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A B S T R A C T

The study of entanglement in particle physics has been gathering pace in the past few years. It is
a new field that is providing important results about the possibility of detecting entanglement
and testing Bell inequality at colliders for final states as diverse as top-quark, 𝜏-lepton pairs
and 𝛬-baryons, massive gauge bosons and vector mesons. In this review, after presenting
definitions, tools and basic results that are necessary for understanding these developments, we
summarize the main findings—as published by the beginning of year 2024—including analyses
of experimental data in 𝐵 meson decays and top-quark pair production. We include a detailed
discussion of the results for both qubit and qutrits systems, that is, final states containing
spin one-half and spin one particles. Entanglement has also been proposed as a new tool to
constrain new particles and fields beyond the Standard Model and we introduce the reader to
this promising feature as well.
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1. Introduction

An unmistakable feature of quantum mechanics is the inseparable nature of states describing physical systems that have
nteracted in the past. The entanglement among these states gives rise to correlations that can be stronger than those expected

in classical mechanics and are present even after the systems are separated and can no longer interact, thus introducing a form of
nonlocality in our observations which, however, does not imply any violation of relativity.

Entanglement should not be confused with classical correlations, the latter dealing with intrinsic properties of a system,
independently of their measurement. Consider the simplest situation of two spin-1/2 particles that have been prepared in a
maximally entangled state, then separated by an arbitrary distance and whose spin is measured with suitable detectors in an arbitrary
chosen direction. The result of the measurement is completely random for both detectors, but if one particle is found with spin up,
then the second is detected with spin down, and vice versa. As a result, far away though the two daughter particles might be, they
must be considered as a single physical entity. This feature represents the phenomenon of quantum nonlocality in a nutshell.

The presence of entanglement can lead to the violation of an inequality—named after J. S. Bell, who was first in deriving and
discussing it—among the sum of probabilities of the values of certain observables. Whereas the presence of entanglement in itself
only confirms the existence of correlations that must be there because of quantum mechanics, the observation of the violation of Bell
inequality implies something about the nature of the physical world—namely, its non-separability or, if you prefer, nonlocality—and
it represents therefore a profound discovery.

Though the study of entangled states has been an ongoing concern in atomic and solid-state physics for many years, it is only
recently that the high-energy community has taken up in earnest the study of the subject.1 States in quantum field theory are
dentified by their mass, momentum and spin (as they are irreducible representations of the Poincarè group) and computations—
n the perturbative 𝑆-matrix framework—are only possible in momentum space; therefore entanglement can only be observed in
orrelations among the particle spins (or on variables living in the internal flavor space) and it is there that it must be looked for.
he investigation of these effects relies on the determination of the full quantum state of the system after the relevant interactions
ccurred, a process that has been dubbed quantum state tomography.

Collider detectors, while not designed for probing entanglement, turn out to be surprisingly good in performing this task, thus
shering in the possibility of many interesting new measurements to search for the presence of entanglement as well as to test the
iolation of Bell inequality. Entanglement also provides new tools for probing physics beyond the Standard Model (SM) whenever
he correlations it affects are experimentally accessible.

The extension of the physics of entanglement to the realm of particle physics is not just a reformulation at higher energies
f the work done within atomic physics. New features come into play, most notably the testing of quantum mechanics beyond
lectrodynamics, with weak and strong interactions, and the presence of systems possessing more than two possible states, such as
assive spin 1 particles with their three polarization states. Other features pertaining to collider physics will become evident as we
roceed in our discussion through the following sections.

Many aspects and peculiarities of quantum physics are taking an increasingly central position in science—from quantum
omputers to information theory, from theoretical developments to innovative applications. We look at the impact of these
evelopments in the area of high-energy physics. Our aim in writing this review is rather circumscribed: firstly, we want to present all
efinitions, tools and basic results that are useful for the study of entanglement and Bell inequality violation at colliders; secondly,
e try to summarize the main findings reported in the literature up to the beginning of 2024. Our hope is to provide an easily
ccessible collection of resources to serve as springboard for further study.

.1. The ‘‘quantum’’ in quantum field theory

Quantum field theory, coming as it does from the marriage of quantum mechanics and special relativity, inherits the two main
eatures of quantum mechanics: probabilistic predictions and amplitude interference. To these two, it adds a quantum feature of
ts own: radiative corrections arising from closed loops in the propagation of the particles (and their creation out of the vacuum).
hese quantum effects are part of every computation in quantum field theory.

Notwithstanding these features, the feel of a computation in perturbative 𝑆-matrix is distinctively less ‘‘quantum’’ than in
quantum mechanics proper. There is no wave-function collapse and the variables utilized—momenta and occupation number of the
asymptotic in- and out-coming states—commute. It is so because the 𝑆-matrix formulation of quantum field theory is part of a shift
that has taken place in particle physics (see [10] for a nice historical discussion) away from the original framework, which was
mostly inspired by atomic physics, and toward the typical setting we find at colliders, in which particles come in and go out and we
deduce the interactions they have undergone only (at least for elastic processes) by the change in their momenta or (for inelastic
scattering processes) also in the occupation numbers—with particles being created or destroyed.

The study of entanglement in particle physics goes against this trend. Entanglement is perhaps the quintessential manifestation
of quantum mechanical quirkiness: observations on systems retain a form of correlation even after they have been separated and
this correlation implies a nonlocal sharing of resources. There is no way to create an entangled state using local operations and
classical communication. A typical example of study of entanglement in a collider setting sees the spin variables as those that

1 We are aware, and the reader should too, that the study of quantum entanglement and its many applications is a broad and ever expanding field of research.
3

he interested readers can look into the review articles and books [1–9] for applications beyond particle physics.
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are entangled in the scattering and decay processes. Spin variables have been studied until now mostly in the form of classical
correlations, which, although sharing some features with entanglement, do not imply entanglement. Quantum tomography, the aim
of which is to describe the density matrix of the final state in a scattering process, brings the entanglement among spin variables
to center stage.

The presence of nonlocal effects always brings an ominous note to our relativistic ears. Yet there is no reason for concern,
or entanglement cannot be used to transfer information between two separated observers. Any information exchange can only
e carried by local communication in which relativity is not violated, as it should not since it was incorporated in quantum field
heory from the very beginning. Neither is the cluster decomposition (an essential feature of quantum field theory) violated by
ntanglement. The decomposition has to take place between initial and final states pertaining to two subsets of the 𝑆-matrix which

are then assumed to be far away from one another. Entanglement is present only within the two subsets as long as the relative
interactions take place independently of each other.

1.2. Spin correlations at colliders

Spin variables of particles and correlations among them are accessible at current collider experiments through the study of the
distribution of the momenta of the final state into which the original particle decays. These momenta are commuting variables,
but this fact does not prevent entanglement and Bell inequality violation from being accessible at colliders. The measurement takes
place (as we shall see in Section 3) as the polarized particle decays (acting as its own polarimeter) and the momenta of the final
state only carry the information into the detectors—in the same way as the momenta of the final electrons carry the information
on their spin as their trajectories are separated by the magnetic field in the Stern–Gerlach experiment.

The particles created in the collision first fly through what is (for all practical purposes) a vacuum, going from the collision
vertex to hitting the internal surface of the beam pipe and on inside the detector. The characteristic time for this flight is given by
the radius of the beam pipe—which is of the order of 1 cm, see, for instance [11]—divided by 𝑐, for a relativistic particle, that is,
10−11 s. On the other hand, spin correlations are measured at the time the particle decays, that is, with a characteristic time given
by their lifetimes. These lifetimes go from 10−25 s for the top quark and the weak gauge bosons to 10−20 s for vector mesons and
0−13 s for the 𝜏 leptons.

A loss in correlation between the spins of the particles produced at colliders can only take place after they cross into the detector,
here the particles would necessarily interact with the atoms of which the detector is made. This interaction never happens since

he flight-time inside the beam pipe is much longer than the lifetime of all the particles we are interested in (except maybe the 𝛬
aryons) and they decay before reaching the detector proper. For this reason, we can safely assume that the spin correlations we
easure are not affected, let alone decorrelated, by the presence of the detector.

The hadronization time scale, a concern only in the case of the top quark, is of the order of 10−23 s and takes place well after
he spin correlations have been measured as the top quark decays.

.3. The story so far

Helicity and polarization amplitudes at colliders are very sensitive probes into the details of the underlying physics and, for
his reason, have been studied for many years. The literature is vast. Older works are reviewed in [12]. More recent contributions
ntroduce the techniques necessary in computing polarizations among fermions [13–21]), weak gauge bosons [22–32]) or both [33].
econstructing spin-1 polarizations has been well understood since the mid-90s (see [34,35]) and the framework widely used in
xperimental analyses such as in heavy meson decays. All these works look for classical correlations and the possibility of measuring
hem in cross sections or dedicated observables.

Quantum state tomography falls in the same line of inquiry as the references above except for the twist of using the polarization
mplitudes to define no longer the classical but instead the truly quantum correlations. Polarizations are framed in the spin density
atrix (as explained in Section 3) and made readily accessible to compute entanglement and Bell operators for the processes of

nterest.
The violation of the Bell inequality has been tested and verified with experiments measuring the polarizations of photons at low

nergy (that is, in the range of few eVs) in [36,37]: two photons are prepared into a singlet state and their polarizations measured
long different directions to verify their entanglement and the violation of Bell inequality. More experiments have been performed
o further test the inequality [38,39] and show that the violation takes place also for separations of few kilometers [40]. The Bell
nequality has also been tested in solid-state physics [41].

No sooner these tests were reported than ‘loopholes’ were put forward — ways in which, notwithstanding the experimental
esults, the consequences could be evaded. The presence of these loopholes spurred the experimental community into performing
ew tests in which the loopholes were systematically closed with photons in [42,43], using superconducting circuits in [44], and
sing atoms in [45]. The reader can find more details and references in the older [46] and the more recent [47] review articles.

In particle physics, entanglement with low-energy protons has been probed in [48] and proposed at colliders using charmonium
ecays in [49–52], 𝜏 leptons in [53] and discussed in general in [54]. Tests have been suggested by means of positronium decays [55]
nd neutrino oscillations [56] (see also [57] and references therein). A Bell inequality is violated in neutral kaon oscillations due
o direct 𝐶𝑃 violation [58–60] (see also [61]). Flavor oscillations in neutral 𝐵-mesons have been argued to imply the violation of
ell inequality [62,63] (see also [64]). Entanglement among partons in scattering processes of nucleons has recently been studied
4

see, for instance, [65,66]). A discussion of entanglement in particle physics also appears in [67,68].
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The interest has been revived recently after entanglement has been convincingly argued [69] to be present in top-quark pair
roduction at the Large Hadron Collider (LHC) and it was shown that Bell inequality violation is experimentally accessible in the
ame system [70] and in the decay of the Higgs boson into two charged gauge bosons [71]. Entanglement and Bell inequality
iolation with a significance well in excess of 5𝜎 has been shown in LHCb and Belle II data on the decays of the 𝐵 mesons [72]. The

ATLAS and CMS Collaborations have found [73,74] that entanglement is present with a significance of more than 5𝜎 in top-quark
pairs produced near threshold at the LHC.

A sizeable body of works has been published since. We review it in Sections 4 and 5 by organizing it into systems that are qubits
and qutrits, that is, entanglement among particles of spin 1/2 and 1. The possibility of using entanglement to probe new physics is
reviewed in Section 7. Before all that, we introduce in Sections 2 and 3 the definitions and tools necessary in the analysis.

2. Entanglement and Bell locality

2.1. Quantum states and observables

In quantum mechanics, the description of a quantum system 𝑆, for simplicity taken to be finite dimensional (𝑛-level system), is
realized by means of an (𝑛-dimensional) Hilbert space H𝑛, isomorphic to C𝑛, where C is the set of complex numbers, and by the
algebra 𝑀𝑛(C) of 𝑛 × 𝑛 complex matrices. The elements |𝜓⟩ of H𝑛, normalized to unity, represent states of 𝑆, while the Hermitian
matrices in 𝑀𝑛(C), Ô† = Ô, correspond to system observables, whose mean values, ⟨Ô⟩ ≡ ⟨𝜓|Ô|𝜓⟩, are statistically linked to

easurements of Ô.
The elements of H𝑛 are, however, just a particular class of states of 𝑆, those called pure states. In general, the information on 𝑆

s incomplete and a set of probabilities {𝑝𝑖}, with ∑

𝑖 𝑝𝑖 = 1, weights the possible (normalized but not necessarily orthogonal) states
f the system |𝜓𝑖⟩, 𝑖 = 1, 2,… , 𝑚. In this case, the mean value of any given system observable O can be expressed as the combination
f the pure state mean values ⟨𝜓𝑖|Ô|𝜓𝑖⟩, weighted with the corresponding probability of occurrence:

⟨Ô⟩ =
𝑚
∑

𝑖=1
𝑝𝑖 ⟨𝜓𝑖|Ô|𝜓𝑖⟩ . (2.1)

t is then natural to describe the statistical mixture {𝑝𝑖, |𝜓𝑖⟩} by means of the density matrix:

𝜌 =
𝑚
∑

𝑖=1
𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖| , with 𝑝𝑖 ≥ 0 and

𝑚
∑

𝑖=1
𝑝𝑖 = 1 , (2.2)

here the conditions on the set {𝑝𝑖} are those of an ensemble of statistical weights. The average value of an observable O can then
e most simply expressed as

⟨Ô⟩ = Tr
[

𝜌 Ô
]

, (2.3)

here the trace operation is explicitly given by Tr[𝑋] ≡
∑𝑛
𝑖=1⟨𝜑𝑖|𝑋|𝜑𝑖⟩, with 𝑋 ∈𝑀𝑛(C) a matrix and the collection of states {|𝜑𝑖⟩}

eing any orthonormal basis in H𝑛.
From its definition (2.2), any density matrix 𝜌 must satisfy the following three characteristic properties:

• 𝜌 is an Hermitian operator, 𝜌† = 𝜌,
• 𝜌 is normalized, Tr[𝜌] = 1,
• 𝜌 is a positive semi-definite matrix, i.e. ⟨𝜓|𝜌|𝜓⟩ ≥ 0; for all |𝜓⟩ ∈ H𝑛,

n order to preserve the physically consistent interpretation of 𝜌.
Quantum states are thus positive, normalized operators, with the pure states |𝜓⟩ represented by projectors |𝜓⟩⟨𝜓| as the statistical

ixture in (2.2) reduces in this case to a single element. As a consequence, the eigenvalues of density matrices representing pure
tates are 1 (non-degenerate) and 0 (𝑛 − 1 times degenerate), while those, {𝜆𝑖}, 𝑖 = 1, 2,… , 𝑛, of a generic density matrix 𝜌 are such

that: 0 ≤ 𝜆𝑖 ≤ 1, with ∑

𝑖 𝜆𝑖 = 1. It follows that in general: Tr[𝜌2] ≤ 1, reaching the upper bound only when 𝜌 is a pure state.
herefore, a quantum state represented by a density matrix 𝜌 is a pure state if and only if 𝜌 is a projector:

𝜌2 = 𝜌 , Tr[𝜌2] = 1 . (2.4)

he decomposition of any density matrix 𝜌 in terms of the eigen-projectors |𝜆𝑖⟩⟨𝜆𝑖|, constructed with its eigenvectors |𝜆𝑖⟩, gives its
pectral decomposition:

𝜌 =
𝑚
∑

𝑖=1
𝜆𝑖 |𝜆𝑖⟩⟨𝜆𝑖| , with

𝑚
∑

𝑖=1
𝜆𝑖 = 1 and ⟨𝜆𝑖|𝜆𝑗⟩ = 𝛿𝑖𝑗 ; (2.5)

he set {𝜆𝑖} of eigenvalues of 𝜌 constitutes a probability distribution which completely defines the statistical properties of the
uantum state. Although the spectral decomposition (2.5) is unique, it should be stressed that there are infinitely many ways of
xpressing a density matrix as a linear combination of projectors as in (2.2).

The set of all density matrices describing a quantum system 𝑆 forms a convex subset of 𝑀𝑛(C), as combining different density
∑ ∑
5

atrices 𝜂𝑖 into a convex combination 𝑖 𝑟𝑖𝜂𝑖, with weights 𝑟𝑖 ≥ 0, and 𝑖 𝑟𝑖 = 1, gives again a density matrix. Pure states are
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extremal elements of this set, that is, they cannot be expressed as a convex combination of other density matrices; they can be used
to decompose non-pure states, see (2.2), and indeed in this way they generate the whole set of density matrices.

Any transformation of the system 𝑆 can be modeled as a linear map acting on the space of density matrices, 𝜌→ E[𝜌]. The most
general form of such transformations, as allowed by the statistical interpretation of quantum mechanics outlined above, is given by
the following operator-sum representation:

𝜌→ E[𝜌] =
∑

𝑖
𝑉𝑖 𝜌 𝑉

†
𝑖 , (2.6)

or some collection of operators {𝑉𝑖}. Clearly, the map E in (2.6) preserves the hermiticity and positivity of 𝜌, and, provided
𝑖 𝑉

†
𝑖 𝑉𝑖 = 1𝑛, with 1𝑛 ∈𝑀𝑛(C) the identity matrix, also its normalization; such a map is called a quantum operation, or simply a

uantum channel.
In particular, the unitary dynamics, 𝜌 → U𝑡[𝜌], generated by a system Hamiltonian operator 𝐻 ∈ 𝑀𝑛(C), is of the form (2.6),

ith just one operator 𝑉𝑖:

𝜌→ U𝑡[𝜌] = 𝑒−𝑖𝑡𝐻 𝜌 𝑒𝑖𝑡𝐻 . (2.7)

he set of transformations {U𝑡} forms a one-parameter group of linear maps, U𝑡◦U𝑠 = U𝑡+𝑠, for all 𝑡, 𝑠 ∈ R, reflecting the reversible
haracter of the unitary Schrödinger dynamics; as such, it preserves the spectrum and the purity of the density matrix:

𝜌 = 𝜌2 ⟹
(

U𝑡[𝜌]
)2 = U𝑡[𝜌] . (2.8)

Another common transformation affecting quantum states involves measurement. Assuming the system 𝑆 be initially prepared
n a pure state |𝜓⟩⟨𝜓|, after measuring a non-degenerate observable O =

∑

𝑘O𝑘|𝑘⟩⟨𝑘|, expressed in its spectral form with O𝑘
eing its eigenvalues and |𝑘⟩ the corresponding eigenvectors, then the outcome O𝑘 occurs with probability 𝑤𝑘 = |⟨𝑘|𝜓⟩|2 and,

if the measurement indeed produces O𝑘, then the post-measurement system state is the projector 𝑃𝑘 = |𝑘⟩⟨𝑘|. By repeating
the measurement operation on copies of the system 𝑆 equally prepared in the state |𝜓⟩⟨𝜓|, the collection of the resulting
ost-measurement states is described by the statistical mixture {𝑤𝑘, |𝑘⟩}:

|𝜓⟩⟨𝜓| →
∑

𝑘
𝑤𝑘𝑃𝑘 =

∑

𝑘
𝑃𝑘

(

|𝜓⟩⟨𝜓|
)

𝑃𝑘 . (2.9)

his transformation can be extended by linearity to cover any initial density matrix 𝜌 for the system 𝑆; as a result, after the given
set of measurements the system state is subjected to the transformation:

𝜌→ P[𝜌] =
∑

𝑘
𝑃𝑘 𝜌 𝑃𝑘 . (2.10)

ontrary to the unitary dynamics U𝑡, the map P generally transforms pure states into mixtures, thus involving decoherence effects
esulting in the suppression of any initially present phase-interference. This happens because the quantum operation P effectively
escribes 𝑆 as an open system, in this case as a system interacting with the apparatus used to measure the observable O. Quite in
eneral, dynamics generating noise and dissipation through decoherence can be modeled as those of systems in interaction with large
xternal environments; their evolution must be of the form (2.6), the only one guaranteeing physical consistency in any situation.

.2. Quantum correlations

One of the characteristic properties of quantum mechanics is the possibility of having correlations among constituent quantum
ystems, that is, correlations among their observables, that cannot be accounted for by classical physics. Initially dismissed as a
ure curiosity, the presence of such quantum correlations, that is of entanglement [2,75,76], has rapidly become a fundamental
esource in the development of disciplines like quantum information and technology, as it allows the implementation of protocols
nd the realization of various apparatus outperforming classical ones [8,77].

Many experiments have shown the presence of quantum correlations in systems involving photons, atoms and more recently
lementary particles. Indeed, as entanglement is most likely to emerge as the result of a direct interaction among the constituents
f a quantum system, the interaction among elementary particles as seen at colliders seems a promising place to study the effects
f quantum correlations.

In the following we shall merely deal with bipartite composite quantum systems 𝑆 = 𝑆𝐴+𝑆𝐵 consisting of two finite-dimensional
arties 𝑆𝐴 and 𝑆𝐵 , usually identified with two distant, well-separated quantum subsystems. An observable Ô of 𝑆 can then be
xpressed in a tensor product form, Ô = Ô𝐴 ⊗ Ô𝐵 , where Ô𝐴, Ô𝐵 are observables of 𝑆𝐴 and 𝑆𝐵 , respectively; notice that Ô is the
roduct of two local operators, Ô𝐴 ⊗ 1𝐵 and 1𝐴 ⊗ Ô𝐵 .

A state (density matrix) 𝜌 of 𝑆 is called separable if and only if it can be written as a linear convex combination of tensor
products of density matrices:

𝜌 =
∑

𝑖𝑗
𝑝𝑖𝑗 𝜌

(𝐴)
𝑖 ⊗ 𝜌(𝐵)𝑗 , with 𝑝𝑖𝑗 > 0 and

∑

𝑖𝑗
𝑝𝑖𝑗 = 1 , (2.11)

where 𝜌(𝐴)𝑖 and 𝜌(𝐵)𝑗 are density matrices for the subsystems 𝑆𝐴 and 𝑆𝐵 . States 𝜌 that cannot be written in the form of (2.11)
are called entangled or non-separable, and exhibit quantum correlations.
6
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Notice that, by expressing the density matrices 𝜌(𝐴)𝑖 and 𝜌(𝐵)𝑗 in terms of their spectral decomposition, that is in terms of their
respective eigenprojectors, separable states as in (2.11) can always be written as linear convex combinations of tensor products of
pure states. These states carry statistical correlations, but they are just of classical nature, reflecting the way the pure states are
mixed together. Specifically, a separable state of 𝑆 of the form

𝜌 =
∑

𝑖𝑗
𝜆𝑖𝑗 |𝜓

(𝐴)
𝑖 ⟩⟨𝜓 (𝐴)

𝑖 |⊗ |𝜓 (𝐵)
𝑗 ⟩⟨𝜓 (𝐵)

𝑗 | , with 𝜆𝑖𝑗 > 0 and
∑

𝑖𝑗
𝜆𝑖𝑗 = 1 , (2.12)

escribes a statistical ensemble that can always be viewed as 𝑁𝑖𝑗 instances of a system with state vector |𝜓 (𝐴)
𝑖 ⟩⊗ |𝜓 (𝐵)

𝑗 ⟩ coming from
‘‘source’’ that has ‘‘emitted’’ a total number 𝑁 of such systems, the ratio 𝑁𝑖𝑗∕𝑁 approaching the weight 𝜆𝑖𝑗 in the large-𝑁 limit.
herefore, in this case the weights 𝜆𝑖𝑗 just reflect the statistics of the source, viewed as a classical stochastic variable.

In addition, due to the structure of (2.11), the local character of separable states cannot be modified by local actions of the
orm Ô𝐴 ⊗ Ô𝐵 with Ô𝐴, Ô𝐵 admissible quantum operations for the subsystems 𝑆𝐴, 𝑆𝐵 . In other words, in order to change the
ocal character of a separable state into a nonlocal one, a nonlocal action involving both parties, for instance a direct interaction,
s necessary.

Pure, separable density matrices, such that 𝜌2 = 𝜌, are projectors onto state vectors in product form, |𝜓⟩ = |𝜓 (𝐴)
⟩⊗ |𝜓 (𝐵)

⟩,
= |𝜓⟩⟨𝜓|, for some vector states |𝜓 (𝐴)

⟩ of 𝑆𝐴 and |𝜓 (𝐵)
⟩ of 𝑆𝐵 . Nevertheless, given a generic state vector for the system 𝑆,

|𝜓⟩ =
∑

𝑖𝑗
𝜓𝑖𝑗 |𝑖⟩

(𝐴) ⊗ |𝑗⟩(𝐵) , (2.13)

ith {|𝑖⟩(𝐴)}, {|𝑖⟩(𝐵)}, orthonormal bases in 𝑆𝐴, 𝑆𝐵 , proving that it can or cannot be written in product form is in general a nontrivial
ask. Fortunately, the problem can be solved by using the Schmidt decomposition [77]; in fact, for any generic state (2.13), one can
lways find two suitable orthonormal bases for 𝑆𝐴 and 𝑆𝐵 yielding a diagonal decomposition:

|𝜓⟩ =
𝑑
∑

𝑘=1
𝜆𝑘 |𝑘⟩

(𝐴) ⊗ |𝑘⟩(𝐵) , (2.14)

ith non-negative Schmidt coefficients 𝜆𝑘 and 𝑑 the lowest dimension among 𝑆𝐴 and 𝑆𝐵 ; if at least two of these coefficients are
onvanishing, the state |𝜓⟩ is not in product form and thus it is entangled. As a consequence, denoting with 𝜌𝐴 = Tr𝐵[|𝜓⟩⟨𝜓|], and
𝐵 = Tr𝐴[|𝜓⟩⟨𝜓|], the partial traces over 𝑆𝐵 and 𝑆𝐴 subsystems, respectively, a generic pure state |𝜓⟩ of 𝑆 is separable if and only
f its reduced states 𝜌𝐴 and 𝜌𝐵 are pure.

Alternatively, one can focus on the von Neumann entropy, that for a generic density matrix 𝜌 is defined as [77]

S[𝜌] = −Tr[𝜌 ln 𝜌] ; (2.15)

t is the quantum analogue of the classical Shannon entropy. In terms of the reduced density matrices, one can then define the
uantity

ℰ [𝜌] ≡ −Tr[𝜌𝐴 ln 𝜌𝐴] = −Tr[𝜌𝐵 ln 𝜌𝐵] ; (2.16)

learly, a pure state 𝜌 = |𝜓⟩⟨𝜓| is entangled if and only if its reduced density matrices have non-zero entropy. The quantity ℰ [𝜌],
ften called in the literature entropy of entanglement, is an entanglement quantifier; assuming for the two systems 𝑆𝐴 and 𝑆𝐵
ave the same dimension 𝑑, one finds 0 ≤ ℰ [𝜌] ≤ ln 𝑑. The first equality holds if and only if the bipartite pure state is separable,
hile the upper bound is reached by a maximally entangled state,

|𝛹+⟩ =
1

√

𝑑

𝑑
∑

𝑖=1
|𝑖⟩(𝐴) ⊗ |𝑖⟩(𝐵) . (2.17)

When the state 𝜌 of the compound system 𝑆 is a generic density matrix, deciding whether the state is entangled or not, or
uantifying its entanglement content, is often a hard problem [78,79] and only partial answers are available. In general, one can
nly rely on so-called entanglement witnesses, quantities that give sufficient conditions for the presence of entanglement in the
ystem.

In building such witnesses, a crucial role is played by positive maps 𝛬, that is by linear transformations on the space of matrices,
apping positive matrices, that is, matrices with non-negative eigenvalues, into positive matrices. Let us assume for simplicity that

wo systems 𝑆𝐴 and 𝑆𝐵 have the same dimension 𝑑; then the following basic result holds [80]:

A state 𝜌 of the bipartite system 𝑆 is entangled if and only if there exists a positive map 𝛬𝐴 on the subsystem 𝑆𝐴, such that
the matrix 𝜌 is not left positive by the action of the compound map 𝛬𝐴 ⊗ 1𝐵 , that is (𝛬𝐴 ⊗ 1𝐵)[𝜌] ≱ 0.

well known, easily implementable entanglement test based on this result involves the transposition map, for instance on the
ubsystem 𝑆𝐴: the compound operation 𝑇𝐴 ⊗ 1𝐵 , is called partial transposition; then (Peres–Horodecki criterion) [81]:

A state 𝜌 of the bipartite system 𝑆 is entangled if it does not remain positive under partial transposition, (𝑇 ⊗ 1 )[𝜌] ≱ 0.
7
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This entanglement criterion is exhaustive in lower dimensions, for a bipartite system consisting two qubits, or a qubit and a
qutrit [82]. In addition, quite in general, the absolute sum of the negative eigenvalues of a partially transposed state, a quantity
called negativity and given by

N(𝜌) =
∑

𝑘

|𝜆𝑘| − 𝜆𝑘
2

, (2.18)

n which 𝜆𝑘 are the eigenvalues of the partially transposed matrix ⟨𝑖1, 𝑗2|𝜌𝑇2 |𝑖1𝑗2⟩ of the density matrix ⟨𝑖1, 𝑗2|𝜌|𝑖1𝑗2⟩, can be used to
uantify its entanglement content [83].

The relationship between the entropy of the system and those of its parts can be used to check whether the state is entangled; if
he state 𝜌 is separable, than necessarily: S[𝜌] ≥ S[𝜌𝐴] and S[𝜌] ≥ S[𝜌𝐵], with 𝜌𝐴 and 𝜌𝐵 being again the reduced density matrices [2].

In applications, entanglement witnesses that can be easily computed are needed: a relevant example of such a witness is the
oncurrence. Consider again the bipartite quantum system 𝑆, made of two 𝑑-dimensional subsystems 𝑆𝐴, 𝑆𝐵 , described by a

normalized pure state |𝜓⟩, or equivalently by the density matrix |𝜓⟩⟨𝜓|. The concurrence of the system is defined by [84–86]

𝒞 [|𝜓⟩] ≡
√

2
(

1 − Tr
[

(𝜌𝐴)2
])

=
√

2
(

1 − Tr
[

(𝜌𝐵)2
])

. (2.19)

s already remarked, any mixed state 𝜌 of the bipartite system can be decomposed into a set of pure states {|𝜓𝑖⟩},

𝜌 =
∑

𝑖
𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖| , with 𝑝𝑖 ≥ 0 , and

∑

𝑖
𝑝𝑖 = 1 ; (2.20)

ts concurrence is then defined by means of the concurrence of the pure states appearing in the decomposition through an
ptimization process:

𝒞 [𝜌] = inf
{|𝜓⟩}

∑

𝑖
𝑝𝑖 𝒞 [|𝜓𝑖⟩] , (2.21)

here the infimum is taken over all the possible decompositions of 𝜌 into pure states. For a pure state the concurrence (2.19) vanishes
f and only if the state is separable, |𝜓⟩ = |𝜓𝐴⟩⊗ |𝜓𝐵⟩, reaching its maximum value when 𝜌 is a projection on the pure, maximally
ntangled state (2.17). As the same holds for mixed states [87], the concurrence appears to be a good entanglement detector.
nfortunately, the optimization problem appearing in (2.21) makes the evaluation of the concurrence a very hard mathematical

ask, with a simple analytic solution only for two-level systems, 𝑑 = 2.
Indeed, in this special low-dimensional case, given a two-qubit, 4 × 4 density matrix 𝜌 as in (2.39), its concurrence can be

xplicitly constructed using the auxiliary matrix

𝑅 = 𝜌 (𝜎𝑦 ⊗ 𝜎𝑦) 𝜌∗ (𝜎𝑦 ⊗ 𝜎𝑦) , (2.22)

here 𝜌∗ denotes the matrix with complex conjugated entries. Although non-Hermitian, the matrix 𝑅 possesses non-negative
igenvalues; denoting with 𝑟𝑖, 𝑖 = 1, 2, 3, 4, their square roots and assuming 𝑟1 to be the largest, the concurrence of the state 𝜌
an be expressed as [85]

𝒞 [𝜌] = max
(

0, 𝑟1 − 𝑟2 − 𝑟3 − 𝑟4
)

. (2.23)

y contrast, for 𝑑 > 2, any approximation or numerical computation of (2.21) provides only an upper bound on 𝒞 [𝜌] and thus
annot serve to reliably distinguish between entangled and separable states, or to give an estimate of a state entanglement content.

Fortunately, lower bounds on 𝒞 [𝜌] for a generic density matrix 𝜌 have been determined and, if non-vanishing, unequivocally
ignal the presence of entanglement. One of these bounds is easily computable, yielding [88]

(

𝒞 [𝜌]
)2 ≥ 𝒞2[𝜌] , (2.24)

here

𝒞2[𝜌] = 2max
(

0, Tr [𝜌2] − Tr [(𝜌𝐴)2], Tr [𝜌2] − Tr [(𝜌𝐵)2]
)

. (2.25)

non-vanishing value of 𝒞2[𝜌] implies a concurrence larger than zero, and therefore a non-vanishing entanglement content of 𝜌.
nterestingly, an upper bound for 𝒞 [𝜌] has also been obtained [89]; explicitly, one finds

(

𝒞 [𝜌]
)2 ≤ 2min

(

1 − Tr [(𝜌𝐴)2], 1 − Tr [(𝜌𝐵)2]
)

. (2.26)

The easily computable concurrence lower bound (2.25) can be used as entanglement witness in the study of quantum correlations
at colliders.2

Other definitions of non-classical correlations, different from entanglement, have been introduced in the literature, motivated
by the fact that they can be used to enhance selected information tasks beyond their classical implementation (see [90–92] and
references therein). Rather than nonlocality, these generalized quantum correlations are the manifestation of non-commutativity

2 For pure states the upper, Eq. (2.26), and lower, Eq. (2.24), bounds coincide and become a true measure of entanglement.
8
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and non-invariance under quantum measurements. Indeed, as disturbance under quantum measurements signals quantumness, one
can characterize classicality through measurement invariance [93].

Specifically, among separable states, of the form (2.11), one can distinguish the so-called classical–classical states:

𝜌 =
∑

𝑖𝑗
𝑝𝑖𝑗 𝛱

(𝐴)
𝑖 ⊗𝛱 (𝐵)

𝑗 , with 𝑝𝑖𝑗 > 0 , and
∑

𝑖𝑗
𝑝𝑖𝑗 = 1 , (2.27)

where 𝛱 (𝛼) ≡ |𝑖⟩(𝛼)(𝛼)⟨𝑖|, 𝛼 = 𝐴,𝐵, are the projectors on the elements {|𝑖⟩(𝛼)} of orthonormal bases in 𝑆𝛼 . There are no non-classical
orrelations in these states; indeed, recalling (2.10), they are left undisturbed by any local von Neumann measurement, performed
ocally on 𝑆𝐴 and 𝑆𝐵 :

𝜌→ 𝜌|𝐴𝐵 ≡
∑

𝑖𝑗

(

𝛱 (𝐴)
𝑖 ⊗𝛱 (𝐵)

𝑗

)

𝜌
(

𝛱 (𝐴)
𝑖 ⊗𝛱 (𝐵)

𝑗

)

= 𝜌 . (2.28)

n other terms, the amount of total correlations contained in 𝜌, quantified by its mutual information,

𝐼(𝜌) = S(𝜌𝐴) + S(𝜌𝐵) − S(𝜌) , (2.29)

here S is the von Neumann entropy (2.15), coincides with the classical Shannon mutual information of the joint probability
istribution {𝑝𝑖𝑗}: the correlations present in 𝜌 are purely classical.

Similarly, one can introduce, separable, quantum–classical states,

𝜌 =
∑

𝑖
𝑝𝑖 𝜌

(𝐴)
𝑖 ⊗𝛱 (𝐵)

𝑗 , with 𝑝𝑖 > 0 , and
∑

𝑖𝑗
𝑝𝑖 = 1 , (2.30)

here 𝜌(𝐴)𝑖 are admissible density matrices for the subsystem 𝑆𝐴, while, as before, 𝛱 (𝐵)
𝑗 are orthonormal projectors on 𝑆𝐵 . These

tates are left undisturbed under von Neumann measurements performed on the subsystem 𝑆𝐵 :

𝜌→ 𝜌|𝐵 ≡
∑

𝑖

(

1𝐴 ⊗𝛱 (𝐵)
𝑖

)

𝜌
(

1𝐴 ⊗𝛱 (𝐵)
𝑖

)

= 𝜌 . (2.31)

y exchanging the role of 𝑆𝐴 and 𝑆𝐵 , one analogously defines classical–quantum states.
In the case of a more general state, as in (2.11), in order to obtain its genuine quantum correlation content one needs to

ubtract from its quantum mutual information (2.29) the amount of classical correlations obtained through local von Neumann
easurements. A possible measure of such classical correlations can be defined as [94,95]

𝐽 (𝐵)(𝜌) = max
{𝛱 (𝐵)}

𝐼
(

𝜌|𝐵
)

, (2.32)

here the maximization is over all local von Neumann measurements on 𝑆𝐵 , defined as in (2.31). One can similarly define 𝐽 (𝐴)(𝜌)
y exchanging the roles of 𝑆𝐴 and 𝑆𝐵 , or in a symmetric way

𝐽 (𝜌) = max
{𝛱 (𝐴)⊗𝛱 (𝐵)}

𝐼
(

𝜌|𝐴𝐵
)

, (2.33)

ith the maximization over all local von Neumann measurements {𝛱 (𝐴)⊗𝛱 (𝐵)} as defined in (2.28). One can then define discord
s a measure of the content of non-classical correlations of a bipartite state 𝜌 as the (non-negative) difference [94]:

𝑄(𝐵)(𝜌) = 𝐼(𝜌) − 𝐽 (𝐵)(𝜌) . (2.34)

ne finds that 𝑄(𝐵)(𝜌) = 0 if and only if the state 𝜌 is quantum–classical as in (2.30). A symmetric version of discord can also be
ntroduced [96]:

𝑄(𝜌) = 𝐼(𝜌) − 𝐽 (𝜌) ; (2.35)

eing the difference between the amount of total correlations and the one of classical correlations, it vanishes, 𝑄(𝜌) = 0, if and only
f 𝜌 is classical–classical as in (2.27). Extensions of these quantities using generalized quantum Positive Operator-Valued Measures
POVMs) instead of von Neumann ones have been discussed in [95].

In general, discord and entanglement are different measures of the content of quantum correlations in a given bipartite state;
hough they coincide for pure states. Classically correlated mixed states are separable, but the converse is not true: mixed separable
tate may possess non-zero discord. Additional properties and applications of discord and other measures of non-classical correlations
an be found in [90–92] and recently discussed in [97] for pairs of top quarks.

.3. Bell nonlocality

One of the most striking and unexpected results of modern physics is the manifestation of a fundamental indeterminacy in natural
henomena. Thanks to the advent of quantum mechanics, the use of a statistical language became the standard, compelling tool
or explaining the behavior of physical phenomena. Yet, the possibility of recovering a fully deterministic description of natural
henomena is amenable to experimental test, which rests on the presence of classes of correlations among observables underlying
9

hat is now known as Bell nonlocality [98,99].



