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Abstract
Motivation: The process of drug development is inherently complex, marked by extended intervals from the inception of a pharmaceutical agent
to its eventual launch in the market. Additionally, each phase in this process is associated with a significant failure rate, amplifying the inherent
challenges of this task. Computational virtual screening powered by machine learning algorithms has emerged as a promising approach for pre-
dicting therapeutic efficacy. However, the complex relationships between the features learned by these algorithms can be challenging to
decipher.

Results: We have engineered an artificial neural network model designed specifically for predicting drug sensitivity. This model utilizes a biologi-
cally informed visible neural network, thereby enhancing its interpretability. The trained model allows for an in-depth exploration of the biological
pathways integral to prediction and the chemical attributes of drugs that impact sensitivity. Our model harnesses multiomics data derived from a
different tumor tissue sources, as well as molecular descriptors that encapsulate the properties of drugs. We extended the model to predict
drug synergy, resulting in favorable outcomes while retaining interpretability. Given the imbalanced nature of publicly available drug screening
datasets, our model demonstrated superior performance to state-of-the-art visible machine learning algorithms.

Availability and implementation: MOViDA is implemented in Python using PyTorch library and freely available for download at https://github.
com/Luigi-Ferraro/MOViDA. Training data, RIS score and drug features are archived on Zenodo https://doi.org/10.5281/zenodo.8180380.

1 Introduction

Large-scale genomic studies have been instrumental in under-
standing recurrent somatic genetic alterations within cancer
cells and for the characterization of their functional effects in
transformed cells (Sanchez-Vega et al. 2018). One of the main
challenges consists into exploiting this molecular characteriza-
tion to identify therapeutic targets and develop personalized
therapies (Dezs}o and Ceccarelli 2020). Machine learning
(ML) models can exploit multimodal screening datasets to de-
velop predictive algorithms that associate omics features with
responses (Garnett et al. 2012). There have been several
attempts to utilize the data from these screenings in various
ML frameworks, such as Variational Autoencoders
(Rampá�sek et al. 2019), Deep Networks (Preuer et al. 2018,
Chiu et al. 2019), Convolutional Neural Networks (Cortés-
Ciriano and Bender 2019, Liu et al. 2019), ensemble Neural
Network models (Tan et al. 2019), and a combination of
these approaches with different encodings of the features
(Menden et al. 2019) to predict the half-maximal inhibitory
concentration (IC50) (Baptista et al. 2021). In general,

the drug sensitivity prediction models can be classified into
single-drug learning and multidrug learning (Firoozbakht
et al. 2022). The latter are particularly challenging since drugs
accounted for greater part of the variance in drug response
values, while cell lines accounted for only a small proportion
of variability (Shen et al. 2023). Multidrug learning models
typically contain three components: cell line embedding, to
encode molecular profiles such as gene expression, mutation
status, and copy number variation; drug embedding, used to
encode drug representation features such as string, finger-
print, or graph (An et al. 2022); and finally a drug sensitivity
prediction module that uses cell and drug embeddings to esti-
mate the effect in terms of IC50 and/or the area under the
dose–response curve (AUC). Most of these studies used ML
models as “black boxes” optimized for prediction accuracy
without the possibility of interpreting the biological mecha-
nisms underlying predicted outcomes. However, one com-
monly needs to understand the rules behind model
predictions, mainly when the final goal is to prioritize drugs
(or drug combinations) for use in clinical trials. Recently,
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Ideker et al. proposed a “visible neural network” (VNN) to
address this issue (Kuenzi et al. 2020). The model, called
DrugCell, encodes cell genotypes into a trainable network
composed of modules organized according to the Biological
Process Gene Ontology (GO) hierarchy, where each module is
associated with a specific GO term and connected to the
nodes (genes) annotated with that specific term. Interpreting
the activity of each module allows the association between
specific biological pathways and drug response to be discov-
ered. DrugCell was one of the first attempts to use interpret-
able ML for drug sensitivity prediction. Nevertheless, there
are several possibilities to extend and improve this biologi-
cally informed approach. First, DrugCell relies on the somatic
single-nucleotide variation profiles of the screened models.
Second, it is vital to consider the imbalanced nature of the
data since, in almost all available large-scale screening reposi-
tories, results sensitivity assays tend to be skewed toward val-
ues representing lack of sensitivity, with a small minority
representing the sensitivity of a cell line to specific drugs.
Classical ML algorithms typically assume a balanced class
distribution or equal misclassification costs, which is rarely
the case in real-world scenarios. Different learning strategies,
including cost-sensitive learning, sampling methods, and en-
semble learning have been proposed to deal with the imbal-
anced data including the significance of evaluation metrics
used for imbalanced learning (Haixiang et al. 2017). Here, we
propose an approach to drug activity prediction using a
Multi-Omics Visible Drug Activity prediction model, or
MOViDA that extends the existing DrugCell’s visible net-
work approach by incorporating pathway activity from gene
expression and copy number variation data. This allows a
more comprehensive characterization of the biological mod-
els, leading to more accurate predictions of drug activity. The
training algorithm accounts for the skewness in the input
dataset with a random sampler based on a multinomial distri-
bution. Our approach falls within the random oversampling
and undersampling class of methods to learning from imbal-
anced data (He and Garcia 2009). Moreover, MOViDA
enhances the interpretability of drug descriptions using finger-
prints and molecular descriptors. These descriptors relate the
3D molecular structures of drugs to their physicochemical

