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ABSTRACT
The number of known, bright (i < 18), high-redshift (z > 2.5) QSOs in the Southern hemisphere is considerably lower than the
corresponding number in the Northern hemisphere due to the lack of multiwavelength surveys at δ < 0. Recent works, such as
the QUBRICS survey, successfully identified new, high-redshift QSOs in the South by means of a machine-learning approach
applied on a large photometric data-set. Building on the success of QUBRICS, we present a new QSO selection method based
on the Probabilistic Random Forest (PRF), an improvement of the classic Random Forest algorithm. The PRF takes into account
measurement errors, treating input data as probability distribution functions: this allows us to obtain better accuracy and a robust
predictive model. We applied the PRF to the same photometric data-set used in QUBRICS, based on the SkyMapper DR1,
Gaia DR2, 2MASS, WISE, and GALEX databases. The resulting candidate list includes 626 sources with i < 18. We estimate
for our proposed algorithm a completeness of ∼84 per cent and a purity of ∼78 per cent on the test data-sets. Preliminary
spectroscopic campaigns allowed us to observe 41 candidates, of which 29 turned out to be z > 2.5 QSOs. The performances
of the PRF, currently comparable to those of the CCA, are expected to improve as the number of high-z QSOs available for the
training sample grows: results are however already promising, despite this being one of the first applications of this method to
an astrophysical context.

Key words: methods: data analysis – methods: statistical – surveys – quasars: general.

1 IN T RO D U C T I O N

Luminous quasars, especially at high redshift, play the paramount
role of cosmic beacons for a variety of studies on the formation and
evolution of galaxies and supermassive black holes (SMBH), dark
matter, primordial elements, reionization, cosmological parameters,
fundamental constants, and General Relativity. However, finding
quasars at high-z is not a trivial task, due to their relative scarcity
with respect to other sources with the same apparent luminosity.
The advent of the Sloan Digital Sky Survey (SDSS) survey (e.g.
Ahumada et al. 2020) has represented a significant improvement in
this respect, at least in the Northern hemisphere. At present, the SDSS
has delivered more than 105 (Lyke et al. 2020) spectroscopically
confirmed QSOs at 0 < z < 6.5, with a large fraction at absolute
magnitudes M1450 ≤ −26.

In the Southern hemisphere, due to the lack of wide multiwave-
length surveys at δ ≤ 0◦, the situation used to be significantly less
favourable. Comparing QSO surface densities (e.g. Véron-Cetty &
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Véron 2010) in different parts of the sky, of the 22 known QSOs with
z > 3 and V < 17, only 5 have been found at δ < 0◦, and all the 3 QSOs
with V < 16 are in the North. Besides, recent studies point out that
even an exquisite survey as the SDSS can suffer from incompleteness
due to colour selection (e.g. Fontanot et al. 2007; Schindler et al.
2019). As a consequence, also in the Northern hemisphere high-z
QSO densities could be biased towards lower numbers due to the
adoption of efficient but relatively incomplete selections.

In Calderone et al. (2019) and Boutsia et al. (2020), we presented
the first results of the QUBRICS survey, aimed at finding z ≥ 2.5
QSOs at bright i-band magnitudes (i ≤ 18) in the Southern hemi-
sphere, taking advantage of the recent availability of new multiwave-
length public databases. The candidate selection in QUBRICS has
been based on the Canonical Correlation Analysis (CCA; Anderson
2003) and its success rate in finding z > 2.5 QSOs is estimated to
be around 70 per cent, with the predominant contaminants being
lower-z QSO at z < 2.5. Its completeness, evaluated against the
presently known bright QSOs at z > 2.5, turns out to be of the order
of 90 per cent (Calderone et al. 2019).

In this paper, we explore the possibility to use other selection
methods in order to further increase the purity and completeness of
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the QUBRICS sample, and to fully exploit the information content of
the multiband photometric data bases on which QUBRICS is based.
In particular, in this paper we will present and discuss a selection
procedure based on the Probabilistic Random Forest (PRF; Reis,
Baron & Shahaf 2019), an improvement of the Random Forest that
makes it possible to properly include measurement errors in the
predictive model and to handle missing data in the data-set.

The paper is organized as follows: in Section 2, we will briefly
describe the Random and Probabilistic Random Forest; Section 3
will describe how the initial data-set has been prepared, while in
Section 4, the results obtained from our tests will be presented; in
Section 5, we will attempt to characterize the spectroscopic sample
and compare our results with those obtained with the CCA method,
while Section 6 will describe the results of a small spectroscopic
campaign. Conclusions are drawn in Section 7.

2 MAC H I N E L E A R N I N G T E C H N I QU E S

Modern astronomical data-sets are rapidly growing both in size
and complexity, thanks to recent multiwavelength and multiepoch
surveys such as the SDSS (Ahumada et al. 2020), GAIA (Gaia
Collaboration et al. 2020), DES (Abbott et al. 2021), or Pan-
STARRS (Chambers et al. 2016); machine learning (ML) methods
are becoming increasingly popular as automatic tools to perform a
variety of tasks on these data bases (Baron 2019).

Machine learning (ML) techniques are generally classified into
two broad groups/categories: supervised and unsupervised methods.
The former are used to map a set of features to a target label or
quantity, which is provided by a third party actor (another algorithm
or a human expert) while the latter are used to infer existing
relationships in the data-set, without relying on external labels.

Given a data-set, individual elements are called objects, and data
associated with a single object features. As a practical example, a
data-set may be a large photometric collection, where each object is
an observed source and each feature is a magnitude measurement.
Target labels and quantities differ depending on the specific task, as
supervised learning can be used both for classification and regression:
in the first scenario (classification) the label is discrete; in the
second (regression) it is continuous. Examples for the two cases
are, respectively, the classification of a source as a star or a quasar
and the estimate of the redshift given a number of photometric
measurements. Supervised methods also have model parameters and
hyper-parameters: the former are learnt from the data which the
model is trained on and are required in the prediction stage; the
latter are instead set by the user and fine-tuned to obtain the best
performances out of an ML algorithm.

To assess the capabilities of an ML algorithm, it is common
practice to subdivide the available data-set into three sub-samples:
a training, validation, and testing data-set. The first sample is used
to train the algorithm; the validation data-set is used to find the
optimal hyper-parameters for the specific task of interest and to gain
finer control of the learning process (e.g. to prevent overfitting). The
last data-set is finally used to estimate the predictive capabilities of
the algorithm, as the learnt model is applied to an unseen data-set.
Training, validation, and testing sets should be independent to obtain
an unbiased evaluation of the performances of the algorithm. An
alternative approach, especially useful in case of a limited data-set, is
the k-fold cross validation: the original data-set is split in two parts,
a training/validation and testing data-set. Training and validation
are carried out at the same time: the training data-set is split in k
subsets; in turn, one of these k subsets is used as validation set,
while the algorithm is trained on the remaining k − 1 subsets. This

allows to perform the validation process without requiring additional
subdivisions in the base data-set.

