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   Abstract—This  paper  proposes  a  passive  methodology  for
detecting a class of stealthy intermittent integrity attacks in cyber-
physical  systems  subject  to  process  disturbances  and  measure-
ment noise. A stealthy intermittent integrity attack strategy is first
proposed  by  modifying  a  zero-dynamics  attack  model.  The
stealthiness  of  the  generated  attacks  is  rigorously  investigated
under  the  condition  that  the  adversary  does  not  know  precisely
the  system  state  values.  In  order  to  help  detect  such  attacks,  a
backward-in-time  detection  residual  is  proposed  based  on  an
equivalent quantity of the system state change, due to the attack,
at a time prior to the attack occurrence time. A key characteristic
of  this  residual  is  that  its  magnitude  increases  every  time  a  new
attack  occurs.  To  estimate  this  unknown  residual,  an  optimal
fixed-point smoother is  proposed by minimizing a piece-wise lin-
ear  quadratic  cost  function  with  a  set  of  specifically  designed
weighting  matrices.  The  smoother  design  guarantees  robustness
with respect to process disturbances and measurement noise, and
is also able to maintain sensitivity as time progresses to intermit-
tent integrity attack by resetting the covariance matrix based on
the weighting matrices. The adaptive threshold is designed based
on  the  estimated  backward-in-time  residual,  and  the  attack
detectability  analysis  is  rigorously  investigated  to  characterize
quantitatively the class of attacks that can be detected by the pro-

posed  methodology.  Finally,  a  simulation  example  is  used  to
demonstrate the effectiveness of the developed methodology.
    Index Terms—Backward-in-time  equivalent  quantity,  fixed-point
smoother, intermittent integrity attacks.
  

I.  Introduction

CYBER-PHYSICAL  systems  (CPS)  integrate  control,
computation  and  communication  techniques  with  physi-

cal  engineered  control  systems  [1].  Due  to  the  emergence  of
such  a  complex  integration,  more  security  vulnerabilities  in
CPS arise and more malicious cyber threats  greatly endanger
various key aspects of CPS operation. A series of cyber attack
events, such as the Stuxnet worm attack on the Iranian nuclear
facilities,  the  attack  on  the  Ukrainian  power  distribution  net-
work, and the recent colonial oil pipeline attack in USA, have
taken place in recent years (more details and examples can be
found in [2]–[5]). Therefore, state-of-the-art cyber attack diag-
nostic technologies are required to safeguard the operation of
CPS against possible malicious attacks.  

A.  State of the Art
Integrity in computer science refers to the trustworthiness of

data, whereas in the context of CPS, integrity attacks compro-
mise  the  integrity  of  the  transmitted  data  of  the  CPS  [1].
Replay  attacks  [6],  covert  attacks  [7],  [8],  zero-dynamics
attacks  [9]  and  false-data  injection  attacks  [10]  are  the  most
commonly  studied  stealthy  integrity  attacks.  Several  survey
papers  provide  overviews  of  integrity  attacks  from  a  system
control  perspective  (see,  e.g.,  [2],  [9],  [11]  and  [12]).
Recently,  some new types of integrity attacks have also been
investigated. For instance, in order to achieve perfect stealthi-
ness, a self-generated approach is developed in [13] for gener-
ating  particular  false  data,  and  [14]  considers  a  class  of
closed-loop  nonlinear  systems  and  develops  a  stealthy
integrity attack formulation approach for such systems. In the
aforementioned integrity attack studies, false data are injected
into  the  CPS  continuously,  whereas  the  problem of  intermit-
tent data-injection is overseen. It is important to note that the
intermittent  mode  of  attack  injection  may  greatly  affect  both
the stealthiness of an attack event and the power energy con-
sumed by an attacker.

Intermittent  attacks  are  characterized  by  piece-wise  attack
signals. Denial-of-service attacks (DOS) [15]–[18] are typical
examples  of  intermittent  attacks.  The available  power energy
to  the  attacker  is  optimally  managed  by  scheduling  the  DoS
attack  application  time  instants  in  [16],  [17],  whereas  the
stealthiness  of  the  attack  is  not  considered.  In  this  paper,  we
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consider  integrity  attacks  performed in  an  intermittent  mode;
these  are  referred  to  as  intermittent  integrity  attacks.  Unlike
the strategy for  typical  continuous integrity attacks,  the strat-
egy  for  generating  intermittent  integrity  attacks  includes  two
steps: 1) constructing a stealthy attack model, and 2) schedul-
ing attack-activating and attack-pausing time instants. In terms
of attack models, typical stealthy integrity attack models such
as zero-dynamics attack models [14], [19], replay attack mod-
els  [6]  and  covert  attack  models  [20],  [21],  can  also  act  as
models  for  intermittent  integrity  attacks  since  they  are  unde-
tectable by typical anomaly detectors. The scheduling of inter-
mittent  attacks  (activation  and  pausing  time  instants)  can
improve their stealthiness through activating the attacks for a
limited  amount  of  time  such  that  anomaly  detectors  do  not
have  sufficient  time  to  detect  them.  Using  attacks  with  spe-
cially scheduled activating and pausing time instants can also
save the adversary’s instantaneous power energy by avoiding
attack  signal  divergence  requirements.  A  counterexample  to
this is the zero-dynamics attack case, in which the divergence
attack  signals  are  used  (e.g.,  [9]),  and  may  consume  large
instantaneous  power  energy.  Moreover,  intermittent  integrity
attacks  can  overcome  the  attack  defense  strategy  such  as
topology  switching  in  the  case  of  multi-agent  systems  [22].
Particularly,  the  adversary  may  pause  the  attack  prior  to  the
switch of the topology, and then resume and update the attack
to maintain the stealthiness in the new topology.

In  the  past  decade,  several  methods  for  detecting  stealthy
integrity attacks have been proposed by the research commu-
nity, which fell into two categories: active and passive detec-
tion methods. In active detection methods, such as the water-
marking  and  moving-target  approaches,  either  authentication
signals  are  injected  into  the  information  flows  of  CPS  or
secret  modules  are  embedded  to  CPS  loops  and  series-con-
nected  to  physical  plants  (see,  e.g.,  [23]–[27]).  On  the  other
hand,  in  passive  attack  detection  methods,  only  analytical
redundancy  approaches  are  used  to  detect  integrity  attacks,
without  using  any  authentication  signals  or  secret  modules
[28]. However, typical passive anomaly detectors are not able
to  provide  desirable  attack  detection  performance.  Note  that
attack detectors are a special type of anomaly detectors specif-
ically designed for detecting attacks. For example, fault detec-
tion  schemes  in  [29]–[33]  may  not  be  able  to  detect  stealthy
integrity attacks (such as [6]–[9] and [13]). Generally, the rea-
son  for  this  is  that,  in  the  presence  of  a  stealthy  integrity
attack,  the  information  resources  (sensory  measurements  and
control  inputs)  of  analytical  redundancy  approaches  remain
either  unchanged  or  slightly  altered  and  therefore,  analytical
redundancy  approaches  that  are  inherently  not  sufficiently
sensitive  to  such slight  changes,  are  unable  to  detect  stealthy
integrity attacks. In [34], multiple filters are combined to for-
mulate  a  type  of  analytical  redundancy-based  passive  attack
detector,  which  can  detect  various  types  of  stealthy  integrity
attacks. However, such a detector requires additional physical
communication channels, which may not be feasible or realis-
tic.  Traditional  analytical  redundancy-based  passive  anomaly
detectors are enhanced in [35] and [36] for detecting stealthy
integrity attacks by using a backward-in-time signal processor.
In  these  studies,  even  a  small  change  due  to  a  stealthy

integrity attack is amplified by a backward-in-time signal pro-
cessor  such  that  the  amplified  change  becomes  sufficiently
“large” to be detected. However, stealthy intermittent integrity
attacks are not considered in [34]–[36].

The  detection  of  stealthy  intermittent  integrity  attacks
remains  an  open  problem and  few research  works  have  been
published.  For  example,  [37]  combines  an  analytical  redun-
dancy-based  passive  detector  and  a  set-theoretic  detector  for
detecting  intermittent  integrity  attacks.  In  this  method,  the
transient overshoots of the analytical redundancy and the strict
detection  guarantees  of  the  set-theoretic  detector  are  inte-
grated  to  detect  promptly  the  intermittent  attacks.  However,
the stealthiness of the attacks is not considered in [37], which
prevents the detection method from applied effectively in the
case of stealthy intermittent integrity attacks.  

B.  Main Contributions
This  paper  utilizes  the  backward-in-time  approach  in  the

context of intermittent integrity attacks, and proposes an ana-
lytical  redundancy-based  passive  detection  methodology  for
detecting  a  class  of  stealthy  intermittent  integrity  attacks.
Specifically, the contributions of this paper are summarized as
follows:

1) A  stealthy  intermittent  integrity  attack  generation  strat-
egy  is  formulated,  which  does  not  require  that  the  adversary
has  precise  knowledge  of  the  system  states.  A  backward-in-
time detection residual is formulated, which increases in mag-
nitude each time a new attack occurs;

2) An optimal fixed-point smoother with covariance matrix
resetting  is  proposed  to  implement  the  aforementioned  back-
ward-in-time residual. Such a smoother guarantees robustness
to both disturbances and noise,  and can also reset the covari-
ance  matrix  to  maintain  sensitivity  to  intermittent  integrity
attacks;

3) The corresponding adaptive threshold is designed, and an
attack  detectability  analysis  is  carried  out  to  characterize
quantitatively  the  class  of  detectable  stealthy  intermittent
integrity attacks.

In  terms  of  the  stealthy  intermittent  integrity  attacks,  com-
pared  to  [22],  the  attack  generation  proposed  in  this  paper
addresses the practical issue that the adversary does not have
precise  knowledge  of  the  system  states.  In  addition,  in  con-
trast  with  [38]  in  which  the  pausing  and  resuming  time
instants of intermittent integrity attacks are scheduled for sav-
ing power  energy,  this  paper  focuses  on designing the  attack
generation  strategy  such  that  the  generated  attacks  are
stealthy, regardless of the pausing and resuming time instants.

Compared to the authors’ previous work [36], the intermit-
tency feature of stealthy integrity attacks is considered in this
paper.  Moreover,  the  designed  smoother  in  this  paper  intro-
duces  the  covariance  matrix  resetting  technique,  which  is
shown to guarantee robustness to both disturbances and noise,
and  simultaneously  guarantee  sensitivity  to  stealthy  intermit-
tent integrity attacks.  

C.  Notations
x(t) : R+→ Rn x(t) = 0

t ∈ [t1, t2] ⊂ R+ x(t) = 0 t ∈ [t1, t2]
Consider  a  vector  signal .  Then,  for

 means that  identically for all ;
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x(t) , 0 t ∈ [t1, t2] ⊂ R+ x(t) , 0
t ∈ [t1, t2] | · |

|S |
x(t) ∈ L2[t1, t2]

r t2
t1

xT (τ)x(τ)dτ
x(t) [t1, t2]

R ≥ 0
∥x(t)∥2R =

r t2
t1

xT (τ)Rx(τ)dτ
R ≥ 0 ∥x∥2R = xT Rx

σ̄(A) σ(A)

 for  means that  for at least one
time instant . The notation  is used in this paper to
represent  the  absolute  value  for  scalars,  and  the  2-norm  for
vectors and matrices. For a set S,  represents the number of
the elements  in S .  A vector  if  
is finite. For a signal  in the finite time interval  and
a  given  matrix  with  proper  dimensions,  we  define

. For a constant vector x and a given
matrix  with proper dimensions, we define .
For  a  matrix A,   and   represent  the  maximum  and
minimum singular values of A respectively. Italics in the paper
are  used  to  highlight  important  associated  sentences  and  ter-
minologies.

The rest of this paper is organized as follows. In Section II,
the  problem  is  formulated.  Section  III  analyzes  the  stealthi-
ness  of  the  intermittent  integrity  attacks  formulated  in  this
work.  In  Section  IV,  the  backward-in-time detection  residual
is  introduced,  and  its  theoretical  feasibility  to  indicate  the
stealthy intermittent integrity attacks is presented. The design
details  of  the  implementable  backward-in-time  detection
methodology  are  presented  in  Section  V  and  the  attack
detectability  analysis  is  shown  in  Section  VI.  Section  VII
presents a simulation example and finally, the conclusions are
drawn in Section VIII.  

II. Problem Formulation

P
C D
Na

Ns

A  general  structure  of  a  CPS  subject  to  integrity  cyber
attacks is depicted in Fig. 1. It consists of a physical plant , a
feedback  controller ,  an  anomaly  detector ,  an  actuator
communication network  and a sensor communication net-
work .