and pharmacokinetic properties, making it easier to under-
stand the impact of a drug on a biological system. The results
of our study show that MOViDA outperforms the existing
models in predicting drug sensitivity, particularly for favor-
able treatments. To further enhance the biological interpret-
ability of the model, we developed an ad hoc network
explanation method to score the pathways affecting sensitiv-
ity predictions in specific sets of cell lines. Finally, we ex-
tended MOViDA to perform prediction of drug synergy.

2 Materials and methods
2.1 Network architecture

MOViDA is a feedforward deep neural network that predicts
the drug sensitivity of a cell line. Different omics assays repre-
sent each cell line. The structure of the whole Neural
Network is separated into two branches (Fig. 1a): a VNN and
a feedforward artificial neural network (ANN). The ANN on
the right branch is a neural network taking as input a combi-
nation of PubChem fingerprints and molecular descriptors re-
lating 3D molecular shape with physical–chemical and
pharmacokinetic properties (Crivori et al. 2000). Drug fea-
tures are encoded into a three-layer neural architecture with
100, 50, and 6 nodes. The VNN (Fig. 1b) on the left branch
represents the Biological Process hierarchy of the GO com-
posed of five layers, one element as a root, and a total of
2086 GO terms. Each GO term is connected to more generic
GO ancestors (at least one) and is represented by a sub-
submodule composed of a set of kþ 1 nonlinear units. k units
are connected to the input layer and the output of previous
layers, here we use the same value of k¼ 6 as in DrugCell.
Each unit also receives a normalized gene set enrichment score
(NES) of that GO term computed on gene expression, this
value is concatenated with the activation of the k units and
fed to the next layer in the hierarchy. The input layer is com-
posed of nodes of three different kinds: mutations, amplifica-
tion, and deletions. Each GO submodule is connected to the
input genes annotated with that term.

The activation of the units at the root of the hierarchy rep-
resents a multiomic embedding of the cell line. The training

Figure 1. MOViDA architecture. (a) The network is composed of three distinct subnetworks. The multiomics embedding net takes in input multiomics

profiles of a cell line model. In contrast, the drug embedding net receives the drug description, composed of PubChem fingerprints and VolSurfþ
molecular descriptors. The final layers combine the embeddings and predict the AUC. (b) The Multiomics Embedding net comprises a set of modules,

each representing a specific Gene Ontology term. The modules are connected according to the Biological Process Gene Ontology Hierarchy. Each GO

sub-module takes in input the multiomics profile of a cell line model, considering only the genes associated to former
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phase aims at learning the weights of each subsystem. In par-
ticular, every unit of each module s has the following output:

IMs ¼WMMsIAs ¼WAAsIDs ¼WDDs

INESs ¼WNESNESs ICc ¼WcEc þWNESc
NESc

Es ¼ f ðIMs þ IAs þ IDs þ INESs þ
P

c2descðsÞ ICc þ bsÞ
; (1)

where Ms, As, and Ds are the binary vectors that describe the
mutation, amplification, and deletion status of the genes asso-
ciated with the subsystem s and WM, WA, and WD are the cor-
responding weights; WNES is the weight of the normalized
enrichment score NESs of the term s resulting from gene ex-
pression; Wc and WNESc are the weights associated to the em-
bedding Ec and NESc of child c of the considered subsystem.
Es is the embedding of a subsystem s, which is a nonlinear
transformation f of the inputs consisting of hyperbolic tangent
and batch normalization, and bs is the bias term.

