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Model checking (MC) for Halpern and Shoham’s interval temporal logic HS has been
recently shown to be decidable. An intriguing open question is its exact complexity for
full HS: it is at least EXPSPACE-hard, and the only known upper bound, which exploits an
abstract representation of Kripke structure paths (descriptor), is non-elementary.
In this paper, we provide a uniform framework to MC for full HS and meaningful fragments
of it, with a specific type of descriptor for each fragment. Then, we devise a general MC
alternating algorithm, parameterized by the descriptor’s type, which has a polynomially
bounded number of alternations and whose running time is bounded by the length
of minimal representatives of descriptors (certificates). We analyze its complexity and
give tight bounds on the length of certificates. For two types of descriptor, we obtain
exponential upper and lower bounds; for the other ones, we provide non-elementary lower
bounds.

1. Introduction

Model checking (MC) is a well-established formal method to automatically check the global correctness of finite-state
reactive systems. Finite systems are usually modeled as labeled state-transition graphs (finite Kripke structures), while the 
properties of interest are specified in standard Point-based Temporal Logics (PTLs), such as, for instance, the linear-time 
temporal logic LTL [1] and the branching-time temporal logics CTL and CTL∗ [2]. Interval temporal logics (ITLs) provide an 
alternative setting for reasoning about time [3–5]. They assume intervals, instead of points, as their primitive temporal 
entities allowing one to specify temporal properties that involve, e.g., actions with duration, accomplishments, and temporal 
aggregations, which are inherently “interval-based”, and thus cannot be naturally expressed by PTLs. ITLs find application in 
a variety of fields (see, e.g., [4,6,7]), including artificial intelligence (reasoning about action and change, qualitative reasoning, 
planning, and natural language processing), theoretical computer science (specification and verification of programs), and 
temporal and spatio-temporal databases. Among ITLs, the landmark is Halpern and Shoham’s modal logic of time intervals
(HS) [3] which features one modality for each of the 13 possible ordering relations between pairs of intervals (the so-
called Allen’s relations [8]), apart from equality. The satisfiability problem for HS turns out to be undecidable over all 
relevant classes of linear orders, and most of its fragments (with some meaningful exceptions [9–11]) are undecidable as 
well [12–14].
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Fig. 1. Complexity of the MC problem for HS fragments under the state-based semantics.

MC of (finite) Kripke structures against HS has been investigated only very recently [6,15–24]. The idea is to interpret 
each finite path of a Kripke structure as an interval, whose labeling is defined on the basis of the labeling of the compo-
nent states, i.e., a proposition letter holds over an interval if and only if it holds over each component state (homogeneity 
assumption [25]). In this paper, we focus on the MC problem for HS under the state-based semantics (time branches both in 
the future and in the past), whose decidability has been proved in [16]. In this setting, temporal modalities for Allen’s re-
lations Begin-with (B), End-with (E), and During (D) have a “linear-time” character: they allow one to select proper prefixes 
(B), proper suffixes (E), and inner sub-paths (D) of the current path, respectively. A graphical account of Allen’s relations 
and the corresponding modalities is given in Table 1. Modalities associated with the other Allen’s relations are, instead, 
“branching-time”: they allow one either to non-deterministically extend a prefix (resp., suffix, sub-path) of the current path 
in the future or in the past, or to non-deterministically select an independent path whose starting point (resp., ending point) 
is reachable from (resp., can reach) the ending point (resp., starting point) of the current path. Expressiveness of HS under 
the state-based semantics has been studied in [18], together with two other decidable variants of it: the computation-tree-
based semantics, that allows time to branch only in the future, and the trace-based one, that disallows time branching. The 
computation-tree-based variant of HS is expressively equivalent to finitary CTL∗ (the variant of CTL∗ with quantification 
over finite paths), while the trace-based one is equivalent to LTL, but at least exponentially more succinct. The considered 
state-based variant is more expressive than the computation-tree-based one and expressively incomparable with both LTL
and CTL∗ .

As for the complexity of the state-based MC problem, it is at least EXPSPACE-hard [17] for full HS, while the only known 
upper bound is non-elementary [16]. Such an upper bound is obtained by defining a finite abstraction over the (possibly 
infinite) set of finite paths of a Kripke structure. The abstraction is parameterized by a natural number h and associates with 
each path a bounded abstract representation, called h-level B E-descriptor. The h-level B E-descriptor of a path (see [16]) is a 
tree-like structure of depth h which conveys meaningful information about the prefixes and suffixes of the path, namely, the 
first and last state, the internal states, and, in case h > 0, recursively, the B E-descriptors of level (h − 1) of such sub-paths. 
The distinctive property of descriptors is that for a given h ≥ 0, the abstraction partitions the (possible infinite) set of paths 
of a Kripke structure into a finite number of equivalence classes such that: (i) paths in the same equivalence class, that is, 
paths with the same h-level B E-descriptor, are indistinguishable with respect to the fulfillment of HS formulas with nesting 
depth of modalities for prefixes (B) and suffixes (E) at most h, and (ii) each equivalence class admits a bounded minimal 
representative (h-level B E-certificate), whose length is at most a tower of exponentials of height h.

An MC procedure for full HS based on B E-descriptors is outlined in [16], but some important features of it have not 
been analyzed in detail. In particular, the succinctness of B E-descriptors has not been investigated so far. This is a fun-
damental issue as the computational cost of the MC procedure based on B E-descriptors depends on the length of h-level 
B E-certificates, where h is the joint nesting depth of modalities for B and E in the given formula. In subsequent pa-
pers [19,20,22–24], research focuses on some syntactic fragments of HS: the fragment featuring only the modality for the 
During relation (D), and fragments featuring modalities for a subset of Allen’s relations meets (A), begin-with (B), end-with
(E), and their transposed relations A, B , and E , respectively. For these fragments, different MC algorithms have been de-
vised, which make use of ad hoc path contraction techniques to obtain bounded minimal size representatives for paths. The 
complete picture of known complexity results is given in Fig. 1. The most investigated fragments of HS are ABABE and 
AEABE (see [22–24]). These fragments have been introduced and studied in [22], where EXPSPACE membership of MC has 
been established by a quite involved technique. Then, they have been studied in a setting which relaxes the homogeneity 
assumption and exploits regular expressions to define the behavior of proposition letters over intervals in terms of their 
component states (see [23,24]). In this more expressive setting, it has been proved that the MC problem for ABABE and 
AEABE belongs to the complexity class AEXPpol of those problems decided by exponential-time bounded alternating Turing 
2



Machines with a polynomially bounded number of alternations (such a class is included in EXPSPACE and it captures the 
exact complexity of some relevant problems, e.g., the first-order theory of real addition with order [26]). This result provides 
an improved upper bound (membership in AEXPpol) to MC against ABABE and AEABE when the homogeneity assumption 
is enforced.

It is worth pointing out that known complexity (upper and lower) bounds for full HS coincide with those for the 
fragment only featuring the two linear-time modalities for E and B , thus suggesting that the complexity of the fragments 
strictly depends on the featured combination of linear-time modalities. Following this intuition, we develop a uniform 
framework for the state-based MC problem for syntactic fragments of HS which is parametric in the featured non-empty 
subset B of non-interdefinable linear Allen’s relations in {B, E, D} (apart from {D}), which is called linear-time basis. The 
linear-time basis is then combined with modalities in a subset (which depends on the specific basis) of the branching-
time Allen’s relations, namely, the relations in the set {A, L, O , A, L, B, E, D, O }. In particular, the fragment for the complete 
basis {B, E} expresses the full logic HS, while, for the bases {B} end {E}, we consider the fragments ALBALBEDO and 
ALEOALBED, respectively (these two fragments are as expressive as ABABE and AEABE, respectively).

The proposed framework is based on a uniform technique for model checking the considered fragments which generalizes 
the descriptor-based approach for full HS proposed in [16] and, at the same time, allows us to fix complexity upper bounds 
on some already-investigated fragments which are comparable with the ones obtained by ad hoc techniques [23,24]. As 
in [16], we exploit the idea of h-level descriptors. For each linear-time basis B and every natural number h, we introduce the 
notion of h-level B-descriptor, which coincides with the notion of h-level B E-descriptor for the complete basis B = {B, E}. As 
already established for the basis {B, E} [16], we show that for all the other bases, paths with the same h-level B-descriptor 
(i) are indistinguishable with respect to the fulfillment of HS formulas in the corresponding fragment with nesting depth of 
modalities for B at most h (h-depth satisfaction property), and (ii) in case the basis is distinct from {D}, they admit a bounded 
minimal representative (h-level B-certificate). It is an open question whether the descriptors for the basis {D} enjoy bounded
h-level B-certificates (bounded path property). Moreover, as an additional interesting contribution, we show that for each 
basis B, the set of branching-time modalities in the related fragment is maximal with respect to the fulfillment of the 
h-depth satisfaction property. More precisely, we prove that for any extension of the fragment for B with a branching-time 
modality non-expressible in the fragment (the addition of the modality for O to ALBALBEDO and of the modality for O to 
ALEOALBED), there are a Kripke structure and a formula (in the extended fragment) that, for each h, distinguishes some 
distinct paths with the same h-level B-descriptor.

We exploit the previous results (in particular, the h-depth satisfaction property and the bounded path property) to devise 
an alternating-time algorithm, parameterized in the basis B (�= {D}), to model check the associated fragment. The algorithm 
runs in time bounded by the maximal length of h-level B-certificates of the input Kripke structure, with h being the B-
nesting depth of the input formula, and the number of alternations between existential and universal choices is at most 
equal to the size of the input formula. As the most relevant contribution, for each basis B, we provide tight bounds on the 
length of h-level B-certificates. For the bases {B} and {E}, we obtain singly-exponential upper and lower bounds. Hence, 
by the proposed alternating algorithm, we obtain membership in AEXPpol of MC for ALBALBEDO and ALEOALBED. Such 
a complexity result (membership in AEXPpol) has already been obtained in [23,24] for ABABE and AEABE by exploiting a 
more involved finite abstraction of paths (recall that ABABE and AEABE are as expressive as ALBALBEDO and ALEOALBED, 
respectively). On the other hand, for all bases B distinct from {B} and {E}, we state a non-elementary lower bound. In 
particular, the result obtained for the basis {B, E} negatively answers a question left open in [16] about the possibility of 
fixing an elementary upper bound on the size of B E-descriptors, and, at the same time, it provides new insight on the MC 
problem for full HS: if elementary procedures exist, they certainly have to exploit structures less powerful than descriptors.

The rest of the paper is organized as follows. In Section 2, we recall the state-based MC framework for HS. In Section 3, 
for each basis B, we introduce the notion of B-descriptor proving the relevant properties of the abstraction based on B-
descriptors. In particular, we prove maximality of the studied fragments with respect to the considered abstraction. Then, 
in Section 4, for each basis B(�= {D}), we describe the MC algorithm for the associated fragment. In Section 5, we give 
tight bounds on the length of B-certificates. Finally, Section 6 provides an assessment of the work done, and outlines future 
research directions.

2. Preliminaries

In this section, we first introduce basic notation, and then recall the logic HS [3] and the state-based MC framework for
verifying HS formulas [16].

Let N be the set of natural numbers. For all i, j ∈ N , with i ≤ j, [i, j] denotes the set of natural numbers h such
that i ≤ h ≤ j. For all n, h ∈ N , Tower(n, h) denotes a tower of exponentials of height h and argument n: more precisely, 
Tower(n, 0) = n and Tower(n, h + 1) = 2Tower(n,h) .

2.1. Finite words

Let � be a finite alphabet. The set of all finite words over � is denoted by �∗ , and �+ := �∗ \ {ε}, where ε is the empty 
word. Let w be a finite word over �. We denote by |w| the length of w . For all i, j ∈ N , with i ≤ j, w(i) is the (i + 1)-th 
letter of w while w[i, j] denotes the infix of w given by w(i) · · · w( j). If w �= ε, then we denote by fst(w) and lst(w) the 
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Table 1
Allen’s primitive relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example

meets 〈A〉 [x, y]RA [v, z] ⇐⇒ y = v

x y

v z

v z

v z

v z

v z

v z

later 〈L〉 [x, y]RL [v, z] ⇐⇒ y < v

begins with 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y

ends with 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

during 〈D〉 [x, y]RD [v, z] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x, y]RO [v, z] ⇐⇒ x < v < y < z

first and last symbol of w , and by internal(w) the set of letters in � occurring in w[1, n − 1], with |w| = n + 1. The set 
Pref(w) of non-empty proper prefixes of w is the set of non-empty finite words u such that w = u · v for some finite word 
v �= ε. The set Suff(w) of non-empty proper suffixes of w is the set of non-empty words u such that w = v · u for some finite 
word v �= ε. A sub-word (resp., internal sub-word) of w is a word w ′ such that w is of the form w = u · w ′ · v for some 
words (resp., for some non-empty words) u and v .

2.2. The interval temporal logic HS

An interval algebra to reason about intervals and their relative orders was proposed by Allen in [8], while a systematic 
logical study of interval representation and reasoning was done a few years later by Halpern and Shoham, who introduced 
the interval temporal logic HS featuring one modality for each Allen relation, but equality (it is obviously unnecessary to 
be considered) [3]. Table 1 depicts 6 of the 13 Allen’s relations, together with the corresponding HS (existential) modalities. 
The other 7 relations are the 6 inverse relations (given a binary relation R , the inverse relation R is such that bR a iff aR b) 
and equality.

