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The highest oxidation state observed in graphene-
supported sub-nanometer iron oxide clusters
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Size-selected iron oxide nanoclusters are outstanding candidates for technological-oriented

applications due to their high efficiency-to-cost ratio. However, despite many theoretical

studies, experimental works on their oxidation mechanism are still limited to gas-phase

clusters. Herein we investigate the oxidation of graphene-supported size-selected Fen clus-

ters by means of high-resolution X-ray Photoelectron Spectroscopy. We show a dependency

of the core electron Fe 2p3/2 binding energy of metallic and oxidized clusters on the cluster

size. Binding energies are also linked to chemical reactivity through the asymmetry parameter

which is related to electron density of states at the Fermi energy. Upon oxidation, iron atoms

in clusters reach the oxidation state Fe(II) and the absence of other oxidation states indicates

a Fe-to-O ratio close to 1:1, in agreement with previous theoretical calculations and gas-phase

experiments. Such knowledge can provide a basis for a better understanding of the behavior

of iron oxide nanoclusters as supported catalysts.
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The quest for newly designed and efficient catalysts is a
central issue that has attracted the interests of many
researchers since it constitutes the essential stage to

enhance the sustainability of many chemical processes of indus-
trial relevance. In this respect, the possibility to prepare metallic-
based nanostructures has provided a potentially groundbreaking
way to improve the efficiency of traditionally designed catalysts
and has been gaining interest in the scientific community in the
last years1,2. Among the various nanostructured materials pro-
posed and investigated, size-selected atomic clusters constitute a
special class of objects whose properties depend strongly also on
the number of atoms composing them and which have shown
astounding catalytic performances3–5. The use of iron in these
systems is of recent application. While Fe metal-based catalysts
have been proven since long time to be crucial in industrially
relevant reactions such as the Haber-Bosch process6–9, Fe atomic
clusters stood out as potential candidate to substitute the highly
expensive noble metal-based catalysts in the oxygen reduction
reaction10–13, in the ammonia synthesis14 and for the alkene
epoxidation15. The range of interest for Fe-based nanostructures
further increases if we include Fe oxides16,17, which find several
technological applications as magnetic storage media18, in
biomedicine19 and as catalysts in several chemical reactions such
as CO oxidation20–24, water splitting25 and in the Water Gas
Shift26. Like their bulk counterparts, the properties of a specific Fe
oxide cluster depend on its stoichiometry and oxidation state. For
example, Fe2O3 cluster can oxidize CO to form CO2 and reduce
NO to form N2 by undergoing compositional changes between
Fe2O2 and Fe2O3 states27. A deep understanding of the intrinsic
factors that determine the properties of oxide clusters is still
lacking and it represents a hot topic in the scientific community
as demonstrated by several theoretical results published in the last
few years on FenOm clusters28–32. While theory has highlighted
the interest for these materials, experiments on the oxidation of
Fe clusters are mainly limited to the gas phase33–36, which
represents a fundamental approach for the understanding of these
systems and for a comparison with theoretical works, but it is still
far from the complexity of supported catalysts.

In the present work, we studied the oxidation of size-selected
Fen clusters with n= 11, 12, 13, 15 and 20 supported on graphene
epitaxially grown on Ru(0001) by means of high-resolution X-
Ray Photoelectron Spectroscopy with synchrotron radiation.
Clusters were then oxidized with a photodissociation approach
(Fig. 1). We have chosen to study Fe13 and Fe15 since they are
magic clusters37–39 and have been already predicted to show
enhanced stability and remarkable properties. At the same time,
we intended to investigate some non-magic clusters whose size is
larger and smaller than the two aforementioned magic ones, in
order to showcase any remarkable differences. For example,
recent density functional theory (DFT) calculations predicted that
the 12 cluster shows an uncommon stability in the stoichiometry
Fe12O12

40. In this work we show that upon oxidation all the
atoms in the supported Fen clusters can reach a maximum oxi-
dation state equal to Fe(II), in agreement with theoretical works
which predict a high stability for (FeO)n clusters41. The differ-
ences between the stability of Fe(II) oxidation state in the
nanocluster and in solid surfaces highlight the different behavior
of iron oxides at sub nanoscale.