A third neural network, composed of two layers with 6 and
1 nodes respectively, combines the multiomics embedding
with the drug features embedding and predicts the cell’s re-
sponse to the drug, measured as the AUC. During the training
phase, the input data were split into three sets: training
(80%), testing (10%), and validation (10%) sets. Overall the
network contains 12 734 neurons with at maximum seven
layers. We have used Adam optimizer (initial learning rate of
10�5), for a total of 300 epoches.

2.2 Datasets

We used the Genomics of Drug Sensitivity in Cancer database
(GDSC) (Yang et al. 2013) and the Cancer Therapeutics
Response Portal v2 (CTRP) (Basu et al. 2013) to collect
383 998 triplets representing cell line, drug, and cell survival
after treatment measure as AUC value. Overall, our dataset
contains 889 cell lines and 684 drugs. Each drug is repre-
sented by 1009 variables, 881 molecular fragments from
PubChem fingerprints, and 128 molecular descriptors from
the software VolSurfþ (Crivori et al. 2000), as detailed in
Supplementary Table S1. To represent the molecular proper-
ties of a cell line, we use the mutation and copy number pro-
files stored in three binary vectors, where the value
corresponds to the presence or absence of a mutation/dele-
tion/amplification in a particular gene in a given cell line,
which were downloaded from the GDSC data portal (Yang
et al. 2013). We selected 4870 (top 2.5%) frequently mutated
genes in cancer using the pan-cancer compendium encompass-
ing 33 cancer types and >10 000 tumor-normal exome pairs
(Ellrott et al. 2018). Analogously, 2612 and 3625 genes con-
tained in focal recurrently amplified copy number segments
and deleted copy number segments respectively, selected as
described in (Iorio et al. 2016). These genes were further fil-
tered for those associated with at least one GO term present
in the MOViDA hierarchy, obtaining 2931 and 2097 genes
for amplifications and deletions, respectively. Gene expression
was also used to compute a NES using single-sample gene set
test using the Mann–Whitney-Wilcoxon Gene Set test (mww-
GST) available in the yaGST package (Frattini et al. 2018).
NES is an estimate of the probability that the expression of a
gene in the geneset is greater than the expression of a gene
outside this set: NES ¼ 1� U

mn, where m is the number of
genes in a gene set, n is the number of those outside the gene
set, U ¼ mnþmðmþ 1Þ � T, and T is the sum of the ranks
of the genes in the gene set.

For drug combination, we used the Therapeutic Target
Database (TTD) (Zhou et al. 2022) to identify potential syn-
ergies among drug targets and then used the dataset of phar-
maceutical synergies specific to breast, colon, and pancreatic
cancer cells created by Jaaks et al. (2022) for validation.

To further validate our model’s capabilities, we extended
its application to predict drug combination therapies utilizing
the dataset presented by O’Neil et al. (2016). We selected the
cell lines and drugs with available features, resulting in a data-
set of 32 compounds and 32 cell lines, totaling 13 376 instan-
ces of combined cell line and drug treatments, with 1296
instances considered synergistic. To assess the synergistic in-
teraction between drugs, we employed the Loewe Additivity
score (Loewe 1953), utilizing a threshold of 30 to differentiate
synergistic from non-synergistic outcomes.

2.3 Data imbalance strategies

Drug sensitivity data exhibits a significant skewness, charac-
terized by many screens with low sensitivity outcomes (AUC
close to 1) and very few with high sensitivity (AUC close to
0). To mitigate the potentially deleterious effects of this data
imbalancing during the training, we used a weighted random
sampler based on a multinomial distribution estimated from
the data.

The AUC sensitivity scores are divided into twelve equally
spaced bins between 0 and 1.2, and we used the inverse fre-
quencies with additive smoothing to fix the weights of the
multinomial sampler:

fi ¼
ciPc
j¼0 cj

vi ¼
1

fi
þ �wi ¼

viPc
j¼0 vj

; (2)

where ci is the number of samples in bin i, c is the number of
bins, fi is the relative frequency of the bin i, and � is the
smoothing penalty term.

