon the foundations laid by Rutledge and
Hobbs (1983) and Dudhia (1989), incorporates ice processes from Lin et al. (1983)
with enhancements to the graupel class (Hong et al., 2004; Hong and Lim, 2006).
Further improvements by Dudhia et al. (2008) address the representation of mixed-
phase particle fall speeds for snow and graupel in sedimentation and accretion pro-
cesses. Comprising five hydro-meteor classes akin to the Lin et al. (1983) scheme,
WSM6 captures interaction processes among these hydrometeors.
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The model has a new way to represent the size distribution taking into account
three size habits (i.e. single column, a single bullet, and rosettes) as represented by
equation (2.29)

NI = c(ρrI)
d (2.29)

Where, NI is the number of ice (I) distribution, rI is the ice mixing ratio, c and
d are constants that depend on the ice habit and are described in Hong et al. (2004).
The terminal velocity is also modified taking into account the ice habits following
equation (2.30)

VI = aDb
I (2.30)

Here, VI is the terminal velocity of ice as in the previous scheme, and a and
b are the terminal velocity constants that in this case depend on the ice habit. In
addition, the scheme adds a special intercept parameter for snow, it also changes the
autoconversion of cloud water to rain and includes the sedimentation of all types of
ice crystals.

Goddard Cumulus Ensemble Scheme - GCE

The GCE scheme, conceived by Tao and Simpson (1993) and rooted in the work of
Lin et al. (1983) and Rutledge and Hobbs (1984), undergoes substantial modifica-
tions, particularly in ice representation by Tao et al. (2014) and Lang et al. (2014).
While maintaining the size distribution, slope, and terminal velocity equations of
the Lin et al. (1983) scheme, key alterations include adjustments to the intercept pa-
rameter N0x and terminal velocity constants a and b (refer to Table 3.1). The scheme
introduces several important changes, elucidated below:

• The addition of a 4th ice class

• A snow density mapping is included

• The scheme permits a greater ice supersaturation, improving the evaporation
and sublimation processes and allowing a more realistic change in the transi-
tion of graupel to snow

• Cloud ice terminal velocity changes that follow Hong et al. (2004)

• The contact nucleation and the saturation adjustment are improved

• Changes in the snow and graupel densities are shown in Table 3.1

The aforementioned changes produce more realistic reflectivities in the entire
troposphere, with a more realistic representation below the freezing level. The above
is due to the improvements in the hail, snow, and graupel processes (Lang et al.,
2014).

Thompson Scheme - Tho

The Thompson scheme (hereafter Tho) is a hybrid scheme based on Lin et al. (1983)
which uses single-moment to calculate cloud water, snow, and graupel, and double-
moment for rain and cloud ice, it also has important changes in the representation
of snow as describe in Thompson et al. (2008), and improved by Iverson et al. (2021).
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In addition, the scheme includes aerosols as initiation nuclei for droplets and ice
crystals (Thompson and Eidhammer, 2014), which improve the droplets and espe-
cially the ice representation of the clouds. Number and velocity are modelled with
equations (2.31) and (2.32).

Nx(D) = N0xDµ
x exp(−λxDx) (2.31)

VDx = aDb
xexp(− fxDx)(

ρ

ρ0
)0.5 (2.32)

Where, µ represents the shape parameter, and fx is a constant, these two vari-
ables depend on the hydro-meteor class. The snow class for this scheme has major
changes, two of the more important ones being: they are not assumed to be spheri-
cal and their size distribution follows equation (2.33) which represents the sum of a
gamma and exponential distribution. Other major important details are presented
in Table 3.1.

NS(DS) =
M4

4

M3
3
[k0exp(−M2

M3
Λ0DS) + k1(

M2

M3
DS)

µS exp(−M2

M3
Λ1DS)] (2.33)

Where k0, k1, Λ0 and Λ1 are constants, µS is the shape parameter of snow and it
is also a constant and Mn =

∫
Dn

S NS(DS)dDS which accounts for the nth moment
of the distribution. Another important characteristic that this scheme has is that the
threshold for the autoconversion of ice to snow is smaller than in the other schemes.

Morrison Scheme - Mor

Morrison scheme (hereafter Mor) (Morrison and Gettelman, 2008) is a full double-
moment bulk microphysics scheme based on the work of Morrison et al. (2005) and
Morrison and Pinto (2006). The model predicts the number and mass mixing ratio
for six hydro-meteor species, this allows a more robust and realistic treatment of the
particle size distributions that are very important for the interactions between hydro-
meteors (e.g. cloud water, ice). The scheme uses the gamma distribution taking
into account the slope and intercept parameters that are calculated from prognostic
equations. The prognostic equation for the particle size distribution and mixing
ratios are described in equations (2.34) and (2.35).

∂Nx

∂t
+

1
ρ
∇ · [ρvNx] = [∑

i
(

∂Nx

∂t
)i] + Dx(Nx) (2.34)

∂rx

∂t
+

1
ρ
∇ · [ρvrx] = [∑

i
(

∂rx

∂t
)i] + Dx(rx) (2.35)

Here, Nx and rx are the number concentration and mixing ratio, respectively for
every hydro-meteor. Dx is the particle diameter and v is the wind three-dimensional
vector. i accounts for evaporation/sublimation, autoconversion, accretion (for cloud
droplets and ice by rain and for cloud droplets and ice by snow), heterogeneous
and homogeneous freezing, melting, sedimentation, and detrainment. In addition,
i for Nx also accounts for nucleation, and in the case of rx accounts for condensa-
tion/deposition. The scheme also calculates the number (VNx ) and mass (Vrx ) termi-
nal fall speed with a prognostic approach, which is described in equations (2.36) and
(2.37).
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VNx = (
ρ

ρ0
)0.54aΓ(1 + b + µ)[λbΓ(µ + 1)]−1 (2.36)

Vrx = (
ρ

ρ0
)0.54aΓ(4 + b + µ)[λbΓ(µ + 4)]−1 (2.37)

Where, ρ and ρ0 are the air density and the reference air density, respectively. Γ
is the Euler gamma distribution, µ is the shape parameter, and a and b are empir-
ical constants related as in the other schemes (Table 3.1). In this case, the terminal
fall speeds are limited by a threshold for rain and snow and there is also a density
correction that increases the realism of the parameterization. Further details of these
schemes can be found in Morrison and Gettelman (2008).

2.4 Machine Learning

Machine learning (ML) is a field in computer science that uses diverse algorithms
to enable computers to learn patterns and make predictions without explicit pro-
gramming. It involves extracting knowledge from data, allowing models to gener-
alize and adapt (Awad and Khanna, 2015). These models are broadly categorized
into supervised learning, where algorithms predict outcomes from labeled datasets,
and unsupervised learning, which uncovers patterns in unlabeled data. Reinforce-
ment learning involves agents optimizing a reward-based system through interac-
tion with an environment (Kleine-Deters et al., 2017). In Chapter 4 we use a Random
Forest (RF) algorithm, that is part of the supervised learning type of ML, which is
why we describe them here in more detail.

2.4.1 Random Forest

RF is an ensemble learning method that operates by constructing a multitude of
decision trees during training and outputs the class that is the mode of the classes
(classification) or mean prediction (regression) of the individual trees. RF algorithms
are composed by decision trees, bootstrapped sampling, feature randomization, and
decision-making process (Liaw and Wiener, 2002).

The foundational work of Breiman (2001) describes the RF elements as follows:
Decision Trees: RF consists of a collection of decision trees, each trained on a subset
of the training data. Decision trees are built by recursively splitting the data based on
the most significant features. Bootstrapped Sampling: Each tree in the RF is trained
on a random subset of the data, known as bootstrapped samples. This involves
sampling with replacement from the original dataset. Feature Randomization: RF
introduces further randomness by considering only a random subset of features at
each split during the construction of a tree. This ensures that the trees are diverse
and not highly correlated. Decision-Making Process: For classification, the mode
(most frequent class) of the individual tree predictions is taken as the final output.
For regression, the mean of the individual tree predictions is considered.

The prediction from the ensemble of trees for a given instance is represented in
equation (2.38), and is described in detail by Breiman (2001).

Ŷ =
1
N

N

∑
i=1

fi(X) (2.38)
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Where Ŷ is the predicted output, N is the number of trees in the forest, and fi(X)
is the prediction of the ith tree.

Decision Trees

Decision trees, serving as the foundation of RF, operate by recursively partitioning
the input space using the data’s features. The goal is to create subsets that are as
homogeneous as possible concerning the target variable. The process begins at the
root node, representing the entire dataset. It selects the feature that yields the best
split, maximizing homogeneity. The dataset is then divided into subsets based on
the chosen feature (Breiman, 2001). This recursive process continues for each subset,
forming a tree structure with nodes as decision points and branches representing
outcomes based on feature values. The procedure persists until reaching a stopping
criterion, such as a maximum depth or a minimum number of samples in a node.
The final nodes or leaves contain the predicted values or class labels, serving as the
output (Hastie et al., 2009).

In this context, decision trees employ classification to assess the impurity or dis-
order of a set of data points (equation 2.39). Additionally, they utilize regression to
quantify the variance of the target variable in a set of data points (equation 2.40), as
described in detail by Breiman (2001).

Gini(t) = 1−
c

∑
i=1

p2
i (2.39)

Where Gini(t) is the Gini impurity as a function of each node t, c represents the
number of classes and pi is the proportion of data points belonging to class i in node
t.

MSEr =
1

Nt
∑

i∈nodet
(yi − yt)

2 (2.40)

Here MSEr is the mean squared error, Nt is the number of data points in node t,
yi represents the target value of the data point i, and yt is the mean target value in
node t.

To summarize, in this chapter, we discussed some of the generalities, parameter-
izations, the characteristics of the WRF model, and a general explanation of the ML
model used in this research. This is with the aim to introduce the numerical model
we are using in Chapters 3 and 5, and also the ML technique employed in Chapter
5.
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Chapter 3

Sensitivity of Self-Aggregation and
Key Role of the Free Convection
Distance

3.1 Abstract

Past studies have shown that simulations of radiative convective equilibrium with
convective permitting models can result in convective self-aggregation (SA), but that
SA is sensitive to model resolution, domain sizes and the details of the convective
parameterization. Recently, Biagioli and Tompkins (2023a) used a simple stochastic
model to derive a dimensionless parameter to predict SA onset, which was based on
the derivation of the maximum free convective distance (dclr) expected in the pre-
aggregated state. Our goal is to test and further investigate this hypothesis, namely
that dclr can predict SA onset, using an ensemble of twenty-four distinct combi-
nations of horizontal mixing, planetary boundary layer (PBL), and microphysical
parameterizations. We confirm that the occurrence of aggregated versus random
equilibrium states is closely related to dclr in the initial days of the simulations. We
thus conclude that the key impact of parameterization schemes is through their con-
trol of the number of convective cores and their relative spacing, dclr, which itself
is impacted by cold-pool (CP) properties. SA is more likely when the convective
core count is small, while CPs intensify local moisture around clouds, generating
dry patches through localized drying of the boundary layer, and modify convective
counts via gust-front convergence and collisions. Each parameterization scheme
emphasizes a different mechanism. Horizontal mixing mainly affects SA through
the determination of convective core size and thus spacing, while the sensitivity
to the microphysics is mainly through the rain evaporation and subsequent impact
on CPs. Instead, perturbations to the ice cloud microphysics have a surprisingly
limited effect. Non-local PBL mixing schemes promote SA by enhancing low-level
cloud cover, driven by intensified vertical transport within convective cores, and
strong entrainment from the boundary layer top, due to stronger moisture gradi-
ents. The low cloud radiative forcing drives a circulation that shortens the transport
of moist static energy, disallowing moisture to get to the driest regions, favoring
SA. Moreover, the heightened low-level cloud cover induces more significant cool-
ing, requiring stronger subsidence to maintain radiative equilibrium. This enhanced
subsidence decreases convective core counts, increasing dclr, and favoring SA.
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3.2 Introduction

In the early 1990s, Held et al. (1993) introduced convective self-aggregation (SA)
through idealized simulations. SA denotes the tendency of convection to sponta-
neously organize into clusters within simulations of radiative convective equilib-
rium (RCE), starting from a uniformly distributed state. Subsequent research ex-
plored SA within cloud-resolving models (CRMs) conducted by various authors
(Nakajima and Matsuno, 1988; Tompkins and Craig, 1998a; Grabowski and Mon-
crieff, 2004b; Bretherton et al., 2005; Stephens et al., 2008; Muller and Held, 2012;
Wing and Emanuel, 2014; Coppin and Bony, 2015; Holloway and Woolnough, 2016;
Wing and Cronin, 2016; Yanase et al., 2020; Shamekh et al., 2020a; Beucler et al., 2020;
Huang and Wu, 2022). SA typically originates with the birth of dry regions, expand-
ing to inhibit deep convection development and confining it to specific areas in the
simulation domain. This process results in reduced domain-mean water vapor and
increased domain-mean outgoing longwave radiation (OLR), significantly influenc-
ing the hydrological cycle and the energy budget (Mauritsen and Stevens, 2015; Bao
and Sherwood, 2019; Wing et al., 2020; Becker and Wing, 2020; Da Silva et al., 2021a).

While the significance of SA is well-acknowledged, uncertainties persist in un-
derstanding its initiation and inhibition mechanisms. Past research (see Wing et al.
(2017), Wing (2019), and Muller et al. (2022a) for reviews) has highlighted SA’s de-
pendence on domain geometry (Wing and Cronin, 2016), size (Yanase et al., 2020),
resolution (Muller and Held, 2012), surface properties (Bretherton et al., 2005), and
adopted physical parameterizations (Tompkins and Semie, 2017; Shi and Fan, 2021).
The Radiative-Convective Model Intercomparison Project (RCEMIP) aimed to im-
prove SA understanding by conducting multiple simulations with different mod-
els under standardized settings (Wing et al., 2018, 2020). Convergence observed
among models in several SA aspects emphasize the importance of a comprehensive
approach to understanding SA. However, the observed differences between mod-
els highlight that uncertainties may arise from, for example, variations in model
physics.

To address these uncertainties, previous efforts include sensitivity (Bretherton
et al., 2005; Wing and Cronin, 2016; Tompkins and Semie, 2017) and mechanisms
denial experiments (Jeevanjee and Romps, 2013; Muller and Bony, 2015; Yang, 2019;
Haerter et al., 2019). These investigations offer crucial insights into factors like ra-
diative and evaporative cooling feedbacks (Yanase et al., 2020), cold-pools (CPs) (Jee-
vanjee and Romps, 2013; Yanase et al., 2020), surface temperature gradients (Brether-
ton et al., 2005; Hohenegger and Stevens, 2016b; Shamekh et al., 2020a; Tompkins
and Semie, 2021), and land surface (Hohenegger and Stevens, 2018b), influencing
SA emergence or hindrance. Despite their value, mechanisms denial experiments
can yield intricate interpretations, as manipulating one mechanism may inadver-
tently affect others (Holloway et al., 2017). To address the intricacies of mechanisms
denial experiments, researchers have turned to simplified models (Craig and Mack,
2013; Windmiller and Craig, 2019; Biagioli and Tompkins, 2023a). Notably, Biagi-
oli and Tompkins (2023a) developed a stochastic reaction-diffusion model capable
of replicating both randomly distributed and aggregated states. In their work, they
introduce a dimensionless index that sheds light on the influence of various vari-
ables—including domain size, resolution, moisture diffusion, convective core num-
ber, maximum free convective distance (dclr), subsidence timescales, and convection
lifetimes—on SA. Their findings reveal that a reduced number of convective cores
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is associated with larger spacing between them, promoting the development of SA.
This is attributed to the increased separation of moisture sources, leading to the for-
mation of dry patches.

Here, we contribute to the continuum of research by emphasizing the role of dclr
and its implications for SA. Notably, the anti-correlation between dclr and the num-
ber of convective cores, influenced by various model physics parameters, is a key
focus. Horizontal and vertical mixing (Cohen and Craig, 2004, 2006; Tompkins and
Semie, 2017) and entrainment from the boundary layer top (Hu et al., 2010; Xie et al.,
2012; Potvin et al., 2020) also play a role in modifying convective core number, dclr,
and consequently impacting SA dynamics. CPs influence SA through mechanisms
such as moisture redistribution, infusing humidity into the boundary layer, affecting
convective core numbers and dclr, inducing localized drying around the CP center,
and controlling gust front convergence. Our study dives into the specific impact of
different parameterizations within a CRM, including microphysics, sub-grid scale
mixing, and planetary boundary layer (PBL) schemes, on dclr and, by extension, SA.
The overarching goal is to uncover the sensitivities and interactions governing SA’s
behavior, revealing its intricate interplay with atmospheric variables.

Given this context, this study posits the question: What is the sensitivity of SA
development to the processes that control convective triggering and thus dclr? and
the way those processes are parameterized in the model physics?

The next section describes the CRM setup used in the simulations, as well as the
diagnostics. Section 3.4 contains the results, starting from an overview (§ 3.4.1), then
we focus on the importance of dclr (§ 3.4.2), by evaluating the dry patches evolution
and onset. Subsequently, we make a thorough explanation of the mechanisms that
control the number of convective cores and dclr for the sub-grid scale mixing (§ 3.4.3),
the microphysics (§ 3.4.4), and the PBL (§ 3.4.5) schemes. Concluding remarks are
presented in section 3.5.

3.3 Method

Here, we outline the methodology, detailing the model, its configuration, key param-
eterizations, and the Lagrangian tracker designed for specific diagnostics. Further
methodological discussions and related analyses are embedded in the respective sec-
tions.

3.3.1 Overall Model Description

We utilized version 4.2 of the WRF model (Skamarock et al., 2019) for all simulations.
The model employs a fifth-order horizontal advection scheme and applies Rayleigh
damping at the top of the domain to prevent unphysical wave reflection. For ra-
diation parameterization, the RRTMG scheme (Mlawer et al., 1997; Iacono et al.,
2008), is employed to handle longwave (LW) and shortwave (SW) radiation. The sur-
face layer scheme follows Monin-Obukhov similarity theory (Monin and Obukhov,
1954), considering stability functions and roughness lengths. We selected three sub-
grid scale schemes, named Smagorinsky-3D (Smag3), Smagorinsky-2D (Smag2), and
turbulent kinetic energy (TKE). These three schemes are selected due to their doc-
umented varied aggregation behaviors in prior studies, attributed to differences in
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Scheme Species N0x avx bvx amx bmx ρx
WSM6 Icea - - - - - -

Snow min[1011, 2X106exp(−0.12(T0 − T))] 11.72 0.41 πρS
6 3 100

Graupel 4X106 330 0.8 πρG
6 3 500

Rain 8X106 841.9 0.8 πρR
6 3 1000

GCE Iceb - - - - - -
Snow 1.6X107 78.63 0.11 πρS

6 3 100
Graupel 4X106 351.2 0.37 πρG

6 3 400
Rain 8X106 2115 0.8 πρR

6 3 1000
Tho Ice Prognostic 1847.51 πρI

6 3 890
Snowc - 40 0.55 0.069 2 100
Graupel max[104, min( 200

rG
, 5X106)] 442 0.89 πρG

6 3 500

Rain (N1−N2
2 )tanh[ (rR0−rR)

4rR0
] + N1+N2

2 4854.41 πρr
6 3 1000

Mor Ice Prognostic 700 1 πρI
6 3 500

Snow Prognostic 11.72 0.41 πρS
6 3 100

Graupel Prognostic 19.3 0.37 πρG
6 3 400

Rain Prognostic 841.9 0.8 πρR
6 3 1000

a The size distribution is describe in WSM6 section of the SI. The terminal velocity
depends on ice mixing ratio (rI), distribution of ice (DI), and the habits of the ice
crystals.
b Number concentration of ice (NI) depends on the particle distribution and the ice
habits. The terminal velocity is a function of DI .
c The size distribution equation is described in the Tho section of the SI. This scheme
also assumes non-spherical snowflakes.

TABLE 3.1: Characteristics of the microphysics schemes, and their principal
differences: particle size distribution, number intercept parameter (N0x), the
velocity-diameter constants (avx and bvx), the mass-diameter relations con-
stants (amx and bmx) and the particle density (ρx). These values are provided

directly from the WRF model modules.

entrainment magnitudes (Tompkins and Semie, 2017).

We select two PBL schemes: the Yonsei University scheme (YSU) and the Bougeault-
Lacarrere Scheme (BouLac). YSU, a non-local PBL scheme (Hong and Pan, 1996;
Hong et al., 2006) known for its strong entrainment from the boundary layer top
(Hu et al., 2010), which may influence SA. On the other hand, BouLac, a 1.5-order
local scheme (Therry and Lacarrère, 1989; Bougeault and Lacarrere, 1989), is chosen
because local schemes often exhibit insufficient moisture mixing within convective
cores.

We conducted simulations employing the four microphysical schemes described
in chapter 2: WRF Single Moment 6-Class (WSM6) (Rutledge and Hobbs, 1983; Dud-
hia, 1989), Goddard Cumulus Ensemble (GCE) (Tao and Simpson, 1993), Thompson
(Tho) (Thompson et al., 2008), and Morrison (Mor) schemes(Morrison et al., 2005;
Morrison and Pinto, 2006; Morrison and Gettelman, 2008). Table 3.1 outlines the
principal characteristics of the microphysics schemes. Chapter 2 describes these pa-
rameterizations in detail.
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3.3.2 Simulation Setup

The model domain is 510 km2 in the horizontal with periodic boundary conditions,
a fixed sea surface temperature of 301 K as in Tompkins and Semie (2017) and with
a 3 seconds time step. The domain size is selected since smaller domains could
disallow SA from happening (Muller and Held, 2012; Yanase et al., 2020; Biagioli
and Tompkins, 2023a). It also uses a 2 km2 horizontal resolution to explicitly re-
solve convection (Tompkins and Craig, 1998a; Bretherton et al., 2005; Tompkins and
Semie, 2021), and has a stretched vertical grid (62 levels) as in Tompkins and Semie
(2017). The diurnal cycle is active, there are no Coriolis effects, and no mean wind
was imposed.

We perform several experiments to study the impact of the sub-grid scale mixing,
PBL, and microphysics schemes on convective SA. The experiments last for 45 days
with hourly outputs. They consist of the combination of 3 sub-grid scale schemes,
with 2 PBL schemes and 4 microphysics schemes, which means that 24 simulations
were performed. The nomenclature of the simulations is as follows: First the mi-
crophysics scheme used (e.g., Tho, GCE), second the sub-grid scale mixing scheme
(i.e., "TKE" for TKE, "SM3" for Smag3 and "SM2" for Smag2), and third the PBL
ends the nomenclature, either YSU or BL for the BouLac scheme. For instance, if
the simulation uses Thompson microphysics with Smag2 and YSU, the simulation
name would be Tho-SM2-YSU, but if the horizontal mixing is Smag3 with BouLac
the name would be Tho-SM3-BL.

The initial conditions in our study were adopted from Jordan (1958) and Tomp-
kins and Semie (2017). In addition to our primary experiments (Table 3.2), we con-
ducted six sensitivity simulations. The first, denoted Tho-SM2-BHE, involved a 50%
reduction in rain evaporation within the Tho-SM2-BL configuration. In the second,
Tho-SM2-YDE, we doubled the rain evaporation within the Tho-SM2-YSU setup.
The third, Tho-SM2-YHI, entailed a 50% reduction in the fall speed of ice/snow
within the Tho-SM2-YSU configuration. The fourth, Tho-SM2-BDI, involved dou-
bling the fall speed of ice/snow within the Tho-SM2-BL configuration. Finally the
fifth experiment starts from the last timestep from the BouLac runs (i.e., Tho-SM2-
BL, Tho-TKE-BL, GCE-SM2-BL, and GCE-TKE-BL), but change the PBL scheme to
YSU, these runs are named: Tho-SM2-BLY, Tho-TKE-BLY, GCE-SM2-BLY, and GCE-
TKE-BLY. Table 3.3 summarizes all sensitivity experiments in this research.

3.3.3 Tracking algorithm

To investigate further the role of CPs in the development of SA, we track and analyze
their characteristics using a Lagrangian tracker which is described in this section.
The tracker will also be used to follow the evolution of dry patches. The tracker is
based on the watershed algorithm following Casallas et al. (2023c), that developed
a tracker using the Scikit-image library version 0.16 (Virtanen et al., 2020) in Python
3.6. The algorithm segments the image, with each segment corresponding to an ob-
ject labeled throughout the entire simulation. The algorithm treats each time step
as a "topographic" surface based on a threshold (e.g., height, temperature gradient,
total column water vapor – TCWV), where values below (or above) the threshold
become the boundaries.



32
Chapter 3. Sensitivity of Self-Aggregation and Key Role of the Free Convection

Distance

Name Microphysics Sub-Grid Scale Mixing PBL
WSM3YSU WSM6 Smagorinski 3D YSU
WSMTYSU WSM6 TKE YSU
WSMYSU WSM6 Smagorinski 2D YSU
WSM3BL WSM6 Smagorinski 3D BouLac
WSMTBL WSM6 TKE BouLac
WSMBL WSM6 Smagorinski 2D BouLac
GCE3YSU GCE Smagorinski 3D YSU
GCETYSU GCE TKE YSU
GCEYSU GCE Smagorinski 2D YSU
GCE3BL GCE Smagorinski 3D BouLac
GCETBL GCE TKE BouLac
Tho3YSU Tho Smagorinski 3D YSU
ThoTYSU Tho TKE YSU
ThoYSU Tho Smagorinski 2D YSU
Tho3BL Tho Smagorinski 3D BouLac
ThoTBL Tho TKE BouLac
ThoBL Tho Smagorinski 2D BouLac
Mor3YSU Mor Smagorinski 3D YSU
MorTYSU Mor TKE YSU
MorYSU Mor Smagorinski 2D YSU
Mor3BL Mor Smagorinski 3D BouLac
MorTBL Mor TKE BouLac
MorBL Mor Smagorinski 2D BouLac

TABLE 3.2: Overview of the simulations and their sub-grid scale, micro-
physics and PBL schemes. The sensitivity experiments are also shown with

a respective note that describes the changes made to the experiment.