Progress in Particle and Nuclear Physics 139 (2024) 104134A.J. Barr et al.

s
p
p

𝑃

w
s
d
d

2

d

a

The simplest situation in which the dichotomy between locality and nonlocality can be appreciated is that of a bipartite physical
ystem, one part controlled by an agent 𝐴 (Alice), while that other by the agent 𝐵 (Bob), well separated and distinct.3 Both agents
erform measurements on their respective subsystem parts and by comparing the corresponding results draw conclusions on the
resence of possible correlations. It is the structure of these correlations that allows distinguishing local from nonlocal; indeed,

J. S. Bell in 1964 [100] was able to introduce a logical formulation, the Bell inequalities, allowing a disprovable test for correlations
being local or nonlocal [101–104]. A violation of one of these inequalities, as testified in many experiments, not only reveals
something about the internal structure of quantum physics, but strikingly, tells us that correlations in spatially separated systems
can exhibit a fundamental nonlocal character.

Bell locality essentially means that the measurement outputs at one party, say 𝐴, do not depend on the outcomes at the remaining
one, at 𝐵; in other terms, all correlations between Alice and Bob are consequence of shared resources, which, for a quantum system,
can even include its wavefunction. This form of locality can be formalized in full generality. Let us denote with the (for simplicity,
continuous) variable 𝜆 the set of unspecified common resources, shared among Alice and Bob. Further, assume that Alice can choose
to measure 𝑀𝐴 different observables 𝐴̂1, 𝐴̂2, . . . 𝐴̂𝑀𝐴

, each one giving rise to 𝑚𝐴 different outcomes 𝑎𝑖 = 1, 2,… , 𝑚𝐴, 𝑖 = 1, 2,… ,𝑀𝐴,
and similarly for Bob. Let 𝑃𝜆(𝐴|𝑎) be the probability for Alice of getting the outcome 𝑎 having chosen to measure the observable
𝐴̂ and similarly be 𝑃𝜆(𝐵|𝑏) the probability for Bob of getting 𝑏 out of the measurement of the observable 𝐵̂. What is important is
that 𝑃𝜆(𝐴|𝑎) does not depend on the measurement chosen by Bob and similarly 𝑃𝜆(𝐵|𝑏) does not depend on the Alice choices; in
other terms, the outcome 𝑎 for Alice and 𝑏 for Bob are generated locally, by sampling from the probability distribution 𝑃𝜆(𝐴|𝑎) and
𝜆(𝐵|𝑏), respectively.

Within these settings, the probability 𝑃 (𝐴,𝐵|𝑎, 𝑏) of the joint result (𝑎, 𝑏), having measured 𝐴̂ and 𝐵̂, can be expressed as

𝑃 (𝐴,𝐵|𝑎, 𝑏) = ∫ d𝜆 𝜂(𝜆) 𝑃𝜆(𝐴|𝑎) 𝑃𝜆(𝐵|𝑏) , (2.36)

here 𝜂(𝜆) is the probability distribution of the shared resources. This is the formal statement of Bell locality; the corresponding
tatistics of outcomes is called local if it obeys (2.36), nonlocal otherwise. Checking the validity of the hypothesis (2.36) is usually
one by performing a Bell test, that is, by putting under experimental scrutiny the validity of suitable Bell inequalities that result
irectly from the hypothesis (2.36).

.3.1. Qubits
In order to be more specific, let us study the simplest Bell test, involving two parties, Alice and Bob, each one having at their

isposal two possible observables to measure, (𝐴̂1, 𝐴̂2), and (𝐵̂1, 𝐵̂2), respectively, each giving rise to two possible outcome (0, 1);
in the notation introduced above: 𝑀𝐴 = 𝑀𝐵 = 𝑚𝐴 = 𝑚𝐵 = 2 [38,39,46]. The test results in checking the following combination of
joint expectation values, involving an observable of Alice and one of Bob [38]:

I2 = ⟨𝐴̂1𝐵̂1⟩ + ⟨𝐴̂1𝐵̂2⟩ + ⟨𝐴̂2𝐵̂1⟩ − ⟨𝐴̂2𝐵̂2⟩ . (2.37)

In order to obtain the maximum value of I2 achieved using only local resources, it is sufficient [99,105] to see what is the outcome
when Alice and Bob share a pre-determined set (𝑎1, 𝑎2; 𝑏1, 𝑏2) of possible answers to the measurement queries; clearly, as these
answers can be either 0 or 1, I2 can be at most 2, so that Bell locality implies the Clauser–Horne–Shimony–Holt (CSHS) inequality:

I2 ≤ 2 . (2.38)

If in an actual experiment one finds I2 > 2, one has to deduce that some sort of nonlocal resource had been shared between the
two parties, and this is precisely what is predicted in a quantum mechanical setting.4

A paradigmatic model in which the inequality (2.38) can be easily checked is a bipartite system made of two spin-1/2 particles,
one belonging to Alice, the other to Bob. As it will discussed in detail in the following, this physical situation is routinely reproduced
at colliders, where analysis of the spin correlations among products of high-energy collisions is performed.

A bipartite quantum system, made of two spin-1/2 particles is described in quantum mechanics in terms of the 4-dimensional
Hilbert space H4 = H2 ⊗H2 ≡ C4, the tensor product of two, 2-dimensional Hilbert spaces H2 ≡ C2 representing a single spin-1/2
particle. As already remarked, any observable Ô of the full system can then be expressed in a tensor product form, Ô = Ô1 ⊗ Ô2,
where Ô1, Ô2 are each single-spin observables, for instance they could be spin projections each acting on one of the two particles,
and in general in different spatial directions.

The state of the two spin-1/2 system is in general described by a density matrix 𝜌, that is an operator acting on H4, that can be
represented by a non-negative, 4 × 4 matrix of unit trace. As already mentioned, when the density matrix is a projector operator,
𝜌2 = 𝜌, than the state of the system can be represented by a state vector |𝜓⟩ ∈ H4, such that 𝜌 = |𝜓⟩⟨𝜓|. Knowing 𝜌 allows one
to compute the average of any two-spin observable Ô through its trace with 𝜌, ⟨Ô⟩ = Tr[𝜌 Ô]; these expectation values are the
quantities measurable in experiments.

3 The two parties are usually assumed not to be able to exchange messages, being in the so-called ‘‘non-signaling settings’’.
4 Quantum mechanics predicts for I2 the maximal value 2

√

2 [106]. Interestingly, hypothetical models ‘‘more nonlocal’’ than quantum mechanics have been
dvocated [107], for which the upper value of I may exceed 2

√

2.
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The quantum state of a spin-1/2 pair can then be expressed as

𝜌 = 1
4

[

12 ⊗ 12 +
3
∑

𝑖=1
𝐵+
𝑖 (𝜎𝑖 ⊗ 12) +

3
∑

𝑖=1
𝐵−
𝑗 (12 ⊗ 𝜎𝑗 ) +

3
∑

𝑖,𝑗=1
𝐶𝑖𝑗 (𝜎𝑖 ⊗ 𝜎𝑗 )

]

, (2.39)

here 𝜎𝑖 are the Pauli matrices, 12 is the unit 2 × 2 matrix; the indices 𝑖, 𝑗, running over 1, 2, 3, represent any three orthogonal
irections in three-dimensional space. The real coefficients

𝐵+
𝑖 = Tr[𝜌 (𝜎𝑖 ⊗ 1)] and 𝐵−

𝑗 = Tr[𝜌 (1⊗ 𝜎𝑗 )] , (2.40)

epresent the polarization of the two particles, while the real matrix

𝐶𝑖𝑗 = Tr[𝜌 (𝜎𝑖 ⊗ 𝜎𝑗 )] (2.41)

ives their spin correlations. The labels ‘+ ’ and ‘−’ on the 𝐵 coefficients simply serve to indicate which particle they refer to; in
hat follows they are often distinguished by their respective electric charges. In the case of a collider setting, 𝐵+

𝑖 , 𝐵−
𝑖 and 𝐶𝑖𝑗 will

e functions of the parameters describing the kinematics of the pair of spin-1/2 production, the total energy
√

𝑠 in the center of
mass reference frame and the corresponding scattering angle 𝜃. Note that while the density matrix in (2.39) is normalized, Tr[𝜌] = 1,
extra constraints on 𝐵+

𝑖 , 𝐵−
𝑖 and 𝐶𝑖𝑗 need to be enforced to guarantee its positivity; these extra conditions are in general non-trivial,

as they originate from requiring all principal minors of 𝜌 to be non-negative.
The density matrix in Eq. (2.39) can be used to re-write the upper bound on the concurrence in Eq. (2.26) as

(

𝒞 [𝜌]
)2 ≤ min

[

1 −
∑

𝑖
(𝐵+

𝑖 )
2, 1 −

∑

𝑗
(𝐵−

𝑗 )
2
]

. (2.42)

Eq. (2.42) makes clear that the larger the polarization of each individual particle (as found in the size of the coefficients 𝐵±
𝑖 ),

the smaller the largest possible value of the polarization entanglement between them, as described by 𝒞 [𝜌]. More precisely, the
entanglement in the final state spin correlations is maximal for vanishing polarizations, progressively diminishes as the polarizations
increase and vanishes for fully polarized final state particles.

Let us now express the combination of expectation values appearing in (2.37) in the language of spin, and choose as observables
𝐴̂1 and 𝐴̂2, for the first spin-1/2 particle, and 𝐵̂1, 𝐵̂2 for the second one, spin projections along four different unit vectors, say 𝑛1,
⃗3 for Alice, and 𝑛2, 𝑛4 for Bob, so that 𝐴̂1 = 𝑛1 ⋅ 𝜎⃗ and similarly for the remaining three observables. Only the correlation matrix 𝐶
is involved in the combinations in (2.37), that can be conveniently expressed as I2 = Tr[𝜌ℬ] where the quantum Bell operator is
given by

ℬ = 𝑛1 ⋅ 𝜎⃗ ⊗ (𝑛2 − 𝑛4) ⋅ 𝜎⃗ + 𝑛3 ⋅ 𝜎⃗ ⊗ (𝑛2 + 𝑛4) ⋅ 𝜎⃗ . (2.43)

he Bell inequality (2.38) then becomes

𝑛1 ⋅ 𝐶 ⋅
(

𝑛2 − 𝑛4
)

+ 𝑛3 ⋅ 𝐶 ⋅
(

𝑛2 + 𝑛4
)

≤ 2 . (2.44)

ombining this condition with the analogous one obtained by reversing the direction of 𝑛1 and 𝑛3 one finally gets the following
onstraint:

|

|

|

𝑛1 ⋅ 𝐶 ⋅
(

𝑛2 − 𝑛4
)

+ 𝑛3 ⋅ 𝐶 ⋅
(

𝑛2 + 𝑛4
)

|

|

|

≤ 2 . (2.45)

hen the spins of the two particle are perfectly anticorrelated, as it happens for a pure singlet state,

|𝛹⟩ = 1
√

2

(

|↑𝑛⟩⊗ |↓𝑛⟩ − |↓𝑛⟩⊗ |↑𝑛⟩
)

, (2.46)

ith |↑𝑛⟩ representing the spin of a particle in the state ↑𝑛, that is with the projection of the spin along the axis determined by the
nit vector 𝑛 pointing in the up direction, one finds

𝐶𝑖𝑗 = −𝛿𝑖𝑗 , (2.47)

nd one can easily violate the inequality (2.38) by a suitable choice of the four unit vectors 𝑛1, 𝑛3, 𝑛2, 𝑛4. In other terms, the
onlocality of quantum mechanics violates the Bell locality test (2.38).

In order to actually put under experimental test the Bell inequality (2.45), one in principle needs to extract from the collected data
he matrix 𝐶 and then choose suitable four independent spatial directions 𝑛1, 𝑛2, 𝑛3 and 𝑛4 that maximize I2 in (2.37). Fortunately,

this maximization process can be performed in full generality for a generic spin correlation matrix [108]. Indeed, consider the matrix
𝐶 and its transpose 𝐶𝑇 and form the symmetric, positive, 3 × 3 matrix 𝑀 = 𝐶𝐶𝑇 ; its three eigenvalues 𝑚1, 𝑚2, 𝑚3 can be ordered
in increasing order: 𝑚1 ≥ 𝑚2 ≥ 𝑚3. Then, the following result holds:

The two-spin state 𝜌 in (2.39) violates the inequality (2.45), or equivalently (2.38), if and only if the sum of the two greatest
eigenvalues of 𝑀 is strictly larger than 1, that is (Horodecki condition)

m12 ≡ 𝑚1 + 𝑚2 > 1 . (2.48)

In other terms, given a spin correlation matrix 𝐶 of the state 𝜌 that satisfies (2.48), then there are choices of the four independent
ectors 𝑛1, 𝑛2, 𝑛3, 𝑛4 for which the left-hand side of (2.45) is larger than 2. In the case of the singlet state (2.46) the sum of the
quare of two of its eigenvalue is 2, the condition (2.48) is verified and thus the Bell inequality (2.38) violated, actually at the
aximal level [106].
11
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2.3.2. Qudits, mostly qutrits
The quantum state of a two 𝑑-level systems, two qudits, can be expressed in a form similar to the one (2.39) for two qubits, the

eneralization being [109,110]:

𝜌 = 1
𝑑2

[

1𝑑 ⊗ 1𝑑 +
𝑑2−1
∑

𝑖=1
A(𝑑)
𝑖 (𝜏𝑖 ⊗ 1) +

𝑑2−1
∑

𝑗=1
B(𝑑)
𝑗 (1⊗ 𝜏𝑗 ) +

𝑑2−1
∑

𝑖,𝑗=1
C(𝑑)𝑖𝑗 (𝜏𝑖 ⊗ 𝜏𝑗 )

]

, (2.49)

here the matrices 𝜏𝑖, 𝑖 = 1, 2,… , 𝑑2 − 1, are the traceless Hermitian generators of the fundamental representation of the algebra
𝑢(𝑑), forming with the normalized identity matrix 𝜏0 =

√

2∕𝑑 1𝑑 an orthonormal basis in the space of all 𝑑 × 𝑑 Hermitian matrices.
ecalling that Tr[𝜏𝑖 𝜏𝑗 ] = 2 𝛿𝑖𝑗 , one now finds

A(𝑑)
𝑖 = 𝑑

2
Tr[𝜌 (𝜏𝑖 ⊗ 1𝑑 )] and B(𝑑)

𝑗 = 𝑑
2

Tr[𝜌 (1𝑑 ⊗ 𝜏𝑗 )] , (2.50)

representing the single qudit polarizations, while the real matrix

C(𝑑)𝑖𝑗 = 𝑑2

4
Tr[𝜌 (𝜏𝑖 ⊗ 𝜏𝑗 )] (2.51)

ives their correlations.
Given a bipartite setting, sharing a system of two qubits, the Bell test (2.38) can be proven to be exhaustive: all other possible Bell

ests are just a reformulation of the basic inequality (2.38) (see, for example, [98,99]). Extensions to higher dimensions are however
ossible; in order to give one of such generalizations in the case of shared qutrits, that is, three-level systems, it is convenient to
eformulate the condition (2.38) in terms of joint probabilities, by rewriting the expectation values as:

⟨𝐴̂𝑖𝐵̂𝑗⟩ =
2
∑

𝑚=1

2
∑

𝑛=1
(−1)𝑚+𝑛 𝑃 (𝐴𝑖, 𝐵𝑗 |𝑚, 𝑛) , (2.52)

here as before 𝑃 (𝐴𝑖, 𝐵𝑗 |𝑚, 𝑛) is the joint probability of finding the outcome 𝑚 in measuring the observable 𝐴̂𝑖 by Alice, and the
utcome 𝑛 from the measurement of 𝐵̂𝑗 on Bob side. Then, the Bell test (2.38) is equivalent to

𝑃 (𝐴1 = 𝐵1) + 𝑃 (𝐴2 ≠ 𝐵1) + 𝑃 (𝐴2 = 𝐵2) + 𝑃 (𝐴1 = 𝐵2) ≤ 3 , (2.53)

here we have used the shorthand notation 𝑃 (𝐴1 = 𝐵1) for the combination 𝑃 (𝐴1, 𝐵1|1, 1)+𝑃 (𝐴1, 𝐵1|2, 2) and similarly for the other
erms.

Let us now assume that Alice and Bob share a system made of two qutrits, so that the outcome of their measurements involve
hree possible entries, (0, 1, 2). Let us also denote with 𝑃 (𝐴𝑖 = 𝐵𝑗+𝑘) the probability that the measurement outcome of the observables
̂𝑖 and 𝐵̂𝑗 differ by 𝑘 modulo 3 and rewrite the left-hand side of (2.53) as

𝑃 (𝐴1 = 𝐵1) + 𝑃 (𝐴2 + 1 = 𝐵1) + 𝑃 (𝐴2 = 𝐵2) + 𝑃 (𝐴1 = 𝐵2) ; (2.54)

learly 𝑃 (𝐴2 + 1 = 𝐵1) = 𝑃 (𝐴2 ≠ 𝐵1) in the case of qubits.
Let us now assume that Alice and Bob share only local resources. Then consider one possible outcome of their measurements

uch that 𝐴1 = 𝐵1, 𝐴1 = 𝐵2 and 𝐴2 = 𝐵2; but then locality would enforce 𝐴2 = 𝐵1 and the probability 𝑃 (𝐴2 + 1 = 𝐵1) cannot be
ne. Clearly, any triple of similar conditions would lead to the same conclusion: for instance, the choice 𝐴1 = 𝐵1, 𝐴1 = 𝐵2 and
2 + 1 = 𝐵1 would lead to 𝐴2 + 1 = 𝐵2 and thus 𝑃 (𝐴2 = 𝐵2) cannot be one. As a result, the combination of probabilities (2.54)
annot exceed 3, exactly as in the case of qubits. One can prove that under any local deterministic assumptions the maximum of
2.54) is 3 as only three probabilities out of four can be satisfied in the sum (2.54) [99,105].

One can further restrict this result by subtracting from the combination (2.54) the conditions enforced by the four simplest
eterministic choices, that is 𝑃 (𝐴2 = 𝐵1) in the first case discussed above, 𝑃 (𝐴2 + 1 = 𝐵2) in the second, and so on. In this way one
nds up with the condition:

I3 ≡ 𝑃 (𝐴1 = 𝐵1) + 𝑃 (𝐴2 + 1 = 𝐵1) + 𝑃 (𝐴2 = 𝐵2) + 𝑃 (𝐴1 = 𝐵2)

− 𝑃 (𝐴2 = 𝐵1) − 𝑃 (𝐴2 = 𝐵2 − 1) − 𝑃 (𝐴1 = 𝐵1 − 1) − 𝑃 (𝐵2 = 𝐴1 − 1) ≤ 2 . (2.55)

his is the Bell inequality introduced in [111,112]; one can prove that, as in the case of qubits for the inequality (2.38), this
nequality is optimal, in the sense that any other Bell inequality involving two shared qutrits is equivalent to (2.55).

Similarly to the case (2.37) for qubits, the combination of probabilities in I3 can be expressed in quantum mechanics as an
xpectation value of a suitable Bell operator ℬ as

I3 = Tr
[

𝜌ℬ
]

, (2.56)

here 𝜌 is the 9 × 9 density matrix representing the state of the two qutrits. Following the current convention,5 we denote

𝑓𝑖 =
1
9
A(3)
𝑖 , 𝑔𝑗 =

1
9
B(3)
𝑗 and ℎ𝑖𝑗 =

1
9
C(3)𝑖𝑗 . (2.57)

5 While some authors maintain the overall 1∕𝑑2 factor in Eq. (2.49) in their computation, others directly use the rescaled coefficients. In the following, we
12

adopt the first convention for qubits and the second when dealing with qutrits.
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The density operator in Eq. (2.49) can thus be written

𝜌 = 1
9
[1⊗ 1] +

8
∑

𝑎=1
𝑓𝑎

[

𝑇 𝑎 ⊗ 1
]

+
8
∑

𝑎=1
𝑔𝑎

[

1⊗ 𝑇 𝑎
]

+
8
∑

𝑎,𝑏=1
ℎ𝑎𝑏

[

𝑇 𝑎 ⊗ 𝑇 𝑏
]

, (2.58)

n the form of (2.49), specialized to 𝑑 = 3, where now the generators are the standard Gell-Mann matrices 𝑇 𝑎.
The explicit form of ℬ depends on the choice of the four measured operators 𝐴̂𝑖 and 𝐵̂𝑖. For the case of the maximally correlated

utrit state, analogous to the qubit state in (2.46), the problem of finding an optimal choice of measurements has been solved [111],
nd the Bell operator takes a particular simple form [113]:

ℬ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0

0 0 0 − 2
√

3
0 0 0 0 0

0 0 0 0 − 2
√

3
0 2 0 0

0 − 2
√

3
0 0 0 0 0 0 0

0 0 − 2
√

3
0 0 0 − 2

√

3
0 0

0 0 0 0 0 0 0 − 2
√

3
0

0 0 2 0 − 2
√

3
0 0 0 0

0 0 0 0 0 − 2
√

3
0 0 0

0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.59)

The observable I3 defined in Eq. (2.56), which parametrizes the violations of Bell inequalities for two qutrits systems, then can
be written in terms of the coefficients ℎ𝑎𝑏 as

I3 = 4
(

ℎ44 + ℎ55
)

−
4
√

3
3

[

ℎ61 + ℎ66 + ℎ72 + ℎ77 + ℎ11 + ℎ16 + ℎ22 + ℎ27
]

. (2.60)

Within the choice of measurements leading to the Bell operator (2.59), there is still the freedom of modifying the measured
bservables through local unitary transformations, which effectively corresponds to local changes of basis, separately at Alice’s and
ob’s sites. Correspondingly, the Bell operator undergoes the change:

ℬ → (𝑈 ⊗ 𝑉 )† ⋅ ℬ ⋅ (𝑈 ⊗ 𝑉 ) , (2.61)

here 𝑈 and 𝑉 are independent 3 × 3 unitary matrices. One can use this additional freedom in order to maximize the value of I3
or any given qutrit state 𝜌.

Concerning two qutrits6 entanglement, it is also useful to collect the explicit form of 𝒞2 in (2.25), giving a lowest bound on
oncurrence in terms of the coefficients appearing in the decomposition (2.58):

𝒞2 = 2max
[

−2
9
− 12

∑

𝑎
𝑓 2
𝑎 + 6

∑

𝑎
𝑔2𝑎 + 4

∑

𝑎𝑏
ℎ2𝑎𝑏 ;

− 2
9
− 12

∑

𝑎
𝑔2𝑎 + 6

∑

𝑎
𝑓 2
𝑎 + 4

∑

𝑎𝑏
ℎ2𝑎𝑏, 0

]

. (2.62)

Moreover, the same inverse proportionality between entanglement and polarizations in the final state, as given in Eq. (2.42), holds
for qutrits, the necessary changes having been made.

The Bell test in (2.55) can be extended to the case in which Alice and Bob share two 𝑑-dimensional systems, with 𝑑 > 3; also,
Bell tests involving more than two parties have been proposed (see, for example, [98,99]). A classification of these generalized Bell
inequalities is quite intricate [114–116].

2.4. Quantum correlations and relativity

As particles at colliders are created at relativistic velocities, one may wonder what is the fate of quantum correlations, and
entanglement in particular, under the action of a Lorentz transformation. One should keep in mind that these transformations are
implemented on the Hilbert space of particle states by means of unitary operators that always act separately on each particle created
in a high-energy collision. As local quantum operations cannot change the amount of quantum correlation of a state, its entanglement
remains unchanged by the action of any Lorentz transformation.

6 For qubits, one finds

𝒞2 =
1
2
max

[

−1 +
∑

𝑖
(𝐵+

𝑖 )
2 −

∑

𝑗
(𝐵−

𝑗 )
2 +

∑

𝑖,𝑗
𝐶2
𝑖𝑗 , −1 +

∑

𝑗
(𝐵−

𝑗 )
2 −

∑

𝑖
(𝐵+

𝑖 )
2 +

∑

𝑖,𝑗
𝐶2
𝑖𝑗 , 0

]

.
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Fig. 3.1. Unit vectors and momenta in the CM system [19], here specified for the production 𝑝 𝑝→ 𝜓𝜓̄ . The angles 𝜃−𝑖 define the directions of the final lepton
in the rest frame of the fermion 𝜓 with respect to the quantization axis. The same holds for 𝜓̄ .

Nevertheless, when the change of reference frame is implemented by a transformation involving different degrees of freedom, for
instance momentum and spin, then the entanglement encoded in the purely spin part of the multi-party state might change [117–
119]. Indeed, it is known that the von Neumann entropy of the reduced spin state is not, in general, relativistically invariant [120].
Yet, violations of Bell inequalities is assured in any reference frame by a careful choice of the directions along which particle spin
is measured [121,122]. In this respect, observables as (2.48) that optimize this choice are indeed of most valuable practical utility.

In addition, it should be stressed that the violation of Bell inequalities is pervasive in relativistic quantum field theory: if we take
a bipartite system, each party living in space-like separated space–time regions, there always exists a state for which the inequality
(2.45) is maximally violated [123–128].

3. The toolbox

3.1. A Cartesian basis for bipartite systems at colliders

When discussing the production of pairs of entangled particles, a natural coordinate system is that formed by a right-handed
orthonormal basis {n̂, r̂, k̂}, introduced in [19] and defined in the particle-pair center of mass (CM) frame as follows.

Let p̂ be the unit vector along the direction of one of the incoming beams in the CM frame and k̂ the direction of the momentum
of one of the produced particles in the same frame. Then the remaining unit vectors of the basis can be defined as

n̂ = 1
sin𝛩

(

p̂ × k̂
)

, r̂ = 1
sin𝛩

(

p̂ − cos𝛩k̂
)

, (3.1)

with 𝛩 being the scattering angle satisfying p̂ ⋅ k̂ = cos𝛩. This basis is then used to decompose the spin components of a particle in
the corresponding rest frame (reached via a boost along the ±k̂ direction, which leaves the basis vectors unchanged) as illustrated
for the case of two particles 𝑉1 and 𝑉2 in Fig. 3.1; it is customary to take the spin quantization axis along k̂.

3.2. Polarization density matrices

3.2.1. Qubit polarization matrices: Spin-half fermions
The density matrix describing the polarization state 𝜆 of a spin-half fermion 𝜓𝜆 can be computed straightforwardly from the

amplitude of the underlying production process

M(𝜆) =
[

𝑢̄𝜆A
]

, (3.2)

with polarization 𝜆 ∈ {− 1
2 ,

1
2 } along a given quantization direction. In the above formula we have indicated with A the term in the

amplitude that multiplies the spinor 𝑢̄𝜆 of the produced fermion and we used square brackets to track the contractions of spinor
indices.

The outgoing particle is then described by a state

|𝜓⟩ =
∑

M(𝜆) |
|

𝑢𝜆⟩ (3.3)
14

𝜆
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where |

|

𝑢𝜆⟩ is the Hilbert space representation of the spinor. The spinor-space density matrix is then obtained as

𝜌̃𝜓 =
|𝜓⟩ ⟨𝜓|
⟨𝜓|𝜓⟩

=
∑

𝜆𝜆′
[

𝑢̄𝜆A
][

𝑢̄𝜆′A
]†

|

|

𝑢𝜆⟩ ⟨𝑢̄𝜆′ ||
∑

𝜆𝜆′
[

𝑢̄𝜆A
][

𝑢̄𝜆′A
]†

⟨𝑢̄𝜆′ ||𝑢𝜆⟩
. (3.4)

y using the orthogonality relation ⟨𝑢̄𝜆′ ||𝑢𝜆⟩ ≡
[

𝑢̄𝜆′𝑢𝜆
]

= 2 𝑚𝛿𝜆′𝜆 the denominator can be rewritten as

𝜌̃𝜓 =
∑

𝜆𝜆′
[

𝑢̄𝜆A
][

𝑢̄𝜆′A
]†

|

|

𝑢𝜆⟩ ⟨𝑢̄𝜆′ ||

2𝑚
∑

𝜆
[

𝑢̄𝜆A
][

𝑢̄𝜆A
]†

=
∑

𝜆𝜆′
[

𝑢̄𝜆A
][

𝑢̄𝜆′A
]†

|

|

𝑢𝜆⟩ ⟨𝑢̄𝜆′ ||
2 𝑚 |M|

2
, (3.5)

where 𝑚 is the mass of the fermion and |M|

2 is the squared amplitude for the production process summed over the spin.
To obtain the polarization density matrix we use the projection operators [35,129]

|

|

𝑢𝜆⟩ ⟨𝑢̄𝜆′ ||
2𝑚

=
𝛱𝑢
𝜆𝜆′

2𝑚
= 1

4𝑚
(

∕𝑝 + 𝑚
)

(

𝛿𝜆𝜆′ + 𝛾5
∑

𝑖
∕𝑛𝑖𝜎

𝑖
𝜆′𝜆

)

(3.6)

nd
|

|

𝑣𝜆⟩ ⟨𝑣̄𝜆′ ||
2𝑚

=
𝛱𝑣
𝜆𝜆′

2𝑚
= 1

4𝑚
(

∕𝑝 − 𝑚
)

(

𝛿𝜆𝜆′ + 𝛾5
∑

𝑖
∕𝑛𝑖𝜎

𝑖
𝜆𝜆′

)

, (3.7)

here 𝜎𝑖 are the Pauli matrices and {𝑛𝜇𝑖 } is a triad of space-like four-vectors, each satisfying 𝑛𝜇𝑖 𝑝𝜇 = 0, obtained by boosting the
anonical basis of the spin four-vector 𝑛 to the frame7 where the fermion has four-momentum 𝑝. By means of the projector operators
e then obtain

𝜌𝜆𝜆′ =

[

𝛱𝑢
𝜆𝜆′

2𝑚
𝜌̃𝜓

]

=

[

AA†𝛱𝑢
𝜆𝜆′

]

|M|

2
≡ 1

2

(

1 +
3
∑

𝑖=1
𝑠𝑖𝜎𝑖

)

𝜆𝜆′
, (3.9)

here 𝑠𝑖 are the components of the fermion polarization vector that generally depend on the kinematic variables of the underlying
roduction process. The generalization to processes yielding more than one spin-half fermion in the final state is straightforward
nd the resulting density matrices can be decomposed on the basis of the tensor products of Pauli and unit matrices. For the case of
wo fermions, this yields the bipartite density matrix Eq. (2.39), the parameters of which are given in terms of expectation values
n Eq. (2.40) and Eq. (2.41).

.2.2. Qubit polarization matrices: Photons
The production of massless spin-1 particles (photons) is the other instance of a system whose polarizations are qubits. Let us

onsider the amplitude for the production of a photon with helicity 𝜆 ∈ {+1,−1} and momentum 𝑘

M(𝜆, 𝑘) = A𝜇𝜀
𝜇∗
𝜆 (𝑘) (3.10)

here A𝜇 denotes the coefficient multiplying the (conjugated) polarization vector 𝜀𝜇𝜆 of the produced photon. In the following we
ill remove the momentum dependence in M.

The polarization four-vectors 𝜀𝜇𝜆 , 𝜆 ∈ {1, 2} obey the conditions 𝜀𝜆 ⋅ 𝜀𝜆′ = −𝛿𝜆 𝜆′ , 𝜀𝜆 ⋅ 𝑘 = 0, where the contractions of Lorentz
ndices is left implied, and provide a basis for the linear polarizations. The polarization state |𝑉 𝜇

⟩ of the photon 𝑉 is consequently
etermined as

|𝑉 𝜈
⟩ =

∑

𝜆
M(𝜆) ||

|

𝜀𝜈𝜆
⟩

, (3.11)

here |

|

|

𝜀𝜈𝜆
⟩

is a representation of the polarization vector 𝜀𝜇𝜆 in the Hilbert space. The covariant density matrix describing the state
s then obtained as

𝜌̃𝜇𝜈 = −
|𝑉 𝜇

⟩ ⟨𝑉 𝜈
|

⟨

𝑉 𝜇|
|

|

𝑉𝜇
⟩

(3.12)

after the normalization of the state vector and having inserted a factor of (−1) to account for the signature (1, −1, −1, −1) of the
Minkowski metric. The polarization density matrix 𝜌𝜆𝜆′ is then obtained by contracting the density matrix in Eq. (3.12) with the
projector P𝜇𝜈𝜆𝜆′ (𝑘) = 𝜀𝜇∗𝜆 (𝑘) 𝜀𝜈𝜆′ (𝑘) as

𝜌𝜆𝜆′ = P𝜇𝜈𝜆𝜆′ 𝜌̃𝜇𝜈 . (3.13)

7 In the rest frame of the fermion we have 𝑛 = (0, 𝑛) and

𝑛1 =

⎛

⎜

⎜

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑛2 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑛3 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎟

⎟

⎠

. (3.8)
15
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From the orthonormality relation 𝜀𝜆 ⋅ 𝜀𝜆′ = −𝛿𝜆 𝜆′ and Eqs. (3.10)–(3.13) it follows that

𝜌𝜆𝜆′ =
M(𝜆)M†(𝜆′)

∑

𝜆′′ M†(𝜆′′)M(𝜆′′)
=

A𝜇A
†
𝜈P

𝜇𝜈
𝜆𝜆′

|M|

2
. (3.14)

The covariant density matrix in Eq. (3.12) can be decomposed in terms of the Stokes parameters 𝜉𝑖 [130] as:

𝜌̃𝜇𝜈 =
1
2
∑

𝜆𝜆′
𝜀𝜆𝜇

(

1 +
3
∑

𝑖=1
𝜉𝑖𝜎𝑖

)

𝜆𝜆′
𝜀𝜆

′
𝜈

= 1
2

(

𝜀(1)𝜇 𝜀
(1)
𝜈 + 𝜀(2)𝜇 𝜀

(2)
𝜈

)

+
𝜉1
2

(

𝜀(1)𝜇 𝜀
(2)
𝜈 + 𝜀(2)𝜇 𝜀

(1)
𝜈

)

−
𝑖𝜉2
2

(

𝜀(1)𝜇 𝜀
(2)
𝜈 − 𝜀(2)𝜇 𝜀

(1)
𝜈

)

+
𝜉3
2

(

𝜀(1)𝜇 𝜀
(1)
𝜈 − 𝜀(2)𝜇 𝜀

(2)
𝜈

)

. (3.15)

n matrix form, the density matrix on the helicity basis in Eq. (3.14) is given by

𝜌𝜆𝜆′ =
1
2

(

1 +
3
∑

𝑖=1
𝜉𝑖𝜎𝑖

)

𝜆𝜆′
(3.16)

nd the Stokes coefficients 𝜉𝑖 can be obtained by taking the traces, namely 𝜉𝑖 = Tr[𝜌𝜎𝑖].
In the case of a two-photon system, the corresponding density matrix will depend on the Stokes parameters 𝜉(𝑎) and 𝜉(𝑏) of the

hotons 𝑎 and 𝑏. The generalization is straightforward and the resulting density matrix can be decomposed on the basis of the tensor
roducts of Pauli and unit matrices as in Eq. (2.39).

.2.3. X states
A great deal of simplification occurs if the matrix 𝐶, written on the basis of (3.1),

𝐶 =
⎛

⎜

⎜

⎝

𝐶𝑛𝑛 𝐶𝑛𝑟 𝐶𝑛𝑘
𝐶𝑟𝑛 𝐶𝑟𝑟 𝐶𝑟𝑘
𝐶𝑘𝑛 𝐶𝑘𝑟 𝐶𝑘𝑘

⎞

⎟

⎟

⎠

, (3.17)

nly has a pair of non-vanishing off-diagonal terms, for instance 𝐶𝑘𝑟 = 𝐶𝑟𝑘. The eigenvalues of m12 are given in this case by

𝐶2
𝑛𝑛,

1
4

[

𝐶𝑘𝑘 + 𝐶𝑟𝑟 +
√

(𝐶2
𝑘𝑘 − 𝐶𝑟𝑟)

2 + 4𝐶2
𝑘𝑟

]2
, 1

4

[

𝐶𝑘𝑘 + 𝐶𝑟𝑟 −
√

(𝐶2
𝑘𝑘 − 𝐶𝑟𝑟)

2 + 4𝐶2
𝑘𝑟

]2
. (3.18)

he result in Eq. (3.18) is an example of the simplification that occurs for a class of states, dubbed X states [131] because their
ensity matrix takes the form

𝜌𝑋 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑎 0 0 𝑤
0 𝑏 𝑧 0
0 𝑧∗ 𝑐 0
𝑤∗ 0 0 𝑑

⎞

⎟

⎟

⎟

⎟

⎠

. (3.19)

ll matrices 𝐶 with only one non-vanishing coefficient off diagonal give rise to a density matrix that falls into this class.
The eigenvalues of the matrix 𝑅 in Eq. (2.22) in the case of 𝜌𝑋 can be readily written and the concurrence 𝒞 [𝜌] computed by

eans of a particularly simple formula; when 𝐵±
𝑖 = 0 and the only off-diagonal non-vanishing element of 𝐶 is 𝐶𝑟𝑘 = 𝐶𝑘𝑟, one has

𝒞 [𝜌] = 1
2
max

[

0, |𝐶𝑟𝑟 + 𝐶𝑘𝑘| − (1 + 𝐶𝑛𝑛) ,
√

(𝐶𝑟𝑟 − 𝐶𝑘𝑘)2 + 4𝐶2
𝑟𝑘 − |1 − 𝐶𝑛𝑛|

]

. (3.20)

.2.4. Qutrit polarization matrices
Massive spin-1 particles provide an instance of a system whose polarizations implement qutrits. Let us consider the amplitude

or the production of a massive gauge boson with helicity 𝜆 ∈ {+1, 0,−1} and momentum 𝑝

M(𝜆, 𝑝) = A𝜇𝜀
𝜇∗
𝜆 (𝑝) (3.21)

here A𝜇 denotes the coefficient multiplying the (conjugated) polarization vector 𝜀𝜇𝜆 of the produced boson. The polarization state
𝑉 𝜇

⟩ of the boson 𝑉 is consequently determined as

|𝑉 𝜈
⟩ =

∑

𝜆
M(𝜆) ||

|

𝜀𝜈𝜆
⟩

, (3.22)

here |

|

|

𝜀𝜈𝜆
⟩

is a representation of the polarization vector in the Hilbert space. The covariant density matrix describing the state is
hen obtained as

𝜌̃𝜇𝜈 = −
|𝑉 𝜇

⟩ ⟨𝑉 𝜈
|

⟨

𝑉 𝜇|
|

|

𝑉𝜇
⟩

(3.23)

after the normalization of the state vector and having inserted a factor of (−1) to account for the signature (1, −1, −1, −1) of the
Minkowski metric 𝑔𝜇𝜈 . The polarization density matrix is then obtained through the projector P𝜇𝜈𝜆𝜆′ (𝑝) = 𝜀𝜇∗𝜆 (𝑝) 𝜀𝜈𝜆′ (𝑝) :

𝜇𝜈
16

𝜌𝜆𝜆′ = P𝜆𝜆′ 𝜌̃𝜇𝜈 . (3.24)
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From the orthonormality relation 𝑔𝜇𝜈 𝜀
𝜇
𝜆 (𝑝) 𝜀

𝜈
𝜆′ (𝑝) = −𝛿𝜆𝜆′ and Eqs. (3.21)–(3.24) it follows that

𝜌𝜆𝜆′ =
M(𝜆)M†(𝜆′)

∑

𝜆′′ M†(𝜆′′)M(𝜆′′)
=

A𝜇A
†
𝜈P

𝜇𝜈
𝜆𝜆′

|M|

2
. (3.25)

n order to obtain an expression for the projector P, consider the explicit form of the wave vector of a massive gauge boson with
elicity 𝜆

𝜀𝜇𝜆 (𝑝) = − 1
√

2
|𝜆|

(

𝜆 𝑛𝜇1 + 𝑖 𝑛𝜇2
)

+
(

1 − |𝜆|
)

𝑛𝜇3 , (3.26)

here the four-vectors 𝑛𝑖 = 𝑛𝑖(𝑝), 𝑖 ∈ {1, 2, 3}, form a right-handed triad and are obtained by boosting the linear polarization vectors
efined in the frame where the boson is at rest to a frame where it has momentum 𝑝. With the above expression one finds [132–134]

P𝜇𝜈𝜆𝜆′ (𝑝) =
1
3

(

−𝑔𝜇𝜈 +
𝑝𝜇𝑝𝜈

𝑚2
𝑉

)

𝛿𝜆𝜆′ −
𝑖

2𝑚𝑉
𝜖𝜇𝜈𝛼𝛽𝑝𝛼𝑛𝑖 𝛽

(

𝑆𝑖
)

𝜆𝜆′ −
1
2
𝑛𝜇𝑖 𝑛

𝜈
𝑗
(

𝑆𝑖𝑗
)

𝜆𝜆′ , (3.27)

here 𝑚𝑉 is the invariant mass of the vector boson 𝑉 , 𝜖𝜇𝜈𝛼𝛽 the permutation symbol (𝜖0123 = 1) and 𝑆𝑖, 𝑖 ∈ {1, 2, 3}, are the 𝑆𝑈 (2)
generators in the spin-1 representation—the eigenvectors of 𝑆3, corresponding to the eigenvalues 𝜆 ∈ {+1, 0,−1}, define the helicity
basis. The spin matrix combinations appearing in the last term are given by

𝑆𝑖𝑗 = 𝑆𝑖𝑆𝑗 + 𝑆𝑗𝑆𝑖 −
4
3
1 𝛿𝑖𝑗 , (3.28)

ith 𝑖, 𝑗 ∈ {1, 2, 3} and 1 being the 3 × 3 unit matrix.
Eqs. (3.25) and (3.27) make it possible to compute the polarization density matrix for an ensemble of 𝑉 bosons produced in

epeated reactions described by the amplitude M. The formalism can be straightforwardly extended to processes yielding a bipartite
utrit state formed by two massive gauge bosons, 𝑉1 and 𝑉2. In this case we have

𝜌 =
A𝜇𝜈A

†
𝜇′𝜈′

|M|

2

(

P𝜇𝜇′ (𝑘1)⊗P𝜈𝜈′ (𝑘2)
)

, (3.29)

where 𝑘1 and 𝑘2 denote the momenta of the vector bosons in a given frame. The eight components of 𝑓𝑎 and 𝑔𝑎, as well as the
64 elements of ℎ𝑎𝑏, can be obtained by projecting the density matrix (2.58) on the desired subspace basis using the orthogonality
relations, yielding

𝑓𝑎 =
1
6

Tr
[

𝜌 (𝑇 𝑎 ⊗ 1)
]

, 𝑔𝑎 =
1
6

Tr
[

𝜌 (1⊗ 𝑇 𝑎)
]

, ℎ𝑎𝑏 =
1
4

Tr
[

𝜌
(

𝑇 𝑎 ⊗ 𝑇 𝑏
)]

. (3.30)

All the terms computed via Eq. (3.30) are Lorentz scalars.