We also used a weighted loss function to penalize errors as-
sociated with lower scores of ground truth and predictions.
Hence we adopted the following double-weighted MSE loss.

Lðp; tÞ ¼ maxðwcp
;wct
Þ � ðp� tÞ2: (3)

Here, p is the prediction of a model, t is the ground truth, cp

and ct are the corresponding bins and wcp
and wct

are the
weights associated with these bins as computed in Equation
(2). This loss function guarantees higher weights for errors
when either the ground truth or the prediction are in a class
with few samples and, at the same time, lower weights for
predictions when they are far from the ground truth.

We use an evaluation measure developed in the field of or-
dinal regression (Baccianella et al. 2009). This is motivated by
the fact that discrete sensitivity levels can be considered ordi-
nal variables, and the ordering between the values is signifi-
cant, as they represent degrees of sensitivity. A simple and
efficient approach to measure the performance in ordinal re-
gression tasks for imbalanced datasets is the macroaverage
MSE (MMSE) which is based on a sum of the classification
errors across classes.

MMSE ¼ 1

c

Xc

i¼0

1

jcij
X

x2ci

ðpx � txÞ2; (4)

where ci represents the set of samples in class i, c is the num-
ber of classes, tx id the ground truth of sample x, and px is its
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prediction. The macroaverage MSE does not depend on the
frequency of each class, as every class contributes to 1=c of
the total measure. Therefore trivial assignments are penalized,
whereas to have better MSEM the errors in all classes should
be minimized.

2.4 Model explanation

The Biology informed nature of MOViDA, as well as of
DrugCell (Kuenzi et al. 2020), P-NET (Elmarakeby et al.
2021), and PASNet, (Hao et al. 2018) allows performing ac-
curate post-hoc analyses. This enables us to identify the bio-
logical processes that contribute to the prediction of a cell
line’s drug sensitivity the most. The state-of-the-art methodol-
ogies, such as LIME, DeepLIFT, DeepExplain, and SHAP
(Kokhlikyan et al. 2020), are not suited to our case since most
of them allow us to measure the contribution of either an indi-
vidual input node or a full layer. Instead, our visible network
is composed of sub-modules. Therefore, we developed an in-
terpretation score, relative improvement score (RIS), specifi-
cally tailored for our model that measures the relative
contribution of a submodule concerning its children in the
GO hierarchy. We use ablation to quantify the importance of
the VNN modules to the network output (Morcos et al.
2018).

First, we calculate the prediction for a specific drug-cell line
pair. Then we recalculate the prediction after silencing the
output of each submodule one by one, setting weights and
biases to zero. Similarly, we silence all children subsystems for
each GO term and obtain the third prediction. In the case of
leaf nodes, we silence the corresponding inputs. The RIS score
expresses the importance of a term during the prediction
phase and its ability to combine the information from its chil-
dren, comparing the deviations from the actual prediction of
the models ablating first the father and then its children mod-
ules. The RIS is computed as follows:

sf ¼ jpf � pj scf
¼ jpcf

� pj RIS ¼
scf
� sf

scf
þ sf

; (5)

where p is the effective prediction for a specific drug-cell line
pair, pf and pcf

is the prediction obtained by silencing a GO
subsystem and its children, respectively. RIS is the interpreta-
tion score. For a given GO subsystem, positive RIS values cor-
respond to a larger deviation in predictions when silencing
children compared to the father.

The advantages of RIS over the score adopted in DrugCell
(RLIPP) are that: (i) it can be calculated for each individual
drug-cell line pair and (ii) there are multiple ways to aggregate
these values, by drug or by specific cell line types.

To further investigate the model, we have inspected all the
elements that compose the inputs describing the drugs. The
importance score of each feature was performed using
DeepLift (Kokhlikyan et al. 2020).