Name Microphysics Sub-Grid
Scale Mixing

PBL Notes

GCETBLY GCE TKE BouLac-YSU Ten days with YSU starting from the
last time step of GCETBL

GCEBLY GCE Smagorinski
2D

BouLac-YSU Ten days with YSU starting from the
last time step of GCEBL

ThoYDE Tho Smagorinski
2D

YSU Double evaporation of rain

ThoYHI Tho Smagorinski
2D

YSU Half ice/snow fall speed

ThoYTB Tho Smagorinski
2D

YSU 25% increase in the PBL height

ThoTBLY Tho TKE BouLac-YSU Ten days with YSU starting from the
last time step of ThoTBL

ThoBHE Tho Smagorinski
2D

BouLac Half evaporation of rain

ThoBDI Tho Smagorinski
2D

BouLac Double ice/snow fall speed

ThoBHB Tho Smagorinski
2D

YSU Half PBL height

ThoBLY Tho Smagorinski
2D

BouLac-YSU Ten days with YSU starting from the
last time step of ThoBL

TABLE 3.3: Overview of the sensitivity simulations and their sub-grid scale,
microphysics and PBL schemes, with a description of the changes made to

the experiment.



3.3. Method 33

The watershed algorithm is employed and tailored for tracking CPs and extract-
ing their characteristics, such as intensity. CP intensity is calculated (Grant and
van den Heever, 2016, 2018; Abramian et al., 2022a) by integrating the negative
buoyancy as C2 = 2

∫ H
0 (−gθ

′
v/θ̄v)dz (Benjamin, 1968), where C is the CP intensity,

H is the height of the CP, g is the gravitational acceleration, θ
′
v is the virtual temper-

ature perturbation and θ̄v is the virtual temperature averaged over the domain. An
evaluation of the algorithm’s efficacy, bench-marked against the conventional crite-
rion of selecting pixels with buoyancy≤−0.005 m2 s−1 (Tompkins, 2001b; Grant and
van den Heever, 2016, 2018; Abramian et al., 2022a), reveals a notable similarity (R2

= 0.93 ± 0.05 for the vertical velocity W at 100m (W100m) between days 2 and 5 of
the simulations). Consequently, we focus on the tracker results, as it demonstrates
superior efficacy in capturing aged CP fronts. The CP top is defined as the highest
altitude where the buoyancy threshold remains valid (Grant and van den Heever,
2016), constrained to a maximum of 2 km (16th model level) (Grant and van den
Heever, 2016, 2018; Abramian et al., 2022a).

The tracker algorithm is also modified and used to follow dry patches to under-
stand their properties and onset. For the CP tracking, the 2 m temperature gradient
is calculated, and the 60th percentile of this variable is used as a threshold. To find
this threshold we perform a randomized search with the idea of finding a percentile
that allows identifying new and old CPs, including their fronts. See Figure A.1a-b-c
for an example. Regarding the dry-patch tracking, we used the TCWV field and se-
lect 44 mm as a threshold. To select this value, we perform a randomized search to
identify the threshold that avoids capturing CP centers but also selects the growing
dry zones. See Figure A.1d-e-f for an example.

In terms of temporal tracking, the algorithm is adapted from previous Lagrangian
trackers (see Muller et al. 2022b for tracking examples) designed to track the motion
of storms. The approach involves following the evolution of each object, assign-
ing one label per object in the first time step. In subsequent time steps, the tracker
decides based on the Euclidean distance (of their centers and boundaries) and over-
lapping of the objects whether the object is new, in which case a new label is created,
or if the object identified in the new time step is the same as a previous one, in which
case the label is maintained.

3.3.4 Dry to Moist Regions Circulation

Previous studies have highlighted the significance of low clouds in dry regions for
the development of SA (Muller and Bony, 2015). Since Section 3.4.5 will elucidate
the importance of low-level clouds, we further analyze their role by computing the
stream function Ψ as introduced by Bretherton et al. (2005). Ψ serves as a useful met-
ric for quantifying the circulation between dry and moist regions. It is computed by
ordering the columns based on TCWV-percentile and calculating the corresponding
mass flux for each column, as outlined in Equation (3.3.4).

Ψ(i, z) = Ψ(i− 1, z) + ∑∫
TCWV∈(

∫
TCWVi−1,

∫
TCWVi)

w(z)ρ(z) (3.1)

With Ψ(0, z) = 0 for every z, where ρ is the reference density profile used in
the anelastic governing equations, w represents the vertical velocity, and i denotes
the TCWV column index. Ψ(i, z), as explained by Muller and Held (2012), signifies
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the total vertical mass flux across all columns where
∫

TCWV ≤
∫

TCWVi. This
circulation must be interpreted independently of physical space due to the TCWV
ordering but provides valuable insights into the exchange between dry and moist
regions (Shamekh et al., 2020a; Yanase et al., 2020).

3.4 Results

In this section, we present an overview of the study’s results, highlighting key vari-
ables that influence the development of convective SA or maintain a random con-
figuration in simulation setups. Our analysis underscores the sensitivity of SA to
sub-grid scale mixing, PBL, and microphysics schemes.

3.4.1 Overview of the Main Results

Our findings reveal a sensitivity of SA to the employed parameterizations, as de-
picted in Figure 3.1, showcasing the TCWV across all 24 experiments conducted.
Simulations employing the Smag3 scheme exhibit rapid aggregation, in contrast to
Smag2 and TKE, where SA emerges primarily when YSU is employed as the PBL
scheme. This suggests a significant role for sub-grid scale mixing and the PBL in
triggering SA. Figure 3.2 provides a concise summary, presenting the SA index cal-
culated as the mean between the last 5 days of each experiment of the difference of
the ninetieth (90th) and tenth (10th) percentiles (hereafter NMTP) of TCWV (Brether-
ton et al., 2005; Müller and Hohenegger, 2020b). The colors in the figure represent
the horizontal mixing coefficient (Kh).

Figure 3.2 highlights key insights. Firstly, the significant impact of horizontal
mixing, since regardless of variations in the PBL and microphysics configurations
all the Smag3 simulations develop organization. This underscores the essential role
of Smag3 in influencing SA. Secondly, surprisingly the microphysics have a fairly
limited impact on SA, simulations using the Mor scheme exhibit SA, while those
employing the WSM scheme consistently display random organization. This under-
scores the substantial influence of microphysics as an independent factor impact-
ing SA, regardless of the chosen PBL scheme. Thirdly, simulations employing non-
local PBL schemes (YSU) tend to promote SA, whereas those utilizing local schemes
(BouLac) tend to inhibit SA—except in cases where microphysics appears to play a
dominant role in driving SA.

We hypothesize that the sensitivity of SA to various parameterizations can be
clarified by considering dclr (refer to dmax,clr in Biagioli and Tompkins (2023a) Fig-
ure 8) given its established inverse correlation with the number of convective cores
(Biagioli and Tompkins, 2023a) before SA develops, which is why we adopt their
framework. These cores are intricately governed by multiple physical mechanisms
embedded within the parameterizations. To test this hypothesis, we examine the
TCWV-NMTP (mean of the last 5 simulations days) as a function of the mean dclr
calculated between days 2 and 5 (the first 48h are for model spin-up), a period pre-
ceding the onset of SA. Additionally, the size of the markers on the plot corresponds
to the mean CP intensity between days 2 and 5 (Figure 3.3). Other periods (i.e., 2-4,
2-7, and 2-10 days) were used to calculate the mean dclr and CP intensity, and the
results yield the same conclusions.
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FIGURE 3.1: Snapshot of TCWV of all the 24 experiments performed (see
Table 3.2). The columns represent the different model configuration. Each
microphysics scheme is represented by two rows with the first depicting a

snapshot of day 10, and the second showing a snapshot of day 40.
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FIGURE 3.2: The height of the bars represents the mean TCWV-NMTP (cal-
culated as percentile 90 - percentile 10 of TCWV and used as SA metric)
between days 40 to 45 of each simulation. The colors show the mean hori-
zontal eddy viscosity Kh inside the convective cores during the entire sim-
ulation. The x-axis shows the Sub-Grid Scale mixing scheme. The y-axis
includes the microphysical parameterization and the PBL schemes. Notice
that, the purple font represents the simulations that use YSU and the black

font the experiments using BouLac.

Figure 3.3 reveals that simulations developing SA (blue-green colors) consis-
tently exhibit higher values of dclr in the pre-onset phase, irrespective of the specific
parameterizations employed. This observation resonates with the theoretical frame-
work of Biagioli and Tompkins (2023a), positing that greater spacing between cores
generate drier regions between the sources, setting the stage for the emergence of
SA. Simulations employing the Smag3 horizontal mixing scheme exhibit the largest
dclr. A comparison between GCE-SM2-YSU, Tho-SM2-YSU, and Tho-TKE-BL simu-
lations, with comparable dclr values, highlights the contrasting effect of CP intensity
on SA. While Tho-TKE-BL’s more intense CPs hinder organization, this is not the
case for the other two simulations.

3.4.2 The Importance of dclr

Here, we focus on studying the relevance of dclr by analyzing dry patch evolution
using a Lagrangian tracker approach (detailed in § 3.3) and conducting confirming
experiments.

Dry Patch Growth

We first focus on the growth and maintenance of dry patches. We employ the La-
grangian tracker described in the methods section, focusing on Smag2 simulations
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FIGURE 3.3: This figure shows the mean TCWV-NMTP (calculated as in
Figure 3.2) between day 40 and day 45 for each simulation as a function of
the dclr, which is averaged from day 2 to day 5 for all the experiments. The
circles represent the Smag3 experiments, stars account for the TKE runs and
the squares show the Smag2 simulations. The blue-green colors represent
the experiments that develop SA, and red-yellow colors account for runs
with random convection. The size of the markers depends on the CPs in-
tensity averaged from day 2 to day 5, so larger markers imply stronger CPs.

Notice that for plotting purposes the x-axis is divided into two zones.

(the results are consistent for simulations using TKE and Smag3, not shown). Impor-
tantly, dry patches do not emerge immediately at the beginning of the simulation.
As our interest lies in understanding the atmospheric conditions preceding and dur-
ing dry patch development, we identify the atmospheric behavior before the dry
patch onset. To achieve this, we implement a back-propagation technique: Once a
dry patch reaches an area of 16 km2, we select its center and create a buffer with a ra-
dius of 20 km2, centered around the core of the dry patch (varying buffer sizes yield
similar results). We then save the coordinates of the pixels within this buffer for sub-
sequent analysis of the atmospheric properties in the locations where dry patches
form before their initial appearance.

At the initial stages of the simulation, a marginally positive pressure anomaly
triggers its development (Figures 3.4, A.2, A.3, and A.4). This anomaly is promi-
nently observed in regions characterized by large dclr values, which are typically
drier areas. This positive pressure anomaly gradually strengthens (Yang, 2018; Yao
et al., 2022) and induces a divergent flow, as detailed by Shamekh et al. (2020a),
facilitating the export of moist static energy (MSE) up-gradient. This implies that
dry regions tend to become drier, while moist regions become moister, thereby rein-
forcing the high-pressure anomaly and its associated divergent flow. This feedback
mechanism, in turn, contributes to the expansion of the dry zone. As illustrated in
Figure 3.4d, the initial signs of slightly positive anomalies emerge around day 2, af-
ter which the anomaly intensifies and extends throughout the entire boundary layer.
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Here, we employ the framework developed by Shamekh et al. (2020a) to gain in-
sights into the emergence of dry patches and the concurrent high-pressure anomaly.
However, we extend the analysis to encompass the atmospheric characteristics at
the beginning of the simulations, not exclusively when the dry patches manifest.
Assuming hydrostatic balance, the surface pressure anomaly is related to the col-
umn density anomaly, itself related to the virtual temperature anomaly. Shamekh
et al. (2020a) decompose the virtual potential temperature (θ

′
v/θv, where the quote

(′) represent a perturbation for each pixel, and the over line ( ) is the domain mean)
anomaly into two distinctive components within the boundary layer: the moist com-
ponent [0.61q

′
v/(1 + 0.61qv), where qv is the water vapor mixing ratio] and the tem-

perature component (T
′
/T). The pressure anomaly is intricately linked to density

anomalies within the boundary layer in tropical regions where the Coriolis param-
eter is relatively small, and mid and upper tropospheric density anomalies remain
negligible (Sobel et al., 2001).

During the initial 20 days of the simulation, the surface moisture anomaly (Figure
3.4b) exhibits a negative trend (drying), becoming more pronounced over time. The
surface temperature anomaly (Figure 3.4c) displays a positive tendency (stronger in
magnitude compare to the moist anomaly) which grows slower in magnitude com-
pare to the drying anomaly. This dynamic implies that the θ

′
v/θv anomaly initiates

as a positive anomaly at the surface (Figure 3.4a). However, as the surface negative
moist anomaly intensifies, a surface negative θ

′
v/θv anomaly materializes around

day ≈7 and persists. This inversion of the θ
′
v/θv anomaly from positive to negative

occurs due to the rapid growth of the drying surface anomaly, outpacing the increase
of the positive surface temperature anomaly. This phenomenon could be attributed
to the divergent flow and the consequential export of MSE from dry to moist regions.
The transition to a surface negative θ

′
v/θv anomaly favors SA and leads to an accel-

erated rise in the pressure anomaly, as evident from day≈ 7 in Figure 3.4d. Notably,
these findings align with the results obtained from experiments utilizing alternative
microphysics schemes, as depicted in Figures A.2, A.3, and A.4 in Appendix A.

According to Shamekh et al. (2020a), the growth of a drying anomaly and the
subsequent development of a high-pressure anomaly in dry areas are primarily driven
by radiative cooling (Qrad), since enhanced cooling, through subsidence, would cool
and dry the local environment. Figure 3.5 (see Figures A.5, A.6, and A.7 for other
microphysics results) illustrates the temporal progression of Qrad, including all its
components. The net Qrad (Figure 3.5g) exhibits strong negative values at the sur-
face, within the altitude range of 2 km to 5 km, and from 6 km to 10 km. These re-
gions align well with the heights of high-pressure anomalies depicted in Figure 3.4d.

The cooling at the surface is a consequence of the combined effects of both the
LW cloud radiative effect –CRE– (Figure 3.5a) and LW clear-sky radiative cooling
(Figure 3.5b). This combined cooling induces a surface divergent flow, directing air
from the dry patches toward the moister zones. These findings are consistent with
previous research (Yang, 2019; Naumann et al., 2019; Shamekh et al., 2020a; Muller
et al., 2022a), as well as with the conclusions drawn by Muller and Bony (2015) re-
garding the significance of radiative cooling from clouds. On the other hand, the
net Qrad between altitudes of 2 km and 5 km is primarily driven by the LW clear-
sky component, regardless of the warming produced by the SW CRE component
(Figure 3.5e). The radiative cooling help to generate a moisture anomaly through
subsidence (Sobel et al., 2001; Shamekh et al., 2020a), contributing to the formation
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FIGURE 3.4: The plot shows daily dry patch composite means of the virtual
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as they evolve with time.
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of a high-pressure anomaly at this height (Figure 3.4d), which initiates around day 3.

As for the net Qrad produced between altitudes of 6 km to 11 km, it is mainly
driven by the LW CRE component, although the SW clear-sky component plays a
smaller role. The LW CRE component exhibits a cooling effect at this height, in-
creasing with altitude due to cloud-related processes and warming at the PBL tops,
with its most significant values observed between 8 km and 10 km, coinciding with
the location of high-pressure anomaly (Figure 3.4d) responsible for initiating a di-
vergent flow at the same altitude around day 5. This divergent flow leads to the
export of MSE from dry to moist regions. These three divergent branches described
here (surface; 2 km-5 km; 6 km-10 km) resemble the circulations reported by Muller
and Held (2012), Shamekh et al. (2020a), and Cerlini et al. (2023) when convection
is clustered due to the upgradient MSE transport. It is important to notice that the
results described here also hold for the other experiments, as shown in Figures A.5,
A.6, and A.7 in Appendix A.

Fundamentally, in regions with ample dclr, subsidence prevails, inducing a neg-
ative (i.e., more cooling) LW Qrad anomaly at three distinct altitudes. This increase
cooling effect is further reinforced by a negative SW clear-sky Qrad anomaly in the
mid-troposphere. These combined factors result in the establishment of a divergent
flow, associated with a positive pressure anomaly that transfers MSE from dry to
moist regions, driving a divergent feedback. This confluence of a dclr region, large
subsidence, radiative cooling, moisture anomaly, and pressure anomaly collectively
contributes to the formation of a dry patch that leads to SA. This section analysis
of dry patch onset and evolution reveals that a CP originating at the periphery of a
large dclr region serves as a seed to initiate the dry patch. This insight is essential,
as it allows us to conduct target experiments involving CPs situated in different re-
gions to validate the role of dclr and the ability of a CP to trigger SA. This is the topic
of next section.

Dry Patch Onset

We argue that a CP can act as a seed for a dry patch when produced under specific
conditions (i.e., large dclr and in an already dry zone). To test this hypothesis, we
introduce artificial CPs into the domain and monitor their evolution to identify in-
stances where they generate dry patches that lead to SA.

Regarding its initial conditions and parameterizations, the experiment starts from
the last output hour (day 45) of the Tho-SM2-BL experiment, which does not exhibit
SA. It runs for 10 days with an hourly output and a 3-second time step. This duration
is sufficient for the initiation of one or multiple dry patches (Figure 3.1). To ensure
the development of SA and maintain similarity to Tho-SM2-BL, the Tho scheme is
used in combination with Smag2 and YSU as the PBL, as this configuration demon-
strates SA development (Figures 3.3 and 3.2). The domain size, resolution, LW and
SW radiation, and surface layer parameterizations remain consistent with all other
experiments (see § 3.3 for details). To establish a control, we conduct experiments
with the same initial conditions and parameterizations but without any CP additions
(hereafter CP-control) to confirm that CPs indeed contribute to the development of
dry patches.
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FIGURE 3.5: The plot shows dry patch composite mean evolution of the
Qrad (a) LW Net (b) LW CRE, (c) LW Clear-Sky, (d) SW Net, (e) SW CRE, (f)
SW Clear-Sky, and (f) the full Qrad cooling for Tho-SM2-YSU. All fields are

subject to a 24h-running mean.

In terms of the CP characteristics, we based on the work of Grant and van den
Heever (2018). We introduce multiple cold bubbles in the domain. Each bubble has
a θ

′
v of -5 K with a radius of 2 km2 and a height of 2 km (16th model level). To

make a more realistic CP we also include artificial rain by adding a perturbation
of 1.5 ×10−5 kg kg−1 to the rain mixing ratio at ≈ 2.2 km of altitude (17th model
level). This rain mixing ratio is selected since it is the mean value of the domain at
that height. Experiments with other bubble radius/height, different artificial rain
additions and perturbations lead to the same conclusions, except for perturbations
< -1.5K that are not enough to develop the dry patch. As the idea is to probe that
the dclr is important, as well as the dryness of that area, we include CPs in different
domain regions depending on the dryness and on the free convective area as shown
in Table 3.4.

The CP-control simulation (not shown) exhibits SA, with dry patches emerging
from day 1. These patches are located to the right of the domain and are in close
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Experiments ID Moist percentile Free convection area size (km2)
Zone 1 30th 276
Zone 2 35th 624
Zone 3 50th 176
Zone 4 65th 64
Zone 5 70th 16

TABLE 3.4: Characteristics of the location of the artificial cold bubble. No-
tice that the cold bubbles are included in places with different amounts of
moisture. The bubbles are also located at the center of the free convection
area. To have more robust results, the CPs are also located at the edges of

the free convection area, but no significant differences were found.

proximity, leading to their merger by day 5 and the formation of a sustained large
dry patch until the simulation’s end. For this reason, the artificial CPs are intro-
duced at the center-left part of the domain, where no dry patches are observed in the
CP-control. To account for the stochastic nature of SA development highlighted by
Tompkins and Semie (2021), three additional control runs are conducted to confirm
that the patches consistently emerge on the right side of the domain (not shown).
This was expected since the patches grew in the largest free convection areas of the
domain, which as described in the previous sections are the areas more favorable for
SA to develop.

In the experiment with added CPs, only two CPs contribute to the development
of sustained dry patches throughout the entire simulation (Figure 3.6). These two
CPs were the ones placed in the driest regions with the largest dclr. Conversely,
the other CPs vanish before the fourth day of the simulation. Specifically, the CPs
introduced in zones 4 and 5, situated in moister areas with small dclr, generate a
dry anomaly that dissipates within the first simulation day, aligning with expecta-
tions. The CP in zone 3 produces a dry patch that persists until day four, but the
appearance of convection in its vicinity leads to humidity mixing and the eventual
disappearance of the dry zone. In contrast, the CPs in zones 1 and 2 successfully
generate growing dry patches, as evident in Figure 3.6. The dry patch originating
from zone 1 experiences a significant expansion around day ≈ 7 due to its merger
with another dry zone that develops on the right side of the domain, where a dry
patch forms in the CP-control run.

The selective growth and persistence of dry patches initiated by specific CPs can
be attributed to the fact that pre-existing dry zones are located in the largest dclr
regions. In the presence of a CP, the dry anomaly in the zone intensifies as the in-
herently dry core of the CP augments the existing negative moisture anomaly. The
moist surge from the CP expands toward the boundaries rather than the core of the
dry zone. This phenomenon may result from the development of a relatively weak
high-pressure system and variations in air density between the dry CP center and
the moist peripheries of the patch (Ross et al., 2004). Consequently, the influx of
moisture into the dry zone remains modest, and the dry CP center accentuates the
dryness of an already dry region, amplifying the nascent positive pressure anomaly
and initiating the divergent feedback. In summary, the experiments presented here
highlight that a CP can initiate a dry patch (serving as seeds), but this occurs effec-
tively only when the CP develops in an already dry region featuring a sufficiently
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FIGURE 3.6: Evolution from day 0 to day 10 of the zones described in Table
3.4 where the artificial CPs were introduced. Notice that the disappearance
of the line implies that the dry zone was moistened. The blue-purple colors
represent the experiments that develop SA, and red-yellow colors account

for runs with random convection.

large dclr.

3.4.3 Sensitivity to Sub-Grid scale mixing

Figure 3.3 suggests a robust sensitivity to the sub-grid scale mixing scheme, with
Smag3 simulations consistently developing SA, regardless of the chosen PBL or MP
schemes. This trend is confirmed by Figure 3.2, illustrating that the Kh within con-
vective cores (identified where vertical velocity W ≥ 1 m s−1 at 750 hPa, following
Tompkins and Semie (2017)) is one order of magnitude larger in Smag3 simulations
compared to TKE or Smag2 schemes. This aligns with Tompkins and Semie (2017)
and Cerlini et al. (2023), emphasizing that high Kh within convection induces sig-
nificant entrainment, crucial for SA development. Entrainment can modify convec-
tive mass-flux/heating, influencing SA (Bretherton et al., 2005; Stephens et al., 2008;
Tompkins and Semie, 2017; Yang, 2019). Additionally, it affects the number of con-
vective cores and, consequently, dclr.

The findings of Tompkins and Semie (2017) suggest entrainment’s potential to
induce atmospheric dryness anomalies, triggering SA. Our reinterpretation under-
scores the intricate links among entrainment, the number of convective cores, and
dclr. In this context, Figure 3.7 elucidates these connections during the initial sim-
ulation phase (days 2 to 5), focusing on SA onset. The analysis excludes the first
48 hours for model spin-up, and after day 5, some simulations (e.g., Smag3 exper-
iments) exhibit significant SA (Figure 3.1). Alternative periods (2-4, 2-7, and 2-10
days) yield consistent conclusions.

Smag3 simulations exhibit pronounced entrainment through enhanced Kh within
convective cores (Figure 3.7a), resulting in a notable reduction in core count (Figure
3.7c). The larger core areas (around 17± 1.5 km2) in Smag3, three to four times larger
than others (around 3.5 ± 1 km2), can be linked to the requirement for convective
mass flux equilibrium in RCE scenarios (Cohen and Craig, 2004, 2006). This leads to
a reduced core count necessary to offset Qrad, thereby contributing to a decrease in
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FIGURE 3.7: (a) Horizontal mixing (Kh) mean (from day 2 to 5) inside con-
vective cores as a function of mean dclr (from day 2 to 5), notice that the
y-axis has a log scale, (b) mean convective core area as a function of mean
dclr (from day 2 to 5) and (c) mean convective core area (from day 2 to 5) as
a function of mean number of convective cores (from day 2 to 5). Each plot
includes all 24 simulations, including Smag3 (circles), Smag2 (squares), and
TKE (stars) simulations. Blue-green colors indicate runs that produce SA,

while red-yellow colors represent runs without SA.

core number, since the vertically integrated Qrad remains consistent across all exper-
iments before SA attains full development (not shown). In this context, the observed
increment in mean convective core area translates to a diminished core count and,
concomitantly, an increase in dclr due to their inverse relationship (Figure 3.7b-c).
Thus, the discernible association between strong entrainment, reducing core counts
and increasing dclr, offers a coherent explanation for the Smag3 simulations results.

3.4.4 Sensitivity to the Microphysics

Since both Smag2 and TKE schemes exhibit SA under identical PBL and micro-
physics configurations (Figure 3.2), for simplicity here we focus on the simulations
that use Smag2 to assess the sensitivity to microphysics (similar results are obtained
with the simulations that use the TKE scheme, as shown by Figure A.8 in Appendix
A). There could be many ways in which microphysics schemes control the number
of cores (Weverberg et al., 2013; Han et al., 2013) and ergo dclr, for example with the
autoconversion of rain (not shown), or the ice/snow fall speed (Figure 3.3). Surpris-
ingly sensitivity experiments increasing (Tho-SM2-BDI) and decreasing (Tho-SM2-
YHI) the ice/snow fall speed on Tho-SM2-YSU and Tho-SM2-BL simulations do not
change the SA behavior (Figure 3.3). The fall speed experiment only delayed the
aggregation onset compare to Tho-SM2-YSU simulation, consistent with Bretherton
et al. (2005).