Despite their widespread use and proved success in Astronomy
(e.g Carrasco et al. 2015, and references therein), machine learning
algorithms in general are not designed to deal with data-sets in which
the features have different uncertainties. However, the performances
of ML algorithms strongly depend on the signal to noise of the
input data (Reis et al. 2019), suggesting that noise and measurement
errors play an important part in the learning and predictive process.
Available algorithms can be modified to account for uncertainties
during the training process, but simple methods are unsuited to
extract all available information: for instance, in a Random Forest
algorithm (which will be described in Section 2.1) uncertainties
in the data-set can be used as additional features; the association
between measurements and errors is however indirect, as there is not
an explicit probability distribution function involved.

An alternative approach, the Probabilistic Random Forest (PRF),
has been recently developed by Reis et al. (2019), who modified
the Random Forest technique to directly account for measurement
errors.

2.1 The original Random Forest

The Random Forest is an ensemble learning method – an algorithm
that uses multiple learning algorithms to obtain better predictive
performance than any of the constituent learning algorithm alone –
that operates by creating a large number of decision trees during the
training process (Breiman 2001).

Decision trees are predictive models described by a tree-like graph,
used both for classification and regression tasks (Reis et al. 2019).
Examples of both employments can be found in Bai et al. (2019) and
Silva, Cao & Hayes (2018); in the following, however, we will focus
on classification tasks.

Each decision tree is built out of a set of consecutive nodes, and
each node is a condition on a feature of the data-set. Conditions are
in the form of decision branch:

Xi > Xi,th, (1)

in which Xi is the ith feature for objects in the data-set and Xi,th is a
threshold value. Both the feature and the threshold value for a node
are determined during the training process based on the minimization
of a cost function, commonly based on the Gini impurity. The Gini
impurity of a given subset is the probability of misclassifying an
object, if it is assigned a label randomly drawn from the label
distribution of that same subset (Breiman et al. 1984).

We consider as an example a simple two-class (A, B) classification
task: the training process starts with the whole training set and a
single node, the root of the tree. The algorithm searches for the
feature and threshold value that produces the best split, i.e. the one
that minimized the aforementioned cost function, determining the
condition for the root node. Objects in the training set are then split
in two subset, one for which equation (1) is satisfied, one for which
equation (1) is not. For both of these, a new best-splitting feature is
searched: the process continues iteratively as long as the combined
impurity of the resulting two child nodes is lower than the impurity
of the parent node. If this condition is not satisfied the current node
becomes a terminal node (leaf) which does not carry a condition
but rather a label: this is determined according to the most common
label in the subset associated to the terminal node itself. During
the classification process an unlabelled object is propagated along a
decision tree according to its feature values and is finally classified
based on the terminal node it reaches. An example of a decision tree
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Figure 1. An object propagates through a decision tree. Terminal nodes
(leaves) are light blue coloured. The path of an object along a tree is marked
by red lines, black lines show all possible paths. The left-hand panel represents
the propagation in the classic RF approach: an object propagates either to the
left or right node for each split. The middle panel shows an ideal PRF model:
an object propagates along the whole tree, reaching all terminal nodes at the
same time, and each object may reach several leaves (although with different
probabilities). The right-hand panel shows a ‘pruned’ PRF (i.e. with a set
probability threshold): red dots represent nodes which can not be reached
due to low probabilities associated with those splits. Adapted from Reis et al.
(2019).

can be found, for instance, on the scikit learn (Pedregosa et al. 2011)
website.1

A simple, unpruned, decision tree is not limited in its size, and
shows perfect performances on the training set, while typically
showing worse performance when applied on new, unseen data: this
behaviour is generally referred to as overfitting (Breiman 2001).
The random forest mitigates the issue using numerous decision trees
and introducing randomness in the training process. This is usually
done using two complementary approaches: each tree is trained on a
randomly extracted subset of the original data-set (a technique which
is also called bootstrap), and for each node the best splitting feature is
chosen from a random subset of all available features; the dimension
of the subset is one of the hyper-parameters set by the user. During
the prediction process each tree independently classifies each object;
the final class is determined by majority vote, i.e. the most common
class among all trees is chosen.

2.2 Probabilistic Random Forest

The Probabilistic Random Forest (PRF; Reis et al. 2019) is an
improvement of the original RF designed to properly handle mea-
surement errors. The main difference between the RF and the PRF
consists in the treatment of input data: a ‘classic’ RF algorithm maps
feature and labels, while, on the other hand, the PRF also takes
feature and labels uncertainties (�X and �y) into account in order
to identify the optimal mapping function.

Uncertainties arise both from measurements (�X) and classifi-
cation labels (�y). In the PRF implementation, the two are treated
quite differently: features are considered as probability distribution
functions (PDF), with expectation value equal to the feature value
and variance equal to the associated error squared. On the other hand,
labels are treated as probability mass functions (i.e. discrete density
functions): each object has a fixed chance of belonging to each class.

This simple change has an important effect on decision trees: in
an RF an unlabelled object in a given node propagates either to
the subsequent right or left node. In the PRF, instead, each object
propagates into both nodes with a given probability (Fig. 1); the
probability of propagating to the left or right branch are given by the
cumulative distribution function for a particular feature; in the current

1https://scikit-learn.org/stable/modules/tree.html

PRF implementation2 the PDF is chosen for all objects as a Gaussian,
but the choice can be arbitrary. Moreover, as all objects propagate
along the whole tree, all leaves contribute to the classification solution
of each object.

In principle, any object can always propagate to the next node,
even if the probability to do so is small. To optimize the algorithm a
probability threshold is introduced: this is implemented in the PRF
as an adjustable parameter (keep proba), with a default value of
0.05 (i.e. an object does not propagate to subsequent nodes if the
probability to do so is less than 5 per cent).
The PRF has several advantages over the classic RF:

(i) noise robustness: Reis et al. (2019) tested various noise in-
jections in both the training and testing data, finding that in almost
all cases the PRF outperforms the original RF. Improvements in the
performance of the algorithm depend on the noise characteristics:
noise which produces a clear distinction in objects with poorly and
well-measured features leads to negligible improvements; complex
noise, that does not result in a clear distinction between feature
quality leads to a greater boost in the classification abilities. This is
even more noticeable when the noise is different in the training and
testing data-set, which is a possible occurrence in astronomy (for
instance when measurements are taken from different catalogues);

(ii) missing values: these are rather common in astronomical
data-sets, and sometimes many objects are missing measurements
for at least one of the selected features. The PRF can naturally
handles missing data: an object with a non-measured feature will
just propagate both to the left and the right of a node with 50 per cent
probability.