Let AP be a finite set of atomic propositions. HS formulas ψ over AP are defined as follows:

ψ ::=  | ⊥ | p | ¬ψ | ψ ∧ ψ | 〈X〉ψ

where p ∈ AP and 〈X〉 is the existential temporal modality for the (non-trivial) Allen’s relation X ∈ {A, L, B, E, D, O , A, L, B,

E, D, O }. The size |ψ | of a formula ψ is the number of distinct subformulas of ψ . We also exploit the standard logical 
connectives ∨ (disjunction) and → (implication) as abbreviations, and for any temporal modality 〈X〉, the dual universal 
modality [X] defined as: [X]ψ := ¬ 〈X〉¬ψ . An HS formula ψ is in negative normal form (NNF) if negation is applied only to 
atomic formulas in AP . By using De Morgan’s laws and for any existential modality 〈X〉, the dual universal modality [X], we 
can convert in linear-time an HS formula ψ into an equivalent formula in NNF, called the NNF of ψ . For a formula ψ in 
NNF, the dual ψ̃ of ψ is the NNF of ¬ψ .

Given a set U ⊆ {A, L, B, E, D, O , A, L, B, E, D, O } of Allen’s relations, the joint nesting depth of U in a formula ψ de-
noted by depthU(ψ) is defined as: (i) depthU(p) = 0, for any p ∈ AP ; (ii) depthU(¬ψ) = depthU(ψ); (iii) depthU(ψ ∧ ϕ) =
max{depthU(ψ), depthU(ϕ)}; (iv) depthU(〈X〉ψ) = 1 + depthU(ψ) if X ∈ U , and depthU(〈X〉ψ) = depthU(ψ) otherwise.

Given any subset of Allen’s relations {X1, .., Xn}, we denote by X1 · · ·Xn the HS fragment featuring existential (and 
universal) modalities for X1, .., Xn only.

The logic HS can be regarded as a multi-modal logic and its semantics can be defined over a multi-modal Kripke 
structure, called abstract interval model (AIM for short), where intervals are treated as atomic objects and Allen’s relations as 
binary relations over intervals. In the following we shall instantiate the abstract interval model taking the set of paths of a 
Kripke structure as set of intervals.

Definition 2.1 (Abstract interval models [16]). An abstract interval model (AIM) over AP is a tuple A =(AP , I, {YI}Y ∈{A,L,B,E,D,O },
LabI), where I is a possibly infinite set of worlds (abstract intervals), YI is a binary relation over I for each Y ∈
{A, L, B, E, D, O }, and LabI : I �→ 2AP is a labeling function which assigns a set of proposition letters from AP to each 
abstract interval.

In the interval setting, I is interpreted as a set of intervals and YI as Allen’s relation Y for each Y ∈ {A, L, B, E, D, O }; 
LabI assigns to each interval in I the set of atomic propositions that hold over it. Given an interval I ∈ I, the truth of an 
HS formula over I is inductively defined as follows:

• A, I |= p if p ∈ LabI(I), for any p ∈ AP ;
• A, I |= ¬ψ iff A, I �|= ψ ;
• A, I |= ψ ∧ ψ ′ iff A, I |= ψ and A, I |= ψ ′;
• A, I |= 〈Y〉ψ , for Y ∈ {A, L, B, E, D, O }, if I YI J and A, J |= ψ for some J ∈ I;
• A, I |= 〈Y〉ψ , for Y ∈ {A, L, B, E, D, O }, if J YI I and A, J |= ψ for some J ∈ I.
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Fig. 2. The Kripke structure KSched .

State-based model checking against HS. In the context of MC, finite state systems are usually modeled as finite Kripke 
structures over a finite set AP of atomic propositions which represent predicates over the states of the system.

Definition 2.2. A Kripke structure over AP is a tuple K = (AP , S, R, Lab, s0), where S is a set of states, R ⊆ S × S is a 
transition relation, Lab : S �→ 2AP is a labeling function assigning to each state s the set of propositions that hold over it, 
and s0 ∈ S is the initial state. We say that K is finite if S is finite.

Let K = (AP , S, R, Lab, s0) be a Kripke structure. A path π of K is a non-empty finite word over S such that for all 
0 ≤ i < |π |, (π(i), π(i + 1)) ∈ R . A sub-path (resp., internal sub-path) of π is a path of K which is a subword (resp., internal 
subword) of π . A path is initial if it starts from the initial state of K .

Example 2.1. In Fig. 2, we depict a finite Kripke structure KSched that models the behavior of a scheduler serving three 
processes which are continuously requesting the use of a common resource. In the initial state v0 no process is served. In 
the states vi , with i ∈ {1, 2, 3}, the i-th process is served (the proposition pi holds in those states). The loop on vi represents 
the use of the resource. A transition from the state vi to ui represents the unlock of the granted resource (the proposition 
pi holds in that state). The scheduler cannot serve the same process twice in two successive rounds, and then vi is not 
directly reachable from vi . A transition from ui to v j with j �= i, represents the fact that the process j-th has issued a 
request for the resource and is served.

We now recall the state-based approach [16] for model checking Kripke structures against HS formulas which consists 
in defining a mapping from a Kripke structure K to an AIM AK , where the abstract intervals correspond to the paths of the 
Kripke structure, the Allen’s relations are interpreted over the paths of K in a natural way, and the following assumption is 
adopted: a proposition holds over an interval if and only if it holds over all its subintervals (homogeneity principle).

Definition 2.3. Let K = (AP , S, R, Lab, s0) be a Kripke structure and R+ the strict transitive closure of R . The AIM induced 
by K is AK = (AP , I, {YI}Y ∈{A,L,B,E,D,O }, LabI), where I is the set of paths of K , and:

• meet: AI = {(π, π ′) ∈ I × I | lst(π) = fst(π ′)},
• later: LI = {(π, π ′) ∈ I × I | (lst(π), fst(π ′)) ∈ R+},
• begins-with: BI = {(π, π ′) ∈ I × I | π ′ ∈ Pref(π)},
• ends-with: EI = {(π, π ′) ∈ I × I | π ′ ∈ Suff(π)},
• during: DI = {(π, π ′) ∈ I × I | π ′ is an internal sub-path of π},
• overlaps: OI = {(π, π ′) ∈ I × I | π ′ = ν · ν ′ for some paths ν and ν ′ such that ν ∈ Suff(π)and |ν| > 1},
• homogeneity principle: for all p ∈ AP , Lab−1

I (p) = {π ∈ I | p ∈ ⋂i<|π |
i=0 Lab(π(i))}.

Note that for a finite Kripke structure K , the number of paths in K may be infinite (this happens when K has loops),
hence the number of intervals in AK may be infinite.

Definition 2.4 (State-based model checking against HS). A Kripke structure K over AP is a model of an HS formula ψ over AP , 
written K |= ψ , if for all initial paths π of K , AK , π |= ψ . In the following, we also write K , π |= ψ to mean AK , π |= ψ . 
The (finite) model checking problem (against HS) consists in checking whether K |= ψ for a given HS formula ψ and a finite 
Kripke structure K .

Example 2.2. We give now an example of property to be checked over the Kripke structure KSched of Example 2.1. We start 
defining a formula Activityi with i ∈ {1, 2, 3} which precisely characterizes a path of KSched corresponding with the use 
and unlock of the shared resource by the i-th process. Activityi is defined as follows: Activityi := ¬pi ∧ [B]pi . The formula 
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ensures that the path underlying the interval has the form v+
i · ui (all the proper prefixes satisfy pi but the whole interval

does not). KSched satisfies the property that any two activities of a process are interleaved with at least an activity of a 
different process, i.e.

KSched |=
∧

i∈{1,2,3}
[D]((〈B〉 Activityi ∧ 〈E〉 Activityi) =⇒ 〈D〉

∨
j∈{1,2,3}, j �=i

Activity j
)

Any subpath of an initial path starting and ending with an activity of the i-th process has a internal activity of another 
process. Notice that the formula use only linear-time modalities.

It is worth noting that we assume the non-strict semantics of HS, which admits intervals (paths) consisting of a single 
point (all the results proved in the paper hold for the strict semantics as well). Under such an assumption, all HS-temporal 
modalities can be expressed in terms of 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [5]. As an example, 〈D〉 can be expressed in terms of 〈B〉 and 
〈E〉 as 〈D〉ψ := 〈B〉 〈E〉ψ , while 〈A〉 can be expressed in terms of 〈E〉 and 〈B〉 as 〈A〉ψ := ([E] ⊥ ∧ (ψ ∨ 〈B〉ψ)) ∨ 〈E〉([E] ⊥ ∧
(ψ ∨ 〈B〉ψ)).

Finally, observe that the temporal modalities for the Allens’s relations in {B, E, D} have a “linear-time” semantics, i.e., 
they allow to select only slices (subpaths) of the current timeline (path). The semantics of the temporal modalities associated 
with the other Allen’s relations (i.e., the ones in {A, L, O , A, L, B, E, D, O }) is instead “branching-time” (i.e., they allow 
to non-deterministically extend the current timeline in the future or in the past). Hence, a non-empty subset of non-
interdefinable Allen’s relations in {B, E, D} is called a linear-time basis B of HS. The possible bases are {B}, {E}, {D}, {B, D}, 
{B, E}, and {E, D}.

2.3. The studied HS fragments

In this subsection, we introduce the syntactical fragments which will be investigated in the rest of the paper. For each 
linear-time basis B, we define a fragment of HS, denoted by HSB(FB), obtained by combining the linear-time modalities 
of the basis B of HS with the branching-time modalities for the Allen’s relations in the subset FB (depending of B) of 
F = {A, L, A, L, B, E} defined as follows:

• FB =F if B ∈ {{B}, {E}, {B, E}};
• F{B,D} =F \ {B} and F{D,E} =F \ {E};
• F{D} =F \ {B, E}.

As we shall see in the next section, the basis B determines the structure of the descriptors (h-level B-descriptors, for 
each h ≥ 0) and the unifying MC algorithm (illustrated in Section 4) exploits a crucial property of descriptors: for a given 
HSB(FB) formula ψ , all the paths of the given Kripke structure which have the same depthB(ψ)-level B-descriptor are 
indistinguishable by formula ψ . In Section 3, we will show that the set of branching-time modalities in HSB(FB) is maximal 
with respect to the fulfillment of the previous property for the fixed basis B. Formally, we will prove that for any extension 
of HSB(FB) with a branching-time modality non-expressible in HSB(FB), one can construct a formula able to distinguish, 
for each h, some distinct paths with the same h-level B-descriptor.

It is worth noticing that the MC procedure in Section 4 operates on all the fragments HSB(FB) except for the one for the 
basis {D}. The reason is that the algorithm exploits another crucial property of descriptors which will be stated in Section 3
for all bases B �= {D}, namely, the existence of a bound on the length of the minimal representatives among the paths of a 
Kripke structure with the same h-level B-descriptor for a given h ≥ 0. We do not know whether the descriptors based on 
the linear-time base {D} enjoy such a property.

We conclude this section by observing that for the (existential) branching-time modalities associated with the Allen’s 
relations which are not in F = {A, L, A, L, B, E}, that is, 〈D〉, 〈O〉, and 〈O〉, the following statements hold:

• 〈D〉 can be expressed in terms of 〈B〉 and 〈E〉: 〈D〉ψ ≡ 〈B〉 〈E〉ψ ;
• 〈O〉 can be expressed in terms of 〈B〉 and 〈E〉: 〈O〉ψ ≡ 〈E〉(〈E〉 ∧ 〈B〉ψ);
• 〈O〉 can be expressed in terms of 〈E〉 and 〈B〉: 〈O〉ψ ≡ 〈B〉(〈B〉 ∧ 〈E〉ψ).

Hence, we can draw the following correspondences:

• the complete basis {B, E} corresponds to the full logic HS;
• HS{B}(F{B}) corresponds to ALBALBEDO;
• HS{E}(F{E}) corresponds to ALEOALBED;
• HS{B,D}(F{B,D}) corresponds to ALBDALEO;
• HS{D,E}(F{D,E}) corresponds to ALEDOALB.

Notice that HS{B}(F{B}) and HS{E}(F{E}) are as expressive as ABABE and AEABE, respectively, investigated in [22–24].
However, we consider 〈L〉 and 〈L〉 as independent modalities for the following reasons:
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Fig. 3. The 2-level {B}-descriptor for the path v1u1 v2 v2 v2 v2u2 of the Kripke structure of Example 2.1 representing an activity of the first process followed 
by one of the second.

• in the non-strict semantics, to express 〈L〉 and 〈L〉 in ABABE (resp., AEABE), the use of the linear-time modality 〈B〉
(resp., 〈E〉) is necessary;

• for a given linear-time basis B, an important complexity parameter in the MC algorithm in Section 4 is the joint B-
nesting depth of the given formula.

3. Descriptor-based abstraction of paths in a finite Kripke structure

In this section, we introduce a finite abstraction of the paths of a finite Kripke structure, parameterized by a linear-time 
basis B of HS and a natural number h ≥ 0, which will be exploited in Section 4 for devising a uniform MC algorithm for 
all the fragments HSB(FB) with B distinct from {D}. The considered abstraction generalizes the one based on descriptors 
originally introduced in [16] for full HS. For each linear-time basis B and natural number h ≥ 0, we associate with each 
path of the given finite Kripke structure K a tree object (abstraction) ranging over a finite set, called h-level B descriptor. 
The important property of this abstraction is that it partitions the (possibly infinite) set of K -paths into a finite number 
of equivalence classes such that paths in the same equivalence class, i.e., paths with the same h-level B-descriptor, are 
indistinguishable from all the formulas in HSB(FB) with joint B-nesting depth at most h (h-depth satisfaction property). The 
second fundamental property that holds for each basis B �= {D} is that each equivalence class contains a bounded witness 
path whose length is bounded by the number of distinct h-level B descriptors (bounded path property).1 In particular, to 
design an MC algorithm for the logic HSB(FB) with B �= {D}, we shall consider h-level B-certificates, namely paths which 
enjoy the property of having minimal length with respect to the set of paths having the same h-level B-descriptor. In 
Section 5, we will provide tight bounds on the length of h-level B-certificates.