2.5 Drug combination strategies through relevant

subsystems

We used the RIS score calculated from a drug/cell-line pair to
evaluate the potential effect of drug combination on the data-
set described in (Jaaks et al. 2022). We selected the top five
enriched GO terms along with associated genes. From the col-
lection of drug targets TTD (Zhou et al. 2022), we obtain the
drugs targeting the genes associated with the previous selec-
tion of GO terms, marking them as potentially synergistic for

that drug-cell line pair. We then compared our predictions on
the synergistic dataset, marking the right (TP) and wrong (FP)
combinations and comparing the ratio of TP to FP and the ra-
tio of synergistic drugs to non-synergistic drugs to understand
if the former was significantly higher than the latter. We took
all drug combinations studied for a specific cell line and drug
and counted how many of these combinations were synergis-
tic (S) and how many are not (NS). We applied the binomial
test on TP over (TP þ FP), which is the Precision metric, with
probability equal to S/(NSþS), thus accounting for the num-
ber of synergistic combinations. The P-values for the binomial
test and the enrichment scores TP=ðTPþFPÞ

S=ðNSþSÞ of the above-
described tests are used in the volcano plots reported in
Section 3.

2.6 Extension for drug synergy prediction

We have also evaluated our model in predicting synergistic
effects of drug combinations as well. For this purpose, as in
Siamese neural networks, we replicated the right branch of
our model. The final ANN concatenates the cell line and
drugs embedding. In this way, the order of drugs is important,
so we doubled the initial dataset by considering the two possi-
ble combinations of drug pairs. In this case, the model had 16
hidden nodes for each GO submodule. Also, the model was
trained for a total of 50 epochs, since it converged faster given
the smaller amount of samples, and penalty term � was set to
five, as the weights were used only for weighted random sam-
pling. Prediction of synergy was posed as a binary classifica-
tion problem, distinguishing the cases where there is synergy
or not. Given the presence of imbalance in the dataset, we
used focal loss (Lin et al. 2017) with hyperparameters a and c
set to 0.4 and 2, respectively.

3 Results
3.1 Dataset imbalance

MOViDA was trained to predict the response of a cellular
model to a specific drug, measured as AUC. AUC combines
information about the potency and efficacy of the drug into a
single measure (Fallahi-Sichani et al. 2013). A value close to
zero means high sensitivity, a value close to 1 represents no ef-
fect of the drug, if >1, the drug has the effect of promoting
cell viability. Besides the high interest in accurate predictions
for drugs with high sensitivity, the majority of drug screens
typically have AUC values that are close to 1, therefore the
distribution of the AUC is particularly skewed.
Supplementary Fig. S1a shows the distribution of the AUC
values after binning AUC values into 12 bins (10 bins for the
interval between 0 and 1 and other two for values >1): class 0
(AUC scores in the range [0.0, 0.1]) was 80 times less popu-
lated than class 9 (scores in the range [0.9, 1.0]). To mitigate
this effect, our approach considered a weighted random sam-
pler and a double-weighted loss (section). Both use the
weights calculated as a function of the inverse frequencies of
each class plus a smoothing term �. Supplementary Fig. S1b
shows the number of samples for all classes: besides the raw
case (no weights), different scenarios are depicted by varying
the � parameter that affects the weights. The ideal scenario
lies between the raw case and the perfectly balanced dataset
(with � set to 0), which, on the contrary, could produce too
many sample repetitions. After parameter tuning, we choose
the value of � equal to 80 as a good compromise, producing,
on average, a 4-fold repetition for the samples in a less
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represented class. The improvement of these strategies is
shown Supplementary Fig. S2. The weighted random sampler
had a greater impact than the double-weighted loss on the
results. However, the combination of both approaches not
only reduced the error but also enhanced robustness with a
much lower variability across validation folds.