3.3. Reconstructing density matrices from events

The preceding Section described how to calculate the probability of the directions of the emitted decay products based on the spin
density matrix of the parent particle. The experimental analysis must instead provide the spin density matrix from the observable
angular distributions. This inverse problem is possible provided that (i) the decays depend sufficiently on 𝜌 that the process is
invertible in principle and (ii) that the daughter particle angular distributions can be determined in the rest-frame of the parent
particles.

The simplest case of the two-body decay of a scalar state is uninteresting in this regard; the spin density matrix is the
one-dimensional identity 11, and the angular distributions are isotropic.

3.3.1. Qubits
For the simplest non-trivial case, the decay of a spin-half particle, such as a top quark or antiquark, the density matrix Eq. (3.9)

can be represented by the polarization vector 𝐵⃗ ≡ ⟨𝑠⟩, where the average is taken over the distributions of the kinematic parameters
that determine 𝑠. The role of the projectors in Eq. (3.9) is to produce an angular dependence that the probability density function
for the decay product lie into the infinitesimal solid angle close to 𝑛:

𝑝(𝑛; 𝜌) = 1
4𝜋

(1 + 𝜅 𝐵⃗ ⋅ 𝑛). (3.31)

The decay depends only on 𝐵⃗ and on the so-called ‘spin-analyzing power’ 𝜅 ∶ −1 ≤ 𝜅 ≤ 1 of the daughter particle in the decay.
Near-maximum values of |𝜅| ≈ 1.0 are obtained for charged leptons emitted in top-quark decays [135].

The process of measuring 𝜌 from data in this case is equivalent to determining the polarization 𝐵⃗ from the angular distribution.
This can be achieved by measurement of the angular distributions, except the (not infrequent) special case when 𝜅 = 0 when the
decay is isotropic and hence the process non-invertible. For 𝜅 ≠ 0 the polarization components are given by projecting out the
polarization components of Eq. (3.31) which can be achieved from the averages of the angular distributions of the polarimetric
vector 𝑛

𝐵±
𝑖 = 3 1 d𝛺± d𝜎 (𝑛± ⋅ 𝑒𝑖), (3.32)
17

𝜅± 𝜎 ∫ d𝛺±
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Fig. 3.2. Example of distributions of the elements of the matrix 𝐶𝑖𝑗 and the vectors 𝐵±
𝑖 . The ordinate axes represent the respective frequencies. The average (see

Eqs. (3.34)–(3.35)) and standard deviation of these histograms give the mean value and uncertainty of the corresponding coefficient. The non-vanishing values
of 𝐵±

𝑖 or 𝐶𝑖𝑗 manifest here as asymmetries in the histograms as vanishing values would be perfectly symmetric. The plots are from a simulation of the process
𝑒+𝑒− → 𝜏+𝜏− at

√

𝑠 = 91.19 GeV, by two of the authors.

where {𝑒𝑖}, 𝑖 = 1, 2, 3, is an orthonormal basis—usually {n̂, r̂, k̂}. The correlation parameters 𝐶𝑖𝑗 can also be determined by taking
the average

𝐶𝑖𝑗 =
9

𝜅+𝜅−
1
𝜎 ∫ d𝛺+d𝛺− d𝜎

d𝛺+d𝛺− (𝑛+ ⋅ 𝑒𝑖)(𝑛− ⋅ 𝑒𝑗 ) (3.33)

weighted again by the differential cross section. For the case of measuring the spin of 𝑡𝑡 or 𝜏−𝜏+ systems from the final particle
angular distributions in their parents’ respective rest frames, the spin analyzing powers in Eqs. (3.32)–(3.33) are 𝜅+ = +1.0 and
= 𝜅 = −1.0 for the positive and negative leptons respectively.
18
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Alternatively, quantum tomography can be performed if the following distributions can be reconstructed
1
𝜎

d𝜎
d cos 𝜃±𝑖

= 1
2
(

1 ∓ 𝐵±
𝑖 cos 𝜃±𝑖

)

, (3.34)

1
𝜎

d𝜎
d cos 𝜃+𝑖 d cos 𝜃−𝑗

= 1
4

(

1 + 𝐶𝑖𝑗 cos 𝜃+𝑖 cos 𝜃−𝑗
)

, (3.35)

n which cos 𝜃±𝑖 are the projections of the spin vector (or, equivalently, of the polarimetric vector) on the {n̂, r̂, k̂} basis as computed
in the rest frame of the qubit of interest. An example of the distributions obtained for the 𝐵±

𝑖 and 𝐶𝑖𝑗 coefficients through Monte
Carlo simulations of the 𝑒+𝑒− → 𝜏+𝜏− process can be found in Fig. 3.2 for the case of the 𝜏 leptons. Non-vanishing values of the
oefficients are signaled by asymmetric distributions.

.3.2. Qutrits
The spin 1 gauge bosons also act as their own polarimeters. For instance, in the decay 𝑊 + → 𝓁+𝜈𝓁 the lepton 𝓁+ is produced in

he positive helicity state while the neutrino 𝜈𝓁 in the negative helicity state. The polarization of the 𝑊 + is therefore measured to
e +1 in the direction of the lepton 𝓁+. The opposite holds for the decay 𝑊 − → 𝓁−𝜈̄𝓁 and the polarization of the 𝑊 − is therefore
easured to be −1 in the direction of the lepton 𝓁−. In both the cases, the momenta of the final leptons (as in Fig. 3.1) provide
measurement of the gauge boson polarizations. The same is true for final jets from 𝑑 and 𝑠 quarks. These momenta are the only

nformation that we need to extract from the numerical simulation or the actual data.
The challenge of reconstructing the correlation coefficients ℎ𝑎𝑏, 𝑓𝑎 and 𝑔𝑎 has of the density matrix of the final leptons has

ecently been discussed in [136], which we mostly follow in the remainder of this section.
The cross section we are interested in can be written as [137]

1
𝜎

d𝜎
d𝛺+ d𝛺− =

( 3
4𝜋

)2
Tr

[

𝜌𝑉1𝑉2
(

𝛱+ ⊗𝛱−
)

]

, (3.36)

n which the angular volumes d𝛺± = sin 𝜃±d𝜃± d𝜙± are written in terms of the spherical coordinates (with independent polar axes)
or the momenta of the final charged leptons in the respective rest frames of the decaying particles. The dependence on the invariant
ass 𝑚𝑉 𝑉 and scattering angle 𝛩 in Eq. (3.36) is implied. The density matrix 𝜌𝑉1𝑉2 in Eq. (3.36) is that for the production of two

gauge bosons given in Eq. (2.58).
The density matrices 𝛱± describe the polarization of the decaying gauge bosons. The final leptons are taken to be massless—for

their masses are negligible with respect to that of the gauge boson. They are projectors in the case of the 𝑊 -bosons because of their
chiral coupling to leptons. These matrices can be computed by rotating to an arbitrary polar axis the spin ±1 states of the weak
gauge bosons taken in the 𝑧 direction and are given, in the Gell-Mann basis, as

𝛱± = 1
3
1 + 1

2

8
∑

𝑖=𝑎
q𝑎± 𝑇

𝑎 , (3.37)

here the Wigner functions q𝑎± can be written in terms of the respective spherical coordinates, as reported in Eq. (B.5) of
ppendix B.2, for the decay of 𝑊 -bosons.

We can define another set of functions

p𝑛± =
∑

𝑚
(m−1

± )𝑛𝑚 q
𝑚
± (3.38)

rthogonal to those in Eq. (B.5):
( 3
4𝜋

)

∫ p𝑛± q
𝑚
± d𝛺± = 2 𝛿𝑛𝑚 . (3.39)

In Eq. (3.38), m−1 is the inverse of the matrix

(m±)𝑛𝑚 =
( 3
8𝜋

)

∫ q𝑛± q
𝑚
± d𝛺± , (3.40)

hich is assumed to exist. The explicit form of the functions p𝑛± are given in Appendix B.2 Eq. (B.6).
The functions in Eq. (3.38) can be used to extract the correlation coefficients ℎ𝑎𝑏 from the bi-differential cross section in Eq. (3.36)

hrough the projection

ℎ𝑎𝑏 =
1
4 𝜎 ∬

d𝜎
d𝛺+ d𝛺− p𝑎+ p

𝑏
− d𝛺+d𝛺− . (3.41)

The correlation coefficients 𝑓𝑎 and 𝑔𝑎 can be obtained in similar fashion by projecting the single differential cross sections:

𝑓𝑎 = 1
2 𝜎 ∫

d𝜎
d𝛺+ p𝑎+ d𝛺+ ,

𝑔𝑎 = 1
2 𝜎 ∫

d𝜎
d𝛺− p𝑎− d𝛺− . (3.42)

The density matrices 𝛱± are not projectors in the case of the 𝑍-bosons because the coupling between 𝑍-bosons and leptons in
the Lagrangian,

−𝑖
𝑔 [

𝑔𝐿(1 − 𝛾5)𝛾𝜇 + 𝑔𝑅(1 + 𝛾5)𝛾𝜇
]

𝑍𝜇 , (3.43)
19
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Fig. 3.3. Reconstructed Gell-Mann parameters obtained from quantum state tomography of pairs of simulated 𝑊 ± bosons obtained from 𝐻 → 𝑊𝑊 (∗) → 𝓁+𝜈𝓁− 𝜈̄,
(the bottom row of each plot contains the 𝐵+ parameters for a 𝑊 + boson, the leftmost column the 𝐵− parameters for the 𝑊 − boson and the rows and columns
1–8 the 𝐶𝑖𝑗 parameters. Bins are marked with ‘‘+ ’’ or ‘‘−’’ to indicate the sign of the reconstructed coefficient. The (0,0) element has no meaning.
Source: Adapted from [136] (CCBY4.0).

contains both right- and left-handed components, whose strengths are controlled by the coefficients 𝑔𝐿 = −1∕2 + sin2 𝜃𝑊 and
𝑔𝑅 = sin2 𝜃𝑊 . In this case, one must introduce a generalized form of the functions in Eq. (B.5) which is defined as the following
linear combinations

q̃𝑛 = 1
𝑔2𝑅 + 𝑔2𝐿

[

𝑔2𝑅 q
𝑛
+ + 𝑔2𝐿 q

𝑛
−

]

, (3.44)

and define from these the corresponding orthogonal functions p̃𝑛 to be used in Eq. (3.30). They are the same for both the ± coordinate
sets and given by

p̃𝑛 =
∑

𝑚
a𝑛𝑚p

𝑚
+ , (3.45)

where the matrix a𝑛𝑚 is given in Eq. (B.7) in Appendix B.2. The Eqs. (3.41)–(3.42) can be used after replacing the functions p𝑚± with
p̃𝑛.

Eqs. (3.41)–(3.42) provide the means to reconstruct the correlation functions of the density matrix from the distribution of the
lepton momenta and thus allow to infer the expectation values of the observables I3 and 𝒞2 from the data. In a numerical simulation,
or working with actual events, one extracts from each single event the coefficient of the combinations of trigonometric functions
indicated in Eq. (B.6) in B.2; that coefficient is the corresponding entry of the correlation matrix in Eqs. (3.41)–(3.42). Running this
procedure over all events gives an average value and its standard deviation.

An example showing the corresponding parameters, after this averaging for the process 𝐻 → 𝑊𝑊 (∗) → 𝓁+𝜈𝓁−𝜈̄, assuming that
the parental rest frames can be determined is shown in Fig. 3.3.

3.3.3. Tensor representation for qutrits
The Gell-Mann representation of the density matrix Eq. (2.58) is only one possible parameterization. An alternative representation

of the density matrix is in terms of tensor operator components, which for a single system can be written [35,137–140]

𝜌 = 1
2𝑠 + 1

∑

𝐿,𝑀
(2𝐿 + 1)(𝑡𝐿𝑀 )∗𝑇 𝐿𝑀 , (3.46)

where 𝑇 𝐿𝑀 are the matrices that represent the irreducible spherical tensor operators. We note that for the case of a qubit
representation of the density matrix the Tensor representation and the Gell-Mann representation are identical, since both are
provided by the standard Bloch vector, that is a parameterization based on the Pauli matrices.

For the general tensor representation, the orthogonality relationship

Tr
(

𝑇 𝐿
′

𝑀 ′𝑇
𝐿†
𝑀

)

= 2𝑠 + 1
2𝐿 + 1

𝛿𝐿𝐿′𝛿𝑀𝑀 ′ (3.47)

allows determination of the coefficients

𝑡𝐿 = Tr
(

𝜌𝑇 𝐿
)

(3.48)
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from the observables. The procedure for extracting the coefficients from angular distributions in this framework is described in [140],
which also includes discussion of the Wigner q and p functions for the irreducible tensors. The density matrices for bipartite systems
can similarly be parametrized in terms of tensor products of tensor operators for the respective particles

𝜌 = 1
9

{

1⊗ 1 + 𝐴1
𝐿𝑀

[

𝑇 𝐿𝑀 ⊗ 1
]

+ 𝐴2
𝐿𝑀

[

1⊗ 𝑇 𝐿𝑀
]

+ 𝐶𝐿1𝑀1𝐿2𝑀2

[

𝑇 𝐿1
𝑀1

⊗ 𝑇 𝐿2
𝑀2

]

}

. (3.49)

The resultant angular distributions for 𝑊 ± boson decays, in terms of related parameters are given in [139]. The equivalent
istributions for the 𝑍 boson are provided in [141].

The analyses outlined in this Section can be experimentally challenging because both the CM frame of the collision and the rest
rame of the parents must be determined in order to compute the various correlation coefficients with reasonable uncertainties. We
iscuss more details of the experimental aspects of these analyses in Section 4 for qubits and Section 5 for qutrits.

. Qubits: 𝜦 baryons, top quarks, 𝝉 leptons and photons

Systems of two qubits, such as those arising from the polarizations of pairs of fermions (or photons), are routinely produced
article colliders such as the LHC, SuperKEKB and BEPC II. We consider the production of 𝛬 baryons at BEPC II and collected

by the BESIII experiment, top-quark pair 𝑡𝑡, 𝜏-lepton pair 𝜏𝜏 via the Drell–Yan mechanism and in the resonant Higgs boson decay
ℎ→ 𝜏𝜏 at the LHC, and in the 𝑒+𝑒− → 𝜏𝜏 at SuperKEKB. We also include the di-photon system via the resonant Higgs decay process
ℎ → 𝛾𝛾, assuming (and it is a significant assumption) that polarizations of the high-energy photons could be determined. For each
of the considered processes, we provide the analytical predictions for the corresponding Bell inequality violation and quantum
entanglement observables. Side by side with the analytical computation, it is crucial to have access to Monte Carlo simulations of
the same processes in order to have an estimate of the uncertainty and therefore of the significance that can be reached for the
values of the observables. The predictions, obtained by the reconstruction of the polarization density matrix by means of simulations
of events, are provided, in dedicated sub-sections, for each of the considered processes.

4.1. Entangled 𝛬 baryons

The decays of charmonium 𝜂𝑐 , 𝜒𝑐 and 𝐽∕𝜓 produce pairs of entangled 𝛬 baryons. These processes were suggested in [49,50]
nd studied in [51,52,142] as a promising setting for testing a Bell inequality.

The helicity states of the final system in

𝜂𝑐 → 𝛬 + 𝛬̄ (4.1)

all in the singlet representation of the product 1
2⊗

1
2 = 0⊕1. The same holds for the decays of 𝜒𝑐 . It is constrained by the conservation

of the angular momentum to be described by the state

|𝜓0⟩ ∝ 𝑤 1
2 − 1

2
|

1
2 ,

1
2 ⟩⊗ |

1
2 ,−

1
2 ⟩ −𝑤− 1

2
1
2
|

1
2 ,−

1
2 ⟩⊗ |

1
2 ,

1
2 ⟩ , (4.2)

n which 𝑤𝑖𝑗 are the normalized helicity amplitude are given by the Clebsh–Gordon coefficients: 𝑤 1
2 − 1

2
= 𝑤− 1

2
1
2
= 1

√

2
.

The case of the decays of the 𝐽∕𝜓 , which is a spin-one particle, is different. The spin state of the pairs of 𝛬 depends on the
polarization of the 𝐽∕𝜓 and is therefore in general in a mixed state with less entanglement. Accordingly, this process is less favorable
to the observation of large entanglement and a significant violation of Bell inequality, as already noted in [51,52,142].

Data on these processes have been collected by the BESIII Collaboration [143–145], with sufficient numbers of events for an
experimental observation of entanglement and Bell inequality violation to be possible.

4.1.1. Entanglement and Bell inequality violation in 𝜂𝑐 → 𝛬 + 𝛬̄
The state in Eq. (4.2) gives rise to the density matrix

𝜌𝛬𝛬 = |𝜓0⟩⟨𝜓0| =
1
2

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, (4.3)

hich can only depends on the overall strength of the coupling. The conservation of the angular momentum forces the final state into
he singlet and the helicity amplitudes are completely fixed except for an overall function that is factorized out in the normalization
f the density matrix. Using the Pauli matrices 𝜎𝑖, we can write the correlation matrix

𝐶𝑖𝑗 = Tr 𝜌𝛬𝛬 𝜎𝑖 ⊗ 𝜎𝑗 =
⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎟

⎟

⎠

(4.4)

rom which it is possible to compute the concurrence 𝒞 = 1 and determine the Horodecki condition m12 = 2. These maximum
alues show that one can expect maximum entanglement and maximal violation of Bell inequality in this process. This is also the
21
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Fig. 4.1. Feynman diagrams (at partonic tree-level) for top–antitop (𝑡𝑡) production, for gluon (𝑔𝑔) and quark-pair (𝑞𝑞) initial states.

4.2. Top-quark pair production at the LHC

At the parton level, the production of top-quark pair 𝑡𝑡 at the LHC receives two distinct contributions, namely from quark anti-
quark annihilation (𝑞𝑞 → 𝑡𝑡) and gluon–gluon fusion (𝑔𝑔 → 𝑡𝑡) respectively. Corresponding Feynman diagrams in the SM are shown
in Fig. 4.1. The analysis of the kinematics and polarizations is described for 𝑞𝑞 → 𝑓𝑓 , where 𝑓 stands for a generic fermion in
Appendix A.1. The same considerations on the kinematics and polarizations of the final states hold for the top-quark production via
gluon–gluon fusion.

The unpolarized differential cross section for the process

𝑝 + 𝑝 → 𝑡 + 𝑡 . (4.5)

is given in the basis Eq. (3.1) by [19,69,70]

d𝜎
d𝛺 d𝑚𝑡𝑡

=
𝛼2𝑠𝛽𝑡

64𝜋2𝑚2
𝑡𝑡

{

𝐿𝑔𝑔(𝜏) 𝐴̃𝑔𝑔[𝑚𝑡𝑡, 𝛩] + 𝐿𝑞𝑞(𝜏) 𝐴̃𝑞𝑞[𝑚𝑡𝑡, 𝛩]
}

, (4.6)

where the combination of the two channels at partonic tree-level (see Fig. 4.1) 𝑔+ 𝑔 → 𝑡+ 𝑡 and 𝑞+ 𝑞 → 𝑡+ 𝑡 in Eq. (4.6) is weighted
by the respective parton luminosity functions 𝐿𝑔𝑔,𝑞𝑞(𝜏)

𝐿𝑔𝑔(𝜏) = 2𝜏
√

𝑠 ∫

1∕𝜏

𝜏

d𝑧
𝑧
𝑞𝑔(𝜏𝑧)𝑞𝑔

( 𝜏
𝑧

)

and 𝐿𝑞𝑞(𝜏) =
∑

𝑞=𝑢,𝑑,𝑠

4𝜏
√

𝑠 ∫

1∕𝜏

𝜏

d𝑧
𝑧
𝑞𝑞(𝜏𝑧)𝑞𝑞

( 𝜏
𝑧

)

, (4.7)

where the functions 𝑞𝑗 (𝑥) are the PDFs, 𝛼𝑠 = 𝑔2∕4𝜋 and 𝜏 = 𝑚𝑡𝑡∕
√

𝑠, with 𝑚𝑡𝑡 the invariant mass of the 𝑡𝑡 system. The explicit
expressions for 𝐴̃𝑔𝑔 and 𝐴̃𝑞𝑞 are given in Appendix A.2. Their numerical values can be taken from, for instance, those provided by
a recent sets (PDF4LHC21 [146]) for

√

𝑠 = 13 TeV and factorization scale 𝑞0 = 𝑚𝑡𝑡.
The correlation coefficients 𝐶𝑖𝑗 in the polarization density matrix for the 𝑡𝑡 pair production is given as [19,69,70]

𝐶𝑖𝑗 [𝑚𝑡𝑡, 𝛩] =
𝐿𝑔𝑔(𝜏) 𝐶̃𝑔𝑔𝑖𝑗 [𝑚𝑡𝑡, 𝛩] + 𝐿

𝑞𝑞(𝜏) 𝐶̃𝑞𝑞𝑖𝑗 [𝑚𝑡𝑡, 𝛩]

𝐿𝑔𝑔(𝜏) 𝐴̃𝑔𝑔[𝑚𝑡𝑡, 𝛩] + 𝐿𝑞𝑞(𝜏) 𝐴̃𝑞𝑞[𝑚𝑡𝑡, 𝛩]
. (4.8)

Notice that in the SM the polarization coefficients for the quark-pair 𝐵𝑞𝑞𝑖 = 0 identically vanish—barring higher order electroweak
corrections.

The explicit expression for the coefficient 𝐶̃𝑔𝑔𝑖𝑗 and 𝐶̃𝑞𝑞𝑖𝑗 in Eq. (4.8) for the SM are collected in Appendix A.2. They are related
to the corresponding correlation coefficients 𝐶𝑞𝑞,𝑔𝑔𝑖𝑗 for partonic processes by 𝐶̃𝑔𝑔𝑖𝑗 = 𝐶𝑔𝑔𝑖𝑗 𝐴

𝑔𝑔 and 𝐶̃𝑞𝑞𝑖𝑗 = 𝐶𝑞𝑞𝑖𝑗 𝐴
𝑞𝑞 .

4.2.1. Entanglement in 𝑡𝑡 production
Top-quark pair production is the first process that has been considered in the current run of analyses. In [69] the expected

entries of the density matrix were evaluated in the frame proposed in [21] (in which they were computed for estimating classical
correlations) and the concurrence computed.

The dependence of the entries of the polarization density matrix in Eq. (4.8) on the kinematic variables 𝛩, the scattering angle,
and 𝛽𝑡 =

√

1 − 4𝑚2
𝑡 ∕𝑚

2
𝑡𝑡, is in general rather involved but it simplifies at 𝛩 = 𝜋∕2 for which the top-quark pair is transversally

produced and the entanglement is maximal. To understand the behavior in this limit, one can choose the three vectors {n̂, r̂, k̂}
to point in the {𝑥̂, 𝑦̂, 𝑧̂} directions and denote by |0⟩ and |1⟩ the eigenvectors of the Pauli matrix 𝜎𝑧 with eigenvalues −1 and +1,
respectively; similarly, let |−⟩ and |+⟩ be the analogous eigenvectors of 𝜎𝑥 and |L⟩ and |R⟩ those of 𝜎𝑦.

A set of quark pair spin density matrices that are relevant to this case are the projectors on pure, maximally entangled Bell states,

𝜌(±) = |𝜓 (±)
⟩⟨𝜓 (±)

| , |𝜓 (±)
⟩ = 1

√

(

|01⟩ ± |10⟩
)

, (4.9)
22
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Fig. 4.2. The observables 𝒞 [𝜌] (contour plot on the left) and m12 (contour plot on the right) for 𝑡𝑡 production as functions of the kinematic variables 𝛩 and
𝑚𝑡𝑡 across the entire available space (they are symmetric for cos𝛩 < 0).
Source: Figures revised from [147] (CCBY4.0).

together with the mixed, unentangled states,

𝜌(1)mix = 1
2

(

|++⟩⟨++| + |−−⟩⟨−−|
)

, (4.10)

𝜌(2)mix = 1
2

(

|LR⟩⟨LR| + |RL⟩⟨RL|
)

, (4.11)

𝜌(3)mix = 1
2

(

|01⟩⟨01| + |10⟩⟨10|
)

. (4.12)

Let us treat separately the quark–antiquark 𝑞𝑞 and gluon–gluon 𝑔𝑔 production channels. For the 𝑞𝑞 production channel, using
the explicit expression collected in Appendix A.2 for the correlation coefficients 𝐶𝑖𝑗 , one obtains that the 𝑡𝑡 spin density matrix can
be expressed as the following convex combination [147] :

𝜌(𝑞𝑞)𝑡𝑡 = 𝜆𝜌(+) + (1 − 𝜆)𝜌(1)mix , with 𝜆 =
𝛽2𝑡

2 − 𝛽2𝑡
∈ [0, 1] , (4.13)

so that at high transverse momentum, for 𝛽𝑡 → 1, the spins of the 𝑡𝑡 pair tend to be generated in a maximally entangled state; this
quantum correlation is however progressively diluted for 𝛽𝑡 < 1, vanishing at threshold, 𝛽𝑡 = 0, as the two spin state becomes a
totally mixed, separable state.

The situation is different for the 𝑔𝑔 production channel, as both at threshold and at high momentum the 𝑡𝑡 spins result maximally
entangled, with 𝜌(𝑔𝑔)𝑡𝑡 = 𝜌(+) for 𝛽𝑡 → 1 and 𝜌(𝑔𝑔)𝑡𝑡 = 𝜌(−) when 𝛽𝑡 = 0. For intermediate values of 𝛽𝑡, the situation becomes more
involved, and the two-spin density matrix can be expressed as the following convex combination:

𝜌(𝑔𝑔)𝑡𝑡 = 𝑎𝜌(+) + 𝑏𝜌(−) + 𝑐𝜌(1)mix + 𝑑𝜌
(2)
mix , (4.14)

with non-negative coefficients [147]

𝑎 =
𝛽4𝑡

1 + 2𝛽2𝑡 − 2𝛽4𝑡
, 𝑏 =

(1 − 𝛽2𝑡 )
2

1 + 2𝛽2𝑡 − 2𝛽4𝑡
, 𝑐 = 𝑑 =

2𝛽2𝑡
(

1 − 𝛽2𝑡
)

1 + 2𝛽2𝑡 − 2𝛽4𝑡
, (4.15)

so that 𝑎 + 𝑏 + 𝑐 + 𝑑 = 1, while entanglement is less than maximal.
Including both the 𝑞𝑞- and 𝑔𝑔-contributions leads to more mixing and therefore in general to additional loss of quantum

correlations.
All these features are manifest in the plot on the left-side in Fig. 4.2. There are two regions where entanglement is significant:

in a narrow region near threshold; and for boosted tops for scattering angles close to 𝜋∕2.
The strong dependence of the entanglement on the kinematic variables was first shown in [69]. That paper calculated the quantity

𝐷 = 1
3

Tr𝐶𝑖𝑗 (4.16)

and showed that close to threshold it is expected to be smaller than −1∕3. This is a sufficient condition for entanglement, as 𝐷 is
directly connected to concurrence by the relation 𝒞 [𝜌] = max[−1 − 3𝐷, 0]∕2 [69].
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The ATLAS Collaboration, applying the method proposed in [69], has recently [73] analyzed the 𝑝𝑝 data and extracted the value
of 𝐷 from the differential cross section

1
𝜎

d𝜎
d cos𝜙

= 1
2

(

1 −𝐷 cos𝜙
)

, (4.17)

here 𝜙 is the angle between the respective leptons as computed in the rest frame of the decaying top and anti-top.
The analysis selected fully leptonic top pair events with one electron and one muon of opposite signs, and measured 𝐷 at the

article level in the near-threshold region 340 GeV < 𝑚𝑡𝑡 < 380GeV. After calibrating for detector acceptance and efficiency they
easured [73]

𝐷 = −0.547 ± 0.002 [ stat.] ± 0.021 [ syst.] . (4.18)

his value is smaller than −1∕3 with a significance of more than 5𝜎, thus provides the first experimental observation of the presence
f entanglement between the spins of the top quarks.

The observed entanglement is larger than that predicted by the simulations, suggesting that the simulations might require
mproved modeling of near-threshold effects in 𝑡𝑡 production.

A preliminary analysis8 by CMS [74] in an overlapping near-threshold region, 345 GeV < 𝑚𝑡𝑡 < 400 GeV, observed 𝐷 to be

𝐷 = −0.478 ± 0.017 [ stat.] +0.018
−0.021 [ syst.] (4.19)

n that region, with a statistical significance to be smaller than −1∕3 of 5.1𝜎. The Monte Carlo simulations for the CMS analysis
ncluded a calculation of the color-singlet contribution of toponium bound states, the inclusion of which tends to increase the
redicted level of entanglement, and to improve agreement between simulation and data.

.2.2. Bell inequalities
The violation of the Bell inequality, coming from the entanglement of the top-quark pair, can be measured [70] by means of the

orodecki condition (2.48)

m12 ≡ 𝑚1 + 𝑚2 > 1 (4.20)

s defined in Section 2.3. The values of the observable m12 across the entire kinematic space available are shown on the right-hand
ide of Fig. 4.2.

Fig. 4.2 shows how the quantum entanglement as well as Bell inequality violation, encoded in the observable m12[𝐶], increases
s we consider larger scattering angles and 𝑚𝑡𝑡 masses. As expected from the qualitative discussion in the previous Section, the
inematic window where the observable m12 is larger is for 𝑚𝑡𝑡 > 900 GeV and cos𝛩∕𝜋 < 0.2. The mean value of m12 in this bin is
ound to be 1.44 [147].

.2.3. Monte Carlo simulations and predictions
A number of MC simulations have been performed of quantum observables in top-quark pair production. They consider fully-

s well as semi-leptonic decays, and all agree with the analytic results. In addition, they provide an estimate of the uncertainty in
oth the amount of entanglement and of violation of Bell inequality. All works predict entanglement to be measurable at the LHC
hile they differ about the possibility of having a significant violation of Bell inequality. This process is now under scrutiny by the
xperimental Collaborations.

In [70], the process

𝑝 + 𝑝 → 𝑡 + 𝑡 → 𝓁±𝓁∓ + jets + 𝐸 miss
T (4.21)

s simulated by means of MadGraph5_aMC@NLO [148] at leading order at parton level and then hadronized and showered using
hytia8 [149]; the detector reconstruction is simulated within the Delphes [150] framework using the ATLAS detector card.

The operators related to entanglement and Bell inequality violation are computed from the simulated events by looking at the
ngular correlations of the pairs of charged leptons, as represented by the product of the cosines cos 𝜃𝑖+ and cos 𝜃𝑗− as in Eq. (3.35).
he matrix 𝐶𝑖𝑗 is reconstructed from these by going to the rest frame of the top quark (which requires the reconstruction of the
eutrino momenta).

In [70], the authors concentrate on the region of high invariant mass and large scattering angles and estimate the value of m12,
fter correcting for the bias (see Fig. 4.3). They predict that the violation can have a significance of 3𝜎 for the combined Run 1 plus
un 2 at the LHC (with 300 fb−1 of luminosity) and 4𝜎 at the high-luminosity (Hi-Lumi) LHC (with 3 ab−1 of luminosity). A smaller
ignificance is found in [151] for the same kinematic region: below 1𝜎 at Run 1 plus Run 2 and only 1.8𝜎 at the Hi-Lumi LHC. The
ifference seems to come from a different treatment of the uncertainties in going from the parton level (where the two analyses
gree) to the unfolded events. The neutrino weighting technique [152] is used in [70] to reconstruct the top quark momenta,
hile [151] uses weighted kinematic reconstruction and then RooUnfold to unfold detector effects.

A method to enhance the violation of Bell inequality was discussed in [153] for the threshold region, by imposing a cut on
he velocity of the 𝑡𝑡 system in the laboratory frame which suppresses 𝑞𝑞 production contributions. A study of the optimal bases

8 This review aimed to survey papers released prior to the beginning of 2024. An exception was made for this recent experimental result.
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Fig. 4.3. Simulation of the values of m12 (here indicated as 𝑚1 +𝑚2) for the top-quark pair production at the LHC in bins, as a function of the invariant mass
and the scattering angle. Values greater than 1 indicate violation of Bell inequality.
Source: Figure revisited from [70] (CCBY4.0).

in which to define the quantum ensemble was presented in [154]. Different optimal event-by-event defined frames were found for
near-threshold production (for which the optimum is close to the lab basis) vs high 𝑚𝑡𝑡 production (for which it is the helicity basis).

In [155,156] the simulation is extended to include the semi-leptonic decays:

𝑝 + 𝑝 → 𝑡 + 𝑡 → 𝓁𝜈 + 2𝑏 + 2𝑗 . (4.22)

The semi-leptonic channel contains more events, and fewer undetected particles, and could therefore provide a result with less
uncertainty than the fully leptonic one. However the spin analysis in this channel is more challenging due to the difficulty in
determining which jet from the 𝑊 originated from an up-type quark and which from a down-type quark, reducing the spin analyzing
power. The same software packages, as described above, are used in the numerical simulations. The result is that tagging through
the semi-leptonic channel brings more events even though the efficiency is reduced. An increase of a factor 1.6 in significance is
expected between the fully leptonic and the semi-leptonic channels.

The combinations, derived from the CSHC inequality in Eq. (2.38),

|𝐶𝑟𝑟 − 𝐶𝑛𝑛| −
√

2 > 0 or |𝐶𝑘𝑘 + 𝐶𝑟𝑟| > 0 (4.23)

are used to mark the violation of the Bell inequality. Both works find a significance of 4𝜎 at Hi-Lumi (with 3 ab−1 of luminosity)
for the violation of the Bell inequality in the region of large invariant mass and scattering angle.

One would expect the experimental Collaborations eventually to use both the semi- and leptonic channels in the analysis of the
actual data.

4.3. 𝜏-Lepton pair production at the LHC and SuperKEKB

The study of entanglement in 𝜏-lepton pairs was first proposed for 𝑒+𝑒− collisions at LEP [53]. It was extended in [147] for the
production at the LHC and in [157] for that at SuperKEKB.

The procedure for computing the polarization density matrix for this process at the LHC follows the same steps as for the top
quarks analyzed in Section 4.2, except for the main production mechanism. The dominant process in this case is the Drell–Yan
production in which the quarks go into the 𝑠-channel either via a photon or a 𝑍-boson which, in turn, decay into the 𝜏-lepton pair.
The corresponding tree-level relevant Feynman diagrams for the 𝜏-pair production are shown in Fig. 4.4.

In addition to the Drell–Yan mechanism production, in this case we also have the process in which the 𝜏 leptons originate from
the resonant Higgs boson decay channel. Here we focus on the Drell–Yan production and leave resonant Higgs to Section 4.4, which
is devoted to the qubits systems arising from the Higgs boson decay.

The production process of 𝜏-lepton pairs via Drell–Yan mechanism in the SM receives contributions from the diagrams mediated
by the 𝑠-channel photon, the 𝑍-boson and their interference. These contributions provide an ideal laboratory for studying quantum
entanglement among the qubits pairs of 𝜏-lepton pairs. Due to the fact that the fewer the contributions, the larger the entanglement
(as mixing among quantum states suppresses quantum correlations), we expect this to be larger at low-energies (where the
photon diagram dominates) or around the 𝑍-boson pole (where the 𝑍-boson diagram dominates). At low energies, the cross
25
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Fig. 4.4. Feynman diagrams for 𝜏−𝜏+ production via Drell–Yan mechanism at hadron collider.

section is dominated by the photon term which produces entangled 𝜏-lepton pairs, while at high-energies all terms contribute and
entanglement is suppressed. Around the 𝑍-boson pole the cross section is dominated by the corresponding term with maximal
entanglement.