Results and discussion
Spectroscopic characterization of metallic Fen clusters. Fen

þ

nanoclusters with n= 11, 12, 13, 15 and 20 were deposited on
graphene/Ru(0001), where they are electrically neutralized.
Graphene/Ru(0001) is a very stable and highly corrugated 2D
material which was already adopted for the growth and

deposition of atomic clusters42,43. The morphology of this tem-
plate reduces the cluster mobility as they tend to remain confined
in the valley regions of the moiré lattice44. In fact, despite the
calculated large adsorption energy of Fe adatoms on free standing
graphene, Ea= 0.85 eV, the diffusion barrier is only 0.40 eV45,
thus indicating that they are mobile at room temperature. To
reduce the cluster mobility and to prevent sintering and nuclea-
tion, the temperature of the system was always kept at T = 20 K
during the deposition and photoemission measurements. It is
worth noting that the diffusion rate Γ on a surface follows the
formula Γ ¼ ν exp�ΔE=kBT , where ν is the vibrational frequency of
the adatom, ΔE is the diffusion barrier, kB is the Boltzmann
constant and T the surface temperature. Using a prefactor ν equal
to 1013, the diffusion rate that is obtained at room temperature is
equal to 1.7 × 106 s−1. On the other hand, at T= 20 K the rate
becomes equal to 1.75 × 10−88 s−1, meaning that the diffusion of
iron adatoms on graphene at a very low temperature is highly
suppressed and become negligible on the time scale of our
deposition and data acquisition.

The Fe 2p3/2 core level spectra of the supported pristine clusters
are reported in Fig. 2a, together with the best fit and the spectral
components. The very low cluster coverage on graphene (<0.1%
ML), the low photoionization cross section and the large intrinsic
broadening of 2p core levels (especially when compared to the 3d
and 4f core levels, which are typically studied for heavier metals),
make the data analysis particularly challenging. Such analysis,
performed using Doniach-Šunjić functions46 convoluted with a
Gaussian distribution, requires a rigorous procedure to obtain
reliable information not only on the Fe 2p core level binding
energies (BE) and of the number of non-equivalent components,
but also of the core level photoemission line shape parameters,
namely Gaussian (G) and Lorentzian (L) widths, and asymmetry
(α). In this convolution, the Lorentzian lineshape L takes into
account the core-hole lifetime through the uncertainty principles.
The Gaussian width originates from several factors including the
instrumental resolution, the phonon/vibrational broadening
together with the inhomogeneous broadening due to the presence
of a distribution of non-equivalent atomic configurations. The
Anderson singularity index α describes the asymmetry of the
lineshape due to the probability of electron-hole pairs excitation.
The decision of using the Doniach-Šunjić function convoluted
with a Gaussian distribution rather than the Voigt function, often
preferred for quantitative analysis47, is justified by the fact that we
are not interested in a composition analysis of the oxidized iron
clusters, but in obtaining information about the asymmetry when
it is present, as in clusters spectra before the oxidation process.
Doniach-Šunjić functions convoluted with a Gaussian distribu-
tion have been extensively used in literature for fitting both
metallic and oxidized surfaces48,49. Moreover, recently their use
has been extended to properly fit the spectra of oxide
nanoparticles and gas-phase nanoclusters50,51. Thus, we decided
to fit XPS spectra of oxidized iron clusters using a Doniach-Šunjić
function convoluted with a Gaussian distribution. This choice is
motivated also by the results of Bano et al.52 which show that, on
graphene, the HOMO-LUMO gap of iron oxide clusters is close
to zero, allowing the use of this fitting function. This is due to a
charge-transfer between graphene and clusters that involves also a
semi-metal to metal transition of the graphene itself. Generally, it
is important to point out that the Doniach-Šunjić function
convoluted with a Gaussian distribution becomes a Voigt
function when the value of α approaches to zero, as in our case.
Since iron is a ferromagnetic material, the 2p3/2 core level
measured on surfaces of single crystals is described using four
components that mainly originates from exchange
interactions53–55. However, since the signal-to-noise ratio in
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our spectra is low and since in literature the splitting between the
components spans between 0.35 eV and 0.5 eV, we decided to fit
our spectra using one single component. This choice is motivated
also by the presence of a plethora of non-equivalent atoms in each
cluster that would require using a number of components equal
to 4n for the spectra of Fen clusters. The small error bar on the
binding energy values of the different spectral components
stemming from the fit, and reported in Table 1, is due to the
complex fit procedure applied for interpreting the data and that is

characterized by consecutive steps of analysis to extract the best
fit parameters, as discussed in the Supplementary Note 1.