In this section, we also formally state maximality of the considered fragments HSB(FB) with respect to the B-
description-based abstraction. More precisely, we show that for each basis B and branching-time modality 〈X〉 non-
expressible in HSB(FB), there are a formula ϕ in the extension of HSB(FB) with modality 〈X〉 and a finite Kripke structure 
K such that for each h ≥ 1, formula ϕ is able to distinguish distinct paths of K with the same h-level B-descriptor.

The rest of the section is organized as follows. In Subsection 3.1, we formally define h-level B-descriptors and provide 
some example. In Subsection 3.2, we state the h-depth satisfaction property and the bounded path property. Finally, in 
Subsection 3.3, we show the maximality of the fragments HSB(FB) with respect to the B-descriptor abstraction.

3.1. Descriptors

In this subsection, we formally define the notion of h-level B-descriptor for a linear-time basis B and a natural number 
h ≥ 0. The definition of h-level B-descriptors exploits h-level �-terms and h-level bipartite �-terms, where � denotes a given 
finite alphabet. Intuitively, an h-level �-term corresponds to an unordered finite tree of height h such that subtrees rooted 
at distinct children of the same node are not isomorphic. An h-level bipartite �-term is similar but, additionally, we require 
that each edge in the tree has a color from a set of two colors. Formally, the set of h-level �-terms t is inductively defined 
as follows:

• if h = 0, then t = a for some a ∈ �; otherwise, t has the form (a, T ) where a ∈ � and T is a (possibly empty) subset of
(h − 1)-level �-terms.

The set of h-level bipartite �-terms t is inductively defined as follows:

1 As already pointed out, we do not know if a bounded path property holds for the basis {D} as well.
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Fig. 4. A fragment of the 2-level {B E}-descriptor for the path v1u1 v2 v2 v2 v2u2 of the Kripke structure of Example 2.1. The rightmost expanded sub-tree 
rooted in the node (v2, {v2}, u2) describes both the suffix v2 v2 v2 v2u2 and the suffix v2 v2 v2u2. The suffix v2 v2u2 is described by the right sub-tree and 
the suffix v2u2 is described by the sub-tree rooted in the node (v2, ∅, u2).

• if h = 0, then t = a for some a ∈ �; otherwise t is of the form (a, T1, T2) where a ∈ � and T1 and T2 are (possibly
empty) subsets of (h − 1)-level �-terms.

We say that a is the root of t . The size of an h-level (bipartite) �-term is the number of nodes in the associated tree
representation. The following statement holds.

Remark 3.1. The number of distinct h-level �-terms (resp., h-level bipartite �-terms) over � is Tower(�(|�|), h).

Definition 3.1 (Descriptors). Let � be a finite alphabet and B be a linear-time basis of HS. Given a non-empty finite word w
over � and h ≥ 0, the h-level B-descriptor Bh(w) of w is the h-level (� ×2�×�)-term (resp., h-level bipartite (� ×2�×�)-
term) if |B| = 1 (resp., |B| = 2) inductively satisfying the following conditions. For the base case, i.e. h = 0, then B0(w) =
(fst(w), internal(w), lst(w)). For the induction step, i.e. h > 0, we have:

• Case B = {B} (resp., B = {E}, resp., B = {D}): Bh(w) = (B0(w), T ) where T is the set of (h − 1)-level B-descriptors of
the non-empty proper prefixes (resp., non-empty proper suffixes, resp., non-empty internal sub-words) of w .

• Case B = {B, E}: Bh(w) = (B0(w), T B , T E) with T B (resp., T E ) the set of (h − 1)-level B-descriptors of the non-empty
proper prefixes (resp., non-empty proper suffixes) of w .

• Case B = {B, D} (resp., B = {D, E}): as in B = {B, E} by replacing T E (resp., T B) with the set of (h −1)-level B-descriptors
of the non-empty internal sub-words of w .

For a linear-time basis B = {X, Y } (resp., B = {X}), an h-level B-descriptor is also called h-level XY -descriptor (resp., h-level 
X-descriptor) and for a non-empty word, we write XYh(w) (resp., Xh(w)) to mean Bh(w). For a finite Kripke structure K , 
a basis B, and h ≥ 0, we denote by Bh(K ) the finite set of h-level B-descriptors associated with the paths of K .

An example of 2-level {B}-descriptor is depicted in Fig. 3 for a path of the Kripke structure of Example 2.1. An example 
of {B, E}-descriptor is given Fig. 4. Intuitively, the h-level B-descriptor Bh(π) of a Kripke structure path π has enough 
information for checking the fulfillment of HSB(FB) formulas with joint B-nesting depth at most h:

• to check the fulfillment of proposition letters, Bh(π) keeps tracks at each node of the set of states visited by the current
sub-path of π ;

• to deal with the branching-time modalities for Allen’s relations in FB , Bh(π) keeps tracks at each node also of the first
and last states of the current sub-path;

• finally, to check the fulfillment of the linear-time modalities for the basis B, Bh(π) keeps information about all the
sub-paths of the current sub-path π ′ which can be obtained from π ′ by applying Allen’s relations in the basis B.

3.2. Properties of descriptors

In this subsection, for each basis B distinct from {D}, we state two properties of B-descriptors which are fundamental 
to design an MC algorithm for the logic HSB(FB). The first crucial property (h-depth satisfaction property), which holds for 
the basis {D} as well, is that for a finite Kripke structure K and a natural number h ≥ 0, paths of K which have the same 
h-level B-descriptor satisfy the same formulas in HSB(FB) with B-nesting depth at most h (see Proposition 3.2). To prove 
this property, we need a preliminary stabilization result, namely, we have to show that the property of two paths π and π ′
of having the same h-level B-descriptor is preserved by right (resp., left) concatenation with another path of K whenever 
B is distinct from {D} and {B, D} (resp., from {D} and {D, E}). This right-stabilization (resp., left-stabilization) result is used 
for handling the branching-time modality 〈B〉 (resp., 〈E〉) in the fragments HSB(FB), which include such a modality.
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Proposition 3.1. Let h ≥ 0, B �= {D} be a basis, and π and π ′ be two paths of a finite Kripke structure K such that Bh(π) = Bh(π ′). 
Then, for all paths πL and πR of K such that πL · π and π · πR are defined, the following properties hold:

(1) if B �= {B, D}, then Bh(π · πR) = Bh(π ′ · πR);
(2) if B �= {D, E}, then Bh(πL · π) = Bh(πL · π ′).

Proof. First note that since Bh(π) = Bh(π ′), it holds that fst(π) = fst(π ′) and lst(π) = lst(π ′). Hence, πL ·π (resp., π ·πR ) is 
a path of K if and only if πL ·π ′ (resp., π ′ ·πR ) is a path. For the basis B = {B, E}, the result has been proved in [16]. Here, 
we focus on the cases where either B = {E} (E-descriptors) or B = {D, E} (D E-descriptors). The cases where either B = {B}
or B = {B, D} are similar. We prove Properties (1) and (2) by induction on h. The base case h = 0 is straightforward. Now, 
assume that h > 0.

First, let us consider Property (1) when either B = {E} or B = {D, E}. We prove the inclusion Bh(π · πR) ⊆ Bh(π ′ · πR)

(the other inclusion being similar). Let νE be a non-empty proper suffix of π · πR and νD be an internal sub-path of π · πR . 
We need to prove that:

(1.1) there is a non-empty proper suffix ν ′
E of π ′ · πR such that νE and ν ′

E have the same (h − 1)-level B-descriptor;
(1.2) if B = {D, E} then there is an internal sub-path ν ′

D of π ′ · πR such that νD and ν ′
D have the same (h − 1)-level 

D E-descriptor.

For Condition (1.1), if νE is a suffix of πR , then we set ν ′
E = νE and the result holds. Otherwise, there is a non-empty 

proper suffix ξ of π such that νE = ξ ·πR . Since Bh(π) = Bh(π ′) and B ∈ {{E}, {D, E}}, there is a non-empty proper suffix ξ ′
of π ′ such that ξ and ξ ′ have the same (h − 1)-level B-descriptor. Thus, by setting ν ′ = ξ ′ ·πR , by the inductive hypothesis, 
the result follows. Consider now Condition (1.2). We distinguish three cases:

1. νD is either a prefix or an internal sub-path of πR : we set ν ′
D = νD and the result trivially holds.

2. νD is an internal sub-path (resp., proper suffix) of π : by hypothesis, there is an internal sub-path (resp., proper suffix)
ν ′

D of π ′ such that νD and ν ′
D have the same (h − 1)-level D E-descriptor. Being ν ′

D an internal sub-path of π ′ · πR , the
result follows.

3. there is a proper suffix ξ of π and a proper prefix η of πR such that νD = ξ · η. By hypothesis, there is a proper suffix
ξ ′ of π ′ such that ξ and ξ ′ have the same (h − 1)-level D E-descriptor. By the induction hypothesis, ξ · η and ξ ′ · η have
the same (h − 1)-level D E-descriptor. Hence, by setting ν ′

D = ξ ′ · η, the result follows.

Now, let us prove Property (2) for the basis {E}. Let ν be a non-empty proper suffix of πL ·π (the case where we choose
a non-empty proper suffix of πL · π ′ is similar). We need to show that there is a non-empty proper suffix ν ′ of πL · π ′ such 
that ν and ν ′ have the same (h − 1)-level E-descriptor. If ν = π or ν is a proper suffix of π , then, by hypothesis, there 
is a non-empty suffix ν ′ of π ′ such that ν and ν ′ have the same (h − 1)-level E-descriptor. Thus, since ν ′ is a non-empty 
proper suffix of πL · π ′ , the result follows. Otherwise, there is a non-empty proper suffix ξ of πL such that ν = ξ · π . Let 
ν ′ = ξ · π ′ . Since π and π ′ have the same (h − 1)-level E-descriptor, by the inductive hypothesis, we obtain that ν and ν ′
have the same (h − 1)-level E-descriptor, concluding the proof. �

We note that when the basis B is either {D} or {B, D} (resp., either {D} or {E, D}), the property of two paths π and π ′
to have the same h-level B-descriptor is not in general preserved by right (resp., left) concatenation with another path of 
K . As an example, for the bases {D} and {B, D}, let K be a Kripke structure consisting of three states s1, s2, and s3 such 
that (si, s j) is an edge of K for all 1 ≤ i, j ≤ 3. Let us consider the two paths π = s1s3

2(s2s3)
3s1 and π ′ = s1s3

2(s3s2)
3s1. One 

can check that π and π ′ have the same 1-level B D-descriptor and the same 1-level D-descriptor. On the other hand, π · s1
and π ′ · s1 have distinct 1-level B D-descriptors and distinct 1-level D-descriptors: in particular, while π · s1 has the internal 
sub-word s3s1, there is no internal sub-word ν ′ of π ′ · s1 such that fst(ν ′) = s3, lst(ν ′) = s1, and internal(ν ′) = ∅.

By exploiting Proposition 3.1, we can now prove the following key property.

Proposition 3.2 (h-Depth satisfaction property). Let h ≥ 0, B a basis, and π and π ′ be two paths of a finite Kripke structure K such 
that Bh(π) = Bh(π ′). Then, for each HSB(FB) formula ψ with depthB(ψ) ≤ h, it holds that K , π |= ψ iff K , π ′ |= ψ .

Proof. We prove the thesis by a nested induction on the structure of the formula ψ and the joint nesting depth depthB(ψ). 
For the base case, ψ is an atomic proposition, and since π and π ′ have the same h-level B-descriptor (in particular, π
and π ′ visit the same states), the result follows. Now, let us consider the inductive case. The cases where the root modality 
of ψ is a Boolean connective directly follow from the inductive hypothesis. As for the cases where the root modality 
is in {〈A〉, 〈A〉, 〈L〉, 〈L〉}, the result follows from the fact that, being Bh(π) = Bh(π ′), we have that fst(π) = fst(π ′) and 
lst(π) = lst(π ′). If, instead, the root of ψ is in {〈B〉, 〈E〉}, the result easily follows from Proposition 3.1 and the inductive 
hypothesis on the structure of the formula. It remains to consider the cases where the root modality is in B. Here, we focus 
one the case where ψ = 〈D〉ϕ (the other cases, where the root modality is 〈B〉 or 〈E〉 are similar). Hence, either B = {D}, 
9



or B = {D, B}, or B = {D, E}. We prove the implication K , π |= ψ ⇒ K , π ′ |= ψ (the converse implication can be dealt with 
similarly). Assume that K , π |= ψ , where ψ = 〈D〉ϕ . Since 0 < depthB(ψ) ≤ h, it holds that h > 0, and since K , π |= 〈D〉ϕ , 
there is an internal sub-path ν of π such that K , ν |= ϕ . Since π and π ′ have the same h-level B-descriptor, there exists 
an internal sub-path ν ′ of ρ ′ such that ν and ν ′ have the same (h − 1) level B-descriptor. Being depthB(ϕ) ≤ h − 1, by the 
inductive hypothesis K , ν ′ |= ϕ holds. Hence, K , π ′ |= 〈D〉ϕ and the thesis follows. �

By exploiting Proposition 3.1, we can now state a bounded path property for each basis B �= {D} and natural number h ≥ 0, 
which intuitively provides a bounded witness path for each h-level B-descriptor associated with an arbitrary path of a finite 
Kripke structure. The bounded path property is crucial in Section 4 to design the MC algorithm for the logic HSB(FB). We 
do not know if such a property holds for the basis {D} as well.