The entries of the correlation matrix 𝐶𝑖𝑗 from the process

𝑝 + 𝑝 → 𝜏− + 𝜏+ . (4.24)

are collected in Appendix A.3.
The cross-sections for up-type and down-type initial state 𝑞𝑞 pairs are then combined by weighting the respective contributions

through the parton luminosity functions 𝐿𝑞𝑞(𝜏) defined in Eq. (4.7). The corresponding unpolarized cross section is given by [147]

d𝜎
d𝛺 d𝑚𝜏𝜏

=
𝛼2𝛽𝜏

64𝜋2𝑚2
𝜏𝜏

{

𝐿𝑢𝑢(𝜏) 𝐴̃𝑢𝑢[𝑚𝜏𝜏 , 𝛩] +
[

𝐿𝑑𝑑 (𝜏) + 𝐿𝑠𝑠(𝜏)
]

𝐴̃𝑑𝑑 [𝑚𝜏𝜏 , 𝛩]
}

(4.25)

where 𝜏 = 𝑚𝜏−𝜏+∕
√

𝑠 and 𝛼 = 𝑒2∕4𝜋. For the numerical values of 𝐿𝑞𝑞(𝜏), we can use those provided by PDF4LHC21 [146] for
√

𝑠 = 13 TeV, as for the top pair before, but with factorization scale 𝑞0 = 𝑚𝜏𝜏 . The explicit expressions for 𝐴̃𝑢𝑢,𝑑𝑑 (𝑚𝜏𝜏 ) are given in
Appendix A.3.

The full correlation matrix 𝐶𝑖𝑗 is obtained by putting together all relevant contributions from the various 𝑞𝑞-production channels,
weighted by suitable luminosity functions and with appropriate normalization. This effect leads to further mixing and in general to
additional loss of entanglement.

For the correlation coefficients 𝐶𝑖𝑗 we have [147]

𝐶𝑖𝑗 [𝑚𝑡𝑡, 𝛩] =
𝐿𝑢𝑢(𝜏) 𝐶̃𝑢𝑢𝑖𝑗 [𝑚𝜏𝜏 , 𝛩] +

[

𝐿𝑑𝑑 (𝜏) + 𝐿𝑠𝑠(𝜏)
]

𝐶̃𝑑𝑑𝑖𝑗 [𝑚𝜏𝜏 , 𝛩]

𝐿𝑢𝑢(𝜏) 𝐴̃𝑢𝑢[𝑚𝜏𝜏 , 𝛩] +
[

𝐿𝑑𝑑 (𝜏) + 𝐿𝑠𝑠(𝜏)
]

𝐴̃𝑑𝑑 [𝑚𝜏𝜏 , 𝛩]
, (4.26)

where the down-quark luminosity functions can be grouped together because they multiply the same correlation functions.
A much simpler formula holds at lepton colliders for the process

𝑒+ + 𝑒− → 𝜏− + 𝜏+ . (4.27)

because there are no PDF luminosity functions, the CM energy is fixed at
√

𝑠 = 10 GeV at SuperKEKB and there is only the photon
diagram. This process was studied at SuperKEK in [157] to show how promising this setting can be for a study of Bell inequality
violation. The expected concurrence is given in this case by a closed formula [157]:

𝒞 [𝜌] =

(

𝑠 − 4𝑚2
𝜏
)

sin2 𝛩

4𝑚2
𝜏 sin

2 𝛩 + 𝑠
(

cos2 𝛩 + 1
)
. (4.28)

4.3.1. Entanglement in 𝜏𝜏 production
The two spin-1/2 state of the 𝜏 pairs can be expressed by a density matrix having a general form as in Eq. (2.39), whose entries

depend on the kinematic variable 𝛽𝜏 =
√

1 − 4𝑚2
𝜏∕𝑚

2
𝜏𝜏 , with 𝑚𝜏𝜏 the 𝜏-pair invariant mass, and on the scattering angle 𝛩 in the 𝜏𝜏

CM frame.
Following the same notation and reference frame adopted for the top-pair production in Section 4.2, and focusing on the

configuration of transversally produced lepton pairs (𝛩 = 𝜋∕2), we can distinguish three kinematic regions according to the following
energy ranges: the low-energy one, at 𝑚𝜏𝜏 ≪ 𝑚𝑍 , where photon exchange dominates, the intermediate one at 𝑚𝜏𝜏 ≃ 𝑚𝑍 , which is
dominated by the 𝑍 exchange, and finally the high-energy one, 𝑚𝜏𝜏 ≫ 𝑚𝑍 .

In the low-energy regime (𝑚𝜏𝜏 ≪ 𝑚𝑍 ), by using the results provided in Appendix A.3 for the polarization and correlation
coefficients of the density matrix in the 𝜏-pair case, we can see that the 𝜏-pair spin state can be represented by the convex
combination as in (4.13) for the top-pair [147],

𝜌𝜏𝜏 = 𝜆𝜌(+) + (1 − 𝜆) 𝜌(1)mix with 𝜆 =
𝛽2𝜏

2
∈ [0, 1] ; (4.29)
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Fig. 4.5. Concurrence and m12 for the 𝑒+𝑒− → 𝜏𝜏 pair production, as a function of the kinematic variables 𝛩 and 𝑚𝜏𝜏 across the entire available space.
Source: Figures revisited from [147] (CCBY4.0).

at threshold, 𝛽𝜏 ≃ 0, the quantum state is a totally mixed one, with no quantum correlations, while as 𝛽𝜏 → 1 (i.e. when the tau
leptons become relativistic, while still satisfying 𝑚𝜏𝜏 ≪ 𝑚𝑍 ), the spins of the 𝜏-lepton pair tend to be generated in a maximally
entangled state.

In the intermediate energy region, where the 𝑍-channel starts to become relevant, this entanglement begins to loose coherence
due to the increasing contribution of the interference term between the photon and 𝑍 diagrams. Nevertheless, a revival of
entanglement reappears as the 𝑚𝜏𝜏 approaches the resonant 𝑍-channel region. In this region, using the notation and conventions
introduced in Appendix A.3, the two-spin density matrix can be described by the following convex combination, for all quark
production channels :

𝜌𝜏𝜏 = 𝜆𝜌̃(+) + (1 − 𝜆)𝜌̃(2)mix , 𝜆 =
(𝑔𝜏𝐴)

2 − (𝑔𝜏𝑉 )
2

(𝑔𝜏𝐴)
2 + (𝑔𝜏𝑉 )

2
, (4.30)

where,

𝜌̃(2)mix = 1
2

(

|RR⟩⟨RR| + |LL⟩⟨LL|
)

. (4.31)

while

𝜌̃(+) = |𝜓̃ (+)
⟩⟨𝜓̃ (+)

| , |𝜓̃ (+)
⟩ = 1

√

2

(

|+−⟩ + |−+⟩
)

, (4.32)

is a projector on a Bell state as in (4.9), expressed in terms of the eigenvectors of 𝜎𝑥. Then, we could see that when 𝜆 → 1, the
density matrix 𝜌𝜏𝜏 in Eq. (4.30) turns out to be very close to the maximally entangled state 𝜌̃(+).

Finally, in the high energy regime (𝑚𝜏𝜏 ≫ 𝑚𝑍 ) both photon and 𝑍 channel contribute, and, due to their mixing, a rapid depletion
of entanglement is induced. In particular, for each 𝑞𝑞 production channel, the 𝜏-pair spin correlations can be described in terms of
the following density matrix [147] :

𝜌𝜏𝜏 = 𝜆𝑞𝜌(+) + (1 − 𝜆𝑞)𝜌̃(2)mix , 𝜆𝑞 =
1 − 𝑅𝑞−
1 + 𝑅𝑞+

, (4.33)

where 𝜌(+) is as in (4.9), while

𝑅𝑞± =
𝜒2(𝑚2

𝜏𝜏 )
[

(𝑔𝑞𝐴) + (𝑔𝑞𝑉 )
][

(𝑔𝜏𝐴) ± (𝑔𝜏𝑉 )
]

(𝑄𝑞)2(𝑄𝜏 )2 + 2 Re𝜒(𝑚2
𝜏𝜏 )𝑄𝑞𝑄𝜏 𝑔

𝑞
𝑉 𝑔

𝜏
𝑉

. (4.34)

Namely, in the case of the 𝑢 quark production channel, we have 𝜆𝑢 ≃ 0.7, so that some entanglement is preserved. On the other
hand, for the 𝑑 quark production channel, since 𝜆𝑑 ≃ 0.1, the entanglement is essentially lost.

For completeness, it should be noticed that each 𝜏 lepton is produced in a partially polarized state, as some of the single-spin
polarization coefficient 𝐵±

𝑖 in the spin density matrix are non-vanishing (see Appendix A.3). This is particularly relevant for the
quark 𝑑 production channel, where the magnitude of these single particle terms is of the same order of the entries of the correlation
matrix 𝐶𝑖𝑗 , while for the 𝑢 production channel they are about one order of magnitude smaller. This implies that the full density
matrix describing the 𝜏-pair spin state 𝜌𝜏𝜏 is really in this case a mixture of (4.33) with additional states further reducing in general
its entanglement content.
27
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Fig. 4.6. Concurrence and m12 for 𝜏𝜏 pair production at SuperKEK.
Source: Figure revisited from [157] (CCBY4.0).

4.3.2. Bell inequalities
The same method presented in Section 4.2.2 for the top-quark pairs can be followed here. To make the discussion simpler, we

focus on the case in which the 𝜏-lepton pairs are produced at a lepton collider. The values of the observable m12, are shown in
Fig. 4.5 across the entire kinematic space [147] for existing and future 𝑒+-𝑒− machines. The results are similar in the case of a hadron
collider (with a little modulation because of the parton luminosity functions) and confirm the qualitative analysis of entanglement
in Section 4.3.1: Entanglement is close to maximal (that is, m12 close to 2) for large scattering angles whenever the invariant mass
of the 𝜏-lepton pairs selects one of the two possible channels with either the photon or the 𝑍-boson exchange dominating.

For the process at the LHC, the authors of [147] take the kinematic window where the 𝜏-lepton pair invariant mass is in the
range 20 GeV < 𝑚𝜏𝜏 < 45 GeV and | cos𝛩| < 0.2 as the most favorable to test the Bell inequalities and there estimate the mean value
of m12 to be 1.88.

For the process at SuperKEKB, a simple analytic formula can be computed [157]:

m12 = 1 +

(
(

𝑠 − 4𝑚2
𝜏
)

sin2 𝛩

4𝑚2
𝜏 sin

2 𝛩 + 𝑠
(

cos2 𝛩 + 1
)

)2

, (4.35)

The maximum value for both 𝒞 [𝜌] and m12 are reached for scattering angles close to 𝜋∕2, as shown in Fig. 4.6.

4.3.3. Monte Carlo simulations of events
The production of 𝜏𝜏 pairs at SuperKEK appears very promising for the study of entanglement and Bell inequality violation

because of the large number of events that are, in addition, very clean.
The polarization of the 𝜏-leptons can be extracted from the distribution in momenta of the final charged hadrons in the three

decay channels: 𝜏− → 𝜋−𝜈𝜏 , 𝜏− → 𝜋−𝜋0𝜈𝜏 , and 𝜏− → 𝜋−𝜋+𝜋−𝜈𝜏 . The combination of these decay channels covers about 21% of 𝜏
pair decays.

In [157], a sample of 200 million 𝑒+𝑒− → 𝜏+𝜏− Monte Carlo events was generated with the program MadGraph5_aMC@NLO [148],
using leading-order matrix elements. The program PYTHIA [149] was used for the modeling of parton showers, hadronization
processes, and 𝜏 decays. All the 𝜏 decay channels discussed above are included in the simulation. The events are analyzed on Monte
Carlo truth level and after taking realistic experimental resolutions into account.

Both entanglement and Bell inequality violation are predicted to be observable with a significance well in excess of 5𝜎, with a
dataset comparable to that already recorded by Belle II.

4.4. Higgs boson decays in 𝜏-lepton pairs and two photons

The decay of the Higgs boson into a pair of fermions or two photons (see, Fig. 4.7), provides a physical process very similar
to those utilized in atomic physics for studying entanglement. Because the final states originate from the decay a scalar particle,
a pure state should be created for the spins. In this Section we discuss first the qubits system provided by the Higgs boson decay
into 𝜏-lepton pair, then the decay into two photons. In this last case, we assume it will be possible in the future to determine the
polarization of the photon.
28
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Fig. 4.7. Feynman diagrams for the Higgs boson ℎ decay into two 𝜏-leptons (left) and into two photons (right).

4.4.1. Entanglement and Bell inequalities in ℎ → 𝜏𝜏
The SM interaction Lagrangian for the decay of the Higgs boson into a pair of 𝜏 leptons is given by

LSM =
𝑚𝜏
𝑣
𝜏𝜏 ℎ , (4.36)

where 𝑣 is the vacuum expectation value of the Higgs field ℎ. On the basis of this interaction term, the elements of the matrix 𝐶𝑖𝑗
entering the tau lepton-pair spin density matrix can be easily computed and is given by [147]

𝐶 =
⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎟

⎟

⎠

, (4.37)

where the 𝐶 matrix above is defined on the {𝑛̂, 𝑟̂, 𝑘̂} spin basis as in Eq. 3.2.3. The entanglement C[𝜌] is maximal and equal to 1.
The sum of the square of the two largest eigenvalues gives m12 = 2, so that the Bell inequality (2.37) is predicted to be maximally
violated.

4.4.2. Monte Carlo simulations and predictions
The decay of the Higgs boson into 𝜏-lepton pairs has been analyzed in [158,159]. Both studies investigate 𝐻𝑍 associated

production at future 𝑒+𝑒− colliders; the process would be difficult to reconstruct experimentally in the resonant production of the
Higgs boson in the 𝑠-channel production in hadron colliders.

The Monte Carlo simulations are performed by means of MadGraph5_aMC@NLO [148], using leading-order matrix elements.
The package TauDecay [160] is used for modeling the 𝜏 decays. Only the decays into a single pion are included. The momenta of
the 𝜏-leptons are reconstructed by solving the kinematic equations holding for the (unknown) neutrino momenta. The kinematic
reconstruction is possible up to a two-fold degeneracy.

In [158] it is found that one expects entanglement to be tested above 5𝜎 at both the International Linear Collider (ILC) and the
Future Circular Collider (FCC-ee). The violation of Bell inequality is not expected to be observed at the ILC but it expected at the
FCC-ee with a significance of about 3𝜎. It is found in [159] that the predicted significance is around 1𝜎 for the Circular Electron
Positron Collider (CEPC).

4.4.3. Entanglement and Bell inequalities in ℎ → 𝛾𝛾
The entanglement of a system of two photon has been discussed in [161] and, more recently, in [147]. This system closely

resembles those in atomic physics, in which the polarization of photons originating in atomic transitions are discussed.
The Higgs boson ℎ decays into two photons

ℎ → 𝛾(𝑘1) 𝛾(𝑘2) , (4.38)

proceeds via an effective coupling 𝑔𝛾𝛾ℎ provided in the SM by loop contributions. The effective Lagrangian in this case is given by

L = −1
4
𝑔𝛾𝛾ℎ ℎ𝐹

𝜇𝜈𝐹𝜇𝜈 , (4.39)

where 𝐹 𝜇𝜈 is the field strength of the photon.
The corresponding polarized amplitude square is

M(𝜆′1, 𝜆
′
2)M(𝜆1, 𝜆2)† = |𝑔𝛾𝛾ℎ|

2𝑉 𝜇𝜈 (𝑘1, 𝑘2)𝑉 𝜌𝜎 (𝑘1, 𝑘2)
[

𝜀𝜆1𝜇 (𝑘1)𝜀
𝜆′1∗
𝜌 (𝑘1)

] [

𝜀𝜆2𝜈 (𝑘2)𝜀
𝜆′2∗
𝜎 (𝑘2)

]

, (4.40)

where 𝑉 𝜇𝜈 (𝑘1, 𝑘2) = 𝑔𝜇𝜈 (𝑘1 ⋅ 𝑘2) − 𝑘𝜈1𝑘
𝜇
2 . Notice that, gauge invariance is guaranteed by the Ward Identities 𝑘𝜇1𝑉𝜇𝜈 (𝑘1, 𝑘2) =

𝑘𝜈𝑉 (𝑘 , 𝑘 ) = 0.
29
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Summing over the photon polarizations we obtain

|M|

2 = 1
2
|𝑔ℎ𝛾𝛾 |

2𝑚4
ℎ , (4.41)

o which corresponds the width 𝛤 = 𝑔2ℎ𝛾𝛾𝑚
3
ℎ∕(64𝜋

2).
The polarization density matrix in the case of the two-photons is readily obtained by following the method of Section 3.2. After

ormalization over the unpolarized square amplitude in Eq. (4.41), the correlation matrix 𝐶 is given by [147]

𝐶 =
⎛

⎜

⎜

⎝

1 0 0
0 −1 0
0 0 1

⎞

⎟

⎟

⎠

. (4.42)

n the basis of the Stokes parameters {𝜉1, 𝜉2, 𝜉3} defined in Eq. (3.15).
As we can see from the above result, for the matrix 𝐶 in Eq. (4.42), the operator m12 = 2 and the Bell inequalities are maximally

iolated.
There is good motivation for wishing to perform such a test using a diphoton final state, however it requires the detection of

he polarization of the two photons. The possibility of measuring photon polarizations depends on their energy. For high-energy
hotons, the dominant process is pair production as the photons traverse matter. There are two possible processes: the electron
nteracting with the nuclei (𝐴) or the atom electrons:

𝛾 + 𝐴 → 𝐴 + 𝑒+ + 𝑒−

𝛾 + 𝑒− → 𝑒− + 𝑒+ + 𝑒− , (4.43)

ith the latter dominating in the energy range we are interested in.
For a polarized photon, the Bethe–Heitler cross section for the Bremsstrahlung production of electron pairs depends also on the

zimuthal angles 𝜑± of the produced electron and positron [162,163] as
d𝑠

d𝜑+d𝜑−
= 𝜎0

[

𝛴un + 𝛴pol 𝑃𝛾 cos
(

𝜑+ − 𝜑−
)

]

, (4.44)

here 𝑃𝛾 is the linear polarization fraction of the incident photon, 𝛴un and 𝛴pol are the unpolarized and polarized coefficients
respectively, which depend on the kinematic variables. The explicit form of the cross section in Eq. (4.44) can be found in [164].
The relevant information on the azimuthal distribution comes from the dependence of the cross section on the a-coplanarity of the
outgoing electron and positron. The measurement of the relative angle between these momenta gives information on the polarization
of the photon.

Even though this possibility is not currently implemented at the LHC, detectors able to perform such a measurement are
already envisaged for astrophysical 𝛾 rays [165] and an event generator to simulate the process already exists [166] and has been
implemented within GEANT [167] (for a recent review, see [168]).

5. Qutrits: massive gauge bosons and vector mesons

Systems of two qutrits arise between the polarizations of pairs of massive gauge bosons at the LHC and between two vector
mesons at B-meson factories.

We discuss in Section 5.2 the SM production of two on-shell states 𝑊𝑊 and 𝑍𝑍 via the electroweak processes induced at parton
level by quark–antiquark annihilation. Quantum entanglement and Bell inequality violations for these processes have been analyzed
in [134,136,169,170]. In [134,170] the potential for the same processes are also discussed at future colliders.

In Section 5.3, we turn to diboson production via resonant Higgs decays into ℎ→ 𝑊𝑊 ∗ and ℎ→ 𝑍𝑍∗, where 𝑊 ∗, 𝑍∗ indicate the
orresponding vector bosons as off-shell states. The field was initiated in [71] in which entanglement and Bell inequality violation
ere studied in the decay of the Higgs boson into the two charged gauge bosons 𝑊 +𝑊 − by means of Monte Carlo simulations. It was

ollowed by analyses of the same process in [171–173] and extended to the case of two neutral gauge bosons 𝑍𝑍 first in [136,141]
nd then in [134,174]. The result of these studies is that the most promising channel is ℎ→ 𝑍𝑍, because of the small background,
nd where the Bell inequality could be violated with a significance of more than 3𝜎 at the High-Lumi LHC.

In Section 5.1 we consider the quantum entanglement and Bell inequality violation for the qutrits system of two vector mesons
rising from the neutral 𝐵 meson decays, which has been analyzed in [72].

.1. 𝐵-meson decays in two vector mesons

The decays of the neutral 𝐵-mesons into two spin-1 mesons closely resemble those of the Higgs boson and the same tools can
e put to work.

There are three helicity amplitudes for the decay of a scalar, or pseudo-scalar, into two massive spin-1 particles:

ℎ𝜆 = ⟨𝑉1(𝜆)𝑉2(−𝜆)|H|𝐵⟩ with 𝜆 = (+, 0, −) , (5.1)

nd H is the interaction Hamiltonian giving rise to the decay. For the spin quantization axis (𝑧̂) we can use the direction of the
omenta of the decay products in the 𝐵0 rest frame. Helicities are here defined with respect to the 𝑧̂ direction in the rest frame of

ne of the two spin-1 particles and (+, 0, −) is a shorthand for (+1, 0, −1).
30
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The polarizations in the decay are described by a quantum state that is pure for any values of the helicity amplitudes [134,175].
his state can be written as

|𝛹⟩ = 1
|M|

[

ℎ+ |𝑉1(+)𝑉2(−)⟩ + ℎ0 |𝑉1(0)𝑉2(0)⟩ + ℎ− |𝑉1(−)𝑉2(+)⟩
]

, (5.2)

with

|M|

2 = |ℎ0|
2 + |ℎ+|

2 + |ℎ−|
2 . (5.3)

The relative weight of the transverse components |𝑉1(+)𝑉2(−)⟩ and |𝑉1(−)𝑉2(+)⟩ with respect to the longitudinal one |𝑉1(0)𝑉2(0)⟩ is
controlled by the conservation of angular momentum. In general, only the helicity is conserved and the state in Eq. (5.2) belongs
to the 𝐽𝑧 = 0 component of the 𝑆 = 0, 1 or 2 states.

The polarization density matrix 𝜌 = |𝛹⟩⟨𝛹 | can be written in terms of the helicity amplitudes as

𝜌 = 1
|M2

|

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 ℎ+ℎ∗+ 0 ℎ+ℎ∗0 0 ℎ+ℎ∗− 0 0
0 0 0 0 0 0 0 0 0
0 0 ℎ0ℎ∗+ 0 ℎ0ℎ∗0 0 ℎ0ℎ∗− 0 0
0 0 0 0 0 0 0 0 0
0 0 ℎ−ℎ∗+ 0 ℎ−ℎ∗0 0 ℎ−ℎ∗− 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (5.4)

n the basis given by the tensor product of the polarizations (+, 0, −) of the produced spin-1 particles.
The polarizations of the spin-1 massive particles can be reconstructed using the momenta of the final charged mesons and leptons

n which they decay [34]. Usually, the experimental analysis provides the polarization amplitudes. These are mapped into the helicity
mplitudes by the correspondence

ℎ0
|M|

= 𝐴0 ,
ℎ+
|M|

=
𝐴∥ + 𝐴⟂

√

2
,

ℎ−
|M|

=
𝐴∥ − 𝐴⟂

√

2
. (5.5)

The entanglement entropy and the Bell operator I3 can be readily be computed, the latter one after the optimization procedure
of Eq. (2.61).

Data from the 𝐵-factories have been analyzed by the LHCb and Belle collaborations in terms of polarization amplitudes and
rovide an abundant source of processes in which it is possible to search for entanglement and test Bell inequality violation. The
elicity measurements and the analyses have already been published and only the recasting in terms of entanglement markers and
est of the Bell inequality need to be validated by the experimental Collaborations.

The decay for which the most precise polarization amplitudes are known is 𝐵0 → 𝐽∕𝜓 𝐾∗(892)0 [176] for which, under the
ssumption that the density matrix takes the form Eq. (5.4), it can be found [72] that

ℰ = 0.756 ± 0.009 and I3 = 2.548 ± 0.015 , (5.6)

ith a significance well in excess of 5𝜎 (numerically 36𝜎) for the violation of the Bell inequality I3 < 2.
To close the locality loophole—which exploits (see Section 6) events not separated by a space-like interval, as it is the case of

he 𝐽∕𝜓 𝐾∗ decays—one must consider decays in which the produced particles are identical, as in the 𝐵𝑠 → 𝜙𝜙 decay, and therefore
heir life-times are also the same. The actual decays take place with an exponential spread, with, in the 𝜙𝜙 case, more than 90% of
he events being separated by a space-like interval.

For the decay 𝐵𝑠 → 𝜙𝜙 [177], it is found [72] that

ℰ = 0.734 ± 0.037 and I3 = 2.525 ± 0.064 , (5.7)

ith a significance of 8.2𝜎 for the violation of the Bell inequality I3 < 2.
There is another reason why the decays of the 𝐵-mesons are interesting in testing for the presence of entanglement. It is possible

o extract from the data [176,177] the strong phases arising from the final-state interactions in the 𝐵-meson decays and compute
heir contribution to the polarization amplitudes. We therefore know for the same process the amount of entanglement arising
rom the weak interactions, which are responsible for the decay, as well as that from the strong interactions in the subsequent
e-scattering. The contribution to the latter can be measured and shown to increase the overall entanglement between the spins of
he decay products.

.2. Diboson production at LHC via quark-fusion

The prospects for measurements in the production of 𝑊𝑊 and of 𝑍𝑍 gauge dibosons at the LHC have been analyzed
in [134,136,170]. These states can be produced via electroweak processes in a continuous range of diboson invariant masses. We
show in the following how the polarization density matrix of this diboson system can be computed starting from the density matrices
obtained for the involved parton contributions, presented in Fig. 5.1 for the processes at hand. We do not report here the results
for 𝑊𝑍 production since, according to the analysis of [134], no significant excess above the null hypothesis for the Bell inequality
31
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violation has been found in the whole relevant kinematic region. While Bell violation is not expected, observation of entanglement
would be possible [134,136].

The predicted correlation coefficients ℎ𝑎𝑏, 𝑓𝑎, and 𝑔𝑎 appearing in the decomposition of the polarization density matrix of two
utrits along the Gell-Mann matrix basis in Section 3.2, can be calculated as a generalization of the corresponding coefficients of
ubits in Eq. (4.8). In particular, for ℎ𝑎𝑏 we get

ℎ𝑎𝑏[𝑚𝑉𝑉 , 𝛩] =

∑

𝑞=𝑢,𝑑,𝑠 𝐿
𝑞𝑞(𝜏)

(

ℎ̃𝑞𝑞𝑎𝑏[𝑚𝑉𝑉 , 𝛩] + ℎ̃
𝑞𝑞
𝑎𝑏[𝑚𝑉𝑉 , 𝛩 + 𝜋]

)

∑

𝑞=𝑢,𝑑,𝑠 𝐿𝑞𝑞(𝜏)
(

𝐴𝑞𝑞[𝑚𝑉𝑉 , 𝛩] + 𝐴𝑞𝑞[𝑚𝑉𝑉 , 𝛩 + 𝜋]
) (5.8)

where 𝑚𝑉𝑉 stands for the invariant mass of the final diboson state and 𝛩 the scattering angle in their CM frame. The abbreviations
𝐴𝑞𝑞 = |M 𝑞𝑞

𝑊𝑊 |

2 indicates the spin-summed square amplitude of the process, and ℎ̃𝑎𝑏 = 𝐴𝑞𝑞ℎ𝑎𝑏. The 𝐿𝑞𝑞(𝜏) are the quark parton
uminosity functions defined in Eq. (4.7). The sum of the terms with dependence by (𝛩 + 𝜋) in Eq. (5.8) takes into account the fact
hat quarks or antiquarks can originate from both of the two proton beams of the LHC collider, and the two configurations have
he same parton luminosity function. For the sake of simplicity, when possible we leave implicit the dependence of the correlation
oefficients ℎ𝑎𝑏(𝑚𝑉𝑉 , 𝛩), 𝑔𝑎(𝑚𝑉𝑉 , 𝛩) and 𝑓𝑎(𝑚𝑉𝑉 , 𝛩) on the scattering angle 𝛩 in the CM frame and on the invariant mass of the
ibosons 𝑚𝑉𝑉 .

Similar expressions hold for the remaining polarization correlation coefficients 𝑓𝑎 and 𝑔𝑎, of the Gell-Mann basis with 𝑎 ∈
1,… , 8}, obtained by replacing the ℎ̃𝑎𝑏 with corresponding quantities 𝑔̃𝑎 or 𝑓𝑎 ones. We report in B.3 the explicit expressions
f ℎ̃𝑎𝑏, 𝑓𝑎, and 𝑔̃𝑎 functions only for the 𝑍𝑍 production, while for all other processes these can be found in [134].

.2.1. Computing the observables: 𝑝 𝑝→ 𝑊 +𝑊 −

The tree-level Feynman diagrams contributing to the parton level process

𝑞(𝑝1)𝑞(𝑝2) → 𝑊 +(𝑘1, 𝜆1)𝑊 −(𝑘2, 𝜆2) , (5.9)

re shown in the top part of Fig. 5.1. The polarization vectors of 𝑊 + and 𝑊 − are 𝜀𝜇(𝑘1, 𝜆1) and 𝜀𝜈 (𝑘2, 𝜆2), respectively. The polarized
mplitude for the process in Eq. (5.9), for 𝑢 and 𝑢̄ initial states, is given by [134]

M𝑢𝑢̄
𝑊𝑊 (𝜆1, 𝜆2) = −𝑖𝑒2

[

𝑣̄(𝑝1)𝛤𝑊𝑊
𝜇𝜈 𝑢(𝑝2)

]

𝜀𝜇(𝑘1, 𝜆1)⋆𝜀𝜈 (𝑘2, 𝜆2)⋆ , (5.10)

here the effective vertex 𝛤𝑊𝑊
𝛼𝛽 is

𝛤𝑊𝑊
𝜇𝜈 = 1

𝑠
(

𝛾𝛼 𝑔̄𝑞𝑉 − 𝛾𝛼𝛾5𝑔̄
𝑞
𝐴
)

𝑉𝛼𝜈𝜇(𝑞,−𝑘2,−𝑘1) +
1

4𝑡𝑠2𝑊
𝛾𝜈

(

∕𝑝2 − ∕𝑘1
)

𝛾𝜇(1 − 𝛾5) , (5.11)

ith ∕𝑝 ≡ 𝛾𝜇𝑝𝜇 and 𝑠𝑊 = sin 𝜃𝑊 and 𝑒 being the unit of electric charge. The effective couplings 𝑔̄𝑞𝑉 ,𝐴 are defined as

𝑔̄𝑞𝑉 = 𝑄𝑞 +
𝑔𝑞𝑉 𝜒

𝑠2𝑊
, 𝑔̄𝑞𝐴 =

𝑔𝑞𝐴𝜒

𝑠2𝑊
, 𝜒 = 𝑠

2(𝑠 −𝑀2
𝑍 )

, (5.12)

here 𝑔𝑞𝑉 = 𝑇 𝑞3 − 2𝑄𝑞𝑠2𝑊 , 𝑔𝑞𝐴 = 𝑇 𝑞3 and 𝑇 𝑞3 and 𝑄𝑞 are the isospin and electric charge (in unit of 𝑒) of the quark 𝑞. The 𝜒 term in
q. (5.12), which weights the contribution of the virtual 𝑍 channel, is real since we neglect the 𝑍 width contribution. The function
𝛼𝜈𝜇(𝑘1, 𝑘2, 𝑘3) is the usual Feynman rule for the trilinear vertex 𝑉𝛼(𝑘1) 𝑊 +

𝜈 (𝑘2) 𝑊 −
𝜇 (𝑘3), 𝑉 ∈ {𝛾, 𝑍} with all incoming momenta

see [134] for its definition) and the Mandelstam variables are defined as

𝑠 = (𝑝1 + 𝑝2)2, 𝑡 = (𝑝1 − 𝑘1)2, 𝑢 = (𝑝1 − 𝑘2)2 . (5.13)

From the amplitude in Eq. (5.10), summing over the spin of quarks one obtains the compact expression

M𝑢𝑢̄
𝑊𝑊 (𝜆1, 𝜆2)

[

M𝑢𝑢̄
𝑊𝑊 (𝜆′1, 𝜆

′
2)
]†

= Tr
[

𝛤𝑊𝑊
𝜇𝜈 ∕𝑝1 𝛤

𝑊𝑊
𝜇′𝜈′ ∕𝑝2

]

𝒫 𝜇𝜇′

𝜆1𝜆′1
(𝑘1)𝒫 𝜈𝜈′

𝜆2𝜆′2
(𝑘2) , (5.14)

here the symbol 𝛤𝜇𝜈 = 𝛾0(𝛤𝜇𝜈 )†𝛾0 and the projector 𝒫 𝜇𝜈
𝜆𝜆′ (𝑘) is given in Eq. (3.27) with 𝑀 =𝑀𝑊 .

The result for the 𝑑𝑑 → 𝑊 +𝑊 − process follows from Eq. (5.14) through the substitutions

𝑔̄𝑢𝑉 → −𝑔̄𝑑𝑉 , 𝑔̄𝑢𝐴 → −𝑔̄𝑑𝐴, 𝛽𝑊 → −𝛽𝑊 , (5.15)

with the angle 𝛩 being defined as before by the anti-quark and 𝑊 + momenta. The contribution of strange quark initial states equals
that of 𝑑 quarks in the considered massless limit.

Following the procedure explained in Section 3.2, from Eq. (5.14) (together with the corresponding ones for 𝑑𝑑 and 𝑠𝑠̄ processes)
one can compute the unnormalized correlation coefficients 𝑓𝑎, 𝑔̃𝑎, and ℎ̃𝑎𝑏 of the density matrix for the process at and consequently,
he expectation value of the operator I3 and the observable 𝒞2. The explicit expressions for 𝐴𝑞𝑞 , ℎ̃𝑎𝑏 𝑓𝑎, and 𝑔̃𝑎 as function of 𝑚𝑊𝑊

nd 𝛩 can be found in the original work [134].
As explained in Section 2.3, for the observable I3 one can find at each point in the kinematic space the unitary matrices 𝑈 and

that maximize the violation of Bell inequalities.
The results obtained in [134] for the two observables of interest, are reported in Fig. 5.2, as functions of the two kinematic
32
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Fig. 5.1. Feynman diagrams for the processes 𝑝 𝑝 → 𝑊 +𝑊 − (first row), 𝑝 𝑝 → 𝑍𝑍 (second row) and 𝑝 𝑝 → 𝑊 +𝑍 (third row) at the parton level for the first
quark generation. We neglect Diagrams mediated by the Higgs boson are neglected (in the limit of massless quarks). The arrows on the fermion lines indicate
the momentum flow.

inequalities takes place only in a limited range of the kinematic variables, at higher 𝑊𝑊 invariant mass and for scattering towards
the transverse direction. The area in which I3 > 2 is indicated by the lighter-shaded area in plot on the left of Fig. 5.2. The explicit
expression for the unitary 𝑈 and 𝑉 matrices (with accuracy at the percent level) that maximize the Bell observable in this particular
kinematic region can be found in [134].

The observable 𝒞2 follows roughly the pattern of I3 and reaches the largest values in the upper-left quadrant, thus witnessing
the presence of states more entangled than in the rest of the kinematic space. This feature can be made manifest by considering
the density matrix of the process. For instance, by restricting to the region of maximum entanglement and Bell inequality violation,
close to 𝑚 = 900 GeV and cos𝛩 = 0, the polarization density matrix for the 𝑊 +𝑊 − states can be approximated up to terms
33
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Fig. 5.2. The observables 𝒞2 (left plot) and I3 (right plot) for the process 𝑝 𝑝→ 𝑊 +𝑊 − as functions of the invariant mass and scattering angle.
Source: Figures revisited from [134] (CCBY4.0).

𝑂(10−3) by the following combination of pure state density matrices

𝜌 = 𝛼 |𝛹+−⟩⟨𝛹+−| + 𝛽 |𝛹+−0⟩⟨𝛹+−0| + 𝛾 |00⟩⟨00| + 𝛿 |𝛹0−⟩⟨𝛹0−| , (5.16)

with decreasing weights: 𝛼 ≃ 0.72, 𝛽 ≃ 0.18, 𝛾 ≃ 0.07 and 𝛿 ≃ 0.02; the normalization condition 𝛼 + 𝛽 + 𝛾 + 𝛿 = 1 is satisfied within
the adopted approximation. The involved pure states are

|𝛹+−⟩ =
1
√

2

(

|++⟩ − |−−⟩
)

,

|𝛹0−⟩ =
1
√

2

(

|0−⟩ + |−0⟩
)

, (5.17)

|𝛹+−0⟩ =
1
√

3

(

|++⟩ − |−−⟩ + |0 0⟩
)

,

where |𝑎 𝑏⟩ = |𝑎⟩⊗ |𝑏⟩ with 𝑎, 𝑏 ∈ {+, 0, −} are the polarization states of the two 𝑊 gauge bosons at rest in the single spin-1 basis.
As we can see, the dominant contribution in (5.16) comes from the entangled pure state |𝛹+−⟩. This can justifies the high value of
𝒞2. However, by retaining all the terms including the ones of 𝑂(10−3), the actual density matrix 𝜌 describes a mixture. This features
explains why the corresponding value of 𝒞2, in this corner of the kinematic space, is large but far from maximal.

5.2.2. Computing the observables: 𝑝 𝑝→ 𝑍𝑍
The tree-level Feynman diagrams contributing to the process

𝑞(𝑝1)𝑞(𝑝2) → 𝑍(𝑘1, 𝜆1)𝑍(𝑘2, 𝜆2) , (5.18)

at the parton level are shown in the middle row of Fig. 5.1. We indicate the polarization vectors of the two 𝑍 bosons with 𝜀𝜇(𝑘1, 𝜆1)
and 𝜀𝜈 (𝑘2, 𝜆2).

The polarized amplitude for the process in Eq. (5.18) is given by

M𝑞𝑞
𝑍𝑍 (𝜆1, 𝜆2) = − 𝑖𝑒2

4𝑐2𝑊 𝑠
2
𝑊

[

𝑣̄(𝑝1)𝛤 𝑍𝑍
𝜇𝜈 𝑢(𝑝2)

]

𝜀𝜇(𝑘1, 𝜆1)⋆𝜀𝜈 (𝑘2, 𝜆2)⋆ , (5.19)

where 𝑐𝑊 = cos 𝜃𝑊 ,

𝛤 𝑍𝑍
𝜇𝜈 = 𝑉 𝑞

𝜇
(∕𝑘1 − ∕𝑝1)

𝑢
𝑉 𝑞
𝜈 + 𝑉 𝑞

𝜈
(∕𝑘1 − ∕𝑝2)

𝑡
𝑉 𝑞
𝜇 , (5.20)

and

𝑉 𝑞
𝜇 = 𝑔𝑞𝑉 𝛾𝜇 − 𝑔

𝑞
𝐴𝛾𝜇𝛾5 (5.21)

with the 𝑔𝑞𝑉 ,𝐴 couplings defined as in Eq. (5.12).
Summing over the quark polarizations and colors we then obtain

M𝑞𝑞 (𝜆1, 𝜆2)
[

M𝑞𝑞 (𝜆′ , 𝜆′ )
]†

= Tr
[

𝛤 𝑍𝑍 ∕𝑝 𝛤 𝑍𝑍
′ ′ ∕𝑝

]

𝒫 𝜇𝜇′
′ (𝑘1)𝒫 𝜈𝜈′

′ (𝑘2) , (5.22)
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Fig. 5.3. The observables 𝒞2 (left plot) and I3 (right plot) for the process 𝑝 𝑝→ 𝑍𝑍 as functions of the invariant mass and scattering angle in the CM frame.
Source: Figures revisited from [134] (CCBY4.0).

where 𝒫 𝜇𝜈
𝜆𝜆′ (𝑘) is given in Eq. (3.27) with 𝑀 =𝑀𝑍 and the symbol 𝛤𝜇𝜈 is defined as in Section 5.2.1.