The spectral analysis in Fig. 2a indicates the presence of two
different components for each of the investigated clusters besides
Fe12. The position of the low BE component, which exhibits most
of the spectral weight (Fig. 2a, gray curves), is affected non-
monotonically by the cluster size, ranging from 707.38 eV for Fe11
and Fe20 up to 707.77 eV for Fe13 (Tab. 1). This component can
be associated to Fe atoms in a metallic state. The shift towards

Fig. 1 Outline of the oxidation process. a Fe clusters deposition on Gr/Ru(0001) b Adsorbed Fe cluster on the Gr/Ru(0001) interface. c O2 exposure at
20 K and physisorption on the Fe cluster at 20 K. d Emission of low-energy secondary electrons induced by soft x-ray irradiation. e Formation of atomic
oxygen via dissociation of molecular oxygen and cluster oxidation.

Fig. 2 X-ray photoelectron spectra of as deposited and oxidized clusters. a Fe 2p3/2 core level spectra for as deposited and b oxidized Fe11, Fe12, Fe13, Fe15
and Fe20 nanoclusters supported on graphene/Ru(0001). Black markers and lines represent experimental data, the red line represents the best fit. Each
peak stemming from the spectral analysis is shown in a different color. For the labeling of each peak please refer to the text.
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higher BE with respect to Fe bulk (BE= 706.7 eV)56, single
crystal surfaces (BE= 706.3 for Fe(110)/Cu(100) and 706.5 eV for
Fe(100)/Cu(100)57) and to Fe polycrystal (BE= 706.28 eV,
Supplementary Note 2) is in agreement with previous measure-
ments on supported Pd and Au clusters on oxides58,59. For these
systems, 3d and 4f core level shifts (CLS) were generally
attributed to final state effects due to a size-dependent charging
energy which scales with n−1/3 60. However, the same model may
not apply to our system, as the graphene/metal interface allows
for charge transfer to the Fe clusters. A possible explanation to
this experimental outcome may be linked to initial-state effects
stemming from a lattice parameter contraction, which could
significantly affect the CLS of the metallic Fe clusters, as proposed
by Richter et al.61. Such guess appears to be reasonable since it is
known that lattice strain causes a positive CLS: a strain of 6% in
Cu, Ag and Au clusters composed of 13 atoms leads to a CLS of
+0.79, +0.52 and +0.50 eV, respectively62. According to DFT
calculations, the Fe− Fe distance in small Fe clusters in gas phase
varies between 2.38 Å and 2.62 Å37 with a contraction in the
range of 8− 18% with respect to the value of iron bulk (2.86 Å63).
The CLS that we report for iron nanoclusters range between
+0.68 and +1.07 eV, thus in agreement with the general trend
that enhanced contraction of the lattice parameter generates a
larger CLS. An additional contribution to the shift could arise
from the interaction of the cluster with graphene64 since the Fe-
graphene bond strenght is not negligible, contrary, for example,
to the case of Ag atoms45.

The agreement between the measured BE of the clusters and
the expected CLS due to lattice strain suggests that the CLS in the
clusters are dominated by initial state effects. Initial state effects
are rich in chemical information as they depend also on the
modifications of the d-band center, a well-known indicator of
chemical reactivity65. For this reason, their dominant contribu-
tion to the overall CLS allows us to relate the reactivity of clusters
with different sizes to their Fe 2p3/2 core level BE, with a low
activity that can generally be associated to higher-than-expected
BE, and vice versa58.

