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Abstract - Mechanical elements with dimensions in the 
nanometer range, at least in one direction, have been 
successfully employed as sensors in various devices. Their 
mechanical properties must be known with maximum 
precision in order to quantify the sensor response to external 
excitation. This often poses a significant challenge due to the 
mechanical fragility of the sensor elements. Here we present 
a measurement of the mechanical response of a 100 nm thick 
silicon nitride membrane. The external excitation force is 
provided by a laser beam modulated in amplitude, while the 
displacement of the membrane is  measured by a Michelson 
interferometer with a homodyne readout. 

Keywords – radiation pressure, sensor, mechanical 
resonator, mechanical impedance 

I. INTRODUCTION 
The development of production methods and 

technologies has led to a realization of smaller and ever 
more sensitive sensors. One example are the thin high-
stress membranes made of silicon nitride produced by the 
Canadian company Norcada. The membranes are basically 
a thin (~ 50 nm) silicon nitride window stretched over a 200 
µm thick silicon frame. Their high mechanical quality 
factor (Q ~ 105) and high resonance frequency (~ 105 Hz) 
has made them a valuable tool in various types of 
experiments. Their use ranges from quantum optics 
experiments, where light is controlled by light [1] or, more 
recently, as a force sensor in an experiment searching for 
the dark energy [2].  

Dark energy, which makes up to 70% of the Universe, 
was introduced in order to provide an explanation for the 
accelerated expansion of the Universe. One of the most 
popular models includes a scalar field with a screening 
“chameleon” mechanism, where the mass of the field 
depends on the local matter density [3]. This allows for the 
accelerated expansion, while evading conflict with 
laboratory experimental results [4]. Since the mass of the 
field depends on the local matter density, the associated 
particle must reflect off a density boundary when its energy 
before the boundary is lower than after, thereby transferring 
momentum in this process. The transferred momentum can 
be detected as a displacement of, or force applied to, the 
boundary. This makes the detection of the chameleon field 
possible with a suitable sensor which must be calibrated. A 

calibration scheme where a known force is applied on the 
membrane has been proposed [5]. This scheme, where the 
force is provided by the radiation pressure of a laser light 
beam is used also in gravitational wave detectors where it 
simulates the expected signal [6]. 

In this paper we present a study of the mechanical 
response of a membrane to a sinusoidal varying force. The 
frequency of modulation was varied in a range from 10 kHz 
to 100 kHz and the response of the sensor was studied. 

II. THEORETICAL BACKGROUND 
The membranes are two-dimensional mechanical 

resonators whose motion is governed by the partial 
differential equation [7]  
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where v is the speed of wave propagation.  This 
equation has a solution depending on the indices m, n and 
is given by  

𝜓𝑚𝑛 =  [𝐴𝑚𝑛 cos(𝜔𝑚𝑛𝑡) +
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The indices m and n are integer numbers, and a and b 
represent membrane dimensions in the x and y direction, 
respectively. The coefficients Amn and Bmn depend on the 
initial conditions and can be calculated, but they are not 
interesting for this work. The frequencies of the membrane 
oscillation modes are given by 

𝜔𝑚𝑛 = 𝜋𝑣√(
𝑚

𝑎
)

2
+ (

𝑛

𝑏
)

2
.   (3) 

Eq. (3) is usually used to identify the oscillation modes 
in the displacement spectrum of the membrane. An 
example of such spectrum is shown in Figure 1.  
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Figure 1.  Calibrated frequency spectrum of the oscillations of 2x2 
mm2,  50 nm thick, membrane. The mode indices m,n are shown in 

parenthesis. The frequencies of higher order modes are related to the 
frequency of the fundamental mode by Eq. (3).  

The oscillations are thermally excited, i.e. by Brownian 
stochastic force with zero mean value, and they are damped 
by a viscous force with damping rate D [8]. The equation 
of motion of a viscously damped mechanical oscillator with 
a sinusoidally driving force is 

 𝑚�̈� + 𝐷�̇� + 𝑘𝑥 = 𝐹 sin(𝜔𝑡)    (4)   
Where m is the mass, k is the spring constant of the 

undriven harmonic oscillator without damping and D is the 
damping coefficient. The constants k and m are related to 
the natural frequency of the harmonic oscillator by the 

usual relation 𝜔0 =  √
𝑘

𝑚
. 