Controller ( )

Anomaly detector
 ()

y
yref

u

au

a s
ay

yu

ω
v

Actuators Plant () Sensors

Attacker

Fig. 1.     Schematic diagram of CPS in the presence of integrity cyber attacks.  

A.  Closed-Loop CPS

C P Na Ns W
W

In  order  to  simplify  the  notation,  the  closed-loop  CPS
including , ,  and  are jointly denoted by  through-
out the paper. The closed-loop system  is described by

W :


ẋ(t) = Ax(t)+Bu(t)+BΓuau(t)+Dω(t)

u(t) = Ky(t)+ yref(t)

y(t) =Cx(t)+ v(t)+Γyay(t)
(1)

x ∈ Rnx u ∈ Rnu

C y ∈ Rny

nx ny ny < nx
yref(t) ∈ Rny

ω(t) ∈ Rnω v(t) ∈ Rny

Ku ⊆ {1, . . . ,nu} Ky ⊆ {1, . . . ,ny}

Γu ∈ Bnu×|Ku |

Γy ∈ Bny×|Ky | B = {0,1}

au(t) = [au,1(t), . . . ,au,|Ku |(t)]
T ∈ R|Ku |

ay(t) = [ay,1(t), . . . ,ay,|Ky |(t)]
T ∈ R|Ky | i ∈ {1, . . . , |Ku|}

au,i(t) = 0 t ∈ R+
Na j ∈ {1, . . . , |Ky|}

ay, j(t) = 0 t ∈ R+ Ns

au ay a(t) = [aT
u (t),aT

y (t)]T

t = T0
a(t) = 0 0 ≤ t < T0 Ba = [BΓu,0nx×|Ky |] Da =

[0ny×|Ku |,Γy] BΓuau(t) = Baa(t) Γyay(t) = Daa(t)

where  is the state vector,  is the vector of con-
trol data generated by the controller ,  is the vector of
sensor  measurements  received  by  the  controller  and  the
anomaly  detector.  The  integers  and   satisfy  .
Moreover,  denotes  the  output  reference  signals,
and  and  represent  the  vectors  of  process
disturbances  and  measurement  noise,  respectively.  Let

 and  represent  the  disruption
resources available to the attacker, i.e., the sets of actuator and
sensor  communication  channels  respectively  that  can  be
affected by the attacker. The distribution matrices 
and  ( ) are the binary incidence matrices
mapping  the  attack  signal  to  the  respective  channels.  The
attack  signals  are  and

.  For  each ,
 for   if  no  attack  occurs  on  the i -th  transmis-

sion  channel  of ,  and  similarly,  for  each ,
 for   if  the j -th  transmission channel  of  is

not under attack. Throughout this paper, we denote jointly the
attack signals  and  as .  We consider
that  the  attack  starts  at  an  unknown  time  and  hence

 for . By letting  and 
, then  and .

A ∈ Rnx×nx B ∈ Rnx×nu C ∈ Rny×nx

D ∈ Rnx×nω

(A,D) (C,A)
K ∈ Rnu×nx

a(t) = 0
t ∈ R+ Wn

In  addition,  the  matrices , , 
and  are  system  matrices  known  by  the  defender.
The  pair  is  assumed  to  be  stabilizable  and  is
assumed  to  be  observable.  The  control  gain  is
designed to stabilize the system. In the nominal case (
for ), the closed-loop system  is given by

Wn :


ẋn(t) = Axn(t)+Bun(t)+Dω(t)

un(t) = Kyn(t)+ yref(t)

yn(t) =Cxn(t)+ v(t)

(2)

xn un ynwhere ,  and  represent  the  state,  the  control  input  and
the output, respectively, in the nominal case.  

B.  Anomaly Detector

D

D r(t)
Jth

We  consider  that  the  CPS  is  equipped  with  a  typical
anomaly  detector  (see  Fig. 1 )  for  detecting  some  normal
anomalies (faults or attacks). Specifically, the anomaly detec-
tor  contains a detection residual  and a constant thresh-
old . Without loss of generality, based on [39], we consider
that the residual has the following form:

r(t) =D(u(t),y(t),yref(t))− y(t) (3)
D : Rnu ×Rny ×Rny → Rny

y(t)

J(t) = |r(t)|
t > T0 J(t)

Jth

where  is an observer (robust Luen-
berger  observer  [39],  Kalman  filter  [29],  adaptive  observer
[40]  or  sliding  mode  observer  [41])  designed  based  on  the
analytical  redundancy concept  to  generate  an estimate of 
in  the  nominal  case.  By  using  the  evaluation  function

,  the  occurrence  of  an  anomaly  (fault  or  attack)  is
ascertained if  at  some time ,  exceeds the threshold

, i.e.,

J(t) > Jth, alarm triggering. (4)
r(t)It should be noted that the residual  contributing to indi-

cate  the  occurrence of  the  anomaly is  based on the  estimates
of  the  system  outputs  at  the  time  posterior  to  the  anomaly
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Doccurrence time. Hence,  is referred to as a forward-in-time
detector  in  this  paper.  Most  fault  detectors  in  the  literature
such as [29], [30], [39], belong to the class of forward-in-time
detectors.  

C.  Stealthy Intermittent Integrity Attacks

D
Jth

A BΓu C
Ky Ku BΓu

B Ku

Throughout this work, to simplify the presentation, stealthi-
ness is used to refer to stealthiness with respect to the typical
standard anomaly detector  characterized by the residual r in
(3) and the threshold  in (4). The attacker has the following
available resources: partial model knowledge ( , , ) and
disruption  resources  ( , ),  where  represents  the  par-
tial columns of  corresponding to . The strategy for gener-
ating stealthy intermittent integrity attacks includes two steps:
1) constructing  attack  models,  and  2)  scheduling  attack-acti-
vating and attack-pausing time instants. For Step 1), the model
used  for  generating  stealthy  integrity  attack  is  given  in  Sec-
tion III. For Step 2), in this paper, we consider that the activat-
ing  and  pausing  time  instants  have  been  scheduled  by  the
attacker,  and  the  attack  model  is  activated  at  the  following
time instants:

t1, . . . , tNa , Na ∈ N+.

τk 0 < τk ≤ tk+1− tk
t ≥ tk +τk

Ωac
k

Ωsi
k

In  addition,  we  consider  that  the k -th  attack  is  active  for  a
time length  (dwell time) where  and hence,
it  is  inactive  (attack silence)  for .  Then,  the  activat-
ing time interval  (attack active) and the silence time inter-
val  (attack silence) for the k-th attack can be given respec-
tively as follows:

Ωac
k = [tk, tk +τk), Ωsi

k = [tk +τk,+∞). (5)

Ω0
kAlso,  we  define  an  action  time  interval that  the k-th

attack affects the system as follows:

Ω0
k = Ω

ac
k ∪Ω

si
k = [tk,+∞). (6)

ΩkIn  addition,  an  auxiliary  time  interval “ attack  slot ” is
defined as follows:

Ωk = [tk, tk+1), ∀ k ∈ {1, . . . ,Na−1} , ΩNa = [tNa ,+∞). (7)
Ωk Ω

ac
k Ω

si
k Ω0

kA schematic of , ,  and  is given in Fig. 2.

t1 tk

Ωk

Ω0
k

Ωk
ac Ωk

si

tk+1 tNatk + τk

+∞

+∞

+∞

... ...

Ωk Ω
ac
k Ω

si
k Ω0

kFig. 2.     Schematic diagram of , ,  and .
  

D.  Objective

D

The first aim is to propose an intermittent attack model and
then analyze rigorously the stealthiness of the generated inter-
mittent integrity attacks by the model with respect to the typi-
cal anomaly detector . The second objective of this paper is
to design an attack detection methodology, based on a passive
analytical  redundancy  approach  (i.e.,  only  using  the  system

Woutput y  and  the  control  input u  in  the  system ).  Such  a
methodology is able to overcome the stealthiness of the inter-
mittent integrity attacks and thus, can detect their occurrences.  

III. Stealthiness of the Generated Intermittent
Integrity Attacks

D

Ωac
k Ωsi

k
k ∈ {1, . . . ,Na}

This section proposes an intermittent integrity attack model
and  analyzes  the  stealthiness  (with  respect  to  the  typical
anomaly  detector )  of  the  generated  attacks.  In  this  paper,
the  zero-dynamics  attack  model  in  [19]  is  modified  to  per-
form intermittent integrity attacks. Given the attack activating
time interval  and the silence time interval ,  the attack
model  for  the k -th  attack  slot, ,  is  proposed  as
follows:

ζ̇k(t) = (A+BaFk)ζk(t), ζk(tk) = −∆zk (8a)

ak(t) =


Fkζk(t), ∀ t ∈Ωac

k[
0,aT

y,k((tk +τk)−)
]T
, ∀ t ∈Ωsi

k

(8b)

a(t) =
k∑

i=1

ai(t), ∀ t ∈Ωk (8c)

Fk ∈ R(nu+ny)×nx ∆zk ∈ Rnx

ay,k(t) = [0,
I|Ky |]ak(t) ay,k((tk +τk)−) = limt↑(tk+τk) ay,k(tk +τk)

ak(t) t ∈Ωsi
k

y(t) tk +τk
ak(t)

ak(t)

where the design parameters  and  are
discussed  in  detail  in  the  sequel.  In  addition, 

 and .  The
purpose of the value  for  is to guarantee the conti-
nuity of the output  at the pausing time instant . This
design of  guarantees that  the generated attacks can pass
through  some  statistical  anomaly  detectors  (such  as  some
detectors in [42] targeting abrupt value jumps) without being
detected. The continuity issue and the corresponding design of

 in  (8b)  arise  due  to  the  intermittent  attack  implementa-
tion mode, whereas typical  continuous zero-dynamics attacks
such as the ones in [9] and [19] do not have this issue.

a(t)

a(t)

ζk(tk) = −∆zk ∆zk

∆zk

∆zk

D ∆zk
∆zk

The divergence of  generated by attack model (8) can be
avoided  through  the  intermittency  performing  manner
described  in  (5).  Hence,  compared  with  the  typical  zero-
dynamics  attack  in  [19],  the  intermittent  integrity  attack 
generated by attack model (8) can save the adversary’s instan-
taneous power energy. It must be noted that the initial condi-
tion  in (8a), where  is not required to be zero,
is  more  practical  than  the  initial  conditions  used  in  [9]  and
[22].  Specifically,  the  initial  condition  in  (8a)  can  repre-
sent the difference between the true value of the system state x
and  the  value  known  by  the  attacker.  In  other  words,  the
attack  model  (8)  does  not  require  the  knowledge  of  the  true
value  of  the  system  states,  something  that  is  implied  by  the
nonzero  in (8a), whereas the attack models in [9] and [22]
require  that.  In  addition,  as  shown  in  the  following  section,
similarly  with  [9]  and  [22],  the  intermittent  integrity  attacks
generated  by  (8)  are  stealthy  with  respect  to  the  standard
anomaly  detector  if   is  sufficiently  small.  We  assume
that  satisfies the following assumption.

δ > 0 δ̄ > 0
∆zk

Assumption 1: There exist two scalars  and  such
that the initial condition  in (8a) is bounded as follows:

δ ≤ |∆zk | ≤ δ̄, ∀ k ∈ {1, . . . ,Na} (9)
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δ δ̄where  and   are  sufficiently  small  positive  scalars  that  are
not required to be known by the defender.

δ

δ

δ̄

D

δ̄

Remark 1: The lower bound  implies that the attacker does
not need to know the true value of the system state, which is a
practical assumption since the true value of the system state is
hard to be precisely measured in practice due to the presence
of measurement noise. The bound  is also not required to be
known by the defender in this paper for developing the attack
detection  methodology.  Furthermore,  the  (sufficiently  small)
upper  bound  guarantees  that  the  generated  intermittent
attacks can pass through the anomaly detector  without any
alarms, which is analyzed in detail in the next section. In addi-
tion,  the  next  section  provides  guidance  on  selecting  a  suit-
able .