The corresponding 𝑓𝑎, 𝑔𝑎 and ℎ𝑎𝑏 of the polarization density matrix, have been obtained in [134] and can be derived by following
the same procedure as explained in Section 5.2.1. We report their expressions in Appendix B for completeness.

Fig. 5.3 shows the analytic results for the entanglement observables computed in [134]. As we could see from these results, the
violation of the Bell inequalities for the 𝑍𝑍 production takes place only in a limited range of the kinematic variables.

The observable 𝒞2 follows the pattern of I3—as it does in the case of the 𝑊 +𝑊 − final states—and again reaches the largest
values in the upper-left quadrant. In this region it witnesses the presence of states more entangled than in the rest of the kinematic
space.

5.2.3. Monte Carlo simulations and predictions
Monte Carlo simulations of diboson production at the LHC has been performed in [136,170]. The MadGraph5-_aMC@NLO [148]

software is used including spin correlations and relativistic and Breit–Wigner effects. Events are generated at the leading order at
CM energy of 13 TeV, and the 4-lepton final states considered.

Entanglement is proposed to be measured through the observable 𝒞2, Eq. (2.25), which provides a lower bound on the
concurrence, and Bell inequality by means of the expectation value I3 of a version of the Bell operator (2.59), which is optimized
along Cartesian planes. In agreement with the analytic results, entanglement is expected to be detected in the kinematic region
of large scattering angles for invariant masses above 400 GeV for the 𝑊𝑊 and 𝑍𝑍 final states. For the tested observables Bell
inequality violation is not predicted to reach a significant level even for a luminosity of 3 ab−1 (Hi-Lumi) once the statistical
uncertainty is taken into account.

5.3. Higgs boson decays into 𝑊𝑊 ∗ and 𝑍𝑍∗

The qutrits system of two massive gauge bosons is generated by the decay of the SM Higgs boson

ℎ → 𝑉 (𝑘1, 𝜆1)𝑉 ∗(𝑘2, 𝜆2) , (5.23)

with 𝑉 ∈ {𝑊 ,𝑍}, and 𝑉 ∗ regarded as an off-shell vector boson. We can treat the latter as an on-shell particle characterized by a
fictitious mass

𝑀𝑉 ∗ = 𝑓𝑀𝑉 , (5.24)

which is the original mass 𝑀𝑉 reduced by a factor 𝑓 , with 0 < 𝑓 < 1. The Higgs boson is produced at the LHC as a resonance in
the 𝑠-channel.

The theoretically expected quantum entanglement and Bell inequality violation for the processes ℎ → 𝑊𝑊 ∗ have been studied
in [71,136], and those for ℎ→ 𝑍𝑍∗ in [136,141]. Comparable results have been obtained in [134] by using analytical results for the
polarization density matrix of the two gauge bosons in the helicity basis. We summarize here first the analytical results of [134,141]
for the polarizations coefficients and its implications for quantum entanglement and Bell inequality violation observables. The
corresponding results obtained by Monte Carlo simulation of events are briefly discussed in the next Section 5.3.2.
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Fig. 5.4. Feynman diagrams for the decay of the Higgs boson into a pair of massive gauge bosons.

5.3.1. Computing the observables
The polarized amplitude for the Higgs boson decay in Eq. (5.23)) (see Fig. Fig. 5.4) is given by

M(𝜆1, 𝜆2) = 𝑔𝑀𝑉 𝜉𝑉 𝑔𝜇𝜈𝜀
𝜇⋆(𝑘1, 𝜆1)𝜀𝜈⋆(𝑘2, 𝜆2) , (5.25)

where 𝑔 is the weak coupling, 𝜉𝑊 = 1, and 𝜉𝑍 = 1∕ cos 𝜃𝑊 with 𝜃𝑊 the Weinberg angle. From the amplitude in Eq. (5.25) we obtain

M(𝜆1, 𝜆2)M(𝜆′1, 𝜆
′
2)

† = 𝑔2𝑀2
𝑉 𝜉

2
𝑉 𝑔𝜇𝜈𝑔𝜇′𝜈′𝒫

𝜇𝜇′

𝜆1𝜆′1
(𝑘1)𝒫 𝜈𝜈′

𝜆2𝜆′2
(𝑘2) . (5.26)

where 𝒫 𝜇𝜈
𝜆𝜆′ (𝑘) is given in Eq. (3.27) with 𝑀 =𝑀𝑉 or 𝑀 =𝑀∗

𝑉 for the on-shell and off-shell boson, respectively.
Following the procedure explained in Section 3 for a CM energy

√

𝑠 = 𝑚ℎ, one can obtain the coefficients 𝑓𝑎, 𝑔𝑎, and ℎ𝑎𝑏
(𝑎, 𝑏 ∈ {1,… , 8}). These coefficients have been computed in [134] and their expression can be found in Appendix B.4. No dependence
is expected of these coefficients on the scattering angle 𝛩 because we are considering the decay of the scalar Higgs boson at rest.

The main theoretical uncertainty affecting the correlation coefficients in Eq. (B.15) is due to the missing next-to-leading
electroweak corrections to the tree-level values. In [134] it was estimated that the error induced by these missing corrections yields
at most a few percent of uncertainty on the main entanglement observables, in the relevant kinematic regions in which one of the
two electroweak gauge boson are on-shell. This expectation is based on the fact that these corrections give a 1%–2% effect on the
total width [178]. Corrections for these effects can and should be applied when making actual experimental measurements.

The polarization density matrix 𝜌 for the two vector bosons emitted in the decay of the Higgs boson is calculated to be [134]

𝜌 = 2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 ℎ44 0 ℎ16 0 ℎ44 0 0
0 0 0 0 0 0 0 0 0
0 0 ℎ16 0 2ℎ33 0 ℎ16 0 0
0 0 0 0 0 0 0 0 0
0 0 ℎ44 0 ℎ16 0 ℎ44 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (5.27)

with the condition Tr [𝜌𝐻 ] = 1 following from the relation 4(ℎ33 + ℎ44) = 1. There are therefore only two independent coefficients
under these assumptions.

In [141] the spin density matrix of the system is written in terms of tensor components 𝑇 𝐿𝑀 (see Section 3) and the correlation
coefficients entering the density matrix are indicated as 𝐶𝐿1 ,𝑀1 ,𝐿2 ,𝑀2

(see Eq. (3.49)). These coefficients are related to those in
Eq. (5.27) by the correspondence

1
6
𝐶2,2,2,−2 = ℎ44 and 1

6
𝐶2,1,2,−1 = ℎ16 . (5.28)

Assuming that the state is pure, there would be entanglement if and only if the two components in Eq. (5.28) are different from
zero.

Although some 𝑓𝑎 and 𝑔𝑎 are non-vanishing, the dependence of 𝜌𝐻 on these quantities cancels in the final expression.
Furthermore, due to the following identity among the correlation coefficients ℎ44 = 2

(

ℎ216 + 2ℎ244
)

the above polarization density
matrix is idempotent

𝜌2 = 𝜌 , (5.29)

as expected from the assumption that the final 𝑉 𝑉 ∗ state is a pure state. The density matrix in Eq. (5.27) can then be written
as [141]

𝜌 = |𝛹⟩⟨𝛹 | , (5.30)
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Fig. 5.5. Predictions of the entropy of entanglement E (left plot) and the Bell operator expectation value I3 (right plot) for the pair production of 𝑊 bosons
in Higgs boson decays as functions of the virtual 𝑊 ∗ mass in the range 0 < 𝑀𝑊 ∗ < 40 GeV [134]. The dashed horizontal line in the right-hand side plot marks
the Bell-inequality violation condition I3 > 2. The dashed line in the left-hand side plot denotes the maximum value of ln 3.
Source: Figures revisited from [134] (CCBY4.0).

Fig. 5.6. Predictions of the entropy of entanglement E (left plot) and the Bell operator expectation value I3 (right plot) for the pair production of 𝑍 bosons in
Higgs boson decays as functions of the virtual 𝑍∗ mass in the range 0 < 𝑀𝑍∗ < 32 GeV [134]. The dashed line in the left-hand side plot denotes the maximum
value of ln 3.
Source: Figures revisited from [134] (CCBY4.0).

where (in the basis |𝜆 𝜆′⟩ = |𝜆⟩⊗ |𝜆′⟩ with 𝜆, 𝜆′ ∈ {+, 0,−})

|𝛹⟩ = 1
√

2 + 𝜘2

[

|+−⟩ − 𝜘 |0 0⟩ + |−+⟩
]

(5.31)

with

𝜘 = 1 +
𝑚2
ℎ − (1 + 𝑓 )2𝑀2

𝑉

2𝑓𝑀2
𝑉

(5.32)

and 𝜘 = 1 corresponding to the production of two gauge bosons at rest.
If one makes the assumption that the diboson system is described by a pure state, then one can measure its entanglement through

the entropy of entanglement defined in Eq. (2.16). This quantity is plotted in Figs. 5.5 and 5.6 as a function of the mass of virtual
𝑊 or 𝑍 boson [134]. As we can see from these calculations, the entropy of entanglement is expected to reach its maximum at the
kinematic threshold, signaling a maximally entangled state. The dependence of the polarization entanglement on the mass of the
virtual state is due the contribution of the longitudinal polarization, parametrized by the coefficient 𝜘 in Eq. (5.31). Indeed, this
contribution starts out bigger and decreases to 1 at the threshold. The value of 1 corresponds to a pure singlet state and thus to the
maximum in the entanglement of the state.

The maximization of the I3 observable, which depends in this case only on the 𝑀∗
𝑉 mass, is obtained through the unitary rotation

in Eq. (2.61) of the ℬ matrix in Eq. (2.59), that maximizes the value of the corresponding expectation value. This maximization
must be performed point by point as the density matrix varies with 𝑀∗

𝑉 . The unitary matrices that maximizes the I3 observable in
the last bins (in which 𝑀𝑊 ∗ = 40 GeV and 𝑀𝑍∗ = 32 GeV) for the ℎ→ 𝑊𝑊 ∗ and ℎ → 𝑍𝑍∗ decays are given in [134].

The plots on the left-hand side in Figs. 5.5 and 5.6 nicely show that the value of the entropy of entanglement Eq. (2.16) is
expected to decrease as the pure state in Eq. (5.27) becomes less and less entangled, for decreasing values of 𝑀∗ . The advantages
37
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Fig. 5.7. Expectation values of unoptimized (lower curve) and unitary-operator optimized (upper curve) Bell operators for 𝐻 → 𝑍𝑍 decays as a function of the
relative coefficient 𝛽 (𝜘 in Eq. (5.31)) of the longitudinal polarization of the state.
Source: Figure from [141] (CCBY4.0).

obtained from using the optimal Bell operator can be seen in Fig. 5.7. The relative coefficient 𝛽 of the longitudinal component to
the polarization increases is unity when the 𝑍 bosons are produced at rest in their zero-momentum frame (ZMF), and increases at
larger relative momenta.

The same Figs. 5.5 and 5.6 show the calculations for the Bell operator expectation value I3 (right panels) in the ℎ → 𝑊𝑊 ∗

and ℎ → 𝑍𝑍∗ decays. The plots are for different values of the virtual gauge boson masses 𝑀𝑊 ∗ and 𝑀𝑍∗ , respectively. The Bell
inequality violation in 𝑊𝑊 ∗ and 𝑍𝑍∗ final states starts above 12 GeV and 10 GeV for 𝑀𝑊 ∗ and 𝑀𝑍∗ invariant masses respectively,
reaching its maximum allowed value of order I3 ∼ 2.9 at the largest invariant mass of the corresponding off-shell gauge boson.

5.3.2. Monte Carlo simulations and predictions
The simulation for the process ℎ → 𝑊𝑊 ∗ has been performed in [71] in which most of the tools for the analysis of qutrit systems

(as discussed in Section 3) were introduced as well. The MadGraph5_aMC@NLO [148] software is used including spin correlations
and relativistic and Breit–Wigner effects. The Bell operator I3 is optimized along Cartesian planes. Only the fully leptonic decays
are considered. There are two neutrinos in the final state and the reconstruction of the rest frame of each gauge boson necessarily
introduces a potentially large uncertainty. Various scenarios about the overall uncertainty are discussed (by attributing a smearing
in the value of the lepton momenta) and the significance for the Bell inequality violation shown to vary from about 5𝜎 (for the
most optimistic momenta reconstruction) to 1𝜎 (for a less sanguine one) at the luminosity of 140 fb−1 at the LHC. An analysis is
also presented in [171].

The same decay is discussed in [173] by looking at the semi-leptonic decay ℎ → 𝑗𝑗𝓁𝜈𝓁 (rather than the fully leptonic one). The
momentum from the 𝑠-jet (identified via the 𝑐-tagging of the companion jet) is used to measure the polarization of one of the two
𝑊 -bosons. It has been shown that the efficiency of the jet tagging and the decreased uncertainty in the single neutrino momentum
may improve the polarization reconstruction.

All these analyses must be taken with a grain of salt since the final state 𝑊𝑊 ∗ is hidden inside a large background that makes
generally hard to select the events of the signal.

The process ℎ → 𝑍𝑍∗ has been simulated and analyzed using tensor [141] and Gell-Mann [136] bases. There are no neutrinos
in the final state and the rest frame of the gauge bosons can be reconstructed with precision. The basis that maximizes the Bell
operator is explicitly written out in [141]. The MadGraph5_aMC@NLO [148] software is used to generate the events. It is found
that, for a luminosity of 3 ab−1 (Hi-lumi at the LHC), the significance for the violation of the Bell inequality can be as large as 4.5𝜎.
This process is actually the most promising to test the Bell inequality in weak boson decays because of the clean reconstruction and
low background.

5.4. Vector-boson fusion

Processes in which vector-boson fusion takes place, as in

𝑊 +𝑊 − → 𝑊 +𝑊 − , 𝑍𝛾 → 𝑊 +𝑊 − or 𝛾𝛾 → 𝑊 +𝑊 − (5.33)

have been analyzed in [179] by means of the computation of the corresponding tree level amplitudes within the SM. It is interesting
that this family of scattering process contains final states with two qubits (photons), one qubit and one qutrit (photon and massive
gauge bosons) and two qutrits (massive gauge bosons).

As before for other process, the amount of entanglement depends on phase space. More or less all channels share a comparable
amount of entanglement but for the 𝑍𝑍 → 𝑍𝑍, whose entanglement is suppressed.

The violation of Bell inequality can be tested in vector-boson fusion by measuring the expectation value of the appropriated Bell
operator in regions of the phase space that are identified and listed in [179].
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6. Possible loopholes in testing Bell inequalities at colliders

As pointed out in Section 1.3 of the Introduction, soon after the first test of a Bell inequality was performed, ways to escape the
onsequences were put forward. Since then, these attempts have been grouped together under the label of ‘loopholes’.

The existence of a loophole in the test of a Bell inequality shows how to avoid the exclusion of deterministic, local theories
ven in the presence of an experimentally verified violation of the inequality. A violation of the inequality that is free of loopholes
xcludes these theories and confirms quantum mechanics. If the test is open to one or more loopholes, the possibility of a description
n terms of local, deterministic models is, in principle, still possible.

The discussion of loopholes has taken place so far mostly in the framework of experiments in optics and atomic physics. It is
mportant to bear in mind that (almost) all possible loopholes have been closed in low-energy tests with photons [42,43] and in
tomic physics [45]. This means that devising a local hidden variable model – be it deterministic or stochastic – exploiting any or
ll of these loophole is nowadays a formidable if not indeed impossible task.

The extension to collider physics of any discussion about possible loopholes is delicate and still little explored [151,157]. The
mplications for collider experiments of Bell-violation measurements and considerations of the possible dependencies on hidden
ariables was recently considered in the philosophy of physics literature [180].

We note that the existence of a loophole does not mean that a test of the Bell inequality is useless or meaningless. The test and
he loophole are two distinct entities and the existence of a loophole only implies that there exists, in principle, a way to bypass
he ruling out of locally local hidden variable models. At the same time, the hypothetical model, required to exploit the loophole,
s necessarily made rather complicated and unnatural by its accounting for the violation. Indeed, all these models have to satisfies
o involved a series of requirements that they are very difficult to conceive and very few of them have even been actually defined.9

Contrary to experiments at low energies, those at colliders were not designed to test Bell violation and therefore seem more
prone to loopholes and other shortcomings. Nevertheless, as we discuss below, most loopholes appear to be closed already by the
current most common settings of collider detectors.

The potential loopholes that could be present in any test of Bell inequality are:

- Detection loophole [183]: If the efficiency in detecting the entangled states is not 100%, the undetected states could, had
they been taken into account, restore the inequality;

- Locality loophole [100]: Bell locality, even if satisfied, could be bypassed if it is possible for the entangled states to
communicate by means of a local interaction;

- Coincidence loophole [184]: The states are misidentified and do not belong to the entangled pair;
- Freedom of choice loophole [185]: The lack of freedom in choosing the measurement to be performed alters the outcome;
- Super-determinism loophole [186]: if the initial conditions fully predict all successive developments, possible experiments

included, Bell locality is always satisfied.

How do these loopholes affect a test of Bell inequality at colliders?

• The detection loophole is always present at colliders where only a small fraction of the final states are actually recorded.
Here one must appeal to the assumption of having a fair sampling of these events. This is what is routinely assumed in high-
energy physics since also a measurement of a cross section or branching ratio would be open to the same loophole. Given
such an assumption, due to the high efficiency of the detectors at colliders, as far as the measure of the momenta of charged
particles, the detection loophole might be closed. For qubits the loophole would be closed if the efficiency were more than
about 80% [38] and this requirement is even lower for states belonging to larger Hilbert spaces [187]. By comparison, the
efficiency of the LHCb detector is more than 90% [188] for kaon, pion and muon identification. However analysis selection
efficiencies would also need to be considered.

• The locality loophole is potentially present for states made of particles that end up decaying with a relative time-like interval,
either because they decayed at different times or because they do not move apart fast enough. It could be particularly serious
in the case of charged particles for which the electromagnetic interaction can be used in bypassing the test. Fig. 6.1 shows
the kinematics exploited by the locality loophole. To close the locality loophole it is desirable to consider decays in which the
produced particles are identical, and therefore their life-times are also the same. Even in this case, the actual decays take place
with an exponential spread. To take this into account, one must verify that the majority of the events do take place separated
by a space-like interval and/or weed out those that do not.

Fig. 6.2 shows a typical distribution of decays events as a function of their relative distances. The relative velocity 𝑣 with which
the pair flies apart is sufficiently large to create, at the times 𝑡1 and 𝑡2 of decay, a space-like separation iff

|𝑡1 − 𝑡2| 𝑐
(𝑡1 + 𝑡2) 𝑣

< 1 . (6.1)

The separation prevents local interactions (as those arising through the exchange of photons between charged particles) and ensures
that the locality loophole is closed [189]. The selection of these events could be implemented with a suitable cut on the relative
momentum of the two particles. If the amount of available data is large and the fraction of pairs rejected by the cut is small, this
refinement would not affect the significance of the Bell test under consideration.

9 Bohm’s pilot wave theory [181,182], perhaps the best known example of a hidden-variable model, yields explicitly nonlocal dynamics for the hidden
39
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Fig. 6.1. Kinematics of the locality loophole. Particle B can decay within the future cone of particle A either because of a longer lifetime or because the random
spread in its decay time.

Fig. 6.2. Example about the fraction of events separated by a space-like interval (95% in this histogram). Histogram of the number of events as a function of
the ratio |𝑡1 − 𝑡2|∕(𝑡1 + 𝑡2) between the difference and the sum of the decay times of the two taus. The events have been generated by 105 pseudo-experiments
in which the decay times are randomly varied within an exponential distribution. The black-dashed vertical line distinguishes events separated by a time-like
interval (to the right of the line) from those that are space-like separated (to the left of the line).
Source: Figure revisited from [157] (CCBY4.0).

• The coincidence loophole does not seems to be problematic at colliders. Such a misidentification is always accounted for in
the quoted uncertainty in the results of the experiments.

• The freedom-of-choice loophole relates to the possible dependence of is—depending on whom you ask—either the hardest or
the simplest to close at a collider setting. At low-energy experiments the loophole is addressed by coupling the polarization
measurement to a (pseudo)random choice that is made after the entangled states have been produced, and with a space-like
separation at the point of ‘choice’. This is not possible at colliders where the detector is fixed by its construction design. Though
this seems to be a show stopper, we have advanced an alternative point of view: the polarization measurement is made inside
the detector by the particles themselves as they decay into the final state; because the decay is a quantum process, it is the
ultimate random process and one could argue that therefore the freedom of choice is implemented. It can be argued that the
objection that the quantum theory one would like to put to the test is employed in closing the loophole can be extended also
to the (pseudo)random choice in the loophole-free low-energy setting. Be that as it may, as our brief discussion reveals, the
physics surrounding this loophole is not settled yet and needs further discussion.

• The ‘super-determinism’ loophole is related; a dependence of the measurement outcomes on information in the overlapping
past light-cones of the respective measurements can break the assumed form of the probability distribution Eq. (2.36). This
loophole cannot be closed at colliders, nor can it be closed in atomic-physics experiments or, indeed, at all.

The discussion of the role of loopholes in the violation of Bell inequality at high energies is still at its first steps [180]. It is fair to
say that models exploiting these loopholes to save local hidden variable theories – either deterministic or stochastic – will become
40

even harder to define once the violation will be extended at colliders and in the presence of strong and electroweak forces because
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they will have to account for both the low- and the high-energy experiments. We are not aware of any definite model claiming to
be able to achieve this.

7. Probing new particles and fields with entanglement

The sensitivity of entanglement on the specific form of the couplings between the states produced at colliders makes it a promising
bservable to be used in gaining sensitivity to new physics – particles, fields and interactions – beyond the SM. The overall advantage
n sensitivity with respect to a more usual observable like the cross section is tempered by the added uncertainty necessarily present
n the determination of the polarizations. Yet the use of entanglement can contribute to better constrain interactions and models
eyond the SM, as the examples reviewed below show. This is a field still in its infancy but we expect quantum state tomography
o become part of the routine tools in the physical analysis of the experimental events.

.1. Top quark

The SM Effective Field Theory (SMEFT) expansion parametrizes possible new particles and fields, characterized by heavy new
tates, in terms of operators that are obtained by integrating out these new states. Modifications of the entanglement of the spins
f top-quark pairs in this framework has been studied in [190]. In this approach the effective Lagrangian is given by

LSMEFT = LSM + 1
𝛬2

∑

𝑖
𝑐𝑖O𝑖 , (7.1)

n which, at the leading order in QCD, all 𝐶𝑃 -even operators of dimension six are included. There is 1 operator with zero fermions,
operators with two fermions and 14 with four fermions (see [190] for their explicit form). In Eq. (7.1), 𝛬 is the scale of the

ffective theory (roughly the mass of the heavy states) and 𝑐𝑖 the Wilson coefficients of the corresponding operators.
The concurrence is modified by the presence in the differential cross section of terms linear in 𝑐𝑖∕𝛬 (arising from the interference

etween the SM and the dimension six operators) and by terms quadratic in 𝑐𝑖∕𝛬 (arising from the square of the dimension six
perators). The qualitative result of the analysis is that, at threshold, the linear interference terms modify the concurrence very
ittle while the quadratic terms reduce it. Both classes of terms reduce the concurrence in the high-energy regime by a sizeable
mount.

The impact of higher-order terms in the SMFET expansion have been studied in [191]. While NLO k-factors do not radically
hange the predictions, some NLO corrections are shown that are not captured by LO scale variations.

.1.1. Gluon magnetic-like dipole moment
To show how entanglement can provide constraints on higher-order operators, let us focus on a single one, the gluon

agnetic-like dipole operator, as discussed in [147], which gives rise to the effective Lagrangian

Ldipole =
𝑐 𝑡𝐺
𝛬2

(

O𝑡𝐺 +O†
𝑡𝐺
)

with O𝑡𝐺 = 𝑔𝑠
(

𝑄̄𝐿 𝜎
𝜇𝜈 𝑇 𝑎 𝑡𝑅

)

𝐻̃𝐺𝑎𝜇𝜈 . (7.2)

n Eq. (7.2) above, 𝑄𝐿 and 𝑡𝑅 stands for the 𝑆𝑈 (2)𝐿 left-handed doublet of top-bottom quarks and right-handed top quark fields
espectively, while 𝐻̃ is as usual the dual of the 𝑆𝑈 (2)𝐿 doublet Higgs field, with SM vacuum expectation value 𝑣 given by
0|𝐻̃|0⟩ = (𝑣∕

√

2, 0).
The magnetic-like dipole moment is given by

𝜇 = −

√

2𝑚𝑡𝑣
𝛬2

𝑐 𝑡𝐺 . (7.3)

The addition of an effective magnetic dipole moment term to the SM Lagrangian, gives rise in general to further mixture
contributions, thus weakening the entanglement of the 𝑡𝑡 spin state produced by the SM interaction. It is this loss of entanglement
both in the 𝑞𝑞 and 𝑔𝑔 production channels that allows the bound on the magnitude of the extra, effective parameter 𝜇, to be obtained.

By running a simple Monte Carlo, the authors of [147] find that—in the kinematic region 𝑚𝑡𝑡 > 900 GeV and 2𝛩∕𝜋 > 0.85, where
the relative difference between the SM and the new physics is largest and equal to about 3%—a separation of 2.3𝜎 is possible down
to the value of 𝜇 = 0.003 with the data of run 2 at the LHC. This result is in agreement with what found in [190] (with 𝑐𝑡𝐺 = −0.1
for 𝛬 = 1TeV) and compares favorably with current determinations [192,193] which find a bound around 𝜇 = 0.02.

7.2. 𝜏 Lepton

Quantum state tomography has been used in the study of the properties of the 𝜏 lepton and its coupling to quarks and the Higgs
41

boson.
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7.2.1. Contact interactions
Contact interactions in 𝜏-pair entanglement were discussed in [147]. The most general contact operators for the production of

𝜏-leptons from quarks can be written, in chiral components, as

Lcc = − 4𝜋
𝛬2
𝜂𝐿𝐿(𝑞𝐿𝛾𝛼𝑞𝐿) (𝜏𝐿𝛾𝛼𝜏𝐿) −

4𝜋
𝛬2
𝜂𝑅𝑅(𝑞𝑅𝛾𝛼𝑞𝑅) (𝜏𝑅𝛾𝛼𝜏𝑅) (7.4)

− 4𝜋
𝛬2
𝜂𝐿𝑅(𝑞𝐿𝛾𝛼𝑞𝐿) (𝜏𝑅𝛾𝛼𝜏𝑅) −

4𝜋
𝛬2
𝜂𝑅𝐿(𝑞𝑅𝛾𝛼𝑞𝑅) (𝜏𝐿𝛾𝛼𝜏𝐿) .

It is the change in the entanglement content of the 𝜏-pair spin state induced by the presence of the contact term contribution,
oth in the 𝑢𝑢̄ and 𝑑𝑑 production channels, that makes possible obtaining bounds on the magnitude of the new physics scale 𝛬.

The entanglement becomes larger in the kinematic regions where either the photon or the 𝑍-boson diagram dominates. Because
he new-physics terms increase as the energy in the CM, these regions—being as they are at relatively low-energies—are not favorable
or distinguishing between SM and new higher-scale physics. It is at higher energies, just below 1 TeV that the two can best be
ompared. At these energies, the amount of entanglement is modest but very sensitive to the addition of new terms in the amplitude.
he authors of [147] therefore consider the kinematic region 𝑚𝜏𝜏 > 800 as a compromise between having enough events and having
ew-physics effects sizeable.

For 𝑚𝜏𝜏 > 800 GeV and scattering angles close to 𝜋∕2, the relative difference between SM and the new physics (with 𝛬 = 25 TeV)
s largest and equal to about 70%. Such a large effect shows that the contact interaction and its scrambling of the two 𝜏-lepton
olarizations is a very effective way of changing the concurrence of their spins. The SM hypothesis can be rejected with a significance
f 2.7 for a contact interaction with a scale 𝛬 = 25 TeV at Hi-Lumi LHC. This result compares favorably with current determinations
f four-fermion operators [194,195] (see also, the dedicated Section in [196]).

.2.2. CP properties of the coupling to the Higgs boson
The CP nature of the Higgs boson coupling to the 𝜏 leptons has been proposed to be constrained by means of entanglement

in [158]. The authors consider the associated production 𝑍ℎ at 𝑒+𝑒− colliders and look in the subsequent decay ℎ → 𝜏+𝜏− at the
eneric interaction Lagrangian

Lℎ = −
𝑚𝜏
𝑣
𝜅 ℎ 𝜏

(

cos 𝛿 + 𝑖𝛾5 sin 𝛿
)

𝜏 . (7.5)

uantum state tomography of the decay is proposed via the computation of the correlation matrix, which is given by

𝐶𝑖𝑗 =
⎛

⎜

⎜

⎝

cos 2𝛿 sin 2𝛿 0
− sin 2𝛿 cos 2𝛿 0

0 0 −1

⎞

⎟

⎟

⎠

. (7.6)

Monte Carlo events are generated with the program MadGraph5_aMC@NLO [148], using leading-order matrix elements for two
enchmark colliders: the ILC and FCC-ee. The one-prong decays 𝜏+ → 𝜋+𝜈𝜏 and 𝜏− → 𝜋−𝜈̄𝜏 are used. The kinematic constraints of
he process are used to reconstruct the neutrino momenta and find those of the 𝜏-leptons, in the rest frame of which the entries 𝐶𝑖𝑗
re computed. Since the concurrence is maximal regardless of the 𝐶𝑃 phase [147], the determination of the 𝐶𝑃 phase would be

obtained by a direct fit of the entries in the 𝐶𝑖𝑗 matrix.
The simulations suggest that a zero value of the phase 𝛿 could be constrained at the 9% CL to the intervals:

[−10.89◦, 9.21◦] (ILC)
[−7.36◦, 7.31◦] (FCC-ee) (7.7)

or the two benchmark considered. A sensitivity (at 1𝜎) of roughly 7.5◦ is found for the ILC and 5◦ for the FCC-ee. These values are
omparable to those found by more traditional methods (see, for instance [197]).

.2.3. Electromagnetic couplings and compositeness
The electromagnetic couplings of the 𝜏 leptons are constrained by means of entanglement in [198]. The effective vertex used to

odel these interactions is

−𝑖𝑒 𝜏 𝛤 𝜇(𝑞2) 𝜏 𝐴𝜇(𝑞) = −𝑖𝑒 𝜏
[

𝛾𝜇𝐹1(𝑞2) +
𝑖𝜎𝜇𝜈𝑞𝜈
2𝑚𝜏

𝐹2(𝑞2) +
𝜎𝜇𝜈𝛾5𝑞𝜈
2𝑚𝜏

𝐹3(𝑞2)
]

𝜏 𝐴𝜇(𝑞) , (7.8)

nd it defines the magnetic and electric dipole moments as

𝑎𝜏 = 𝐹2(0) and 𝑑𝜏 =
𝑒

2𝑚𝜏
𝐹3(0) . (7.9)

he potential compositeness of the 𝜏 lepton can be investigated by means of the mean squared electromagnetic radius

⟨𝑟 2⟩ = −6 𝑑
𝑑𝑞 2

[

𝐹1(𝑞2) +
𝑞2

4𝑚2
𝜏
𝐹2(𝑞2)

]

|

|

|

|

|

|𝑞2=0

. (7.10)

To constrain these quantities the authors employ a 𝜒2 test targeting deviations of the concurrence, cross section and antisymmet-
ic part of the 𝜏-pair polarization density matrix from the corresponding SM values. The uncertainties associated with the quantum
perators were obtained via a Monte Carlo simulation [157], whereas the one affecting the cross section was obtained by rescaling
he error quoted in Ref. [199] to the benchmark luminosity used in the study. The limit obtained with this methodology are reported
42

n Table 7.1, together with the corresponding current experimental bounds.
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Table 7.1
Marginalization of 95% joint confidence intervals on the magnetic and electric dipole of the 𝜏
lepton obtained with quantum observables for a benchmark luminosity of 1 ab−1 at Belle II.
The current experimental limits are reported in the first column. The scale 𝛬𝐶.𝐼. suppresses the
four-fermion contact interaction related to the 𝜏 lepton electromagnetic radius.
PDG (2022) Quantum observables

−1.9 × 10−17 ≤ 𝑑𝜏 ≤ 6.1 × 10−18 e cm |𝑑𝜏 | ≤ 1.7 × 10−17 e cm
−5.2 × 10−2 ≤ 𝑎𝜏 ≤ 1.3 × 10−2 |𝑎𝜏 | ≤ 6.3 × 10−4

𝛬𝐶.𝐼. ≥ 7.9 TeV
√

⟨𝑟 2⟩ < 5.1 × 10−3 fm. ⟹ 𝛬𝐶.𝐼. ≥ 2.6 TeV

7.3. Diboson production

The possibilities for using concurrence bounds, purity, and Bell inequalities to gain sensitivity to new particles and fields using the
utrit bipartite system representing two massive gauge bosons are discussed—both analytically and in Monte Carlo simulations—for
epton and hadron colliders in [170]. The SM results agree with [134]. In addition, it is shown that spin observables can serve as
robes for heavy new physics as parametrized by higher dimensional operators in the SMEFT expansion. In particular, it is found
hat these observables offer increased sensitivity to operators whose contributions do not interfere with the SM amplitudes at the
evel of differential cross sections. As expected, lepton colliders have better sensitivity than hadron colliders because in the latter
he quantum state of the system is the incoherent sum of different partonic channels and therefore tends to be mixed.

Production of 𝑍𝑍 pairs is the least interesting process when it comes to sensitivity to heavy new particles and fields, as
he phenomenology is completely determined by only two possibly anomalous couplings (the right-handed and the left-handed
oupling to the 𝑍 boson) and the dimension-6 operators do not introduce new Lorentz structures. On the other hand, 𝑊𝑊 and
𝑍 production show a rather large sensitivity to heavy new-physics effects in the spin density matrix already with operators of

imension six with significant changes expected in the entanglement pattern across phase space.

.4. Higgs boson coupling to 𝑊 ± and 𝑍

The power of entanglement and quantum observables to constrain non-standard interactions between Higgs and massive
auge bosons has been discussed in [174,175]. These anomalous couplings have been previously studied by means of dedicated
bservables [200–210], within effective field theories [211–213] and by means of helicity amplitudes [23,27–32,214].

The most general interaction Lagrangian involving the Higgs boson ℎ and the gauge bosons 𝑊 ± and 𝑍 allowed by Lorentz
invariance is given by

Lℎ𝑉 𝑉 =𝑔𝑀𝑊𝑊
+
𝜇 𝑊

−𝜇ℎ +
𝑔

2 cos 𝜃𝑊
𝑀𝑍𝑍𝜇𝑍

𝜇ℎ

−
𝑔

𝑀𝑊

[

𝑎𝑊
2
𝑊 +
𝜇𝜈𝑊

−𝜇𝜈 +
𝑎𝑊
2
𝑊 +
𝜇𝜈𝑊

−𝜇𝜈 +
𝑎𝑍
4
𝑍𝜇𝜈𝑍

𝜇𝜈 +
𝑎𝑍
4
𝑍𝜇𝜈𝑍

𝜇𝜈

]

ℎ , (7.11)

where 𝑉 𝜇𝜈 is the field strength tensor of the gauge boson 𝑉 = 𝑊 or 𝑍 and the corresponding dual tensor is defined as
𝑉 𝜇𝜈 = 1

2 𝜖
𝜇𝜈𝜌𝜎𝑉𝜌𝜎 . The anomalous couplings 𝑎𝑉 allow for a momentum dependent interaction vertex whether the couplings 𝑎𝑉

signal the presence of a pseudoscalar component, which could result in the violation of the CP symmetry through the interference
with the SM contribution. The latter is obtained for 𝑎𝑉 = 𝑎𝑉 = 0.

Following the conventions of Section 5.3, off-shell states are denoted with 𝑉 ∗, 𝑉 = 𝑊 ,𝑍. From the Lagrangian in Eq. (7.11) it
is possible obtain the following amplitude for the ℎ→ 𝑉 (𝑘1, 𝜆1)𝑉 ∗(𝑘2, 𝜆2) process

M(𝜆1, 𝜆2) = A𝜇𝜈𝜀
𝜇⋆(𝑘1, 𝜆1)𝜀𝜈⋆(𝑘2, 𝜆2) , (7.12)

where

A𝜇𝜈 = 𝑔𝑀𝑉 𝜉𝑉 𝑔
𝜇𝜈 −

𝑔
𝑀𝑊

[

𝑎𝑉
(

𝑘𝜈1𝑘
𝜇
2 − 𝑔𝜇𝜈𝑘1 ⋅ 𝑘2

)

+ 𝑎̃𝑉 𝜖𝜇𝜈𝛼𝛽𝑘1𝛼𝑘2𝛽
]

. (7.13)

and the parameter 𝜉𝑉 takes values 𝜉𝑊 = 1 and 𝜉𝑍 = 1∕(cos 𝜃𝑊 ), with 𝜃𝑊 being the Weinberg angle. The spin-summed amplitude
square is then

|M|

2 =
𝜉2𝑉 𝑔

2

4𝑓 2𝑀2
𝑉

{

[

1 + 2 𝑓 2 (𝑎2𝑉 + 𝑎2𝑉
)

]

𝑚4
ℎ − 2

[

1 + 𝑓 2
(

1 + 2𝑎2𝑉 + 2𝑎2𝑉 − 6𝑎𝑉
)

+ 2 𝑓 4
(

𝑎2𝑉 + 𝑎2𝑉
) ]

𝑚2
ℎ𝑀

2
𝑉 +

[

1 + 2𝑓 6
(

𝑎2𝑉 + 𝑎2𝑉
)

+ 2𝑓 2
(

5 + 𝑎2𝑉 + 𝑎2𝑉 − 6𝑎𝑉
)

+ 𝑓 4
(

1 − 4𝑎2𝑉 + 8𝑎2𝑉 − 12𝑎𝑉
) ]

𝑀4
𝑉

}

, (7.14)

∗

43

here, as before, 𝑓 =𝑀𝑉 ∗∕𝑀𝑉 quantifies how much the particle 𝑉 is off-shell.
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Table 7.2
Marginalized 95% joint confidence intervals for
the anomalous couplings obtained from the LHC
data neglecting the backgrounds. The operators
used in the 𝜒2 test are the entropy of entangle-
ment and 𝒞𝑜𝑑𝑑 .
LHC run2 LHC Hi-Lumi

|𝑎𝑊 | ≤ 0.033 |𝑎𝑊 | ≤ 0.0070
|𝑎𝑊 | ≤ 0.031 |𝑎𝑊 | ≤ 0.0068
|𝑎𝑍 | ≤ 0.0019 |𝑎𝑍 | ≤ 0.00040
|𝑎𝑍 | ≤ 0.0039 |𝑎𝑍 | ≤ 0.00086

The procedure in Section 3.2 results in a density matrix having the same structure as that of Eq. (5.4), with helicity
mplitudes (5.1) now given by

ℎ0 =𝑔 𝜉𝑉

[

𝑎𝑉 𝑓 𝑀𝑉 (𝑥2 − 1) −
(

𝑀𝑉 + 𝑎𝑉
𝑘1 ⋅ 𝑘2
𝑀𝑉

)

𝑥
]

, (7.15)

ℎ± =𝑔 𝜉𝑉

[(

𝑀𝑉 + 𝑎𝑉
𝑘1 ⋅ 𝑘2
𝑀𝑉

)

∓ 𝑖 𝑎̃𝑉 𝑓 𝑀𝑉

√

𝑥2 − 1
]

, (7.16)

here 𝑥 = 𝑚2
ℎ∕(2𝑓𝑀

2
𝑉 ) − (𝑓 2 + 1)∕(2𝑓 ). The coefficients 𝑓𝑎, 𝑔𝑎 and ℎ𝑎𝑏 entering the alternative decomposition of the density matrix

n the basis formed by the tensor products of the Gell-Mann matrices and the identity matrix are listed in Appendix B.5. The
ensity matrix continues to describe a pure state also in presence of anomalous coupling; an explicit expression can be obtained
rom Eq. (5.31) by means of Eqs. (7.15) and (7.16).

