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Abstract. A great concern for organizations is to detect anomalous
process instances within their business processes. For that, conformance
checking performs model-aware analysis by comparing process logs to
business models for the detection of anomalous process executions. How-
ever, in several scenarios, a model is either unavailable or its genera-
tion is costly, which requires the employment of alternative methods
to allow a confident representation of traces. This work supports the
analysis of language inspired process analysis grounded in the word2vec
encoding algorithm. We argue that natural language encodings correctly
model the behavior of business processes, supporting a proper distinc-
tion between common and anomalous behavior. In the experiments, we
compared accuracy and time cost among different word2vec setups and
classic encoding methods (token-based replay and alignment features),
addressing seven different anomaly scenarios. Feature importance values
and the impact of different anomalies in seven event logs were also eval-
uated to bring insights on the trace representation subject. Results show
the proposed encoding overcomes representational capability of tradi-
tional conformance metrics for the anomaly detection task.

Keywords: Anomaly detection · Encoding · Business process ·
Natural language processing

1 Introduction

The assessment of anomalous business process executions is a real concern for
organizations. Naturally, by detecting and mitigating wrongly executed pro-
cesses, enterprises avoid frauds, save resources, and refine their methods. For
that, companies rely on process-aware information systems, which is the group
of software systems that support and control business processes [2]. Counting
with a process notion, the operation of such software generates a log of events,
i.e., the recording of activities within a process. From that, process analysis can
be performed on such logs. Process Mining (PM) is the area aimed at extracting
information and producing analysis starting from process data. In the PM realm,
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the event log is the set of events executed under a business process. Furthermore,
an event records the execution of an activity at a given time. Finally, each event
relates to a single process instance, referred to as a case.

Traditionally, conformance checking is the PM task aimed at evaluating
the behavior quantitatively. Conformance methods compare the process model
to the event log, checking for deviations and further identifying anomalous
instances [19]. Contrasting a process model with event log data is a common
way of detecting anomalies. However, this is not feasible in scenarios without
a process model. Thus, there is a need for algorithms that infer data patterns
without any prior domain knowledge.

Given the necessity of detecting anomalous traces and the limitations of
traditional approaches, we propose the usage of a language inspired trace repre-
sentation. The method’s core is based on Natural Language Processing (NLP)
encoding of textual data. For that, we map activities and traces as words and
sentences, respectively, before applying the word2vec encoding algorithm [13].
Word2vec captures contextual information, i.e., it models activities surround-
ings, such that each activity is represented by a vector. Traces with uncommon
encoding are potential anomalies. We took advantage of the Random Forest
machine learning algorithm to induce models for trace classification. Then, Ran-
dom Forest’s importance of features was used to support the discussion about
encoding descriptive patterns.

The following sections are organized as follows. Section 2 presents anomaly
detection works and encoding attempts in PM research. Section 3 reports (i)
event log generation and anomaly injection, (ii) word2vec encoding and classical
conformance metrics extraction, and (iii) the experimental setup for anomaly
detection in business processes. Section 4 shows the obtained results, compares
the encoding strategies, and evaluates how different anomaly types are perceived.
The analysis is supported by accuracy, time and features importance metrics.
Section 5 concludes the paper and leaves the final remarks.

2 Related Work

Anomaly detection in business process data has been extensively explored in
recent years [3,7,14–17]. From the traditional PM pillars, conformance check-
ing methods are the most used for anomaly detection. Conformance techniques
rely on the comparison between a process model and an event log [2]. It fol-
lows that non-complying business cases can be interpreted as anomalous. This
compliance is measured by the use of constraint satisfaction or transition marks,
being employed either to control-flow or data-flow perspectives.

One of the earliest works for anomaly detection in PM uses a conformance
checking pipeline [6]. The method filters the log based on domain-dependent
knowledge and applies process discovery techniques to the filtered log. The most
appropriate model is chosen as the process model. Thus, traces are classified
depending on model fitting; that is, a non-fitting trace is classified as anomalous.
However, this approach depends on a clean event log for model creation and
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assumes that process discovery techniques might generate an ideal model, which
is not necessarily true. Moreover, domain knowledge costs resources and is not
always available.