∆zk

∆zk(t) u(t)

Ωk Wn

In  [19],  it  is  shown  that  the  stealthiness  of  zero-dynamics
attacks can be violated if  is nonzero. However, [19] does
not take into consideration the effects of the controller on the
convergence  of  the  system  outputs  in  the  attack  scenario.  In
this section, both of the nonzero  and the controller 
are  considered  in  analyzing  the  stealthiness  of  the  generated
attacks  by  (8).  To  this  end,  a  system  splitting  is  presented.
During the attack slot ,  in (2) is split into

Wn
1 :

ẋn
1(t) = Axn

1(t)

yn
1(t) =Cxn

1(t)
(10a)

Wn
2 :

ẋn
2(t) = Axn

2(t)+Bun(t)+Dω(t)

yn
2(t) =Cxn

2(t)+ v(t), ∀ t ∈Ωk
(10b)

xn
1(tk) = 0 xn

2(tk) = xn(tk)
xn(t) = xn

1(t)+ xn
2(t)

yn(t) = yn
1(t)+ yn

2(t) W
W1 W2

where  the  initial  conditions  are  and  .
Such a system splitting guarantees that  and

.  Using  a  similar  splitting  approach,  in
(1) is split into  and  where

W1 :
{

ẋ1(t) = Ax1(t)+Baa(t)

y1(t) =Cx1(t)+Daa(t)
(11a)

W2 :
{

ẋ2(t) = Ax2(t)+Bu(t)+Dω(t)

y2(t) =Cx2(t)+ v(t), ∀ t ∈Ωk
(11b)

x1(tk) = −∆zk x2(tk) = x(tk)+
∆zk x(t) = x1(t)+ x2(t)

y(t) = y1(t)+ y2(t)

where the initial conditions are  and 
.  Such  a  splitting  also  guarantees  that 

and .
∆

∆x
xn ∆x = x− xn

Throughout  this  paper,  the  notation  is  used  to  represent
the change of any variable due to an attack. For example, 
is the change of  due to an attack, i.e., . Then, the
stealthiness  of  the  intermittent  integrity  attacks  generated  by
(8) is presented.

W1 V(W1)
(CA,A) H

W1 H
V(H) V0 =V(W1)∩V(H)

Theorem  1  (Stealthiness): Consider  the  weakly  unobserv-
able subspace of  in (11a) (denoted by ), the unob-
servable subspace of the pair  (denoted by ), and the
largest  controlled  invariant  subspace  of  contained  in 
(denoted  by ).  By  letting ,  if  the
following conditions are satisfied:

(A+BaFk)V0 ⊂V0, (C+DaFk)V0 = 0 (12a)

∆zk ∈ V0, ∀ k ∈ {1, . . . ,Na} (12b)
W

a(t)
then the change of  output y  of   in (1)  due to the intermit-
tent integrity attack  generated by (8) is written as 

∆y(t) =
k∑

i=1

∆y2,i(t), ∀ t ∈Ωk (13)

∆y2,i(t)where  is generated by the following system:

∆W2,i :

∆ẋ2,i(t) = (A+BKC)∆x2,i(t), ∆x2,i(ti) = ∆zi

∆y2,i(t) =C∆zi(t), ∀ t ∈Ω0
i .

(14)

Proof: The proof is presented in Appendix A. ■
V0

V(H)
∆y

tk +τk (C,A) V(H)

Remark  2: Comparing  the  space  with  the  controlled
invariant  space  for  generating  the  continuous  zero-dynamics
attack in [19], an additional restriction (the subspace ) is
introduced  to  guarantee  that  is  continuous  at  the  time
instant .  Given  the  observable  pair ,  is
nonempty if and only if the matrix A is singular.

∆y2,k

∆zk A+BKC

D
∆zk

V(W1)
V0

Remark 3: According to the incremental system (14) in The-
orem  1,  the  output  change  due  to  the k -th  attack  con-
verges  to  zero  exponentially  with  the  initial  nonzero  condi-
tion ,  since  is  a  Hurwitz  matrix.  Hence,  we  can
conclude  that  the  stealthiness  of  the  generated  attacks  by
model  (8)  under  Assumption  1  with  respect  to  the  typical
anomaly  detector ,  can  be  guaranteed  by  choosing  a  suffi-
ciently small  initial  condition .  In addition,  a  system with
all states measurable (i.e., C is column full rank) does not pos-
sess a weakly unobservable subspace . Hence, no sub-
space  satisfying  (12)  exists  and  no  stealthy  intermittent
integrity attack characterized by (8) exists for such a system.

∆zk

∆y2,k tk

W

Theorem 1 shows that  satisfying Assumption 1 causes a
nonzero change  at the initial time , which provides an
evidence that the attacks generated by (8) can be detected by
some  well  designed  passive  analytical  redundancy-based
detection methodology. Hence, the objective of the rest of this
paper  is  to  design  a  passive  attack  detection  methodology,
namely  by  using  only y  and  u  of  the  system  in  (1),  for
detecting  the  intermittent  integrity  attacks  generated  by  (8)
under Assumption 1.  

IV. Backward-in-Time Residual Design and Analysis

In  this  section,  an  equivalent  quantity  of  the  system  state
change  at  a  fixed  time  prior  to  the  attack  occurrence  time  is
introduced,  which  is  referred  to  as  backward-in-time  equiva-
lent quantity in this paper. Also, its properties in the context of
intermittent integrity attacks, are also rigorously investigated.
By using the proposed backward-in-time equivalent  quantity,
a  backward-in-time  residual  is  designed,  and  the  theoretical
feasibility  of  this  residual  to  capture  the  considered  stealthy
intermittent integrity attacks is analyzed.

τk

tk tk+1

(k+1) ∆y2,k

∆W2,i
∆y2,k(t) ≈ 0 t ≥ tk+1

At  first,  we  suppose  that  the  attacker  selects  a  sufficiently
large dwell time  such that the k-th attack has sufficient time
to cause significant damages to the system. Also, the attacker
is  supposed  to  set  the  time  length  between  and   to  be
sufficiently  long  such  that  sufficient  energy  is  recovered  for
activating  the -th  attack.  Then,  since  the  change 
due  to  the k -th  attack  converges  to  zero  with  an  exponential
speed rate (see  in Theorem 1), it is reasonable to con-
sider  that  for   in  the  design  of  the  attack
detection methodology. Therefore, based on (13) and (14), we
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∆y(t) = ∆y2(t)have , and is described by

∆W2 :
{
∆ż(t) = (A+BKC)∆z(t), ∆z(tk) = ∆zk

∆y(t) =C∆z(t), ∀ t ∈Ωk
(15)

k ∈ {1, . . . ,Na} ∆z(t) = ∆x2,k(t) t ∈Ωkwhere , and  for . In the rest
of  this  paper,  the  detection  methodology  is  developed  based
on system (15).

∆z(t) tb ∆z(t)
t t ≥ tb

Intuitively, the backward-in-time equivalent quantity (math-
ematically  defined  later)  is  a  virtual  quantity  of  the  system
state  change,  due  to  the  attack,  at  a  time  prior  to  the  attack
occurrence  time,  which  is  recovered  from  the  change  of  the
system state posterior to the attack occurrence time. Based on
the  backward-in-time  equivalent  quantity  for  nonlinear  sys-
tems  given  in  [36],  we  define  a  backward-in-time  equivalent
quantity of  in (15) at a time , recovered based on 
at the time  ( ).

∆z(t) tb
tb ≤ t ∆z(tb|t)

Definition  1: The  backward-in-time  equivalent  quantity  of
the  state  of  the  incremental  system  (15)  at  a  time 
( ), denoted by , is defined as

∆z(tb|t) = Φ(tb, t)∆z(t) (16)
A+BKCwhere Φ is the transition matrix associated with , i.e.,

Φ(t1, t2) = e(A+BKC)(t1−t2), ∀ t1, t2 ∈ R+. (17)
∆z(tb|t)The  properties  of  are  summarized  in  the  following

lemma.

∆z(tb|t) ∆z(tb|t)

Lemma  1: Consider  the  attack  generated  by  (8)  satisfying
Assumption  1,  and  the  backward-in-time  equivalent  quantity

 defined in (16). Then,  has the following prop-
erties:

∆z(tb|t) t ∈Ωk1) The vector  is constant for , i.e.,

d∆z(tb|t)
dt

= 0, ∀ t ∈Ωk. (18)

∆z(tb|t) t ∈Ωk2) The vector  is nonzero for , i.e.,

∆z(tb|t) , 0, ∀ t ∈Ωk. (19)
(k+1)

|∆z(tb|t)|t∈Ωk+1 ≥ |∆z(tb|t)|t∈Ωk ∆zk+1 ∆zk

3) (Accumulation property) For the k-th and -th attack
slots,  their  recovered  backward-in-time  equivalent  quantities
satisfy  if   and   satisfy
the following inequality:

|∆zk+1| ≥
σ̄ (Φ(tb, tk+1))
σ (Φ(tb, tk+1)

|Φ(tk+1, tk)∆zk | ,

∀ k ∈ {1, . . . ,Na−1} (20)
where the transition matrix Φ is given in (17).

Proof: The proof is provided in Appendix B. ■

Φ(tk+1, tk)
tk+1− tk Φ(tk+1, tk)

It is worth pointing out that under Assumption 1, inequality
(20) is easy to satisfy. Due to the exponential convergence of
the transition matrix  and the sufficiently large time
length  of the k-th attack slot,  is almost zero,
so the right hand side of (20) is almost zero as well. Therefore,
in the rest of this paper, inequality (20) is considered to hold.

∆z(tb|t)
∆z(tb|t)

k ∈ {1, . . . ,Na}

Lemma  1  implies  that  the  stealthy  intermittent  integrity
attack can be  indicated by using a  residual  based on .
This  is  because  is  monotonically  increasing  with
respect  to  the  attack  slot  given  that  (20)  holds
(see  result  3)).  Next,  the  backward-in-time  residual  is  pro-

∆z(tb|t)
∆z(tb|t) ∆y(t)

tb

posed  by  using  and  is  rigorously  investigated.  Based
on ,  the backward-in-time equivalent quantity of 
in (15) at the time  is constructed as

∆y(tb|t) =C∆z(tb|t). (21)
r (tb|t)Then,  the  backward-in-time  residual,  denoted  by ,  is

defined as follows:

r (tb|t) = r(tb)+∆y(tb|t) (22)
r(tb)

r (tb|t) Jth
J(tb|t) = |r (tb|t) |

t > T0
J(tb|t) Jth

where  the  value  is  given  in  (3).  The  threshold  with
respect  to  is  chosen  as  in  (4).  Then,  by  using  the
residual  evaluation ,  the  occurrence  of  an
anomaly  (fault  or  attack)  is  ascertained  if  at  some ,

 exceeds the threshold , namely

J(tb|t) > Jth, alarm triggering. (23)
r (tb|t)

r (tb|t)

Note that the backward-in-time residual  can indicate
both faults and attacks, whereas in this paper, we mainly focus
on the characteristics  of  in terms of  detecting the con-
sidered stealthy intermittent integrity attacks.

r(t)

r (tb|t)

r(tb|t) ∆y(tb|t)
r(tb|t)

r(t) r (tb|t)

r (tb|t)

The  detection  methodology  that  integrates  the  residual 
in  (3)  and  the  newly  proposed  backward-in-time  residual

 in (22),  is  referred to as ideal  backward-in-time detec-
tion methodology in this paper. The terminology ideal is used
since  is unknown due to the unknown . For theo-
retical analysis purposes at this stage, we consider  to be
known.  The  ideal  backward-in-time  detection  methodology
can be found in the left hand side of Fig. 3, which includes the
residual  generations  of  and  ,  their  evaluations,  and
the anomaly detection decision logic. The theoretical feasibil-
ity of  to detect  stealthy intermittent integrity attacks is
presented in the following theorem.