Proposition 3.3 (Bounded path property). Let B �= {D} be a basis, K be a finite Kripke structure, h ≥ 0, and π be a K -path. Then, 
there exists a path π ′ with the same h-level B-descriptor as π and whose length is bounded by |Bh(K )| (i.e., the number of distinct 
h-level B-descriptors of the K -paths).

Proof. Let |π | = n and B be a basis distinct from {D}. We first consider the case where B �= {B, D}. Since there are n
distinct non-empty prefixes of π , if n > |Bh(K )|, then π can be written in the form π = ν · ν ′ · ν ′′ , where |ν| > 0, |ν ′| > 0, 
and ν and ν · ν ′ have the same h-level B-descriptor. By Property (1) of Proposition 3.1, the strictly smaller path ν · ν ′′ has 
the same h-level B-descriptor as π . We can iterate such a contraction process until there are no more pairs of prefixes with 
the same h-level B-descriptor proving the statement for B �= {B, D}. The case for the basis {B, D} is handled similarly by 
considering the non-empty suffixes of π and by applying Property (2) of Proposition 3.1. �

By exploiting Propositions 3.2 and 3.3, we can introduce bounded minimal representatives (B-certificates) of paths which 
are used in the MC algorithm defined in Section 4.

Definition 3.2 (B-certificate). Given a basis B �= {D}, a finite Kripke structure K , and h ≥ 0, an h-level B-certificate of K is a 
path π of K such that there is no path π ′ so that |π ′| < |π | and π and π ′ have the same h-level B-descriptor. Given an 
HSB(FB) formula ϕ , a B-certificate for (K , ϕ) is an h-level B-certificate of K , where h = depthB(ϕ).

Notice that, by Proposition 3.3, an upper bound on the length of B-certificates for (K , ϕ) is |Bh(K )|, with h = depthB(ϕ).

3.3. Maximality of the fragments HSB(FB) with respect to the descriptor-based abstraction

In this subsection, we show that for each basis B, the fragment HSB(FB) is maximal with respect to the finite abstrac-
tion based on B-descriptors. Formally, we prove that there is a finite Kripke structure K over a set of four propositions 
such that for each basis B and extension HSB(FB ∪ {X}) of the fragment HSB(FB) (with a branching-time modality 〈X〉
that cannot be expressed in HSB(FB)), one can construct an HSB(FB ∪ {X}) formula that, for all n ≥ 1, distinguishes some 
distinct paths of K with the same n-level B-descriptor.

Let AP = {p0, p1, p2, p3} be a set of 4 proposition letters and K be a finite Kripke structure consisting of 4 states s0, 
s1, s2, and s3, where s0 is the initial state, (si, s j) is an edge of K , for all 0 ≤ i, j ≤ 3, and the labeling Lab is such that 
Lab(si) = {pi} for all 0 ≤ i ≤ 3. We first exhibit two families (πn)n≥1 and (π ′

n)n≥1 of K -paths such that πn and π ′
n are 

distinct and have the same n-level B-descriptor, for all n ≥ 1 and basis B ∈ {{B}, {D}, {B, D}}.

Proposition 3.4. For all n ≥ 1, let πn and π ′
n be the paths of K given by

πn := s0sn+2
2 (s2s3)

n+2s1 π ′
n = s0sn+2

2 (s3s2)
n+2s1

Then, the following statements hold:

1. for each basis B ∈ {{B}, {D}, {B, D}}, πn and π ′
n have the same n-level B-descriptor;

2. for each basis B ∈ {{E}, {D}, {D, E}}, (πn)
R and (π ′

n)R have the same n-level B-descriptor,

where w R is the reverse of w, for any finite word w.

Proof. We focus on Property 1 (the proof of Property 2 is similar: it follows from Property 1 and duality in the role of 
prefixes and suffixes). We first prove the following claim. 

Claim. Let n ≥ 1, B ∈ {{B}, {D}, {B, D}}, ρ0 ∈ {ε, s0}, and ρ3 ∈ {ε, s3}. Then, for all k ∈ [0, n − 1], the following paths have the 
same k-level B-descriptor.

• ρ0 · sn+3 · (s3s2)
i · ρ3 and ρ0 · sn+2 · (s3s2)

i · ρ3, for all i ∈ [0, n + 1];
2 2
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Table 2
Extension F ext

B of the set FB , for each basis B.

FB F ext
B

B = {B, E} {A, L, A, L, B, E} {A, L, O , A, L, B, E, D, O }
B = {B} {A, L, A, L, B, E} {A, L, A, L, B, E, D, O }
B = {E} {A, L, A, L, B, E} {A, L, O , A, L, B, E, D}
B = {B, D} {A, L, A, L, E} {A, L, A, L, E, O }
B = {D, E} {A, L, A, L, B} {A, L, O , A, L, B}
B = {D} {A, L, A, L} {A, L, A, L}

• ρ0 · sn+2
2 · (s2s3)

n+2 and ρ0 · sn+2
2 · (s3s2)

n+1 · s3;
• ρ0 · sn+2

2 · (s2s3)
n+1 · s2 and ρ0 · sn+2

2 · (s3s2)
n+2;

• (s2s3)
n+2 and (s2s3)

n+1;
• (s3s2)

n+1 and (s3s2)
n+2.

Proof of the claim. The proof is by a straightforward induction on k ∈ [0, n − 1]. �
Let n ≥ 1 and B ∈ {{B}, {D}, {B, D}}. By the previous claim and definition of the paths πn and π ′

n , it easily follows that 
B0(πn) = B0(π

′
n), and (i) for each prefix (resp., internal sub-path) ν of πn , there is a prefix (resp., internal sub-path) ν ′ of 

π ′
n such that Bn−1(πn) = Bn−1(π

′
n), and (i) for each prefix (resp., internal sub-path) ν ′ of π ′

n , there is a prefix (resp., internal 
sub-path) ν of πn such that Bn−1(πn) = Bn−1(π

′
n). Hence, πn and π ′

n have the same n-level B-descriptor, and the result 
follows. �

Let F ext be the set of Allen’s relations associated with all the branching-time modalities, that is, F ext = {A, L, O , A, L, B,

E, D, O }. For each basis B, we consider an extension F ext
B of FB with some relations in F ext as shown in Table 2. In 

Subsection 2.3, we have proved that for each basis B, the fragment HSB(F ext
B ) corresponds to HSB(FB).

By exploiting Proposition 3.4, we show that for each basis B and each Allen relation X for branching-time modalities 
such that X /∈ F ext

B , there is an HSB(FB ∪ {X}) formula ϕB,X so that for all n ≥ 1, ϕB,X distinguishes distinct paths of K
with the same n-level B-descriptor.

Proposition 3.5. For all n ≥ 1, let πn and π ′
n be the paths of the Kripke structure K in Proposition 3.4. Then, for all bases B and Allen’s 

relations X associated with branching-time modalities such that X /∈ F ext
B , there is an HSB(FB ∪ {X}) formula ϕB,X satisfying the 

following properties:

• if B ∈ {{B}, {B, D}}, then K , πn �|= ϕB,X and K , π ′
n |= ϕB,X , for all n ≥ 1;

• if B ∈ {{E}, {D, E}}, then K , (πn)R �|= ϕB,X and K , (π ′
n)R |= ϕB,X , for all n ≥ 1;

• if B = {D}, then either K , πn �|= ϕB,X and K , π ′
n |= ϕB,X , for all n ≥ 1, or K , (πn)R �|= ϕB,X and K , (π ′

n)R |= ϕB,X , for all n ≥ 1.

Proof. Since Allen’s relations A, A, L, and L are in the set FB (and thus in F ext
B as well) for each basis B, we can assume 

that X ∈ {D, O , B, E, O }. In the proof, we crucially exploit the fact that for all n ≥ 1, the suffix of length 2 of πn is s3s1
while the suffix of length 2 of π ′

n is s2s1. We consider each Allen relation X ∈ {D, O , B, E, O } in the order B, E, D, O , O . 

Case X = B . The bases B such that B /∈ F ext
B are {D} and {B, D}. We define an ADAB formula ϕB (hence, ϕB is in the 

fragment HSB(FB ∪ {B}), for each B ∈ {{D}, {B, D}}), which distinguishes the paths πn and π ′
n , for all n ≥ 1:

ϕB := 〈B〉
(
〈A〉 p1 ∧ [D](〈A〉 p1 → 〈A〉 p1) ∧ 〈D〉(〈A〉 p1 ∧ 〈D〉 ∧ [D] p2 ∧ [D] [D]⊥))

Let π be a path K such that |π | > 2, lst(π) = s1, and s1 /∈ internal(π). Note that the paths πn and π ′
n satisfy this 

condition for all n ≥ 1. By construction, it holds that π satisfies ϕB if and only if there is a right extension π · πR (with πR

being non-empty) of π such that

(i) π · πR ends at state s1 and each internal sub-path of π · πR which starts at state s1 ends at state s1 as well;
(ii) there is an internal sub-path ν of π · πR of length 3 or 4 ending at state s1 such that each internal sub-path of ν

visits only state s2.

Condition (i) implies that πR = sk
1 for some k ≥ 1 (i.e., πR visits only state s1). Since s1 /∈ internal(π), it follows that the 

internal sub-path ν in Condition (ii) corresponds to a suffix of π . This suffix ν of π has length 3 or 4 and internal(ν) = {s2}. 
By construction of paths πn and π ′

n , we obtain that K , πn �|= ϕB and K , π ′
n |= ϕB for all n ≥ 1, and the result for Allen 

relation B follows. 
11



Case X = E . The bases B such that E /∈F ext
B are {D} and {D, E}. Let ϕE be the following ADAE formula:

ϕE := 〈E〉
(
〈A〉 p1 ∧ [D](〈A〉 p1 → 〈A〉 p1) ∧ 〈D〉(〈A〉 p1 ∧ 〈D〉 ∧ [D] p2 ∧ [D] [D]⊥))

Note that ϕE is obtained from ϕB by replacing each occurrence of modality 〈B〉 (resp., 〈A〉, 〈A〉) by 〈E〉 (resp., 〈A〉, 〈A〉). Since 
for all n ≥ 1, K , πn �|= ϕB and K , π ′

n |= ϕB , by duality, we obtain that K , (πn)R �|= ϕE and K , (π ′
n)R |= ϕE , for all n ≥ 1. Thus, 

being ADAE a fragment of HSB(FB ∪ {E}), for each B ∈ {{D}, {D, E}}, the result for Allen relation E follows.

Case X = D . The bases B such that D /∈ F ext
B are {D}, {B, D}, and {D, E}. Here, we focus on the bases {D} and {B, D} (the 

proof for the basis {D, E} is similar and we omit the details). We define an ADAD formula ϕD (hence, ϕD is a formula in 
the fragment HSB(FB ∪ {D}), for each B ∈ {{D}, {B, D}}), which distinguishes the paths πn and π ′

n , for all n ≥ 1:

ϕD := 〈D〉
(
〈A〉 p1 ∧ [D](〈A〉 p1 → 〈A〉 p1) ∧ 〈A〉 p0 ∧ [D](〈A〉 p0 → 〈A〉 p0)

〈D〉(〈A〉 p1 ∧ 〈D〉 ∧ [D] p2 ∧ [D] [D]⊥))

Let π be a path K such that |π | > 2, fst(π) = s0, lst(π) = s1, and s0, s1 /∈ internal(π). Note that the paths πn and π ′
n satisfy 

this condition for all n ≥ 1. By construction, it holds that π satisfies ϕD if and only if there is a left-right extension πL ·π ·πR

of π , where both πL and πR are non-empty, such that

(i) πL · π · πR ends at state s1 and each internal sub-path of πL · π · πR which starts at state s1 ends at state s1 as 
well;

(ii) πL · π · πR starts at state s0 and each internal sub-path of πL · π · πR which ends at state s0 starts at state s0 as 
well;

(iii) there is an internal sub-path ν of πL · π · πR of length 3 or 4 ending at state s1 such that each internal sub-path 
of ν visits only state s2.

Conditions (i) and (ii) imply that πL = sh
0 and πR = sk

1, for some h, k ≥ 1. Since s1 /∈ internal(π), it follows that the internal 
sub-path ν in Condition (iii) corresponds to a suffix of π . This suffix ν of π has length 3 or 4 and internal(ν) = {s2}. By 
construction of paths πn and π ′

n (recall that the suffix of length 2 of πn is s3s1 while the suffix of length 2 of π ′
n is s2s1), 

we obtain that K , πn �|= ϕD and K , π ′
n |= ϕD for all n ≥ 1, and the result follows. 

Case X = O . Here, we have to consider the bases {B}, {B, D}, and {D}. Let ϕB O and ϕD O be the BO and ADOA formulas, 
respectively, defined as follows:

ϕB O := 〈O〉(〈B〉 p2 ∧ [B] [B] [B]⊥)

ϕD O := 〈O〉(〈D〉(〈A〉 p2 ∧ 〈A〉 s1) ∧ [D] [D]⊥)
Recall that modality 〈O〉 allows one to select a right extension of a proper suffix of length at least 2 of the given path. Thus, 
formula ϕB O is fulfilled by a path π of K if and only if there is a suffix ν of π of length 2 such that fst(ν) = s2. On the 
other hand, formula ϕD O is fulfilled by a path π of K if and only if there is a suffix ν of π of length 2 or 3 which can 
be extended to the right into a path ν · νR of length 4 such that the unique internal sub-path of ν · νR of length 2 starts 
at state s2 and ends at state s1. By construction, we have that for all ψ ∈ {ϕB O , ϕD O }, K , πn �|= ψ and K , π ′

n |= ψ , and the 
result for Allen relation O follows.