More recent approaches explore the use of likelihood graphs to model process
behavior and detect anomalous instances [7]. The encoding models both control
and data-flow perspectives, and cases deviating from observed probability are
classified as anomalous. However, the method introduces bias by connecting
attributes to the graph, while the probabilities for activities execution are not
connected to their attributes, which is inconsistent with real scenarios. The effi-
ciency of this approach highly depends on the discovered process model quality,
which is subjective in most cases. There is no consensus on whether the discov-
ered model best represents log behavior, as the process of discovering a model
comes from a trade-off between precision and generality.

Another family of approaches emerges from Machine Learning (ML) methods
applied in business process contexts. In [14,16], the authors use an autoencoder
to model process behavior. The technique encodes the event log using one-hot
encoding and trains the autoencoder using the log as both the input and the
output. The mean squared error between the input and output is measured and
given a threshold, anomalous instances are highlighted. The main drawback of
the approach is that vector sizes increase linearly with the number of activities,
which is costly resource-wise. Moreover, the one-hot encoding technique produces
very sparse vectors, further increasing computational overhead. To overcome this
issue, in [15,17], the authors proposed a deep learning method considering both
control and data-flow perspectives. The technique uses a deep neural network
trained to predict the next event. Given the network probability score, an activ-
ity or attribute with a low execution probability is interpreted as an anomaly.
However, the computational cost of deep learning methods is very high, which
hinders its application in many scenarios.

Several techniques explore encoding, given that trace context is a determinant
factor for anomaly detection. However, advanced deep learning methods demand
high resource consumption and have limited interpretability. At the same time,
traditional conformance approaches depend on model discovery, which is a chal-
lenging task. Our work bridges the gap between these two types of approaches
by using a light-weight encoding technique based on NLP, taking advantage of
activities context within a trace. The computational burden is considerably infe-
rior when compared to deep learning methods, and without the need of a process
model. Thus, combining the best aspects from conformance checking and deep
learning approaches.

3 Methodology

3.1 Event Logs

One of the main goals of the experiments is to compare traditional trace met-
rics with trace encodings based on natural language models. Thus, a controlled
scenario with known labels is the best way to evaluate the different modeling
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approaches. Using the proposed framework for event log generation in [15], we
created several business process logs based on the provided guidelines.

The PLG2 tool [9] was used to generated six random process models explor-
ing various complexities, such as the number of activities, breadth and width.
Moreover, a handmade procurement process model (P2P [17]) was added to
the model pool. A likelihood graph [7] was adopted to introduce long-term
control-flow dependencies, a common characteristic of real-world process logs.
Such dependencies regard event to event transitions but also include event to
attribute relations. This way, the probability distributions are constrained. For
instance, an activity A has a determined probability of being followed by activity
B. This can be extended to event attributes, such as an attribute C has a prob-
ability of being logged when activity A is executed in specific conditions. The
combinations within a likelihood graph are extensive, thus providing a complex
graph, mimicking real-world conditions and scenarios.

This way, models created in PLG2 are extended to likelihood graphs. From
that, random walks in the graph generate the event log. Note that the ran-
dom walks comply with transition probabilities, both for control-flow and data
perspectives. The next step is to inject anomalous traces in the event log, a tradi-
tional practice in the literature [6,7]. As in the reference work [15], six elaborate
anomaly types were applied: 1) Skip: a sequence of 3 or less necessary events is
skipped; 2) Insert: 3 or less random activities inserted in the case; 3) Rework: a
sequence of 3 or less necessary events is executed twice; 4) Early: a sequence of
2 or fewer events executed too early, which is then skipped later in the case; 5)
Late: a sequence of 2 or fewer events executed too late, which is then skipped
later in the case; 6) Attribute: an incorrect attribute value is set in 3 or fewer
events.

The artificial anomalies are applied to 30% of the cases from previously gen-
erated event logs. The ground truth label is on the event level, however, it can be
easily converted to the case level. Whenever a case has an anomalous event, the
respective case is labeled as an anomaly. Table 1 reports the detailed event log
statistics. Finally, note that the recreation of these event logs and their anomalies
is replicable by following the steps reported in the original work [15].