∆zk
tb r(tb|t)

J(tb|t) = |r (tb|t) | Jth

Theorem  2: Consider  system  (1),  the  intermittent  integrity
attack generated by (8) with  satisfying Assumption 1, and
a fixed time instant . Then, residual  in (22), its evalua-
tion , and threshold  in (4) satisfy:

1) In the absence of the intermittent integrity attack

J(tb|t) ≤ Jth, ∀ t ≥ tb. (24)

J(tb|t) > Jth t ∈∪Na
i=kΩi

2) In  the  presence  of  the  intermittent  stealthy  integrity
attack,  for  all  if  condition  (20)  holds
and the k-th attack slot satisfies

tk − tb >
1
λ0

ln
σ(C)δ

k0 (Jth+ |r(tb)|) (25)

λ0 > 0 k0 > 0 |Φ(t1, t2)| ≤
k0e−λ0(t1−t2) t1 ≥ t2
where  and  are  scalars  satisfying 

 for any .
Proof: The proof can be found in Appendix C. ■

r(tb|t)

r(tb|t)

|∆z(tb|t)|

Remark  4: Theorem  1  and  Lemma  1  provide  theoretical
results for the ideal case that  is known. These theoreti-
cal findings prove rigorously that the backward-in-time resid-
ual  is able to trigger alarms in the presence of a stealthy
intermittent  integrity  attack  generated  by  (8)  under  Assump-
tion  1.  Result  2)  in  Theorem  1  is  derived  from  result  3)  in
Lemma 1. Intuitively, these results imply that during an inter-
mittent  integrity  attack  event  with  various  attack  slots,

 increases  each  time  a  new  attack  occurs,  and  main-
tains its new value until the next attack occurs (corresponding
to (20)). As the number of intermittent attacks accumulates, at
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|r(tb|t)|
Jth

some  attack  occurrence  time  instant,  (see  (21)  and
(22))  exceeds  the  detection  threshold  and  thus,  the  inter-
mittent  integrity  attack  is  successfully  detected  (correspond-
ing to (25)).

r(tb|t)
∆y(tb|t)

∆y(tb|t)
r(tb|t)

In practice, the backward-in-time residual  is unknown
due  to  the  unknown  (see  (21)  and  (22)).  Therefore,
one  task  of  the  next  section  is  to  implement  a  procedure  for
estimating optimally the unknown equivalent quantity 
so that the residual  given by (22) can be implemented in
practice  and  accordingly,  a  new  adaptive  threshold  is  devel-
oped based on the implemented estimation procedure.  

V.  Implementable Backward-in-Time Detection
Methodology Design

∆y(tb|t)
r̂(tb|t) Ĵth(t)

In  this  section,  the  implementable  backward-in-time  detec-
tion  methodology  is  designed.  The  right  hand  side  of Fig. 3
shows  the  structure  of  the  detection  methodology.  The  opti-
mal  fixed-point  smoother  in Fig. 3  is  first  developed  to  esti-
mate  the  unknown .  The new backward-in-time resid-
ual  and the corresponding adaptive threshold  are
then  formulated  based  on  the  estimation  results  provided  by
the smoother. The details are given in the sequel.  

A.  Optimal Fixed-Point Smoother

[tb,T ]
∆y(tb|t) tb

A  fixed-point  smoother  provides  a  backward-in-time  esti-
mation  procedure,  which  produces  an  estimate  for  a  signal
using  the  past  time measurements  at  the  first  stage,  and  then
updates  it  using  the  new  measurements  as  time  progresses.
Next, a fixed-point smoother in a finite time horizon  is
designed  for  estimating .  Note  that  the  fixed  point 
can be arbitrarily selected by the defender,  and so it  is  avail-
able in the detector design.

t < T0 x(t) = z(t) y(t) = y2(t)
z(t) y2(t) W2

Recalling the system splitting given in (11), in the nominal
phase  (i.e., ),  we  have  and   where

 and   are  the  state  and  output  of  given  in  (11)

∆y(t)
W2 ∆y(t) = ∆y2(t)

∆W2
W2 z(tb|t)

z(t)

respectively. In addition, in the attack phase,  equals the
output change of  (i.e., , see Theorem 1 and

 in  (15)),  and therefore,  the smoother  is  designed based
on the system  in (11). Let  denote the backward-in-
time equivalent quantity of . Then, we have

z(tb|t) = ∆z(tb|t)+ z(tb). (26)
∆z(tb|t)

z(tb|t)
∆z(tb|t)

∆y(tb|t)

Thus, instead of estimating  directly, we first design
a  fixed-point  smoother  to  estimate  and  then,  we  use
relation (26) to reconstruct  and relation (21) to recon-
struct .

ϕ(t) = z(tb|t) t ≥ tb
ϕ(t)

Now,  we  start  by  constructing  the  fixed-point  smoother
using the state  augmentation approach given in  [43].  To per-
form  this  task,  a  new  state  variable  for   is
introduced,  where,  from result  1)  in  Lemma 1  and  (26), 
satisfies

dϕ(t)
dt
= ϕ̇(t) = 0, ∀ t ∈Ωk. (27)

ϕ̂(t) ϕ(t)By letting  be the estimate of ,  it  follows from (40)
and (26) that:

∆ŷ(tb|t) =Cϕ̂(t)− y(tb). (28)

r̂ (tb|t)
Thus,  based  on  (22),  the  new  backward-in-time  residual,

denoted by , is proposed as

r̂ (tb|t) = r(tb)+∆ŷ(tb|t). (29)

r̂ (tb|t)
Motivated  by  the  optimal  residual  design  methodology  in

[29],  is  to  be  optimized  for  achieving  robustness  with
respect to the disturbance ω and the measurement noise v, and
sensitivity  with  respect  to  the  system changes due to  attacks.
In  the  sequel,  the  specific  objectives  associated  with  the
robustness and sensitivity are presented.

1) Robustness: The  robustness  considered  in  this  paper  is
achieved  by  minimizing  a  piece-wise  linear  quadratic  (LQ)
cost  function.  Suppose  that  a  set  of  smoother  switching  time

Decision logic:
Anomaly (fault/attack) is detected 
if

for some time t

Residual generation

Threshold
Jth

u

D (·)
u, y, yref

D (·)
u, y, yref

y, yref
y, yref

y y

+

−
−

C Φ (tb, t)
Δz(t) Δy(tb|t)

Δy(tb|t)
r(tb|t)

r(tb|t)

r(tb) r(tb)

r(t)
r(t)

+

+

Typical residual generation

Backward-in-time residual generation

Ideal backward-in-time detection methodology

+

+

+Fixed-point 
smoother

Decision logic:
Anomaly (fault/attack) is detected 
if

for some time t

Residual generation

u

Backward-in-time residual generation

Typical residual generation

Implementable backward-in-time detection methodology

Implementation

Residual evaluation
J(t) = |r(t)|

J(tb|t) = |r(tb|t)|
Residual evaluation

J(t) = |r(t)|
J(tb | t) = |r (tb|t)| − |r(tb)|

J(t) > Jth or
J(tb|t) > Jth

J(t) > Jth or
J(tb|t) > Jth(t)

Threshold
Jth, Jth(t)

Fig. 3.     Schematic diagram of the ideal and implementable backward-in-time detection methodologies.
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instants have been determined, which are given as follows:

ts,0, ts,1, . . . , ts,Ns+1, Ns ∈ N+ (30)
ts,0 = tb ts,Ns+1 = Twhere  and  .  Correspondingly,  a  bank  of

covariance matrices1 are introduced and given as follows:

Θ̄0, Θ̄1, . . . , Θ̄Ns (31)
Θ̄k ∈ R2n×2n Θ̄k ≥ 0 k ∈ {0, . . . ,Ns}where  and   for  all .  The

objective  function  associated  with  robustness  is  presented  in
the context of linear fractional transformation (LFT) (see LFT
in [44]) in the sequel.

W2 ẑ
ŷ(tb|t) =Cϕ̂(t) y(tb|t)

Fl(P,K)
Fl(P,K)

Consider the system  in (11b), and let  be the estimate
of z, and  be the estimate of  in (21). Then,
the smoother design is formulated to find a system K such that
the LFT  can satisfy the robustness requirement where

 is given by


q̇(t)

y (tb|t)− ŷ (tb|t)
y(t)

 = P


q(t) ω(t)
v(t)


ŷ (tb|t)

 , ŷ (tb|t) = Ky(t). (32)

q(t) = [zT (t),ϕT (t)]T

[ωT ,vT ]T ŷ (tb|t) y (tb|t)− ŷ (tb|t)
In  the  above  system, , P  represents  the

system  from  and  to   and  y,
which can be written in the following matrix form:

P =


Ā

[
D̄ 0

]
0

L̄

C̄

[
0 0

]
I[

0 I
]

0


Ā = diag(A,0), C̄ = [C, 0], L̄ = [0, C] D̄ = [DT ,0]T

Fl(P,K)
Fl(P∼,K∼) (·)∼

Fl(P∼,K∼)

with  and  .
Note that the 2-norm of a system and the 2-norm of its adjoint
are  equal  and  also,  note  that  the  adjoint  of  is

,  in which the notation  represents the adjoint2.
The adjoint  is given as follows:

dp(τ)
dτ

ỹ (tb|τ)
ω̃(τ)

 = P∼


p(τ)
ω̃(τ)
ũ(τ)

 , ũ (τ) = K∼ω̃(τ) (33)

τ τ = T + tb− t p(tb) = 0
P∼

where  is  a  time-to-go  variable  with  ,
and  is given as follows:

P∼ =


ĀT L̄T C̄T D̄T

0


0

 0
0

  0
I


I 0

 .
Hence, the piece-wise LQ cost function is readily proposed

in the context of the adjoint system (33) as follows:

min
K∼
J = 1

2

Ns∑
k=0

∥∥∥p(τs,k)
∥∥∥2
Θ̄k
+

1
2

Ns∑
k=0

w τs,k

τs,k+1
∥ỹ(tb|τ)∥2R dτ (34)

τs,k = T + tb− ts,k k ∈ {0, . . . ,Ns+1} R > 0
Θ̄k

Pk Ωk
z(ts,k)− ẑ(ts,k) ϕ(ts,k)− ϕ̂(ts,k) Σk

(z(ts,k)− ẑ(ts,k))(ϕ(ts,k)−
ϕ̂(ts,k))T Pk > 0 Ωk > 0
Θ̄k

where  for  , ,  and  the
weighting matrix  is given in (31) and satisfies some struc-
tural requirements. Let  and  denote the covariance matri-
ces  of  and   respectively,  and 
denote the mean value of the cross term 

.  Then,  and ,  and the covariance matrix
 has the following structure:

Θ̄k =

 Pk Σk

ΣT
k Ωk

 , ∀ k ∈ {0,1, . . . ,Ns}. (35)

ẑ(tb) = ϕ̂(tb) = 0 z(tb)− ẑ(tb) = ϕ(tb)−
ϕ̂(tb) P0 Σ0 Ω0

Note that by choosing , 
, ,  and  satisfy

P0 = Σ0 = Ω0. (36)

ϕ(ts,k)− ϕ̂(ts,k)
z(ts,k)− ẑ(ts,k) Pk Ωk

Furthermore, note also that the estimation accuracy for ϕ  is
higher  than  the  one  for z  due  to  the  smoothing  process  (see
[45], [46]). Therefore, the covariance matrix of 
is  smaller  than  the  one  of ,  namely,  and  
must satisfy

Pk ≥Ωk, ∀ k ∈ {1, . . . ,Ns}. (37)
H−

H− H− z− ẑ ŷ(tb|t)

2) Sensitivity: The  performance is introduced to quanti-
tatively  scale  the  sensitivity  to  attacks.  Based  on  the  defini-
tion of  in [47], the  performance from  to  is
defined as follows:

H− = inf
z−ẑ

r T
tb
|ŷ(tb|t)|2dtr T

tb
|z(t)− ẑ(t)|2dt

, ∀ z(t)− ẑ(t) ∈ L2[tb,T ]. (38)

Thus,  to  guarantee the sensitivity  requirement,  the inequal-
ity

H− ≥ α, ∀ z(t)− ẑ(t) ∈ L2[tb,T ] (39)
α > 0must  be  satisfied,  where  is  a  user-defined performance

goal.
Remark 5: It  is  worth pointing out  that  typical  optimal  LQ

fixed-point  smoothers  in  [45]  and [46]  are  obtained by mini-
mizing the following LQ cost function given in the context of
the adjoint system (33):

min
K∼
J1 =

1
2
∥p(tb)∥2

Θ̄0
+

1
2

w T

tb
∥ỹ(tb|τ)∥2R dτ.

y(tb|t)
z− ẑ ŷ(tb|t)

H−

Θ̄k

Θ̄k k ∈ {0,1, . . . ,Ns} Pk Σk Ωk

Such  typical  LQ  smoothers  possess  inherently  the  covari-
ance  matrix  wind-up  problem  for  estimating .  As  a
result, the sensitivity from  to  vanishes as time pro-
ceeds,  thereby  resulting  in  a  conflict  to  the  performance
requirement  in  (39).  More  technical  details  in  terms  of  this
issue  are  given  later.  In  this  work,  the  fixed-point  smoother,
designed by minimizing the piece-wise LQ cost function (34),
can  reset  the  covariance  matrix ,  and  is  able  to  guarantee
the sensitivity  requirement  (39)  by designing suitable  covari-
ance matrices  for all , i.e., ,  and  in
(35).