To constrain the anomalous couplings in the Lagrangian (7.11), the authors of [175] employ two observables made easily
ccessible by quantum state tomography:

- The entanglement between the polarizations of the massive gauge bosons emitted in the decay under consideration, given for
a pure state by the entropy of entanglement defined in Eq. (2.16). The anomalous coupling 𝑎𝑉 enters the observable linearly,
whereas the dependence on 𝑎𝑉 is only quadratic and, therefore, suppressed in the expected range of values.

- An observable tailored to single out the anti-symmetric part of the density matrix

𝒞𝑜𝑑𝑑 = 1
2

∑

𝑎,𝑏
𝑎<𝑏

|

|

|

ℎ𝑎𝑏 − ℎ𝑏𝑎
|

|

|

, (7.17)

corresponding to kinematics variables that involve the triple products of momenta and polarizations, for instance 𝑘⃗ ⋅
(

𝜀𝑛̂ × 𝜀𝑟̂
)

where 𝑘⃗ is the momentum of one of the particles while 𝜀𝑛̂ and 𝜀𝑟̂ are the projections of the polarizations along two directions
orthogonal to the momentum. The observable 𝒞𝑜𝑑𝑑 depends linearly on the anomalous coupling 𝑎𝑉 , while the effects of 𝑎𝑉
are suppressed as the parameter enters the expression only multiplied by 𝑎𝑉 .

The values of the anomalous couplings can be constrained by a 𝜒2 test set for a 95% joint CL. The relevant uncertainties can
e computed by taking the error affecting the Higgs boson mass measured from the 𝑝 𝑝 → ℎ → 𝑊 +𝓁−𝜈̄𝓁 [215] and 𝑝 𝑝 → ℎ →

𝓁+𝓁− [216] processes as a proxy for the uncertainty in the reconstruction of the resonant Higgs boson rest frame, crucial for the
etermination of gauge boson polarizations. The error is consequently propagated to the observables via a Monte Carlo simulation
here 𝑚ℎ is varied within the experimental limits. Table 7.2 shows the marginalized 95% joint confidence intervals obtained for

he anomalous couplings.
The proposed strategy outperforms, in power, alternative strategies employing polarization observables not related to entangle-

ent [214] and goes beyond the projected reach of even future lepton collider searches exploiting classical spin correlations and
ross sections [217–219].

Although the proposed observables seem optimal to constrain the anomalous couplings, a careful assessment of the power of the
ethod must include the effect of backgrounds originating, for instance, from the gauge boson and quark electroweak fusions. A

irst effect of these processes is that of impairing the purity of the bipartite qutrit final state, thereby complicating the quantification
f entanglement which now must rely on the concurrence (2.21) or on its lower bound (2.62). According to current estimates, the

plus jets background affecting the ℎ→ 𝑊𝑊 ∗ channel overcomes the signal, whereas a signal-to-background ratio of 0.8 can be
chieved for the 𝑍𝑍∗ channel in the kinematic region of interest [220]. In the latter case, the inclusion of background processes
oes not significantly worsen the results in Table 7.2.

. Other processes and ideas

The study of entanglement in particle physics is just at its beginnings and new ideas and applications are coming to light and
eing explored. We give a short summary of some of them in this Section.
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8.1. Three-body decays

The extension to three-body decays of the computations of entanglement is natural and potentially fruitful in the physics
f colliders. The authors of [221] explain how the concurrence can be generalized to measure tripartite systems. Two kinds of
oncurrence can be defined for a three qubit state |𝛹⟩: one

C𝑖𝑗 = C [𝜌𝑖𝑗 ] = Tr 𝑘 |𝛹⟩⟨𝛹 | (8.1)

n which one of the three sub-states is traced out, and one

C𝑖(𝑘𝑗) =
√

2(1 − Tr 𝜌2𝑘𝑗 ) (8.2)

n which the concurrence of the sub-part 𝑖 is measured with respect to the other two.
The properties and peculiarities of the three-body system can be analyzed by means of the monogamy inequality [222,223]

C2𝑖(𝑘𝑗) ≤ C2𝑖𝑗 + C2𝑖𝑘 (8.3)

nd the genuine multiparticle entanglement quantified by the concurrence triangle given by [224]

𝐹3 =
4
√

3

[

𝑄 (𝑄 − C1(23)) (𝑄 − C2(13)) (𝑄 − C3(12))
]1∕2

(8.4)

with 𝑄 = [C1(23) + C2(13) + C3(12)]∕2; 𝐹3 takes values from 0 and 1.
Monogamy and the concurrence triangle are discussed in [221] for various kinds of possible interactions (scalar, pseudoscalar,

vector and axivector) in a three-body decay process. The general properties of multipartite systems are discussed in [225], which
introduces the concept of the concurrence vector.

8.2. Post-decay entanglement

An idea first discussed in [226] for kaon system, has been extended in [227,228] to the generic case of the decay into two
particles, one of which is projected into an eigenstate by a Stern–Gerlach-type experiment.

The procedure is applied to top-quark pairs produced at the LHC to show [227], by means of a Monte Carlo simulation, that it is
possible to measure entanglement between one top-quark and the 𝑊 gauge boson originating from the decay of the other top-quark.
If implemented, such a measure would be the first showing entanglement between a fermion and a boson.

8.3. Maximum entanglement

A direct computation of many QED processes shows that the entanglement between the polarizations of the particles in the
final state is maximum for certain scattering angles. This behavior comes about because of the structure of the interactions in the
processes considered.

This result has inspired a line of research in which maximum entanglement is taken as a principle and used in an attempt
to determine some of the SM interactions and parameters [68]. For example, the application of this principle to the determination
of the Weinberg angle in tree-level scattering of leptons leads to the value sin 𝜃𝑊 = 1∕2. It comes from the cancellation of the
vector-like coupling in the electroweak current. Off by about 10% of the actual value though this is, it is an interesting result which
may be hinting to some underlining interplay between quantum mechanics and particle physics.

8.4. Minimum entanglement

The idea of connecting minimal entanglement to emergent symmetries in hadron physics and low-energy QCD has been
initiated in [229], in which the Wigner 𝑆𝑈 (4) symmetry for two flavors and an 𝑆𝑈 (16) symmetry for three flavors is conjectured
to arise from dynamical entanglement suppression of the strong interactions in the infrared.

Further discussion of entanglement suppression in hadron physics are presented in [230–234] and applied to a model for the SM
Higgs boson based on entanglement suppression of the 𝑆𝑂(8) symmetry in a scalar model with two Higgs bosons which are flavor
oublets [235]

.5. Quantum process tomography and beyond-quantum tests

As well as understanding the spin structure of the final state, we have reason to be interested in the mapping that takes an
ncoming initial state, characterized by some spin density matrix 𝜌 in to some final spin density matrix 𝜌 out – what is known as
he quantum process. This map 𝛷 ∶ C𝑚×𝑚 → C𝑛×𝑛 needs to satisfies some requirements in order to be physically acceptable (for
nstance complete positivity, see [77]) and, due to quantum state-channel duality, can also be represented by a larger matrix, the
hoi matrix [236]. The formalism allows us to advance Feynman’s proposal [237] of using quantum systems (quantum computers)
o efficiently simulate quantum dynamics (scattering processes). A dictionary mapping between the language of quantum computers
nd of particle physics processes was developed in [238], as well as simulating an example process — the spins of an 𝑒+𝑒− → 𝑡𝑡
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scattering process on an IBM quantum computer.10 The authors of [243] advocate measuring experimentally the Choi matrix for
subatomic processes since such tests could indicate sensitivity to unexplored physics and even probe ‘post-quantum’ theories that
do not necessarily have unitary evolution.

9. Outlook

The detection of entanglement at colliders might have seemed, at first blush, a rather far fetched proposition. High-energy
collisions have all sorts of multiple vertex interactions and superposition of processes weighted by the respective distribution
probabilities. How can quantum coherence survive through all that?

Unlikely though it might have seemed at first, the study of entanglement at colliders turned out to be not only possible but a
new and promising field whose very existence is enriching for particle physics. Many works have recently been published in a very
short span of time as different processes have been investigated and an increasing number of results harvested. We hope to have
produced a useful survey of those released up to the beginning of the year 2024.

After these developments, the experiments are now weighing in. It has begun with the analyses of 𝐵-meson decays at the LHCb
and Belle-II [72] and the detection of entanglement at the LHC [73,74] and we expect more results will be forthcoming for 𝜏-lepton
pairs final states at Belle II — whose experiments have by far the best statistics. Most likely, these will be followed by analyses
for top-quark pairs and diboson final states from Higgs boson decays from the data of run 1 and 2 at the LHC, which are already
under way, and will be extended into the Hi-Lumi runs as well. The results of all these experiments will provide the basis for the
next round of theoretical enquires toward perhaps a more detailed view of the processes discussed in Section 4, 5 and 7 or new
directions, some of which have been briefly discussed in Section 8.

We believe that the possible experimental program of investigation on the structure of quantum mechanics at the existing and
future colliders is very broad, and continues to be developed. The implications of these measurements are only just starting to be
investigated. It is refreshing for our generation of collider physicists to recall that, regardless of whether additional new particles
are found, there is a great deal of highly interesting and challenging physics out there for us to investigate.
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Appendix A. Qubits

This Appendix contains some kinematic definitions utilized in Sections 4 and 5 and the explicit expressions for the SM functions
𝐴̃ and 𝐶̃𝑖𝑗 , 𝐵̃𝑖 entering the coefficients 𝐶𝑖𝑗 and 𝐵𝑖, respectively, for the top-quark and 𝜏-lepton pair production, as discussed in
Section 4.

10 The broader use of quantum computing methods in high-energy physics was recently reviewed, for instance, in [239–242].
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p

A.1. Kinematics

Let us consider the generic production of fermion pair via quark anti-quark annihilation

𝑞(𝑞1) + 𝑞(𝑞2) → 𝑓 (𝑘1) + 𝑓 (𝑘2) . (A.1)

The momenta 𝑘1 and 𝑘2, corresponding to the final fermion and anti-fermion, and 𝑞1 and 𝑞2 of the entering quark and anti-quark,
respectively, can be written in the CM system as [147]

𝑘1 =

⎛

⎜

⎜

⎜

⎝

𝑚𝑓
√

1 − 𝛽2𝑓
,
𝑚𝑓 𝛽𝑓 sin𝛩
√

1 − 𝛽2𝑓
, 0,

𝑚𝑓 𝛽𝑓 cos𝛩
√

1 − 𝛽2𝑓

⎞

⎟

⎟

⎟

⎠

𝑘2 =

⎛

⎜

⎜

⎜

⎝

𝑚𝑓
√

1 − 𝛽2𝑓
, −

𝑚𝑓 𝛽𝑓 sin𝛩
√

1 − 𝛽2𝑓
, 0, −

𝑚𝑓 𝛽𝑓 cos𝛩
√

1 − 𝛽2𝑓

⎞

⎟

⎟

⎟

⎠

𝑞1 =

⎛

⎜

⎜

⎜

⎝

𝑚𝑓
√

1 − 𝛽2𝑓
, 0, 0,

𝑚𝑓
√

1 − 𝛽2𝑓

⎞

⎟

⎟

⎟

⎠

𝑞2 =

⎛

⎜

⎜

⎜

⎝

𝑚𝑓
√

1 − 𝛽2𝑓
, 0, 0, −

𝑚𝑓
√

1 − 𝛽2𝑓

⎞

⎟

⎟

⎟

⎠

, (A.2)

where 𝑚𝑓 is the mass of the final fermions and

𝛽𝑓 =

√

√

√

√

√1 − 4
𝑚2
𝑓

𝑚2
𝑓𝑓

, (A.3)

where 𝑚𝑓𝑓 is the fermion pair invariant mass, with 𝛩 the angle between the initial and final fermion momenta in the CM frame.
Throughout the review, we adopt the orthonormal basis in Eq. (3.1) introduced in [19] in order to describe the spin correlations.
The elements 𝐶𝑖𝑗 of the correlation matrices are obtained on the various components of the chosen basis by means of the

olarizations vectors 𝑠𝜇𝑖 appearing in Eqs. (3.6)–(3.7) [147]

𝑠𝑘1 =

⎛

⎜

⎜

⎜

⎝

𝛽𝑓
√

1 − 𝛽2𝑓
, sin𝛩
√

1 − 𝛽2𝑓
, 0, cos𝛩

√

1 − 𝛽2𝑓

⎞

⎟

⎟

⎟

⎠

𝑠𝑘2 =

⎛

⎜

⎜

⎜

⎝

−
𝛽𝑓

√

1 − 𝛽2𝑓
, sin𝛩
√

1 − 𝛽2𝑓
, 0, cos𝛩

√

1 − 𝛽2𝑓

⎞

⎟

⎟

⎟

⎠

𝑠𝑟1 = 𝜁 𝑟2 = (0, −cos𝛩, 0, sin𝛩)

𝑠𝑛1 = 𝑠𝑛2 = (0, 0, 1, 0) (A.4)

where the indices 1 and 2 stand for the final fermion and anti-fermion respectively.

A.2. Top-quark pairs

Here are the complete expressions [20,244] for the coefficients 𝐴̃𝑞𝑞 , 𝐵̃𝑞𝑞𝑖 , and 𝐶̃𝑞𝑞𝑖𝑗 entering in Eq. (4.8) for the 𝑡𝑡 pair production
via 𝑞𝑞 and 𝑔𝑔 scattering in the SM:

𝐴̃𝑔𝑔 = 𝐹𝑔𝑔
[

1 + 2𝛽2𝑡 sin
2 𝛩 − 𝛽4𝑡

(

1 + sin4 𝛩
)

]

, (A.5a)

𝐶̃𝑔𝑔𝑛𝑛 = −𝐹𝑔𝑔
[

1 − 2𝛽2𝑡 + 𝛽
4
𝑡
(

1 + sin4 𝛩
)

]

, (A.5b)

𝐶̃𝑔𝑔𝑟𝑟 = −𝐹𝑔𝑔
[

1 − 𝛽2𝑡
(

2 − 𝛽2𝑡
) (

1 + sin4 𝛩
)

]

, (A.5c)

𝐶̃𝑔𝑔𝑘𝑘 = −𝐹𝑔𝑔
[

1 − 𝛽2𝑡
sin2 2𝛩

2
− 𝛽4𝑡

(

1 + sin4 𝛩
)

]

, (A.5d)

𝐶̃𝑔𝑔𝑘𝑟 = 𝐶̃𝑔𝑔𝑟𝑘 = 𝐹𝑔𝑔 𝛽
2
𝑡

√

1 − 𝛽2𝑡 sin 2𝛩 sin2 𝛩 (A.5e)

𝐵̃𝑔𝑔𝑘 = 𝐵̃𝑔𝑔𝑟 = 𝐵̃𝑔𝑔𝑛 = 0 , (A.5f)
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v

with 𝐹𝑔𝑔 =
𝑁2
𝑐
(

1 + 𝛽2𝑡 cos
2 𝛩

)

− 2

64𝑁𝑐
(

1 − 𝛽2𝑡 cos2 𝛩
)2

and

𝐴̃𝑞𝑞 = 𝐹𝑞𝑞
(

2 − 𝛽2𝑡 sin
2 𝛩

)

, (A.6a)

𝐶̃𝑞𝑞𝑛𝑛 = −𝐹𝑞𝑞 𝛽2𝑡 sin
2 𝛩, (A.6b)

𝐶̃𝑞𝑞𝑟𝑟 = 𝐹𝑞𝑞
(

2 − 𝛽2𝑡
)

sin2 𝛩, (A.6c)

𝐶̃𝑞𝑞𝑘𝑘 = 𝐹𝑞𝑞
(

2 cos2 𝛩 + 𝛽2𝑡 sin
2 𝛩

)

, (A.6d)

𝐶̃𝑞𝑞𝑘𝑟 = 𝐶̃𝑞𝑞𝑟𝑘 = 𝐹𝑞𝑞
√

1 − 𝛽2𝑡 sin 2𝛩, (A.6e)

𝐵̃𝑔𝑔𝑘 = 𝐵̃𝑔𝑔𝑟 = 𝐵̃𝑔𝑔𝑛 = 0 , (A.6f)

with 𝐹𝑞𝑞 =
1

2𝑁2
𝑐

.

A.3. 𝜏-lepton pairs

Here are the complete expressions [147] for the coefficients 𝐴̃𝑞𝑞 , 𝐵̃𝑞𝑞𝑖 , and 𝐶̃𝑞𝑞𝑖𝑗 entering in Eq. (4.26)) for the 𝜏+𝜏− pair production
ia 𝑞𝑞 scattering in the SM:

𝐴̃𝑞𝑞 = 𝐹𝑞𝑞

{

𝑄2
𝑞𝑄

2
𝜏

[

2 − 𝛽2𝜏 sin
2 𝛩

]

+ 2𝑄𝑞𝑄𝜏 Re
[

𝜒(𝑚2
𝜏𝜏 )

]

[

2𝛽𝜏𝑔
𝑞
𝐴𝑔

𝜏
𝐴 cos𝛩 + 𝑔𝑞𝑉 𝑔

𝜏
𝑉
(

2 − 𝛽2𝜏 sin
2 𝛩

)

]

+ |

|

|

𝜒(𝑚2
𝜏𝜏 )

|

|

|

2
[

(

𝑔𝑞2𝑉 + 𝑔𝑞2𝐴
)(

2𝑔𝜏2𝑉 + 2𝛽2𝜏 𝑔
𝜏2
𝐴 − 𝛽2𝜏

(

𝑔𝜏2𝑉 + 𝑔𝜏2𝐴
)

sin2 𝛩
)

+ 8𝛽𝜏𝑔
𝑞
𝑉 𝑔

𝜏
𝑉 𝑔

𝑞
𝐴𝑔

𝜏
𝐴 cos𝛩

] }

, (A.7a)

𝐶̃𝑞𝑞𝑛𝑛 = −𝐹𝑞𝑞𝛽2𝜏 sin
2 𝛩

{

𝑄2
𝑞𝑄

2
𝜏 + 2𝑄𝑞𝑄𝜏 Re

[

𝜒(𝑚2
𝜏𝜏 )

]

𝑔𝑞𝑉 𝑔
𝜏
𝑉 − |

|

|

𝜒(𝑚2
𝜏𝜏 )

|

|

|

2 (
𝑔𝑞2𝑉 + 𝑔𝑞2𝐴

)(

𝑔𝜏2𝐴 − 𝑔𝜏2𝑉
)

}

, (A.8a)

𝐶̃𝑞𝑞𝑟𝑟 = −𝐹𝑞𝑞 sin
2 𝛩

{

(

𝛽2𝜏 − 2
)

𝑄2
𝑞𝑄

2
𝜏 + 2𝑄𝑞𝑄𝜏 Re

[

𝜒(𝑚2
𝜏𝜏 )

]

𝑔𝑞𝑉 𝑔
𝜏
𝑉
(

𝛽2𝜏 − 2
)

+ |

|

|

𝜒(𝑚2
𝜏𝜏 )

|

|

|

2 [
𝛽2𝜏

(

𝑔𝜏2𝐴 + 𝑔𝜏2𝑉
)

− 2𝑔𝜏2𝑉
] (

𝑔𝑞2𝑉 + 𝑔𝑞2𝐴
)

}

, (A.8b)

𝐶̃𝑞𝑞𝑘𝑘 = 𝐹𝑞𝑞

{

𝑄2
𝑞𝑄

2
𝜏

[

(

𝛽2𝜏 − 2
)

sin2 𝛩 + 2
]

+ 2𝑄𝑞𝑄𝜏 Re
[

𝜒(𝑚2
𝜏𝜏 )

]

[

2𝛽𝜏𝑔
𝑞
𝐴𝑔

𝜏
𝐴 cos𝛩 + 𝑔𝑞𝑉 𝑔

𝜏
𝑉
(

(𝛽2𝜏 − 2) sin2 𝛩 + 2
)

]

+ |

|

|

𝜒(𝑚2
𝜏𝜏 )

|

|

|

2 [
8𝛽𝜏𝑔

𝑞
𝐴𝑔

𝜏
𝐴𝑔

𝑞
𝑉 𝑔

𝜏
𝑉 cos𝛩 +

(

𝑔𝑞2𝑉 + 𝑔𝑞2𝐴
)(

2𝑔𝜏2𝑉 cos2 𝛩 − 𝛽2𝜏
(

𝑔𝜏2𝐴 − 𝑔𝜏2𝑉
)

sin2 𝛩 + 2𝛽2𝜏 𝑔
𝜏2
𝐴

)]

}

, (A.8c)

𝐶̃𝑞𝑞𝑘𝑟 = 𝐶̃𝑞𝑞𝑟𝑘 = 2𝐹𝑞𝑞 sin𝛩
√

1 − 𝛽2𝜏

{

𝑄2
𝑞𝑄

2
𝜏 cos𝛩 +𝑄𝑞𝑄𝜏 Re

[

𝜒(𝑚2
𝜏𝜏 )

]

[

𝛽𝜏𝑔
𝑞
𝐴𝑔

𝜏
𝐴 + 2𝑔𝑞𝑉 𝑔

𝜏
𝑉 cos𝛩

]

+ |

|

|

𝜒(𝑚2
𝜏𝜏 )

|

|

|

2 [
2𝛽𝜏𝑔

𝑞
𝐴𝑔

𝜏
𝐴𝑔

𝑞
𝑉 𝑔

𝜏
𝑉 + 𝑔𝜏2𝑉

(

𝑔𝑞2𝑉 + 𝑔𝑞2𝐴
)

cos𝛩
]

}

,

𝐶̃𝑞𝑞𝑟𝑛 = 𝐶̃𝑞𝑞𝑛𝑟 = 𝐶̃𝑞𝑞𝑘𝑛 = 𝐶̃𝑞𝑞𝑛𝑘 = 0 , (A.8d)

𝐵̃𝑞𝑞𝑘 = −2𝐹𝑞𝑞

{

𝑄𝑞𝑄𝜏 Re
[

𝜒(𝑚2
𝜏𝜏 )

]

[

𝛽𝜏𝑔
𝜏
𝐴𝑔

𝑞
𝑉
(

1 + cos2 𝛩
)

+ 2𝑔𝑞𝐴𝑔
𝜏
𝑉 cos𝛩

]

+ |

|

|

𝜒(𝑚2
𝜏𝜏 )

|

|

|

2 [
2𝑔𝑞𝐴𝑔

𝑞
𝑉

(

𝛽2𝜏 𝑔
𝜏2
𝐴 + 𝑔𝜏2𝑉

)

cos𝛩 + 𝛽𝜏𝑔𝜏𝐴𝑔
𝜏
𝑉

(

𝑔𝑞2𝑉 + 𝑔𝑞2𝐴
)

(

1 + cos2 𝛩
)

]

}

, (A.8e)

𝐵̃𝑞𝑞𝑟 = −2𝐹𝑞𝑞 sin𝛩
√

1 − 𝛽2𝜏

{

𝑄𝑞𝑄𝜏 Re
[

𝜒(𝑚2
𝜏𝜏 )

]

[

𝛽𝜏𝑔
𝜏
𝐴𝑔

𝑞
𝑉 cos𝛩 + 2𝑔𝑞𝐴𝑔

𝜏
𝑉

]

+ |

|

|

𝜒(𝑚2
𝜏𝜏 )

|

|

|

|

2𝑔𝜏𝑉
[

𝛽𝜏𝑔
𝜏
𝐴

(

𝑔𝑞2𝑉 + 𝑔𝑞2𝐴
)

cos𝛩 + 2𝑔𝑞𝐴𝑔
𝑞
𝑉 𝑔

𝜏
𝑉

]

}

, (A.8f)

𝐵̃𝑞𝑞𝑛 = 0 , (A.8g)

with 𝐹𝑞𝑞 =
1
16

, 𝑄𝑞,𝜏 the electric charges, 𝛽𝜏 the 𝜏± velocity in their CM frame,

𝑔𝑖 = 𝑇 𝑖 − 2𝑄 sin2 𝜃 , 𝑔𝑖 = 𝑇 𝑖 , (A.9)
48
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A

w

B

T

and

Re
[

𝜒(𝑞2)
]

=
𝑞2(𝑞2 − 𝑚2

𝑍 )

sin2 𝜃𝑊 cos2 𝜃𝑊
[

(𝑞2 − 𝑚2
𝑍 )

2 + 𝑞4𝛤 2
𝑍∕𝑚

2
𝑍
]

, (A.10)

|

|

|

𝜒(𝑞2)||
|

2
=

𝑞4

sin4 𝜃𝑊 cos4 𝜃𝑊
[

(𝑞2 − 𝑚2
𝑍 )

2 + 𝑞4𝛤 2
𝑍∕𝑚

2
𝑍
]
, (A.11)

where 𝜃𝑊 is the Weinberg angle, 𝑚𝑍 and 𝛤𝑍 the mass and total width of the 𝑍 boson respectively, and 𝑞2 = (𝑞1 + 𝑞2)2.

ppendix B. Qutrits

This Appendix contains some basic definitions for the spin and Gell-Mann matrices and the explicit form of the Wigner functions,
hich are utilized in Section 5.

.1. Spin and Gell-Mann matrices

The spin-1 representation of the three 𝑆𝑈 (2) generators 𝑆𝑖, 𝑖 ∈ {1, 2, 3}, used throughout the text is

𝑆1 =
1
√

2

⎛

⎜

⎜

⎝

0 1 0
1 0 1
0 1 0

⎞

⎟

⎟

⎠

, 𝑆2 =
1
√

2

⎛

⎜

⎜

⎝

0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

⎞

⎟

⎟

⎠

, 𝑆3 =
⎛

⎜

⎜

⎝

1 0 0
0 0 0
0 0 −1

⎞

⎟

⎟

⎠

. (B.1)

hey can be expressed in terms of the Gell-Mann matrices 𝑇 𝑎 as

𝑆1 =
1
√

2

(

𝑇 1 + 𝑇 6
)

, 𝑆2 =
1
√

2

(

𝑇 2 + 𝑇 7
)

, 𝑆3 =
1
2
𝑇 3 +

√

3
2
𝑇 8 . (B.2)

In similar fashion, the matrices 𝑆𝑖𝑗 in Eq. (3.28) are given, in terms of the Gell-Mann matrices, as

𝑆31 = 𝑆13 =
1
√

2

(

𝑇 1 − 𝑇 6
)

,

𝑆12 = 𝑆21 = 𝑇 5 ,

𝑆23 = 𝑆32 =
1
√

2

(

𝑇 2 − 𝑇 7
)

𝑆11 =
1

2
√

3
𝑇 8 + 𝑇 4 − 1

2
𝑇 3 ,

𝑆22 =
1

2
√

3
𝑇 8 − 𝑇 4 − 1

2
𝑇 3 ,

𝑆33 = 𝑇 3 − 1
√

3
𝑇 8 . (B.3)

The Gell-Mann matrices 𝑇 𝑎 are:

𝑇 1 =
⎛

⎜

⎜

⎝

0 1 0
1 0 0
0 0 0

⎞

⎟

⎟

⎠

, 𝑇 2 =
⎛

⎜

⎜

⎝

0 −𝑖 0
𝑖 0 0
0 0 0

⎞

⎟

⎟

⎠

, 𝑇 3 =
⎛

⎜

⎜

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎟

⎟

⎠

,

𝑇 4 =
⎛

⎜

⎜

⎝

0 0 1
0 0 0
1 0 0

⎞

⎟

⎟

⎠

, 𝑇 5 =
⎛

⎜

⎜

⎝

0 0 −𝑖
0 0 0
𝑖 0 0

⎞

⎟

⎟

⎠

, 𝑇 6 =
⎛

⎜

⎜

⎝

0 0 0
0 0 1
0 1 0

⎞

⎟

⎟

⎠

,

𝑇 7 =
⎛

⎜

⎜

⎝

0 0 0
0 0 −𝑖
0 𝑖 0

⎞

⎟

⎟

⎠

, 𝑇 8 = 1
√

3

⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎟

⎟

⎠

. (B.4)

B.2. The Wigner functions q𝑛± and p𝑛± and the matrix a𝑛𝑚

In this Appendix we follow [136]. The q𝑛± functions introduced in are given by the following expressions

q1± = 1
√

2
sin 𝜃±

(

cos 𝜃± ± 1
)

cos𝜙± ,

q2± = 1
√

2
sin 𝜃±

(

cos 𝜃± ± 1
)

sin𝜙± ,

q3 = 1 (

1 ± 4 cos 𝜃± + 3 cos 2𝜃±
)

,
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w

w

q4± = 1
2
sin2 𝜃± cos 2𝜙± ,

q5± = 1
2
sin2 𝜃± sin 2𝜙± ,

q6± = 1
√

2
sin 𝜃±

(

−cos 𝜃± ± 1
)

cos𝜙± ,

q7± = 1
√

2
sin 𝜃±

(

−cos 𝜃± ± 1
)

sin𝜙± ,

q8± = 1

8
√

3

(

−1 ± 12 cos 𝜃± − 3 cos 2𝜃±
)

, (B.5)

in terms of the spherical coordinates of the two decaying particle rest frames.
The p𝑛± functions utilized in are given by the following expressions:

p1
± =

√

2 sin 𝜃±
(

5 cos 𝜃± ± 1
)

cos𝜙± ,

p2
± =

√

2 sin 𝜃±
(

5 cos 𝜃± ± 1
)

sin𝜙± ,

p3
± = 1

4

(

5 ± 4 cos 𝜃± + 15 cos 2𝜃±
)

,

p4
± = 5 sin2 𝜃± cos 2𝜙± ,

p5
± = 5 sin2 𝜃± sin 2𝜙± ,

p6
± =

√

2 sin 𝜃±
(

−5 cos 𝜃± ± 1
)

cos𝜙± ,

p7
± =

√

2 sin 𝜃±
(

−5 cos 𝜃± ± 1
)

sin𝜙± ,

p8
± = 1

4
√

3

(

−5 ± 12 cos 𝜃± − 15 cos 2𝜃±
)

. (B.6)

The matrix a𝑛𝑚 used in is the following

a𝑛𝑚 = 1
𝑔2𝐿 − 𝑔2𝑅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑔2𝑅 0 0 0 0 𝑔2𝐿 0 0

0 𝑔2𝑅 0 0 0 0 𝑔2𝐿 0

0 0 𝑔2𝑅 − 1
2 𝑔

2
𝐿 0 0 0 0

√

3
2 𝑔2𝐿

0 0 0 𝑔2𝑅 − 𝑔2𝐿 0 0 0 0

0 0 0 0 𝑔2𝑅 − 𝑔2𝐿 0 0 0

𝑔2𝐿 0 0 0 0 𝑔2𝑅 0 0

0 𝑔2𝐿 0 0 0 0 𝑔2𝑅 0

0 0
√

3
2 𝑔2𝐿 0 0 0 0 1

2 𝑔
2
𝐿 − 𝑔2𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (B.7)

The coefficients in Eq. (B.7) are 𝑔𝐿 = −1∕2 + sin2 𝜃𝑊 ≃ −0.2766 and 𝑔𝑅 = sin2 𝜃𝑊 ≃ 0.2234.

B.3. Polarization density matrix for 𝑞 𝑞 → 𝑍𝑍

The coefficients 𝐴𝑞𝑞[𝛩,𝑚𝑉𝑉 ], 𝑓
𝑞𝑞
𝑎 [𝛩,𝑚𝑉𝑉 ], 𝑔̃

𝑞𝑞
𝑎 [𝛩,𝑚𝑉𝑉 ], and ℎ̃𝑞𝑞𝑎𝑏[𝛩,𝑚𝑉𝑉 ], appearing in the polarization density matrix for 𝑞 𝑞 → 𝑍𝑍,

that has been computed in [134] (and here amended of few typographical errors). The angle 𝛩 is the scattering angle in the CM
frame from the anti-quark and one of the 𝑍-boson momenta. The convention adopted is that the 𝑍 is in this case the one with
momentum parallel to the 𝑘̂ unit vector of the spin right-handed basis in Eq. (3.1). Results below are given for a generic quark 𝑞.

𝐴𝑞𝑞 = |M̄ 𝑞𝑞
𝑍𝑍 |

2
=

8𝑓𝑍𝑍 (𝑔
𝑞4
𝐴 + 6𝑔𝑞2𝐴 𝑔

𝑞2
𝑉 + 𝑔𝑞4𝑉 )

D𝑍𝑍

{

2 − 𝛽2𝑍
[

𝛽4𝑍 + (9 − 10𝛽2𝑍 + 𝛽4𝑍 )𝑐
2
𝛩 + 4𝛽2𝑍𝑐

4
𝛩 − 3

]

}

, (B.8)

here

𝑓𝑍𝑍 =
8𝛼2𝜋2𝑁𝑐

D𝑍𝑍𝑐4𝑊 𝑠
4
𝑊

, and D𝑍𝑍 = 1 + 𝛽4𝑍 + 2𝛽2𝑍 (1 − 2𝑐2𝛩) , (B.9)

ith 𝛽𝑍 =
√

1 − 4𝑀2
𝑍∕𝑚

2
𝑍𝑍 . The angle 𝛩 is here defined as the angle between the anti-quark momentum and the 3-momentum of

one of the two Z in the CM frame, where the orientation of the latter coincides with that of the 𝑘̂ unit vector of the basis in Eq. (3.1).
Throughout the following expressions we use 𝑐𝛩 ≡ cos𝛩, 𝑠𝛩 ≡ sin𝛩.