Another way in which microphysics can modify the number of convective cores
is by changing the evaporation of rain, which is known to impact SA since it modi-
fies the CPs intensity. In fact, comparing the Tho-SM2-YSU and WSM-SM2-BL runs
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from Figure 3.3, we see that although Tho-SM2-YSU has a larger dclr compared to
WSM-SM2-BL, the values are not significantly different, but their aggregation dif-
fer. One explanation for this could be their CP intensities, that can prevent SA
by redistributing humidity (Jeevanjee and Romps, 2013; Wing and Emanuel, 2014;
Muller and Bony, 2015; Holloway and Woolnough, 2016; Yanase et al., 2020; Muller
et al., 2022a). In our example, the experiment with weaker and smaller CPs (Tho-
SM2-YSU) favor the development of SA compared with the one with stronger and
larger CPs (WSM-SM2-BL) because weaker CP intensities are less efficient reallocat-
ing moisture, favoring the development of dry enough zones that could onset SA,
and also because they are more space filling, disfavoring SA.

From the aforementioned, it is clear that the natural path to follow is to analyze
differences in the CP by modifying the evaporation of rain and also by analyzing
their intensity (see § 3.3 for details). The analysis of CP intensity (Figures 3.8a-b-
d and A.8) reveals a clear trend: simulations that disallow the onset of SA tend to
feature stronger CP intensities and a larger number of large CPs (Figure 3.8e), consis-
tent with our earlier discussions. This observation supports the argument put forth
by Yanase et al. (2020), suggesting that the intensification and enlargement of CPs
can trigger an evaporative-driven negative feedback. Such feedback mechanisms
have the potential to offset the positive feedback driven by radiatively induced near-
surface horizontal divergence, leading to a redistribution of humidity and ultimately
preventing the emergence of dry patches.

In experiments with SA, CPs exhibit lesser strength and smaller size, accompa-
nied by heightened convergence at their associated gust fronts (Figure 3.8). This
reduced convergence (W100) at CP gust fronts (Figure 3.8c) leads to a lower convec-
tive triggering rate (Tompkins, 2001b; Stevens, 2005; Sherwood et al., 2009; Dawson
et al., 2010; Li et al., 2015; Fuglestvedt and Haerter, 2020; Casallas et al., 2023b), and
subsequently to a decreased number of convective cores (resulting in larger dclr) that
favors the development of SA. This underscores the dual role of CPs in both mois-
ture redistribution and their potential influence on convective triggering.

Fuglestvedt and Haerter (2020) highlighted the role of CP fronts in fostering a
conducive environment for convection initiation by generating moist patches through
convergence at their gusts (Schlemmer and Hohenegger, 2014). When these moist
gust fronts collide, they trigger new convection (Tompkins, 2001b,c). This under-
scores the significance of both convergence and the area/intensity of CPs in influ-
encing convective triggering. Moreover, these gust fronts induce potent and sus-
tained vertical velocities at the surface, fostering the initiation and intensification of
convection (Böing et al., 2012). These insights shed light on why experiments using
Mor’s scheme consistently result in SA, while those employing the WSM scheme
tend to remain random. Mor’s scheme generates weaker and smaller CPs with lim-
ited convergence at their gust fronts, whereas the WSM scheme produces stronger
and larger CPs with substantial convergence. This disparity leads to two critical out-
comes: less efficient moisture redistribution (Figure 3.8d), favoring the development
of dry regions in Mor’s scheme and the opposite in the WSM scheme, and varying
convective core numbers driven by CP size/convergence, altering dclr to favor or
hinder the development of SA.

These findings are supported by the evaporation of rain experiments. Tho-SM2-
YDE, featuring increased CP area/intensity and gust front convergence, does not
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FIGURE 3.8: Cold pool average intensity (from day 2 to 5) as a function of
(a) mean dclr, (b) number of convective cores and (d) boundary layer relative
humidity outside convective cores (from day 2 to 5). (c) Mean vertical veloc-
ity at 100m (W100) at the gust fronts of the Cold-Pools as a function of mean
dclr (from day 2 to 5). (d) Frequency of Cold-Pool area between day 2 to 5.
Continuous lines depicted aggregated runs, meanwhile dashed lines show
runs with random convection. Blue-green colors indicate runs that produce

SA, meanwhile red-yellow colors represent runs without SA.

lead to SA (unlike Tho-SM2-YSU that develops SA). Conversely, Tho-SM2-BHE,
with decreased CP area/intensity and gust front convergence, exhibits SA (unlike
Tho-SM2-BL that does not develop SA). These results must be taken with caution
since modifying rain evaporation impacts CPs, but also latent heating profiles, tro-
pospheric moisture budgets, and downdraft patterns (Holloway et al., 2017). It also
induces changes in gust front convergence, core counts, and in dclr (Figure 3.8),
which are essential for SA development. This underscores the need for new ex-
periments or simple models to isolate CPs’ role in SA development or prevention.

3.4.5 Sensitivity to the PBL

Experiments conducted with the Mor and WSM microphysical schemes reveal no
sensitivity to PBL configurations. For this, this section focuses on the Tho and GCE
microphysics, uncovering a sensitivity of the SA phenomenon to PBL schemes (Fig-
ure 3.9a-b). Simulations employing the YSU scheme (non-local) exhibit larger low-
level cloud cover, fewer cores, and increased core distances compared to those using
the BouLac scheme (local).

To ascertain whether non-local schemes indeed yield greater low-level cloud
cover, we conducted four perturbation experiments designed to provide a more de-
terministic validation of our findings. These experiments, initially configured with
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FIGURE 3.9: Low level cloud cover mean between day 2 to 5, plotted as
function of (a) mean dclr and (b) mean number of convection cores between
day 2 to 5. Blue-green colors indicate runs that produce SA, meanwhile red-
yellow colors represent runs without SA. Low cloud cover evolution for (c)
Tho-SM2-BLY, (d) Tho-TKE-BLY, (e) GCE-SM2-BLY, and (f) GCE-TKE-BLY.
Notice that on the x-axis from -10 to 0, the simulation is the last 10 days of
the simulations using BouLac, and then the values are from the simulation

that start from the last timestep of the BouLac runs but that use YSU.

BouLac scheme, utilized the final state of these runs as initial conditions of a random
state (details in § 3.3). Subsequent 10-day simulations with a transition to the YSU
scheme are performed, and reveal two consistent trends: (i) the onset of a dry patch
typically occurs around day 6 (not shown). (ii) An increase in low-level cloud cover
is observed between 950 to 850 hPa across all simulations, regardless of sub-grid
scale or microphysics scheme (Figure 3.9c-d-e-f), thus indicating a direct relation-
ship between changes in low clouds and the choice of PBL scheme.

Non-local schemes generate larger low-cloud cover probably due to two main
reasons. Firstly, they feature stronger vertical mixing within the boundary layer
compared to local schemes (Hu et al., 2010; Xie et al., 2012, 2013). This enhanced
mixing promotes the ascent of moist air parcels, facilitating low-level cloud forma-
tion. Secondly, non-local schemes induce stronger entrainment from the top of the
boundary layer, driven by larger moisture gradients (Figure A.9), thereby promoting
enhanced low-cloud formation, consistent with Hu et al. (2010) results.
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Based on our findings, we propose that the observed increase in low-level cloud
cover instigate a circulation pattern, facilitating the transfer of MSE from drier to
moister regions, as initially suggested by Muller and Bony (2015). To quantify the
circulation between dry to moist regions circulation, we use the stream function
Ψ (see method section for details). Figure 3.10 show a consistent net circulation
from dry to moist regions, resembling the circulation reported by previous studies
(Bretherton et al., 2005; Coppin and Bony, 2015; Muller and Romps, 2018). This cir-
culation is primarily induced by anomalies produced by low clouds (Figure A.10),
consistent with the LW radiative cooling anomalies (Figure A.11), although the clear
sky component also exerts an influence, meanwhile the SW radiative cooling (Figure
A.12) has a minor contribution.

This aforementioned low-level circulation implies that the spatial variability of
low-level cooling strongly favors the development of SA (Muller and Bony, 2015;
Shamekh et al., 2020a). This is because low-level cooling (due to low-clouds) in dry
regions promotes subsidence, which, in turn, triggers a low-level flow from dry to
moist areas, resulting in an upgradient transport of MSE and, consequently, favoring
SA. This is evident in Figure 3.10, where the circulation of the aggregated runs fails
to extend to the driest columns, especially between ≈ 850 and 900 hPa (as indicated,
as an example, by the bold dashed line). Instead, it remains predominantly within
intermediate humid regions, promoting dryness in the dry areas while simultane-
ously moistening the already humid regions (Muller and Bony, 2015), reminiscent
to the idea that redistribution of moisture from dry to moist regions is an essential
aspect for SA development (Jeevanjee and Romps, 2013). This finding is supported
by a mechanism denial experiment we performed (not shown), in which the con-
tribution of low clouds to radiative cooling is eliminated, and SA do not develop,
consistent with previous studies that have conducted similar experiments (Muller
and Held, 2012; Muller and Bony, 2015).

The LW clear-sky component (Figure A.11) also influences the generation of a
low-level circulation that exports MSE upgradient. This occurs because non-local
schemes indirectly incorporate horizontal moisture advection within the boundary
layer over broader spatial scales (Potvin et al., 2020; Segura et al., 2021), unlike local
schemes that only consider neighboring pixels (Hu et al., 2010). This efficient large-
scale moisture transport also promotes an increase in moisture gradients within the
boundary layer, leading to an enhancement in low-level circulation. Additionally,
heightened moisture gradients can facilitate the development of dry regions and,
subsequently of SA, aligning with the findings of Yang (2018) and Yao et al. (2022).

These result arise the following question: what is the relation between low-
clouds and convective core counts, depicted in Figure 3.9a-b? Simulations that ag-
gregate has larger low level cloud amounts, producing stronger cooling (Figure
A.13), as this cooling need to be balance by subsidence, the subsidence strength in-
crease. This means that there are less zones prompt for the triggering of convection,
disfavoring core counts, subsequently increasing dclr, and enhancing the develop-
ment of SA, which is consistent with the simple model of Biagioli and Tompkins
(2023a). To show this, we compute the convective inhibition (CIN) for each pixel
(Ladwig, 2017) in the simulations discussed in this section, since CIN provides in-
sights into regions where convection may be hindered or triggered (Emanuel, 1994;
Holton, 2004).
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FIGURE 3.10: Net radiative cooling (colors) between day 2 to 5 ordered
on TCWV-%tile. For (a) Tho-SM2-YSU, (b) Tho-SM-BL, (c) GCE-SM2-YSU,
(d) GCE-SM2-BL, (e) Tho-TKE-YSU, (f) Tho-TKE-BL, (g) GCE-TKE-YSU,
and (h) GCE-TKE-BL. The left column runs produce SA, while the runs on
the right column produce random convection. Black contours indicate the
stream function Ψ as a function of TCWV-%tile and height (units 10−2 kg
m−2 s−1). The bold dashed line represents the -12 line, illustrating, how
the circulation persists within intermediate humid and the moistest regions.
Purple contours indicate the liquid water mixing ratio (units 10−5 kg kg−1).
The arrows schematically show the subsidence due to radiative cooling
(blue) and rising motion caused by warming (red), along with the low-level

and mid-level (solid black) flows induced.
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FIGURE 3.11: PDFs for Convective Inhibition (CIN) for (a) Tho-SM2-YSU
and Tho-SM2-BL, (b) GCE-SM2-YSU and GCE-SM2-BL, (c) Tho-TKE-YSU
and Tho-TKE-BL, and (d) GCE-TKE-YSU and GCE-TKE-BL from day 2 to
day 5. The vertical dotted line indicates the threshold identified by Behrendt
et al. (2011) beyond which deep convection is strongly disfavor. Notice that
blue colors depict aggregated runs, while red colors represent runs without

SA.

Figure 3.11 illustrates that simulations where SA occurs exhibit fewer regions
with weak CIN values and more regions with stronger CIN compared to simula-
tions without SA development. This is highlighted by the vertical dotted line, repre-
senting the threshold distinguishing between favorable and unfavorable conditions
for deep convection initiation (Behrendt et al., 2011). In aggregated runs, convection
is less likely to be triggered, not only because there are fewer regions conducive to
new convection, but also due to larger areas of strong CIN, which actively inhibit
convection initiation. Consequently, runs with SA display fewer convective cores
and a larger dclr.

3.5 Chapter Summary and Conclusions

The aim of this study was to understand the mechanisms influencing the occurrence
or prevention of convective self-aggregation (SA) across diverse idealized modeling
scenarios. Using the WRF model, we explored 24 different combinations of param-
eterizations, including sub-grid scale mixing, planetary boundary layer (PBL), and
microphysics, without modifying domain characteristics. Our analysis and exper-
iments highlight the crucial role played by the maximum free convective distance
(dclr) in determining whether simulations undergo a transition to an SA state or
maintain a random configuration. This parameter, dclr, reveals the nuanced sensi-
tivity of SA to perturbations in sub-grid scale mixing, PBL, and microphysics.

In essence, the propensity for convective SA intensifies with an increased dclr,
especially when cold pools (CPs) are characterized by limited size, intensity, and
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gust front convergence. These combined factors are significant due to several phe-
nomena: Convective Triggering: Reduced CP intensity, size, and gust front conver-
gence result in decreased convective triggering. This is attributed to fewer CP colli-
sions and a reduction in moisture convergence at their fronts, ultimately leading to
a lower core count and an increase in dclr—favoring aggregation. Distinct Moisture
Redistribution: Larger dclr and weaker CP intensity and size foster the emergence
of dry regions. The spatial separation of moisture sources (Biagioli and Tompkins,
2023a) and less efficient moisture redistribution, characterized by reduced effective-
ness from distant sources, collaborate to create and reinforce these dry zones. Diver-
gent Feedback: The dry patches intensify through radiative cooling and subsidence.
Subsidence accentuates the cooling and drying of non-convective regions, resulting
in dry anomalies and positive pressure anomalies (Yao et al., 2022). This induces a
divergent flow that further dries the region, creating a feedback mechanism, named
here divergent feedback (Shamekh et al., 2020a).

Alternatively, the interconnected variables influencing dclr highlight its impor-
tant role in understanding SA development. These variables exhibit intricate inter-
plays and modulations:

• Sub-Grid Scale Mixing: The horizontal mixing imparts entrainment, ampli-
fying transported mass within clouds to yield large convective cores, albeit in
fewer numbers. A diminished number of cores escalates dclr, culminating in
the onset and amplification of dry patches and leading to SA.

• Microphysics: The evaporation of rain entails multifaceted repercussions. Be-
yond affecting CP intensity/size, it imparts changes to convective core count,
and dclr. Weaker evaporation translates to less efficient moisture redistribution
and weaker CP gust fronts convergence, resulting in less conducive conditions
for convection triggering (Tompkins, 2001b; Bretherton and Blossey, 2017; Fu-
glestvedt and Haerter, 2020), thus modulating convective core number, dclr,
and subsequently SA.

• PBL: Non-local schemes generate larger low-cloud cover, even in dry regions,
due to strong entrainment from the top Hu et al. (2010). These low clouds
heightens radiative cooling, fostering a circulation that maintain moisture in
the moist regions, favoring SA. Additionally, the pronounced radiative cool-
ing prompts stronger subsidence, reducing convective triggering, diminishing
core counts, increasing dclr, and promoting SA (Muller and Bony, 2015; Coppin
and Bony, 2015).

Our investigation has yielded valuable insights, yet has also shown unexplored
avenues that merit investigation. We outline several questions warranting attention
for future research:

1. Microphysical Factors Governing Convective Cores: Beyond rain evapora-
tion, an unaddressed query pertains to the microphysical parameters steering
the number of convective cores.

2. Unraveling Cold Pool Impact on SA: The intricate role of CPs in SA prompts
further exploration: (i) Understanding their influence on moisture redistri-
bution; (ii) Investigating their ability to modify convective core number and
dclr, particularly through a space-filling framework, affecting SA development
probability; (iii) Examining how CP intensity, size, and moisture redistribution
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collectively influence SA emergence; (iv) Modifying rain evaporation induces
changes in CP characteristics, requiring further experiments or simple models
for a comprehensive understanding of their role in SA.

3. Seeking Mechanisms in Observations: Observational campaigns can enhance
our understanding of the presented results. In the context of emerging dry
regions associated with CPs, conducting surface moisture measurements in
CP-prone regions can differentiate between dry anomalies caused by CPs and
location-specific variations. This, along with examining dry anomaly lifetimes
and clustering patterns, can provide insights into whether CPs lead to dry
anomalies and favorable conditions for SA in nature, as suggested by the pre-
sented results.

In summation, these questions underscore the avenues yet to be traversed in
comprehending the intricacies of SA. Addressing these inquiries would allow to en-
hance our understanding of the phenomenon and also to illuminate novel facets of
its governing mechanisms.
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Chapter 4

Dynamical and Thermodynamical
Drivers of Humidity Variability in
the Tropical Western Pacific Warm
Pool

4.1 Abstract

Idealized model simulations reveal spontaneous aggregation of tropical convection
on the beta-mesoscale due to radiative-cloud feedbacks, influencing humidity vari-
ance and potentially impacting climate sensitivity. Our multivariate analysis of
tropical Western Pacific observations challenges idealized models, showing that de-
spite radiative and surface fluxes promoting convection clustering in boreal sum-
mer/autumn, a random configuration with homogeneously mixed humidity pre-
vails due to homogeneous sea surface temperature (SST). Conversely, in boreal win-
ter/spring, with a weak meridional SST gradient, organized convection occurs over
warm SST regions, introducing substantial meridional humidity gradients. Periodic
episodes of counter-gradient convection and limited humidity variance are linked to
westward propagating convectively coupled Rossby waves. This underscores SST
gradients and equatorial wave dynamics as key drivers of convective organization
and humidity variability in the Pacific warm pool.

4.2 Introduction

Water vapor, a key greenhouse gas, plays a major role in the tropical energy bud-
get. Climate models project a positive feedback, anticipating an increase in specific
humidity under the assumption of constant relative humidity (Colman and Soden,
2021). However, spatial variations in water vapor, influenced by convection pat-
terns, may impact this response. In the tropics, convective precipitation correlates
exponentially with column humidity (Bretherton et al., 2004; Rushley et al., 2018).
The aftermath of convection is a saturated free troposphere, while drying occurs
in non-convective areas due to compensating subsidence (Sun and Lindzen, 1993).
This knowledge has facilitated the development of simple models, grounded in col-
umn saturation over high sea surface temperatures (SSTs) or areas characterized by
upward motions balanced by advection, and compensatory subsidence elsewhere
(Sherwood, 1996; Pierrehumbert, 1998). These models have been instrumental in
replicating the large-scale water vapor distribution in the tropics, helping us explain
the climatological relationship between total column water vapor (TCWV) and SSTs
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(Kanemaru and Masunaga, 2013).

While these broad, tropics-scale models can explain the mean climatology of the
water vapor distribution and radiation budget, recent evidence suggests that the
details of the arrangement of convective clouds, particularly the degree of spatial
"clustering" over scales of a few hundred kilometers (the beta and alpha mesoscale),
also play a crucial role in understanding temporal variations in the tropical energy
budget. Deep convective activity in the tropics migrates around the interior and
boundaries of a moist region with TCWV exceeding 48 kg m−2, separated from the
dry subsidence regions by sharp horizontal moisture gradients (Mapes et al., 2018).
This, combined with low-level static stability that determines low cloud amount, a
metric of the deep convective arrangement, Iorg (Tompkins and Semie, 2017), has
been shown to explain nearly all of the variability in the net tropical radiation bud-
get over monthly to annual time scales (Bony et al., 2020). This result is particu-
larly intriguing, as a scale analysis of Iorg has demonstrated that it measures convec-
tive clustering almost exclusively over the beta mesoscale (20-200 km) (Biagioli and
Tompkins, 2023b). Thus, mesoscale variations in the arrangement of convection ap-
pear to determine the moisture leaving the moist region to the adjacent subsidence
zones, impacting the energy budget of the drier "radiator fins" of the tropical atmo-
sphere (Pierrehumbert, 1995).

Understanding what determines the organization of convection and associated
patterns of mesoscale humidity variability is crucial for gaining insight into drivers
of variations in the tropical radiative budget, and it may also be essential for assess-
ing tropical climate sensitivity. Experiments with cloud-resolving models (CRMs)
show that convection can spontaneously cluster, leading to very dry atmospheres,
even in the absence of heterogeneous large-scale dynamical forcing, due to spatial
heterogeneity in diabatic heating, such as long-wave (LW) cloud forcing (Tompkins
and Craig, 1998a; Bretherton et al., 2005; Muller and Held, 2012; Wing and Emanuel,
2014). If this organization of convection is sensitive to the tropical mean SST, it could
act as an additional climate feedback, which is as yet relatively unexplored and
poorly understood (Emanuel et al., 2014). One concern is that if the spatial scales
of the clustering are important on the alpha (200-1000 km) and beta-mesoscale, then
it might be missing or poorly represented in global climate models that employ clas-
sical parameterization schemes. Unfortunately, initial attempts to assess this using
idealized model intercomparisons have failed to show any consensus between mod-
els (Wing et al., 2020).

One hindrance to progress is the difficulty of assessing convective organization
with present-generation observations. Various attempts to measure convective orga-
nization have been made, using a variety of "measures" of convective organization,
which in a recent comprehensive review by Biagioli and Tompkins (2023b), were di-
vided into direct and indirect metrics. Direct measures of organization attempt to
identify the location of convective updrafts and the relative spatial organization of
these. This can be done using ground-based scanning precipitation or Doppler radar
(Radtke et al., 2022), but it is restricted to specific limited spatial areas where the
radar is located. The 94 GHz polar-orbiting CloudSat radar, on the other hand, was
not a scanning instrument and thus could not discern spatial organization. The lack
of Doppler radar in space and the relatively coarse resolution of remotely sensed
precipitation observations mean that space-bound measures of organization must
thus attempt to use cloud locations or top-of-atmosphere (TOA) outgoing longwave
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radiation (OLR) as proxies for convective location. While this can discern organiza-
tional modes of convection on large scales (>1000 km), such as the Madden Julian
Oscillation, eastward propagating moist-Kelvin waves, and westward propagating
Rossby waves (Wheeler and Kiladis, 1999), cloud overlap complicates this over the
mesoscale in visible and infrared imagery (Weger et al., 1992; Tobin et al., 2012), de-
spite the application of filters to try to mitigate such effects and identify overshooting
tops (Bony et al., 2020).

Complementary to this approach, indirect metrics attempt to identify convec-
tive clustering through its impact on the environment, such as clustering increasing
spatial humidity or moist static energy variance (Holloway et al., 2017). As noted
by Biagioli and Tompkins (2023b), the issue with these univariate signatures is that
they are influenced by various factors in addition to convective organization, such
as wind shear or lower boundary temperature, which complicates the comparison
of scenes with different lower boundary conditions. However, progress can be made
by adopting other indirect metrics from idealized modeling studies, notably identi-
fying bi- or multivariate relationships between SST and TCWV variance in different
phases of clustering. To date, limited use of such bivariate metrics has been made
in past observational studies (Holloway et al., 2017). Here, we aim to further under-
stand the controls of humidity variability on the mesoscale and its association with
deep convective organization in state-of-the-art observations in the tropical western
Pacific, applying a novel but simple multivariate analysis technique adopted from
idealized modeling studies (Tompkins and Semie, 2021).

4.3 Data and Methods

The analysis uses the latest generation satellite retrievals for column water vapor
(from MIMIC-TPWV2), and SST (from Himawari-8 and NOAA OISST), supplemented
by ERA-5 reanalysis.

4.3.1 Satellite datasets

We used the 3-hourly TOA OLR from the Gridded Satellite (GridSat) B1 dataset
(Knapp et al., 2011). This dataset has a temporal uncertainty of less than 0.1 K per
decade and has a horizontal resolution of 1.0◦. Hourly SST (level 3) and Cloud Top
Height (CTop; level 2) were downloaded from the Himawari-8 Collection version
1.2. The Himawari-8 is a geostationary meteorological satellite operated by the Japan
Meteorological Agency (JMA) that was launched on October 2014 and became oper-
ational on July 2015 (Bessho et al., 2016). The SST has a horizontal resolution of 2 km
and has been previously evaluated by other authors (e.g., Kurihara et al. 2016, 2021).
The CTop was used to calculate the cloud fraction and has a horizontal resolution of
5 km. This product is regarded as one of the most precise cloud products (e.g., Ishida
and Nakajima 2009; Ishida et al. 2011). Additionally, we incorporate daily SST data
from NOAA Optimum Interpolation SST (OISST) version 2.1 with a spatial resolu-
tion of 0.25◦ (Huang et al., 2021). This dataset combines ship measurements, satellite
imagery, and buoy data to create a blended product that provides an accurate rep-
resentation of SST. For comprehensive information on the dataset and its validation,
the reader is refer to Huang et al. (2021).
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The Morphed Integrated Microwave Imagery CIMSS for Total Precipitable Water
(hereafter MIMIC) product developed by the Cooperative Institute for Meteorolog-
ical Satellite Studies (CIMSS) was used in this study. It is an experimental product
based on the morphological compositing of data from several polar-orbiting satel-
lites (Wimmers and Velden, 2011). Its mean average error is between 0.5-2 mm over
the ocean (Wimmers and Velden, 2011), and its horizontal resolution is 0.25◦.

For precipitation, we used data from the Global Precipitation Measurement (GPM)
Core Observatory spacecraft, which has an advanced dual-frequency precipitation
radar and a state of the art microwave imager. Due to these sensors, the instrument
is capable of sensing light rain and falling snow (Hou et al., 2008, 2014), making it
more reliable. The data used has a 30-minutes temporal resolution, a horizontal res-
olution of 5 km, and a bias of less than 50% at 1 mm h−1 and of 25% at 10 mm h−1

(Hou et al., 2013; Skofronick-Jackson et al., 2018). It is important to mention that all
the datasets used in this study were downloaded for the time period of 1 January
2017 to 31 December 2021.