3 TH E P R E PA R AT I O N O F T H E S A M P L E : TH E
QU BRI CS SURVEY

The PRF needs a training set large enough to produce a robust
predictive model. The data-set should include sources of interest
– high redshift QSOs – together with those that should be excluded
by the selection process: in our case typically non-active galaxies,
stars, and low-redshift QSOs.

In this work, we have used the same data-set described in the
papers by Calderone et al. (2019) and Boutsia et al. (2020) in order
to have a direct comparison of the performances of the PRF with other
well-established techniques, e.g. the Canonical Correlation Analysis
(CCA) used in the QUBRICS survey.

3.1 The QUBRICS survey

The QUBRICS Main Sample (hereafter MS) contains objects with
photometric measurements from three catalogues:

(i) The i, z magnitudes from the SkyMapper survey (Data Release
1.1 Wolf et al. 2018);

(ii) The G magnitude from the Gaia survey (Data Release 2 Gaia
Collaboration 2016, 2018);

(iii) The W1, W2, W3 magnitudes from the WISE survey (Wright
et al. 2010).

In order to be included in the MS an object must have a measured
magnitude in all these six bands. Further additional constraints
introduced in Calderone et al. (2019) are: (i) 14 < ipsf < 18, (ii)
galactic latitude |bgal| > 25◦, (iii) no photometric flags in the i and z

2https://github.com/ireis/PRF
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Figure 2. r − i versus g − r SkyMapper point spread function magnitudes
for stars, galaxies, low- and high-redshift QSOs included in the main sample.
While there are 4 visible clumps, there is not an efficient way to separate
them. Stars were binned with an arbitrary bin-size to better visualize their
distribution and the number counts for each bin is shown by the colourmap
on the right.

Table 1. Number for all sources in the MS, including the most recent QSO
candidate sample.

Source type Number

All 1014 875
Unclassified sources 162 118
Bona fide stars 843 690
Known non-active galaxies 4024
Known QSOs (all z) 5043

CCA QSO candidates (all) 1412
CCA QSO candidates (not yet observed) 818

band3 (iv) matching GAIA DR2 and WISE sources within 0.5 arcsec
and (v) SNR > 3 in the first three WISE bands; constraints have been
designed to reduce contamination, leading to a total of 1014 875
sources over approximately 12 400 square degrees, mostly in the
Southern hemisphere.

When available, additional data have been added: J, H, and Ks

magnitudes from the 2MASS survey (Skrutskie et al. 2006), u, v, g,

3Photometric flags indicate issues during the image processing; pipeline
specific flag are represented as power of two: 1, for instance, indicates that two
sources are close enough to bias their respective photometry, 2 that distinct
sources were initial blended, 4 the presence of saturated pixels in an object;
the complete list is available in the SkyMapper DR1.1 documentation at this
web-page. Pipeline flags are combined with a bit-wise OR and the results are
given in the published catalogue per source and photometric band, allowing
end-users to exclude poorly processed objects (Wolf et al. 2018).

r SkyMapper magnitudes, Gaia GRP, GBP measurements and the W4
magnitude from WISE. GALEX (Bianchi, Shiao & Thilker 2017)
data have been added by using the Mikulski Archive for Space
Telescopes4 (MAST). Sources have been cross-matched with a 5
arcsec matching radius; in the rare case of multiple matches the
closest has always been retained. Only data produced as part of the
All-Sky and Medium-Sky surveys (AIS and MIS, respectively) have
been selected.

This additional photometric information is valuable to machine
learning algorithms. As shown in Fig. 2 and discussed in Carrasco
et al. (2015) it is not trivial to apply a simple colour–colour plot to
separate QSOs, especially at high redshift, from contaminants (e.g.
non-active galaxies or stars). Including additional photometric infor-
mation such as infrared magnitudes from WISE helps in disentangling
different populations, but it is not simple to devise appropriate colour
cuts in a multidimensional colour space.

Parallax and proper motion information have been used to identify
bona fide stars: 83.1 per cent of sources in the MS have been classified
as such. The remaining entries have been matched with catalogues
of known QSOs and extragalactic sources, in particular the SDSS
DR14Q (Pâris et al. 2018), the 13th edition of the Véron-Cetty
catalogue (Véron-Cetty & Véron 2010) and the 2dFGRS (Colless
et al. 2001). The matching process identified 4666 confirmed QSOs
and 3665 non-active galaxies. Matching against these catalogues,
together with bona fide stars identified through Gaia parallaxes and
proper motion measurements, provided a source type classification
for 84 per cent of the original MS. The remaining 16 per cent
are unlabelled sources: as described in Calderone et al. (2019) and
Boutsia et al. (2020) they are given an estimated classification (non-
active galaxies, stars, low- and high-redshift QSOs) and redshift
using the CCA.

The CCA method produces a linear transformation matrix: when
multiplied with an appropriate magnitude matrix a new label is
obtained (hereafter CCA). The CCA procedure ensures that the CCA
label is maximally correlated with the classification labels. The same
transformation matrix, obtained on known sources, can be applied on
unclassified objects: this allows to select the most favourable QSO
candidates. The same procedure can be applied in order to obtain a
redshift estimate and further exclude contaminants.

Extended objects were discarded to produce a sample of higher
purity: this was accomplished following the same approach of
Calderone et al. (2019). A measure of the size of an object, extiz
was obtained by comparing point spread function and petrosian
magnitudes from the SkyMapper survey. The difference between
the two was initially calculated for stars in the main sample, in
order to derive a typical value, per magnitude interval, for point-
like sources. The same quantity was then derived for unlabelled
sources: those with extiz > 3 were excluded a priori from the
selection. In this way, we consider it safe to use psf magnitudes
as features, since our focus is on searching for point-like objects
like quasars and most of the extended targets are excluded a
priori.

Finally, as part of the QUBRICS survey, various spectroscopic
campaigns provided a secure identification for ∼500 targets, thus
raising the number of known QSOs in the MS to 5043; of these,
428 are at z ≥ 2.5. Additional catalogue matching provided an
identification for ∼400 non-active galaxies. The most recent number
of sources in the MS, used in this work, is shown in Table 1.