Θ̄k

Remark 6: The adjoint  system (33)  facilitates  the presenta-
tion  of  the  piece-wise  LQ  cost  function  given  by  (34).  Note
that ,  with  the  structure  in  (35),  is  a  nonnegative  definite
matrix  and  nonsingular,  which  cannot  be  used  for  weighting
the initial condition (see [48]). However, in the context of the

1 Covariance  matrix  and  mean  value  are  concepts  used  in  Kalman  filtering.
Since LQ optimal filters have similar form with the Kalman filter, we also use
the terminologies “covariance matrix” and “mean value” for the LQ optimal
filters.
2 Regarding adjoint system of a linear system, the definition can be found in
[44].
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1
2
∑Ns

k=0 ∥p(τs,k)∥2
Θ̄k

Θ̄k

adjoint  system  (33),  the  penalty  for  the  initial  condition
becomes  a  penalty  for  the  terminal  condition  (see  the  term

 in  (34)),  and  in  addition,  the  weighting
matrix is not required to be invertible. Hence, the nonsingular
matrix  in (35) can be used as the weighting matrix in the
context of the adjoint system (33).

By  synthesizing  the  objectives  (34)  and  (39),  and  the
requirements for the covariance matrices given in (35)−(37), a
feasible way to solve the optimization problem is given in the
following steps:

J Θ̄k ≥ 01) Minimize  for any ;
Pk Σk Ωk k ∈ {0, . . . ,Ns}2) Restrict ,  and   for  all  such  that

(36), (37) and (39) are satisfied.
In the sequel,  two lemmas are rigorously derived to realize

the aforementioned Steps 1) and 2) respectively. The optimal
solution to (34), i.e., Step 1), is first presented.

W2

[tb,T ]

Lemma 2: Consider  linear  system  in  (11b)  and state ϕ
in (27). An optimal fixed-point smoother that minimizes (34)
in  the  finite  horizon  is  described  by  the  following
dynamics:

˙̂z(t) = Aẑ(t)+Bu(t)+P(t)CT R−1 (y(t)−Cẑ(t)) (40a)

˙̂ϕ(t) = ΣT (t)CT R−1 (y(t)−Cẑ(t)) 40b)

ẑ(tb) = 0 ϕ̂(tb) = 0 P(t) = PT (t) > 0
Σ(t) Ω(t) = ΩT (t) > 0
where  and  .  The  matrices ,

 and  an  auxiliary  matrix  are  obtained
from the solution of the following differential equations:

Ṗ(t) = AP(t)+P(t)AT −P(t)CT R−1CP(t)+DDT (41a)

Σ̇(t) =
(
A−P(t)CT R−1C

)
Σ(t) (41b)

Ω̇(t) = −ΣT (t)CT R−1CΣ(t). (41a)
ts,k

k ∈ {0, . . . ,Ns}
In  the  above  differential  equations,  at  each  time  with

, the following switch occurs:

P(ts,k) = Pk, Σ(ts,k) = Σk, Ω(ts,k) = Ωk. (42)
Moreover, if (37) holds, then the matrices P and Ω satisfy

P(t) ≥Ω(t), ∀ t ∈ [tb,T ]. (43)

J
J

ũ(τ)

Proof: Consider  the  adjoint  system (33)  and the  cost  func-
tion  in  (34).  According  to  LQ control  theory  (see  Section
5.3 in [44]), the cost function  is minimized by the follow-
ing optimal control law :

dp̂(τ)
dτ
=
(
ĀT − C̄T R−1C̄Θ̄(τ)

)
p̂(τ)+ L̄T ω̃(τ), p̂(tb) = 0

ũ(τ) = −R−1C̄Θ̄(τ)p̂(τ)
Θ̄(τ)where the covariance matrix  is generated by

−dΘ̄(τ)
dτ

= ĀΘ̄(τ)+Θ̄(τ)ĀT − Θ̄(τ)C̄T R−1C̄Θ̄(τ)+ D̄D̄T

with the following switches:

Θ̄(τs,k) = Θ̄k, ∀ k = {0,1, . . . ,Ns}.

ũ(τ)
Then,  the  optimal  smoother  is  obtained  as  the  adjoint  sys-

tem of  and is given as follows:

˙̂q(t) = (Ā−Θ̄(t)C̄T R−1C̄)q̂(t)+Θ̄(t)C̄T R−1y(t) (44a)

ŷ(tb|t) = L̄q̂(t) (44b)

q̂ = [ẑT , ϕ̂T ]T q̂(tb) = 0
Θ̄(τ)
where  and  ,  and  the  covariance  matrix

 is generated by

˙̄Θ(t) = ĀΘ̄(t)+Θ̄(t)ĀT − Θ̄(t)C̄T R−1C̄Θ̄(t)+ D̄D̄T (45)
with the following switches:

Θ̄(ts,k) = Θ̄k, ∀ k ∈ {0,1, . . . ,Ns}. (46)
Thus, from (44), the smoother (40) can be obtained.
We  now proceed  to  derive  the  differential  equations  given

in (41) and switches in (42). By letting

Θ̄(t) =
 P(t) Σ(t)

ΣT (t) Ω(t)

 .
It follows from (45) that: Ṗ Σ̇

Σ̇T Ω̇

 =  A−P (t)CT R−1C 0

−ΣT (t)CT R−1C 0

  P Σ

ΣT Ω


+

 P Σ

ΣT Ω

  AT −CT R−1CP (t) −CT R−1CΣ (t)

0 0


+

 D −P (t)CT R−1

0 −ΣT (t)CT R−1

  I

R

  DT −R−1CP(t)

0 −R−1CΣ(t)

 .
By  simplifying  the  above  differential  Riccati  equation,  the

differential  equations  (41)  can  be  obtained.  In  addition,  from
(35) and (46), the switches in (42) can also be obtained.

Y(t) = P(t)−Ω(t)
AY = A−ΩCT R−1C− 1

2 YCT R−1C
Regarding  the  result  (43),  by  letting  and

,  it  follows  from  (41a)  and
(41c) that:

Ẏ = AY +YAT +AΩ+ΩAT −YCT R−1CY −ΩCT R−1CY

−YCT R−1CΩ−YCT R−1CΩ+ΩCT R−1CΩ+DDT

+ΣT (t)CT R−1CΣ(t)

= AYY +YAT
Y +DDT +ΣT (t)CT R−1CΣ(t)

+
[

I Ω
]  0 A

AT CT R−1C

  I

Ω

 .
The above equation indicates that

Ẏ(t) ≥ AYY(t)+YAT
Y (t), ∀ t ∈ [ts,k, ts,k+1), ∀ k ∈ {0, . . . ,Ns}.

Y(ts,k) ≥ 0
Y(t) ≥ 0

t ∈ [ts,k, ts,k+1) k ∈ {0, . . . ,Ns}

Under  the  condition  (37),  we  can  obtain  that .
Therefore,  based  on  Theorem  4.1.2  in  [49],  for

 and  can be obtained and the result
(43) follows. ■

J1

ŷ(tb|t) z− ẑ Σ(t)
Σ(t)

tk

It can be observed from (40b) and (41b) that in the case of a
typical  LQ  smoother  (obtained  by  minimizing  the  cost  func-
tion  and without matrix resetting (42)), the sensitivity from

 to  ,  characterized  by  the  matrix ,  decreases  as
time proceeds.  The reason for  this  is  that  the solution  of
the  differential  equation  (41b)  converges  to  zero  as  the  time
progresses,  which  is  the  aforementioned  covariance  matrix
wind-up  problem.  The  matrix  resetting  at  the  time  instant 
characterized in  (42)  provides  an alternative way to  maintain

9



Pk Σk Ωk

the  sensitivity.  In  the  following  lemma,  feasible  resetting
matrices ,  and  that satisfy (36), (37) and (39) are pre-
sented.

Lemma  3: Consider  the  piece-wise  fixed-point  smoother
given  in  Lemma  2  and  the  switching  time  instants  given  in
(30). Consider also the differential equations (41) without the
switches (42). The requirements (36) and (37) are guaranteed
if

Pk = P(ts,k), Σk = Σ(ts,k) = Θk, Ωk = Ω(ts,k), ∀ k ∈ {0, . . . ,Ns}
(47)

P(ts,k) Σ(ts,k) Ω(ts,k) ts,kwhere ,  and   are  the  values  at  of  the
solutions  to  the  differential  equations  (41)  without  the
switches (42) and under the following initial conditions:

P(tb) = Σ(tb) = Ω(tb) = Θk, ∀ k ∈ {0, . . . ,Ns}. (48)
H−

Θk

Moreover, the  performance index requirement in (39) is
guaranteed if  in (48) satisfies

σ(Θk) ≥ α

σ(CR−1CT )σ(C)σ
(
e(A−P(ts,k+1)CT R−1C)(ts,k+1−tb)

) ,
∀ k ∈ {0,1, . . . ,Ns}. (49)

Pk ΩkProof: According to (47),  and  are the matrices associ-
ated  with  a  typical  LQ  fixed-point  smoother  without  the
matrix resetting. Hence, (37) can be guaranteed directly.

According to (40b), we can obtain thatw T

tb
|ŷ(tb|t)|2dt ≥ σ2(CΣT (t)CT R−1C)|z(t)− ẑ(t)|2

H−which  indicates  that  the  performance  requirement  in  (39)
can be guaranteed if

σ2(CΣT (t)CT R−1C) ≥ α2, ∀t ∈ [tb,T ].

σ(CΣT (t)CT R−1C) ≥ σ(CT R−1C)×
σ(Σ(t))σ(C)

Based  on  the  inequality 
,  a  sufficient  condition  to  guarantee  the  above

inequality is obtained as

σ2(Σ(t)) ≥ α2

σ2(CT R−1C)σ2(C)
, ∀ t ∈ [tb,T ]. (50)

X(t) = Σ(t)ΣT (t) X(tb) = ΘkΘ
T
kLet  where  .  Then,  it  follows

from (41b) without the switches (42) that:

Ẋ(t) = Σ̇(t)ΣT (t)+Σ(t)Σ̇T (t)

=
(
A−P(t)CT R−1C

)
X(t)+X(t)

(
A−P(t)CT R−1C

)T
ẋ = (A−P(t)CT R−1C)x

X(t)
where the system  is exponentially sta-
ble. Moreover,  can be written as

X(t) = e
(
A−P(t)CT R−1C

)T
(t−tb)X(tb)e

(
A−P(t)CT R−1C

)
(t−tb) (51)

X(t)
X(t) ≤ X(tb) = ΘkΘ

T
k t ≥ tb

ts,k+1

which  indicates  that  is  monotonically  decreasing  with
respect  to  time  and  for  .  Thus,  the
inequality  (50)  can  be  guaranteed,  if  at  the  end  of k -th  time
interval (i.e., ), the following condition is satisfied:

σ(X(ts,k+1)) ≥ α2

σ2(CT R−1C)σ2(C)
, ∀ k ∈ {0,1, . . . ,Ns}.

X(tb) = ΘkΘ
T
kIt  then  follows  from (51)  and  that  the  above

inequality can be guaranteed by (49). ■

J
Subsequently, by synthesizing the results in Lemmas 2 and

3, a feasible solution to minimize  in (34) and to satisfy the
restrictions  (36),  (37)  and  (39)  is  presented  by  the  following
theorem.

W2
P(t) Σ(t) Ω(t)

J
[tb,T ] Pk Σk Ωk

Θk k ∈ {0,
1, . . . ,Ns} H−

Theorem 3: Consider linear system  in (11b) and state ϕ
in (27). The fixed-point smoother (40) with ,  and 
determined  by  (41)  and  the  matrix  resetting  given  by  (42),
minimizes the cost function  in (34) in the finite time hori-
zon . Moreover, by constructing ,  and  as in (47)
and  (48),  and  by  choosing  to  satisfy  (49)  for 

,  the  performance  requirement  in  (39)  and  the
requirements (36) and (37) are guaranteed simultaneously.  