Case X = O . This case is the dual of the previous case and the bases to examine are {E}, {D, E}, and {D}. Let ϕE O and ϕD O
be the EO and ADAO formulas, respectively, defined as follows:

ϕE O := 〈O〉(〈E〉 p2 ∧ [E] [E] [E]⊥)

ϕD O := 〈O〉(〈D〉(〈A〉 p2 ∧ 〈A〉 s1) ∧ [D] [D]⊥)
By construction, for all ψ ∈ {ϕE O , ϕD O }, K , (πn)R �|= ψ and K , (π ′

n)R |= ψ , and the result for Allen relation O follows. This 
concludes the proof. �

By Propositions 3.4–3.5, we obtain the main result of the subsection.

Theorem 3.1. There is a finite Kripke structure K over a set of 4 proposition letters such that, for all bases B and Allen relations X
associated with branching-time modalities with X /∈F ext

B , there is a HSB(FB ∪{X}) formula ϕB,X so that for all n ≥ 1, K , ϕB,X |= νn

and K , ϕB,X �|= ν ′
n for some paths νn and ν ′

n of K with the same n-level B-descriptor.
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4. Decision procedures based on descriptors

In this section, by exploiting Propositions 3.1–3.3, we design an alternating-time MC algorithm for the logic HSB(F),
for each basis B �= {D}. Recall that FB = F if B ∈ {{B}, {E}, {B, E}}, F{B,D} = F \ {B}, and F{D,E} = F \ {B}, where 
F = {A, A, B, E, L, L}. The structure of the algorithm is similar to the exponential-time bounded alternating procedure 
given in [24] for MC against the fragments ABABE and AEABE (which have the same expressiveness as HS{B}(F{B}) and 
HS{E}(F{E}), respectively), where the notion of certificate is different from the one exploited here.

The MC algorithm we propose is described by the procedure described in Fig. 5, which is parametric in the basis B. For 
the sake of complexity analysis, such a procedure can be easily translated into a time-bounded Alternating Turing Machine 
(ATM) deciding the MC problem for the logic HSB(F).

We assume that HSB(FB) formulas are in NNF. As complexity measures of a formula ϕ , we consider the size |ϕ| and 
the standard alternation depth, denoted by ϒ(ϕ), between the existential 〈X〉 and universal modalities [X] occurring in the 
NNF of ϕ for X ∈ {B, E}. Formally, we establish the following result, where MCB is the set of pairs (K , ϕ) consisting of a 
finite Kripke structure K and an HSB(FB) formula ϕ such that K |= ϕ .

Proposition 4.1. For each basis B �= {D}, the parametric procedure in Fig. 5 describes a time-bounded ATM deciding MCB which, 
given an input (K , ϕ), has a number of alternations (between existentially and universal choices) at most ϒ(ϕ) + 2 and runs in time 
MB(K , ϕ)O (|ϕ|d) , where MB(K , ϕ) is the maximal length of a B-certificate for the input, and d = 2 if D ∈ B and d = 1 otherwise.

In the following, we describe the procedure and then, in Subsection 4.1, we prove the statement of Proposition 4.1. To 
this end, we introduce some auxiliary notation. Let us fix a finite Kripke structure K with transition relation R and an 
HSB(FB) formula ϕ in NNF. We denote by SD(ϕ) the set consisting of the subformulas ψ of ϕ and the duals ψ̃ . Let π be 
a B-certificate for (K , ϕ) and h = depthB(ϕ). For each X ∈ B ∪FB , an X-witness of π for (K , ϕ) is a path π ′ of K satisfying 
the following conditions:

• case X ∈ B: π ′ is a non-empty proper prefix (resp., non-empty proper suffix, resp., non-empty internal subpath) of π if
X = B (resp., X = E , resp., X = D);

• case X ∈FB: π ′ is a B-certificate for (K , ϕ) such that:

– case X = A: fst(π ′) = lst(π);
– case X = A: lst(π ′) = fst(π);
– case X = L: (lst(π), fst(π ′)) ∈ R+;
– case X = L: (lst(π ′), fst(π)) ∈ R+;
– case X = B: π ′ has the same h-level B-descriptor of a path of the form π · π ′′ for some B-certificate π ′′ of (K , ϕ);
– case X = E: π ′ has the same h-level B-descriptor of a path of the form π ′′ · π for some B-certificate π ′′ of (K , ϕ).

Note that when X ∈ {A, L} (resp., X ∈ {A, L}), the set of X-witnesses of π for (K , ϕ) coincides with the set of X-witnesses 
of the one-length path lst(π) (resp., fst(π)) for (K , ϕ). By Propositions 3.1–3.3, we can prove the following key property.

Proposition 4.2. Let B �= {D} be a basis, ϕ an HSB(FB) formula in NNF, K a finite Kripke structure, and π a B-certificate for (K , ϕ). 
Then, for each 〈X〉ψ ∈ SD(ϕ), K , π |= 〈X〉ψ if and only if there is an X-witness π ′ of π for (K , ϕ) such that K , π ′ |= ψ .

Proof. The result for X ∈ B ∪ {A, A, L, L} directly follows from the semantics of HS and Proposition 3.2. Now, assume that 
X ∈ {B, E} and let h = depthB(ϕ). We focus on the case where X = E (the case X = B can be dealt with similarly). Hence, 
B �= {D, E}. For the left implication, let π ′ be an E-witness of π for (K , ϕ) such that K , π ′ |= ψ . We have that there is 
a path of the form π ′′ · π with |π ′′| ≥ 1 having the same h-level B-descriptor as π ′ . Since 〈E〉ψ ∈ SD(ϕ), it holds that 
depthB(ψ) ≤ h. By Proposition 3.2, it follows that K , π ′′ · π |= ψ . Hence, K , π |= 〈E〉ψ , and the result follows.

For the converse implication, assume that K , π |= 〈E〉ψ . Hence, there is a path of the form π ′′ · π with |π ′′| ≥ 1 such 
that K , π ′′ ·π |= ψ . Let ν be a B-certificate for (K , ϕ) with the same h-level B-descriptor as π ′′ . As B �= {D, E}, by applying 
Property (2) of Proposition 3.1 and Proposition 3.2, we deduce that K , ν ·π |= ψ . By applying again Proposition 3.2, there is 
a B-certificate π ′ for (K , ϕ) which has the same h-level B-descriptor as ν · π and such that K , π ′ |= ψ . Thus, since π ′ is 
an E-witness of π for (K , ϕ), the result follows. �

For the given HSB(FB) formula ϕ in NNF, we denote by AALL(ϕ) the set of formulas in SD(ϕ) of the form 〈X〉ψ ′ or 
[X]ψ ′ , with X ∈ {A, A, L, L}. An AALL-labeling L for (K , ϕ) is a mapping associating with each state s of K a maximally 
consistent set of subformulas of AALL(ϕ). More precisely, for all s ∈ S , L(s) is such that for all ψ, ̃ψ ∈ AALL(ϕ), L(s) ∩{ψ, ̃ψ}
is a singleton. L is valid if for all states s ∈ S and ψ ∈ L(s), K , s |= ψ (here we consider s as a one-length path). Finally, 
a well-formed set for (K , ϕ) is a finite set W consisting of pairs (ψ, π) such that ψ ∈ SD(ϕ) and π is a B-certificate of 
(K , ϕ). W is said universal if each formula occurring in W is of the form [X]ψ , with X ∈ {B, E}. The dual W̃ of W is the 
well-formed set obtained by replacing each pair (ψ, π) ∈ W by (ψ̃, π). A well-formed set W is valid if for each (ψ, π) ∈W , 
K , π |= ψ .
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checkB(K , ϕ) [K is a finite Kripke structure and ϕ is an HSB(FB) formula in NNF]

existentially choose an AALL-labeling L for (K , ϕ);
for each state s and ψ ∈L(s) do

case ψ = 〈X〉ψ ′: existentially choose an X-witness π of s for (K , ϕ) and call
checkTrueB(K , ϕ, L, {(ψ ′, π)});

case ψ = [X]ψ ′: universally choose an X-witness π of s for (K , ϕ) and call
checkTrueB(K , ϕ, L, {(ψ ′, π)}); end for

universally choose a B-certificate π for (K , ϕ) with fst(π) = s0 (s0 is the initial state of K )
and call checkTrueB(K , ϕ, L, {(ϕ, π)}); 

checkTrueB(K , ϕ, L, W) [W is a well-formed set of (K , ϕ) and L is an AALL-labeling for (K , ϕ)]

while W is not universal do
deterministically select (ψ, π) ∈W such that ψ is not of the form [E]ψ ′ and [B]ψ ′
update W ← W \ {(ψ, π)};
case ψ = p (resp., ψ = ¬p) with p ∈ AP : if K , π �|= p (resp., K , π �|= ¬p) then reject;
case ψ = 〈X〉ψ ′ or ψ = [X]ψ ′ with X ∈ {A, L}: if ψ /∈L(lst(π)) then reject;
case ψ = 〈X〉ψ ′ or ψ = [X]ψ ′ with X ∈ {A, L}: if ψ /∈L(fst(π)) then reject;
case ψ = ψ1 ∨ ψ2: existentially choose i = 1, 2, update W ←W ∪ {(ψi, π)};
case ψ = ψ1 ∧ ψ2: update W ← W ∪ {(ψ1, π), (ψ2, π)};
case ψ = [X]ψ ′ with X ∈ B: update W ← W ∪ {(ψ ′, π ′) | π ′ is an X-witness of π for (K , ϕ)};
case ψ = 〈X〉ψ ′ with X ∈FB ∩ {E, B}: existentially choose an X-witness π ′ of π

for (K , ϕ), update W ←W ∪ {(ψ ′, π ′)}; end while
if W = ∅ then accept
else universally choose (ψ, π) ∈ W̃ and call checkFalseB(K , ϕ, L, {(ψ, π)})

checkFalseB(K , ϕ, L, W) [W is a well-formed set of (K , ϕ) and L is an AALL-labeling for (K , ϕ)]

while W is not universal do
deterministically select (ψ, π) ∈W such that ψ is not of the form [E]ψ ′ and [B]ψ ′
update W ← W \ {(ψ, π)};
case ψ = p (resp., ψ = ¬p) with p ∈ AP : if K , p �|= π (resp., K , ¬p �|= π ) then accept;
case ψ = 〈X〉ψ ′ or ψ = [X]ψ ′ with X ∈ {A, L}: if ψ /∈L(lst(π)) then accept;
case ψ = 〈X〉ψ ′ or ψ = [X]ψ ′ with X ∈ {A, L}: if ψ /∈L(fst(π)) then accept;
case ψ = ψ1 ∨ ψ2: universally choose i = 1, 2, update W ←W ∪ {(ψi, π)};
case ψ = ψ1 ∧ ψ2: update W ← W ∪ {(ψ1, π), (ψ2, π)};
case ψ = [X]ψ ′ with X ∈ B: update W ← W ∪ {(ψ ′, π ′) | π ′ is an X-witness of π for (K , ϕ)};
case ψ = 〈X〉ψ ′ with X ∈FB ∩ {E, B}: universally choose an X-witness π ′ of π

for (K , ϕ), update W ←W ∪ {(ψ ′, π ′)}; end while
if W = ∅ then reject
else existentially choose (ψ, π) ∈ W̃ and call checkTrueB(K , ϕ, L, {(ψ, π)})

Fig. 5. Procedure checkB for a linear-time basis B �= {D}.

The procedure checkB in Fig. 5 defines the ATM required to prove the statement of Proposition 4.1 for a parametric basis 
B �= {D}. The procedure takes a pair (K , ϕ) as input, where ϕ is an HSB(FB) formula, and performs the following steps:

1. it guesses an AALL-labeling L for (K , ϕ);
2. it checks that the guessed labeling L is valid;
3. for every B-certificate π of (K , ϕ) starting from the initial state, it checks that K , π |= ϕ .

To perform steps (2)–(3), it exploits the auxiliary ATM procedure checkTrueB reported in Fig. 5. The procedure checkTrueB
takes as input a well-formed set W for (K , ϕ) and, assuming that the current AALL-labeling L is valid, checks whether 
W is valid. For each pair (ψ, π) ∈ W such that ψ is not of the form [X]ψ ′ , with X ∈ {B, E}, checkTrueB directly checks 
whether K , π |= ψ . In order to allow a deterministic choice of the current element of the iteration, we assume the set 
W to be implemented as an ordered data structure. At each iteration of the while loop in checkTrueB , the current pair 
(ψ, π) ∈ W is processed according to the semantics of HS, exploiting the guessed AALL-labeling L and Proposition 4.2. 
The processing is either deterministic or based on an existential choice, and the currently processed pair (ψ, π) is either 
removed from W , or replaced by pairs (ψ ′, π ′) such that ψ ′ is a strict subformula of ψ .