4The website is accessible at: https://doi:10.17909/T9H59D MAST.
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3.2 The training set

Before applying the PRF to a selected data-set a few preliminary
operations are needed:

(i) in order to have a balanced number of stars, QSOs and galaxies
for the training set we considered only a subset of all available stars.
The latter have been chosen in order to evenly sample the available
i − z colour space: sources have been subdivided in bins (0.15-mag
wide) based on their colour, and for each bin up to 600 stars where
chosen. All objects in bins with less than 600 entries have been kept;
bins with more than 600 entries have been randomly sampled: this
produces a set of 5814 stars. The data-set built out of the 5814 stars,
5043 QSOs and 4024 galaxies will be referred to as Reduced Main
Sample and will be the primary training sample for the PRF;

(ii) oversampling the high-redshift QSO sub-sample of the re-
duced main sample. This is necessary to ensure an appropriate
training test for the PRF when distinguishing high- and low-redshift
sources. We used the imbalanced-learn PYTHON module
(Lemaı̂tre, Nogueira & Aridas 2017), in particular employing the
RandomOverSamplermethod. This is the simplest oversampling
method available: new samples are obtained by randomly drawing
with replacement already available objects;

(iii) distinguishing between nulls and non-detections: in particular
an appropriate treatment of the flux upper limits can provide
useful data to the algorithm, improving its predictive capabilities
(Section 3.3).

3.3 Non-detections and missing data

Missing data in photometric data-sets are common and can be the
result of two different occurrences: a measurement may be missing
because a particular area of the sky has not been observed in a given
pass-band or because the target is too faint to be detected in the
pass-band. Despite apparently producing the same result in the final
data-set – a missing value – the two cases should be treated differently
in the implementation of the PRF algorithm, because the information
content is different.

In the following, we will refer to missing data due to the
first scenario as Null and to non-detections as ND. If fed to
the machine learning algorithm, both Null and ND can provide
additional information: in the following (Section 4.2.2) it will be
shown that supplying NDs to the algorithm produces slightly higher
completeness (from 77 to 84 per cent) and lower contamination (from
28 to 22 per cent).

In the PRF approach, Null are easily dealt with: given a node, for
which the splitting condition (equation 1) is based on the ith feature,
an object whose corresponding feature is a Null propagates to both
left and right node with the same probability: 0.5 for the left, 0.5 for
the right node.
ND, instead, should propagate like a measured feature, with an

appropriate probability distribution.
In order to distinguish ND and Null we have taken advantage

of the additional information found in the published catalogues:
SkyMapper and Gaia DR2, for instance, provide the number of visits
per object per photometric band. If the number of visits is larger than
zero, a missing value is considered an ND, otherwise it is a Null.
Often catalogues (e.g. WISE), already distinguish ND and Null.

If a given catalogue did not specify a limiting magnitude, we
estimated a reference value for ND and an appropriate probability
distribution from the properties of the catalogue. In fact, for a given
band, objects counts are expected to increase as a function of the
magnitude till incompleteness sets in (i.e. the probability of a non-

Figure 3. Magnitude distribution for the SkyMapper g band (blue his-
togram). The yellow line represents the polynomial spline used to estimate the
peak of the distribution (red dot at magnitude ∼18). The dashed, black line
shows the reference value used for the g band in the Reduced Main Sample,
obtained as the expectation value of the appropriate PDF; the shaded area
shows the σ interval associated with the reference value.

detection becomes non-negligible and increases as a function of the
magnitude until in practice it becomes one).

We followed two different approaches:

(i) a non-detection is assumed to have a magnitude corresponding
to a signal-to-noise ratio roughly equal to 1, to which a Gaussian
PDF is associated with σ = 1.085 (corresponding to SNR = 1). For
example, in the case of the SkyMapper bands, assuming a background
limited regime, we can determine the magnitude for which a typical
SNR is achieved, e.g. SNR = 10 (and, correspondingly, a σ m =
0.1085), and from this magnitude, e.g. m10, derive the reference
value for ND as:

ND = m10 + 2.5 (2)

(ii) the magnitude distribution at the limit of the detections has
been used to estimate the probability distribution for ND (a low-
pass distribution, equation 3). For each photometric band of interest,
a large number (∼105 or more) of sources from the same survey
has been collected from randomly selected regions in the Southern
hemisphere and a histogram has been built with a 0.05 mag bin. A
polynomial spline has been used to interpolate the histogram and
obtain a reliable estimate of the magnitude at the turnover of the
counts (TM, the red dot in Fig. 3). Once the TM is determined, we
introduced a low-pass distribution, expressed as{

f (m) = N [1 − exp ( TM−m
σ

)] TM ≤ m ≤ TM+ kσ

f (m) = 0 otherwise
, (3)

where σ is the 68 per cent percentile of the sources fainter than TM, k
is the upper limit needed to have a finite distribution, and N is the nor-
malization coefficient needed to ensure that

∫ TM+kσ

TM PDF(m) dm = 1.
The parameter k has been chosen to be 10, which produces values
similar to those determined with the approach (i); the final non-
detection value is obtained by calculating the expectation value of
the distribution (3) as ND = ∫ TM+kσ

TM m PDF(m) dm. Different choices
of k do not affect significantly the results of the PRF classification,
provided that its value is chosen large enough (k > 5). This is not
surprising, since the PRF, in the training phase, has the capacity
to adapt the probability thresholds described in Section 2.2 to our
choice of k.

Turnover values and standard deviations estimated for the Reduced
Main Sample are listed in Table 2.
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Table 2. Turnover, associated error σ for each photometric band in the
Reduced Main Sample.

Survey Turnover σ

band magnitude (AB) (mag)

SkyMapper u 17.89 0.46
SkyMapper v 17.65 0.42
SkyMapper g 18.08 0.44
SkyMapper r 18.10 0.41
Gaia GBP 20.81 0.46
Gaia GRP 19.43 0.47
2MASS J 16.55 0.29
2MASS H 15.84 0.36
2MASS Ks 15.44 0.35
WISE W4 15.64 0.39
GALEX NUV (AIS) 22.56 0.38
GALEX FUV (AIS) 22.16 0.46
GALEX NUV (MIS) 23.78 0.38
GALEX FUV (MIS) 23.53 0.41

Table 3. Number counts for objects used in the Reduced Main Sample.

Source type # of sources available

Quasar (all z) 5043
Quasar (z ≥ 2.5) 428
Quasar (z < 2.5) 4615
Non-active galaxies 4024
Star 5814

Both methods are rather rough approximations. They provide
similar results with slightly better results, in term of contamination
of the test sample, for the approach (ii), which has been adopted in
the following.

4 A P P LY I N G T H E PR F TO T H E R E D U C E D
MAIN SAMPLE

In this section, we test the capabilities of the PRF in finding high-
redshift (for our purposes z > 2.5) QSOs, aiming at the production
of a high-purity sample, in order to minimize the investment of
telescope time for spectroscopic follow-up, but also of sufficient
completeness for applications such as the calculation of luminosity
functions. The algorithm will provide a classification based on the
available magnitudes/colours, as the main source of information.