Table 1. Event log statistics: each log contains different levels of complexity

Name #Logs #Activities #Cases #Events #Attributes #Attribute values

P2P 4 27 5k 48k–53k 1–4 13–386

Small 4 41 5k 53k–57k 1–4 13–360

Medium 4 65 5k 39k–42k 1–4 13–398

Large 4 85 5k 61k–68k 1–4 13–398

Huge 4 109 5k 47k–53k 1–4 13–420

Gigantic 4 154–157 5k 38k–42k 1–4 13–409

Wide 4 68–69 5k 39k–42k 1–4 13–382
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ML techniques operate at the instance level, i.e., an event is a complete
instance representation, while PM methods operate at the business case level,
i.e., the group of events from the same case composes an instance. Due to this
mismatch at the representation level, traditional ML algorithms can not be
directly applied to business process logs [20,21]. This way, an encoding layer
extracting case features is necessary to overcome this issue, thus, merging the
gap between process science and ML methods.

Log encoding was already explored in the literature [14,16]. In [14], the
authors use one-hot encoding whereas in [15,17], the authors use integer encod-
ing. Both approaches transform the event log, and consequently traces, into a
numerical representation, which is then fed to ML algorithms. However, one-
hot and integer encodings generate sparse data. In [10], the authors represent a
trace using the NLP doc2vec encoding [11]. Though the technique is innovative,
its activity and trace representation lacks context as the doc2vec encoding is
designed for paragraphs, which generally contain more data than a trace.

Inspired by NLP research, which has solid literature in representational learn-
ing, we propose the use of the word2vec encoding method to capture business
process behavior [13]. Word2vec produces word encodings using a two-layer neu-
ral network aimed at reconstructing the linguistic context for each word in the
corpus. The produced vectors model semantic and synthetic characteristics using
the weights produced by the neural networks. Namely, words with similar con-
texts have analogous vectors. This way, our approach interprets each activity as
being a word. By consequence, the set of unique activities is the corpus used by
the word2vec model. Within a model, each activity is represented by a numeri-
cal vector describing its context. To retrieve trace-level encoding, we aggregate
the word vectors that compose a respective trace. For that, we use element-wise
mean, i.e., the trace representation is the mean of its activities representations.

3.2 Traditional Feature Engineering

A classical approach to evaluate business cases uses conformance checking tech-
niques. Conformance aims to compare a process model to the event log and mea-
sure their differences [2]. This process must account for the alignment between
trace and model elements. Here, we employ two of the most traditional confor-
mance approaches: token-based replay and alignment. Token replay matches a
trace to a process model in the Petri net format. The resulting value is usually
a fitness score produced by firing tokens and accounting the mismatch between
trace and model-allowed transitions. Further, following a comparison approach,
trace alignment links trace activities into Petri net transitions [1]. The alignment
is measured by comparing a trace to log moves, accounting moves that can or
not be mimicked in the log, e.g., skipped and silent activities.

Both conformance techniques were implemented using the PM4Py Python
package [5], following standard hyperparameters1. Table 2 shows the extracted

1 https://pm4py.fit.fraunhofer.de/documentation.
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features for each trace. These features are used for model creation and poste-
rior anomaly detection. Moreover, both techniques require a Petri net model to
compute conformance measures. This way, before applying feature extraction,
we induct a process discovery algorithm using the Inductive Miner Directly Fol-
lows (IMDF) algorithm [12] (employing PM4Py library). IMDF was chosen since
its goal is to construct a sound model with good fitness values, leveraging the
quality of extracted features.

Table 2. Extracted trace features to describe trace behavior. There are two types of
features: token replay and alignment

Feature type Feature Meaning

Token replay trace is fit Indicates if the trace fits the model

Token replay trace fitness Trace fitness value

Token replay missing tokens Number of missing tokens

Token replay consumed tokens Number of consumed tokens

Token replay remaining tokens Number of remaining tokens

Token replay produced tokens Total number of tokens produced

Alignment cost Cost of the alignment

Alignment visited states Number of visited states

Alignment queued states Number of queued states

Alignment traversed arcs Number of traversed arcs

Alignment fitness Trace fitness value

3.3 Experimental Setup

The experiments aim at measuring two main aspects: (i) how different anomalies
behave and how much they affect classification performance, and (ii) to which
extent traditional and natural language inspired encodings can represent log
behavior, including anomalies. For that, we designed two sets of experiments.
The first is a binary classification using only the normal class and one anomaly
(this is replicated for all anomalies). The second experiment is a multi-class
detection task, thus, using all the available classes. The latter experiment is
more challenging as the encodings need to represent all different behaviors at
the same time, considering that anomalies tend to harm encoding quality.