4.3.2 Meteorological Reanalyses

Reanalyses are one of the best estimates of global atmospheric conditions available
(Hersbach et al., 2020). Here we used the ERA5 reanalysis data, which is the fifth
generation atmospheric reanalysis product from the European Centre for Medium-
Range Weather Forecasts (ECMWF). It provides us with hourly data for wind com-
ponents, air temperature, specific humidity, relative humidity (RH), and specific ice
and liquid water content. We use data from the surface until the 750 hPa level with a
vertical resolution of 25 hPa and then with a 50 hPa resolution until 100 hPa level. We
also used single-level hourly data for the SST, latent heat (LH) and sensible heat (SH)
fluxes, 10 meter u and v components of the wind, 2 meter air temperature, TCWV,
both components of the vertically integrated water vapor flux (WVF), cloud ice wa-
ter path (CIWP), cloud liquid water path (CLWP), all-sky TOA OLR and clear-sky
TOA OLR, mean surface upward LW clear (LWCUpw) and all sky (LWUpw) radia-
tion, all-sky and clear-sky shortwave (SW) radiation.

Hourly data were downloaded for the time period of 1 January 2017 to 31 De-
cember 2021 with a horizontal resolution of 0.25◦. Note that in order to reduce the
uncertainty (Chen et al., 2022), all the ERA5 reanalysis datasets were compared with
their respective (available) satellite product counterparts. Noteworthy the fact that
all map plots were constructed using the Cartopy Python package (Met-Office, 2015).

4.3.3 Identifying Organize and Reversal Regimes

To identify convective organization in these regions, we employ simple multivariate
analysis metrics that have been applied to idealized CRMs (Wing et al., 2020). Us-
ing experiments with a slab ocean coupled to a high-resolution atmospheric CRM,
several characteristics can be discerned in random and clustered convective states.
Beginning with homogeneous conditions, convection in these simulations is initially
randomly arranged, with the exception of scales below 20 km due to the action of
cold pools (Tompkins and Semie, 2017).

Cloud-resolving model studies have sought to comprehend the multivariate re-
lationships between convective activity, water vapor, and SST by analyzing their
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evolution in water vapor space or energy space, following the approach introduced
by Bretherton et al. (2005) and Wing and Emanuel (2014). In these studies, the
mesoscale-sized, two-dimensional longitude-latitude simulation domain is reordered
into a single vector arranged from driest to moistest columns (Wing and Emanuel,
2014; Tompkins and Semie, 2021) or, similarly, in terms of moist static energy (Brether-
ton et al., 2005). Subsequently, other variables can be binned as a function of the
TCWV.

In situations characterized by random convection, spatial variations in SST and
water vapor are limited, and SST shows a spatial anti-correlation with water vapor,
as SW radiation is intensified in clear sky moist regions. Conversely, following the
onset of convective aggregation, the spatial variance of humidity significantly in-
creases, manifesting dry areas alongside convectively moist regions (Shamekh et al.,
2020a; Tompkins and Semie, 2021). The presence of these dry areas allows the en-
hanced OLR and LH flux to outweigh the increased incoming SW in the surface
energy budget, leading to cooler SSTs. In summary, the correlation between SST
and TCWV is negative, with warmer SSTs over the moisture-conducting regions in
states of random convection, but becomes positives in states of clustered convection.

We apply this method to analyze observations over the target regions. At each
time step, we determine the linear regression relationship using SST anomalies (from
Himawari-8) as a function of the sorted TCWV field (from MIMIC-TPWV2) and cal-
culate the slope ( dSST

dTCWV f with units of Km2kg−1). Composites of "reversal events"
during the boreal winter/spring period are created by applying a threshold to the
SST-humidity linear relationship. Random "reversal" states are identified when the
relationship is less than half of the standard deviation for a minimum of 24 consecu-
tive hours. We conducted sensitivity tests, varying the standard deviation threshold
(0.25*std and 0.75*std) while maintaining the same temporal requirement. Addi-
tionally, we tested the sensitivity of the temporal threshold by keeping the standard
deviation threshold at 0.5*std but changing the temporal threshold to 12 and 36 con-
secutive hours. None of these tests yielded significant differences in the conclusions
or arguments presented in this study.

The sensitivity of this fit was tested by excluding pixels with active precipita-
tion to address increased uncertainty in the Himawari-8 product in the presence of
clouds. However, no significant changes were observed. The slope was also cal-
culated using ERA5 SST and TCWV data, yielding largely similar results (mean
squared error = 9.39e-6 Km2kg−1, with a correlation of 0.88 for 1440 data points).

To identify differences between organized and reversal states and analyze their
implications, we calculated the moisture, wind, cloud, and radiative characteristics
of these states using daily means from ERA5 data. Additionally, to mitigate uncer-
tainty in the procedure and analysis using the slope’s quartiles, calculations were
repeated using satellite products. Results from these datasets continue to support
our arguments and conclusions.

Since we use a very simple statistical relationship to capture the association be-
tween SST and TCWV. We decide to apply a multivariate rotational empirical or-
thogonal function (REOF) analysis for robustness, to do it, we utilize the xeofs li-
brary version 2.2.4 (Rieger and Levang, 2023) in Python 3.8. The results indicate that
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the combined sum of the first three principal components (PCs) effectively repro-
duces the dSST

dTCWV f calculation (Figure B.1 in Appendix B), showcasing a correlation
of 0.67 for the entire dataset and 0.87 for all boreal winter/spring months.

The initial three PCs possess the capability to replicate the dSST
dTCWV f , as each one

encapsulates information regarding the distinct positions of the highest TCWV val-
ues in relation to SST. Consequently, the cumulative sum of these positions inher-
ently reproduces the slope calculation (Figure B.2 in Appendix B). Utilizing the ag-
gregated sum of the first three PCs for conducting all statistical analyses presented in
this study yields results consistent with those obtained using the slope (not shown),
underscoring the robustness of our findings and conclusions.

4.3.4 Organization Feedbacks and Latent Heat Flux Decomposition

An important aspect of this research involves quantifying the radiative and surface
flux feedbacks that contribute to organizing convection in idealized model setups.
Building on the methodologies established in previous studies, both idealized and
real setups (e.g., Wing and Emanuel 2014; Holloway and Woolnough 2016; Holloway
2017; Tompkins and Semie 2021), we computed the LW, SW, SH flux, and LH flux
feedbacks for the entire study period and for the three designated study zones using
ERA5 data.

In addition to this calculation, we decomposed the LH flux contributions by
following and modifying the surface flux decomposition proposed by Tompkins
and Semie (2021), in which the authors avoided the execution of a complex sur-
face flux scheme in offline mode and simplified the procedure by using a machine
learning (ML) approach to approximate the scheme results. The X-matrix (input)
of the ML technique correspond to the 10 m wind speed, ∆q = qsat(SST)− q2, and
∆T = T2 − SST, where q is the water vapor mixing ration, T is the air temperature,
2 is the measurement height, and the Y-matrix (output of the ML technique) is the
LH flux. Both the input and output data (>100000 data points) are from the ERA5
reanalysis.

In this study, we employed a random forest (RF) algorithm for the ML anal-
ysis. The selection of this ML technique involved a randomized search aimed at
determining the most effective ML technique and hyper-parameters, with an imple-
mented early stoppage method to prevent over-fitting (Casallas et al., 2023a). While
other ML techniques were explored as suggested by McGovern et al. (2019), such as
a neural network, support vector machine, and a decision tree algorithm, no signif-
icant sensitivity was observed (not shown). Consequently, we present only the RF
results, given its superior precision. The training process utilized 80% of the data,
and the remaining 20% was reserved for evaluating the RF model under both ran-
dom and clustered conditions. The validation results demonstrated an r2 of 0.93,
a root mean square error (RMSE) of 0.28 W m−2, and a mean bias of 0.12 W m−2.
Once the model was trained, we calculated the impact of each variable (wind, ∆q,
and ∆T) following the procedure outlined by Tompkins and Semie (2021). This in-
volved using the value of one variable in combination with the area-mean values of
the other two variables, ensuring that the RF was employed only within the range
of the training data.
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4.3.5 Offline radiation calculations

To assess the radiative differences between organized and reversal states, we con-
ducted offline calculations using the rapid radiative transfer model (RRTM) (Mlawer
et al., 1997). The ERA5 data served as input, and the climlab code developed by
Rose (2020) facilitated the decomposition of LW total and clear-sky flux anomalies.
Ninety random instances of organized and reversal states were selected, and for
each state, we manipulated SST, specific humidity, temperature, and cloud proper-
ties (i.e., cloud fraction, ice and liquid water cloud mixing ratio) in the RRTM model.
For instance, to isolate the SST contribution, we replaced the SST value of a reversal
episode among the 90 organized episodes while keeping all other variables constant
(i.e., specific humidity, cloud properties, and air temperature), and then we quan-
tify its contribution to the total change. This approach ensured that changes in the
RRTM were solely attributed to SST variations. The methodology drew inspiration
from the radiative anomaly decomposition by Bony et al. (2020).

4.3.6 Equatorial Rossby Wave Analysis

We first use a space-time bandpass filtering following the methodology outlined by
Wheeler and Kiladis (1999). Initially, the OLR data from NOAA (spanning from
January 1, 2002, to December 31, 2023) is detrended and temporally tapered by a
split cosine bell (Gehne et al., 2022). Subsequently, a two-dimensional Fast Fourier
Transform (FFT) (Brigham and Morrow, 1967) is applied for the wave (n = 1) to filter
Equatorial Rossby (ER) Waves (Wheeler and Kiladis, 1999; Kiladis et al., 2006; Gehne
et al., 2022).

Utilizing the aforementioned filtered OLR data, we adopt the method proposed
by Gehne et al. (2022), which builds upon the work of Gottschalck et al. (2010). This
approach involves computing empirical orthogonal functions (EOFs) (Rieger and
Levang, 2023) in the Pacific region (20S to 20N latitude and 120E to 100W longi-
tude). These EOFs serve as a basis for estimating ER wave activity within our study
regions. We then project the filtered OLR data onto the spatial structures (EOFs) spe-
cific to each of the three study regions (for further details, refer to Gehne et al. (2022)
Appendix A), thereby deriving the wave activity within each respective area.

4.4 Results

4.4.1 Seasonal Variation of Water Vapour

Convection organization is evaluated through a multivariate analysis of atmospheric
retrievals, including TCWV, SST, cloud, and rainfall. The analysis focuses on meso-
scale regions of approximately 106 km2 in the tropical western Pacific (Figure 4.1), a
size consistent with domains commonly employed in idealized studies on convec-
tive aggregation. The primary region under study spans from 2N to 9N and from
135E to 145E, strategically located in the Western Pacific warm pool, away from di-
rect influences of the maritime continent. Additional analyses are conducted in sec-
ondary regions to the east. One located at 3N to 10N and 147E to 157E and the other
region straddling the equator (between 3S and 4N, and from 156E to 166E) to verify
the robustness of our findings. Details on the analysis of these secondary regions
can be found in the Appendix B.
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FIGURE 4.1: Annual mean distribution of Precipitation (colors) and SST
(contours) for the study areas. The SST contours start from 301.75 and in-
crease every 0.25K. The dashed rectangles delimits the three study regions.

Regarding the SST annual cycle, a subtle north-south gradient of approximately
1 K spans the 7-degree latitude range during the boreal winter and spring (Figure
B.3 in Appendix B includes the seasonal evolution of the SST, TCWV, and wind in
the regions of interest). Conversely, in the boreal summer months, mean SST gradi-
ents are virtually nonexistent (Figure 4.2). Convection responds to these changes in
SST, with maximum rainfall occurring uniformly across the domain during the sum-
mer (JJA) months, slightly diminishing in the boreal autumn. As the SST cools by
approximately 1 degree in the boreal winter and the main warm pool shifts south of
the equator, rainfall also decreases, exhibiting a local peak at 6N. This precipitation
gradient is most prominent in spring, surpassing a factor of two. While the primary
precipitation maximum is south of the equator during this period, it falls outside the
domain.

These shifts in the distribution of convection significantly impact the spatial vari-
ability of water vapor, a crucial variable for monitoring the onset of convective ag-
gregation in model studies (Bretherton et al., 2005). From June to November, the
mean zonal gradient remains minimal throughout the troposphere, aligning with
the uniform distribution of rainfall and indicative of randomly scattered deep con-
vection. In contrast, during the winter and spring months, a robust north-south gra-
dient of relative humidity prevails above the boundary layer, with mid-tropospheric
relative humidity averaging as low as 40%. This alignment with a peaked precipi-
tation profile suggests organized convection. In summary, spatial variance is at its
minimum during the boreal summer months and peaks in the MAM months. While
large-scale ocean dynamics establish the north-south gradient of convection in win-
ter/spring, our energy balance calculations will reveal that the radiation budgets
tend to amplify this pattern. The reader is also referred to Figure B.3 in Appendix B,
which include maps of the seasonal evolution of water vapor, wind, and SST in the



4.4. Results 61

100

200

300

400

500

600

700

800

900

1000

Pr
es

su
re

 (h
Pa

)
(a) DJF

100

200

300

400

500

600

700

800

900

1000

Pr
es

su
re

 (h
Pa

)

(b) MAM
100

200

300

400

500

600

700

800

900

1000

Pr
es

su
re

 (h
Pa

)

(c) JJA
100

200

300

400

500

600

700

800

900

1000

Pr
es

su
re

 (h
Pa

)

(d) SON

40
45
50
55
60
65
70
75
80
85
90
95
100

Re
la

tiv
e 

Hu
m

id
ity

 (%
)

40 60 80100
RH (%)

40 60 80100
RH (%)

8N-9N 7N-8N 6N-7N 5N-6N 4N-5N 3N-4N 2N-3N

40 60 80100
RH (%)

40 60 80100
RH (%)

2 3 4 5 6 7 8 9
Latitude

301.75

302.00

302.25

302.50

302.75

303.00

303.25

303.50

SS
T 

(K
)

400

600

800

1000

1200

Pr
ec

ip
. (

m
m

)

(e) DJF

2 3 4 5 6 7 8 9
Latitude

301.75

302.00

302.25

302.50

302.75

303.00

303.25

303.50
SS

T 
(K

)

400

600

800

1000

1200

Pr
ec

ip
. (

m
m

)

(f) MAM

2 3 4 5 6 7 8 9
Latitude

301.75

302.00

302.25

302.50

302.75

303.00

303.25

303.50

SS
T 

(K
)

400

600

800

1000

1200

Pr
ec

ip
. (

m
m

)

(g) JJA

2 3 4 5 6 7 8 9
Latitude

301.75

302.00

302.25

302.50

302.75

303.00

303.25

303.50

SS
T 

(K
)

400

600

800

1000

1200

Pr
ec

ip
. (

m
m

)

(h) SON

FIGURE 4.2: Mean seasonal variations in (a-b-c-d) relative humidity as a
function of latitude and height extracted from ERA5 data. It is important to
observe that the right panel illustrates the mean relative humidity as func-
tion of height for each latitudinal degree within the domain (indicated by
colors and explain in the legend). Additionally, the mean seasonal varia-
tions in (e-f-g-h) SST obtained from Himawari with a 24 hour running mean
to give a smoothed version, depicted in red and corresponding to the left
y-axis, are presented alongside rainfall data derived from GPM, shown in

blue and associated with the right y-axis as a function of latitude.

three regions.

4.4.2 Subseasonal Variations of Water Vapour and Organization Regimes

Having established the key differences in meridional seasonal means, we turn our
attention to the evolution of sub-seasonal variability in water vapor and its correla-
tion with convection and SST (refer to methods for details). We focus on two distinct
periods, one in boreal summer and the other in spring, chosen for their representa-
tion of the extremes in background humidity gradients.

During boreal summer, when our focal region is positioned within the main
warm pool region, we validate that mesoscale SST gradients remain limited, even
over shorter time spans (Figure 4.3). Temporal alterations in the distribution of
TCWV are minimal, with the 1st percentile of TCWV rarely surpassing the 48 kg
m−2 threshold that demarcates the boundary between deep convective and non-
convective regions in the deep tropics in the present climate (Mapes et al., 2018).
In this regime, the driest regions often coincide with the SST warm perturbations
within the domain, where SST gradients are small (Figure 4.3c). Convection con-
sistently aligns with the moistest columns, a pattern consistent with prior analyses
(shading in Figure 4.3a) (Bretherton et al., 2004; Holloway et al., 2012; Rushley et al.,
2018). Generally, periods characterized by the highest mean rainfall (Figure 4.3d)
correspond to the largest maximum humidity values within the domain.

This scenario, characterized by constrained humidity and SST spatial variability
and an anti-correlation between SST and TCWV, closely mirrors the characteristics
of randomly organized convection observed in idealized CRM experiments. In such
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FIGURE 4.3: For the 2N-9N, 135E-145E study region during 2017-06-20 to
2017-08-10. (a) Hovmöller plot of NOAAOI SST anomaly (depicted by col-
ors) against MIMIC TCWV retrieval percentile, featuring overlaid black
contours indicating areas of GPM IMERG precipitation at 5 mm hr−1. (b)
Hovmöller plot of MIMIC SST anomaly (represented by colors) relative to
absolute TCWV, clipped between the 1st and 99th percentiles to eliminate
anomalous extremes, with percentile values depicted as contours. (c) Time
series of the SST-TCWV regression. (d) Domain mean GPM IMERG pre-
cipitation rate. Green shading in panels b-d highlights reversal events, sig-
nifying instances where the SST-TCWV regression shifts from positive to

negative for a duration of at least 24 hours.

experiments, convection is distributed across the entire domain, ensuring local mois-
ture sources that prevent any significant drying of specific regions (Figure 4.5a-b).

The situation undergoes a significant transformation in the boreal spring, as il-
lustrated by the example in Figure 4.4 during April/May 2017 (see Figure B.4 in
Appendix B). Two distinct regimes become evident in this analysis. For the majority
of the period, humidity variance surpasses that observed in summer, with the dri-
est region of the domain registering values below 30 kg m−2. In these instances, the
relationship with SST reveals that the coldest SSTs align with the locations of the dri-
est columns, while, consistent with the summer pattern, convection and rainfall are
linked to the moistest columns. SST variance also exhibits an increase. In contrast
to the summer scenario, this pattern, characterized by heightened SST and TCWV
variance and a positive correlation between the two fields, resembles a situation of
aggregated deep convection, where convection is confined to a specific part of the
domain.

Although the aggregated state is the predominant condition during the depicted
spring period, there are distinct multi-day "events", two of which are highlighted
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FIGURE 4.4: For the 2N-9N, 135E-145E study region during 2017-04-01 to
2017-05-22. (a) Hovmöller plot of NOAAOI SST anomaly (depicted by col-
ors) against MIMIC TCWV retrieval percentile, featuring overlaid black
contours indicating areas of GPM IMERG precipitation at 5 mm hr−1. (b)
Hovmöller plot of MIMIC SST anomaly (represented by colors) relative to
absolute TCWV, clipped between the 1st and 99th percentiles to eliminate
anomalous extremes, with percentile values depicted as contours. (c) Time
series of the SST-TCWV regression. (d) Domain mean GPM IMERG pre-
cipitation rate. Green shading in panels b-d highlights reversal events, sig-
nifying instances where the SST-TCWV regression shifts from positive to

negative for a duration of at least 24 hours.
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FIGURE 4.5: Boxplot representations of SST anomalies are categorized based
on TCWV for: (a) a random and an organized state from results of the slab
ocean model of Tompkins and Semie (2021), (b) boreal summer/autumn
and winter/spring periods, and (c) boreal winter/spring reversals and orga-
nized regimes, using Himawari and MIMIC datasets. Consistent results are
observed with NOAA OISST and ERA5 datasets (not-shown). In each box-
plot, the lower end represents the 25th percentile, the upper end shows the
75th percentile, and the middle line indicates the median (50th percentile).
The whiskers extend to the 10th and 90th percentiles. The white square in-

side the box represent the mean of the data.

with green shading. These events witness substantial changes in humidity distri-
butions, marked by a rapid reduction in spatial humidity variability—a key metric
widely employed for assessing convective aggregation. During these events, the dri-
est regions in the domain undergo a swift moistening of at least 20 kg m−2, while the
moistest regions associated with convection remain relatively stable. This outcome
aligns with expectations, as these values are consistent with an approximately satu-
rated moist adiabatic process, with the lower boundary defined by the warmest SST
values. At the same time the SST-humidity relationship undergoes a reversal, with
the warmest SSTs being situated over the driest regions of the domain. These occur-
rences, termed "reversals," persist for several days in this example before returning
to the typical aggregated-like pattern. These reversal events exhibit characteristics
reminiscent of the random convective situations prevalent during the summer pe-
riod.

An examination of Hovmöller plots for other months (not shown) indicates that
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convection in this specific region is randomly distributed when SST gradients are
limited from June to November. However, during the other months, characterized
by a weak zonal SST gradient and intermittent episodes of randomly organized con-
vection, the SST-humidity relationship becomes inverted or reversed.

For a more systematic analysis spanning the entire 6-year period during the bo-
real winter/spring months, Figure 4.6 presents the joint probability density func-
tion of the standard deviation of TCWV (Figure 4.6a-c) and the 5th percentile of
TCWV (indicative of the driest areas in the domain, Figure 4.6b-d), both in compar-
ison with the SST-TCWV regression relationship. The joint PDF reveals that dur-
ing periods of reversals when the regression relationship is 0.5*std smaller than the
mean, σ(TCWV) consistently exhibits low values, signifying homogeneous convec-
tion. This is further emphasized by the remarkably high minimum value within the
domain. The vertical lines in the plot indicate the slope threshold used to distin-
guish between random and clustered convection. The horizontal line represents a
TCWV value of 48 kg m−2, a threshold identified by Mapes et al. (2018) to discern
convecting from non-convecting regions in the deep tropics. For nearly all scenes
characterized by a noticeable random/reversal regime, very few points exhibit drier
conditions than this threshold within the domain. Conversely, all scenes featuring
clustered convection display a positive slope, with the majority of points situated in
the drier regions within the domain.

Hence, during the boreal winter-spring months (see Figure 4.6a-b), scenes char-
acterized by a reversed SST-TCWV regression—indicating that the warmest SSTs
are beneath the driest columns—are consistently associated with homogeneously
arranged convection and uniformly distributed water vapor. In contrast, when con-
vection is clustered, nearly all points fall below the 48 kg m−2 threshold and exhibit
positive slope values. The limited number of points below 48 kg m−2 and with a
reverse/random slope likely corresponds to transition periods, during which con-
vection shifts from a random to an organized state. This observation reinforces the
notion that convection is primarily situated above the warmest SSTs, with clear skies
prevailing over the driest and coolest regions.

In the boreal summer/autumn months (Figure 4.6c-d), TCWV variance dimin-
ishes significantly compared to the boreal winter/spring months, aligning with a
regime of random convection observed in idealized models (Müller and Hoheneg-
ger, 2020b; Biagioli and Tompkins, 2023a). Regarding the 48 kg m−2 threshold line,
nearly no points fall below this threshold, especially when considering the random
part of Figure 4.6d. This indicates that the warmest SST regions align with the
driest areas of the domain, consistent with random conditions in idealized mod-
els (Shamekh et al., 2020a; Tompkins and Semie, 2021).

4.4.3 Impacts of reversal events

To delineate and assess the reversal events, quantify their frequency, evaluate their
impact on the energy budget, and identify their underlying causes, we employed
the criterion of a SST-TCWV relationship persisting above/below half standard de-
viation of the mean for more than 24 consecutive hours (see methods). Our analy-
sis identified a total of 44 "reversal" events for the 2N-9N region, 46 events for the
3N-10N area, and 41 events on the equatorial box, during the boreal winter/spring
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FIGURE 4.6: Joint Probability Density Function (PDF) plots for (a-b) Boreal
Winter/Spring and (c-d) Summer/Autumn, illustrating (a-c) δ(TCWV) and
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dTCWV f . Hexagons colors rep-
resent the distribution of data points in each bin. The purple vertical dashed
line denotes the upper boundary threshold for considering a random event,
while the blue vertical dashed line indicates the lower boundary threshold
for clustered convection. The black horizontal dashed line represents the
48 kg m−2 TCWV threshold distinguishing convective and non-convective

regions, as identified by Mapes et al. (2018).
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FIGURE 4.7: (a-b) ERA5 relative humidity as function of latitude and height
and (c-d) Himawari SST (left y-axis) and GPM precipitation (right y-axis) as
a function of latitude, for the (a-c) organized and (b-d) reversal regimes of

all boreal winter/spring seasons.

period spanning from 2017 to 2022. Averaging over these reversal and clustered pe-
riods allows us to elucidate the impact of these events and investigate their origin.

The reversal events notably influence the meridional distribution of RH within
the domain, as illustrated by dividing the boreal winter/spring period into orga-
nized and reversal phases (Figure 4.7). Throughout the majority of the period when
the SST-TCWV correlation does not indicate a reversal, a pronounced north-south
gradient of RH prevails (see Figure B.5a in Appendix B for a composite map of orga-
nized events in boreal winter-spring months). In this scenario, free tropospheric RH
descends to as low as 40% above the boundary layer, extending northward from 6N.
This low humidity is attributed to the absence of deep convection-induced moisten-
ing, occurring at latitudes with the coolest SST, albeit with a meridional SST gradient
of less than 1 K across the 770 km domain. Precipitation peaks just north of the equa-
tor at 5N in this period. Instead, during reversal episodes (Figure 4.7b-d), the precip-
itation peak shifts further north to 8N, and the water vapor variance is constrained,
resulting in a generally moister domain. The robust anticorrelation between SST
and precipitation becomes evident during these reversal events (see Figures B.5b in
Appendix B for a composite map of reversals and Figure B.6 for an example of a
reversal episode in the boreal winter-spring months).