In Fig. 3a (black markers) we report the CLS of the clusters Fe
2p3/2 core level with respect to the bulk value as a function of the
cluster size. Fe13 shows the largest CLS (+1.07 eV), thus
suggesting that this cluster is the most stable among the
examined ones. Interestingly 13 is a magic number for Fe clusters
associated to particularly stable configurations and, therefore, it is

expected to show a low chemical reactivity38,39. The CLS trend we
measured is in good agreement also with the trend of the
asymmetry parameter α obtained from the spectral analysis. The
α parameter in the Doniach-Šunjić function, is directly linked to
the probability to excite single-electron excitations, namely
electron-hole pairs, and it is hence related to the density of states
near the Fermi level of the system46. It is interesting to note that a
higher density of states near the Fermi level has been linked to an
increased reactivity of the system increased66. The trend of αvs.
the cluster size n is reported in Fig. 3a (blue markers) together
with the CLS trend. The two curves match very well for all the
cluster sizes, supporting our discussion on the relationship
between clusters reactivity and CLS.

Cluster oxidation and assignment of oxidation state.
Nanoclusters oxidation was obtained employing a photo-
dissociation approach at T= 20 K. At this temperature, it is
possible to achieve a high degree of oxidation inducing the O2

dissociation by soft x-rays irradiation as schematically described
in Fig. 143,67–69. After being exposed to molecular oxygen
(Fig. 1b), iron nanoclusters were irradiated with soft x-rays
(Fig. 1c). We irradiated the sample for an overall exposure of
2 × 1016 photons s−1cm−2, with a X-ray photon energy of 805 eV
for ca. 45 min. The photo-stimulation induces the production of
secondary low-energy electrons thus resulting in O2 dissociation
and atomic oxygen formation (Fig. 1d). The process of photo-
electrons interaction with weakly bound physisorbed molecular
oxygen results in intramolecular vibrational excitations via
inelastic scattering. The effect has been proven using both pho-
tons and electrons, also by means of tunneling process employing
scanning tunneling microscopy70–72. The oxidation of Fe
nanoclusters results in a 2p3/2 CLS towards higher BEs (see
Fig. 2b), confirming the well established trend found for Fe
surfaces73–75. This component appears at the same BE of the low
intensity peak revealed in the as-deposited clusters spectra
(orange peaks in Fig. 2a), due to a partial oxidation of Fe cluster
during deposition.

The Fe 2p3/2 core level spectra of oxidized Fe11, Fe12 and Fe15
nanoclusters can be fitted using a single component (Fig. 2b,
yellow curve), while an additional component at higher BE
(Fig. 2b, orange curve) was needed to obtain a low chi-square in
the spectral analysis corresponding to the oxidized Fe13 and Fe20

Table 1 BE in metallic and oxidized Fe-base materials.

Fe clusters

Metallic Oxide

BE (eV) BE (eV)
Fe11 707.38 ± 0.10 ; 709.87 ± 0.10 Fe11 709.62 ± 0.10
Fe12 707.50 ± 0.10 Fe12 709.68 ± 0.10
Fe13 707.77 ± 0.10 ; 709.92 ± 0.10 Fe13 709.79 ± 0.10 ; 712.59 ± 0.10
Fe15 707.47 ± 0.10 ; 709.75 ± 0.10 Fe15 709.77 ± 0.10
Fe20 707.38 ± 0.10 ; 709.87 ± 0.10 Fe20 709.58 ± 0.10 ; 712.39 ± 0.10