4.1 General approach

We first apply the PRF to a sample including all types of sources
(i.e. stars, non-active galaxies, and quasars of all redshifts). By
construction, the Reduced Main Sample is built so that the fraction
of each component is roughly one third of the total. Due to the
typical surface densities of the various categories, the number of
high-redshift quasars with respect to the total is relatively small
(roughly 8.5 per cent of all QSOs in the Reduced Main Sample).
Special care will then be needed when dealing with predictions of
the algorithm for this kind of objects. The number of sources for
each class is listed in Table 3.

A training data-set for the PRF includes two components: a
magnitude matrix (with associated errors) and a label vector, possibly
with uncertainties in the classification. The latter are not mandatory,
and in this work only feature (i.e. magnitude) errors have been used.
Class labels are for the most part assigned by means of information

derived from the literature or based on assumptions – for instance,
bona fide stars – and in both cases no uncertainties could be given.
Two data-sets have been used for the various tests: the Reduced Main
Sample, and its sub-sample containing only QSOs. Classification
labels (class-labels) for all tests are numerical: the association of a
class with a number is completely arbitrary, and the results provided
by the PRF do not depend on the choice of the label.

The algorithm is trained and validated using a k-fold cross
validation; results are then checked against an independent test set.
Validation+train and test data-set are randomly generated at each run
using a defined random state; special care has been taken to ensure
that objects in both the train and test data-sets follow the same class
distribution; the training+validation data-set has been chosen to be
80 per cent of the available sources; the remaining objects have been
used as a test set.

The PRF hyper-parameters, described in Reis et al. (2019) and in
the corresponding PRF GitHub repository, have been chosen on the
basis of a 5-fold cross-validation test: a higher k did non produce
meaningful differences. Based on the results of the k-fold test we
chose to use 200 trees for each test, sqrt for max parameters
and 0.05 for keep proba; other parameters have been kept at their
default values. Finally, each decision tree is built out of a bootstrapped
sub-sample of the original training set (i.e. we set bootstrap =
True during the PRF initialization). To avoid biases due to a small
testing data-set we have also chosen to repeat the process 100 times:
we have split the original data-set in training and testing using a
defined random state – unique for each of the 100 iterations – and
checked the consistency of the results.

The predictions produced by the algorithm have been evaluated on
the basis of contamination (i.e. the complementary of the precision,
the fraction of relevant instances among the retrieved instances) and
completeness (i.e. the recall, the fraction of relevant instances that
are retrieved), defined as

(i) Contamination: the number of undesired, but selected, sources
over the total number of selected sources. The definition can be
restated as FP

TP+FP , where TP is the number of true positives and FP
the number of false positives;

(ii) Completeness: the ratio of the number of sources of interest
identified by the algorithm over the total number of sources of interest
(independently known). The definition can be restated as TP

TP+FN ,
where TP is the number of true positives and FN the number of false
negatives. It should be noted that in this context the definition of
completeness does not take into account (i < 18) QSOs thay may be
existing in the sky and are not present in the QUBRICS MS because
they were absent in some of the key data bases, e.g. skymapper.

4.2 The PRF as classifier

4.2.1 QSOs, stars, and galaxies

The algorithm has been first used to distinguish QSOs, stars, and
non-active galaxies; the three classes have been labelled respectively
as 1, 2, and 3. Training, validation, and testing data-sets have been
all extracted from the whole Reduced Main Sample. A confusion
matrix is used to visualize the prediction of the algorithm (Fig. 4,
upper panel).

The test data-set is composed of 1009 QSOs, 1163 stars, and
805 galaxies: as shown in Fig. 4 roughly 93 per cent of QSOs are
correctly classified by the algorithm. Moreover, most (62 out of 63) of
misclassified QSOs are at z < 0.5 and are identified as galaxies: this
is not surprising, as the spectral energy distribution of low-redshift
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PRF selection of QSO candidates 2477

Figure 4. Top panel: Prediction of the algorithm for the test data-set when
used to separate QSOs, stars, and galaxies represented as a confusion matrix.
Bottom panel: completeness and contamination calculated over 100 iterations.
The plot refers to QSOs only.

quasars can be dominated by the host galaxy, and a spectroscopic
observation is required to reveal the presence of the QSO. Both stars
and galaxies contaminate the QSO sample, even if the latter are more
commonly selected as QSOs. Considering the QSO as the target class
the algorithm scores a recall of 93 per cent with a contamination of
5 per cent. We note, however, that our final aim is to identify high-
redshift (z > 2.5) sources: out of the 89 in the test data-set, 88
(∼99 per cent) are correctly classified by the algorithm as quasars.

This result is tied to a particular choice of train/testing data-sets:
different test sources might provide slightly different results; we
thus evaluated the performance of the algorithm 100 times, using a
different test data-set at each iteration, averaging the results at the end.
Results are shown in Fig. 4 lower panel, where both completeness
and contamination are calculated with respect to the QSO class: the
average completeness (contamination) is 93.7 per cent (5.5 per cent)
with a scatter of σ = 0.8 per cent (σ = 0.7 per cent); the percentage
of high-redshift QSOs identified by the algorithm is, in each run,
∼98.5 per cent with a large scatter, ∼1.5 per cent.

4.2.2 Low- and high-redshift QSOs

As the final goal of this work is to identify QSOs with z > 2.5, having
a reliable classification as a QSO is not sufficient: we still need to
exclude low-redshift QSOs that in Calderone et al. (2019) and Boutsia

et al. (2020) have been found to be the major contaminant. To this
end we have applied a second time the PRF to the objects classified
as QSOs in the previous step, trying to discriminate whether their
redshift is higher or lower than a threshold, initially chosen to be z

= 2.5 in accordance with the QUBRICS definition of high-z QSOs.
This choice results in an unbalanced training data-set (as shown in
Table 3), as the number of objects above z = 2.5 is just the 8.5 per cent
of the total. Moreover, more than 2/3 of sources available for training
at z < 2.5 are at 0 < z < 1.5: in both cases the redshift distribution
of sources in the training sample is not suitable for our purposes and
negatively impact on the performances of the algorithm. In order to
mitigate the issue we have chosen to apply a simple oversampling
method: in our approach, new samples are generated by sampling
with repetition the available data. We experimented with different
oversampling strategies, in order to find the best compromise in term
of completeness versus contamination. The best results were obtained
by applying the oversampling algorithm twice: once for objects with
redshift between 0 and 3, in order to produce a ratio of sources with
2 ≤ z < 3 to those with 0 ≤ z < 2 equal to 0.5; the second for
sources at z ≥ 2.5, in order to match the number of low-redshift
objects. This choice has been adopted to preserve all the available
information in the data-set: undersampling the majority class would
remove precious information which could instead be used by the
algorithm. Moreover, we have not used a more advanced oversampler
(e.g. SMOTE; Chawla et al. 2002) due to the missing values in our
data-set: SMOTE creates synthetic instances by searching for nearest
neighbours and averaging over their corresponding feature values.