At the end of the while loop, the resulting well formed set W is either empty or universal. In the former case, the 
procedure accepts. In the latter case, there is a switch in the current operation mode. For each element (ψ, π) in the 
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dual of W (note that the root modality of ψ is either 〈E〉 or 〈B〉), the auxiliary ATM procedure checkFalseB is invoked, 
which accepts the input {(ψ, π)} if and only if K , π �|= ψ . The procedure checkFalseB , reported in Fig. 5, is the dual of 
checkTrueB: it is simply obtained from checkTrueB by switching accept and reject, by switching existential choices and 
universal choices, and by converting the last call to checkFalseB into checkTrueB . Thus checkFalseB accepts an input W iff 
W is not valid. Formally, the following holds, where for an AALL-labeling L for (K , ϕ), LW denotes the restriction of L to 
the set of formulas in AALL(ϕ) which are subformulas of formulas occurring in W . In other terms, for each state s, LW (s)
contains all and only the formulas ψ ∈ L(s) such that either ψ or its dual ψ̃ is a subformula of some formula occurring 
in W .

Lemma 4.1. Let W be a well-formed set for (K , ϕ) and L be an AALL-labeling for (K , ϕ). If LW is valid, then the following statements 
hold:

1. checkTrueB(K , ϕ, L, W) accepts if and only if W is valid;
2. checkFalseB(K , ϕ, L, W) accepts if and only if W is not valid.

Proof. The proof is by induction on the maximum over the joint nesting depths of {B, E} in the formulas ψ occurring in 
W , denoted by depthBE(W). In the proof, we exploit the crucial fact that, by construction, for the given input (K , ϕ, L, W), 
procedures checkTrueB and checkFalseB only exploit the restriction LW of the AALL-labeling L.

First, assume that there is no subformula of some formula occurring in W of the form [X]ψ for some X ∈ {B, E}. This 
case includes the base of the induction, where depthBE(W) = 0. In this case, the two procedures have no nested call and 
the result easily follows by construction, the semantics of HS, and Proposition 4.2.

Now assume that there is some subformula of a formula occurring in W of the form [X]ψ , for some X ∈ {B, E}. Hence, 
depthBE(W) > 0. We focus on procedure checkTrueB (the proof for procedure checkFalseB is similar), and we show that 
if checkTrueB(K , ϕ, L, W) accepts, then W is valid (the proof of the converse implication is similar). Thus, assume that 
checkTrueB(K , ϕ, L, W) accepts. By construction and Proposition 4.2, there is a non-empty universal well-formed set WU

for (K , ϕ) such that (i) depthBE(WU ) ≤ depthBE(W), (ii) W is valid if WU is valid, and (iii) for each ([X]ψ, π) ∈ WU

(hence, X ∈ {B, E}), checkFalseB(K , ϕ, L, {(〈X〉 ψ̃, π)}) accepts. Let Wt be the set of X-witnesses π ′ of π for (K , ϕ). 
By Proposition 4.2, K , [X]ψ |= π if and only if for each π ′ ∈ Wt , K , 〈X〉 ψ̃ �|= π . On the other hand, by construction, 
checkFalseB(K , ϕ, L, {(〈X〉 ψ̃, π)}) accepts if and only if for each π ′ ∈ Wt , checkFalseB(K , ϕ, L, {(ψ̃, π ′)}) accepts. Since 
depthBE({(ψ̃, π ′)}) < depthBE(WU ), by the inductive hypothesis, we obtain that WU is valid. Hence W is valid, and the
result follows. �

The correctness of the algorithm follows from Propositions 3.2 and 4.2 and Lemma 4.1, and is formally proved in the 
next subsection.

4.1. Correctness of the alternating procedure checkB : proof of Proposition 4.1

In this subsection, we show that the ATM checkB satisfies Proposition 4.1. We first prove the part of Proposition 4.1
concerning the number of alternations and the running time.

Proposition 4.3 (Running Time). Given an input (K , ϕ), the number of alternations (between existentially and universal choices) of 
the ATM checkB is at most ϒ(ϕ) + 2 and it runs in time MB(K , ϕ)O (|ϕ|d) , where MB(K , ϕ) is the maximal length of a B-certificate 
for the input, and d = 2 if D ∈ B and d = 1 otherwise.

Proof. First, we observe that in each iteration of the while loops of procedures checkTrueB and checkFalseB , the processed 
pair (ψ, π) in the current well-formed set W either is removed from W or is replaced with pairs (ψ ′, π ′) such that ψ ′ is 
a strict subformula of ψ and π ′ is a B-certificate for the input (K , ϕ). This ensures that the algorithm always terminates. 
Furthermore, we observe that the number of alternations of the ATM checkB between existential choices and universal 
choices is evidently the number of switches between the calls to procedures checkTrueB and checkFalseB plus two, and 
the top calls to checkTrueB take as input well-formed sets for (K , ϕ) of the form {(ψ, π)}, where ψ ∈ SD(ϕ). Hence, by 
construction, it easily follows that the number of alternations of the ATM checkB on an input (K , ϕ) is at most ϒ(ϕ) + 2. 
For the running time, let T (ϕ) be the standard tree encoding of ϕ , where each node is labeled by some subformula of 
ϕ . Let ψ ∈ SD(ϕ). If ψ is a subformula of ϕ , we define dψ as the maximum over the distances from the root in T (ϕ)

of ψ-labeled nodes. If instead ψ is the dual of a subformula of ϕ , we let dψ := dψ̃ . By construction, each step in an 
iteration of the while loops in procedures checkTrueB and checkFalseB can be performed in time O (MB(K , ϕ)). Then, it 
suffices to show that for all computations ρ of the ATM checkB from input (K , ϕ), the overall number Nψ of iterations of 
the while loops (of procedures checkTrueB and checkFalseB) along the computation ρ for processing the formula ψ is at 
most (2|ϕ| · MB(K , ϕ))dψ if D /∈ B, and at most (2|ϕ| · MB(K , ϕ))(dψ+1)2

otherwise. Assume that D ∈ B (the other case is 
similar). The proof is done by induction on dψ . For the base case, assume that dψ = 0. Therefore, ψ = ϕ or ψ = ϕ̃ , and by 
15



construction of the algorithm, Nϕ and Nϕ̃ are at most equal to 1. Hence, the result holds. For the inductive step, assume 
that dψ > 0. We consider the case where ψ is a subformula of ϕ (the case where ψ̃ is a subformula of ϕ is similar). Then, 
the result follows from the following chain of inequalities, where P (ψ) denotes the set of nodes of T (ϕ) which are parents 
of the nodes labeled by ψ , and for each node x, fo(x) denotes the formula labeling x.

Nψ ≤
∑

x∈P (ψ)

Nfo(x) · (MB(K ,ϕ))2 ≤
∑

x∈P (ψ)

(2|ϕ| · MB(K ,ϕ))(dfo(x)+1)2 · (MB(K ,ϕ))2

≤ (
2|ϕ| · MB(K ,ϕ)

)(dψ+1)2

The first inequality directly follows from the construction of the algorithm (note that if fo(x) = [D]ψ , then the processing 
of subformula fo(x) in an iteration of the two while loops generates at most (MB(K , ϕ))2 new “copies” of ψ ). The second 
inequality follows from the inductive hypothesis and the last inequality follows from the fact that |P (ψ)| ≤ 2|ϕ| and dfo(x) ≤
dψ − 1 for all x ∈ P (ψ). This concludes the proof of Proposition 4.3. �

By exploiting Lemma 4.1, we now prove the next result, which concludes the proof of Proposition 4.1.

Proposition 4.4 (Correctness). The ATM checkB accepts an input (K , ϕ) iff K |= ϕ .

Proof. Fix an input (K , ϕ) and an AALL-labeling L for (K , ϕ). An L-guessing for (K , ϕ) is a well-formed set W for (K , ϕ)

which minimally satisfies the following conditions for all states s of K :

• for all B-certificates π for (K , ϕ) with fst(π) = s0 (s0 is the initial state), (ϕ, π) ∈ W ;
• for all 〈X〉ψ ∈L(s), (ψ, π) ∈W for some X-witness π of s for (K , ϕ);
• for all [X]ψ ∈L(s), (ψ, π) ∈W for all X-witnesses π of s for (K , ϕ).

Evidently, by construction of the procedure checkB , for each input (K , ϕ), it holds that:

(*) checkB accepts (K , ϕ) ⇐⇒ there is an AALL-labeling L and a L-guessing W for (K , ϕ) such that for all (ψ, π) ∈
W , checkTrueB(K , ϕ, L, {(ψ, π)}) accepts.

Fix an input (K , ϕ). First, assume that K |= ϕ . Let L be the valid AALL-labeling defined as follows for all states s: for all 
ψ ∈ AALL(ϕ), ψ ∈ L(s) iff K , s |= ψ . By Propositions 3.2 and 4.2, there exists an L-guessing W for (K , ϕ) such that for all 
(ψ, π) ∈ W , K , π |= ψ . By Lemma 4.1, for all (ψ, π) ∈ W , checkTrueB(K , ϕ, L, {(ψ, π)}) accepts. Hence, by Condition (*), 
procedure checkB accepts (K , ϕ).

For the converse direction, assume that procedure checkB accepts (K , ϕ). By Condition (*), there exists an AALL-labeling 
L and an L-guessing W for (K , ϕ) such that for all (ψ, π) ∈ W , checkTrueB(K , ϕ, L, {(ψ, π)}) accepts. First, we show that 
L is valid. Fix a state s and a formula ψ ∈ L(s). We need to prove that K , s |= ψ . The proof is by induction on the joint 
nesting depth dU (ψ) in ψ where U = {A, A, L, L}. Assume that ψ = [X]ψ ′ for some formula ψ ′ and X ∈ {A, A, L, L} (the 
other cases where ψ = 〈X〉ψ ′ for X ∈ {A, A, L, L} being similar). By definition of L-guessing, it holds that (ψ ′, π) ∈W for all 
X-witnesses π of s for (K , ϕ). Moreover, by the induction hypothesis, one can assume that L{(ψ ′,π)} is valid (note that for 
the base case, i.e. when ψ ′ does not contain occurrences of modalities 〈X〉 or [X] with X ∈ {A, A, L, L}, L{(ψ ′,π)} is trivially 
valid). By hypothesis, checkTrueB(K , ϕ, L, {(ψ ′, π)}) accepts. By Lemma 4.1, it follows that K , π |= ψ ′ for all X-witnesses π
of s for (K , ϕ). Thus, by Proposition 4.2, we obtain that K , s |= ψ . Hence, L is valid. By definition of L-guessing, for each 
certificate π for (K , ϕ) with fst(π) = s0, (ϕ, π) ∈ W . Thus, by hypothesis, Lemma 4.1, and Proposition 3.2, we obtain that 
K |= ϕ . This concludes the proof of Proposition 4.4 and Proposition 4.1 as well. �
5. Tight bounds on the length of certificates

In this section, for each basis B (except {D}), we provide tight bounds on the length of h-level B-certificates.
For the bases {B} and {E}, we prove singly exponential upper bounds in Subsection 5.1 and matching lower bounds in

Subsection 5.2. By the exponential upper bounds and Proposition 4.1, we deduce that model checking the logics HS{B}(F{B})
and HS{E}(F{E}) is in the complexity class AEXPpol of problems decided by exponential-time bounded alternating Turing 
Machines with a polynomially bounded number of alternations. This complexity result (membership in AEXPpol) has already 
been obtained in [23,24] for the fragments ABABE and AEABE by exploiting a more involved finite abstraction of paths 
(recall that ABABE and AEABE have the same expressiveness as HS{B}(F{B}) and HS{E}(F{E}), respectively). Since MC for B
and E is already PSPACE-hard, we obtain the following result.

Corollary 5.1. For the basis B = {B} (resp., B = {E}), model-checking the logic HSB(FB) is in AEXPpol and at least PSPACE-hard.
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Fig. 6. Ordered 1-prefix descriptors over � = {u1, v1, v2}. The (� × 2� × �)-terms correspond with the subtrees of the root of the 2-level {B}-descriptor of 
Fig. 3.

For all bases B distinct from {B} and {E}, we state a non-elementary lower bound (see Subsection 5.3) on the length of 
h-level B-certificates. In particular, the result obtained for the basis {B, E} negatively answers a question left open in [16]
regarding the possibility of fixing an elementary upper bound on the size of B E-descriptors.

5.1. Exponential upper bound on the length of B-certificates and E-certificates

In this Subsection, we provide an exponential upper bound on the length of h-level B-certificates and E-certificates of a 
finite Kripke structure.

Theorem 5.1. Let K be a finite Kripke structure with set of states S and h ≥ 0. Then, each h-level B-certificate (resp., h-level E-
certificate) has length at most |S|2h+2.

In the remaining part of the Subsection, we prove Theorem 5.1 focusing on B-certificates (the proof for E-certificates is 
similar and omitted). For a given finite alphabet � and h ≥ 0, we first define a variant of the notion of h-level B-descriptor, 
called ordered h-prefix descriptor over �, which is not related to a specific word over �. The set OPDh of ordered h-prefix 
descriptors over � is partitioned into |�| subsets OPDb

h (for each b ∈ �), where each of them is equipped with a strict 
partial order. We show that:

(i) each strict ascendent chain of elements in OPDb
h has length at most O (|�|2h+1);

(ii) the h-level B-descriptor of a word w ∈ �+ is an element in OPDh;
(iii) for each w ∈ �+ , the h-level B-descriptors associated to the prefixes of w can be grouped into at most |�| non-strict 

ascendent chains.

Thus, by Proposition 3.1 and reasoning as in Proposition 3.3, we fix the upper bound on the length of h-level B-certificates 
for a given finite Kripke structure.

Let h ≥ 0. For an h-level (� × 2� × �)-term t with root (a, I, b), we say that a (resp., b) is the first symbol (resp., last 
symbol) of t .