Fe Bulk and Surfaces

Metallic Oxide

BE Fe0 (eV) BE Fe2+ (eV)
Fe bulk 706.756 FeO bulk 709.557

Fe(100)/Cu(100) 706.557 Oxidized Fe(100)/Cu(100) 709.257

Fe(110)/Cu(100) 706.357 Oxidized Fe(110)/Cu(100) 709.357

Fe Polycrystal 706.28 ± 0.10 Oxidized Fe polycrystal 709.83 ± 0.10

Fe 2p3/2 core level BE for metallic and oxidized Fe clusters and polycrystal, as obtained from data analysis, and Fe bulk and surfaces, as reported in literature. Error analysis is described in Supplementary
Note 1.
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clusters spectra. As happens for the BE of the metallic clusters, the
Fe 2p3/2 BE of oxidized clusters is clearly affected by their size.
The main component (yellow curve) ranges from 709.58 eV for
Fe11 to 709.79 eV for Fe13 (Tab. 1). If compared to the metallic
configurations, these BEs are closer to the Fe 2p3/2 core level of
the bulk, surfaces and polycrystal Fe oxides, which are reported in
Tab. 1. This is interpreted as a consequence of the Fe-O bond
lengths in the clusters (1.81− 1.96 Å)41 which become more
similar to their bulk counterparts (1.98 Å for Fe2O3 and 2.09 Å
for FeO16) than the Fe-Fe bond lenghts in the metallic case.

The asymmetry parameter α of the clusters decreases upon
oxidation, going from the range 0.07–0.22 for metallic clusters
down to 0.00 - 0.06. The trend of α still follows the CLS and it
indicates that a higher chemical reactivity can be expected from
oxidized clusters Fe11 and Fe20, which show the lowest CLS and
the highest asymmetry (Fig. 3b). The same trend suggests that the
least reactive oxidized clusters are Fe13 and Fe15, similarly to
the metallic case. By comparison with previous XPS experiments,
the main component in the oxidized spectra can be associate to
Fe(II) ions (BE= 709.5 eV)56,76. Since our clusters are electrically
neutral and all the Fe atoms possess the oxidation state 2+ , if we
assume that O anions have the usual oxidation state 2− , then we
can conclude that the ratio between Fe and O atoms is close to
1:1. As a matter of fact, if we had a higher ratio, with more Fe
than O atoms, we would expect to observe additional spectral
components associated to Fe atoms with lower oxidation state or
bonded with a lower number of O atoms. For example, the cage-
like structure of the magic cluster Fe13O8 displays a Fe atom in its
core in the metallic state77. Since from our spectra we can
disregard the presence of atoms in a metallic state, we can exclude
a similar Fe:O ratio. At the same time, if we had more O than Fe
atoms in our clusters, we would expect to observe a component in
the Fe 2p3/2 spectra compatible with Fe(III). The nominal BE
value of the Fe(III) oxidation state is close to 711 eV76. The lack
of compatible signal in the vicinity of this energy suggests that
this oxidation state is most probably not present in the clusters.
However, due to the different geometric and electronic properties
of the clusters compared to bulk materials, the BE of the Fe(III)
oxidation state could be shifted with respect to the nominal
value78,79. Therefore, also considering the large FWHM of the
spectra, it is not possible to unambiguously rule out the presence
of Fe(III) species. However, these species would represent a minor
fraction of the spectra, which are dominated by the Fe(II),

supporting the conclusion that the ratio between Fe and O atoms
is close to 1.

The formation of Fe(III) compounds has been ruled out
because of the lack of compatible signal in the vicinity of
BE= 711 eV76, which is the expected position of Fe(III)
compounds in bulk materials. Although there might be
differences in the position of the components in bulk and
clusters, we observed that such differences are not so large for 2+
oxidation state (with a shift ranging from 0.08 up to 0.29 eV with
respect to the value observed for bulk). Likewise, we do not expect
larger differences for the peaks associated to the 3+ oxidation
state. In addition to that, whereas there would be any Fe(III)
components, they would constitute a negligible fraction, since
their spectral weight is very small with respect to the overall
signal.The interpretation of the component at higher BE observed
for Fe13 and Fe20 oxidized clusters (BE= 712.59 eV and 712.39
eV, respectively) requires a further explanation. Although it has
been proposed that a component at such binding energy could
stem from the presence of FeCO3

56, the formation of such
compound would locally disrupt the graphene lattice on which
the clusters are laying. On the other hand, it seems reasonable to
assume that this component could originate from Fe atoms at the
bottom of the cluster and interacting with the graphene layer
underneath. Upon larger oxygen exposures, the Fe 2p3/2 spectrum
does not further change, indicating that this configuration is
associated to the highest oxidation state and oxygen coverage that
the clusters can reach upon oxidation with atomic oxygen.