The non-vanishing elements ℎ̃𝑞𝑞𝑎𝑏 (ℎ̃𝑞𝑞𝑏𝑎 = ℎ̃𝑞𝑞𝑎𝑏), are given by

ℎ̃𝑞𝑞[𝛩,𝑚 ] = 𝑓 (1 − 𝛽2 )
{

(1 + 𝑐2 )(𝑔𝑞4 + 6𝑔𝑞2𝑔𝑞2 + 𝑔𝑞4) + 8𝑐 𝑔𝑞 𝑔𝑞 (𝑔𝑞2 + 𝑔𝑞2)
}
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ℎ̃𝑞𝑞15[𝛩,𝑚𝑍𝑍 ] = 𝑓𝑍𝑍
√

2
√

1 − 𝛽2𝑍𝑠𝛩
{

𝑐𝛩(𝑔
𝑞4
𝐴 + 6𝑔𝑞2𝐴 𝑔

𝑞2
𝑉 + 𝑔𝑞4𝑉 ) + 4𝑔𝑞𝐴𝑔

𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

ℎ̃𝑞𝑞16[𝛩,𝑚𝑍𝑍 ] = 𝑓𝑍𝑍 (1 − 𝛽2𝑍 )𝑠𝛩
2
{

𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉

}

ℎ̃𝑞𝑞22[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍 (1 − 𝛽2𝑍 )

D𝑍𝑍

{

−8𝑐𝛩
[

3 + 2𝛽2𝑍 − 𝛽4𝑍 − 4𝑐2𝛩
]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

+
[

(1 + 𝛽2𝑍 )
2 − (7 + 10𝛽2𝑍 − 𝛽4𝑍 )𝑐

2
𝛩 + 4(2 + 𝛽2𝑍 )𝑐

4
𝛩

]

(𝑔𝑞4𝑉 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝐴 )

}

ℎ̃𝑞𝑞23[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍2

√

2
√

1 − 𝛽2𝑍𝑠𝛩
D𝑍𝑍

{

[

𝑐𝛩(1 + 𝛽2𝑍 + (𝛽2𝑍 − 3)𝑐2𝛩)
]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+
[

2(1 + 𝛽2𝑍 )
2 − 2(5 − 2𝛽2𝑍 + 𝛽4𝑍 )𝑐

2
𝛩

]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

(B.10)

ℎ̃𝑞𝑞24[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍

√

2
√

1 − 𝛽2𝑍𝑠𝛩
D𝑍𝑍

{

[

(3 − 𝛽2𝑍 )(1 + 𝛽
2
𝑍 )𝑐𝛩 − 4𝑐3𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+
[

4(1 + 𝛽2𝑍 )
2 − 8(1 + 𝛽4𝑍 )𝑐

2
𝛩

]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

ℎ̃𝑞𝑞27[𝛩,𝑚𝑍𝑍 ] = −
𝑓𝑍𝑍 (1 − 𝛽2𝑍 )𝑠𝛩

2

D𝑍𝑍

{

[

(1 + 𝛽2𝑍 )
2 + 4(𝛽2𝑍 − 2)𝑐2𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

}

ℎ̃𝑞𝑞28[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍2

√

2
√

1 − 𝛽2𝑍𝑠𝛩
√

3 D𝑍𝑍

{

[

2(1 + 𝛽2𝑍 )
2(1 + 𝑐2𝛩) − 8(1 + 𝛽2𝑍 )𝑐

2
𝛩

]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

+
[

2(1 − 3𝛽2𝑍 )𝑐
3
𝛩 + (1 + 𝛽2𝑍 )(3𝛽

2
𝑍 + 𝑐2𝛩 − 2)𝑐𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

}

ℎ̃𝑞𝑞33[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍
D𝑍𝑍

{

8𝑐𝛩
[

2 + 𝛽2𝑍 + 𝛽6𝑍 + (−3 + 2𝛽2𝑍 − 3𝛽4𝑍 )𝑐
2
𝛩

]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

+
[

(𝛽𝑍 + 𝛽3𝑍 )
2 + (7 − 5𝛽2𝑍 − 3𝛽4𝑍 + 𝛽6𝑍 )𝑐

2
𝛩

− (9 − 10𝛽2𝑍 + 5𝛽4𝑍 )𝑐
4
𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

}

ℎ̃𝑞𝑞34[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍 (1 − 𝛽2𝑍 )𝑠𝛩

2

D𝑍𝑍

{

[

2(3 + 𝛽2𝑍 )𝑐
2
𝛩 − (1 + 𝛽2𝑍 )

2
]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+ 8𝑐𝛩(1 + 𝛽2𝑍 )𝑔
𝑞
𝐴𝑔

𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

ℎ̃𝑞𝑞37[𝛩,𝑚𝑍𝑍 ] = −
𝑓𝑍𝑍

√

2(1 − 𝛽2𝑍 )
3∕2𝑐𝛩𝑠𝛩

D𝑍𝑍

{

3(1 + 𝛽2𝑍 − 2𝑐2𝛩)(𝑔
𝑞4
𝐴 + 6𝑔𝑞2𝐴 𝑔

𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+ 4(1 − 𝛽2𝑍 )𝑐𝛩𝑔
𝑞
𝐴𝑔

𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

ℎ̃𝑞𝑞38[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍

√

3 D𝑍𝑍

{

[

2 + 3𝛽2𝑍 − 𝛽6𝑍 − (9 − 9𝛽2𝑍 − 𝛽4𝑍 + 𝛽6𝑍 )𝑐
2
𝛩

+ (9 − 18𝛽2𝑍 + 5𝛽4𝑍 )𝑐
4
𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+ 8𝑐𝛩
[

2 + 𝛽2𝑍 + 𝛽6𝑍 − (3 − 2𝛽2𝑍 + 3𝛽4𝑍 )𝑐
2
𝛩

]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

(B.11)

ℎ̃𝑞𝑞44[𝛩,𝑚𝑍𝑍 ] =
2𝑓𝑍𝑍𝑠𝛩2

D𝑍𝑍

{

[

2(1 + 𝛽4𝑍 )𝑐
2
𝛩 − (1 + 𝛽2𝑍 )

2
]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

ℎ̃𝑞𝑞47[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍

√

2
√

1 − 𝛽2𝑍𝑠𝛩
{

𝑐𝛩
[

(𝛽2𝑍 − 3)(1 + 𝛽2𝑍 ) + 4𝑐2𝛩
]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )
51
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[

(1 + 𝛽2𝑍 )
2 − 2(1 + 𝛽4𝑍 )𝑐

2
𝛩

]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

ℎ̃𝑞𝑞48[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍 (1 − 𝛽2𝑍 )𝑠𝛩

2

√

3 D𝑍𝑍

{

[

(1 + 𝛽2𝑍 )
2 − 2(3 + 𝛽2𝑍 )𝑐

2
𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+ 24(1 + 𝛽2𝑍 )𝑐𝛩𝑔
𝑞
𝐴𝑔

𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

ℎ̃𝑞𝑞55[𝛩,𝑚𝑍𝑍 ] = 𝑓𝑍𝑍2𝑠𝛩2
[

𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉

]

ℎ̃𝑞𝑞56[𝛩,𝑚𝑍𝑍 ] = −𝑓𝑍𝑍
√

2
√

1 − 𝛽2𝑍𝑠𝛩
{

𝑐𝛩(𝑔
𝑞4
𝐴 + 6𝑔𝑞2𝐴 𝑔

𝑞2
𝑉 + 𝑔𝑞4𝑉 ) − 4𝑔𝑞𝐴𝑔

𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

ℎ̃𝑞𝑞66[𝛩,𝑚𝑍𝑍 ] = 𝑓𝑍𝑍 (1 − 𝛽2𝑍 )
{

(1 + 𝑐2𝛩)(𝑔
𝑞4
𝐴 + 6𝑔𝑞2𝐴 𝑔

𝑞2
𝑉 + 𝑔𝑞4𝑉 ) − 8𝑐𝛩𝑔

𝑞
𝐴𝑔

𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

ℎ̃𝑞𝑞77[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍 (1 − 𝛽2𝑍 )

D𝑍𝑍

{

8𝑐𝛩
[

3 + 2𝛽2𝑍 − 𝛽4𝑍 − 4𝑐2𝛩
]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

+
[

(1 + 𝛽2𝑍 )
2 − (7 + 10𝛽2𝑍 − 𝛽4𝑍 )𝑐

2
𝛩 + 4(2 + 𝛽2𝑍 )𝑐

4
𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

}

ℎ̃𝑞𝑞78[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍

√

2
√

1 − 𝛽2𝑍𝑠𝛩
√

3 D𝑍𝑍

{

𝑐𝛩
[

1 + 4𝛽2𝑍 + 3𝛽4𝑍 − 2(3 + 𝛽2𝑍 )𝑐
2
𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+ 4
[

(9 − 2𝛽2 + 𝛽4𝑍 )𝑐
2
𝛩 − 2(1 + 𝛽2𝑍 )

2
]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

ℎ̃𝑞𝑞88[𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍
3 D𝑍𝑍

{

[

(1 + 𝛽2𝑍 )
2(4 + 𝛽2𝑍 ) + (3 + 3𝛽2𝑍 − 7𝛽4𝑍 + 𝛽6𝑍 )𝑐

2
𝛩

− (9 + 6𝛽2𝑍 + 5𝛽4𝑍 )𝑐
4
𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

− 24𝑐𝛩
[

2 + 𝛽2𝑍 + 𝛽6𝑍 − (3 − 2𝛽2𝑍 + 3𝛽4𝑍 )𝑐
2
𝛩

]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

(B.12)

The non-vanishing elements 𝑓 𝑞𝑞𝑎 are given by

𝑓 𝑞𝑞2 [𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍2

√

2
√

1 − 𝛽2𝑍𝑠𝛩
3 D𝑍𝑍

{

𝑐𝛩
[

2𝛽2𝑍 + 3𝛽4𝑍 − 4𝛽2𝑍𝑐
2
𝛩 − 1

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+ 4
[

(1 + 𝛽2𝑍 )
2 + 4𝛽2𝑍 (𝛽

2 − 2)𝑐2𝛩
]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

𝑓 𝑞𝑞3 [𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍
3 D𝑍𝑍

{

[

(1 + 𝛽2𝑍 )
3 + (15𝛽2𝑍 − 13𝛽4𝑍 + 𝛽6𝑍 − 3)𝑐2𝛩

+ 4𝛽2𝑍 (𝛽
2
𝑍 − 3)𝑐4𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+ 8𝑐𝛩
[

1 + 3𝛽4𝑍 − 𝛽6𝑍 + 𝛽2𝑍 (5 − 8𝑐2𝛩)
]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

𝑓 𝑞𝑞4 [𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍2(1 − 𝛽2𝑍 )𝑠𝛩

2

3 D𝑍𝑍

{

[

1 + 𝛽4𝑍 + 𝛽2𝑍 (2 + 4𝑐2𝛩)
]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

}

𝑓 𝑞𝑞7 [𝛩,𝑚𝑍𝑍 ] =
𝑓𝑍𝑍2

√

2
√

1 − 𝛽2𝑍𝑠𝛩
3 D𝑍𝑍

{

𝑐𝛩
[

1 − 2𝛽2𝑍 − 3𝛽4𝑍 + 4𝛽2𝑍𝑐
2
𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+ 4
[

(1 + 𝛽2𝑍 )
2 + 4𝛽2𝑍 (𝛽

2
𝑍 − 2)𝑐2𝛩

]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

𝑓 𝑞𝑞8 [𝛩,𝑚𝑍𝑍 ] = −
𝑓𝑍𝑍

3
√

3 D𝑍𝑍

{

[

(1 + 𝛽2𝑍 )
3 + (15𝛽2𝑍 − 13𝛽4𝑍 + 𝛽6𝑍 − 3)𝑐2𝛩

+ 4𝛽2𝑍 (𝛽
2
𝑍 − 3)𝑐4𝛩

]

(𝑔𝑞4𝐴 + 6𝑔𝑞2𝐴 𝑔
𝑞2
𝑉 + 𝑔𝑞4𝑉 )

+ 24𝑐𝛩
[

𝛽6𝑍 + 𝛽2𝑍 (8𝑐
2
𝛩 − 5) − 1 − 3𝛽4𝑍

]

𝑔𝑞𝐴𝑔
𝑞
𝑉 (𝑔

𝑞2
𝐴 + 𝑔𝑞2𝑉 )

}

. (B.13)
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B

The elements 𝑔̃𝑞𝑞𝑎 are identical: 𝑔̃𝑞𝑞𝑎 = 𝑓 𝑞𝑞𝑎 .

B.4. Polarization density matrix for ℎ→ 𝑍𝑍∗

Here we write the coefficients 𝑔𝑎, 𝑓𝑎, and ℎ𝑎𝑏 (𝑎, 𝑏 ∈ {1,… , 8}) appearing in the polarization density matrix for the Higgs boson
decay ℎ→ 𝑍𝑍∗, as well as the unpolarized squared amplitude, as in [134].

The non-vanishing 𝑓𝑎 elements are

𝑓3 =
1
6

−𝑚4
ℎ + 2(1 + 𝑓 2)𝑚2

ℎ𝑀
2
𝑍 − (1 − 𝑓 2)2𝑀4

𝑍

𝑚4
ℎ − 2(1 + 𝑓 2)𝑚2

ℎ𝑀
2
𝑍 + (1 + 10𝑓 2 + 𝑓 4)𝑀4

𝑍

,

𝑓8 = − 1
√

3
𝑓3 , (B.14)

where 𝑔𝑎 = 𝑓𝑎 for 𝑎 ∈ {1,… , 8}. The non-vanishing ℎ𝑎𝑏 elements are

ℎ16 = ℎ61 = ℎ27 = ℎ72 =
𝑓𝑀2

𝑍

[

−𝑚2
ℎ + (1 + 𝑓 2)𝑀2

𝑍

]

𝑚4
ℎ − 2(1 + 𝑓 2)𝑚2

ℎ𝑀
2
𝑍 + (1 + 10𝑓 2 + 𝑓 4)𝑀4

𝑍

,

ℎ33 =
1
4

[

𝑚2
ℎ − (1 + 𝑓 2)𝑀2

𝑍

]2

𝑚4
ℎ − 2(1 + 𝑓 2)𝑚2

ℎ𝑀
2
𝑍 + (1 + 10𝑓 2 + 𝑓 4)𝑀4

𝑍

,

ℎ38 = ℎ83 = − 1

4
√

3

ℎ44 = ℎ55 =
2𝑓 2𝑀4

𝑍

𝑚4
ℎ − 2(1 + 𝑓 2)𝑚2

ℎ𝑀
2
𝑍 + (1 + 10𝑓 2 + 𝑓 4)𝑀4

𝑍

,

ℎ88 =
1
12

𝑚4
ℎ − 2(1 + 𝑓 2)𝑚2

ℎ𝑀
2
𝑍 + (1 − 14𝑓 2 + 𝑓 4)𝑀4

𝑍

𝑚4
ℎ − 2(1 + 𝑓 2)𝑚2

ℎ𝑀
2
𝑍 + (1 + 10𝑓 2 + 𝑓 4)𝑀4

𝑍

. (B.15)

The unpolarized square amplitude |M|

2 of the process is instead

|M|

2 =
𝑔2

4 cos 𝜃2𝑊 𝑓
2𝑀2

𝑍

[

𝑚4
ℎ − 2(1 + 𝑓 2)𝑚2

ℎ𝑀
2
𝑍 + (1 + 10𝑓 2 + 𝑓 4)𝑀4

𝑍

]

. (B.16)

.5. Polarization density matrix for ℎ→ 𝑊𝑊 ∗ and ℎ → 𝑍𝑍∗ in presence of anomalous couplings

Here write the expression for the coefficients 𝑔𝑎, 𝑓𝑎, and ℎ𝑎𝑏 (𝑎, 𝑏 ∈ {1,… , 8}) appearing in the polarization density matrix for
the Higgs boson decay ℎ → 𝑉 𝑉 ∗, 𝑉 = 𝑊 or 𝑍, in presence of anomalous couplings.

The square amplitude summed over the gauge boson spin is

|M|

2 =
𝜉2𝑉 𝑔

2

4𝑓 2𝑀2
𝑉

{

[

1 + 2 𝑓 2 (𝑎2𝑉 + 𝑎2𝑉
)

]

𝑚4
ℎ − 2

[

1 + 𝑓 2
(

1 + 2𝑎2𝑉 + 2𝑎2𝑉 − 6𝑎𝑉
)

+ 2 𝑓 4
(

𝑎2𝑉 + 𝑎2𝑉
)]

𝑚2
ℎ𝑀

2
𝑉 +

[

1 + 2𝑓 6
(

𝑎2𝑉 + 𝑎2𝑉
)

+ 2𝑓 2
(

5 + 𝑎2𝑉 + 𝑎2𝑉 − 6𝑎𝑉
)

+ 𝑓 4
(

1 − 4𝑎2𝑉 + 8𝑎2𝑉 − 12𝑎𝑉
)]

𝑀4
𝑉

}

, (B.17)

where 𝜉𝑊 = 1 and 𝜉𝑍 = cos 𝜃−1𝑊 . We find 𝑓𝑎 = 𝑔𝑎 ∀𝑎 ∈ {1,… , 8} and the non-vanishing coefficients 𝑓𝑎 = |M|

2𝑓𝑎 and 𝑔̃𝑎 = |M|

2𝑔𝑎
are:

𝑓3 = 𝑔̃3 = −
𝜉2𝑉 𝑔

2 (1 − 𝑓 2 (𝑎2𝑉 + 𝑎2𝑉
))

(

−2
(

𝑓 2 + 1
)

𝑚2
ℎ𝑚

2
𝑉 +

(

𝑓 2 − 1
)2 𝑚4

𝑉 + 𝑚4
ℎ

)

24𝑓 2𝑚2
𝑉

,

𝑓8 = 𝑔̃8 = − 1
√

3
𝑓3 . (B.18)

The non-vanishing elements of the matrix ℎ̃𝑎𝑏 = |M|

2ℎ𝑎𝑏 for a gauge boson 𝑉 = 𝑊 ,𝑍 instead are:

ℎ̃16 =
𝑔2𝜉2𝑉

(

𝑚2
𝑉
(

(1 − 2𝑎𝑉 )𝑓 2 + 1
)

− 𝑚2
ℎ
) (

𝑎𝑉 𝑚2
ℎ − 𝑚

2
𝑉
(

𝑎𝑉
(

𝑓 2 + 1
)

− 2
))

8𝑓𝑚2
𝑉

,

ℎ̃17 =
𝑔2𝜉2𝑉 𝑎𝑉

√

−2
(

𝑓 2 + 1
)

𝑚2
ℎ𝑚

2
𝑉 +

(

𝑓 2 − 1
)2 𝑚4

𝑉 + 𝑚4
ℎ
(

𝑚2
𝑉
(

(1 − 2𝑎𝑉 )𝑓 2 + 1
)

− 𝑚2
ℎ
)

8𝑓𝑚2
𝑉

,

ℎ̃ = −ℎ̃ = −ℎ̃ = ℎ̃ ,
53
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R

ℎ̃27 = ℎ̃16 = ℎ̃61 = ℎ̃72 ,

ℎ̃33 =
𝑔2𝜉2𝑉

(

𝑚2
ℎ − 𝑚

2
𝑉
(

(1 − 2𝑎𝑉 )𝑓 2 + 1
))2

16𝑓 2𝑚2
𝑉

,

ℎ̃38 = −
|M2

|

4
√

3
,

ℎ̃44 =
𝑔2𝜉2𝑉
8𝑚2

𝑉

[

2𝑚2
ℎ𝑚

2
𝑉
(

−
(

𝑎2𝑉
(

𝑓 2 + 1
))

+ 2𝑎𝑉 + 𝑎2𝑉
(

𝑓 2 + 1
))

+𝑚4
𝑉

(

𝑎2𝑉
(

𝑓 2 + 1
)2 − 4𝑎𝑉

(

𝑓 2 + 1
)

− 𝑎2𝑉 𝑓
4 + 2𝑎2𝑉 𝑓

2 − 𝑎2𝑉 + 4
)

+ 𝑚4
ℎ
(

𝑎2𝑉 − 𝑎2𝑉
)

]

,

ℎ̃45 =
𝑎𝑉 𝑔2𝜉2𝑉

√

−2
(

𝑓 2 + 1
)

𝑚2
ℎ𝑚

2
𝑉 +

(

𝑓 2 − 1
)2 𝑚4

𝑉 + 𝑚4
ℎ
(

𝑎𝑉 𝑚2
ℎ − 𝑚

2
𝑉
(

𝑎𝑉
(

𝑓 2 + 1
)

− 2
))

4𝑚2
𝑉

,

ℎ̃54 = −ℎ̃45 ,

ℎ̃55 = ℎ̃44 ,

ℎ̃83 = ℎ̃38 ,

ℎ̃88 =
𝑔2𝜉2𝑉

48𝑓 2𝑚2
𝑉

{

𝑚4
ℎ

[

−4𝑓 2 (𝑎2𝑉 + 𝑎2𝑉
)

+ 1
]

− 2𝑚2
ℎ𝑚

2
𝑉

[

−4𝑓 4 (𝑎2𝑉 + 𝑎2𝑉
)

(B.19)

+ 𝑓 2 (−4𝑎2𝑉 + 6𝑎𝑉 − 4𝑎2𝑉 + 1
)

+ 1
]

+𝑚4
𝑉

[

−4𝑓 6 (𝑎2𝑉 + 𝑎2𝑉
)

+ 𝑓 4 (−4𝑎2𝑉 + 12𝑎𝑉 + 8𝑎2𝑉 + 1
)

− 2𝑓 2 (2𝑎2𝑉 − 6𝑎𝑉 + 2𝑎2𝑉 + 7
)

+ 1
]

}

.

eferences

[1] L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Modern Phys. 80 (2008) 517–576, http://dx.doi.org/10.1103/RevModPhys.80.517.
[2] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Modern Phys. 81 (2009) 865–942, http://dx.doi.org/10.1103/RevModPhys.81.865,

arXiv:quant-ph/0702225.
[3] O. Gühne, G. Tóth, Phys. Rep. 474 (1–6) (2009) 1–75, http://dx.doi.org/10.1016/j.physrep.2009.02.004.
[4] J. Eisert, M. Cramer, M.B. Plenio, Rev. Modern Phys. 82 (2010) 277–306, http://dx.doi.org/10.1103/RevModPhys.82.277.
[5] N. Laflorencie, Phys. Rep. 646 (2016) 59, http://dx.doi.org/10.1016/j.physrep.2016.06.008.
[6] T. Nishioka, Rev. Modern Phys. 90 (3) (2018) 035007, http://dx.doi.org/10.1103/RevModPhys.90.035007, arXiv:1801.10352.
[7] E. Witten, Rev. Modern Phys. 90 (4) (2018) 045003, http://dx.doi.org/10.1103/RevModPhys.90.045003, arXiv:1803.04993.
[8] D. Bruss, G. Leuchs, Quantum Information: From Foundations to Quantum Technology Applications, Wiley, 2019.
[9] F. Benatti, R. Floreanini, F. Franchini, U. Marzolino, Phys. Rep. 878 (2020) 1–27, http://dx.doi.org/10.1016/j.physrep.2020.07.003.

[10] A.S. Blum, Stud. Hist. Phil. Sci. B 60 (2017) 46–80, http://dx.doi.org/10.1016/j.shpsb.2017.01.004, arXiv:2011.05908.
[11] ATLAS Collaboration, J. Instrum. 3 (08) (2008) S08003, http://dx.doi.org/10.1088/1748-0221/3/08/S08003.
[12] C. Bourrely, J. Soffer, E. Leader, Phys. Rep. 59 (1980) 95–297, http://dx.doi.org/10.1016/0370-1573(80)90017-4.
[13] G.L. Kane, G.A. Ladinsky, C.P. Yuan, Phys. Rev. D 45 (1992) 124–141, http://dx.doi.org/10.1103/PhysRevD.45.124.
[14] R.H. Dalitz, G.R. Goldstein, Phys. Rev. D 45 (1992) 1531–1543, http://dx.doi.org/10.1103/PhysRevD.45.1531.
[15] G. Mahlon, S.J. Parke, Phys. Rev. D 81 (2010) 074024, http://dx.doi.org/10.1103/PhysRevD.81.074024, arXiv:1001.3422.
[16] G. Mahlon, S.J. Parke, Phys. Rev. D 53 (1996) 4886–4896, http://dx.doi.org/10.1103/PhysRevD.53.4886, arXiv:hep-ph/9512264.
[17] G. Mahlon, S.J. Parke, Phys. Rev. D 55 (1997) 7249–7254, http://dx.doi.org/10.1103/PhysRevD.55.7249, arXiv:hep-ph/9611367.
[18] G. Mahlon, S.J. Parke, Phys. Lett. B 411 (1997) 173–179, http://dx.doi.org/10.1016/S0370-2693(97)00987-8, arXiv:hep-ph/9706304.
[19] W. Bernreuther, A. Brandenburg, Z.G. Si, P. Uwer, Phys. Rev. Lett. 87 (2001) 242002, http://dx.doi.org/10.1103/PhysRevLett.87.242002, arXiv:hep-

ph/0107086.
[20] P. Uwer, Phys. Lett. B 609 (2005) 271–276, http://dx.doi.org/10.1016/j.physletb.2005.01.005, arXiv:hep-ph/0412097.
[21] W. Bernreuther, Z.-G. Si, Nuclear Phys. B 837 (2010) 90–121, http://dx.doi.org/10.1016/j.nuclphysb.2010.05.001, arXiv:1003.3926.
[22] K.J.F. Gaemers, G.J. Gounaris, Z. Phys. C 1 (1979) 259, http://dx.doi.org/10.1007/BF01440226.
[23] M. Hellmund, G. Ranft, Z. Phys. C 12 (1982) 333, http://dx.doi.org/10.1007/BF01557578.
[24] A. Grau, J.A. Grifols, Z. Phys. C 18 (1983) 275, http://dx.doi.org/10.1007/BF01571370.
[25] J. Cortes, K. Hagiwara, F. Herzog, Phys. Rev. D 28 (1983) 2311, http://dx.doi.org/10.1103/PhysRevD.28.2311.
[26] A. Tofighi-Niaki, J.F. Gunion, Phys. Rev. D 39 (1989) 720, http://dx.doi.org/10.1103/PhysRevD.39.720.
[27] J.S. Shim, S. Baek, H.S. Song, J. Korean Phys. Soc. 29 (1996) 293–299, arXiv:hep-ph/9510242.
[28] G. Mahlon, S.J. Parke, Phys. Rev. D 58 (1998) 054015, http://dx.doi.org/10.1103/PhysRevD.58.054015, arXiv:hep-ph/9803410.
[29] Z. Bern, et al., Phys. Rev. D 84 (2011) 034008, http://dx.doi.org/10.1103/PhysRevD.84.034008, arXiv:1103.5445.
[30] W.J. Stirling, E. Vryonidou, JHEP 07 (2012) 124, http://dx.doi.org/10.1007/JHEP07(2012)124, arXiv:1204.6427.
[31] E. Maina, Phys. Lett. B 818 (2021) 136360, http://dx.doi.org/10.1016/j.physletb.2021.136360, arXiv:2007.12080.
[32] E. Maina, G. Pelliccioli, Eur. Phys. J. C 81 (11) (2021) 989, http://dx.doi.org/10.1140/epjc/s10052-021-09774-6, arXiv:2105.07972.
[33] F. Boudjema, R.K. Singh, JHEP 07 (2009) 028, http://dx.doi.org/10.1088/1126-6708/2009/07/028, arXiv:0903.4705.
[34] A.S. Dighe, I. Dunietz, H.J. Lipkin, J.L. Rosner, Phys. Lett. B 369 (1996) 144–150, http://dx.doi.org/10.1016/0370-2693(95)01523-X, arXiv:hep-

ph/9511363.
[35] E. Leader, Spin in particle physics, Cambridge University Press, 2001.
[36] A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49 (1982) 1804–1807, http://dx.doi.org/10.1103/PhysRevLett.49.1804.
[37] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81 (1998) 5039–5043, http://dx.doi.org/10.1103/PhysRevLett.81.5039,

arXiv:quant-ph/9810080.
54

[38] J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23 (1969) 880–884, http://dx.doi.org/10.1103/PhysRevLett.23.880.

http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.81.865
http://arxiv.org/abs/quant-ph/0702225
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1016/j.physrep.2016.06.008
http://dx.doi.org/10.1103/RevModPhys.90.035007
http://arxiv.org/abs/1801.10352
http://dx.doi.org/10.1103/RevModPhys.90.045003
http://arxiv.org/abs/1803.04993
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb8
http://dx.doi.org/10.1016/j.physrep.2020.07.003
http://dx.doi.org/10.1016/j.shpsb.2017.01.004
http://arxiv.org/abs/2011.05908
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1016/0370-1573(80)90017-4
http://dx.doi.org/10.1103/PhysRevD.45.124
http://dx.doi.org/10.1103/PhysRevD.45.1531
http://dx.doi.org/10.1103/PhysRevD.81.074024
http://arxiv.org/abs/1001.3422
http://dx.doi.org/10.1103/PhysRevD.53.4886
http://arxiv.org/abs/hep-ph/9512264
http://dx.doi.org/10.1103/PhysRevD.55.7249
http://arxiv.org/abs/hep-ph/9611367
http://dx.doi.org/10.1016/S0370-2693(97)00987-8
http://arxiv.org/abs/hep-ph/9706304
http://dx.doi.org/10.1103/PhysRevLett.87.242002
http://arxiv.org/abs/hep-ph/0107086
http://arxiv.org/abs/hep-ph/0107086
http://arxiv.org/abs/hep-ph/0107086
http://dx.doi.org/10.1016/j.physletb.2005.01.005
http://arxiv.org/abs/hep-ph/0412097
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.001
http://arxiv.org/abs/1003.3926
http://dx.doi.org/10.1007/BF01440226
http://dx.doi.org/10.1007/BF01557578
http://dx.doi.org/10.1007/BF01571370
http://dx.doi.org/10.1103/PhysRevD.28.2311
http://dx.doi.org/10.1103/PhysRevD.39.720
http://arxiv.org/abs/hep-ph/9510242
http://dx.doi.org/10.1103/PhysRevD.58.054015
http://arxiv.org/abs/hep-ph/9803410
http://dx.doi.org/10.1103/PhysRevD.84.034008
http://arxiv.org/abs/1103.5445
http://dx.doi.org/10.1007/JHEP07(2012)124
http://arxiv.org/abs/1204.6427
http://dx.doi.org/10.1016/j.physletb.2021.136360
http://arxiv.org/abs/2007.12080
http://dx.doi.org/10.1140/epjc/s10052-021-09774-6
http://arxiv.org/abs/2105.07972
http://dx.doi.org/10.1088/1126-6708/2009/07/028
http://arxiv.org/abs/0903.4705
http://dx.doi.org/10.1016/0370-2693(95)01523-X
http://arxiv.org/abs/hep-ph/9511363
http://arxiv.org/abs/hep-ph/9511363
http://arxiv.org/abs/hep-ph/9511363
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb35
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.81.5039
http://arxiv.org/abs/quant-ph/9810080
http://dx.doi.org/10.1103/PhysRevLett.23.880


Progress in Particle and Nuclear Physics 139 (2024) 104134A.J. Barr et al.
[39] J.F. Clauser, M.A. Horne, Phys. Rev. D 10 (1974) 526, http://dx.doi.org/10.1103/PhysRevD.10.526.
[40] W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Phys. Rev. Lett. 81 (1998) 3563–3566, http://dx.doi.org/10.1103/PhysRevLett.81.3563, arXiv:quant-

ph/9806043.
[41] M. Ansmann, H. Wang, R.C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley, A.D. O’Connell, D.T. Sank, M.P. Weides, J. Wenner, A.N. Cleland, J.M. Martinis,

Nature 461 (2009) 504–506.
[42] B. Hensen, et al., Nature 526 (2015) 682–686, http://dx.doi.org/10.1038/nature15759, arXiv:1508.05949.
[43] M. Giustina, et al., Phys. Rev. Lett. 115 (25) (2015) 250401, http://dx.doi.org/10.1103/PhysRevLett.115.250401, arXiv:1511.03190.
[44] S. Storz, et al., Nature 617 (7960) (2023) 265–270, http://dx.doi.org/10.1038/s41586-023-05885-0.
[45] W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, H. Weinfurter, Phys. Rev. Lett. 119 (2017) 010402, http://dx.doi.org/10.1103/

PhysRevLett.119.010402.
[46] J.F. Clauser, A. Shimony, Rep. Progr. Phys. 41 (1978) 1881–1927, http://dx.doi.org/10.1088/0034-4885/41/12/002.
[47] M. Genovese, Phys. Rep. 413 (2005) 319–396, http://dx.doi.org/10.1016/j.physrep.2005.03.003, arXiv:quant-ph/0701071.
[48] M. Lamehi-Rachti, W. Mittig, Phys. Rev. D 14 (1976) 2543–2555, http://dx.doi.org/10.1103/PhysRevD.14.2543.
[49] N.A. Tornqvist, Found. Phys. 11 (1981) 171–177, http://dx.doi.org/10.1007/BF00715204.
[50] N.A. Tornqvist, Phys. Lett. A 117 (1986) 1–4, http://dx.doi.org/10.1016/0375-9601(86)90225-2.
[51] S.P. Baranov, J. Phys. G 35 (2008) 075002, http://dx.doi.org/10.1088/0954-3899/35/7/075002.
[52] S.P. Baranov, in: S. Kistryn, A. Magiera, H. Machner, C. Guaraldo (Eds.), Internat. J. Modern Phys. A 24 (2009) 480–483, http://dx.doi.org/10.1142/

S0217751X09043894.
[53] P. Privitera, Phys. Lett. B 275 (1992) 172–180, http://dx.doi.org/10.1016/0370-2693(92)90872-2.
[54] S.A. Abel, M. Dittmar, H.K. Dreiner, Phys. Lett. B 280 (1992) 304–312, http://dx.doi.org/10.1016/0370-2693(92)90071-B.
[55] A. Acin, J.I. Latorre, P. Pascual, Phys. Rev. A 63 (2001) 042107, http://dx.doi.org/10.1103/PhysRevA.63.042107, arXiv:quant-ph/0007080.
[56] E.K. Akhmedov, A.Y. Smirnov, Found. Phys. 41 (2011) 1279–1306, http://dx.doi.org/10.1007/s10701-011-9545-4, arXiv:1008.2077.
[57] S. Banerjee, A.K. Alok, R. Srikanth, B.C. Hiesmayr, Eur. Phys. J. C 75 (10) (2015) 487, http://dx.doi.org/10.1140/epjc/s10052-015-3717-x, arXiv:

1508.03480.
[58] F. Benatti, R. Floreanini, Phys. Rev. D 57 (1998) R1332–R1336, http://dx.doi.org/10.1103/PhysRevD.57.R1332, arXiv:hep-ph/9712274.
[59] F. Benatti, R. Floreanini, Eur. Phys. J. C 13 (2000) 267, http://dx.doi.org/10.1007/s100520000306, arXiv:hep-ph/9912348.
[60] R.A. Bertlmann, W. Grimus, B.C. Hiesmayr, Phys. Lett. A 289 (2001) 21–26, http://dx.doi.org/10.1016/S0375-9601(01)00577-1, arXiv:quant-ph/0107022.
[61] S. Banerjee, A.K. Alok, R. MacKenzie, Eur. Phys. J. Plus 131 (5) (2016) 129, http://dx.doi.org/10.1140/epjp/i2016-16129-0, arXiv:1409.1034.
[62] A. Go, Belle Collaboration, J. Modern Opt. 51 (2004) 991, http://dx.doi.org/10.1080/09500340408233614, arXiv:quant-ph/0310192.
[63] A. Go, et al., Belle Collaboration, Phys. Rev. Lett. 99 (2007) 131802, http://dx.doi.org/10.1103/PhysRevLett.99.131802, arXiv:quant-ph/0702267.
[64] R.A. Bertlmann, A. Bramon, G. Garbarino, B.C. Hiesmayr, Phys. Lett. A 332 (2004) 355–360, http://dx.doi.org/10.1016/j.physleta.2004.10.006, arXiv:

quant-ph/0409051.
[65] D.E. Kharzeev, E.M. Levin, Phys. Rev. D 95 (11) (2017) 114008, http://dx.doi.org/10.1103/PhysRevD.95.114008, arXiv:1702.03489.
[66] Z. Tu, D.E. Kharzeev, T. Ullrich, Phys. Rev. Lett. 124 (6) (2020) 062001, http://dx.doi.org/10.1103/PhysRevLett.124.062001, arXiv:1904.11974.
[67] N. Yongram, E.B. Manoukian, Fortschr. Phys. 61 (2013) 668–684, http://dx.doi.org/10.1002/prop.201200137, arXiv:1309.2059.
[68] A. Cervera-Lierta, J.I. Latorre, J. Rojo, L. Rottoli, SciPost Phys. 3 (5) (2017) 036, http://dx.doi.org/10.21468/SciPostPhys.3.5.036, arXiv:1703.02989.
[69] Y. Afik, J.R.M. de Nova, Eur. Phys. J. Plus 136 (9) (2021) 907, http://dx.doi.org/10.1140/epjp/s13360-021-01902-1, arXiv:2003.02280.
[70] M. Fabbrichesi, R. Floreanini, G. Panizzo, Phys. Rev. Lett. 127 (16) (2021) 161801, http://dx.doi.org/10.1103/PhysRevLett.127.161801, arXiv:2102.11883.
[71] A.J. Barr, Phys. Lett. B 825 (2022) 136866, http://dx.doi.org/10.1016/j.physletb.2021.136866, arXiv:2106.01377.
[72] M. Fabbrichesi, R. Floreanini, E. Gabrielli, L. Marzola, Phys. Rev. D 109 (3) (2024) L031104, http://dx.doi.org/10.1103/PhysRevD.109.L031104,

arXiv:2305.04982.
[73] ATLAS Collaboration, ATLAS Collaboration, 2023, arXiv:2311.07288,
[74] CMS Collaboration, CMS Collaboration, 2024, URL https://cds.cern.ch/record/2893854?ln=en,
[75] F. Benatti, M. Fannes, R. Floreanini, D. Petritis, Quantum Information, Computation and Cryptography, Springer Berlin, Heidelberg, 2010, http:

//dx.doi.org/10.1007/978-3-642-11914-9.
[76] S. Das, T. Chanda, M. Lewenstein, A. Sanpera, A. Sen De, U. Sen, The Separability Versus Entanglement Problem, John Wiley, 2016, pp. 127–174,

http://dx.doi.org/10.1002/9783527805785.ch8.
[77] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2012, http://dx.doi.org/10.1017/

cbo9780511976667.
[78] L. Gurvits, arXiv:quant-ph/0303055,
[79] S. Gharibian, Quant. Inf. Comput. 10 (3–4) (2010) 0343–0360, http://dx.doi.org/10.26421/QIC10.3-4-11, arXiv:0810.4507.
[80] M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223 (1) (1996) 1–8, http://dx.doi.org/10.1016/S0375-9601(96)00706-2.
[81] A. Peres, Phys. Rev. Lett. 77 (1996) 1413–1415, http://dx.doi.org/10.1103/PhysRevLett.77.1413.
[82] S. Woronowicz, Rep. Math. Phys. 10 (2) (1976) 165–183, http://dx.doi.org/10.1016/0034-4877(76)90038-0.
[83] G. Vidal, R.F. Werner, Phys. Rev. A 65 (2002) 032314, http://dx.doi.org/10.1103/PhysRevA.65.032314, arXiv:quant-ph/0102117.
[84] C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54 (1996) 3824–3851, http://dx.doi.org/10.1103/PhysRevA.54.3824.
[85] W.K. Wootters, Phys. Rev. Lett. 80 (1998) 2245–2248, http://dx.doi.org/10.1103/PhysRevLett.80.2245.
[86] P. Rungta, V. Bužek, C.M. Caves, M. Hillery, G.J. Milburn, Phys. Rev. A 64 (2001) 042315, http://dx.doi.org/10.1103/PhysRevA.64.042315.
[87] F. Mintert, M. Kuś, A. Buchleitner, Phys. Rev. Lett. 92 (2004) 167902, http://dx.doi.org/10.1103/PhysRevLett.92.167902.
[88] F. Mintert, A. Buchleitner, Phys. Rev. Lett. 98 (2007) 140505, http://dx.doi.org/10.1103/PhysRevLett.98.140505.
[89] C.-J. Zhang, Y.-X. Gong, Y.-S. Zhang, G.-C. Guo, Phys. Rev. A 78 (2008) 042308, http://dx.doi.org/10.1103/PhysRevA.78.042308.
[90] K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Modern Phys. 84 (2012) 1655–1707, http://dx.doi.org/10.1103/RevModPhys.84.1655.
[91] G. Adesso, T.R. Bromley, M. Cianciaruso, J. Phys. A 49 (47) (2016) 473001, http://dx.doi.org/10.1088/1751-8113/49/47/473001.
[92] A. Bera, T. Das, D. Sadhukhan, S.S. Roy, A. Sen(De), U. Sen, Rep. Progr. Phys. 81 (2) (2017) 024001, http://dx.doi.org/10.1088/1361-6633/aa872f.
[93] S. Luo, Phys. Rev. A 77 (2008) 022301, http://dx.doi.org/10.1103/PhysRevA.77.022301.
[94] H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88 (2001) 017901, http://dx.doi.org/10.1103/PhysRevLett.88.017901.
[95] L. Henderson, V. Vedral, J. Phys. A: Math. Gen. 34 (35) (2001) 6899, http://dx.doi.org/10.1088/0305-4470/34/35/315.
[96] S. Wu, U.V. Poulsen, K. Mølmer, Phys. Rev. A 80 (2009) 032319, http://dx.doi.org/10.1103/PhysRevA.80.032319.
[97] Y. Afik, J.R.M. de Nova, Phys. Rev. Lett. 130 (22) (2023) 221801, http://dx.doi.org/10.1103/PhysRevLett.130.221801, arXiv:2209.03969.
[98] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Modern Phys. 86 (2014) 419–478, http://dx.doi.org/10.1103/RevModPhys.86.419.
[99] V. Scarani, Bell Nonlocality, Oxford University Press, 2019.