3.2 Performance and comparison with DrugCell

The accuracy of the prediction was evaluated by measuring
the Spearman and Pearson correlation between the predicted
AUC values and the actual ones, averaged over 5-fold cross-
validation. In order to consider the imbalance, the correlation
was computed by sampling an equal number (n¼ 100) of
examples from each class, and this process was repeated for
1000 runs. The results show that both Pearson and Spearman
correlation were 0.89. The DrugCell model showed good
results as well, with Pearson correlation of 0.86 and
Spearman correlation of 0.88 (Supplementary Table S2).
When we used the macroaverage MSE (MMSE), which
accounts for the imbalance of the classes, MOViDA had a
lower error (0.025 vs. 0.035) after the cross-validation.
Indeed MOViDA can make much more accurate predictions
of the AUC in classes with fewer training examples (classes
between 0 and 5). Those classes are the most meaningful ones
as they represent cases of high sensitivity to drugs. Notably,
MOViDA exhibited higher accuracy in these classes com-
pared to DrugCell, with a significantly lower error rate (0.032
vs. 0.060). Conversely, for classes with a larger number of
training examples (classes 6–11), MOViDA and DrugCell
perform similarly, with comparable error rates (0.020 vs.
0.018). We show in Fig. 2a, the MSE calculated for each class
which depicts a specific trend. MOViDA performs slightly
worse for the upper classes (6–11) than DrugCell, but signifi-
cantly better for the lower classes (0–5). To better visualize
this behavior, if we cast the regression the sensitivity values as
a classification problem in terms of prediction of AUC inter-
val classes, the confusion matrices in Supplementary Fig. S3a
and b show that DrugCell tends to over-estimate the majority
class. In contrast, MOViDA has better accuracy along the
cells on the diagonal.

We investigated the robustness of each model using two
cross-validation strategies: leave-cell-lines-out and leave-
drugs-out, both implemented in a 10-fold nested scheme. We
created 10 folds for each strategy, ensuring that each fold

contained cell lines or drugs not present in the other nine
folds. These cross-validation strategies enabled us to assess
the ability of the models to generalize to unseen data (cell lines
of drugs) and evaluate their accuracy. As reported in
Supplementary Table S2 and Fig. 2b and c, while all models
experienced a slight drop in accuracy during leave-cell-lines-
out cross-validation, MOViDA consistently outperformed
DrugCell (0.040 vs. 0.054). In contrast, during leave-drugs-
out cross-validation, MOViDA remained stable across the 10
folds, while DrugCell exhibited higher variability.

The performance of MOViDA was further evaluated
through comparative analyses, varying the type of drug repre-
sentation used as input: Morgan Fingerprint, PubChem
Fingerprint, and VolSurfþ descriptors (Supplementary Fig.
S4a). Results indicated that MOViDA exhibited the lowest
MMSE compared to other models, particularly with smaller
errors in the lower classes. Furthermore, we have tested
MOViDA by replacing the ANN for drug embedding with an-
other one that contained more than 5-fold the number of
parameters, with 512, 128, 32, and 8, nodes respectively, and
four linear layers (Supplementary Fig. S4b). The results showed
that increasing the size of the ANN did not improve perfor-
mance. Finally, MOViDA was compared with a Multi-Layer
Perceptron (MLP) consisting of five linear layers (1024, 256, 64,
4, and 1 nodes each) with ReLU activation functions to assess
whether the trade-off between explainability and performance
exists. The results indicated that MOViDA and the standard
network performed similarly, with comparable MMSE.

3.3 The RIS score identifies pathway dependencies

in specific cellular models

We implemented the RIS based on ablation of modules repre-
senting GO terms in the VNN. This score can calculated for
each specific cell line-drug prediction, so we can show which
GOs are most predictive for a specific case or tissue (repre-
sented as a group of cells) or drug.

Among the leukemia cell lines, we selected the ALLSIL cell
line highly sensitive to GSK1070916, an ATP-competitive inhib-
itor of Aurora kinase, which is important during cell division.
The RIS scores associated with this prediction revealed that an-
ion transmembrane transport (GO:0098656) was among the
most important modules for prediction (Fig. 3a). The overex-
pression of ATP-binding cassette (ABC) transporters, particu-
larly ABCG2, contributes to reduced cytotoxicity of

Figure 2. Evaluation and comparison. (a) Five-fold cross-validation results for each model’s mean squared error (MSE) per class. The plot illustrates the

lowest, mean, and highest MSE values obtained. The dashed lines correspond to the macroaverage MSE averaged over cross-validation. (b and c) Ten-

fold cross-validation in which each fold comprised a unique set of 10% cell lines or drugs that were not included in the other folds.
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GSK1070916 (Wu et al. 2021). The family of these genes is re-
sponsible for transporting substances across the cell membrane
using the energy produced by ATP electrolysis. Interestingly,
ALLSIL is ABCC9 mutant which, together with ABCG2, is
downregulated in this cell line. Similarly, proteolysis
(GO:0006508) had a high RIS score for this cell line-drug pair.
This can be attributed to AURKB (aurora kinase B) phosphory-
lating caspase-2 by mediating its proteolysis (Lim et al. 2021).
As a result, cell division is not stopped. In our case,
GSK1070916 inhibits AURKB promoting apoptosis of the can-
cer cell. AURKB is over-expressed in the ALLSIL cell line.