The equation of motion has a general solution which 
includes the transient solution and steady state response. 
We are interested only in the latter since we assume that the 
system has reached equilibrium. The steady state solution 
becomes 

𝑥(𝑡) =  
𝐹(sin 𝜔𝑡−𝜑)

√𝑚2(𝜔2−𝜔0
2)2+(𝐷𝜔)2

   (5) 

where 𝜑  is the phase between the driving force and 
displacement. 

The amplitude of the steady state is the value of interest 
since it is directly measured and is given by 

𝐴 =
𝐹

√𝑚2(𝜔2−𝜔0
2)2+(𝐷𝜔)2

   (6) 

 The spectrum from Fig. (1) could be used to obtain the 
mechanical impedance, however due to the feeble signal 
the procedure is not straightforward. To verify the response 
of the sensor to a driving force F in (4), a calibration was 
performed using the radiation pressure of a laser beam with 
sinusoidally modulated intensity.  

III. EXPERIMENTAL SETUP 
The measurements were carried out with an 

experimental setup designed and constructed in the 
Laboratory for Quantum and Nonlinear Optics at 
Department of Physics and Centre for micro- and 
nanosciences and technologies (NANORI) at University of 
Rijeka. The heart of the setup is a Michelson interferometer 
where the membrane is placed at the end of the so-called 
signal (SIG) arm, while in the other arm of the 
interferometer, called local oscillator (LO), a piezo-
actuated mirror is used to maintain a constant phase relation 
between the two arms. The beams propagating in the two 
arms are also labeled SIG and LO. The experimental 
scheme can be seen in Fig 2. 

 
Figure 2.  Experimental setup for mechanical impedance 

measurements. The Michelson interferometer is placed in a vacuum 
chamber. The green laser is used for the measurement while the red 

laser is used for excitation. More details are given in the text.  

The information on the phase between the SIG and LO 
beams is read out by a balanced homodyne detector [9] and 
passed to a single board computer, called Red Pitaya 
(Rptya) [10] used for control and data acquisition. A 
custom software has been developed for this purpose.  

The measurement beam (green) is produced by a laser 
where an infrared beam is duplicated in frequency. The 
green light during the propagation encounters a half-wave 
plate (HWP1) used to determine the intensity of the light 
used for measurement. This is done together with a 
polarizing beam splitter (PBS1) where a fraction of light is 
passing unperturbed while the rest is exiting on the side and 
does not contribute to the measurement. After the first 
optical elements the light encounters the HWP2 which 
together with PBS2 determines the intensity distribution 
between LO and SIG beams. Most of the intensity 
circulates in the LO arm where a quarter wave plate 
(QWP1) is placed. It transforms linearly polarized light to 
elliptical polarization, and when the light beam is reflected 
by a mirror going through QWP1 again, its polarization is 
changed from elliptical to linear but at right angle with 
respect to the initial one. This results in light coming out of 
the other port of PBS2 and in separating the ingoing from 
outgoing light. The same process takes place in the SIG 
arm, where QWP2 is placed and the light again comes out 
at the exit port of the PBS2. The two beams with orthogonal 
linear polarizations propagate to HWP3, which then rotates 
the polarization of the incoming light by 45 degrees 
resulting in two effects. In the PBS3 the SIG and LO beams 
are mixed and can interfere, and the outputs of the 
PBS3become of equal intensity. The intensities of two 
beams are read by a balanced photodiode detector, which 
subtracts the resulting photocurrents, then converts the 
output to a voltage and amplifies it. This signal is digitized 
by Rptya and used to maintain the phase between the LO 
and SIG beam. This is done by applying the voltage 
provided by a proportional-integral-derivative (PID) loop 
to a piezo actuator moving the mirror in the LO arm of the 
interferometer. The measurements were done by locking 
the phase to the gray fringe of the interferometer. The data 
digitized by Rptya is also transferred to a personal 
computer (PC) where it is stored for off-line analysis. The 
digitized waveforms are analysed in frequency by a Fourier 
transform, which gives displacement amplitudes as 
functions of frequency.  