B.  Residual Evaluation and Threshold Generation
r̂(tb|t)

r̂ (tb|t) ez(t) = z(t)− ẑ(t) eϕ(t) = ϕ(t)− ϕ̂(t)
ey(t) = y(tb|t)− ŷ(tb|t)
y(tb|t)

In this section, the detection residual  in (29) is evalu-
ated and an adaptive threshold is generated. We start by evalu-
ating .  Let ,  and

 be  the  estimation  errors  of x,  ϕ  and
, respectively. Then, from (11b), (27) and (40), the error

system is obtained as follows:
 

ėz(t)= (A−P(t)CT R−1C)ez(t)+Dω(t)−P(t)CT R−1v(t) (52a)
 

ėϕ(t) = −ΣT (t)CT R−1Cez(t)−ΣT (t)CT R−1v(t) (52b)
 

ey(t) =Ceϕ(t) (52c)

ez(tb) = z(tb) eϕ(tb) = ϕ(tb)
ŷ(tb|t) = y(tb|t)− ey(t) ∆ŷ(tb|t) = ŷ(tb|t)− y(tb)

∆y(tb|t) = y(tb|t)− y(tb) r̂ (tb|t)

where the initial conditions are  and .
In addition, from , 
and ,  in (29) can be split into

r̂ (tb|t) = r(tb)+∆y(tb|t)− ey(t). (53)
As in the case of fault diagnosis literature, the residual eval-

uation should ensure that  in the non-attack case,  the value of
the  evaluation  function  is  close  or  equal  to  zero  under  ideal
conditions  (e.g.,  no  disturbance,  no  noise  and  no  modeling
uncertainty).  Thus,  from (53),  the  evaluation  function  is  pro-
posed as follows:

Ĵ (tb|t) = |r̂ (tb|t) | − |r (tb) | (54)
−|r (tb) | Ĵ (tb|t)where  the  correction  term  guarantees  that  is

close to zero in the absence of attacks.
Ĵth(t)

Ĵ (tb|t)
Next,  a  bound  (adaptive  threshold)  of  the  residual

evaluation  function  is  derived.  To  this  end,  a  lemma
required to generate the threshold is given.

Φk(t, τ)
A−P(t)CT R−1C t, τ ∈ [ts,k, ts,k+1)

βk > 0 λk > 0

Lemma  4: Let   be  the  transition  matrix  associated
with  the  matrix  for .  Then,
there exist known scalars  and  such that

|Φk(t, τ)| ≤ βke−λk(t−τ), ∀ t, τ ∈ [ts,k, ts,k+1). (55)

(A,D)
(C,A) ẋ = (A−P(t)CT R−1C)x

x(t) = Φk(t, τ)x(τ)
t ∈ [ts,k, ts,k+1)

βk λk

Proof: Note  that  since  the  pair  is  stabilizable  and
 is  observable,  the  system  is

exponentially stable. Thus,  converges expo-
nentially  to  zero  during  the  time  interval .
Hence, such scalars  and  that satisfy (55) exist. ■

ω(t)
v(t)

In addition, the disturbance  and the measurement noise
 are supposed to satisfy the following assumption.

ω(t)Assumption  2: The  disturbance  and  the  measurement
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v(t) ω̄ > 0 v̄ > 0noise  are bounded by  and , respectively, i.e.,

|ω(t)| ≤ ω̄, |v(t)| ≤ v̄, ∀ t ∈ R+ (56)
ω̄ v̄where  and  are known scalars by the defender.

ω̄

v̄

Remark  7: Such  an  assumption  is  commonly  used  in
anomaly  diagnosis  literature  (see,  e.g.,  [29],  [32],  [40])  for
guaranteeing robustness and avoiding false alarms. The bound

 can  be  obtained  a  priori  by  the  defender  by  some  experi-
mental tests to the considered CPS, while  can be obtained by
exploiting  a  priori  knowledge  of  the  sensor  bias  deviation
based on the technical characteristics of the sensors.

In  the  following  theorem,  the  adaptive  threshold  is  pre-
sented.

W

Ĵ (tb|t)
Ĵth(t)

Theorem 4  (Robustness): Consider  closed-loop  CPS  in
(1) and anomaly detector described in (3) and (4). Also, con-
sider  the  piece-wise  fixed-point  smoother  (40)  described  in
Theorem 3, the residual (29) and the residual evaluation func-
tion  (54).  Under  Assumptions  1  and 2,  and in  the  non-attack
case (no intermittent integrity attacks), the residual evaluation
function  in  (54)  is  bounded  by  the  adaptive  threshold

 as follows:

Ĵ (tb|t) ≤ Ĵth(t), ∀t ∈ [ts,k, ts,k+1) (57)
Ĵth(t) = |C|εϕ,k (t)where  with

 

εϕ,k(t) = εϕ,k−1(t−s,k)

+ |Σk | · |CT R−1|βk

w t

ts,k
e−λk(τ−ts,k) (εz,k(τ)+ v̄

)
dτ (58)

 

εz,k(t) = βke−λk(t−ts,k)|ez(t−s,k)|

+
βk
(
|D|ω̄+ |Pk | · |CT R−1|v̄

)
λk

(
1− eλk(ts,k−t)

)
. (59)

βk λkIn the above equations,  and  are specified in Lemma 4.

Ĵ (tb|t)
Proof: Based  on  (53)  and  by  using  the  triangle  inequality,

the evaluation  in (54) satisfies

Ĵ (tb|t) ≤ |ey(t)|+ |∆y (tb|t) |. (60)

∆z(tb|t) = 0 ∆y(tb|t) =
0 Ĵth(t)

Note  that  in  the  non-attack  case,  and  
. It then follows from (60) that the threshold  is chosen

as:

Ĵth(t) = sup
∆y(tb |t)=0

Ĵ (tb|t) = sup
∆y(tb |t)=0

|ey(t)|.

ez(t)By  solving  the  differential  equation  (52a),  can  be
explicitly expressed as

ez(t) = Φk(t, ts,k)ez(t−s,k)

+
w t

ts,k
Φk(t, τ)

(
Dω(τ)−P(τ)CT R−1v(τ)

)
dτ,

∀t ∈ [ts,k, ts,k+1).

P(t)
P(t) ≤

P(ts,k) = Pk t ∈ [ts,k, ts,k+1)

Note  that  based  on  Theorem 3.1.1  in  [44],  in  (41a)  is
monotonically  decreasing  with  respect  to t  and  thus, 

 for  .  Thus,  based  on  Assumption  2
and Lemma 4, we can obtain 

|ez(t)| ≤ βke−λk(t−ts,k)|ez(t−s,k)|

+
w t

ts,k
βke−λk(t−τ) (|D|ω̄+ |Pk | × |CT R−1|v̄

)
dτ

= βke−λk(t−ts,k)|ez(t−s,k)|

+
βk
(
|D|ω̄+ |Pk | × |CT R−1|v̄

)
λk

(
1− eλk(ts,k−t)

)
.

εz,k(·)Thus,  in (59) is obtained. In addition, by solving the
differential equation (52b), we can obtain

eϕ(t) = eϕ(t−s,k)

−
w t

ts,k
ΣT (τ)CT R−1 (ez(τ)+ v(τ))dτ, ∀ t ∈ [ts,k, ts,k+1).

Σ(t)Note that it follows from (51) that  satisfies:

|Σ(t)| =
√
|X(t)| =

√
|X(ts,k)| × |Φk(t, ts,k)|

≤ |Σk |βke−λk(t−ts,k), ∀ t ∈ [ts,k, ts,k+1).

|ez(t)| ≤ εz,k(·) |v(t)| ≤ v̄Thus, from  and  in Assumption 2, and
by using the triangle inequality, we can obtain

|eϕ(t)| ≤ |eϕ(t−s,k)|+ |Σk |βk

w t

ts,k
e−λk(τ−ts,k)|CT R−1| (εz,k(τ)+ v̄

)
dτ.

|eϕ(t−s,k)| ≤ εϕ,k−1(t−s,k) εϕ,k(·)
|ey| ≤ |C| · |eϕ(t)|

Since ,  then  in  (58)  is  obtained.
Hence, from , (57) is obtained. ■

Ĵth(t)
εz,k εϕ,k [ts,k, ts,k+1)

ez(t−s,k) εϕ,k−1(t−s,k)
[ts,k−1, ts,k) εz,k

|ez(t−s,k)|

δ0 > 0 |ez(ts,k)| ≤ δ0 δ0

βke−λk(t−ts,k)|ez(t−s,k)| ≤ βke−λk(t−ts,k)δ0

δ0 Ĵth(t)

Remark  8: The  threshold  in  (57)  is  calculated  itera-
tively  since  and  for  the  time interval  rely
on  and  respectively from the previous time
interval .  In  addition,  in  (59)  cannot  be  used
directly  since is  not  available  to  the  defender.  To
overcome  this,  it  is  reasonable  to  suppose  that  there  exists  a
scalar  such  that .  Such  does  not  affect
significantly  the  final  detection  result  since  the  term

 converges  to  zero  expo-
nentially.  Therefore,  the  designer  can  select  a  sufficiently
large  for implementing the threshold .

r̂(tb|t)
Ĵ(tb|t) Ĵth(t)

t > tb Ĵ (tb|t)
Ĵth(t) Ĵ (tb|t) > Ĵth(t)

Td

Ĵ(tb|t) > Ĵth(t) tb

Based on the residual  in (29), the evaluation function
 in  (54),  and  the  threshold  in  (57),  the  attack

occurrence  decision  principle  is  given  as  follows:  if  there
exists a time  such that  in (54) exceeds the thresh-
old ,  i.e., ,  then  an  alarm  is  triggered  to
indicate the presence of an attack. The detection time  of the
attack  is  defined  as  the  first  time instant  when the  inequality

 holds for a given , i.e.,

Td(tb) = inf
{
t > tb

∣∣∣Ĵ(tb|t) > Ĵth(t)
}
. (61)

r(t)
r̂(tb|t) J(t) Ĵ(tb|t)

Jth Ĵth(t)
t > tb

J(t) > Jth Ĵ (tb|t) > Ĵth(t)

In addition, as Fig. 3 shows, by combining the residuals 
and ,  the  evaluation  functions  and  ,  and  the
thresholds  and ,  the occurrence of  an anomaly (fault
or  attack)  is  decided  if  there  exists  a  time  such  that

 or .

r̂(tb|t) Ĵth(t)

Algorithm 1 provides in concise form the steps required for
implementing  the  smoother,  generating  the  backward-in-time
residual  and threshold , and the decision principle
for  detecting  the  considered  stealthy  intermittent  integrity
attacks.

11



Algorithm 1 Backward-in-Time Attack Detection Algorithm

tb ts,k α1: procedure SMOOTHER( , T, , , R) 　　// Theorem 3;
k← 02: 　　 ;

3: 　　repeat　　　　　　　　// Lemma 3;
Θk4: 　　　Choose  based on (49);

P(tb)← Θk Σ(tb)← Θk Ω(tb)← Θk5: 　　　 , , ; 　　// (48);
Pk ← P(ts,k) Σk ← Σ(ts,k) Ωk ←Ω(ts,k)

Pk Σk Ωk

6: 　　　 , , ; //solve the differen-
tial equations in (41); return , , ;

k← k+17: 　　　 ;
k = Ns8: 　　until 

P(ts,0)← Θ0 Σ(ts,0)← Θ0 Ω(ts,0)← Θ09: 　　 , , ; // Lemma 2;
t ∈ [ts,0, ts,1)10: 　　Solve differential equations in (41) for ;

P(t) Σ(t) Ω(t) t ∈ [ts,0, ts,1)11: 　　return , ,  for ;
k← 112: 　　 ;

13: 　　repeat
P(ts,k)← Pk Σ(ts,k)← Σk Ω(ts,k)←Ωk14: 　　　 , , ; // (42);

t ∈ [ts,k , ts,k+1)15: 　　　Solve differential equations in (41) for ;
P(t) Σ(t) Ω(t) t ∈ [ts,k , ts,k+1)16: 　　　return , ,  for ;

k← k+117: 　　　 ;
k = Ns18: 　　until 

19: 　　Construct the smoother as follows: 　　　　// (40);
˙̂z(t) = Aẑ(t)+Bu(t)+P(t)CT R−1 (y(t)−Cẑ(t))

˙̂ϕ(t) = ΣT (t)CT R−1 (y(t)−Cẑ(t))
　　　　

20: end procedure
21: //

r(tb),y(tb), ϕ̂(t)22: procedure RESIDUAL( )
r̂ (tb |t) = r(tb)+Cϕ̂(t)− y(tb) ∆ŷ(tb |t) =

Cϕ̂(t)− y(tb)

23: 　　Residual ; 　　// (29) and 
;

Ĵ (tb |t) = |r̂ (tb |t) | − |r (tb) |24: 　　Evaluation ; 　　// (54);
25: end procedure
26: //

Pk ,Σk , ω̄, v̄27: procedure THRESHOLD( ) 　　　// Theorem 4;
k← 028: 　　

29: 　　repeat
βk λk30: 　　　Determine ,  satisfying (55); // Lemma 4;
δ0 |ez(ts,k)| ≤ δ031: 　　　Determine  satisfying ;
εz,k(·) εϕ,k(·) t ∈ [ts,k , ts,k+1)32: 　　　Calculate ,  for ; // (59) and (58);

k = Ns33: 　　until 
Ĵth(t) = |C|εϕ,k(t) t ∈ [ts,k , ts,k+1)34: 　　Threshold  for ; // (57);

35: end procedure
36: //

Ĵ(tb |t), Ĵth(t)37: procedure DECISION PRINCIPLE( )
Ĵ(tb |t) > Ĵth(t)38: 　　if  then an alarm is triggered;

39: 　　else no attack is detected;
40: 　　end if
41: end procedure

VI. Attack Detectability Analysis

r̂(tb|t) Ĵ(tb|t)
Ĵth(t)

In  this  section,  the  attack  detectability  of  the  developed
backward-in-time detection methodology characterized by the
residual  in  (29),  the evaluation function  in  (54),
and  the  threshold  in  (57),  is  investigated  rigorously,
characterizing  quantitatively  the  class  of  detectable  intermit-
tent integrity attacks.