Our result for supported Fe clusters is also in agreement with
theoretical predictions on the stability of the stoichiometry FenOn

for clusters of these sizes41,80, and with experimental findings on
the oxidation of Fe clusters in the gas phase33. In particular, DFT
calculations showed that Fe12O12 possesses unexpected stability
and an extremely large band gap of 2.00 eV40. However, the same
cluster shows several isomers separated only by few meV80. For
example, the cage-shaped minimum energy configuration is
favored by just 0.07 eV with respect of two tower structures
composed of 3 × 3 and 4 × 4 rings which are nearly degenerate,
with an energy difference of just 0.01 eV. The presence of
different isomers can be read in our experiment from the
Gaussian width (G value) obtained in the data analysis which is
much larger than the overall experimental resolution. The
oxidized Fe12 cluster shows the largest G value (4.12 eV) among
the other oxidized clusters (G= 2.63− 3.04 eV), thus suggesting

Fig. 3 Comparison CLS vs asymmetry parameter. a Core level α parameters and CLS of metallic and b oxidized iron clusters as a function of their size.
Circle markers refer to asymmetry parameter while square markers refer to CLS. The error bars on the core level shifts are of the order ± 0.1 eV.
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that it could be the cluster with highest number of isomers, i.e.,
with a large distribution of non-equivalent local atomic config-
urations. We associate the increased G values of oxidized clusters
with respect to the metallic ones (G= 1.51− 1.83) to the larger
number of non-equivalent local configurations that the oxygen
adsorption leads to. As a matter of fact, given a certain number of
metallic isomers which contribute to the Gaussian broadening for
the spectra after deposition, each one can lead to several oxide
structures for a specific oxygen density, thus raising the G width
of the oxidized spectra. Finally, the larger G for the oxidized
clusters can be affected by fluctuation of the 1:1 Fe to O ratio:
clusters possessing a slightly different stoichiometry cannot be
resolved in the spectral analysis and hence contribute to the
overall spectral broadening.

Our investigation suggests that the oxidation process of
supported iron nanoclusters is quite different from the case of
iron solid surfaces. At room temperature, the oxide growth on
iron surfaces typically involves several layers, it proceeds mainly
via inward oxygen diffusion across the interface between metal-
oxide and gas and it leads to the formation of two oxide phases.
The first phase consists of a layer of FeO that has the function of a
wet layer for the subsequent growth of a second oxide phase
composed of Fe2O3

81. Indeed, FeO on a surface tends to oxidize
rapidly to form compounds with Fe ions in the Fe(III) oxidation
state73,82. On the contrary, we show that the oxidation process of
Fe nanoclusters leads to a stable Fe(II) oxide compound, as
confirmed by negligible Fe 2p3/2 spectral changes upon further
oxygen exposure. It is important to stress out that the oxidation
method that we employed providing atomic oxygen at very low
temperatures is extremely efficient, as it was proved for the case of
Pt(111)67 and for the oxidation of size selected Ag clusters where
atoms in the clusters reached an oxidation state 3+43. Conversely,
the hindering towards a 3+ oxidation state in iron may be closely
related to size of the unit cells of iron oxide compounds that
include Fe(III) ions and higher density of oxygen atoms. For
example, the unit cell of magnetite and maghemite accommo-
dates 32 O2− ions16,83, while there are only 4 in the unit cell of
wüstite (FeO)16. We expect formation of such a large unit cell to
be strongly unfavorable just because lattice deformations are
energetically very expensive.