A high RIS score was also reported for the positive regula-
tion of the reactive oxygen species (ROS) metabolic process
pathway (GO:2000379) associated with the DB cell line (lym-
phoma) when administered with Dinaciclib (an inhibitor of
CDK1, CDK2, CDK5, and CDK9). Interestingly, it has been
recently reported that the inhibition of CKD leads to in-
creased mitochondrial ROS levels, confirming this pathway’s
importance in the cellular response to this exposure (Riess
et al. 2021).

Another interesting case is the response of the cell line 5637
(urinary bladder) to Thapsigargin. This molecule operates by
targeting the calcium pump, which leads to an increase in cal-
cium concentration within the cell. RIS score selected several
GO terms (Supplementary Fig. S5) associated with “Calcium
Ion Transmembrane Transport” (GO:0070588). Additionally,
thapsigargin induces the production of interleukin-2 (IL-2),
which in turn stimulates the growth of T cells. This effect is cap-
tured by MOViDA that gives a high RIS score to the term
“Positive Regulation of T Cell Proliferation” (GO:0042102)
(Kim et al. 2018). Furthermore, several studies suggest that ty-
rosine kinase activity plays a role in thapsigargin-induced cal-
cium influx (Lee et al. 1993).

3.4 Drug features interpretability

As a complementary interpretation step, we can also measure
the impact of individual drug features on the model’s predic-
tions with the DeepLift score (Shrikumar et al. 2017).
Figure 3b shows the 20 most important features of our model.
The importance lies in the variability of the score for the vari-
ous cell lines: the more it varies, the more significant it is for
predictions. The most relevant feature was the VolSurfþ de-
scriptor METSTAB for all the cell lines. Such descriptor refers
to metabolic stability (measured on human liver microsomes),
mostly due to isoform 3A4 of the cytochrome P450 system.
We noticed a direct relationship between such a feature with
the AUC. This means low values for metabolic stability (thus,
fast CYP3A4-mediated metabolism) for high-sensitivity
drugs. This agrees with the absorption, distribution, metabo-
lism, and excretion profile of many anticancer drugs, most of
which are metabolized in the liver by CYP3A4. Several fea-
tures were related to drug lipophilicity; among these, the
VolSurfþ descriptors D8 and CD8 are associated with highly
lipophilic regions of the molecules, and characteristics of ac-
tive molecules (low AUC values).

Two features measure the molecular flexibility, namely the
VolSurfþ descriptors FLEX and FLEX_RB. Given their lift
values, we can argue that for most of the predictions, flexibil-
ity is inversely related to AUC, whereas the number of rotat-
able bonds is directly related to AUC. Although it is
uncommon to have an opposite behavior for these two fea-
tures, an attempt to generalization may be that anticancer
drugs are generally flexible but with a low number of rotat-
able bonds (compared to the overall number of bonds). The
VolSurfþ descriptors %FU8 and %FU10 can measure the
percent of the unionized fraction at a given pH (8 or 10).

Figure 3. Explainability. (a) Top 5 RIS score associated to GOs (leaf nodes), considering the ALLSIL cell line and GSK1070916 drug. The whole subtree is

displayed. (b) Deep lift drug feature interpretation of Liver tissue. If feature values are low on the left side of the violin, AUC is directly dependent on the

feature. Many VolSurfþ descriptors emerge as the most important features, respect to PubChem fingerprint features represented in the figure as bit

positions.
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According to violin colors, the system identified a direct rela-
tionship with AUC; in other words, many anticancer drugs
have strong or weak acid groups that are reflected onto the
significant presence of ionized species at basic pH.