The uniform humidity distribution (Figure 4.8d-h) significantly influences the
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FIGURE 4.8: (a) All-sky TOA all-sky OLR, (b) TOA OLR, (c) cloud fraction,
and (d) Interquartile Range (IQR) of TCWV as a function of dSST

dTCWV f quartile
for each study region (represented by box color). For reversal and orga-
nized days, (e) all-sky TOA OLR, (f) clear-sky TOA OLR, (g) cloud fraction,
(h) IQR of TCWV, liquid water, and ice mixing ratio are shown for (i) 2N-
9N and 135E-145E, (j) 3N-10 and 147E-157E, and (k) 3S-4N and 156E-166E.
Each boxplot displays the 25th percentile at the lower end, the 75th per-
centile at the upper end, and the median (50th percentile) as the middle
line. Whiskers extend to the 10th and 90th percentiles, with a white square

inside the box representing the mean of the data.

energy balance, causing a distinct reduction in clear-sky TOA OLR during the re-
versal period (Figure 4.8b-f). This reduction is primarily due to increased atmo-
spheric opacity, as confirmed by RRTM model calculations in Figure B.7 (in Ap-
pendix B), emphasizing humidity’s primary role in clear-sky TOA OLR changes.
Conversely, all-sky TOA OLR (Figure 4.8a-e) also shows a statistically significant
decrease, mainly driven by cloud properties, as shown in Figure 4.9, highlighting
clouds’ substantial contribution to TOA OLR differences. Both clear-sky and all-sky
OLR experience a marked decrease exceeding 10 W m−2 (refer to Figure B.8 in Ap-
pendix B for region-specific significant differences). This consistent pattern holds
for the 2N-9N and equatorial regions. In the 3N-10N area, clear-sky LW increases
notably, while all-sky LW shows subtle changes due to a stable cloud fraction in this
region. Despite this, the observed decrease in LW is partly attributed to reversal
periods promoting a more homogeneous and moist domain, thereby reducing OLR.
Although statistically significant, this impact is less pronounced compared to the
contrast between aggregated and non-aggregated states in CRMs.

The prominence of cloud properties as the primary contributors to significant dif-
ferences in all-sky TOA OLR during clustered convection raises the question: What
specific cloud characteristics drive these changes? Unraveling this complexity is
challenging due to the strongly non-linear nature of cloud properties (Bony et al.,
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2020), preventing a straightforward decomposition of their contributions. Given that
the RRTM model utilizes cloud fraction, liquid water, and ice mixing ratios inside
the cloud, we can gain insights into the importance of each element by examining
their behavior.

Figure 4.8i-j-k illustrates the sum of liquid water and ice mixing ratios as a func-
tion of height for both reversal and organized regimes. Notably, clouds appear
thicker during reversal events at both high and low levels, with the difference be-
ing less pronounced in low clouds. This suggests that the contribution of liquid
water and ice mixing ratios is not of zero order, as they act to decrease the all-sky
TOA OLR difference. Consequently, we posit that cloud fraction (Figure 4.8c-g) most
probably from low clouds, since high clouds seem thick, stands out as the most cru-
cial contributor to all-sky TOA OLR differences. This conclusion is supported by the
observation that the two regions exhibiting a significant increase in OLR experience
a decrease in cloud fraction, while the region with no change in cloud fraction also
demonstrates a minimal and statistically insignificant alteration in TOA OLR.

In summary, our findings suggest that the increase in all-sky TOA OLR observed
during days with organized convection is primarily linked to changes in cloud frac-
tion most probably from low clouds, rather than variations in the liquid and ice
mixing ratios within the clouds.

4.4.4 Understanding Reversal Events

What is driving the reversals? In idealized simulations of RCE, where all boundary
conditions are uniform, studies have elucidated the essential role of diabatic feed-
backs in fostering organization. Specifically, cloud-LW interactions take precedence,
primarily influencing the pre-onset stage, with an additional contribution from sur-
face LH flux feedback (Muller and Held, 2012; Wing and Emanuel, 2014; Tompkins
and Semie, 2021). In line with this approach, we organize ERA5 reanalysis flux
anomalies based on TCWV, adopting a technique akin to that employed by Wing
and Emanuel (2014) and Holloway and Woolnough (2016). Positive flux anomalies
in the moistest columns signify a propensity to augment moist static energy variance
and propel aggregation. We segment this diabatic feedback analysis between boreal
winter/spring and summer/autumn periods (Figure 4.10a-b). Further, we dissect
the winter/spring period into organized and reversal periods (Figure 4.10c-d).

The LW cloud and LW clear-sky feedbacks play crucial roles in organizing con-
vection (Wing et al., 2017), with these factors generating the strongest feedbacks
(Tompkins and Craig, 1998a; Stephens et al., 2008; Holloway and Woolnough, 2016;
Holloway et al., 2017). However, in the progression of reversals, the LW clear-sky
feedback counters organization by causing the less cloudy regions to move towards
the warmest SSTs. This movement induces regional heating, creating a negative
feedback with the organization process (refer to Figures B.9 and B.10 in Appendix
B). Simultaneously, anomalies in SW cloud heating remain negative during both pe-
riods, as high clouds attenuate incoming solar radiation.

The LH flux heating anomalies observed here align closely with findings from
previous idealized and observational research (Wing et al., 2017; Holloway et al.,
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FIGURE 4.9: Contributions to all-sky TOA OLR from SST, specific humidity
(Hum), temperature, and cloud components (liquid water, ice, and cloud
fraction) for (a-c-e) organized days replaced with reversal events and for (b-
d-f) reversal days replaced with organized events. The depicted regions are
(a-b) 2N-9N and 135E-145E, (c-d) 3N-10 and 147E-157E, and (e-f) 3S-4N and
156E-166E. The x-axis represents the days on which the replacement was

performed.

2017). Surface fluxes play a reinforcing role in organized convection when in its ran-
dom state and disfavor it when already organized. We dissect the LH flux anoma-
lies into contributions from humidity, stability, and wind (Figure 4.11). Tompkins
and Semie (2021) found a LH flux positive feedback during random convection pri-
marily stemming from temperature and, to a lesser extent, wind speed, while the
negative feedback arises from humidity structures. Our results align with theirs re-
garding the sign of LH flux feedbacks. However, a notable distinction emerges: the
wind-induced surface heat exchange (WISHE) feedback overwhelmingly governs
both negative and positive feedbacks, overshadowing the influence of temperature
and humidity structures, which consistently exhibit a different sign compared to
the wind speed contribution (Figure 4.11g-h-i). Under organized conditions, slow
winds prevail in the convective regions (Wing and Emanuel, 2014). In contrast, dur-
ing reversal episodes, strong wind speeds characterize the moistest regions within
the domain (Figure 4.11g-h-i). This observation aligns with the findings of Retsch
et al. (2022), who emphasize the significant role of wind in organizing convection
based on observational evidence.
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abatic and diabatic feedbacks), ordered by TCWV for (a) boreal sum-
mer/autumn, (b) boreal winter/spring, and for boreal winter/spring (c) re-
versals and (d) organized episodes. Notice that warming anomalies in the

atmosphere are represented by positive values.

As diabatic forcing consistently acts to aggregate convection in these observa-
tions, the query arises as to how and why the aggregated convection transitions into
a state of random convection characterized by a narrowed humidity distribution in
the winter/spring seasons under the influence of a zonal SST gradient. To elucidate
this, we construct composites of 44 reversal events in the 2N-9N region, 46 in the
3N-10N area, and 41 in the equatorial box, occurring between 2017 and 2021. The
zero hour is identified as the time when the SST-humidity negative correlation is at
its minimum within each event (Figure 4.12). The composite, focusing on the main
target region at 2N-9N and 135E-145E, reveals a westward-propagating mode of con-
vection initiating to the east of the target region around 160E (see Figures B.11 and
B.12 in Appendix B for the same composite analysis but accounting for the other two
study regions, yielding similar conclusions). A symmetric convective perturbation
develops to the north and south of the equator at approximately 10N and 10S, with
convection relatively suppressed on the equator (Yoneyama, 2003). The convective
signal propagates westward at a speed of ≈ 4.5 m s−1, accelerating as it reaches the
western Pacific (to ≈ 5.5 m s−1), consistent with the findings of Mayta et al. (2022).
The propagation speeds, vorticity, OLR anomaly structure, and wavelength align
with the characteristics of equatorial convectively coupled Rossby waves (Kiladis
and Wheeler, 1995; Kiladis et al., 2009). This conclusion is consistent with Mayta
et al. (2022), who demonstrated that westward-propagating Rossby waves also ex-
plain a significant portion of cloud fraction variability in this region. These waves
represent a moisture mode excited by diabatic feedbacks (Figure 4.11), including
wind-induced surface flux enhancement, consistent with Chen (2022). Additionally,
alongside constructing the composite using the index, we performed a multivariate
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FIGURE 4.11: Contributions to LH surface flux perturbations in the reversal
regime are depicted for (a) the entire dataset, and separately for (b) boreal
summer-autumn and (c) winter-spring. Similarly, contributions are illus-
trated for the organized regime, encompassing (c) the entire dataset, and
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emanate from (g) wind speed perturbations, (h) humidity (∆q), and (i) sta-
bility (∆T) differences. Thermodynamic perturbations refer to the combined
contribution of ∆T and ∆q terms. The calculations are executed using a ran-
dom forest (RF) algorithm fitted to the ERA5 dataset (refer to Section 4.3 for

details).
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REOF analysis of SST, and TCWV, yielding the same conclusions (see Figure B.13 in
Appendix B for the 2N-9N region).

Another crucial characteristic of the westward-propagating wave is its ability to
induce convergence, altering wind direction and generating a southerly flow (Fig-
ure B.14 in Appendix B). This phenomenon has been consistently observed in prior
studies focused on warm pool wave dynamics (Takayabu and Nitta, 1993; Takayabu,
1994; Kiladis and Wheeler, 1995). The southerly flow facilitates the transport of
moisture from the center of the warm pool into the domain, leading to a displace-
ment of the majority of convection to the north and the initiation of convection to the
south of the domain. This process results in homogeneous TCWV conditions and
the occurrence of random convection, irrespective of the strong SST gradients. This
underscores the significance of wind dynamics in maintaining organization (Retsch
et al., 2022).

The key determinant of mesoscale humidity variability in these tropical warm
pool study regions seems to be large-scale wave dynamics. Consequently, a compre-
hensive understanding emerges, where convection during the winter/spring period
typically exists in a clustered state characterized by robust meridional gradients of
free tropospheric humidity, owing to the presence of a weak north-south SST gra-
dient. However, this clustered state is intermittently disrupted by the passage of
westward-propagating Rossby wave as shown in Figure 4.13a-c-e. These induce a
more homogeneous convection pattern that generally opposes the SST gradient, and
is characterized by a southerly flow that imports humidity within the domain result-
ing in very uniform distributions of TCWV.

We hypothesize that the aforementioned Equatorial Rossby waves instigate con-
vective anomalies at 10N and 10S, leading to peak convective activity over the coolest
SSTs in the domain. This counter-gradient convective activity could have a relation
with the TCWV variance of the entire Pacific [σ(TCWV)]. If there is indeed a posi-
tive relation between convective activity and σ(TCWV) across the entire Pacific (as
the preliminary analysis of Figure 4.13b-d-f suggests), it could imply an intensified
export of humidity to the subsiding branches of the Hadley/Walker circulations.
Furthermore, we propose that the observed correlation between mesoscale organi-
zation and mid-tropospheric humidity, highlighted by Bony et al. (2020), may indi-
cate variability in Rossby wave activity in the tropical western Pacific region.

In a preliminary analysis, we seem to see that the TCWV variance in the area be-
tween 3S-4N and 156E-166E shows a correlation with the OLR of the whole tropics.
This implies that the controls of σ(TCWV) can account for a substantial portion of
the annual and seasonal variance in TOA OLR in the Pacific. In the region where the
Hadley/Walker circulations are centered, the correlation is notably strong. How-
ever, in the western region (between 2N-9N and 135E-145E), although the correla-
tion remains high in the south where convection typically develops, the rest of the
region does not exhibit a statistically significant correlation. A more detailed anal-
ysis is necessary to understand this correlations, and this will be addressed in the
forthcoming paper based on this chapter.
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FIGURE 4.12: Composite of 44 reversal states on boreal winter-spring
months and their related lags. The colors represent the OLR anomaly for
each of the lags. The contours are the SST and the arrows size represent
the WVF magnitude and their orientation shows the WVF direction. Notice
that each panel indicate the lag in number of days. The dashed rectangle

represents the study area between 2N-9N and 135E-145E.
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FIGURE 4.13: Equatorial Rossby wave filtered (and deseasonalized) OLR
composites of reversal states during boreal winter/spring months. The
composites depict (a) 44 events in the 2N-9N and 135E-145E region, (c) 46
episodes in the 3N-10N and 147E-157E zone, and (e) 41 events in the 3S-4N
and 156E-166E area. Wave activity for the (b) 2N-9N and 135E-145E, (d) 3N-
10N and 147E-157E, and (f) 3S-4N and 156E-166E regions as a function of

TCWV variance for the entire Pacific during boreal winter/spring.

4.5 Chapter Summary and Conclusions

Water vapor, a crucial greenhouse gas and regulator of the tropical energy budget, is
well-understood in terms of the mean activity of deep convection. However, recent
findings by Bony et al. (2020) suggest that variations in convection distribution at
scales less than 1000 km, specifically the alpha and beta meso-scales, play a signif-
icant role in shaping interannual variations in the water vapor distribution. These
variations, coupled with changes in low clouds, appear to have a profound impact
on the year-to-year fluctuations in the TOA net radiative budget.

If convection is more clustered at mesoscale, the local atmosphere is drier, which
in turn impacts the mid-tropospheric humidity in the descending branches of the
Walker and Hadley circulations, increasing the net infra-red flux to space averaged
over the tropics and subtropics. Understanding the first order controls of convec-
tion organization and water vapor variability in the ITCZ is crucial. To address
this, we employed a simple multivariate analysis commonly used in idealized cloud-
resolving studies to assess the impacts of convective organization. Idealized studies
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reveal that in a clustered state, the TCWV distribution widens due to the presence
of dry columns, and SST and water vapor amounts exhibit a positive correlation.
Conversely, in a more randomly organized convection, the water vapor distribution
is narrow, with high mean values, and SST is negatively correlated with TCWV. As
a case study, we examine these relationships in a domain north of the equator in the
warm pool region of the tropical western Pacific.

Focusing on mesoscale domains of approximately O(1e6) km2 in the warm pool
region, our analysis indicates that during summer/autumn months, when spatial
SST gradients are small, the multivariate signature aligns strongly with randomly
organized convection. This occurs despite diabatic forcings consistently acting to
cluster convection and spatial humidity gradients remaining small. In contrast, dur-
ing boreal winter/spring months when the warmest SSTs shift southward, and our
study regions experience a weak north-south SST gradient, the analysis suggests a
predominantly aggregated convection state with notable mesoscale humidity vari-
ability. However, this aggregated state is intermittently interrupted by episodes
where convection transitions to a random state, characterized by a moister atmo-
sphere and reduced humidity gradients.

Using the SST-TCWV correlation as an index for the clustered state, we con-
structed a composite of random events over our study periods. Our analysis of
diabatic forcings revealed consistent behaviors in radiative-cloud and moisture feed-
backs, which act to cluster convection, while the surface LH feedback promotes clus-
tering when convection is in a random state. However, the latter feedback reverses
its role once convection becomes aggregated, aligning with findings from idealized
models.

Despite radiative feedbacks favoring convection aggregation, sporadic breakup
of clustering during the boreal winter/spring period, in spite of the weak meridional
SST gradient, is attributed to westward propagating, convectively coupled equato-
rial Rossby waves. These waves initiate convective anomalies at 10N and 10S, re-
sulting in peak convective activity occurring over the coolest SSTs in the domain.
This counter-gradient convective activity results in a more uniform humidity distri-
bution, leading to a notable impact on TOA OLR, with a decrease of approximately
10 W m−2 attributed to reduced humidity and cloud cover. In regions where cloud
cover remains relatively stable, the changes in TOA OLR are not statistically signifi-
cant. The broader zone of convective activity, with TCWV exceeding 48 kg m−2 from
the equator to 9N, suggests increased export of humidity to the subsiding branches
of the Hadley/Walker circulations. The observed connection between mesoscale
organization, quantified by the Iorg index, and mid-tropospheric humidity as iden-
tified in Bony et al. (2020), may indicate variations in westward propagating wave
activity within the tropical western Pacific. A preliminary examination supports the
notion that the TOA OLR in the Pacific could be predominantly influenced by wave
dynamics and the arrangement of convection.
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Chapter 5

From Observations to a Realistic
Simulations: the Mechanisms that
Develop and Prevent Organization
in Nature

5.1 Abstract

This study examines the spatial organization of convection and humidity in a 1000
km x 700 km region of the Pacific Warm Pool lying north of the equator. In boreal
winter/spring, clustered convection prevails, and westward propagating waves dis-
rupt convection clusters, impacting wind patterns and large-scale moisture struc-
tures. In contrast, boreal summer/autumn experiences fully random convection
despite conducive diabatic feedbacks. This research explores the factors influenc-
ing organized and random convection, particularly during boreal winter/spring
breakup episodes. Utilizing advanced satellite observations and reanalysis data, we
evaluate variables that contribute to or hinder clustering. Cloud-resolving mod-
els and machine learning aid in conducting sensitivity experiments by manipulat-
ing large-scale conditions. Our findings highlight moisture advection as the criti-
cal force steering convection states, determining either randomness or organization.
Breakup episodes, characterized by southerly flows importing moisture, redirect
deep convection northward, inducing new convection in the southern region, pro-
moting random convection. Organized conditions involve a weak northerly flow,
retaining convection in the southern region. While large-scale humidity primar-
ily contributes to clustering, it fails to prevent breakup episodes, emphasizing the
crucial role of the wind. Low-level meridional winds emerge as significant con-
tributors to strong breakup episodes, even capable of inducing prolonged episodes
through continual moisture import from the south. Alternatively, consistently im-
posed southward winds extend clustered convection periods, yet breakup episodes
persist, highlighting the role of large-scale humidity structures. Surprisingly, zonal
wind exhibits a feeble role in clustering, random convection, and breakup episodes.
This investigation sheds light on the interplay among large-scale moisture, wind,
and convection dynamics in shaping convection states.

5.2 Introduction

The phenomenon of convective self-aggregation has been a subject of extensive re-
search since its initial discovery by Held et al. (1993) in radiative convective equi-
librium (RCE) simulations. A multitude of studies have focused into understanding
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FIGURE 5.1: Graphical Abstract: Snapshots of organized and reversal
states. Clouds, depicted in colors, are accompanied by SST contours, wind
arrows, and convection cores marked by purple points (Vertical velocity >
1 m s−1). Organized: Clouds are arranged in a line at the southern edge
of the domain, aligning with the warmest SST. Northeasterly winds pre-
vail, facilitating convection confinement to the southern domain. Reversal:
Clouds are disperse across the entire domain, with a notable concentration
in colder regions. This dispersion is linked to a moisture mode triggered by
a Rossby wave, fostering a southerly flow that transports moisture from the
south into the domain. This influx of moisture initiates new convection in

the southern region, marked by the presence of low clouds.

the underlying mechanisms driving clustering (Nakajima and Matsuno, 1988; Held
et al., 1993; Muller and Held, 2012; Wing and Emanuel, 2014; Muller and Bony, 2015;
Coppin and Bony, 2015; Tompkins and Semie, 2017) and its broader implications for
climate (Emanuel et al., 2014; Coppin and Bony, 2015; Holloway and Woolnough,
2016; Wing and Cronin, 2016; Wing et al., 2020; Becker and Wing, 2020), the hydro-
logical cycle, particularly in terms of changes in domain humidity (Bretherton et al.,
2005; Müller and Hohenegger, 2020b; Biagioli and Tompkins, 2023a,b), and extreme
precipitation (e.g., Muller 2013; Pendergrass 2020; Da Silva et al. 2021b). Recent
studies have expanded the scope by incorporating sea surface temperature (SST)
gradients and interactive slab ocean models (e.g., Hohenegger and Stevens 2016b;
Shamekh et al. 2020a,c; Tompkins and Semie 2021) to investigate how aggregation
develops in a more realistic setup. These studies found that SST gradients favor
clustering, while a slab ocean delays the onset of organization due to a stronger neg-
ative feedback from latent heat (LH) flux compared to non-slab ocean simulations.
However, the longwave (LW) and shortwave (SW) feedbacks act similarly to simu-
lations with constant SSTs, with the LW cloud and clear-sky components and the SW
clear-sky feedback strongly promoting organization, while the SW cloud feedback
opposes it (see Wing et al. 2017; Wing 2019; Muller et al. 2022a for comprehensive
reviews).

A number of investigations focus on the impact of convective organization, re-
vealing a consensus on its significance for the hydrological cycle and thus climate
(Wing et al., 2017; Holloway et al., 2017; Becker and Wing, 2020). Recognizing its
importance in RCE simulations, various observational studies aimed to ascertain
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whether organization has comparable effects in nature as seen in idealized models
(see the review by Holloway et al. 2017). Pioneering efforts by Tobin et al. (2012,
2013) quantified organization’s influence on mean properties, uncovering increased
outgoing LW radiation (OLR) and decreased humidity with fewer cores, consistent
with idealized modeling studies. Their conclusions align with other studies (e.g.,
Brune et al. 2018; Popp and Bony 2019; Brune et al. 2020; Pendergrass 2020; Beucler
et al. 2020; Retsch et al. 2020; Bläckberg and Singh 2022; Shamekh et al. 2023; Vogel
et al. 2022), indicating that LW feedbacks favor organization, whereas LH flux sup-
ports it before the onset of clustered convection but acts against it when the convec-
tion is already organized, albeit with diminished strength compared to the modeling
outcomes (Beucler et al., 2019).

The impact of convective organization on humidity also has implications for at-
mospheric opacity, with drier atmospheres expected to be less opaque, leading to an
increase in LW clear-sky radiation. This radiative effect of organization was investi-
gated by Bony et al. (2020), revealing its significance in the radiation budget of the
large-scale tropics, consistent also with the work of Angulo-Umana and Kim (2023).
Bony et al. (2020) showed that convective organization and lower-tropospheric sta-
bility jointly account for over 60% of the variance in the net radiative budget across
the tropics. This shows alignment between observation and idealized simulations,
and suggests that organization can modify the radiative budget, influencing climate
sensitivity. This raises questions about whether the sensitivity of humidity and the
radiative budget to organization remains consistent at GCM grid-box scales. Addi-
tionally, it prompts inquiries into whether the mechanisms orchestrating convection
at GCM scales align with those observed in CRMs.

To study this question, Chapter 4 (hereafter Chap4) focused on alpha-mesoscale
(O(1000km) sized) regions within the Pacific Warm Pool (Figure 5.2), chosen for
weak SST, precipitation and humidity gradients, and proximity to the study area
of Tobin et al. (2012, 2013). Chap4 revealed that, despite strong diabatic feedbacks
favoring clustering throughout the year, convection maintains a random configura-
tion in boreal summer/autumn. In contrast, in boreal winter/spring, weak meri-
donal SST gradients induce organized convection, resulting in drier mean condi-
tions, higher OLR, and diminished cloud cover. During this season, this situation
is intermittently broken up in multiday episodes where the mesoscale humidity
is much more well-mixed spatially, indicative of random convection, which were
demonstated to be due to westward-propagating waves. This raises questions con-
cerning the mechanisms leading to the well-mixed humidity when the wave tra-
verses the domain—subjects of interest in this study.

The aim of this study is to further examine these reversal events, using both
dynamical models and machine learning (ML) to understand the sensitivity to the
larger scale properties in which the domain is embedded. To begin, section 5.3 pro-
vides a brief observational analysis, building upon Chap4 results, outlining research
objectives and hypotheses. In Section 5.4, we detail the datasets, realistic modeling
setup, and parameterizations used, contributing to a more comprehensive under-
standing of organization, wave dynamics, and adding to the literature employing
realistic setups for such studies (e.g., Holloway et al. 2017; Brune et al. 2018; Pscheidt
et al. 2019; Brune et al. 2020). This section also covers diagnostics and the design of
the ML model. Section 5.5 analyzes the role of large-scale moisture advection in
producing both clustering and random convection configurations. We explore the
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for all the calculations of this research.

influence of moisture and wind, including their components, on clustering develop-
ment or prevention (§ 5.5.1), with a comprehensive evaluation of wind role in orga-
nization (§ 5.5.2). Section 5.6 presents a comprehensive overview of results from all
simulations conducted using the ML model while concluding remarks are provided
in Section 5.7.

5.3 Brief Observational Analysis

Our analysis focuses on a specific region within the Warm Pool studied in Chap4
represented by Domain 2 in Figure 5.2. This region undergoes a transition from
the warm pool’s boundaries in boreal winter/spring to its center in boreal sum-
mer/autumn, leading to a SST gradient during winter/spring that diminish to al-
most zero during the summer/autumn period (indicated in Figure 5.3c-f). Similar
behavior is observed with the total column water vapor (TCWV) (Figure 5.4a-b).
While this region was not strongly connected to the Pacific-wide energy budget, its
local humidity variance and energy budget was clearly impacted the most by west-
ward propagating convectively coupled Rossby waves in the boreal winter/spring
periods, and it is the impact of these waves what controls the variance of TCWV
which is strongly correlated to the OLR of the entire Pacific. The precipitation clima-
tology is fairly spatially uniform in this zone, with stronger values at the south-easter
region within the domain (Figure 5.2). The juxtaposition of uniform precipitation
and varying SST and TCWV conditions in this area makes it conducive for the study
of convective organization, aligning with idealized studies and the regions selected
by Tobin et al. (2012, 2013).
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Prior investigations (Bony et al., 2020; Semie and Bony, 2020; Angulo-Umana and
Kim, 2023; Galewsky et al., 2023) have attempted to understand convective organiza-
tion, but challenges arise due to the difficulty of directly measuring convective core
locations (see Biagioli and Tompkins, 2023b, for a comprehensive review of some
of the issues with various approaches of gauging convective organization). Hence,
Chap4 approached the issue by seeking consequences or "fingerprints" of cluster-
ing rather than direct measurements (Holloway et al., 2017; Biagioli and Tompkins,
2023b). This drew inspiration from the RCE simualtions using a slab ocean model
of Shamekh et al. (2020a) and Tompkins and Semie (2021), who utilized Hovmöller
plots to correlate SST with TCWV percentiles to reveal that the transition from ran-
dom to organized convection shifts the warmest SSTs from drier to moister regions,
thus inverting the SST-TCWV correlation from negative to positive.