WTheorem 5 (Detectability): Consider closed-loop CPS  in
(1) and anomaly detector described in (3) and (4). The attack

Td ≥ T0 > tb Ĵ(tb|Td) > Ĵth(Td)
tb

detection  decision  scheme,  characterized  by  the  piece-wise
fixed-point  smoother  (40)  described in  Theorem 3,  the  resid-
ual  (29),  residual  evaluation  function  (54)  and  detection
threshold (57), guarantees that an intermittent integrity attack
generated  by  the  model  (8)  can  be  detected  at  a  time

, i.e., , if for the given fixed time
instant , there exists an attack slot k such that

tk − tb > +
1
λ0

ln
σ(C)δ

k0
(
Jth+2Ĵth(Td)+ |r(tb)|

) (62)

δ k0 λ0
Jth Ĵth

where  is  given in Assumption 1,  and  are specified in
Theorem 2,  is given in (4) and  is given in (57).

r̂ (tb|t) = r (tb|t)− ey(t)Proof: For  given in (53), by using the
reverse triangle inequality, we can obtain

|r̂(tb|Td)| ≥ |r(tb|Td)| − |ey(Td)|. (63)
|r(tb)| < Jth

Td Ĵ(tb|Td) > Ĵth(Td)
From  (54)  and ,  to  detect  an  attack  at  the  time

instant ,  i.e., ,  the  following  inequality
must hold:

|r̂ (tb|Td) | > Jth+ Ĵth(Td). (64)
|ey(t)| ≤ Ĵth(t) t ≤ TdThen, from (63) and the fact that  for , a

sufficient  condition to  guarantee  (64)  can be  obtained as  fol-
lows:

|r(tb|Td)| > Jth+2Ĵth(Td). (65)

tb

Td ∈
∪Na

i=kΩi

By using the same reasoning logic with the proof of Theo-
rem 2, we can obtain that for the fixed time instant , if there
exists an attack slot k satisfying (62), then the inequality (65)
can  be  guaranteed  for  any .  Hence,  the  result  is
proved. ■

r̂(tb|t) Ĵ(tb|t)
Ĵth(t) tb

tk

Theorem 5  is  a  theoretical  result  that  cannot  be  checked a
priori. It is important to note that according to Theorem 5, the
attack  detection  by  the  developed  implementable  backward-
in-time  detection  methodology,  characterized  by  the  residual

 in  (29),  the  evaluation  function  in  (54),  and  the
threshold  in  (57),  is  guaranteed  by  selecting  a  small 
(i.e.,  close  to  zero)  so  that  condition  (62)  can  hold.  In  other
words, as time progresses and at each attack activation time ,
the  left  side  of  (62)  increases  and  at  some  time,  will  exceed
the  right  hand  side  of  (62),  leading  to  the  detection  of  the
intermittent integrity attack.  

VII. Simulation

In this  section,  a  numerical  simulation example based on a
linear time-invariant system in the form of system (1) is  pre-
sented. The system matrices are given as follows:

A =


−3.25 1 0

1 −3 0
0 0 0

 , B =


0
0
1


C = [0 1 1] , D =


1.0000 0

0 0
1.6667 1.6667


C,A (A,D)

K = −4.7333
yref = 0
ω(t)

where  the  pair  ( )  is  observable  and  is  stabilizable.
The output control gain is given by  and the ref-
erence signal . In addition, for the simulation purpose,
the disturbance  is given by
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ω(t) = [0.2sin(5t),0.1sin(3t)]T

v(t)
−0.3

0.3 D
H∞r 15

0 rT (t)r(t)dt ≤ 2
r 15

0 [ωT (t),vT (t)]T [ωT (t),
vT (t)]dt Jth = 5

and the measurement noise  is chosen at each time instant
as a uniformly distributed random number ranging from 
to .  The  anomaly  detector  in  (3)  is  designed  based on
[29].  The residual  is  designed to  satisfy the optimal  per-
formance,  i.e., 

 and  the  threshold  is  chosen  as  based  on  the
fault and attack free operation.  

A.  Intermittent Integrity Attack

Γu = 1 Γy = 1
tk

In this part, the intermittent integrity attack used in this sim-
ulation is given. The attacker is supposed to know the system
matrices A,  B  and  C ,  and  is  able  to  compromise  all  the  sen-
sors  and actuators,  i.e.,  and .  The attack activat-
ing time instants  are given first as follows:

t1 = 1s, t2 = 3s, t3 = 5s, t4 = 7s, t5 = 9s, t6 = 11s, t7 = 15s
τk = 1 s

k ∈ {1, . . . ,6}

V0 V0 = [0,0,−1]T

Fk

and  the  same  dwell  time  is  used  for  all  attacks,  i.e., 
for all . In the sequel, the design parameters of the
attack model (8) are calculated. Based on Theorem 1, and by
using  the  geometric  approach  toolbox  in  [50],  we  can  obtain
that the subspace  satisfying Theorem 1 is 
and further, a feasible  satisfying (12a) is calculated as

Fk =

 0 0 1.200
0 0 −1.000

 , ∀ k ∈ {1, . . . ,6}.

V0 ∆zkAccording to  the obtained ,  satisfying (12b)  is  cho-
sen as

∆z1 = [0,0,−0.2091], ∆z2 = [0,0,−0.2210]

∆z3 = [0,0,−0.1191], ∆z4 = [0,0,−0.1531]

∆z5 = [0,0,−0.1531], ∆z6 = [0,0,−0.1095].

Ωac
k

Ωsi
k ay,k((tk +τk)−)

Thus,  the  design  parameters  of  the  attack  model  (8)  have
been  selected  and  the  attack  signals  for  the  attack  activating
time  interval  can  be  generated.  Next,  the  attack  signals
during the attack silence time interval , i.e., ,
are given based on (8b) as follows:

a1 (t) = [0,−1.2919]T , k = 1, ∀t ∈ [2s,15s)

a2 (t) = [0,−1.2392]T , k = 2, ∀t ∈ [4s,15s)

a3 (t) = [0,−1.2060]T , k = 3, ∀t ∈ [6s,15s)

a4 (t) = [0,−1.0931]T , k = 4, ∀t ∈ [8s,15s)

a5 (t) = [0,−1.0931]T , k = 5, ∀t ∈ [10s,15s)

a6 (t) = [0,−1.2432]T , k = 6, ∀t ∈ [12s,15s) .

Ωac
k

Ωsi
k

Thus,  the  intermittent  integrity  attack  signal  for  the  attack
activating time interval  and the  attack silence  time inter-
val  is generated.

ay(t)
{2s, 4s, 6s, 8s, 10s, 12s}

xn

The attack signal and its effects on the system are shown in
Figs. 4−6, respectively. As it is shown in Fig. 4, the attack sig-
nal  is  continuous  at  the  attack  pausing  time  instants

.  Moreover,  the  resulting  system
output y and its change in Fig. 6 have no jump (abrupt change)
at  each  of  these  attack  pausing  time  instants.  By  comparing
the  system states x  in  the  attack  case  with  the  state  in  the

x3

yn

∆y

nominal case in Fig. 5, we can observe that the system state 
is  significantly  affected  by  the  injected  intermittent  integrity
attacks.  However,  in  contrast  to  in  the  nominal  case,  the
system  output y  in  Fig. 6  has  a  very  small  increment  at
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{1s, 3s, 5s, 7s, 9s,
11s}
each of the attack resuming time instants 

,  and such an increment converges to zero exponentially.
Fig. 6 also shows that the increments caused by the attack are
relatively  small  and  hidden  by  the  disturbances  and  noise,
which is a result of the selected relatively “large” process dis-
turbances and measurement noise used in the simulation. This
particularly  created  simulation  scenario  is  used  for  verifying
that  the  designed  backward-in-time  detector  is  robust  to  the
process  disturbances  and  measurement  noise,  and  also  sensi-
tive to the stealthy intermittent integrity attacks.

D r(t)
Jth
D

∆y

D

Fig. 7 illustrates  the  anomaly  detection  results  using  the
equipped  anomaly  detector ,  in  which  the  residual 
remains  far  below  the  threshold  during  the  attack  event.
Hence, the attack is not detected by . This indicates that the
change  due to the intermittent attack is sufficiently small to
maintain  the  stealthiness  of  the  attack  with  respect  to  the
detector .
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Fig. 7.     Time responses of the forward-in-time residual , the evaluation
function  and the threshold  of the anomaly detector .  

B.  Attack Detection

tb = 2, T = 15, ts,0 = tb = 2,
ts,1 = 9, ts,2 = 16 α = 0.009 R = 0.1 Θk

Θ0 = 8.5I3,Θ1 = 43.5I3
P1 Σ1

Following Algorithm 1, the parameters for the SMOOTHER
procedure  are  given  as  follows: 

,  and  .  Moreover,  satis-
fying (49) is given by . By solving the
differential  equations  in  (41),  and   are  obtained  as  fol-
lows:

P1 =


0.0162 0.0025 0.0484
0.0027 0.0008 0.0153
0.0544 0.0101 0.2307


Σ1 =


0.0010 0 0

0 0.0182 0
0 0 29.232

 .
P(t) Σ(t) [2 s, 9 s) [9 s, 16 s)

y(tb) = 0.1985 r(tb) = −0.1332
ϕ̂(t)

r̂(tb|t)

Furthermore,  and   for   and   can
be obtained respectively  by solving the  differential  equations
in  (41),  and  thus,  the  fixed-point  smoother  can  be  imple-
mented.  Then,  given ,  and  the
estimate , the RESIDUAL procedure can be completed by
following Algorithm 1,  and the residual  from (29) and

Ĵ(tb|t)

ω̄ v̄
ω̄ = 0.3 v̄ = 0.2 β0 = 0.25 λ0 = 0.64 β1 = 0.1
λ1 =0.63 δ0 = 100 εϕ,k
εϕ,0 = 5

Ĵth(t)

its  evaluation  function  from (54)  can  be  obtained.  We
proceed  with  the  THRESHOLD  procedure  based  on  Algo-
rithm  1.  The  scalars  and   in  Assumption  2  are  given  by

 and  .  Moreover, , , 
and , and . The initial value of  is chosen
as .  By  following  the  THRESHOLD  procedure  in
Algorithm 1, the threshold  in (57) can be calculated.

r̂(2|t) Ĵ(2|t)
Ĵth(t)

{3s, 5s, 7s, 9s, 11s}
r̂(2|t) Ĵ(2|t)

t = 9 s
t = 7 s

∆y t = 9 s
t = 7 s ∆z4 = ∆z5

Td ≈ 9.5 s
Ĵ(2|t) Ĵth(t)

The  residual ,  the  evaluation  function  and  the
threshold  are shown in Fig. 8. It is shown that at each of
the  attack  resuming  time  instants ,  the
residual  and  its  corresponding  evaluation  have  a
jump  in  magnitude.  Thus,  the  accumulation  property
described in Lemma 1 is satisfied. Furthermore, note also that
in Fig. 8 ,  the  jump  that  occurs  at  is  much  larger  than
the  one  at  due  to  covariance  matrix  resetting,  even
though  the  increment  at   is  similar  with  the  one  at

 (see ).  Moreover,  based  on  the  DECISION
PRINCIPLE specified in Algorithm 1, we can conclude from
Fig. 8 that the injected intermittent stealthy integrity attack is
successfully  detected  at  the  time  when the  evalua-
tion function  exceeds the threshold .
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Fig. 8.     Time responses of the backward-in-time residual , the evalua-
tion function  and the threshold .  