The excitation (red) beam is produced by a HeNe laser. 
It is modulated in intensity and frequency by an acousto-
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optical modulator (AOM). Here only the modulation in 
intensity is relevant. A sinusoidal signal at an arbitrary 
frequency is provided to the intensity modulation input of 
an AOM driving circuit. The result is a sinusoidally varying 
intensity at a given frequency. The corresponding radiation 
pressure that is changing in time provides the driving force.  

IV. RESULTS 
The measurements were done with a 5x5 mm2, 100 nm 

thick membrane that was also used as sensor at CERN 
during data taking at the CAST experiment. The request for 
the sensor calibration comes from the requirement to give 
a limit to the chameleon radiation pressure force obtained 
during the measurement campaign reported in [5]. While 
the sensor is self-calibrating in terms of displacement, as it 
is sufficient to measure the distance between the fringes 
during mirror movement in the LO interferometer arm, the 
force calibration is more involved. To this end, a known 
external driving force must be provided. Here it was 
accomplished with the photon radiation pressure force as 
previously described. The radiation pressure in case of 
electromagnetic waves is related to the beam intensity I by 

𝑃 =
2𝐼

𝑐
. To obtain the force, the pressure P must be 

multiplied by an effective area S. Since the intensity I is 
defined as the ratio of incident power p and the area S, 𝐼 =
𝑝

𝑆
, the radiation pressure force becomes 𝐹 = 𝑃 ∙ 𝑆 = 2

𝑝

𝑐
.  

The force then depends only on the light power p, which 
can be easily measured by a calibrated optical power meter. 
The power of the excitation beam used was p = 1.5 mW 
while only a fraction, pref = 300 µW, was reflected from the 
membrane. The displacement of the membrane at the 
modulation frequency was measured and the result can be 
seen in the Fig. 3.  

 
Figure 3.  Frequency spectrum of the fundamental mode oscillations of 

a 5x5 mm2,  100 nm thick, membrane. The wide peak is thermally 
excited, while the narrow peak in the red ellipse is excited by external 

driving force. The displacement is given in arbitrary units. The 
calibration constant was separately determined and it is k = 0.7 pm/a.u. 

 

 
Figure 4.  Displacement amplitudes of a membrane for different 

driving force frequencies. Each gray dot represents one mesurement. It 
can be seen that the amplitude depends on the driving force frequency. 

The blue line is result of a least squares fit. 

The peak due to the driving force at f = 82500 Hz was 
observed and the amplitude of the displacement was 
written down. The procedure was repeated for different 
values of frequency f of the driving force and the 
displacement values in arbitrary units were recorded for 
every case. 

The parameters obtained by fitting the Eq. (6) are 𝐹

𝑚
=

(9.2 ± 0.3) ∙ 106  in arbitrary units, 𝜔0 = 82495 ± 1 Hz 
and 𝐷 = (7 ± 1) ∙ 10−5 a.u.  

Since the driving force amplitude F = 1 pN is known, 
the mass m can be extracted from the fit parameter A. With 
all the parameters known, it is possible to reverse the logic 
and to obtain a force from measured displacement 
amplitude. For example, for measured displacement 𝑑 =
40 ± 5 fm, the force on the membrane is 

𝐹𝑚 = 𝑑 √𝑚2(𝜔2 − 𝜔0
2)2 + (𝐷𝜔)2  (7) 

Which gives a force amplitude of 𝐹 = 80 ± 15 pN acting 
on the membrane at 1 kHz frequency.   

 

V. CONCLUSION 
We have developed a method for measuring the 

properties of a membrane mechanical oscillator where the 
excitation was provided by the electromagnetic radiation 
force. Displacement peaks due to the external excitation 
were observed in a range of frequencies around the 
fundamental mode of the membrane. This method provides 
a novel way in the determination of properties of 
mechanical oscillators. 
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