To quantify organization in observations, Chap4 also ordered SST according to
the TCWV in the target mesocale domain and computed the slope ( dSST

dTPW f ) by fitting
a linear regression through positive SST anomalies against this sorted TCWV-%tile
field at each time step (Figure 5.3). This regression allowed us to distinguish dif-
ferent states of convection organization, with the spatial variance of TCWV very
large when the regression relationship was positive in boreal winter/spring, rem-
iniscent of clustered convective states, while variance was much smaller and the
mean TCWV much larger when the regression relation was reversed, similar RCE
simulations of randomly organized convection. By establishing thresholds based on
the slope’s standard deviation (std) and on temporal considerations, organized and
reversal states were identified. The purple (reversal) and blue (organized) shades in
Figure 5.3b-e illustrate these states, while typical organized and reversal patterns are
visualized in Figure 5.4c and 5.4d, respectively.

Under the defined metric (Figure 5.3g), boreal summer/autumn (JJA-SON) ex-
hibits random convection, while boreal winter/spring (DJF-MAM) tends towards
organization. Importantly, Chap4 shows that, despite diabatic feedbacks favoring
organized convection, it can still manifest as a random configuration, potentially due
to minimal SST gradients and suppression of TCWV heterogeneities by large-scale
dynamics. This aligns with idealized experiments homogenizing humidity (Tomp-
kins, 2001c). Conversely, boreal winter/spring displays organized convection due
to robust diabatic feedbacks, stronger SST gradients, and substantial TCWV hetero-
geneities.

In Chap4 we find that organized convection coincides with drier atmospheric
conditions (Angulo-Umana and Kim, 2023; Galewsky et al., 2023), significantly in-
creased outgoing LW clear-sky radiation (Bony et al., 2020), and moderately higher
outgoing LW all-sky radiation (Bony et al., 2020), influenced to a lesser extent by
cloud fraction, which, although reduced, remains relatively stable. Intriguingly,
Chap4’s investigations reveal that during the boreal winter/spring, convection can
transition from organized to random states due to moisture advection by westward
propagating waves (Gonzalez and Jiang, 2019), evident in Figure 5.4d displaying
an equatorial Rossby wave pattern consistent with Kiladis and Wheeler (1995) and
Fuchs-Stone et al. (2019).

Figure 5.5 offers a composite of 44 reversals identified during the MAM season.
Each panel portrays a daily lag, originating from 7 days prior to the onset of re-
versal events. Color-coded regions represent OLR anomalies, while contour lines
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FIGURE 5.3: Hourly mean spatial anomaly of SST arranged as a function of
TCWV percentile (ERA5 data, see section 5.4 for details about the data) for
(a) MAM and (d) JJA season and their temporal average (c) and (f), respec-
tively. Columns are arranged in order of TCWV-%tile and then an average
of 81 columns is applied (no block averaging). Slope ( dSST

d f TCWV ) for (a) MAM
and (e) JJA, the blue shading show examples of organized convection (i.e.,
0.5*std larger than Slope mean), meanwhile the purple shading show exam-
ples of reversal events (i.e., 0.5*std smaller than Slope mean). Notice that
for the JJA season the convection stays random since the SST tend to be ho-
mogeneous. (g) Annual average number of organized (blue) and reversals

(purple) events per month from 2016 to 2020.
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from ERA5 data for the (a) MAM and (b) JJA seasons. (c) Snapshot of orga-
nized convection on 2017-04-12 and (d) snapshot of random convection on

2017-03-21.

illustrate the magnitude of Vertically Integrated Water Vapor Flux (WVF), accompa-
nied by directional arrows. Notably, four days prior to the moisture mode’s arrival
in our study area (as depicted in Figure 5.5h), the moisture mode associated with
an Equatorial Rossby wave had already begun to manifest. This manifestation was
characterized by a symmetric anomaly in OLR extending across the equator. The
wave’s initiation occurs 7 days ahead of its passage through the study zone, approx-
imately spanning Lon: 150E-160E and Lat: 8N-12N. The onset of this anomaly can
be attributed to moisture flux convergence, as illustrated in Figure C.1 in Appendix
C. Interestingly, it is not primarily driven by the direction of moisture flux in this
area but rather by speed convergence, resulting in a net inflow of moisture into the
region, as depicted in Figures 5.5 and C.2 in Appendix C. This imbalance augments
water vapor content (and convergence), fostering a robust moisture anomaly. As
it propagates westward, the anomaly eventually disrupts convective clusters posi-
tioned in the southern portion of the study area. This impact is not only attributed to
the moisture mode but also stems from a concurrent southern advection (Takayabu
and Nitta, 1993; Takayabu, 1994) of moisture prompted by the convergence gener-
ated by the advancing wave.

In this context, our aim is to identify the key factors driving both organized
and random convection episodes in the boreal winter/spring, focusing on cluster
breakup episodes associated with westward propagating Equatorial Rossby waves.
In particular we want to understand what drives the homogenization of the humid-
ity in these wave passages and the importance of humidity advection. We also wish
to investigate what sustains convection in a random configuration during boreal
summer despite the diabatic forcing which acts to induce convective spatial cluster-
ing.
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In light of the insights from Chap4 and previous studies that have highlighted
the role of southerly flow in enhancing the moisture mode by transporting humidity
from the south as waves propagate through the warm pool (Takayabu and Nitta,
1993; Takayabu, 1994; Gonzalez and Jiang, 2019), we anticipate that moisture advec-
tion will play a crucial role in determining both organized and reversal states. In
Chap4, organized episodes in boreal winter/spring feature a strong easterly zonal
wind and a weak northerly meridional component, with convection in the southern
part of the domain over the warmest SSTs. In contrast, random convection episodes
are projected to involve a weakened zonal wind and a southerly flow. Additionally,
the meridional wind is expected to contribute significantly to breakups due to the
southerly flow resulting from convergence initiated by the propagating wave (Fig-
ure 5.4d). During these random episodes, we also anticipate a net outflow of Moist
Gross Static Energy (MGSE) (Bretherton et al., 2005; Raymond et al., 2009; Muller and
Held, 2012), countering the diabatic forces that Chap4 reported to consistently pro-
mote convective clustering during boreal summer/autumn when neither SST nor
TCWV heterogeneities develop.

5.4 Datasets and Method

5.4.1 Datasets

Regarding observational datasets used for section 5.3, we used the datasets already
described in detail in Chap4. For this, here we briefly mention them. We employ
the Global Precipitation Measurement Core Observatory spacecraft to retrieve pre-
cipitation data. The TCWV data is acquired on an hourly basis from the morphed
integrated microwave imagery for the total precipitable water (MIMIC-TPW) prod-
uct, version 2, from the Cooperative Institute for Meteorological Satellite Studies.
Our analysis also incorporates 3-hourly Top Of Atmosphere (TOA) OLR data from
the Gridded Satellite (Gridsat) B1 dataset (Knapp et al., 2011), featuring a horizontal
resolution of 1.0◦. We use hourly SST data (level 3) from the Himawari-8 Collection
version 1.2 (Bessho et al., 2016).

Observations are supplemented by ERA5, the fifth-generation atmospheric re-
analysis product developed by the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Hersbach et al., 2020). We use hourly output of wind compo-
nents (zonal, meridional, and vertical), air temperature, and specific humidity as
a function of height as well as surface variables of SST, LH and sensible heat (SH)
fluxes, TCWV, both components of the vertically integrated water vapor flux (WVF),
vertically integrated moisture divergence (VMD), and TOA net all-sky SW and LW
radiation, including both clear-sky and all-sky components. It’s worth noting that
all datasets were acquired for the period spanning from 2016-10-01 to 2019-12-31, a
range dictated by satellite data availability.

5.4.2 Model Description, Simulation Setup and Validation

In this study, we employed the Weather Research and Forecasting (WRF) model
version 4.2 (Skamarock et al., 2019) for simulations. We implemented two nested
domains (depicted in Figure 5.2), mitigating potential performance reduction asso-
ciated with a single domain (Hernandez-Deckers et al., 2022). The model configura-
tion included 32 vertical levels, with a model top at 20.5 km. Horizontal resolutions
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were set at 6 km2 and 2 km2 for Domain1 (Longitude: 133E-147E; Latitude: 0.25S-
11.25N) and Domain2 (Longitude: 135E-145E; Latitude: 2N-9N).

Microphysical processes were simulated utilizing the Thompson microphysics
scheme (Thompson et al., 2008; Thompson and Eidhammer, 2014; Iverson et al.,
2021), while radiative transfer was modeled with the RRTMG model (Mlawer et al.,
1997; Iacono et al., 2008), encompassing both LW and SW radiation. The YSU scheme
(Hong and Pan, 1996; Hong et al., 2006) was employed for the boundary layer,
Smagorinsky 2D (Smagorinsky, 1963) for sub-grid scale horizontal mixing, and the
Monin-Obukhov similarity theory (Monin and Obukhov, 1954) for the surface layer.
Oceanic Mixed Layer Depth (MLD) and SST schemes are detailed by Pollard et al.
(1973) and Skamarock et al. (2019). These parameterizations are selected since they
are recommended by the WRF developers team (Powers et al., 2017).

We produced hourly outputs for two distinct periods: 2017-03-15 to 2017-05-15
(encompassing organized and reversal states, as observed in Figure 5.3a-b-g), and
2017-06-15 to 2017-08-15 (encompassing mostly a random state during the JJA sea-
son, as evident in Figure 5.3d-e-g). The model’s initial and boundary conditions
were derived from 0.25◦ GFS analysis (NOAA, 2015) at 6-hour intervals, featuring
32 vertical levels up to a model top of 20.5 km. For initial conditions, SST values
were homogenized, set as the mean domain value for the first simulation hour using
ERA5 data. The MLD commenced at an initial depth of 60 m, consistent with typical
conditions in the Pacific Warm-Pool (Kara et al., 2003). Although we explored vari-
ous MLD depths (9 m, 20 m, 30 m) (Tompkins and Semie, 2021), constant MLD, and
MLDs without wind dependence, but no indication of significant sensitivity to this
parameter was found.

We verified the WRF model’s capability to accurately replicate both the MAM
(2017-06-15 to 2017-08-15) and JJA (2017-06-15 to 2017-08-15) periods, as well as its
proficiency in reproducing organized and reversal states (Figure C.3 in Appendix
C). The model exhibited (r) correlation coefficients of 0.69 and 0.52 for the MAM and
JJA Slopes, respectively, along with mean square errors of 12.05e−6 and 14.022e−6

for the corresponding seasons. Notably, the model faithfully captured all convec-
tive aspects pertinent to this study, encompassing organized (e.g., 2017-03-21) and
reversal (e.g., 2017-04-12) states, as indicated in Figure C.3 in Appendix C. Never-
theless, WRF simulate weaker SST gradients compare to ERA5 data,due to this the
SST-TCWV relation during organized episodes is less strong (April, 4th to 9th 2017),
although, they can still be consider organized episodes, since they are larger than
0.5*std of the mean SST-TCWV relation calculated from WRF output.

The model and observations exhibited remarkable concordance in the spatial dis-
tribution of moisture, SST, and wind, evident in the comparison between Figure 5.4
and Figure 5.6. This agreement extended to capturing both the overarching con-
ditions of MAM and JJA (Figures 5.4a-b and 5.6a-b) and the specifics of organized
situations (Figures 5.4c and 5.6c) characterized by elevated SST and TCWV in the
southern domain, accompanied by a southwestward flow. The model also adeptly
reproduced reversal instances (Figures 5.4d and 5.6d), marked by heightened TCWV
in the northern domain, while higher SSTs remained situated in the south, alongside
a southeasterly wind—a pattern consistent with observations. However, as a limita-
tion, the model exhibited a tendency to slightly underestimate SST values, resulting
in weaker SST anomalies. Nevertheless, these findings provide a robust foundation
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FIGURE 5.6: TCWV (colors), SST (contours) and wind vector (arrows) mean
from WRF model for the (a) MAM and (b) JJA seasons. (c) Snapshot of
organized convection on 2017-04-12 and (d) snapshot of a reversal event on

2017-03-21

for investigating the underlying mechanisms governing the emergence, persistence,
and disruption of organization. In pursuit of this, we introduced modifications to
the boundary conditions of the MAM simulation (serving as our control, since it
includes organized and reversal conditions) in three distinct experiments that re-
spectively subsistute boundary value (i) moisture advection (~uq), (ii) moisture (q),
and (iii) wind components (u and v) for the entire period with values taken from
a single fixed day. Two experiments are conducted, with the fixed day in the first
chosen to correspond to a day subject to a highly organized convective state (2017-
03-20 18:00:00), whereas the second experiment adopts a day in a "reversal" state
where domain humidity was very homogeneous (2017-04-12 00:00:00). Table 5.1 (in
Appendix C) contains a summary of all the sensitivity experiments performed using
the WRF model.

5.4.3 Machine Learning Model

To complement our analysis, we trained a Random Forest (RF) algorithm (from the
SKlearn package V.1.0.1 of Python 3.9.7) to perform sensitivity tests including chang-
ing the low/high wind shear, this RF idea is borrowed from Casallas et al. (2023a).
We explored the use of neural networks, support vector machine, and Decision Trees
(not shown) as advised by McGovern et al. (2019) to reduce uncertainties. However,
our findings demonstrated that the choice of ML technique did not significantly im-
pact the results, underscoring their robustness. As such, here, we will solely focus
on the RF method, as it yielded the most favorable validation results.

Feature Selection, Input/Output Structure and Validation

The ML model is designed to emulate the dynamics and variations of the SST-TCWV
regression, drawing on key variables from the ERA5 dataset: wind vector (27 levels),
TCWV, SST, and adiabatic and diabatic fluxes (LH, SH, LW, and SW). This selection
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Simulation Name Boundary Conditions Modification
Moisture Advection Rever-
sals (MAR)

Replace the water vapor and the wind boundary
conditions with those of the strong reversal event
of 2017-04-12 00:00:00

Moisture Advection Orga-
nized (MAO)

Replace the water vapor and the wind bound-
ary conditions with those of the strong organized
event of 2017-03-20 18:00:00

Moisture Reversals (MoiRev) Replace the water vapor boundary conditions
with those of the strong reversal event of 2017-04-
12 00:00:00

Moisture Organized
(MoiOrg)

Replace the water vapor boundary conditions
with those of the strong organized event of 2017-
03-20 18:00:00

Wind Reversals (WinRev) Replace the wind boundary conditions with those
of the strong reversal event of 2017-04-12 00:00:00

Wind Organized (WinOrg) Replace the wind boundary conditions with those
of the strong organized event of 2017-03-20
18:00:00

Zonal Wind Reversals (URev) Replace the zonal wind boundary conditions with
those of the strong reversal event of 2017-04-12
00:00:00

Zonal Wind Organized
(UOrg)

Replace the zonal wind boundary conditions with
those of the strong organized event of 2017-03-20
18:00:00

Meridional Wind Reversals
(VRev)

Replace the meridional wind boundary conditions
with those of the strong reversal event of 2017-04-
12 00:00:00

Meridional Wind Organized
(VOrg)

Replace the meridional wind boundary conditions
with those of the strong organized event of 2017-
03-20 18:00:00

TABLE 5.1: Overview of the simulations performed with WRF by changing
the large-scale conditions through the boundary conditions.

is based on the role these variables play in both the organization and breakdown
of convection, as elucidated by Chap4. SST and TCWV are chosen for their po-
tential influence on organizational processes, while the wind vector is significant in
modifying moisture advection, potentially crucial for both organization and reversal
events. Vertical velocity provides insights into convective core characteristics, and
surface and radiation fluxes offer a glimpse into local diabatic feedbacks, along with
convection patterns.

We applied the variance inflation factor (VIF) methodology (Ghahremanloo et al.,
2021) to determine an optimal and less complex combination of variables (Behrens
et al., 2022; Grundner et al., 2022). This selection criterion ensured that we identified
variables contributing to the understanding mechanisms that lead to reversal and
organization states, while also maintaining multicollinearity below a threshold of
five (Kline, 2015). This consideration is crucial, as prior studies have highlighted the
adverse impact of multicollinearity on ML model accuracy (e.g., Wei et al. 2019). It’s
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pertinent to note that all variables were converted to domain-mean values to align
their dimensions with the slope.

After the VIF analysis, six variables were selected as inputs for the RF algo-
rithm: SST, TCWV, LW radiation, vertical velocity at varying pressure levels (850-
500-100hPa), zonal wind at different pressure levels (1000-850-650-450-200-150-100hPa),
and meridional wind at distinct pressure levels (1000-850-650-500-400-200-150-100hPa).
These variables were chosen due to their significance in influencing the slope and
their low collinearity. The input matrix consists of hourly data points for each se-
lected variable, amounting to approximately 35000 data points per variable. The
output vector also has hourly time resolution and is composed of the slope values.

For training, 90% of the data was used, while the remaining 10% was allocated
for validation. It’s worth noting that within this 10%, the period from 2017-03-15 to
2017-05-15 was included, which aligns with the time frame used in our WRF experi-
ments. During training, a randomized search method was employed to identify the
optimal trees depth. The validation outcomes (Figure C.4 in Appendix C) showcased
great performance, with an R2 of 0.97, a mean squared error of 0.1022e−7 Km2kg−1,
and an r value of 0.99. These results affirm the model’s aptitude to capture the in-
tricate relationship between input variables and the slope (Figure C.4c in Appendix
C). This high precision empowers the model to provide insights into the impact of
variables that are challenging to manipulate in WRF due to potential disruptions to
mass or momentum conservation (e.g., wind shear).

5.5 The Role of the Moisture Advection and Diabatic Forc-
ings

We conducted sensitivity experiments altering the moist and wind boundary con-
ditions in our simulations. These conditions were substituted with values corre-
sponding to either a reversal or an organized event during the MAM season, which
encompasses both convection states.

The outcomes of the boundary condition experiments are illustrated in Figure
5.7. Initially, we focus on explaining the moisture advection (MAR for reversal con-
ditions and MAO for organized conditions) experiments depicted in Figure 5.7a-b.
These experiments, as expected, exhibit strong resemblance to the reversal and orga-
nized scenarios presented in Figures 5.4c-d and 5.6c-d, in terms of TCWV, SST, and
wind distribution. Figure 5.8 presents the SST-TCWV relationship for MAM and JJA
seasons and also for the MAR and MAO scenarios, depicting the state of convection
and allowing the comparison between experiments. In the context of a reversal sce-
nario, the highest TCWV values are situated to the north, while the warmest SSTs
are found in the southern region. A southerly flow emerges, conveying moisture
from the south. This SST-TCWV relationship is depicted in Figure 5.8b, indicating
its persistence across the entire simulation, unlike the sporadic cases seen in Figure
5.8a. In the organized setting (Figures 5.7b and 5.8c), peak TCWV values occur in the
southern domain where the warmest SSTs reside. The wind direction is southwest-
ward, characterized by a strong zonal component. This implies a narrower warm
pool with drier northern boundaries, akin to the findings of Hohenegger and Jakob
(2020) and Beucler et al. (2020) regarding the Atlantic ITCZ.
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FIGURE 5.7: Mean TCWV (colors), SST (contours), and wind vectors (ar-
rows) from the WRF model for each sensitivity experiment. The left (right)
column displays experiments in which the reversal (organized) conditions
are replaced in the boundary layer. Panels (a) and (b) depict the moisture
advection experiments, while (c) and (d) illustrate the moisture boundaries
experiment. Conversely, (e) and (f) showcase experiments that replace the
winds, whereas panels (g) and (h) display experiments that only modify the
zonal wind, similar to panels (i) and (j), which represent experiments modi-

fying the meridional wind.
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These four configurations offer a valuable perspective to explore the interplay
between local feedbacks and large-scale influences in shaping convective organi-
zation. Following the approach of Tompkins and Semie (2021), based on previous
work (Bretherton et al., 2005; Muller and Held, 2012; Wing and Emanuel, 2014), we
calculate the diabatic feedbacks. Figures C.5 to C.8 (in Appendix C) present the forc-
ing for the LW and SW Cloud, LW and SW clear-sky, and LH and SH flux feedbacks
for the MAM, JJA, and moist advection experiments over the entire period. In con-
trast, Figure 5.9 illustrates the cumulative diabatic and adiabatic feedbacks derived
for each experiment.

Consistent with idealized modeling studies, in MAM the LW cloud and LW clear-
sky feedbacks act to organize convection (Holloway and Woolnough, 2016), exhibit-
ing the strongest feedbacks (Tompkins and Craig, 1998a; Stephens et al., 2008). How-
ever, during reversal development, the LW clear-sky feedback opposes organization
by moving less cloudy regions toward the warmest SSTs, inducing regional heating
and creating a negative feedback with organization (Figure C.5 in Appendix C). This
negative feedback intensifies in the MAR experiment (Figure C.7 in Appendix C),
where the warmest regions persistently locate in dry, clear-sky zones, intensifying
SST warming and magnifying the feedback. The largest cooling rates of LW clear-
sky occur at intermediate water vapor levels, aligning with Tompkins and Semie
(2021), while mild warming appears in the moistest regions. Simultaneously, SW
cloud heating anomalies remain negative across all four simulations, as high clouds
dampen incoming solar radiation. Interestingly, the SW clear-sky exhibits a posi-
tive feedback in the MAO experiment (Figure C.8 in Appendix C) and during the
MAM season due to heightened SW absorption in the moistest regions (Wing and
Emanuel, 2014). This effect weakens when convection becomes random, as observed
in the MAR experiment and during the JJA season (Figure C.6 in Appendix C).

The LH and SH flux heating anomalies align with prior idealized and obser-
vational studies (for comprehensive reviews, consult Wing et al. 2017, Holloway
et al. 2017, Muller et al. 2022a). Surface fluxes reinforce organized convection in its
random state and disrupt it when already organized, consistent with our study’s
results and observations from Chap4. Similar to Tompkins and Semie (2021), we de-
compose LH flux anomalies into contributions from humidity, stability, and wind.
Their research showed that the positive feedback when convection is random pri-
marily comes from stability and, to a lesser extent, wind speed, while the nega-
tive feedback arises from humidity differences between the surface and boundary
layer. Correspondingly, the Chap4 observational results demonstrate that LH flux
feedbacks have the same sign as in Tompkins and Semie (2021), with wind speed
strongly dictating the feedback’s sign and strength. Our modeling outcomes align
with the results of Chap4, illustrating that wind speed overwhelmingly governs both
negative and positive feedbacks, overshadowing the influence of temperature and
humidity structures. In brief, in scenarios of random convection, the wind-induced
surface heat exchange (WISHE) feedback is characterized by the enhancement of
surface winds in intensely convecting regions with convective gustiness (Wing and
Emanuel, 2014). Conversely, as convection becomes organized, winds typically di-
minish in the convective regions while strengthening in the dry zones, giving rise to
a negative feedback linked to organizational patterns.

Figure 5.9 illustrates the average total heating anomalies for the entire simulation
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FIGURE 5.8: Hourly mean spatial anomaly of SST arranged as a function
of TCWV percentile for (a) MAM, (b) the MAM simulations but with rever-
sals Moisture Advection conditions, (c) as (b) but with organized Moisture
Adv. conditions and for (d) JJA. Columns are arranged in order and then an

average of 1656 columns is applied (no block averaging)

period, encompassing experiments representing organized (Figure 5.9a) and rever-
sal conditions (Figure 5.9b), including both MAM and JJA scenarios. All experiments
indicate that local diabatic forcing contribute to organizing convection, yet their po-
tency is not always sufficient to cluster convection. This suggests that convection
should export MGSE to counterbalance these feedbacks (e.g., Raymond et al. 2009;
Muller and Held 2012). To study this, we utilize the stream function calculation,
widely employed in diverse studies (e.g., Bretherton et al. 2005; Muller and Bony
2015; Shamekh et al. 2020a; Tompkins and Semie 2021). Figure 5.10 illustrates the
net radiative cooling (Qrad), liquid and ice mixing ratios, and stream function, sorted
by TCWV percentiles. In MAM and MAO experiments, the highest net Qrad is ob-
served between 950hPa to 850 hPa, particularly in intermediate moisture regions
(60-80%-tile) compared to JJA and MAR experiments, in which the largest net Qrad is
located in the driest zones. This suggests increased subsidence regions when convec-
tion is organized, consistent with previous idealized studies (e.g., Coppin and Bony
2015; Müller and Hohenegger 2020b). The MAM and MAO experiments present a
stronger cooling in the mid-troposphere (500hPa to 300hPa), especially in intermedi-
ate humidity regions (40-60%-tile), akin to the results of Tompkins and Semie (2021).

Importantly, the MAO case exhibits a lower cloud fraction compared to the other
experiments. This aspect gains significance due to insights from idealized studies
(Wing and Emanuel, 2014), reporting that organized configurations prompt height-
ened OLR. This aligns with the observed cloud-associated OLR surge in our results
(not shown), corroborated by findings from the same region in Chap4. However, it
is noteworthy that the MAO case displays a more pronounced manifestation of this
behavior compared to observations and the MAM simulation, possibly attributed
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FIGURE 5.9: Total atmospheric convergence anomaly mean (positive is
warming anomaly of atmosphere) ordered according to TCWV for (a) or-
ganized and (b) reversals conditions experiments. Both panels include the

simulations for MAM and JJA seasons for comparison.

to the assistance provided by the large-scale atmospheric conditions (of the experi-
ment) in maintaining organized convection.