For the word2vec encoding, we explored several vector sizes (25, 50, 100, 200,
400), this way, evaluating if more complex vectors capture better trace behavior.
The Random Forest (RF) [8] algorithm was used for the classification task fol-
lowing the scikit-learn Python package [18]. RF was selected due to its extensive
use in ML literature. RF is very robust and controls overfitting with its ensemble
nature. Moreover, RF requires less computational resources compared to deep
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learning methods. To provide a common testbed for the different encodings, we
implemented a grid search method for hyperparameter tuning, a standard tech-
nique in literature [4]. Grid search trials are formed by assembling all possible
hyperparameter values combination. Table 3 lists the explored hyperparameters,
their implication and employed values.

Table 3. Random Forest hyperparameters. A grid search method was used to combine
all possible hyperparameter values, yelding an optimal performance

Hyperparameter Meaning Values

n estimators Number of forest trees 50, 100, 250, 500, 750, 1000

max features Number of features to consider for the best split auto, log2

max depth Maximum tree depth 4, 8, 16, 32, 64, default

criterion Function to measure split quality gini, entropy

4 Results and Discussion

All the discussion in this section was made using a RF model induced using
n estimators of 50, max features with log2, max depth with default value and
entropy as criterion. These values were found after the tuning procedure. The
time presented was computed during the model induction period.

4.1 Overall Performance

An overview of predictive performance is exposed in Fig. 1. The accuracy to
detect anomalies is sorted from left to right. The lowest performance was
reported in the logs with all anomalies concurrently. Late, attribute and early
anomalies followed with similar performance. The most accurate classifications
were made over the insert, rework and skip anomalies.

It is easy to comprehend the low performance of all anomalies scenario since
it is a multi-class problem in which the model needs to deal with seven different
outcomes (common behavior and six different anomalies). Aggregating the per-
formance of all models by each encoding, word2vec methods obtained superior
performance (average of 84.7%) in comparison to the classic method (76.3%). No
specific word2vec length outperformed the others, the obtained accuracies were
84.6%, 84.6%, 84.7%, 84.7% and 84.9% by 100, 200, 25, 50 and 400, respectively.

Late, attribute, and early anomalies were classified with a similar predic-
tive performance by the RF models. Word2vec methods obtained an average
accuracy of 93.3% while the classic method achieved a slightly superior perfor-
mance of 93.5%. The most predictable anomalies were insert, rework and skip,
where word2vec encoding obtained 99.8% accuracy. The standard deviation of
1e−3 within word2vec models shows that different lengths did not affect per-
formance. Contrarily, classic encoding obtained inferior results, an average of
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Fig. 1. Comparison of accuracy among word2vec using different lengths (25, 50, 100,
200 and 400) and classic encoding methods when representing seven different anomaly
scenarios (all anomalies concurrently, late, attribute, early, insert, rework and skip)

96.9% (±1e−4), with insert as the less accurate classification (96.1%). Rework
and skip obtained (97.1%) of accuracy. Overall, word2vec encoding had a better
performance when compared to classical encoding.

Beyond the predictive performance, we performed a time analysis to deepen
our discussion about the suitable method. Figure 2 presents violin plots built
using the time to induce a RF model using different encoding methods. We
choose this visualization to illustrate the average performance and to clarify
some possible distortions of time due to different datasets compromised with
the same anomaly.
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Fig. 2. Comparison of time among word2vec using different lengths (25, 50, 100, 200
and 400) and classic encoding method when representing seven different anomaly sce-
narios (all anomalies concurrently, late, attribute, early, insert, rework and skip)
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Classic encoding takes a similar time for all anomalies, an average of 0.23 s
(±6e−3), to induce a RF model, being the fastest encoding technique. Word2vec
encodings required more time for particular anomalies (e.g., all concurrently, late,
attribute and early), an average of 0.35 s (±0.07). When modeling a classifier
to the all anomalies scenario, this difference becomes more evident since classic
encoding obtained 0.28 s and word2vecs 0.39 s, 0.40 s, 0.43 s, 0.48 s and 0.55 s for
25, 50, 100, 200 and 400, respectively. Regarding word2vec time performance, it
is possible to observe a straightforward relation between time and feature vector
length, as expected. An analogous relation was observed between feature vector
length and stability of the model. Using the standard deviation of induction
time for each word2vec range, we found the same behavior, the larger feature
vector, the higher time variability. The most stable encoding was the smallest
(25 features).