Definition 5.1 (Ordered prefix descriptors). Let � be a finite alphabet and h ≥ 0. We define by induction on h a pair (OPDh, ≺h)

consisting of a set OPDh of h-level (� × 2� × �)-terms, called ordered h-prefix descriptors over � and a binary non-reflexive 
relation ≺h over OPDh .

• h = 0: OPD0 is the set of 0-level (� × 2� × �)-terms. Given (a, I, b), (a′, I ′, b′) ∈ OPD0, (a, I, b) ≺0 (a′, I ′, b′) if (i) a = a′
(equality between the first symbols) and (ii) I ⊆ I ′ , and either b �= b′ or I � I ′ .

• h > 0: OPDh is the set of h-level (� × 2� × �)-terms t = ((a, I, b), T ) such that T is a (possibly empty) set of the form
T = {t1, . . . , tn} where ti ∈ OPDh−1, ti has first symbol a, and t1 ≺h−1 t2 ≺h−1 . . . ≺h−1 tn . The binary non-reflexive relation
≺h is defined as follows: ((a, I, b), T ) ≺h ((a′, I ′, b′), T ′) if

– a = a′ , I ⊆ I ′ , T ⊆ T ′;
– and either b �= b′ or I � I ′ or T � T ′ .

An example of ordered 1-prefix descriptors is given in Fig. 6. By construction for each b ∈ �, the binary relation ≺h is 
a strict partial order over the set OPDb

h of ordered h-prefix descriptors over � having the same last symbol b. Additionally, 
we show that a strict ascendent chain of elements in OPDb

h has length at most |�|2h+1.

Proposition 5.1. Let h ≥ 0, � be a finite alphabet, b ∈ �, and t1, . . . , tn be ordered h-prefix descriptors having last symbol b such that 
t1 ≺h t2 ≺h . . . ≺h tn. Then, n ≤ |�|2h+1 .

Proof. The proof is by induction on h ≥ 0. For the base case (h = 0), there is a ∈ � such that for all i ∈ [1, n], ti = (a, Ii, b)

for some Ii ⊆ �, and I1 ⊂ I2 ⊂ . . . ⊂ In . Hence, n ≤ |�| and the result follows.
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Table 3
Miniwords for �2 = {a1, a2}.

h=0 h=1 h=2

w1,1,h a1 a1 · w1,1,0 = a2
1 a1 · w1,1,1 = a3

1
w1,2,h a1a2 a1 · w1,1,0 · a2 · w2,1,0 = a2

1 a2
2 a1 a1 · w1,1,1 · a2 · w2,1,1 = a3

1 a3
2 a2

1 a2

w2,1,h a2a1 a2 · w2,2,0 · a1 · w1,2,0 = a2
2 a2

1 a2 a2 · w2,2,1 · a1 · w1,2,1 = a3
2 a3

1 a2
2 a1

w2,2,h a2 a2 · w2,2,0 = a2
2 a2 · w2,2,1 = a3

2

Now, let h > 0. Hence, there is a ∈ � such that for all i ∈ [1, n], ti is of the form ti = ((a, Ii, b), Ti). By hypothesis, I1 ⊆
I2 ⊆ . . . ⊆ In . Moreover, for each i ∈ [1, n], Ti can be partitioned into at most |�| strict ascendent chains of ordered h − 1-
prefix descriptors having the same last symbol. Thus, by the induction hypothesis, we have that |Ti | ≤ |�| · |�|2(h−1)+1 =
|�|2h for all i ∈ [1, n]. Fix an arbitrary i ∈ [1, n]. We claim that for each j ∈ [i, n] such that I j = Ii , it holds that | j − i| ≤ |�|2h . 
Hence, evidently, the result follows. Fix i, j ∈ [1, n] such that i < j and I j = Ii . Since ti ≺h t for all  ∈ [i + 1, j], we have 
that |Ti | < |Ti+1| < . . . < |T j|. Hence, j − i ≤ |T j | and since |T j| ≤ |�|2h , the result follows. �

By exploiting Proposition 5.1, we deduce the following proposition, from which the upper bound for the h-level B-
certificates in Theorem 5.1 directly follows.

Proposition 5.2. Let K be a finite Kripke structure with set of states S, h ≥ 0, and π a path of K . Then, the following holds:

1. for all i, j ∈ [0, n] where n = |π | − 1, (i) Bh(π [0, i]) is an ordered h-prefix descriptor, and (ii) if j > i and Bh(π [0, i]) �=
Bh(π [0, j]), then Bh(π [0, i]) ≺h Bh(π [0, j]);

2. there is a path π ′ having the same h-level B-descriptor as π such that |π ′| is at most |S|2h+2.

Proof. Property 1 can be proved by a straightforward induction on h ≥ 0. Now, let us consider Property 2. By reasoning as 
in the proof of Proposition 3.3, there is a path π ′ of K having the same h-level B-descriptor as π and such that distinct 
non-empty prefixes of π ′ have distinct h-level B-descriptors as well. Let s be a state visited by π ′ , then by Property 1, 
the set of h-level B-descriptors associated with the non-empty prefixes of π ′ ending at state s form a strict ascending 
chain (with respect ≺h) whose length ns coincides with the set of positions i of π ′ such that π ′(i) = s. By Proposition 5.1, 
ns ≤ |S|2h+1. Since |π ′| = ∑

s∈S(π ′) ns where S(π ′) is the set of states visited by π ′ , we obtain that |π ′| ≤ |S|2h+2. �
5.2. Exponential lower bound on the length of B-certificates and E-certificates

In this Subsection, we provide an exponential lower bound on the length of h-level B-certificates and E-certificates 
(matching the upper bound stated in the previous Subsection 5.1).

Theorem 5.2. There is a family {Kn}n≥1 of finite Kripke structures such that for all n ≥ 1, Kn has O (n) states and for all h ≥ 1, there 
are h-level B-certificates (resp., h-level E-certificates) of Kn whose length is at least 1

h · (n
h )h · eh−1 .

We prove Theorem 5.2 focusing on B-certificates (the proof for E-certificates is similar and omitted). For each n ≥ 1, 
let �n = {a1, . . . , an} be an alphabet consisting of n distinct symbols a1, . . ., an . We exhibit a family (wh

n)h≥0 of non-empty 
words over �n such that for each h ≥ 0, the length of wh

n is at least 1
h+1 · ( n

h+1 )h+1 · eh and wh
n is a minimal representative

of the h + 1-level B-descriptor Bh+1(wh
n).

Fix n ≥ 1. Formally, for all i, j ∈ [1, n] and h ≥ 0, we define by induction on h ≥ 0, a non-empty word wi, j,h over �n

called (i, j, h)-miniword:

• Case h = 0 and i ≤ j: wi, j,h := aiai+1 . . .a j .
• Case h = 0 and i > j: wi, j,h := aiai−1 . . .a j .
• Case h > 0 and i ≤ j: wi, j,h := ai · ui · ai+1 · ui+1 · . . . · a j · u j where for each  ∈ [i, j], u is the (, i, h − 1)-miniword.
• Case h > 0 and i > j: wi, j,h := ai · ui · ai−1 · ui−1 · . . . · a j · u j where for each  ∈ [i, j], u is the (, i, h − 1)-miniword.

We say that wi, j,h has level h. Moreover, for h > 0, the miniwords u of level h − 1 in the factorization of wi, j,h are called 
secondary subwords of wi, j,h , and a main position of wi, j,h is a position which is not associated to a secondary-subword 
position. When h = 0, the set of main positions of wi, j,0 is the set of all its positions. Note that by construction, for each 
symbol a ∈ �n occurring in wi, j,h , the smallest position  such that wi, j,h() = a is a main position. As an example, in 
Table 3 we report the miniwords for the alphabet �2 = {a1, a2} of level h for 0 ≤ h ≤ 2.

In the following we show that distinct prefixes of h-level miniwords have distinct h-level B-descriptors as well. This 
result together with a lower bound on the length of miniwords stated in Proposition 5.4 allows us to state the lower bound 
for B-certificates of Theorem 5.2.
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Proposition 5.3. Let n ≥ 1 and h ≥ 0. Then, for each miniword w over �n of level h, distinct prefixes of w have distinct h-level 
B-descriptors. 

Proof. Fix n ≥ 1 and h ≥ 0. The proof is by induction on h ≥ 0. The base case (h = 0) is trivial since by construction 
distinct prefixes of a miniword of level 0 have distinct last symbols as well. Now, let h > 0. Then, for some i, j ∈ [1, n], 
w is the (i, j, h)-miniword. Assume that i ≤ j (the case where i > j can be dealt similarly). By construction w is of the 
form w = ai · ui · ai+1 · ui+1 · . . . · a j · u j , where u is the (, i, h − 1)-miniword for all  ∈ [i, j]. Let v and v ′ be two distinct 
non-empty prefixes of w . We need to show that v and v ′ have distinct h-level B-descriptors.

We first consider the case where positions |v| and |v ′| are not associated to the same secondary subword of w . There 
are four possible cases:

1. |v| and |v ′| are main positions of w: hence, w(|v|) �= w(|v ′|) and the result trivially follows.
2. |v| and |v ′| are associated to distinct secondary subwords u and u′ , respectively: assume that |v| < |v ′|, hence  < ′

(the other case being symmetric). By construction, each position of w associated to u or preceding u does not contain
occurrences of a′ . Therefore, v and v ′ have distinct 0-level B-descriptors (hence distinct h-level B-descriptors as well),
and the result holds.

3. |v| is associated to a main position with symbol a and |v ′| is associated to a secondary subword u′ . The case where
 �= ′ is similar to the previous one. Thus, assume that  = ′ . By construction a /∈ internal(v) while a ∈ internal(v ′), and
the result holds.

4. |v ′| is associated to a main position with symbol a′ and |v| is associated to a secondary subword u: this case is similar
to the previous one.

It remains to consider the more intriguing case where |v| and |v ′| are associated to the same secondary subword u for
some  ∈ [i, j]. Hence, there are two distinct non-empty prefixes u and u′ of u and a non-empty prefix ρ of w such that 
v = ρ · u, v ′ = ρ · u′ and ρ = ai · ui · ai+1 · ui+1 . . .a .

Since u and u′ are prefixes of u , which is the (, i, h − 1)-miniword, by the induction hypothesis, u and u′ have distinct 
h − 1-level B-descriptors. Hence, the result directly follows from the following claim.

Claim Let k ≥ 0 and ν and ν ′ be two distinct non-empty prefixes of u . If ν and ν ′ have distinct k-level B-descriptors, then 
ρ · ν and ρ · ν ′ have distinct k + 1-level B-descriptors. 

Proof of the Claim First, assume that k = 0 and ν and ν ′ have distinct 0-level B-descriptors. If lst(ν) �= lst(ν ′) then the 
result trivially follows. Now, assume that lst(ν) = lst(ν ′). Since B0(ν) �= B0(ν

′) and ν and ν ′ are prefixes of u which is the 
(, i, h − 1)-miniword (where  ≥ i), it follows that h > 1. Hence, u is of the form

u = a · v · a−1 · v−1 · . . . · ai · vi

where vs is a word over {as, . . . , a} for all s ∈ [i, ]. Since B0(ν) �= B0(ν
′) and lst(ν) = lst(ν ′), the last positions of ν and 

ν ′ cannot be associated to the same secondary subword of u . Hence, the positions |ν| and |ν ′| are either (i) associated to 
distinct secondary subwords of u , or (ii) |ν| (resp., |ν ′|) is a main position and |ν ′| (resp., |ν|) is associated to a secondary 
subword of u . We consider the case where |ν| < |ν ′|, |ν| is a main position of u , and |ν ′| is associated with a secondary 
subword of u (the other cases being similar). Then, u(|ν|) = as for some s ∈ [i, ] and there is no proper prefix of ν visiting 
as . We show that for each non-empty proper prefix z of ρ · ν , B0(z) �= B0(ρ · ν). Hence, since ρ · ν is a non-empty proper 
prefix of ρ ·ν ′ , we obtain that B1(ρ ·ν) �= B1(ρ ·ν ′) and the result follows. Recall that by construction a /∈ internal(ρ), while 
a ∈ internal(ρ · ν). Thus, if z is a prefix of ρ , the result follows. Otherwise, z = ρ · y where y is a non-empty proper prefix 
of ν . Since no proper prefix of ν visits as , lst(z) �= as and the result holds in this case as well.

It remains to consider the case where k > 0 and ν and ν ′ have distinct k-level B-descriptors. We need to show that 
ρ · ν and ρ · ν ′ have distinct k + 1-level B-descriptors. Assume that ν is a proper prefix of ν ′ (the case where ν ′ is a proper 
prefix of ν is symmetric). If B0(ν) �= B0(ν

′), then by the proof for the case k = 0, it holds that B1(ρ · ν) �= B1(ρ · ν ′), 
hence, Bk+1(ρ · ν) �= Bk+1(ρ · ν ′) as well. Now, assume that B0(ν) = B0(ν

′). Since Bk(ν) �= Bk(ν
′) and ν is a proper 

prefix of ν ′ , there is non-empty proper prefix z′ of ν ′ of the form z′ = ν · x (for some word x) such that for each non-
empty proper prefix z of ν it holds that Bk−1(z) �= Bk−1(z′). By the induction hypothesis on k, we have that for each 
non-empty proper prefix z of ν , Bk(ρ · z) �= Bk(ρ · z′). Thus, in order to show that Bk+1(ρ · ν) �= Bk+1(ρ · ν ′), it suf-
fices to show that for each non-empty prefix y of ρ , we have that Bk(y) �= Bk(ρ · z′). By construction a /∈ internal(ρ)

while a ∈ internal(ρ · z′). Hence, the result follows, which concludes the proof of the claim and Proposition 5.3 as 
well. �

For �n = {a1, . . . , an}, let K (�n) be the Kripke structure (�n, �n, R, Lab, a1), where Lab is the identity and (ai, a j) ∈ R
for all i, j ∈ [1, n]. The set of paths in K (�n) is the set of non-empty finite words over �n . Hence, the lower bound in 
Theorem 5.2 for B-certificates directly follows from the following result which is obtained by exploiting Proposition 5.3.
19



Proposition 5.4. Let n ≥ 1, i, j ∈ [1, n], and h ≥ 0. For the (i, j, h) miniword wi, j,h over �n, the length of wi, j,h is at least 1
h+1 ·

(
|i− j|+1

h+1 )h+1 · eh and there is no smaller word u over �n (i.e., such that |u| < |wi, j,h|) having the same h + 1-level B-descriptor as
wi, j,h.