3.5 Drug combination predictions

MOViDA predictions can be used to uncover potential drug
synergies. Given the interpretation score for specific drug-cell
line pairs, we selected the genes involved in GO terms with
the highest scores and prioritize as potential combinations the
drugs targeting these genes. The volcano plot in Fig. 4a shows
the cell line-drug pairs for which the candidate molecules are
enriched for experimentally validated synergistic drugs. For
example, the synergy predictions associated with the breast
cancer cell line JIMT1 (breast ductal adenocarcinoma) and
the drug MK-2206, a highly selective inhibitor of Akt1/2/3,
has among the top 5 scoring GO categories the GO:0007169
(transmembrane receptor protein tyrosine kinase signaling
pathway) and the GO:0007584 (response to nutrient). Our
model selected Lapatinib, PD173074, Axitinib, Linsitinib,
Sapitinib, and OSI-027 as potential candidates for combina-
tion therapy with MK-2206. They are all tyrosine kinase
inhibitors involved in tumor cell growth. The association be-
tween these drugs and MK-2206 is well documented in the lit-
erature, as many tyrosine kinases are part of the PI3 kinase-
AKT cascade, affecting mTOR activity (Lara et al. 2015).
Another relevant combination was Navitoclax and
Vorinostat associated with the MDAMB231 cell line (triple-
negative breast cancer). The latter is an HDAC inhibitor,
which decreases the expression of BCL2 family proteins
(Duan et al. 2005). Since Navitoclax is an inhibitor of this
anti-apoptotic protein family, it has been shown that its

efficacy, combined with Vorinostat, can induce apoptosis in
cancer cells (Nakajima et al. 2016).

We also extended our model to classify drug synergy.
MOViDA was able to achieve an AUROC of 0.86 (Fig. 4b)
and AUPR of 0.55 (Supplementary Fig. S6), which indicates
high accuracy in classifying drug synergy despite the imbal-
anced nature and small size of our dataset. We also performed
a comparative analysis between our model and a shallow neu-
ral network consisting of four linear layers with batch nor-
malization, trained using similar hyperparameters to
MOViDA. Our model yielded superior performance, with
both areas exceeding those of the compared model
(Supplementary Fig. S7).

4 Conclusion

In this article, we presented MOViDA, a biologically in-
formed neural network architecture for the prediction of drug
sensitivity of cellular models of cancer. The assessment of
anti-cancer drugs and the identification of potential synergis-
tic effects can be ideally assessed by using patient-derived cell
lines (Liu et al. 2016). However, this process requires substan-
tial time, and there is no guarantee of efficiency. The use of
ML to exploit the variety of screening data already available,
together with the knowledge of the molecular features of cel-
lular models, can help to accelerate the process of drug priori-
tization for experimental validation (Dezs}o and Ceccarelli
2020) and candidate combination therapies (Jaaks et al.
2022). The adoption of a biologically informed architecture
has three main advantages: (i) it allows to uncover the role of
specific pathways in response to drug stimuli; (ii) it improves
the trust in predictions, especially among non-ML experts;

Figure 4. Evaluation of drug synergy prediction. (a) Enrichment scores against the P-values of binomial, testing the Precision of the model, using as the

probability the percentage of synergistic combination. The green points correspond to drug-cell lines pairs that have a significant number of positive drug

candidates, considering the numerosity of synergies in the dataset. (b) ROC curve for predicting the synergistic effect on the dataset O’Neal (O’Neil et al.

2016) with 32 compounds and 32 cell lines, totaling 13 376 instances of combined cell line and drug treatments, with 1296 instances considered

synergistic.
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and (iii) the efficient parameterization of our model can sim-
plify the learning process rather than use arbitrarily overpara-
meterized, architectures for prediction, simplifying
interpretability. Most drug sensitivity prediction models only
use gene expression data (Chen et al. 2021), however, the ef-
fect of single nucleotide mutations, DNA methylation and
DNA copy number variation on drug sensitivity should also
be considered. Here we have presented a visible neural with
an improved accuracy level due to the use of multiple omics
platforms and the better handling of imbalance of data. We
also have developed an interpretability score that has the ad-
vantage of producing a value for every cell line-drug pair and,
therefore, can be summarized in terms of cellular models de-
rived from the same tissue/cancer subtype or at the level of in-
dividual drugs. We have shown that our score produces
meaningful results that can be the subject of experimental
follow-up. We have also introduced a set of features that can
be directly related to behavior or chemical groups. We con-
firmed the importance of chemical features such as LogP,
FLEX as well as %FU(4–10) also observed in the inhibition of
glycoprotein (Broccatelli et al. 2011). In conclusion, the model
has been successfully extended for drug synergy prediction
while maintaining its interpretable nature.

Supplementary data

Supplementary data are available at Bioinformatics online.
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