These results also suggest that the data-set currently available is
small with respect to the complexity of the problem: a better and
more ample training set would greatly benefit the performances of
the PRF.

The available data have been subdivided once again in training
+ validation and testing, with the same ratio used in the previous
test (80–20 per cent). Results for the classification process on a test
data-set are shown in Fig. 5.

We repeated the same procedure described in the previous section,
in order to avoid biases due to the particular training/testing sample.
In this case, we achieve an average completeness (contamination)
of ∼84 per cent (∼22 per cent), with higher scatter with respect
to what we observed before: 3 per cent for both completeness and
contamination. These values can be compared to those obtained for
the QUBRICS survey for a similar threshold (fig. 5 in Calderone
et al. 2019, green line): the CCA produces a data-set with a slightly
higher completeness, but higher contamination (∼37 per cent).

During the training process, it is possible to set a lower redshift
threshold in order to produce higher completeness – at the expense
of higher contamination – with respect to the original, z = 2.5
threshold. Conversely, higher redshift thresholds will produce lower
contamination and, at the same time, lower completeness. In order to
test the effect on the selection process different thresholds have been
selected sampling the redshift interval z = 2–3 with steps of 0.1 in
redshift units. The results are shown in Fig. 6.

As expected, both completeness and contamination rise as the
threshold value becomes lower. In order to obtain the same com-
pleteness expected for QUBRICS, one should take a redshift limit of
z � 2.3; the contamination is similar to that achieved with the CCA
(roughly 40 per cent). The completeness in the test sample rapidly
decreases (40 per cent from z = 2.5 to z = 3.0) as redshift thresholds
get higher, whereas the contamination decreases at a slower pace
(roughly 10 per cent in the same redshift interval): we thus chose
to use the z = 2.5 threshold in the application on the unclassified
sample.
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Figure 5. Results of the classification process high- versus low-redshift
QSOs in the case of a redshift threshold of z = 2.5. Top panel: confusion
matrix for this test. Bottom panel: completeness and contamination calculated
over 100 runs with different test and train data-set. Dashed lines mark the
average values, dots results for a particular run while the shaded regions
denote the 1σ interval.

Figure 6. Completeness (red dots) and contamination (blue dots) as a
function of the delimiting redshift for the low- and high-QSO classes. Each
completeness-contamination pair in the plot is the average of 100 iterations on
different test data-sets, and is calculated with respect to the z = 2.5 threshold.

4.2.3 Analysis of the contaminants

The contaminants affecting the final sample of high-redshift QSOs
will be of two types: lower redshift (z < 2.5) QSOs wrongly classified
at high redshift and galaxies/stars misclassified as QSOs in the first
step that survive the subsequent classification as high-redshift QSOs.

The performance of the algorithm for the first type of contaminants
has been treated in the previous subsection. The probability of a QSO
with z < 2.5 to be classified as a high-z QSO (PQ in the following),
as shown in Fig. 5, is on average 2 per cent.

To quantify the global performance concerning non-QSO contam-
inants, it is necessary to combine the two previous tests. To this end,
the algorithm has been initially trained on part (80 per cent) of the
Reduced Main Sample and applied on a test data-set (the remaining
20 per cent); both train and test data-sets contain stars, galaxies, and
QSOs, and this produces a QSO candidate sample at all redshifts,
which includes misclassified sources, i.e. stars and galaxies predicted
to be QSOs. These are then re-classified as low- or high-redshift
sources, allowing to verify how many non-QSO contaminants are
picked up at the end by the algorithm. The process has been repeated
100 times, each with different train-test data-sets.

On average 4 per cent (∼35) of the galaxies and 2 per cent (∼20)
of the stars are classified as generic QSOs. Of these, 0.1 per cent of
the galaxies (PG in the following) and 0.1 per cent (1) of the stars on
average are classified as high redshift sources.

In order to avoid issues tied to the small number of objects in
the test set, we repeated the process using all bona fide stars in the
MS, excluding those part of the Reduced Main Sample and used
during the training process. Out of the 837 876 initial bona fide stars,
on average ∼2400 (0.3 per cent) are picked up by the algorithm as
generic QSOs at all redshifts. Of these only ∼400 (0.05 per cent, PS
in the following) are selected as QSO candidates at z ≥ 2.5.

5 C H A R AC T E R I Z AT I O N A N D C O M PA R I S O N
WI TH THE C CA SELECTI ON

In order to obtain a list of high-redshift QSO candidates, the PRF has
first been applied on the unclassified sources in the MS, trained as
described in the Section 4.2.1. As described in Section 3.1, extended
objects have been discarded a priori, leaving a total of 58 782 objects
(Unclassified Dataset, UD).

The PRF, applied to the UD, has produced a list of 22113
QSO candidates (at all redshifts), 18 573 stars and 18 096 potential
galaxies.

In order to select high-redshift (z ≥ 2.5) QSOs the PRF has been
trained on the QSO sub-sample of the Reduced Main Sample, as
described in Section 4.2.2, and then has been applied to the previously
selected generic QSO candidates. The threshold defining the high-
versus low-redshift class has been chosen at z = 2.5. This second
selection has identified a final sample of 626 high-z QSO.

The completeness of this list, for z ≥ 2.5 quasars is expected to
be, according to Section 4.2, 83 per cent.

In order to estimate the success rate of a spectroscopic follow-up
we can assume that the partition of the unclassified sources in the MS
in stars, galaxies and generic quasars is described by the results of the
PRF classifier, i.e. 31 per cent of stars, 31 per cent of galaxies, and
38 per cent of generic QSOs. The number of expected contaminants,
due to the misclassification of stars and galaxies, turns out to be low:
18573 × PS = 18 and 18096 × PG = 9, respectively.

To estimate the more significant contamination of misclassified
low-z QSOs and, conversely, the number of high-z QSOs not selected,
we have convoluted the expected redshift distribution of i ≤ 18 QSOs,
derived from Shen et al. (2020), with the probability, as a function
of the redshift, for a z < 2.5 QSO to be classified at high-z and for a
z ≥ 2.5 QSO to be classified at low-z (computed as in Section 4.2).