Proof. For the (i, j, h)-miniword wi, j,h , let p = |i − j| + 1. By construction, the length of wi, j,h , denoted by L(p, h), depends 
only on h and p, and satisfies the recurrence: L(p, h) = p if h = 0, and L(p, h) = p + ∑=p

=1 L(, h − 1) otherwise. We 
first show by induction on h ≥ 0 that L(p, h) ≥ ph+1

(h+1)! . The base case (h = 0) is obvious. Now, let h > 0. By the induction 

hypothesis and the fact that 
∑=p

=1 h ≥ ph+1

h+1 (Faulhaber’s formula), we have that L(p, h) = p +∑=p
=1 L(, h −1) ≥ ∑=p

=1
h

h! ≥
ph+1

(h+1)! . Thus, since (h + 1)! ≤ (h+1)h+2

eh , the claimed lower bound follows. Now, let T be the set of h-level B-descriptors of the 
non-empty proper prefixes of wi, j,h , and u a non-empty word having the same h + 1-level B-descriptor as wi, j,h . Since the 
number of non-empty proper prefixes of a non-empty word w is |w| − 1, by hypothesis, we have that |u| − 1 ≥ |T |. On the 
other hand, by Proposition 5.3, |wi, j,h| − 1 = |T |. Hence, |u| ≥ |wi, j,h|, which concludes the proof of Proposition 5.4. �
5.3. Non-elementary lower bounds on the length of B D-certificates, B E-certificates, and D E-certificates

In this Subsection we establish a non-elementary lower bound on the length of h-level B-certificates for each linear-time 
basis B ∈ {{B, D}, {B, E}, {D, E}}. As an immediate consequence, we obtain a non-elementary lower bound on the running 
time of the algorithm for model checking the logic HSB(FB) presented in Section 4.

Theorem 5.3. There is a family {Kn}n≥1 of finite Kripke structures such that for all n ≥ 1, Kn has O (n) states and for all k ∈ [0, n − 1]
and basis B with B ∈ {{B, D}, {D, E}} (resp., B = {B, E}), there are k-level (resp., 2k-level) B-certificates of Kn having length at least 
�(Tower(n, k + 1)).

In the rest of this Subsection we provide a proof of Theorem 5.3. We first show as an intermediate and crucial step that 
there is a family {�n}n≥1 of finite alphabets such that for all n ≥ 1, �n has cardinality O (n) and for all k ∈ [0, n − 1], there 
are �(Tower(n, k + 1)) words over �n having pairwise distinct k-level D-descriptors (resp., 2k-level B E-descriptors).

Let us fix n ≥ 1 and let �n be the finite alphabet having cardinality O (n) given by

�n =
⋃

i∈[2,n]
{$i} ∪

⋃
bit∈{0,1}

⋃
i∈[1,n]

{($i,bit)} ∪
⋃

bit∈{0,1}

⋃
i∈[1,n]

{(i,bit)}

Moreover, for each h ∈ [1, n], let �h
n be the subset of �n given by

�h
n = �n \ ( ⋃

i∈[h+1,n]
{$i} ∪

⋃
bit∈{0,1}

⋃
i∈[h+1,n]

{($i,bit)})

For each h ∈ [1, n], we define a suitable encoding of the natural numbers in [0, Tower(n, h) − 1] by finite words over �h
n , 

called (n, h)-blocks. In particular, for h > 1, an (n, h)-block encoding a natural number m ∈ [0, Tower(n, h) − 1] is a sequence 
of Tower(n, h − 1) (n, h − 1)-blocks, where the ith (n, h − 1)-block encodes both the value and (recursively) the position of 
the ith-bit in the binary representation of m. Formally, the set of (n, h)-blocks is defined by induction on h as follows:

Base Step: h = 1. An (n, 1)-block is a finite word bl over �1
n of length n + 2 having the form bl = ($1, bit)(1, bit1) . . .

(n, bitn)($1, bit) such that bit, bit1, . . . , bitn ∈ {0, 1}. The content of bl is bit, and the index of bl is the natural number in 
[0, Tower(n, 1) − 1] (recall that Tower(n, 1) = 2n) whose binary code is bit1 . . . bitn .

Induction Step: 1 < h ≤ n. A (n, h)-block is a finite word bl over �h
n having the form ($h, bit) ·bl0 ·$h · . . . ·bl−1 ·$h ·bl ·($h, bit)

such that  = Tower(n, h − 1) − 1, bit ∈ {0, 1} and for all i ∈ [0, ], bli is a (n, h − 1)-block having index i. The content of bl is 
bit and the index of bl is the natural number in [0, Tower(n, h) − 1] whose binary code is given by bit0, . . . , bit , where biti
is the content of the sub-block bli for all 0 ≤ i ≤ .

By construction, the following holds.

Remark 5.1. For all n ≥ 1 and h ∈ [1, n], there are 2 · Tower(n, h) distinct (n, h)-blocks.

Example 5.1. Let n = 2 and h = 2. In this case Tower(n, h) = 16 and Tower(n, h − 1) = 4. We can encode by (2, 2)-blocks all 
the integers in [0, 15]. Let us consider the number 14 whose binary code (using Tower(n, h − 1) = 4 bits) is given by 0111
(the first bit is the least significant). The (2, 2)-block with content 0 encoding number 14 is given by ($2, 0) · bl0 · $2 · bl1 ·
$2 · bl2 · $2 · bl3 · ($2, 0), where bli is the (2, 1)-block encoding the value and the position of the ith bit in 0111. For example, 
bl2 = ($1, 1)(1, 0)(2, 1)($1, 1) while bl3 = ($1, 1)(1, 1)(2, 1)($1, 1).
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We now show that the (h − 1)-level D-descriptors (resp., (2h − 2)-level B E-descriptors) associated with distinct (n, h)-
blocks are distinct as well.

Lemma 5.1. Let n ≥ 1. Then, for each h ∈ [1, n], distinct (n, h)-blocks have distinct (h − 1)-level D-descriptors and distinct (2h − 2)-
level B E-descriptors.

Proof. For the fixed n ≥ 1, the proof of Lemma 5.1 is by induction on h ∈ [1, n]. For the base case, let h = 1. Let bl be 
an (n, 1)-block. By construction bl is a word of length n + 2 of the form bl = ($1, bit)(1, bit1) . . . (n, bitn)($1, bit) where 
bit, bit1, . . . , bitn ∈ {0, 1}. Hence, the 0-level D-descriptor D0(bl) (resp., 0-level B E-descriptor B E0(bl)) of bl is the triple 
(($1, bit), {(1, bit1), . . . , (n, bitn)}, ($1, bit)), and the result for h = 1 easily follows.

Now, for the induction step, assume that h ∈ [2, n]. Let bl and bl′ be two (n, h)-blocks such that bl �= bl′ . We need to 
show that the (h − 1)-level D-descriptors (resp., (2h − 2)-level B E-descriptors) of bl and bl′ are distinct. First, assume that 
bl and bl′ have distinct content: let ($h, bit) (resp., ($h, bit′)) be the first letter of bl (resp., bl′). By hypothesis, bit �= bit′ . 
It follows that D0(bl) �= D0(bl′) and B E0(bl) �= B E0(bl′). Hence, Dh−1(bl) �= Dh−1(bl′) and B E2h−2(bl) �= B E2h−2(bl′) and the 
result follows.

Now, assume that bl and bl′ have the same content. Since bl and bl′ are distinct (n, h)-blocks, by construction there is 
i ∈ [0, Tower(n, h − 1) − 1] such that the (n, h − 1) sub-block sbi of bl with index i and the (n, h − 1) sub-block sb′

i of bl′
with index i have distinct content.

We first consider the D-descriptors. Let (D0(bl), T ) (resp., (D0(bl), T ′)) be the (h − 1)-level D-descriptor of bl (resp., bl′). 
We show that for each non-empty internal subword w of bl, the (h − 2)-level D-descriptor Dh−2(w) of w is distinct from 
the (h − 2)-level descriptor Dh−2(sb′

i) of sb′
i . Hence, Dh−2(sb′

i) /∈ T . Since Dh−2(sb′
i) ∈ T ′ , we obtain that T �= T ′ and the

result follows. Fix a non-empty internal subword w of bl. By hypothesis and construction, there is no subword of bl which 
coincides with sb′

i . We distinguish the following cases:

• w is an (n, h − 1)-block. Since w is an internal subword of bl and no subword of bl coincides with sb′
i , it hold that

w �= sb′
i . By the induction hypothesis, Dh−2(w) �= Dh−2(sb′

i).
• w is a proper subword of some (n, h − 1)-block. By construction D0(w) is of the form (p, P , p′) such that either

p /∈ {($h−1, 0), ($h−1, 1)} or p′ /∈ {($h−1, 0), ($h−1, 1)}. Since the 0-level descriptor of an (n, h − 1)-block is of the form
(($h−1, bit), P ′, ($h−1, bit)) for some bit ∈ {0, 1}, we obtain that D0(w) �= D0(sb′

i). Hence, Dh−2(w) �= Dh−2(sb′
i).

• There is some (n, h − 1) sub-block w ′ of bl such that w ′ is a proper subword of w . By construction, w contains some
occurrence of a symbol in {$h, ($h, 0), ($h, 1)}. Since such symbols do not occur in an (n, h − 1)-block, the result holds in
this case as well.

It remains to consider the B E-descriptors. Let (B E0(bl), T P , T S ) (resp., (B E0(bl′), T ′
P , T ′

S )) be the (2h −2)-level B E-descriptor
of bl (resp., bl′), and wsb′

i
be the unique proper prefix of bl′ having sb′

i as a proper suffix. We show that for each non-empty

proper prefix w p of bl, B E2h−3(wsb′
i
) �= B E2h−3(w p). Hence, B E2h−3(wsb′

i
) /∈ T P . Since B E2h−3(wsb′

i
) ∈ T ′

P , we obtain that

T P �= T ′
P and the result follows. Fix a non-empty proper prefix w p of bl. Note that since h ≥ 2, B E2h−3(w p) is of the form 

(B E0(w p), R P , R S ) and B E2h−3(wsb′
i
) is of the form (B E0(wsb′

i
), R ′

P , R ′
S ). Thus, it suffices to prove that R S �= R ′

S . Since a

proper suffix of a proper prefix of a word u is an internal word of u and B E2h−4(sb′
i) ∈ R ′

S , we just need to show that for
each non-empty internal subword u of bl, B E2h−4(sb′

i) �= B E2h−4(u). For this we proceed as for the case of the D-descriptors
but this time we apply the induction hypothesis on the B E2h−4-descriptors. This concludes the proof of Lemma 5.1. �
Proof of Theorem 5.3. Let n ≥ 1, an be a designated letter in the alphabet �n and Kn the finite Kripke structure over 
�n given by Kn = (�n, �n, Rn, Labn, an), where (a, a′) ∈ Rn and Labn(a) = {a} for all a, a′ ∈ �n . Hence, the paths of Kn

correspond to the non-empty finite words over �n . We show that for all k ∈ [0, n − 1] and basis B with B ∈ {{B, D}, {D, E}}
(resp., B = {B, E}), there are �(Tower(n, k + 1)) distinct k-level (resp., 2k-level) B-certificates of Kn . Hence, Theorem 5.3
directly follows. By Remark 5.1, there are 2 · Tower(n, k + 1) distinct (n, k + 1)-blocks. Thus, for the basis {B, E}, the result 
directly follows from Lemma 5.1. For the bases {B, D} and {D, E}, the result follows from Lemma 5.1 and the fact that words 
having distinct k-level D-descriptors have distinct k-level B D-descriptors (resp., distinct k-level D E-descriptors) as well.

6. Conclusions

We have addressed open complexity issues about the approach to model checking for the logic HS based on abstract 
representations of paths in Kripke structures, called B E-descriptors. We have developed a unifying framework to model 
check full HS and large HS fragments obtained by (i) introducing, for each basis B, a specialized type of descriptor (B-
descriptor) and (ii) designing an alternating-time MC algorithm with a polynomially bounded number of alternations which 
is parametric with respect to the chosen basis B and runs in time bounded by the length of B-descriptor certificates. As a 
main result, for each basis B, we have provided tight bounds on the length of B-certificates: exponential for the bases {B}
and {E} (which lead to AEXPpol procedures for the related fragments), and non-elementary for the other bases. Future work 
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will be devoted to solve the difficult open question about the existence of an elementary procedure for the MC problem for 
full HS, and to settle the exact complexity of MC for the HS fragments for the bases {B} and {E}.
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