4.2 Encoding Strategy and Feature Importance

One of the key-points of an encoding method is its capability to support class
disjunctions. Taking advantage of the RF models, we observed the importance
of each variable grounded on RF importance. Figure 3 presents an overview of
RF feature importance for classic encoding. The alignment family of features
(traversed arcs, cost, visited states, queued states) was the most important group,
except by fitness. Token replay features did not contribute to the model.
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fitness

missing_tokens

produced_tokens

remaining_tokens

trace_fitness

trace_is_fit

queued_states

visited_states

cost

traversed_arcs

0.0 0.1 0.2 0.3
Feature Importance

F
ea

tu
re

Feature Family Alignment Token Replay

Fig. 3. RF feature importance from alignment and token replay encodings

The limited performance of token replay features happens as the approach
tend to consistently produce high fitness values. Moreover, a path through the
model is not created for non-fitting cases. Therefore, the same values for token
replay features are produced to the majority of traces, adding no benefit in the
trace encoding. Consequently, their significance for classification is downgraded,
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which is represented by the low RF importance. On the other hand, the align-
ment family of features overcomes these limitations by introducing more robust
rules [1], thus, being decisive in anomaly detection.

Figure 4 displays RF feature importance of word2vec encodings. No optimal
subset of features can be found. Further, the importance of features spreads as
vector length grows, i.e., the spike of importance had its value reduced as vector
length enlarged.
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Fig. 4. RF feature importance from five different word2vec lengths

The distribution of importance values over the feature vector exposed an
intrinsic characteristic of word2vec encoding, the capacity of exploring the prob-
lem using an inputted granularity. In other words, this encoding method dis-
persed throughout all features the capacity of trace representation. Complex
problems that demand a more precise description can take advantage of large
feature vectors, at the cost of time and stability.

4.3 Anomalies Analysis

Figure 5 presents the average accuracy from all word2vec models over each event
log. From this, Gigantic appears as the most complex event log with lower
accuracies, obtaining its lowest classification performance when compromised by
all anomalies. This is explained by the log complexity, which can be observed
by the high number of activities (Table 1). Higher performances were observed
over Large, Small and Wide event logs. Although there exists an accuracy
variation on the datasets classification performance, we need to mention the
most difference was presented in the anomaly perspective. When comparing the
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average accuracy per dataset, a variation of 1% was observed. In contrast, the
average accuracy difference within anomalies stood at 16%.
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Fig. 5. Average accuracy obtained with word2vec encoding for each combination of
dataset and anomaly

According to Fig. 5, late, attribute, and early anomalies are the most difficult
of being recognized. Late and early anomalies affect an activity being executed
before or after, respectively, its expected execution. This way, the trace context
is affected more subtly because the activity is being executed, even if in the
wrong position. The attribute anomaly is challenging as it affects the data-flow
perspective, so methods that do not consider this flow tend to present lower
performances. The skip, rework and insert anomalies affect more profoundly
the control-flow perspective. This aggressive behavior is easily detected by the
encoding methods, e.g., even the classical method was able to perform better in
these anomalies (Fig. 1).

5 Conclusion

Conformance checking is one of the most important tasks of PM in real-life
business applications, mainly for anomaly detection. This paper compared clas-
sic conformance features (token replay and alignment) with language inspired
trace representation (word2vec) over different event logs compromised in seven
different scenarios. A RF classification model was combined with the encoding
techniques for the anomaly detection task. Word2vec correctly captured trace
context and demonstrated a better performance than classic encodings. The
most challenging scenario is dealing with all anomalies concomitantly, where
lower accuracies were achieved. On the other hand, detecting insert, rework,
and skip anomalies leveraged accuracy performance. In both extreme scenarios,
i.e., higher and lower accuracies, word2vec overcame classic encoding. The per-
formance results of encoding methods were similar just for medium-range accu-
racy scenarios (late, attribute, and early anomalies). Regarding different event
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logs, Gigantic was the most complex. When comparing the importance of the
classic encoding techniques, alignment features prevailed token replay features.
As future work, we plan to investigate anomaly detection in online settings.
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