As a result, in the list of 626 high-z QSO candidates we expect
to have about 66 per cent (411) true z ≥ 2.5 QSOs, 30 per cent
(188) z < 2.5 QSOs, 4 per cent (27) galaxies or stars. 16 per cent
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Figure 7. CCA coordinate (top panel) and CCA redshift estimate zCCA
(bottom panel) for sources selected by the PRF (blue), CCA (orange) or
both algorithms (green). Five sources at zCCA > 10 have been excluded from
the plots, and are most likely contaminants. The CCA coordinate corresponds
to an object-type classification, while the zCCA is an estimate for the redshift
of the object. As described in Calderone et al. (2019), non active galaxies are
spread around CCA ∼−1, stars around CCA ∼ 0, low-z QSOs around CCA
∼2, and high-redshift QSOs have zCCA � 3.

of the z ≥ 2.5 QSOs, mainly around z = 2.5–2.9, are expected to
have been missed in the selection. The lower-z QSO misclassified as
high-redshift sources with z > 2.5, are actually expected to have a
redshift <z> ∼2.1 and all at z > 1.5.

5.1 Comparison with the CCA predictions

The sample of candidates obtained using the PRF has been compared
with the equivalent list produced using the CCA method (Calderone
et al. 2019): 401 sources turned out to be in common, while
417 and 225 objects are exclusively selected by the CCA and
PRF, respectively. Fig. 7 shows the comparisons between the CCA
coordinate (top panel) and the zCCA estimate for PRF (CCA) and
common candidates. Most (>95 per cent) of the PRF selected sources
are at CCA > 1, corroborating the choice made in Calderone et al.
(2019) to exclude from the candidate list unclassified sources with
CCA < 1. On the other hand, a significant (190 out of 227) part
of PRF selected objects is at zCCA < 2.26: 61 per cent of these are
however within the 1σ scatter found for the CCA selection estimate.
Taking the corresponding estimates for the completeness and success
rate of the CCA method from Boutsia et al. (2020), and with the
rough assumption that the CCA and PRF selection are statistically
independent, we would expect the intersection of the two selections
to have a 89 per cent success rate and a 75 per cent completeness.

Figure 8. The ipsf − zpsf colour for QSOs at z > 2.5. The red histogram
shows to the colour distribution for objects in the training sample, the blue
one for candidates and the grey one for all unclassified sources (UD data-set).
Each histogram has been normalized by its maximum in order to show all of
them in the same plot.

5.2 Colour comparison

The PRF uses magnitudes as features to provide a label for unclas-
sified objects. It is interesting to compare the magnitude or colour
distribution of the newly classified objects to that of the training: we
expect the colour distribution of the two to be similar. The i − z

colour was chosen in this case, as all sources in the MS are required
to have a reliable magnitude in these two bands.

As shown in Fig. 8 there is good agreement between the distribu-
tion of colours for the training and candidate sample, especially for
high-redshift QSOs, the main interest for this work. This holds true
for non-active galaxies as well, while the relation is less tight with
stars: the training set was built to fully sample the available i − z

colour space, while the UD occupies a slightly smaller range.
The effect of Nulls was verified as well, considering sources

with at least one Null in a photometric band: these are rather scarce,
and the results consequently noisy. Due to their small number and
random nature (e.g. a switched-off detector or a corrupted image),
Nulls are not expected to produce significant deviations in the
colour distributions. Considering the SkyMapper upsf as an example
(one of the bands where Nulls are more numerous), there are 26 of
5043 QSOs in the training sample and 215 of 22113 QSO candidates
with a Null value. The sample mean i − z for QSOs in the training
sample (QSO candidates) is 0.08 (0.13) with a standard deviation
of 0.17 (0.18): hence, there is not a significant difference in the two
distributions.

6 SPECTRO SCOPI C VA LI DATI ON

Since the creation of the PRF candidate list, observations of 41
sources have been carried out at Las Campanas Observatory and at
Telescopio Nazionale Galileo (TNG, La Palma) using LDSS-3 (Clay
Telescope), IMACS (Baade Telescope), and Dolores.

Observations at LDSS-3 have been obtained with the VPH-
all grism, 1 arcsec-central slit and no blocking filter, covering a
wavelength range between 4000 and 10000 Å and a low (∼800)
resolution. Observations at IMACS used the #300 grism with a
17.5 deg blaze angle with a dispersione of 1.34 Å pixel−1 and the
same wavelength range of LDSS-3. Exposures at TNG have been
taken during the AOT41 and AOT42 periods under two proposals
(PI: G. Calderone and A. Grazian); the LR-B grism with a 1 arcsec
slit aperture have been used.
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Table 4. Observed, PRF selected sources with a robust spectroscopic redshift estimate. Sources with a ∗ show strong Broad Absorption
Lines (BAL QSOs).

QUBRICS RA Dec. mi zspec Class Obs. date Instrument CCA
ID (J2000) (AB mag) selected