Comparing the circulation patterns between the MAM and JJA seasons (Figure
5.10a and c), several observations stand out. Firstly, in MAM, stronger low-level Qrad
leads to greater surface up-gradient MGSE export, particularly in moister locations.
Subsidence is pronounced between the 0-60 TCWV %-tile range in MAM, whereas
in JJA, the largest subsidence occurs at the 20th TCWV %-tile. The expansion of the
largest Qrad to intermediate moisture regions in MAM restricts the strongest circu-
lation, hindering moisture transport to the driest areas and favoring organization
(Jeevanjee and Romps, 2013; Muller and Bony, 2015). In contrast, during JJA, the
circulation effectively exports MGSE to the driest zones, countering local diabatic
feedbacks. This export appears to rely more on dynamic and large-scale motions,
which homogenize the water vapor field, reducing inhomogeneities. These findings
are consistent with our sensitivity experiments and align with idealized studies that
investigate homogenization of the water vapor field (Tompkins, 2001c; Yang, 2019).

Similar to the MAM season, the MAO experiment (Figure 5.10b) exhibits a con-
traction of the circulation, particularly notable at 900hPa and 500hPa, compared to
the JJA or MAR experiment (Figure 5.10d). This contraction is likely due to the
expanded area of strong Qrad (1000hPa to 800hPa) between 0-60 TCWV %-tiles, pos-
sibly influenced by the SST gradients present during these experiments, this cool-
ing also leads to stronger subsidence, and to a larger MGSE export at the surface
(Bretherton et al., 2005; Muller and Held, 2012; Muller and Bony, 2015; Shamekh
et al., 2020a). Notably, additional radiative cooling occurs at 300-400hPa in inter-
mediate moisture regions (40-60 TCWV%-tile), creating a secondary circulation that
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further inhibits moisture transport to the driest areas, encouraging organized condi-
tions, consistent with the results of Tompkins and Semie (2021). In the MAR exper-
iment, the most intense cooling is concentrated in the driest regions at 300-400hPa,
facilitating moisture export to these areas and discouraging organized convection.
This phenomenon is also observed in the JJA season but is more pronounced in the
MAR experiment.

In synthesis, the diabatic feedbacks alone lack the potency to induce convection
organization without the presence of a SST gradient, as they can be counteracted
by MGSE export, potentially propelled by dynamic large-scale processes that con-
strain moisture (and SST) heterogeneities. In contrast, when convection is organized,
the circulation responsible for transporting moisture from moist to dry regions con-
tracts, which is a result from expanded areas of strong radiative cooling and in-
creased subsidence. These coupled with diabatic feedbacks working synergistically
to organize convection, further fueled by the strong influence of large-scale dynam-
ics on developing SST and TCWV heterogeneities, strongly favor clustering.

5.5.1 Analyzing Moisture Structures and Wind

This section studies the role of the moisture structures and the wind, including an
evaluation of the wind components. A summary of the results is presented in Figure
5.11, and Figures C.9 (reversals), and C.10 (organized) in Appendix C, illustrating
the slopes for the control experiment and the experiments utilizing reversed and
organized boundary layer conditions for each of the variables under investigation.
For instance, Figure 5.11a displays the slopes for the MAR and MAO experiments
explained in the preceding section.

The Role of the Humidity

Results from the experiments that manipulate humidity boundary conditions, la-
beled as MoiRev for reversal conditions and MoiOrg for organized conditions, re-
veal intriguing findings. The MoiRev experiment (Figure 5.7c) closely resembles the
humidity distribution during the JJA season (Figures 5.4b and 5.6b), characterized
by its homogeneity. This is corroborated by the slope calculation (Figure 5.11b and
C.9b), showing minimal variability and reflecting essentially random conditions.
This indicates that large-scale humidity alone can lead to random convection, even
in the presence of strong diabatic feedbacks (Figure 5.9b and C.11), which exhibit
a similar sign and magnitude to the JJA and MAR experiments, but are not strong
enough to cluster convection.

However, it’s worth noting that the MoiRev experiment also generates short pe-
riods of "organized" convection as measured by the TCWV variance (e.g., 2017-04-16
to 2017-04-17) and exhibits very intense reversal events in which convection is ad-
vected to the northern part of the domain. These conditions are reminiscent of the
westward propagating wave, in which a wave strongly disrupts convection during
MAM season and the control. This suggests that, while moist structures can con-
tribute to random conditions, the role of wind is crucial, particularly in events that
disrupt convection.

Concerning the MoiOrg experiment, it exhibits elevated TCWV values predomi-
nantly concentrated in a specific region of the domain (Figure 5.7d) for the majority
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FIGURE 5.10: Average (first to last day) of net radiative cooling (color shad-
ing), liquid water mixing ratio (dark-cyan contours marking 10−5, 3.10−4,
and 10−4 kg kg−1) and ice water mixing ratio (purple contours marking
10−6, 3.10−5, and 10−5 kg kg−1) as a function of the TCWV percentile for
(a) MAM season, (b) the MAM simulations but with organized Moisture
Adv. conditions, (c) JJA season and (d) as (b) but with reversals Moisture
Adv. conditions. Black dashed contours show the mass flux streamlines as
defined by Bretherton et al. (2005). The bold dashed lines represent the rep-
resent the -56, -63, and -70 in units of 10−2 kg m−2 s−1 to ilustrate that the
strongest circulations persist within intermediate humid and the moistest

regions.

of the simulation, indicating that moist structures can lead to an increase in clus-
tering (Tompkins, 2001c). This insight is further supported by the slopes shown in
Figures 5.11b and C.10b in Appendix C, which closely resemble those of the MAO
experiment (Figure 5.11a). The clustering effect arises not only from the large-scale
moisture structures but also from the diabatic feedback mechanisms that contribute
to organizing convection (Figures 5.9a and C.10 in Appendix C) and are similar to
the MAO experiment.

It’s worth noting that, despite the large-scale humidity structures favoring or-
ganization, convection clusters can still be disrupted, as observed during specific
periods, such as April 13-14 and April 18-24, 2017 (Figures 5.11b and C.10b). This
highlights the significant role of wind in disrupting convection by advecting mois-
ture from the south to the domain during breakup events. These events occur in
the control and both the MoiRev and MoiOrg scenarios (Figure 5.6d). Additionally,
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ional wind component experiments. The darkcyan line represent the con-
trol (MAM season) run, meanwhile the purple(blue) line represent the re-

versals(organized) conditions.

the LW clear-sky feedback (Figure C.12b in Appendix C), although similar to that
of the MAO experiment, is negative for more extended periods, particularly after a
reversal event, where the highest SSTs are situated in the clear sky regions, which
explain the negative feedback. This observation suggests that the wind can play a
significant role in the reorganization of convection after a wave crosses the domain
and breaks up convection clusters.

The Role of the Wind

In this section we modify the wind boundary conditions with reversals (WinRev)
and organized (WinOrg) conditions (Figure 5.7e-f). One particularly noteworthy
observation is the remarkable similarity between the outcomes of the WinRev and
WinOrg experiments and those of the MAR and MAO experiments, respectively. In
the case of the WinRev experiment, deep convection is shifted to the north-west of
the domain, while in the southern region, new convective events are triggered and
maintained as low-level clouds (Figure 5.7e). This configuration indicates random
convection configuration, consistent with the findings presented in Figures 5.11c and
C.9c. This pattern arises because a southeasterly flow persists in this experiment, re-
sulting in the advection of moisture from the southern region of the domain (which
during this season is very moist, due to the location of the warm pool), akin to the
results of Takayabu (1994) and Gonzalez and Jiang (2019). This influx of moisture
causes the bulk of convection to shift towards the northern part of the domain while
new convection is triggered in the southern region. This random configuration bears
a resemblance to the findings reported in Chap4 when a westward-propagating
wave crossed the domain, generating a southerly flow due to the convergence in-
duced by the passage of the wave (Kiladis and Wheeler, 1995; Haertel and Johnson,
1998). This is in contrast to the control experiment, where clear skies mostly prevail
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in the northern part of the domain, while the majority of deep clouds are concen-
trated in the southern region, but it coincides with the control breakup events.

Furthermore, the diabatic feedbacks in the WinRev experiment act to organize
convection (Figure 5.9b). However, these feedbacks are not strong enough to induce
clustering. When analyzing individual fluxes (Figure C.13 in Appendix C), it is seen
that all of them contribute to organizing convection. While LH primarily promotes
clustering, aligning with the results obtained in Chap4 for the same region. The SW
cloud on the other hand, acts to oppose organization, due to high cloud effects on
incoming solar radiation. It is also important to mention that despite convection be-
ing random almost the entire period, there are some days in which it clusters for a
small amount of time (e.g., April 8th, April 18th of 2017) probably due to the role of
the large-scale moisture, which can strongly act to produce, and maintain convective
clusters.

On the other hand, the WinOrg experiment exhibits similarities to the control ex-
periment in terms of the mean spatial distribution of TCWV, with deep convection
primarily located in the southern region of the domain, while the northern region re-
mains predominantly cloud-free (Figure 5.7f). However, the WinOrg experiment fea-
tures more organized convection compared to the control experiment (Figures 5.11c
and C.10c) and experiences weaker breakup events, as observed during the event on
April 14th, 2017. It’s worth noting that the event that occurs between April 23rd and
April 29th, 2017, in the control experiment, is also present in the WinOrg experiment,
as also happens in the MoiOrg experiment. This demonstrates that while the wind
can reduce the intensity of breakup episodes, large-scale humidity structures can in-
dependently induce randomness in convection. In fact, the MoiOrg experiment is
capable of sustaining clustered convection for longer duration’s but does not dimin-
ish the magnitude of breakup events. These findings suggest that both wind and
moisture play crucial roles in generating breakup episodes and organization, with
moisture structures being more efficient at maintaining clustering, and the wind be-
ing more important for the intensity of the breakup episodes.

When considering the diabatic feedbacks (Figures 5.9a and C.14) for the WinOrg
experiment, they collectively act to favor clustering, with the exception of the SW
cloud feedback, and of the LH flux, which consistently opposes organization as con-
vection is already organized. In summary, all the aforementioned findings highlight
the crucial role of wind in the development of breakup events and clustering. For
this, the next logical step is to investigate the specific contributions of the wind com-
ponents in terms of clustering convection and the development of breakup events or
random convection configurations.

In evaluating the influence of the zonal wind, experiments involving the replace-
ment of the simulation’s boundary conditions with the zonal component of the wind
from a reversal (URev) and an organized (UOrg) event exhibit notable similarities to
the control experiments. This resemblance is apparent both in the spatial distribu-
tion of the TCWV (Figures 5.6a and 5.7g-h) and in the slope calculations (Figures
5.11d). The URev experiment (Figures 5.11d and C.9) demonstrates its capability to
generate breakup events, often stronger than those in the control scenario. This sug-
gests that, while the zonal wind may not be a dominant factor, it can have a modest
impact on the breakup of convection, especially in terms of allowing convection to
cluster after such events. In fact, these events tend to last longer than in the control
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case, exemplified by the period from April 23rd to 29th, 2017. Regarding diabatic
feedbacks, they closely resemble those of the control scenario, promoting organiza-
tion (Figure 5.9a), while the LH and SW cloud feedbacks oppose clustering (Figure
C.15 in Appendix C).

Regarding the UOrg experiment, it closely resembles the control experiment.
Generally, convection tends to be located in the southern region of the domain, with
clear skies prevailing in the northern region (Figures 5.11d and C.10). However,
in the UOrg experiment, convection exhibits a higher degree of organization (Fig-
ure 5.11) compared to the control scenario, along with milder breakup events. This
suggests that the zonal wind may contribute to the organization of convection and
potentially plays a modest role in the occurrence of breakup events, although it does
not exert the most substantial influence. In terms of diabatic feedbacks (Figure 5.9a),
they collectively act to encourage organization, with the exception of the LH flux
and SW cloud feedback, which act in opposition to organization, consistent with
the control simulation (Figure C.16 in Appendix C), and with previous experiments
using idealized and realistic modeling setups (e.g., Holloway 2017; Shamekh et al.
2020a), and observations (e.g., Holloway et al. 2017).

The experiments that replaced the meridional wind boundary conditions with
reversal (VRev) and organized (VOrg) events offer intriguing insights. The VRev
experiment exhibits similarities to the MAR and WinRev experiments in terms of the
spatial distribution of TCWV (Figure 5.7a-e-i). In this scenario, deep convection pre-
dominantly occurs in the northwest region of the domain, with low-level clouds and
new deep convection events developing in the southern region of the domain. This
behavior is similar to the one observed when a breakup event occurs, as a southerly
flow develops due to the convergence produced by a westward-propagating wave
(Takayabu and Nitta, 1993; Takayabu, 1994; Kiladis and Wheeler, 1995). An examina-
tion of the slope (Figures 5.11e and C.9e) reveals that convection tends to be random
for the majority of the simulation’s duration under continuous reversal conditions.
In some instances, convection briefly clusters but is quickly broken up. This behav-
ior is likely attributed to the strong influence of large-scale moist structures that pro-
mote convection clustering, as suggested by the MoiOrg experiment (Figures 5.11b
and C.10b). Additionally, diabatic fluxes favor organization (Figure 5.9b), including
the LH flux feedback, which mostly acts to organize convection, while the SW cloud
feedback opposes clustering (Figure C.17), mirroring the conditions observed in the
MAR and WinRev experiments. These results suggest that the meridional wind on
its own can lead to random convection configurations, although in certain cases,
large-scale moisture structures may induce short-lasting clusters.

In the case of the VOrg experiment, the spatial distribution of TCWV closely
resembles that of the control run (Figures 5.6a and 5.7j), with deep convection pri-
marily developing in the southern part of the domain. The slope analysis (Figures
5.11e and C.10e) indicates that the breakup episodes are less intense but still occur,
and convection is not as organized as observed in the MoiOrg experiment. This
suggests that the meridional wind can contribute to organizing convection, but the
large-scale moisture structures play a more significant role. The moisture structures
on their own can also lead to the development of breakup episodes, as demonstrated
by the event occurring between April 20th to 23rd, 2017 on both the Vrev and the
Vorg experiments. Regarding the diabatic fluxes (Figures 5.9a and C.18), they collec-
tively promote convection clustering, with the LH flux and the SW cloud feedback
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opposing clustering, consistent with the control run and in line with previous stud-
ies (e.g., Wing and Emanuel 2014; Wing et al. 2017).

In summary, as discussed in § 5.5.1, large-scale humidity, when considered in
isolation, does not possess the capability to impede reversals when organized con-
ditions are enforced. However, it is remarkable that moisture structures alone can in-
duce strong clustering of convection, surpassing the organization strength achieved
by the wind or in the control experiments. Large-scale moisture structures can also
engender random convection throughout the simulation when reversal conditions
are imposed at the model boundaries. In some instances, this randomness transi-
tions into convection clusters, which are rapidly disorganized. Notably, breakup
episodes, akin to those observed in the control run, can develop, highlighting the
critical role of the wind in explaining these episodes.

Conversely, the wind plays a more substantial role in initiating convection breakup
episodes. It can diminish the intensity of reversals within the organized conditions
experiment. Moreover, when reversal conditions are applied to the wind, convection
exhibits a random state throughout the simulation, with a few instances of cluster
formation quickly dispersed. This random convection results from moisture advec-
tion from the southern boundary into the domain. Regarding specific wind com-
ponents, the zonal wind’s influence on disrupting convection is minimal, weakly
dampening reversals under organized conditions and having a similarly weak effect
on strengthening breakup episodes when reversal conditions are imposed. In con-
trast, the meridional wind exerts a countervailing influence by transporting mois-
ture from the southern region into the domain when reversal conditions are im-
posed, setting the stage for prolonged reversal events. However, due to the presence
of large-scale moisture structures, convection can briefly cluster. Additionally, when
organized conditions are imposed, the meridional wind contributes to convection
organization by restraining the magnitude of reversals and maintaining a relatively
more organized state compared to the control experiment, although it does not reach
the level of organization observed in the experiment altering large-scale humidity.

5.5.2 Analyzing Wind Shear and Low-High Level Wind

Artificially modifying wind shear in WRF without affecting mass and momentum
conservation is challenging. To address this, we harnessed the machine learning
RF algorithm (as detailed in § 3.3) to emulate the SST-TCWV relationship (regres-
sion slope) using the variables identified in the previous sections as important for
the regression. Despite the model’s performance (R2 = 0.97 in RF MAM simulation,
see Figure C.4 in Appendix C), it’s essential to validate its ability to replicate WRF’s
sensitivity experiments, including moisture advection, humidity, and wind (Figure
5.12). As the model relies on domain-mean values for training, direct modification
of boundary conditions is not feasible. Instead, we replace domain-mean values
from organized/reversal conditions for corresponding WRF simulation days to fa-
cilitate comparison. Notably, diverse ML techniques may yield different outcomes
(McGovern et al., 2019), but our tests with alternative methods such as neural net-
works, support vector machines, and decision tree algorithms yielded consistent re-
sults with the RF algorithm, the latter demonstrating superior precision (not shown).
For conciseness, we present results obtained using the RF algorithm.
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FIGURE 5.12: Random Forest simulations for the MAM season in the period
simulated by WRF, for (a) Moisture Advection, (b) Moisture, (c) Wind, (d)
Zonal wind and (e) Meridional Wind. Dark-cyan lines represent the control,
the purple line represent the experiments that include reversals conditions

and the blue line the ones with organized conditions.

Results underscore the RF’s capability in emulating sensitivity experiments con-
ducted within WRF (Figure 5.12). It effectively highlights the significance of mois-
ture advection, humidity, and the meridional wind component while revealing that
the influence of the zonal wind on clustering and random convection is minimal,
although it can dampen reversal events. The RF model reliably reproduces the out-
comes of experiments with altered humidity, but with less strength. In WRF, the
introduction of humidity from reversal conditions results in random convection and
breakup episodes. The RF experiment with reversal conditions replicates this be-
havior, displaying random states through the simulation, and also producing strong
breakup-like episodes, notably on April 13th and between April 23rd and 27th, 2017.

In WRF, introducing organized moisture conditions significantly enhances con-
vection organization, yielding weaker reversals compared to the control. The RF ex-
periment with organized moisture conditions mirrors this pattern, displaying strong
organization throughout the simulation with milder breakup episodes (compared to
the control) occurring on the same dates. The RF model effectively mirrors WRF’s
results concerning the wind and its components, although it exaggerates the wind’s
role in the organized experiments, resulting in a significant weakening of breakup
events that in WRF experiments is attributed to a combination of both the large-scale
moisture structures and the wind. The RF model replicates the control simulation’s
slope evolution, and closely aligns with WRF sensitivity experiment outcomes (Fig-
ure 5.12). It characterizes the interplay between the slope and input variables, high-
lighting the essential role of the wind. We thus conclude that RF can serve as a tool
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for a deeper exploration of the impact of surface wind and wind shear on either pro-
moting or impeding convective organization.

In this context, we employed the RF model to conduct a series of experiments,
wherein we altered the wind conditions by substituting them with data from a re-
versal event (2017-04-12 00:00:00) and an organized state (2017-03-20 18:00:00). An
overview of these sensitivity experiments is provided in Table 5.2, encompassing
variations such as the individual removal of the meridional and zonal wind shear,
both separately and in combination, as well as the isolated removal of low and high
tropospheric wind shear. These experiments were designed to unravel whether the
surface or low level wind or the wind shear variables exert a more dominant influ-
ence on the emergence of breakup events or the formation of convection clusters.

Figure 5.13 offers a summary of the conducted experiments in which we elimi-
nated meridional shear by replacing surface meridional wind with data either from
a reversal period (MedSheRev) or subsequently from an organized (MedSheOrg)
event throughout the troposphere (Figure 5.13a) . The MedSheRev experiment in-
dicated that the absence of shear results in persistent random convection through-
out the simulation, featuring breakup events of reduced intensity. This implies that
meridional shear plays a minimal role in the development of breakup events com-
pared to surface meridional wind. Conversely, the MedSheOrg experiment showed
slightly more organized convection compared to the control, accompanied by a sig-
nificant reduction in breakup episode strength. This emphasizes that surface merid-
ional wind can mitigate breakup events even in the absence of shear. A compari-
son between the MedSheOrg and VOrg experiments reveals remarkable similarities,
suggesting that shear does not significantly contribute to convection organization,
and surface wind plays a more crucial role in promoting clustering.

Concerning the impact of low meridional shear in reversal (MLowSheRev) and
organized (MLowSheOrg) conditions, the results align with those from the MedSh-
eRev and MedSheOrg experiments, respectively. In the MLowSheRev experiment
(Figure 5.13b), low tropospheric winds from the south persist, indicating continu-
ous moisture import from the region to the south of the focus domain, where the
warm pool center is located. This results in random convection conditions, even
without shear. Conversely, the MLowSheOrg experiment (Figure 5.13b) demon-
strates that substituting low-level wind with the surface wind of the organized state
leads to slightly more organized convection and a weakening of breakup episodes.
This highlights the role of low-level wind, especially at the surface, in establishing
a southerly flow that imports moisture into the domain. Consistent with previous
studies (e.g., Takayabu and Nitta 1993; Kiladis and Wheeler 1995), that showed how
westward-propagating waves crossing the domain induce convergence, creating a
southerly flow that further moistens the wave. This, in turn, advects deep convec-
tion to the northern region of the domain and triggers new convection in the south-
ern region (see Chap4 for details).

The results indicate that high meridional shear (Figure 5.13c), observed in both
reversal (MHigSheRev) and organized (MHigSheOrg) conditions, does not have a
substantial impact on organization or the breakup of convection clusters. The out-
comes closely resemble those of the control experiment, with the only notable dis-
tinction being slightly weaker breakup episodes. This suggests that while high-level
wind does not play a significant role, it can still influence the strength of breakup
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Simulation Name Mean Wind Modification Modification
No Meridional Shear Reversals
(MedSheRev)

Replace each meridional wind level of the entire simu-
lation with the surface meridional wind from the strong
reversal event of 2017-04-12 00:00:00

No Meridional Shear Organized
(MedSheOrg)

Replace each meridional wind level of the entire simu-
lation with the surface meridional wind from the strong
organized event of 2017-03-20 18:00:00

No Meridional Low Tro-
pospheric Shear Reversals
(MLowSheRev)

Replace the meridional wind levels from 1000hPa to
650hPa of the entire simulation with the surface merid-
ional wind from the strong reversal event of 2017-04-12
00:00:00

No Meridional Low Tro-
pospheric Shear Organized
(MLowSheOrg)

Replace the meridional wind levels from 1000hPa to
650hPa of the entire simulation with the surface merid-
ional wind from the strong organized event of 2017-03-
20 18:00:00

No Meridional High Tro-
pospheric Shear Reversals
(MHigSheRev)

Replace the meridional wind levels from 500hPa to
100hPa of the entire simulation with the 500hPa merid-
ional wind from the strong reversal event of 2017-04-12
00:00:00

No Meridional High Tro-
pospheric Shear Reversals
(MHigSheOrg)

Replace the meridional wind levels from 500hPa to
100hPa of the entire simulation with the 500hPa merid-
ional wind from the strong organized event of 2017-03-
20 18:00:00

No Zonal Shear Reversals (Zon-
SheRev)

Replace each zonal wind level of the entire simulation
with the surface zonal wind from the strong reversal
event of 2017-04-12 00:00:00

No Zonal Shear Organized
(ZonSheOrg)

Replace each zonal wind level of the entire simulation
with the surface zonal wind from the strong organized
event of 2017-03-20 18:00:00

No Zonal Low Tropospheric
Shear Reversals (ZLowSheRev)

Replace the zonal wind levels from 1000hPa to 650hPa
of the entire simulation with the surface zonal wind
from the strong reversal event of 2017-04-12 00:00:00

No Zonal Low Tropospheric
Shear Organized (ZLowSheOrg)

Replace the zonal wind levels from 1000hPa to 650hPa
of the entire simulation with the surface zonal wind
from the strong organized event of 2017-03-20 18:00:00

No Zonal High Tropospheric
Shear Reversals (ZHigSheRev)

Replace the zonal wind levels from 450hPa to 100hPa of
the entire simulation with the 450hPa meridional wind
from the strong reversal event of 2017-04-12 00:00:00

No Zonal High Tropospheric
Shear organized (ZHigSheOrg)

Replace the zonal wind levels from 450hPa to 100hPa of
the entire simulation with the 450hPa meridional wind
from the strong organized event of 2017-03-20 18:00:00

No Shear Reversals (NoSheRev) Replace every zonal and meridional wind throughout
the entire simulation with their respective surface zonal
and meridional winds recorded during the strong re-
versal event on 2017-04-12 00:00:00

No Shear Organized (NoShe-
Org)

Replace every zonal and meridional wind throughout
the entire simulation with their respective surface zonal
and meridional winds recorded during the strong orga-
nized event on 2017-03-20 18:00:00

TABLE 5.2: Overview of all the wind shear experiments performed using
the Random Forest model.
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FIGURE 5.13: RF simulations for the MAM season in the period simulated
by WRF, for (a) No Meridional-Shear. No Meridional (b) Low and (c) High
Tropospheric Shear, (d) No Zonal-Shear. No Zonal (e) Low and (f) High
Tropospheric Shear, and (g) No Shear. Dark-cyan lines represent the control,
the purple line represent the experiments that include reversals conditions

and the blue line the ones with organized conditions.

episodes, likely through a not very efficient transport of moisture from the south.
Another important element is that the MHigRev produce weaker organization, mean-
ing that although not significantly, high tropospheric shear could lead to less strong
clustering.