Conclusions
In the present study, we investigated the oxidation of Fen
nanoclusters with n= 11, 12, 13, 15 and 20 by means of high-
resolution XPS. Metallic Fe clusters supported by Gr/Ru(0001)
interface present a CLS towards higher binding energies with
respect to iron bulk and solid surfaces. We attribute this phe-
nomenon to lattice strain that generates a contraction of the Fe-
Fe average interatomic distance of clusters with respect to bulk
Fe. According to previous investigations, CLS are related also to
the chemical reactivity of the system. In this respect we found that
Fe clusters with larger CLS and lower asymmetry parameter
are the most stable ones among the examined clusters. The BE of
Fe clusters after the oxidation are more similar to bulk and sur-
face oxide with respect to their metallic counterparts. The com-
plete disappearance of the metallic component in Fe oxide
clusters spectra paralleled by growth of a single new component
at higher BE is interpreted as the formation of Fe clusters with a
Fe to O ratio close to 1:1, in agreement with previous experiments
of oxide clusters in gas phase. All Fe atoms in the clusters are in
the Fe(II) oxidation state. Further oxygen exposures do not lead
to any modification in Fe 2p3/2 core level spectra, suggesting that
this is the most energetically favored configuration that clusters
can reach upon photo-induced oxidation at a very low tem-
perature. The difference between the oxidation of iron bulk and

surfaces and iron nanoclusters is a clear proof that matter at the
sub-nanoscale behaves in a different way. We believe that our
results can help shedding light into the oxidation process at the
nanoscale and into the use of supported Fe oxide nanoclusters in
chemical reactions.

Methods
Sample preparation. The Ru(0001) crystal was cleaned through several cycles
of sputtering and annealing. Sputtering cycles were made using Ar+ ions
(Ekin= 3 keV) while annealing cycles were made first in O2 atmosphere to
remove C by raising the temperature each cycle, from 600 K up to 1100 K and
finally by a flash annealing to 1570 K to induce the oxygen desorption. Graphene
was grown by thermal decomposition of ethylene (C2H4) in two steps. In the
first one, Ru crystal was heated to 1100 K and exposed to ethylene for 300 s at a
pressure of 2 × 10−8 mbar. In the second step, Ru crystal was kept at 1100 K and
exposed to ethylene for 900 s at a pressure of 5 × 10−8 mbar. The quality of the
grown graphene was checked by looking at the Low Energy Electron Diffraction
image (Supplementary Fig. 3a), which shows the extra diffraction spots of the
(13x13) moiré pattern, and at the C 1s core level spectrum (Supplementary
Fig. 3b), which displays the typical double components due to weakly and highly
interacting regions of the unit cell84.

Fe clusters depostion and oxidation. Fe11
þ , Fe12

þ, Fe13
þ , Fe15

þ and Fe20
þ

clusters were generated by using ENAC (Exact Number of Atoms in each Clusters),
the size-selected clusters source based on the laser ablation process and quadrupole
mass spectrometer (Extrel 150QC RF-DC, mass range m/z 10–16000 amu) mass
selection85,86 (Supplementary Fig. 4). Iron nanoclusters were deposited on gra-
phene/Ru(0001) in a soft-landing regime, i.e. with a kinetic energy lower than 1 eV/
atom to avoid clusters fragmentation87. The clusters coverage for each deposition
was 0.06% ML, which ensures a statistical occupation of one iron cluster every 9
moiré cells, that is approximately one Fe cluster every 3000 carbon atoms.
Depositions, chemical reactions, and measurements were performed at a tem-
perature of 20 K to avoid clusters diffusion and nucleation.

High-resolution X-Ray photoelectron spectroscopy. High- Resolution X-Ray
Photoelectron Spectroscopy measurements were performed at the SuperESCA
beamline of the synchrotron light source Elettra, Trieste (IT). Photoemission
spectra of the core level region Fe 2p3/2 were recorded for each cluster, tuning the
photon energy to generate photoelectrons with a kinetic energy of about 100 eV to
enhance surface sensitivity. The overall energy resolution at the employed photon
energy (hν= 805 eV) was 200 meV. The intensity of each photoemission spectrum
was normalized to the photon flux, while the binding energy (BE) scale was
accurately calibrated by measuring the Fermi energy of the substrate. Each com-
ponent of the photoemission spectra was fitted using a Doniach-Šunjić46 function
convoluted with a Gaussian distribution to account for experimental resolution,
vibrational and inhomogeneous broadening. The analysis was performed using a
polynomial background88 which empirically resulted to be the most appropriate for
our spectra.

Data availability
The data presented in this study are available from the corresponding author upon
reasonable request.
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