1 814160 13:01:18.31 −08:10:14.81 17.68 3.281 QSO 2021-01-29 LDSS3 Y
2 824362 12:33:22.24 −11:53:39.53 17.90 3.183 QSO 2021-01-29 LDSS3 Y
3 831008 20:43:56.68 −00:39:08.48 17.86 2.894 QSO 2020-10-23 DOLORES Y
4 831970 20:44:59.66 −02:54:38.28 17.79 2.851 QSO 2020-10-23 DOLORES Y
5 842834 12:11:20.09 −33:14:27.46 17.73 3.826 QSO 2021-01-29 LDSS3 Y
6 859489 21:58:00.41 −07:18:05.50 17.80 2.538 QSO 2020-10-23 DOLORES Y
7 859798 21:33:26.01 −03:23:32.70 17.78 2.518 QSO 2020-10-23 DOLORES N
8 861290 21:31:58.81 −04:54:39.47 17.97 3.381 QSO 2020-10-23 DOLORES Y
9 861881 21:54:15.85 −04:45:21.89 17.65 2.366 QSO 2020-09-13 DOLORES Y
10 864254 23:34:54.76 −69:30:42.84 17.86 3.894 QSO 2021-01-02 IMACS Y
11 866799∗ 02:10:51.46 −84:54:37.57 17.17 3.685 QSO 2020-11-27 IMACS Y
12 893444 02:53:56.09 −20:26:39.68 17.86 3.022 QSO 2021-01-28 LDSS3 Y
13 908786 23:22:27.67 −04:48:45.16 17.78 2.589 QSO 2020-10-23 DOLORES Y
14 992797∗ 01:07:10.57 −62:36:48.35 17.28 2.833 QSO 2020-10-07 LDSS3 Y
15 995059 23:32:46.67 −08:23:44.03 17.31 2.894 QSO 2020-10-23 DOLORES Y
16 1005746 04:14:29.34 −05:56:14.38 17.33 2.417 QSO 2020-09-13 DOLORES N
17 1007009∗ 15:07:26.88 −16:25:42.30 17.86 3.015 QSO 2021-02-27 IMACS Y
18 1013347 04:42:30.12 −26:32:19.05 17.55 2.914 QSO 2020-11-27 IMACS Y
19 1018840 03:27:24.51 −52:38:58.20 17.79 3.771 QSO 2020-12-31 IMACS Y
20 1026400 06:36:44.21 −63:40:33.04 17.69 2.410 QSO 2020-11-24 LDSS3 Y
21 1030917 00:36:25.37 −32:23:36.55 17.80 3.512 QSO 2020-11-26 LDSS3 Y
22 1031280 22:33:47.55 −04:02:04.60 17.89 2.092 QSO 2020-10-23 DOLORES N
23 1031462 22:36:06.12 −16:10:34.21 17.80 2.109 QSO 2020-10-23 DOLORES Y
24 1031929 02:10:25.34 −38:17:17.96 17.42 3.308 QSO 2020-11-26 LDSS3 Y
25 1032609 00:33:11.87 −40:51:49.35 17.82 1.963 QSO 2020-11-26 LDSS3 Y
26 1033197 23:41:33.99 −20:24:08.81 17.56 2.603 QSO 2020-09-13 DOLORES Y
27 1034040 00:58:23.18 −09:04:34.98 17.82 2.775 QSO 2020-10-23 DOLORES Y
28 1034851 01:18:08.11 −23:07:56.31 17.36 3.096 QSO 2020-10-08 LDSS3 Y
29 1035092 00:29:55.80 −22:26:28.53 17.73 2.782 QSO 2020-10-23 DOLORES Y
30 1039886 22:40:56.35 −08:03:58.41 17.71 2.463 QSO 2020-09-13 DOLORES N
31 1040503 01:24:36.61 −31:26:23.61 17.20 1.902 QSO 2020-10-07 LDSS3 Y
32 1041074 00:55:53.34 −23:07:43.84 17.90 2.218 QSO 2020-10-08 LDSS3 N
33 1041119 23:09:35.13 −15:13:14.27 17.95 2.339 QSO 2020-10-23 DOLORES N
34 1044054 00:31:50.88 −18:20:21.84 17.75 3.519 QSO 2020-10-23 DOLORES Y
35 1044577∗ 00:21:11.30 −17:29:01.04 17.68 1.888 QSO 2020-09-13 DOLORES Y
36 1059422 01:54:48.05 −10:49:40.61 17.43 2.556 QSO 2020-10-08 LDSS3 Y
37 1080395 03:12:52.40 −31:38:33.21 17.83 3.879 QSO 2020-11-27 IMACS Y
38 1086629 04:39:25.68 −43:49:17.87 17.68 3.516 QSO 2021-01-31 IMACS Y
39 1094391 04:55:55.50 −64:58:35.35 17.48 2.444 QSO 2021-01-31 IMACS Y
40 1101726 14:59:01.01 −02:51:05.79 17.75 3.354 QSO 2021-02-27 IMACS Y
41 1122453 02:35:57.55 −34:48:56.45 17.79 3.737 QSO 2020-11-24 LDSS3 Y

Out of the 41 PRF selected and observed sources, 29 turned out to
be genuine high-z (z > 2.5) QSOs and 12 QSOs with 1.88 < z < 2.5;
no stars nor galaxies have been selected by the algorithm. The results
of the spectroscopic observations are summarized in Table 4. In these
preliminary observations, we achieved a success rate of ∼70 per cent
that becomes 80 per cent if we consider the candidates in common
with the CCA selection. The z < 2.5 contaminant QSOs turn out to
be 12, with an average redshift <z> = 2.2 and a minimum redshift
of z = 1.888 (for a BAL QSO, ID = 1044 577), in good agreement
with the predictions of Section 5, based on the characterization of our
selection method. As observed in Boutsia et al. (2020) and detailed
in Cupani et al. (2021) lower z, extremely strong BAL QSOs are
picked up because their huge absorption troughs tends to mimic the
colours of higher redshift QSOs.

It should be noted that the number of observed targets is still low
(∼5 per cent of the whole candidate list), and in these exploratory
runs targets have not been chosen in a systematic way and might not
be entirely representative of the final performance of the PRF method.
In any case, the results appear encouraging and further observations
worth pursuing, possibly in parallel with other selection techniques,
in order to better evaluate the capabilities of the PRF method and

enlarge and make more complete the sample of bright high-redshift
quasars in the Southern hemisphere.

7 C O N C L U S I O N S

Searching for QSOs is a challenging task, even more so if relatively
high-redshift sources are the goal. In this paper, we presented
a selection method based on a machine learning algorithm, the
Probabilistic Random Forest, and used it to select relatively bright (i
< 18) high-redshift (z > 2.5) QSOs. The PRF has been applied to
the same initial data-set used for the QUBRICS survey (Calderone
et al. 2019), including photometric estimates from the SkyMapper
DR1, Gaia DR2, WISE, 2MASS, and GALEX surveys. We have first
used the PRF algorithm to select QSOs (at all redshifts), in order
to remove stars and non-active galaxies; we then re-classified the
QSO candidates, in low- and high-z QSO candidates. Our tests show
that, when applied to the QUBRICS sample, the PRF selection has
a completeness of ∼83 per cent in selecting high-redshift sources,
with a relatively low contamination of ∼22 per cent. Similarly to
what observed in Calderone et al. (2019), the main responsible for
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contamination turn out to be low-z QSOs (93 per cent); stars and non-
active galaxies are of secondary importance (∼3 and ∼4 per cent,
respectively).

When applied to the unclassified data-set of QUBRICS, which
contains 58 782 sources, the algorithm produces a list of 626
high redshift QSO candidates: of these, 401 are in common with
the equivalent CCA sample of Calderone et al. (2019), while the
remaining 225 are exclusively selected by the PRF.

With preliminary observations of 41 PRF candidates we have been
able to confirm 29 new high-z sources, with a success rate close to
our expectations. Further spectroscopic identifications are needed to
better assess the capabilities of the PRF method.

The relatively small number of high-redshift QSOs available for
the training (<10 per cent of the total) likely hampers the PRF
performances, and we have had to resort to oversampling in order to
obtain reasonably uniform training sets, as described in Section 4.2.
None the less, the PRF has proven to be a powerful and flexible
technique to select high-redshift quasars, competitive with respect to
other techniques such as the CCA.

We are refining the selection methods and continuing the spectro-
scopic campaigns, in order to further improve the completeness and
success rate of the QUBRICS survey and to extend, with the growth
of the training sets, the predictive capabilities to more specific QSO
categories (e.g. Boutsia et al. 2021; Cupani et al. 2021).
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