Concerning the experiments aimed at eliminating zonal shear by substituting
all zonal wind levels with the surface zonal wind values from both reversal (ZonSh-
eRev) and organized (ZonSheOrg) events throughout the troposphere (Figure 5.13d),
the results affirm the minimal influence of the zonal component on convection clus-
ters, their prevention, or disbandment. Both the ZonSheRev and the ZonSheOrg,
closely resemble the control conditions, with the only distinguishing feature be-
ing weaker and shorter breakup episodes, similar to the URev and UOrg experi-
ments (Figure 5.12d). This weakening of the breakup episodes is more influenced by
the low-tropospheric wind (ZLowSheRev and ZLowSheOrg), as illustrated in Fig-
ure 5.13e, rather than the high-tropospheric wind (ZHigSheRev and ZHigSheOrg),
which demonstrates a minor impact primarily on the April 23rd to 29th breakup
episode (Figure 5.13f). It is worth noting that the no zonal shear experiments (Fig-
ure 5.13d-e-f) occasionally exhibits reduced clustering, as evident in the period from
April 15th to 20th, 2017, suggesting that shear can sometimes act to weakly decrease
the degree of organization.

The final set of wind modification experiments involved the replacement of all
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zonal and meridional wind levels with their respective surface values from a rever-
sal (NoSheRev) and an organized (NoSheOrg) event, as presented in Figure 5.13g.
Both experiments exhibit strong similarities to the WinRev and WinOrg experiments
(Figure 5.12c), respectively. This suggests that surface (and low-level) wind plays
the most significant role in shaping convective clusters, random convection, and
breakup episodes. However, it’s important to note some nuances. In the case of the
NoSheRev experiment, it results in random convection conditions throughout the
entire period, albeit with less intensity compared to the WinRev experiment. This
implies that shear, most likely from low levels, can contribute to the promotion of
random conditions and breakup events. The NoSheOrg experiment produces more
organized convection than the control but less than the WinOrg experiment, espe-
cially in specific periods (e.g., April 14th to 20th, 2017), during which convection
is less organized than in the control. This indicates that shear possibly from lower
levels, can play a more prominent role in favoring convection organization under
certain conditions.

In summary, the RF model accurately reproduces WRF boundary condition ex-
periments, enabling an in-depth exploration of the role of wind in shaping con-
vection patterns. Zonal wind’s impact is constrained, mainly linked to low-level
winds. On the contrary, meridional wind significantly influences convection clus-
ters, breakup events, and random convection. Both surface and low-level merid-
ional winds play an essential role in inducing intense breakup events or creating
entirely random conditions. This is driven by the southerly flow associated with
reversal episodes, transporting moisture into the domain and equalizing moisture
disparities. Consequently, the majority of convection shifts to the northern part of
the domain, and new convection is triggered in the southern region. In the absence
of this southerly flow, clustered convection prevails with minimal reversal events,
likely due to the presence of large-scale moisture structures and the absence of a
southerly wind flow.

5.6 Overview of the Machine Learning Model Results

Figure 5.14 illustrates the Slope IQR (Inter-Quartile Range) as a function of the maxi-
mum slope across all RF experiments, including those which closely resemble to the
WRF experiments. The arrows on the graph serve as indicators: a larger IQR corre-
sponds to a more pronounced reversal/breakup episode, signifying a greater shift
in the SST-TCWV regression relationship (slope). Additionally, the arrows demon-
strate that the level of organization during a simulation period is contingent on the
maximum slope; a higher maximum slope results in stronger clustering.

Our study, as summarized in Figure 5.14, underscores the crucial role of large-
scale moisture advection in both organizing and maintaining random convection
patterns. This process sustains convective clusters in the southern region within the
domain (organized conditions) and facilitates their northward migration (reversals
conditions), triggering new convection in the south and resulting in random con-
vection. Key insights from Figure 5.14 include: (i) Zonal wind weakly contributes
to maintaining clustering and inducing breakup episodes. (ii) The meridional wind
significantly influences organized and random states, with a weak and southerly
flow favoring organization, and a more substantial meridional wind from the south
inducing breakup convection and random conditions. (iii) Moisture structures play
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FIGURE 5.14: Slope IQR (75-25%-tile) as a function of Maximum Slope. The
Slope IQR represent the strength of the reversal event, and the Maximum
Slope (Slope Max) shows the degree of organization, as the plotted arrows
indicate. The circles represent simulations that used organized conditions,
the stars the ones that use reversal conditions, and the triangle is the con-
trol. The colors of the stars and the circles show the variable that is selected
to replace with the organized/reversal condition. This means that if the sim-
ulation name in the legend is Meridional wind, this is the variable that was

replaced with the organized/reversals conditions

a vital role in both organized and random conditions. When organized conditions
are applied, they lead to strong clustering and weakened breakup episodes. Con-
versely, under reversal conditions, convection remains random, and breakup episodes
occur concurrently with the control, emphasizing the importance of wind condi-
tions, aligning with previous work (e.g., Takayabu and Nitta 1993; Takayabu 1994;
Kiladis and Wheeler 1995; Haertel and Johnson 1998; Gonzalez and Jiang 2019) that
emphasize the role of large-scale moisture dynamics in determining convection or-
ganization.

Interestingly, wind shear plays a role, though not as pronounced, in both convec-
tion clustering and breakup events. This aligns with findings from Helfer et al. (2020)
and Helfer and Nuijens (2021) in trade-wind regions, indicating that shear can cre-
ate conditions favorable for organization, depending on its direction and strength.
Zonal shear, encompassing low-level and high-level shear, shows minimal impact
compared to the control, consistent with the zonal wind experiments discussed ear-
lier. On the other hand, experiments eliminating meridional shear reveal substantial
effects on both organized and random conditions. Eliminating shear by substitut-
ing all meridional wind levels with surface wind from a reversal episode results
in primarily random convection, principally driven by low-level winds creating a
southerly flow (Takayabu and Nitta, 1993; Haertel and Johnson, 1998). Eliminating
meridional shear by replacing all wind levels with surface wind from an organized
event yields highly organized convection, notably reducing breakup episodes, sim-
ilar to the meridional wind experiment. This reaffirms previous findings emphasiz-
ing the role of surface meridional wind (and low-level meridional winds) in influ-
encing both the promotion and disruption of convection. Notably, despite weakened
breakup episodes in the absence of meridional shear, they persist, potentially influ-
enced by moisture structures, an important factor in reversal episodes as well.
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Other significant factors warrant consideration. Runs exhibiting the strongest
reversals also demonstrate strong clustering. The relationship between SST-TCWV
undergoes the most significant change when convection transitions from a highly
organized configuration to a random one, typically due to a westward-propagating
wave. This phenomenon is particularly evident in the control experiment, character-
ized by significant clustering, and experiences disruptions from westward-propagating
waves, leading to pronounced changes in the SST-TCWV relationship and strong re-
versal events. Conversely, runs with maximum slope > 8 and slope IQR > 12 exhibit
strong clustering and reversals but feature less intense waves due to modifications in
key variables, diminishing the wave strength, and subsequently the reversal’s mag-
initude.

The MoiOrg experiment demonstrates the highest degree of clustering, surpass-
ing even the control, MAO, or WinOrg experiments, highlighting moisture’s es-
sential role (Tompkins, 2001c). Nonetheless, MoiOrg still produces weak reversal
episodes, stronger than MAO and WinOrg, indicating wind’s importance in break-
up event development. On the other hand, in the VRev, MLowSheRev, MedSheRev,
and NoSheRev experiments, convection stays mostly random, but with episodes of
weak clustering, which is why those runs lays in intermediate levels of clustering
and reversal strength.

5.7 Chapter Summary and Conclusions

Numerous studies highlight the significant impact of convective organization on cli-
mate sensitivity and the hydrological cycle. In Chap4 we introduce an index based
on the SST-TCWV relationship, revealing that in the Pacific Warm Pool, boreal-
winter convection tends to organize into clusters, disrupted by westward-propagating
waves. This clustering results in a drier domain, allowing more LW radiation to
escape the atmosphere, confirming the role of organization into influencing climate
feedbacks and the hydrological cycle. In boreal-summer convection maintains a ran-
dom configuration despite strong diabatic and adiabatic feedbacks favoring cluster-
ing.

This study aims to unravel the mechanisms driving clustered convection, breakup
events during boreal/winter, and the processes leading to random convection in the
Pacific Warm Pool. Through observational analysis akin to Chap4, we identify mois-
ture advection as an essential variable determining the spatial arrangement of con-
vection. Utilizing the WRF model, we simulate the MAM and JJA seasons, designat-
ing MAM as the control. We manipulate the large-scale moisture advection in MAM
by replacing it with the moisture advection conditions of a reversal (MAR) and an or-
ganized (MAO) state. These experiments demonstrate that moisture advection can
induce either fully random or clustered convection throughout the MAM season.
In contrast, the JJA simulation exhibits random convection despite potent diabatic
feedbacks.

Employing a stream function, we observe a moist gross static energy (MGSE) ex-
port from moist to dry regions during JJA, counteracting diabatic feedbacks. This
effect is more pronounced in the MAR experiment, where strong diabatic feedbacks
are compensated by MGSE export facilitated by large-scale moisture structures. In
the MAM season, MGSE is imported into moist regions, likely due to large-scale



5.7. Chapter Summary and Conclusions 107

dynamics, coupled with favorable diabatic feedbacks, and including SST gradients,
and moisture disparities, that promote organized convection. This multiple aspects
that favor clustering are further strengthens in the MAO experiment.

Having established that moisture structures influence both clustered and ran-
dom convection, we then attempted to comprehend the roles of large-scale moisture
structures and the wind, including its components. Substituting large-scale moisture
fields at the domain boundaries with those from a single day with organized condi-
tions results in strong clustering throughout the entire simulation. This substitution
also mitigates breakup episodes but does not entirely prevent them, underscoring
the crucial role of winds. Replacing moisture with reversal conditions induces ran-
dom scenarios with breakup-like episodes. These episodes disperse all the cores,
interspersed with brief clustered periods influenced by wind conditions.

In terms of wind influence, organized conditions result in strong organization
(though not as pronounced as in the moist boundary conditions experiment), cou-
pled with weaker breakup episodes than in the control, underscoring its role in
shaping reversal conditions. This also emphasizes that moisture boundary condi-
tions alone can induce breakup episodes, since the wind perturbations are not able
to fully prevent them. Reversal wind conditions exhibit a weak zonal wind compo-
nent and a southerly meridional component, creating a sustained influx of moisture
to the domain. This displaces deep convection northward while initiating new con-
vection in the southern region within the domain. This scenario is reminiscent of
Chap4 conditions, where a westward-propagating wave induces a similar southerly
flow, driven by convergence produce by the wave.

The wind results hint that the zonal component makes a minimal contribution to
generating organized or random convection, as demonstrated by our experiments
imposing the zonal wind of both reversal and organized states. In contrast, the
meridional wind exhibits a behavior similar to the wind experiments with rever-
sals conditions, results produce an almost entirely random convection configuration
throughout the entire MAM season. This is attributed to the mentioned moisture
influx from the south, where the center of the warm pool is located. The experi-
ment also briefly produces cluster conditions that quickly disband, revealing that
moisture boundary conditions can drive organization even in the presence of disfa-
voring meridional wind, albeit less strongly (and shortly). Meridional wind from
organized conditions can lead to stronger organization than normal, with weak
breakup episodes, underscoring that moisture structures alone can induce breakup
episodes, although less prominently than in combination with the meridional wind.
In essence, moisture boundary conditions exhibit greater efficiency in transporting
moisture from dry to moist regions, whereas meridional wind boundary conditions
emerge as the primary driver exporting MGSE from humid to dry regions, particu-
larly during reversal episodes.

Having elucidated the wind conditions influencing random and clustered con-
vection, we further investigate the roles of surface winds, low-level winds, high-
level winds, and wind shear. This exploration involves a new set of experiments
employing a Random Forest model with high precision in replicating the SST-TCWV
relationship (slope) and WRF sensitivity experiments. Unlike the WRF model, this
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approach allows modifications to large-scale wind conditions without inducing mo-
mentum imbalances. Results indicate that the zonal wind component’s weak con-
tribution to both organized and reversal states emanates from surface and low-level
winds. A parallel finding emerges for the meridional component, where the impact
is attributed to surface and low-level meridional winds, even in the absence of wind
shear at low levels. Wind shear, on the other hand, exhibits a dual role, capable of
both promoting and hindering clustering, aligning with findings from other studies
(e.g., Helfer et al. 2020; Helfer and Nuijens 2021).

The findings presented in this chapter underscores the predominant role of large-
scale dynamics in clustering convection, disrupting it, and also producing random
convection. Spatial diabatic feedbacks appear less influential in determining when
clustering occurs but rather amplify it through the impact of dynamics. Large-scale
dynamics can induce a MGSE export from the moist to the dry regions, offsetting
the diabatic positive feedbacks.
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Deep convection organization impacts the radiative budget and hydrological cycle.
One crucial facet of deep convection, with the potential to influence climate sensitiv-
ity and alter the hydrological cycle by modifying storm intensity and atmospheric
humidity, is its organization. Examples of convection organization include meso-
scale convective systems such as squall lines and tropical cyclones, and larger scale
coupled waves including the Madden-Julian Oscillation. Organized convection con-
tributes to an increase in precipitation extremes. Clustered convection increase clear-
sky OLR as a result of diminishing moisture relative to a state where convection
is random. Depending on the reduction of the cloud fraction resulting from orga-
nized convection, the all-sky OLR can also be affected, introducing potential climate
sensitivities that remain incompletely understood. Consequently, the scientific com-
munity has employed idealized models, observations, and realistic simulations to
enhance our comprehension of the mechanisms driving organization and its im-
plications for the atmospheric mean state. One intriguing phenomenon observed
in idealized convection permitting modelling studies within the radiative convec-
tive equilibrium framework is convective self aggregation (SA). In SA, convection
clusters despite originating from homogeneous initial conditions and in the absence
of external forcings at the domain boundaries, such as large-scale forcing, waves,
or SST heterogeneities. Extensive research has revealed that convective SA can oc-
cur in different models and domain configurations; however, it may be impeded in
smaller domains. In particular, previous research has indicated that the occurrence
of SA can be very sensitive to the choice of specific combinations of parameteriza-
tion schemes employed. This is why the focus of the first objective of this thesis is to
comprehend the factors driving the sensitivity of SA to the model parameterizations.

Due to the convective SA impact on the domain mean in idealized models, re-
searchers have turned to observations and realistic simulations to discern its con-
sequences in the atmosphere, with the specific objective of identify SA’s effects on
the radiative budget and the hydrological cycle. Authors have shown that SA can
influence the tropical atmosphere’s radiative budget, affecting OLR, and that orga-
nized convection results in intensified daily precipitation with associated drying in
the sub-tropics. However, studying organization in observations poses challenges
in quantification, with no consensus on methodology despite numerous proposed
indices. Addressing this gap, the second objective of this thesis focuses on devel-
oping a fingerprint index to quantify organization based on its consequences on the
humidity distributions and relationship between humidity and SST, rather than the
direct position of convection. The index is employed to analyze the impacts of or-
ganization on the domain mean cloud fraction, OLR and humidity in three GCM-
like grid boxes situated in the Pacific Warm Pool. The study also investigates the
mechanisms driving organized and random convection, drawing comparisons with
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findings from idealized modeling studies. Building on the insights from this ob-
jective, the third objective of this thesis focused on understanding the mechanisms
fostering or impeding organization in the warm pool. It also seeks to uncover why
organized convection can undergo breakup episodes that could also modify the do-
main’s mean properties.

In the following, the conclusions of the three objectives outlined in this paper,
starting from the general question we sought to address, a question which is also
described in the introduction:

Question 1: What is the sensitivity of self-aggregation to the model subgrid-
scale parameterizations?

Chapter 3 aimed to comprehend the mechanisms influencing the occurrence or
prevention of convective SA in diverse idealized modeling scenarios. Using the
WRF model, we explored 24 different combinations of parameterizations, including
sub-grid scale mixing, PBL, and microphysics, without altering domain characteris-
tics. Our analysis emphasizes the critical role of factors that impact the convective
spacing in the initial phase of near random convection, as exemplified by the max-
imum free convective distance (dclr) metric in determining SA transition or mainte-
nance of a random configuration.

In essence, convective SA propensity increases with higher dclr, particularly when
cold pools (CPs) exhibit limited size, intensity, and gust front convergence. This is
significant since weaker/smaller and less convergent CPs lead to fewer collisions,
decreased moisture convergence (and moisture redistribution), leading to a lower
core count, and to an increased dclr—favoring aggregation. Conversely, larger dclr
and weaker/smaller CPs elevate the likelihood of a dry region emerging, which can
act as a starting point for the aggregation of convection. When a dry region devel-
ops, subsidence intensifies the cooling and desiccation of non-convective regions,
resulting in dry anomalies and positive pressure anomalies. This sets off a divergent
flow that further amplifies regional drying, establishing a feedback mechanism.

Interconnected variables influencing dclr underscore its crucial role in SA devel-
opment, showcasing intricate an interplay: (i) Horizontal mixing (sub-grid scale)
induces entrainment, amplifying transported mass within clouds to yield large con-
vective cores, escalating dclr and leading to SA. (ii) Rain evaporation (microphysics)
impacts CP intensity/size, convective core count, and dclr. Weaker evaporation ham-
pers moisture redistribution and CP gust fronts, influencing convective core number,
dclr, and favoring SA. (iii) Non-local schemes induce heightened low-cloud cover,
even in dry regions, by drawing in air from the upper atmosphere. This increased
low-cloud cover enhances radiative cooling, which reinforces a circulation pattern
that retains moisture in moist regions, thereby favoring self-aggregation. Moreover,
the intensified radiative cooling stimulates stronger subsidence, which suppresses
convective initiation, reduces convective core frequency, expands the dclr, and ulti-
mately promotes SA.

In general, the sub-grid scale mixing scheme stands out as the primary driver of
organized convection, regardless of the chosen PBL or microphysics scheme, making
it the most influential factor for convective SA. Microphysics schemes can also play
a significant role (although not as the sub-grid schemes), with certain schemes either
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facilitating or inhibiting SA. PBL schemes, although still relevant, are of secondary
importance. Notably, in cases where the Thompson/GCE microphysics scheme is
paired with TKE/Smag2, the locality of the PBL emerges as the key determinant for
SA, with non-local schemes promoting SA and local schemes inhibiting it.

Question 2: Can we find convective organization in a GCM grid-box sized do-
main? And if so, what are its impact on the hydrological and radiative budget?

Chapter 4 dived into the intricate relationship between convection organization,
water vapor variability, and their impact on the tropical energy budget. While the
mean activity of deep convection has been well-understood, recent insights have
highlighted the crucial role of mesoscale convection distribution, particularly at al-
pha and beta meso scales, in shaping interannual variations in water vapor.

We employed a multivariate analysis, commonly used in idealized cloud-resolving
studies, to unravel the impacts of convective organization. Findings revealed that
in a clustered state, the distribution of TCWV widens due to the presence of dry
columns, with positive correlations between SST and water vapor. Conversely, in a
more randomly organized convection, the water vapor distribution narrows, featur-
ing high mean values and a negative SST-TCWV correlation.

Focusing on the northern of the equator study regions of the mesoscale domain
located in the warm pool region of the tropical western Pacific, the analysis uncov-
ered distinct behaviors during different seasons. In summer/autumn, when spatial
SST gradients are small, convection tends to align with a randomly organized pat-
tern, despite diabatic forcings favoring clustering. In contrast, during boreal win-
ter/spring, with a weak north-south SST gradient, a predominantly aggregated con-
vection state emerges, intermittently interrupted by episodes of randomly organized
convection. These interruptions lead to a moister atmosphere and reduced humidity
gradients.

Utilizing the SST-TCWV correlation as an index for the clustered state, three com-
posites of 44 (2N-9N box), 46 (3N-10N box), and 41 (3S-4N box) random events
during the study period were constructed. Diabatic forcings, including radiative-
cloud and moisture feedbacks, consistently acted to cluster convection. However,
the surface LH flux feedback, typically favoring clustering in a random state, re-
versed its role when convection becomes aggregated. This feedback is dependent
on wind speed rather than moisture structures, diverging from the results observed
in idealized models. Sporadic breakup of clustering during boreal winter/spring
was attributed to westward propagating waves, inducing a counter-gradient con-
vective activity that resulted in a more homogeneous humidity distribution. This
phenomenon significantly impacted TOA OLR, with an approximate significant de-
crease of 10 W m−2 due to cloud cover changes, in the 3N-10N box, the all-sky OLR
change was not significance due to stable cloud cover in both organized and random
conditions.

Question 3: Can realistic simulations help to understand the mechanisms that
organize or disorganize convection in a mesoscale sized domain?

Building on Chapter 4, Chapter 5 focus on understanding the drivers of clustered
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convection, breakup events in boreal winter/spring, and the processes behind ran-
dom convection in the Pacific Warm Pool during boreal summer/autumn. Focusing
on the MAM and JJA seasons, with MAM as the control, we manipulate large-scale
moisture advection by introducing reversal (MAR) and organized (MAO) state con-
ditions. These experiments revealed that diabatic feedback always favor convection
organization. However, they also showed that moisture advection can induce either
fully random or clustered convection in MAM. The JJA simulation exhibits random
convection, counteracting potent diabatic feedbacks through moist gross static en-
ergy (MGSE) export from moist to dry regions, akin to the MAR experiment. In con-
trast, the MAM and MAO experiments showcase MGSE export from dry to moist
regions.

Having established the influence of moisture structures on both clustered and
random convection, we then focused on its components. Substituting large-scale
moisture structures with those sampled in conditions with organized convection
promotes strong clustering throughout the simulation, mitigating breakup episodes
but not entirely preventing them—highlighting the role of the wind. Replacing
moisture with reversal conditions induces random scenarios with breakup-like episodes
throughout the entire simulation. In terms of large-scale wind, organized conditions
lead to strong organization (though less pronounced than in the moist structures ex-
periment) and weaker breakup episodes, underscoring its role in shaping reversal
conditions. Reversal wind conditions feature a weak zonal wind component and a
southerly meridional component, fostering a sustained influx of moisture into the
domain. This displaces deep convection northward while initiating new convection
in the southern region.

The wind component results reveal a minimal contribution from the zonal com-
ponent to organized or random convection, with a predominant influence from
low-level winds. Conversely, reversal conditions in meridional winds, especially
at low levels, result in almost entirely random convection during the MAM season.
Briefly clustered conditions can arise, but quickly dissipate, indicating that moisture
structures can drive organization despite a less favorable meridional wind, albeit
less strongly and briefly. Meridional winds, particularly from low levels, under or-
ganized conditions foster stronger organization than usual, accompanied by weak
breakup episodes, highlighting that moisture structures alone can induce breakup,
albeit less prominently. Wind shear plays a dual role, capable of both promoting and
hindering clustering depending on its strength and direction.

The findings presented in this research underscore the predominant role of large-
scale dynamics in clustering convection, disrupting it, and also producing random
convection. Spatial diabatic feedbacks appear less influential in fostering cluster-
ing, as large-scale dynamics can induce MGSE export from moist to dry regions,
offsetting the diabatic positive feedbacks. The results also indicate that breaking up
convection clusters requires a strong perturbation, suggesting the potential devel-
opment of hysteresis, akin to idealized models.

Future Research

Our research raised new questions that warrant deeper exploration. In Chapter
3, we analyze the role of rain evaporation, nevertheless, an unexplored aspect re-
volves around the microphysical parameters that dictate the number of convective
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cores. The intricate involvement of cold pools in SA prompts investigation on vari-
ous fronts, including the use of simplified models. This exploration aims to unravel
the moisture-redistribution impact of cold pools, probe into their potential to recon-
figure both convective core number and dclr, and comprehend how factors such as
cold pool intensity, size, gust front convergence, and moisture redistribution collec-
tively shape the emergence of SA. Additionally, our findings suggest that convection
lifetimes may play a role in influencing SA, as enduring clouds have the potential to
moisten a specific location, creating favorable conditions for convection and thereby
fostering SA.

Chapters 4 and 5 also highlight potential research avenues. An interesting hy-
pothesis we propose involves the long-term variations in the convective organiza-
tion index, linked to the tropics-wide energy budget. We speculate that these varia-
tions may be influenced by the frequency of westward-propagating waves that dis-
rupt convection clusters in the Pacific Warm Pool, potentially due to their ability to
redistribute moisture across the tropics. Exploring the impact of intensified convec-
tive organization on daily extreme precipitation events in the Pacific Warm Pool and
assessing the potential influence of breakup episodes on these events would be an
intriguing avenue of research. Another compelling area of study involves investi-
gating how convective organization might evolve in the future, particularly under
warmer SSTs in the Pacific Warm Pool. Understanding whether these changes could
contribute to climate sensitivity or modify the overall organizational impacts on the
domain mean presents a valuable research opportunity. To address this, conducting
pseudo-climate change realistic simulations spanning 4 or 6 years in the warm pool
and comparing the levels of organization and their effects during these periods with
the present climate could offer valuable insights.

Furthermore, the broader implications stemming from the findings in Chapter 4
propose a potential connection between mesoscale organization, quantified by the
Iorg index, and mid-tropospheric humidity, as elucidated by Bony et al. (2020), with
the variability in the activity of westward-propagating waves in the tropical western
Pacific region. Grasping these complex dynamics is paramount for unraveling the
primary determinants of convection organization and water vapor variability in the
warm pool, holding far-reaching significance for the tropical energy budget.

In summation, these questions underscore the avenues yet to be traversed in
comprehending the intricacies of convective organization (including SA). Address-
ing these inquiries promises would allow to enhance our understanding of the phe-
nomenon and also to illuminate novel facets of its governing mechanisms.

Side Projects

Utilizing the insights gained during my Ph.D., I had the opportunity to lead and
co-author several side projects, some of which resulted in publications. While these
publications may not directly align with the main theme of my thesis, they were
facilitated by the methods and diagnostics developed for this thesis. In Appendix D,
a concise summary of these publications is provided, including a brief explanation
of their connection to the methods developed in the thesis and respective citation.
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