VIII. Conclusion

In  this  paper,  stealthy  intermittent  integrity  attacks  being
stealthy  with  respect  to  typical  anomaly  detectors  have  been
formulated.  A  backward-in-time  detection  residual  that  can
accumulate at  each attack activation time and is  able to indi-
cate  the  stealthy  intermittent  integrity  attacks  has  been  intro-
duced. A fixed-point smoother has been designed as the back-
ward-in-time estimator for estimating the unknown backward-
in-time detection residual. A covariance matrix resetting tech-
nique has been applied in the design of the smoother to guar-
antee  the  required  sensitivity  to  the  attacks.  The  correspond-
ing  adaptive  threshold  generation  scheme  for  detecting  the
stealthy  intermittent  integrity  attacks  has  been  designed,  and
the  attack  detectability  has  also  been  investigated  rigorously.
Some future research works are given as follows:

1) One of our studies work focuses on scheduling the attack
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pausing  and  resuming  time  instants  such  that  the  attack  can
cause significant damage to the system, and at the same time,
achieve the power energy saving aim. Game theory may pro-
vide  a  way  to  solve  the  trade-off  between  damaging  effects
and energy saving [38].

2) Another future research direction involves the modifica-
tion of typical  fixed-point  smoothers to improve the sensitiv-
ity  to  stealthy  integrity  attacks.  The  forgetting  factor  for  the
covariance  matrix  used  in  [51]  is  a  potential  way  to  achieve
this improvement.

3) Resilience control against intermittent integrity attacks is
also  one  potential  research  direction.  Some  control  issues,
such  as  quantized  sensor  measurements  well  handled  by  the
model reference control methodologies in [52], [53] and high
order nonlinearities in [54], [55] will be investigated.

4) Stealthy  intermittent  integrity  attack  generation  and
detection issues for nonlinear systems and large-scale systems
such as in [56] will be considered in our future research. Note
that a way for generating stealthy intermittent attacks for non-
linear systems and large-scale systems is to use the geometric
approach proposed in [14].  

Appendix A
Proof of Theorem 1

∆x1 ∆x2 ∆y1 ∆y2 ∆u
x1 x2 y1 y2 a(t)

∆x = x− xn ∆x2 = x2− xn
2 ∆y1 = y1− yn

1 ∆y2 = y2− yn
2

∆u = u−un

W j Wn
j j = 1,2 ∆W j

Proof : Let , , ,  and  represent the changes
of , , ,  and u  respectively due to the attack ,  i.e.,

, , ,  and
.  Then,  from  (10)  and  (11),  the  incremental  sys-

tems between  and  for , denoted as , can
be obtained as follows:

∆W1 :
{
∆ẋ1(t) = A∆x1(t)+Baa(t)

∆y1(t) =C∆x1(t)+Daa(t)
(66)

∆W2 :
{
∆ẋ2(t) = A∆x2(t)+B∆u(t)

∆y2(t) =C∆x2(t)
(67)

∆x1(tk) = −∆zk ∆x2(tk) = ∆zk
∆x ∆y

where  and .  Thus,  the  state
change  and the output change  can be written as

∆x(t) = ∆x1(t)+∆z(t) (68)

∆y(t) = ∆y1(t)+∆y2(t). (69)
W j j = 1,2 Wn

j,k
W j

ak(t) a1(t), . . . ,ak−1(t) k ≥ 1
xn

1,k yn
1,k Wn

1,k
xn

2,k yn
2,k un

k
Wn

2,k
Wn

j,k

Consider  for  given in (11). Denote  as the
“nominal” system of  in  the  absence  of  the  attack  signal

 but  in  the  presence  of ,  where .  By
letting  and  represent the state and the output of ,
and letting ,  and  represent the state, the output and
the  control  of ,  respectively,  it  then  follows  from  (11)
that  can be written as:

Wn
1,k :


ẋn

1,k(t) = Axn
1,k(t)+

k−1∑
i=1

Baak(t)

yn
1,k(t) =Cxn

1,k(t)+
k−1∑
i=1

Daak(t)

(70)

Wn
2,k :

ẋn
2,k(t) = Axn

2,k(t)+Bun
k(t)+Dω(t)

yn
2,k(t) =Cxn

2,k(t)+ v(t)
(71)

x1(tk)− xn
1,k(tk) =

−∆zk x2(tk)− xn
2,k(tk) = ∆zk x1(tk)+ x2(tk) =

xn
1,k(tk)+ xn

2,k(tk)

where the initial conditions can be chosen as 
 and   such  that 

.
∆x1,k ∆y1,k xn

1,k yn
1,k

∆x2,k ∆y2,k ∆uk xn
2,k yn

2,k
un

k ak(t) ∆x1,k = x1− xn
1,k

∆y1,k = y1− yn
1,k ∆x2,k = x2− xn

2,k ∆y2,k = y2− yn
2,k ∆uk = u−

un
k

∆W j,k

Let  and   represent  the  changes  of ,  and ,
and ,  and  represent the changes of ,  and

 respectively  due  to  the  attack ,  i.e., ,
, ,  and 

.  Then,  based  on  (70),  (71)  and  (11),  the  incremental  sys-
tems, denoted as , are obtained as

∆W1,k :
{
∆ẋ1,k(t) = A∆x1,k(t)+Baak(t)

∆y1,k(t) =C∆x1,k(t)+Daak(t)
(72)

∆W2,k :
{
∆ẋ2,k(t) = A∆x2,k(t)+B∆uk(t)

∆y2,k(t) =C∆x2,k(t)
(73)

∆x1,k(tk) = −∆zk ∆x2,k(tk) = ∆zkwhere  and .

a(t) ak(t) ∆x1 ∆z ∆y
Therefore,  based  on  the  superposition  principle  for  linear

systems (  is the sum of  in (8c)), ,  and  can
be written as

∆x1(t) =
k∑

i=1

∆x1,i(t), ∆x2(t) =
k∑

i=1

∆x2,i(t) (74)

∆y(t) =
k∑

i=1

(
∆y1,i(t)+∆y2,i(t)

)
, ∀ t ∈Ωk. (75)

∆W j,kIn the sequel,  the responses of  in the attack activat-
ing time interval  and the attack silence time interval  are ana-
lyzed.

Ωac
k ∆W1,k

ak(t)
(∆x̄1,k, ζk)

∆x̄1,k = ∆x1,k − ζk

1) Activating Time Interval : In this time interval, 
and  described by (8a) and (8b) respectively can be equiv-
alently  written  in  the  coordinates  with

 as follows:

∆ ˙̄x1,k(t) = A∆x̄1,k(t)

ζ̇k(t) = (A+BaFk)ζk(t)

∆y1,k(t) =C∆x̄1,k(t)+ (C+DaFk)ζk(t)
∆x̄1,k(tk) = ∆x1,k(tk)− ζk(tk) = 0 ∆x̄1,k(tk) = 0

∆x̄1,k(t) = 0 t ∈Ωac
k ∆x1,k(t) = ζk(t) t ∈Ωac

k
∆zk ∈ V0 Fk

where .  Since ,
 for ,  and hence,  for .

For  and  satisfying (12a), we have

ζk(t) ∈ V0, (C+DaFk)ζk(t) = 0, ∀ t ∈Ωac
k .

Thus, we obtain

∆y1,k(t) = 0, ∀ t ∈Ωac
k . (76)

Ωsi
k

∆W1,k ∆x1,k(tk +τk) = ∆x1,k((tk +τk)−) ∈ V0

ak(t) t ∈Ωsi
k ∆x1,k

2) Silence Time Interval : In this time interval, the initial
condition  of  is  .
Based on  in (8b) during ,  satisfies

∆ẋ1,k(t) = A∆x1,k(t), ∆x1,k(tk +τk) ∈ V0.

∆y1,k tk +τkAlso,  at the time instant  satisfies

∆y1,k(tk +τk) =C∆x1,k(t)+ay,k((tk +τk)−)

= ∆y1,k((tk +τk)−) = 0. (77)

∆x1,k(tk +τk) ∈ V0 V0 ⊂H
H (CA,A)
∆x1,k(tk +τk) ∈ H

Thus,  it  follows from  and  with
 being  the  unobservable  subspace  of  the  pair  that

, which indicates: 
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∆ẏ1,k(t) =CA∆x1,k(t) = 0, ∀ t ∈Ωsi
k . (78)

Thus, by combining (77) and (78), we have

∆y1,k(t) = 0, ∀ t ∈Ωsi
k . (79)

Hence,  from  the  result  (76)  in  the  activating  time  interval
and  the  result  (79)  in  the  silence  time  interval,  we  can  con-
clude

∆y1,k(t) = 0, ∀ t ∈Ω0
k .

∆y
∆y2,k(t) ∆W2,k
∆uk = K∆yk = K∆y2,k = KC∆zk

Therefore,  it  follows  from  (75)  that  the  change  can  be
written  as  in  (13)  with  being generated by  in
(79).  In  addition,  since ,  (79)
can be written as (14). ■  

Appendix B
Proof of Lemma 1

Proof:

∆W ∆z(tk) = ∆zk

1) By using the transition matrix Φ in (17),  the solution of
the system  in (15) with the initial condition 
can be written as

∆z(t) = Φ(t, tk)∆zk, ∀ t ∈Ωk.

∆z(tb|t)Thus, from Definition 1,  can be written as

∆z(tb|t) = Φ(tb, t)Φ(t, tk)∆zk = Φ(tb, tk)∆zk, ∀ t ∈Ωk. (80)
Φ(tb, tk) ∆zk

∆z(tb|t) ∆z(tb|t)
Since  both  and   are  independent  of  time t,

 is  also  independent  of  time t ,  then  is  a  con-
stant vector with respect to time. Hence, (18) follows.

∆zk , 0 Φ(tb, tk) , 02) Since  and  ,  then  the  result  (19)  fol-
lows directly from (80).

Ωk Ωk+13) From (80), for the consecutive attack slots  and ,
we have

∆z(tb|t) = Φ(tb, tk)∆zk, ∀ t ∈Ωk

∆z(tb|t) = Φ(tb, tk+1)∆zk+1, ∀ t ∈Ωk+1.

Φ(tb, tk) = Φ(tb, tk+1)Φ(tk+1, tk) ∆z(tb|tk)By  using ,  can  be
equivalently written as

∆z(tb|t) = Φ(tb, tk+1)Φ(tk+1, tk)∆zk, ∀ t ∈Ωk.

Then, we can derive

|∆z(tb|t)|2 ≤ σ̄2(Φ(tb, tk+1)|Φ(tk+1, tk)∆zk |2, ∀ t ∈Ωk

|∆z(tb|t)|2 ≥ σ2(Φ(tb, tk+1))|∆zk+1|2, ∀ t ∈Ωk+1.

|∆z(tb|t)|t∈Ωk+1 ≥ |∆z(tb|t)|t∈ΩkHence,  if (20) is satisfied. ■
Appendix C

Proof of Theorem 3
Proof:

∆z(tb|t) =
0 ∆y(tb|t) = 0 r (tb|t) = r(tb)
|r(tb)| ≤ Jth

1) Based on Lemma 1, in the absence of the attack, 
 and  from  (21), ,  and  thus, .  Since

, result 1) follows.

|r(tb|t)| > Jth

t ∈∪Na
i=kΩi

2) By using the reverse triangle inequality and based on (21)
and  (22),  a  sufficient  condition  to  guarantee  for
all  can be obtained as

|C∆z(tb|t)| >
Jth+ |r(tb)|
σ(C)

, ∀ t ∈
Na∪
i=k

Ωi. (81)

∆z(tb|t)Note that  based on result  1)  in Lemma 1,  is  a  con-

Ωk |∆z(tb|t)| =
|∆z(tb|tk)| t ∈Ωk

|∆z(tb|ti)| ≥ |∆z(tb|tk)|
i ≥ k

stant  vector  during  an  attack  slot .  Thus, 
 for  .  Note  also  that  under  Assumption  1  and

based  on  result  3)  in  Lemma  1,  for  any
 since (20) is considered to hold. Thus, a sufficient condi-

tion to guarantee (81) is obtained as follows:

|∆z(tb|tk)| > Jth+ |r(tb)|
σ(C)

. (82)

∆z(tb|tk) = Φ−1(tk, tb)∆zkBased on Definition 1, we can write .
Thus, a sufficient condition to guarantee (82) can be obtained
as

|Φ(tk, tb)| <
σ(C)|∆zk |
Jth+ |r(tb)| . (83)

A+BKC k0 > 0 λ0 > 0
Note  that  according  to  [40],  for  the  Hurwitz  matrix

, there exist  and  such that

|Φ(tk, tb)| ≤ k0e−λ0(tk−tb).

tkThus,  the  time  satisfying  (25)  can  guarantee  the  suffi-
cient condition (83). Hence, result 2) follows. ■
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