[100] J. Bell, Phys. Phys. Fizika 1 (1964) 195, http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195.
[101] J. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, Cambridge University Press, 1987, 2004.
[102] M. Redhead, Clarendon paperbacks, Clarendon Press, 1987.
55

[103] J. Bell, R. Bertlmann, A. Zeilinger, Quantum (un)speakables: From bell to quantum information, Physics and astronomy online library, Springer, 2002.

http://dx.doi.org/10.1103/PhysRevD.10.526
http://dx.doi.org/10.1103/PhysRevLett.81.3563
http://arxiv.org/abs/quant-ph/9806043
http://arxiv.org/abs/quant-ph/9806043
http://arxiv.org/abs/quant-ph/9806043
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb41
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb41
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb41
http://dx.doi.org/10.1038/nature15759
http://arxiv.org/abs/1508.05949
http://dx.doi.org/10.1103/PhysRevLett.115.250401
http://arxiv.org/abs/1511.03190
http://dx.doi.org/10.1038/s41586-023-05885-0
http://dx.doi.org/10.1103/PhysRevLett.119.010402
http://dx.doi.org/10.1103/PhysRevLett.119.010402
http://dx.doi.org/10.1103/PhysRevLett.119.010402
http://dx.doi.org/10.1088/0034-4885/41/12/002
http://dx.doi.org/10.1016/j.physrep.2005.03.003
http://arxiv.org/abs/quant-ph/0701071
http://dx.doi.org/10.1103/PhysRevD.14.2543
http://dx.doi.org/10.1007/BF00715204
http://dx.doi.org/10.1016/0375-9601(86)90225-2
http://dx.doi.org/10.1088/0954-3899/35/7/075002
http://dx.doi.org/10.1142/S0217751X09043894
http://dx.doi.org/10.1142/S0217751X09043894
http://dx.doi.org/10.1142/S0217751X09043894
http://dx.doi.org/10.1016/0370-2693(92)90872-2
http://dx.doi.org/10.1016/0370-2693(92)90071-B
http://dx.doi.org/10.1103/PhysRevA.63.042107
http://arxiv.org/abs/quant-ph/0007080
http://dx.doi.org/10.1007/s10701-011-9545-4
http://arxiv.org/abs/1008.2077
http://dx.doi.org/10.1140/epjc/s10052-015-3717-x
http://arxiv.org/abs/1508.03480
http://arxiv.org/abs/1508.03480
http://arxiv.org/abs/1508.03480
http://dx.doi.org/10.1103/PhysRevD.57.R1332
http://arxiv.org/abs/hep-ph/9712274
http://dx.doi.org/10.1007/s100520000306
http://arxiv.org/abs/hep-ph/9912348
http://dx.doi.org/10.1016/S0375-9601(01)00577-1
http://arxiv.org/abs/quant-ph/0107022
http://dx.doi.org/10.1140/epjp/i2016-16129-0
http://arxiv.org/abs/1409.1034
http://dx.doi.org/10.1080/09500340408233614
http://arxiv.org/abs/quant-ph/0310192
http://dx.doi.org/10.1103/PhysRevLett.99.131802
http://arxiv.org/abs/quant-ph/0702267
http://dx.doi.org/10.1016/j.physleta.2004.10.006
http://arxiv.org/abs/quant-ph/0409051
http://arxiv.org/abs/quant-ph/0409051
http://arxiv.org/abs/quant-ph/0409051
http://dx.doi.org/10.1103/PhysRevD.95.114008
http://arxiv.org/abs/1702.03489
http://dx.doi.org/10.1103/PhysRevLett.124.062001
http://arxiv.org/abs/1904.11974
http://dx.doi.org/10.1002/prop.201200137
http://arxiv.org/abs/1309.2059
http://dx.doi.org/10.21468/SciPostPhys.3.5.036
http://arxiv.org/abs/1703.02989
http://dx.doi.org/10.1140/epjp/s13360-021-01902-1
http://arxiv.org/abs/2003.02280
http://dx.doi.org/10.1103/PhysRevLett.127.161801
http://arxiv.org/abs/2102.11883
http://dx.doi.org/10.1016/j.physletb.2021.136866
http://arxiv.org/abs/2106.01377
http://dx.doi.org/10.1103/PhysRevD.109.L031104
http://arxiv.org/abs/2305.04982
http://arxiv.org/abs/2311.07288
https://cds.cern.ch/record/2893854?ln=en
http://dx.doi.org/10.1007/978-3-642-11914-9
http://dx.doi.org/10.1007/978-3-642-11914-9
http://dx.doi.org/10.1007/978-3-642-11914-9
http://dx.doi.org/10.1002/9783527805785.ch8
http://dx.doi.org/10.1017/cbo9780511976667
http://dx.doi.org/10.1017/cbo9780511976667
http://dx.doi.org/10.1017/cbo9780511976667
http://arxiv.org/abs/quant-ph/0303055
http://dx.doi.org/10.26421/QIC10.3-4-11
http://arxiv.org/abs/0810.4507
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1016/0034-4877(76)90038-0
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://arxiv.org/abs/quant-ph/0102117
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.64.042315
http://dx.doi.org/10.1103/PhysRevLett.92.167902
http://dx.doi.org/10.1103/PhysRevLett.98.140505
http://dx.doi.org/10.1103/PhysRevA.78.042308
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1088/1751-8113/49/47/473001
http://dx.doi.org/10.1088/1361-6633/aa872f
http://dx.doi.org/10.1103/PhysRevA.77.022301
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1103/PhysRevA.80.032319
http://dx.doi.org/10.1103/PhysRevLett.130.221801
http://arxiv.org/abs/2209.03969
http://dx.doi.org/10.1103/RevModPhys.86.419
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb99
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb101
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb102
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb103


Progress in Particle and Nuclear Physics 139 (2024) 104134A.J. Barr et al.
[104] R. Bertlmann, A. Zeilinger, Quantum [un]speakables II: Half a century of bell’s theorem, The Frontiers Collection, Springer International Publishing, 2016.
[105] A. Fine, Phys. Rev. Lett. 48 (1982) 291–295, http://dx.doi.org/10.1103/PhysRevLett.48.291.
[106] B.S. Cirel’son, Lett. Math. Phys. 4 (2) (1980) 93–100, http://dx.doi.org/10.1007/BF00417500.
[107] R. Popescu, D. Rohrlich, Found. Phys. 24 (1994) 379, http://dx.doi.org/10.1007/BF02058098.
[108] R. Horodecki, P. Horodecki, M. Horodecki, Phys. Lett. A 200 (5) (1995) 340–344, http://dx.doi.org/10.1016/0375-9601(95)00214-N.
[109] G. Kimura, Phys. Lett. A 314 (5–6) (2003) 339–349, http://dx.doi.org/10.1016/S0375-9601(03)00941-1.
[110] R.A. Bertlmann, P. Krammer, J. Phys. A 41 (23) (2008) 235303, http://dx.doi.org/10.1088/1751-8113/41/23/235303.
[111] D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Phys. Rev. Lett. 88 (2002) 040404, http://dx.doi.org/10.1103/PhysRevLett.88.040404.
[112] D. Kaszlikowski, L.C. Kwek, J.-L. Chen, M. Żukowski, C.H. Oh, Phys. Rev. A 65 (2002) 032118, http://dx.doi.org/10.1103/PhysRevA.65.032118.
[113] A. Acín, T. Durt, N. Gisin, J.I. Latorre, Phys. Rev. A 65 (2002) 052325, http://dx.doi.org/10.1103/PhysRevA.65.052325.
[114] A. Peres, Found. Phys. 29 (1999) 589–614, http://dx.doi.org/10.1023/A:1018816310000, arXiv:quant-ph/9807017.
[115] S. Pironio, J. Math. Phys. 46 (6) (2005) 062112, http://dx.doi.org/10.1063/1.1928727.
[116] X.-Y. Fan, Z.-P. Xu, J.-L. Miao, H.-Y. Liu, Y.-J. Liu, W.-M. Shang, J. Zhou, H.-X. Meng, O. Gühne, J.-L. Chen, Phys. Rev. A 108 (2023) 062404,

http://dx.doi.org/10.1103/PhysRevA.108.062404.
[117] A. Peres, D.R. Terno, Rev. Modern Phys. 76 (2004) 93–123, http://dx.doi.org/10.1103/RevModPhys.76.93.
[118] P.M. Alsing, I. Fuentes, Classical Quantum Gravity 29 (22) (2012) 224001, http://dx.doi.org/10.1088/0264-9381/29/22/224001.
[119] E. Castro-Ruiz, E. Nahmad-Achar, Phys. Scr. 90 (6) (2015) 068018, http://dx.doi.org/10.1088/0031-8949/90/6/068018.
[120] A. Peres, P.F. Scudo, D.R. Terno, Phys. Rev. Lett. 88 (2002) 230402, http://dx.doi.org/10.1103/PhysRevLett.88.230402.
[121] D. Lee, E. Chang-Young, New J. Phys. 6 (1) (2004) 67, http://dx.doi.org/10.1088/1367-2630/6/1/067.
[122] L.F. Streiter, F. Giacomini, Č. Brukner, Phys. Rev. Lett. 126 (2021) 230403, http://dx.doi.org/10.1103/PhysRevLett.126.230403.
[123] S.J. Summers, R. Werner, Phys. Lett. A 110 (5) (1985) 257–259, http://dx.doi.org/10.1016/0375-9601(85)90093-3.
[124] S.J. Summers, R. Werner, J. Math. Phys. 28 (10) (1987) 2440–2447, http://dx.doi.org/10.1063/1.527733.
[125] S.J. Summers, R. Werner, J. Math. Phys. 28 (10) (1987) 2448–2456, http://dx.doi.org/10.1063/1.527734.
[126] L.J. Landau, Phys. Lett. A 123 (3) (1987) 115–118, http://dx.doi.org/10.1016/0375-9601(87)90288-X.
[127] S.J. Summers, in: L. Accardi, W. von Waldenfels (Eds.), Quantum Probability and Applications V, Springer Berlin Heidelberg, Berlin, Heidelberg, 1990,

pp. 393–413.
[128] D. Dudal, P. De Fabritiis, M.S. Guimaraes, I. Roditi, S.P. Sorella, Phys. Rev. D 108 (2023) L081701, http://dx.doi.org/10.1103/PhysRevD.108.L081701.
[129] C. Bouchiat, L. Michel, Nuclear Phys. 5 (1958) 416–434, http://dx.doi.org/10.1016/0029-5582(58)90046-4.
[130] V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum electrodynamics, Pergamon Press, 1982.
[131] N. Quesada, A. Al-Qasini, D. James, J. Modern Opt. 15 (2012) 1322–1329, http://dx.doi.org/10.1080/09500340.2012.713130.
[132] J. Kim, J.E. Kim, H.S. Song, PRINT-80-0470 (SEOUL-NATIONAL), 1980,
[133] S.Y. Choi, T. Lee, H.S. Song, Phys. Rev. D 40 (1989) 2477–2480, http://dx.doi.org/10.1103/PhysRevD.40.2477.
[134] M. Fabbrichesi, R. Floreanini, E. Gabrielli, L. Marzola, Eur. Phys. J. C 83 (9) (2023) 823, http://dx.doi.org/10.1140/epjc/s10052-023-11935-8,

arXiv:2302.00683.
[135] A. Brandenburg, Z.G. Si, P. Uwer, Phys. Lett. B 539 (2002) 235–241, http://dx.doi.org/10.1016/S0370-2693(02)02098-1, arXiv:hep-ph/0205023.
[136] R. Ashby-Pickering, A.J. Barr, A. Wierzchucka, JHEP 05 (2023) 020, http://dx.doi.org/10.1007/JHEP05(2023)020, arXiv:2209.13990.
[137] R. Rahaman, R.K. Singh, Nuclear Phys. B 984 (2022) 115984, http://dx.doi.org/10.1016/j.nuclphysb.2022.115984, arXiv:2109.09345.
[138] C. Bourrely, E. Leader, J. Soffer, Phys. Rep. 59 (2) (1980) 95–297, http://dx.doi.org/10.1016/0370-1573(80)90017-4.
[139] J.A. Aguilar-Saavedra, J. Bernabeu, Phys. Rev. D 93 (1) (2016) 011301, http://dx.doi.org/10.1103/PhysRevD.93.011301, arXiv:1508.04592.
[140] A. Bernal, 2023, arXiv:2310.10838,
[141] J.A. Aguilar-Saavedra, A. Bernal, J.A. Casas, J.M. Moreno, Phys. Rev. D 107 (1) (2023) 016012, http://dx.doi.org/10.1103/PhysRevD.107.016012,

arXiv:2209.13441.
[142] S. Chen, Y. Nakaguchi, S. Komamiya, PTEP 2013 (6) (2013) 063A01, http://dx.doi.org/10.1093/ptep/ptt032, arXiv:1302.6438.
[143] M. Ablikim, et al., BESIII Collaboration, Nat. Phys. 15 (2019) 631–634, http://dx.doi.org/10.1038/s41567-019-0494-8, arXiv:1808.08917.
[144] M. Ablikim, et al., BESIII Collaboration, Nature 606 (7912) (2022) 64–69, http://dx.doi.org/10.1038/s41586-022-04624-1, arXiv:2105.11155.
[145] M. Ablikim, et al., BESIII Collaboration, Phys. Rev. Lett. 129 (13) (2022) 131801, http://dx.doi.org/10.1103/PhysRevLett.129.131801, arXiv:2204.11058.
[146] R.D. Ball, et al., PDF4LHC Working Group Collaboration, J. Phys. G 49 (8) (2022) 080501, http://dx.doi.org/10.1088/1361-6471/ac7216, arXiv:

2203.05506.
[147] M. Fabbrichesi, R. Floreanini, E. Gabrielli, Eur. Phys. J. C 83 (2) (2023) 162, http://dx.doi.org/10.1140/epjc/s10052-023-11307-2, arXiv:2208.11723.
[148] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, JHEP 07 (2014) 079, http:

//dx.doi.org/10.1007/JHEP07(2014)079, arXiv:1405.0301.
[149] T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, Comput. Phys. Comm. 191 (2015)

159–177, http://dx.doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
[150] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, M. Selvaggi, DELPHES 3 Collaboration, JHEP 02 (2014) 057,

http://dx.doi.org/10.1007/JHEP02(2014)057, arXiv:1307.6346.
[151] C. Severi, C.D.E. Boschi, F. Maltoni, M. Sioli, Eur. Phys. J. C 82 (4) (2022) 285, http://dx.doi.org/10.1140/epjc/s10052-022-10245-9, arXiv:2110.10112.
[152] B. Abbott, et al., D0 Collaboration, Phys. Rev. Lett. 80 (1998) 2063–2068, http://dx.doi.org/10.1103/PhysRevLett.80.2063, arXiv:hep-ex/9706014.
[153] J.A. Aguilar-Saavedra, J.A. Casas, Eur. Phys. J. C 82 (8) (2022) 666, http://dx.doi.org/10.1140/epjc/s10052-022-10630-4, arXiv:2205.00542.
[154] K. Cheng, T. Han, M. Low, arXiv:2311.09166,
[155] Z. Dong, D. Gonçalves, K. Kong, A. Navarro, 2023, arXiv:2305.07075,
[156] T. Han, M. Low, T.A. Wu, Quantum Entanglement and Bell Inequality Violation in Semi-Leptonic Top Decays,
[157] K. Ehatäht, M. Fabbrichesi, L. Marzola, C. Veelken, Phys. Rev. D 109 (3) (2024) 032005, http://dx.doi.org/10.1103/PhysRevD.109.032005, arXiv:

2311.17555.
[158] M.M. Altakach, P. Lamba, F. Maltoni, K. Mawatari, K. Sakurai, Phys. Rev. D 107 (9) (2023) 093002, http://dx.doi.org/10.1103/PhysRevD.107.093002,

arXiv:2211.10513.
[159] K. Ma, T. Li, 2023, arXiv:2309.08103,
[160] K. Hagiwara, T. Li, K. Mawatari, J. Nakamura, Eur. Phys. J. C 73 (2013) 2489, http://dx.doi.org/10.1140/epjc/s10052-013-2489-4, arXiv:1212.6247.
[161] V.L. Lyuboshitz, V.V. Lyuboshitz, in: K. Imai, T. Murakami, K. Tanida, N. Saito (Eds.), AIP Conf. Proc. 915 (1) (2007) 268–271, http://dx.doi.org/10.

1063/1.2750778.
[162] M. May, Phys. Rev. 84 (1951) 265.
[163] A. Borsellino, Phys. Rev. 89 (1953) 1023–1025, http://dx.doi.org/10.1103/PhysRev.89.1023.
[164] V.F. Boldyshev, E.A. Vinokurov, N.P. Merenkov, Y.P. Peresunko, Phys. Part. Nucl. 25 (1994) 292–331.
[165] G.O. Depaola, M.L. Iparraguirre, Nucl. Instrum. Methods A 611 (2009) 84–92, http://dx.doi.org/10.1016/j.nima.2009.09.010.
[166] D. Bernard, HARPO Collaboration, Nucl. Instrum. Methods A 729 (2013) 765–780, http://dx.doi.org/10.1016/j.nima.2013.07.047, arXiv:1307.3892.
[167] S. Agostinelli, et al., GEANT4 Collaboration, Nucl. Instrum. Methods A 506 (2003) 250–303, http://dx.doi.org/10.1016/S0168-9002(03)01368-8.
56

http://refhub.elsevier.com/S0146-6410(24)00038-3/sb104
http://dx.doi.org/10.1103/PhysRevLett.48.291
http://dx.doi.org/10.1007/BF00417500
http://dx.doi.org/10.1007/BF02058098
http://dx.doi.org/10.1016/0375-9601(95)00214-N
http://dx.doi.org/10.1016/S0375-9601(03)00941-1
http://dx.doi.org/10.1088/1751-8113/41/23/235303
http://dx.doi.org/10.1103/PhysRevLett.88.040404
http://dx.doi.org/10.1103/PhysRevA.65.032118
http://dx.doi.org/10.1103/PhysRevA.65.052325
http://dx.doi.org/10.1023/A:1018816310000
http://arxiv.org/abs/quant-ph/9807017
http://dx.doi.org/10.1063/1.1928727
http://dx.doi.org/10.1103/PhysRevA.108.062404
http://dx.doi.org/10.1103/RevModPhys.76.93
http://dx.doi.org/10.1088/0264-9381/29/22/224001
http://dx.doi.org/10.1088/0031-8949/90/6/068018
http://dx.doi.org/10.1103/PhysRevLett.88.230402
http://dx.doi.org/10.1088/1367-2630/6/1/067
http://dx.doi.org/10.1103/PhysRevLett.126.230403
http://dx.doi.org/10.1016/0375-9601(85)90093-3
http://dx.doi.org/10.1063/1.527733
http://dx.doi.org/10.1063/1.527734
http://dx.doi.org/10.1016/0375-9601(87)90288-X
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb127
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb127
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb127
http://dx.doi.org/10.1103/PhysRevD.108.L081701
http://dx.doi.org/10.1016/0029-5582(58)90046-4
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb130
http://dx.doi.org/10.1080/09500340.2012.713130
http://dx.doi.org/10.1103/PhysRevD.40.2477
http://dx.doi.org/10.1140/epjc/s10052-023-11935-8
http://arxiv.org/abs/2302.00683
http://dx.doi.org/10.1016/S0370-2693(02)02098-1
http://arxiv.org/abs/hep-ph/0205023
http://dx.doi.org/10.1007/JHEP05(2023)020
http://arxiv.org/abs/2209.13990
http://dx.doi.org/10.1016/j.nuclphysb.2022.115984
http://arxiv.org/abs/2109.09345
http://dx.doi.org/10.1016/0370-1573(80)90017-4
http://dx.doi.org/10.1103/PhysRevD.93.011301
http://arxiv.org/abs/1508.04592
http://arxiv.org/abs/2310.10838
http://dx.doi.org/10.1103/PhysRevD.107.016012
http://arxiv.org/abs/2209.13441
http://dx.doi.org/10.1093/ptep/ptt032
http://arxiv.org/abs/1302.6438
http://dx.doi.org/10.1038/s41567-019-0494-8
http://arxiv.org/abs/1808.08917
http://dx.doi.org/10.1038/s41586-022-04624-1
http://arxiv.org/abs/2105.11155
http://dx.doi.org/10.1103/PhysRevLett.129.131801
http://arxiv.org/abs/2204.11058
http://dx.doi.org/10.1088/1361-6471/ac7216
http://arxiv.org/abs/2203.05506
http://arxiv.org/abs/2203.05506
http://arxiv.org/abs/2203.05506
http://dx.doi.org/10.1140/epjc/s10052-023-11307-2
http://arxiv.org/abs/2208.11723
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1016/j.cpc.2015.01.024
http://arxiv.org/abs/1410.3012
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
http://dx.doi.org/10.1140/epjc/s10052-022-10245-9
http://arxiv.org/abs/2110.10112
http://dx.doi.org/10.1103/PhysRevLett.80.2063
http://arxiv.org/abs/hep-ex/9706014
http://dx.doi.org/10.1140/epjc/s10052-022-10630-4
http://arxiv.org/abs/2205.00542
http://arxiv.org/abs/2311.09166
http://arxiv.org/abs/2305.07075
http://dx.doi.org/10.1103/PhysRevD.109.032005
http://arxiv.org/abs/2311.17555
http://arxiv.org/abs/2311.17555
http://arxiv.org/abs/2311.17555
http://dx.doi.org/10.1103/PhysRevD.107.093002
http://arxiv.org/abs/2211.10513
http://arxiv.org/abs/2309.08103
http://dx.doi.org/10.1140/epjc/s10052-013-2489-4
http://arxiv.org/abs/1212.6247
http://dx.doi.org/10.1063/1.2750778
http://dx.doi.org/10.1063/1.2750778
http://dx.doi.org/10.1063/1.2750778
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb162
http://dx.doi.org/10.1103/PhysRev.89.1023
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb164
http://dx.doi.org/10.1016/j.nima.2009.09.010
http://dx.doi.org/10.1016/j.nima.2013.07.047
http://arxiv.org/abs/1307.3892
http://dx.doi.org/10.1016/S0168-9002(03)01368-8


Progress in Particle and Nuclear Physics 139 (2024) 104134A.J. Barr et al.
[168] P. Gros, D. Bernard, HARPO Collaboration, Astropart. Phys. 88 (2017) 30–37, http://dx.doi.org/10.1016/j.astropartphys.2016.12.006, arXiv:1611.05179.
[169] A.J. Barr, P. Caban, J. Rembieliński, Quantum 7 (2023) 1070, http://dx.doi.org/10.22331/q-2023-07-27-1070, arXiv:2204.11063.
[170] R. Aoude, E. Madge, F. Maltoni, L. Mantani, JHEP 12 (2023) 017, http://dx.doi.org/10.1007/JHEP12(2023)017, arXiv:2307.09675.
[171] J.A. Aguilar-Saavedra, Phys. Rev. D 107 (7) (2023) 076016, http://dx.doi.org/10.1103/PhysRevD.107.076016, arXiv:2209.14033.
[172] Q. Bi, Q.-H. Cao, K. Cheng, H. Zhang, 2023, arXiv:2307.14895,
[173] F. Fabbri, J. Howarth, T. Maurin, Eur. Phys. J. C 84 (1) (2024) 20, http://dx.doi.org/10.1140/epjc/s10052-023-12371-4, arXiv:2307.13783.
[174] A. Bernal, P. Caban, J. Rembieliński, Eur. Phys. J. C 83 (11) (2023) 1050, http://dx.doi.org/10.1140/epjc/s10052-023-12216-0, arXiv:2307.13496.
[175] M. Fabbrichesi, R. Floreanini, E. Gabrielli, L. Marzola, JHEP 09 (2023) 195, http://dx.doi.org/10.1007/JHEP09(2023)195, arXiv:2304.02403.
[176] R. Aaij, et al., LHCb Collaboration, Phys. Rev. D 88 (2013) 052002, http://dx.doi.org/10.1103/PhysRevD.88.052002, arXiv:1307.2782.
[177] I. Bezshyiko, et al., LHCb Collaboration, Phys. Rev. Lett. 131 (17) (2023) 171802, http://dx.doi.org/10.1103/PhysRevLett.131.171802, arXiv:2304.06198.
[178] S. Boselli, C.M. Carloni Calame, G. Montagna, O. Nicrosini, F. Piccinini, JHEP 06 (2015) 023, http://dx.doi.org/10.1007/JHEP06(2015)023, arXiv:

1503.07394.
[179] R.A. Morales, Eur. Phys. J. Plus 138 (12) (2023) 1157, http://dx.doi.org/10.1140/epjp/s13360-023-04784-7, arXiv:2306.17247.
[180] C.G. Timpson, in: O.K. Baker (Ed.), Quantum Entanglement in High Energy Physics, IntechOpen, Rijeka, 2023, http://dx.doi.org/10.5772/intechopen.

1002905.
[181] D. Bohm, Phys. Rev. 85 (1952) 166–179, http://dx.doi.org/10.1103/PhysRev.85.166.
[182] D. Bohm, Phys. Rev. 85 (1952) 180–193, http://dx.doi.org/10.1103/PhysRev.85.180.
[183] P.M. Pearle, Phys. Rev. D 2 (1970) 1418–1425, http://dx.doi.org/10.1103/PhysRevD.2.1418.
[184] J.-A. Larsson, R. Gill, Europhys. Lett. 67 (2004) 707–713, http://dx.doi.org/10.1209/epl/i2004-10124-7, arXiv:quant-ph/0312035.
[185] D. Bohm, Y. Aharonov, Phys. Rev. 108 (1957) 1070–1076, http://dx.doi.org/10.1103/PhysRev.108.1070.
[186] J.-A. Larsson, J. Phys. A 47 (42) (2014) 424003, http://dx.doi.org/10.1088/1751-8113/47/42/424003.
[187] T. Vértesi, S. Pironio, N. Brunner, Phys. Rev. Lett. 104 (6) (2010) 060401, http://dx.doi.org/10.1103/PhysRevLett.104.060401.
[188] F. Dordei, LHCb Collaboration, in: L. Bravina, Y. Foka, S. Kabana (Eds.), EPJ Web Conf. 164 (2017) 01016, http://dx.doi.org/10.1051/epjconf/

201716401016.
[189] J.S. Bell, Spekable and unspeakable in quantum mechanics. Collected papers on quantum philosophy, Cambridge University Press, 1987, p. 109.
[190] R. Aoude, E. Madge, F. Maltoni, L. Mantani, Phys. Rev. D 106 (5) (2022) 055007, http://dx.doi.org/10.1103/PhysRevD.106.055007, arXiv:2203.05619.
[191] C. Severi, E. Vryonidou, JHEP 01 (2023) 148, http://dx.doi.org/10.1007/JHEP01(2023)148, arXiv:2210.09330.
[192] B. Lillie, J. Shu, T.M.P. Tait, JHEP 04 (2008) 087, http://dx.doi.org/10.1088/1126-6708/2008/04/087, arXiv:0712.3057.
[193] A.M. Sirunyan, et al., CMS Collaboration, JHEP 06 (2020) 146, http://dx.doi.org/10.1007/JHEP06(2020)146, arXiv:1912.09540.
[194] M. Aaboud, et al., ATLAS Collaboration, Phys. Rev. D 96 (5) (2017) 052004, http://dx.doi.org/10.1103/PhysRevD.96.052004, arXiv:1703.09127.
[195] A.M. Sirunyan, et al., CMS Collaboration, Eur. Phys. J. C 78 (9) (2018) 789, http://dx.doi.org/10.1140/epjc/s10052-018-6242-x, arXiv:1803.08030;

Eur.Phys.J.C 82 (2022) 379, Erratum:.
[196] R.L. Workman, et al., Particle Data Group Collaboration, PTEP 2022 (2022) 083C01, http://dx.doi.org/10.1093/ptep/ptac097.
[197] S. Berge, W. Bernreuther, H. Spiesberger, Phys. Lett. B 727 (2013) 488–495, http://dx.doi.org/10.1016/j.physletb.2013.11.006, arXiv:1308.2674.
[198] M. Fabbrichesi, L. Marzola, arXiv:2401.04449,
[199] S. Banerjee, B. Pietrzyk, J.M. Roney, Z. Was, Phys. Rev. D 77 (2008) 054012, http://dx.doi.org/10.1103/PhysRevD.77.054012, arXiv:0706.3235.
[200] A. Soni, R.M. Xu, Phys. Rev. D 48 (1993) 5259–5263, http://dx.doi.org/10.1103/PhysRevD.48.5259, arXiv:hep-ph/9301225.
[201] D. Chang, W.-Y. Keung, I. Phillips, Phys. Rev. D 48 (1993) 3225–3234, http://dx.doi.org/10.1103/PhysRevD.48.3225, arXiv:hep-ph/9303226.
[202] A. Skjold, P. Osland, Phys. Lett. B 311 (1993) 261–265, http://dx.doi.org/10.1016/0370-2693(93)90565-Y, arXiv:hep-ph/9303294.
[203] C.P. Buszello, I. Fleck, P. Marquard, J.J. van der Bij, Eur. Phys. J. C 32 (2004) 209–219, http://dx.doi.org/10.1140/epjc/s2003-01392-0, arXiv:hep-

ph/0212396.
[204] S.Y. Choi, D.J. Miller, M.M. Muhlleitner, P.M. Zerwas, Phys. Lett. B 553 (2003) 61–71, http://dx.doi.org/10.1016/S0370-2693(02)03191-X, arXiv:hep-

ph/0210077.
[205] Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, N.V. Tran, Phys. Rev. D 81 (2010) 075022, http://dx.doi.org/10.1103/PhysRevD.81.075022,

arXiv:1001.3396.
[206] N.D. Christensen, T. Han, Y. Li, Phys. Lett. B 693 (2010) 28–35, http://dx.doi.org/10.1016/j.physletb.2010.08.008, arXiv:1005.5393.
[207] N. Desai, D.K. Ghosh, B. Mukhopadhyaya, Phys. Rev. D 83 (2011) 113004, http://dx.doi.org/10.1103/PhysRevD.83.113004, arXiv:1104.3327.
[208] S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, N.V. Tran, A. Whitbeck, Phys. Rev. D 86 (2012) 095031, http://dx.doi.org/10.1103/PhysRevD.

86.095031, arXiv:1208.4018.
[209] S. Dwivedi, D.K. Ghosh, B. Mukhopadhyaya, A. Shivaji, Phys. Rev. D 93 (2016) 115039, http://dx.doi.org/10.1103/PhysRevD.93.115039, arXiv:

1603.06195.
[210] I. Anderson, et al., in: N.A. Graf, M.E. Peskin, J.L. Rosner (Eds.), Phys. Rev. D 89 (3) (2014) 035007, http://dx.doi.org/10.1103/PhysRevD.89.035007,

arXiv:1309.4819.
[211] P. Artoisenet, et al., JHEP 11 (2013) 043, http://dx.doi.org/10.1007/JHEP11(2013)043, arXiv:1306.6464.
[212] S. Boselli, C.M. Carloni Calame, G. Montagna, O. Nicrosini, F. Piccinini, A. Shivaji, JHEP 01 (2018) 096, http://dx.doi.org/10.1007/JHEP01(2018)096,

arXiv:1703.06667.
[213] I. Brivio, T. Corbett, M. Trott, JHEP 10 (2019) 056, http://dx.doi.org/10.1007/JHEP10(2019)056, arXiv:1906.06949.
[214] K. Rao, S.D. Rindani, P. Sarmah, Nuclear Phys. B 964 (2021) 115317, http://dx.doi.org/10.1016/j.nuclphysb.2021.115317, arXiv:2009.00980.
[215] ATLAS Collaboration, ATLAS Collaboration, Phys. Rev. D 108 (2023) 032005, http://dx.doi.org/10.1103/PhysRevD.108.032005, arXiv:2207.00338.
[216] ATLAS Collaboration, ATLAS Collaboration, Eur. Phys. J. C 80 (10) (2020) 957, http://dx.doi.org/10.1140/epjc/s10052-020-8227-9, arXiv:2004.03447;

Eur.Phys.J.C 81 (2021) 29, erratum; Eur.Phys.J.C 81 (2021) 398, erratum.
[217] T. Han, J. Jiang, Phys. Rev. D 63 (2001) 096007, http://dx.doi.org/10.1103/PhysRevD.63.096007, arXiv:hep-ph/0011271.
[218] N. Craig, J. Gu, Z. Liu, K. Wang, JHEP 03 (2016) 050, http://dx.doi.org/10.1007/JHEP03(2016)050, arXiv:1512.06877.
[219] P. Sharma, A. Shivaji, JHEP 10 (2022) 108, http://dx.doi.org/10.1007/JHEP10(2022)108, arXiv:2207.03862.
[220] A.M. Sirunyan, et al., CMS Collaboration, Eur. Phys. J. C 81 (6) (2021) 488, http://dx.doi.org/10.1140/epjc/s10052-021-09200-x, arXiv:2103.04956.
[221] K. Sakurai, M. Spannowsky, 2023, arXiv:2310.01477,
[222] V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61 (2000) 052306, http://dx.doi.org/10.1103/PhysRevA.61.052306, arXiv:quant-ph/9907047.
[223] T.J. Osborne, F. Verstraete, Phys. Rev. Lett. 96 (2006) 220503, http://dx.doi.org/10.1103/PhysRevLett.96.220503.
[224] Z.-X. Jin, Y.-H. Tao, Y.-T. Gui, S.-M. Fei, X. Li-Jost, C.-F. Qiao, Results Phys. 44 (2023) 106155, http://dx.doi.org/10.1016/j.rinp.2022.106155,

arXiv:2212.07067.
[225] A. Bernal, J.A. Casas, J.M. Moreno, 2023, arXiv:2307.05205,
[226] J. Bernabeu, A. Di Domenico, Phys. Rev. D 105 (11) (2022) 116004, http://dx.doi.org/10.1103/PhysRevD.105.116004, arXiv:1912.04798.
[227] J.A. Aguilar-Saavedra, Phys. Rev. D 108 (7) (2023) 076025, http://dx.doi.org/10.1103/PhysRevD.108.076025, arXiv:2307.06991.
[228] J.A. Aguilar-Saavedra, Phys. Lett. B 848 (2024) 138409, http://dx.doi.org/10.1016/j.physletb.2023.138409, arXiv:2308.07412.
57

[229] S.R. Beane, D.B. Kaplan, N. Klco, M.J. Savage, Phys. Rev. Lett. 122 (2019) 102001, http://dx.doi.org/10.1103/PhysRevLett.122.102001.

http://dx.doi.org/10.1016/j.astropartphys.2016.12.006
http://arxiv.org/abs/1611.05179
http://dx.doi.org/10.22331/q-2023-07-27-1070
http://arxiv.org/abs/2204.11063
http://dx.doi.org/10.1007/JHEP12(2023)017
http://arxiv.org/abs/2307.09675
http://dx.doi.org/10.1103/PhysRevD.107.076016
http://arxiv.org/abs/2209.14033
http://arxiv.org/abs/2307.14895
http://dx.doi.org/10.1140/epjc/s10052-023-12371-4
http://arxiv.org/abs/2307.13783
http://dx.doi.org/10.1140/epjc/s10052-023-12216-0
http://arxiv.org/abs/2307.13496
http://dx.doi.org/10.1007/JHEP09(2023)195
http://arxiv.org/abs/2304.02403
http://dx.doi.org/10.1103/PhysRevD.88.052002
http://arxiv.org/abs/1307.2782
http://dx.doi.org/10.1103/PhysRevLett.131.171802
http://arxiv.org/abs/2304.06198
http://dx.doi.org/10.1007/JHEP06(2015)023
http://arxiv.org/abs/1503.07394
http://arxiv.org/abs/1503.07394
http://arxiv.org/abs/1503.07394
http://dx.doi.org/10.1140/epjp/s13360-023-04784-7
http://arxiv.org/abs/2306.17247
http://dx.doi.org/10.5772/intechopen.1002905
http://dx.doi.org/10.5772/intechopen.1002905
http://dx.doi.org/10.5772/intechopen.1002905
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.180
http://dx.doi.org/10.1103/PhysRevD.2.1418
http://dx.doi.org/10.1209/epl/i2004-10124-7
http://arxiv.org/abs/quant-ph/0312035
http://dx.doi.org/10.1103/PhysRev.108.1070
http://dx.doi.org/10.1088/1751-8113/47/42/424003
http://dx.doi.org/10.1103/PhysRevLett.104.060401
http://dx.doi.org/10.1051/epjconf/201716401016
http://dx.doi.org/10.1051/epjconf/201716401016
http://dx.doi.org/10.1051/epjconf/201716401016
http://refhub.elsevier.com/S0146-6410(24)00038-3/sb189
http://dx.doi.org/10.1103/PhysRevD.106.055007
http://arxiv.org/abs/2203.05619
http://dx.doi.org/10.1007/JHEP01(2023)148
http://arxiv.org/abs/2210.09330
http://dx.doi.org/10.1088/1126-6708/2008/04/087
http://arxiv.org/abs/0712.3057
http://dx.doi.org/10.1007/JHEP06(2020)146
http://arxiv.org/abs/1912.09540
http://dx.doi.org/10.1103/PhysRevD.96.052004
http://arxiv.org/abs/1703.09127
http://dx.doi.org/10.1140/epjc/s10052-018-6242-x
http://arxiv.org/abs/1803.08030
http://dx.doi.org/10.1093/ptep/ptac097
http://dx.doi.org/10.1016/j.physletb.2013.11.006
http://arxiv.org/abs/1308.2674
http://arxiv.org/abs/2401.04449
http://dx.doi.org/10.1103/PhysRevD.77.054012
http://arxiv.org/abs/0706.3235
http://dx.doi.org/10.1103/PhysRevD.48.5259
http://arxiv.org/abs/hep-ph/9301225
http://dx.doi.org/10.1103/PhysRevD.48.3225
http://arxiv.org/abs/hep-ph/9303226
http://dx.doi.org/10.1016/0370-2693(93)90565-Y
http://arxiv.org/abs/hep-ph/9303294
http://dx.doi.org/10.1140/epjc/s2003-01392-0
http://arxiv.org/abs/hep-ph/0212396
http://arxiv.org/abs/hep-ph/0212396
http://arxiv.org/abs/hep-ph/0212396
http://dx.doi.org/10.1016/S0370-2693(02)03191-X
http://arxiv.org/abs/hep-ph/0210077
http://arxiv.org/abs/hep-ph/0210077
http://arxiv.org/abs/hep-ph/0210077
http://dx.doi.org/10.1103/PhysRevD.81.075022
http://arxiv.org/abs/1001.3396
http://dx.doi.org/10.1016/j.physletb.2010.08.008
http://arxiv.org/abs/1005.5393
http://dx.doi.org/10.1103/PhysRevD.83.113004
http://arxiv.org/abs/1104.3327
http://dx.doi.org/10.1103/PhysRevD.86.095031
http://dx.doi.org/10.1103/PhysRevD.86.095031
http://dx.doi.org/10.1103/PhysRevD.86.095031
http://arxiv.org/abs/1208.4018
http://dx.doi.org/10.1103/PhysRevD.93.115039
http://arxiv.org/abs/1603.06195
http://arxiv.org/abs/1603.06195
http://arxiv.org/abs/1603.06195
http://dx.doi.org/10.1103/PhysRevD.89.035007
http://arxiv.org/abs/1309.4819
http://dx.doi.org/10.1007/JHEP11(2013)043
http://arxiv.org/abs/1306.6464
http://dx.doi.org/10.1007/JHEP01(2018)096
http://arxiv.org/abs/1703.06667
http://dx.doi.org/10.1007/JHEP10(2019)056
http://arxiv.org/abs/1906.06949
http://dx.doi.org/10.1016/j.nuclphysb.2021.115317
http://arxiv.org/abs/2009.00980
http://dx.doi.org/10.1103/PhysRevD.108.032005
http://arxiv.org/abs/2207.00338
http://dx.doi.org/10.1140/epjc/s10052-020-8227-9
http://arxiv.org/abs/2004.03447
http://dx.doi.org/10.1103/PhysRevD.63.096007
http://arxiv.org/abs/hep-ph/0011271
http://dx.doi.org/10.1007/JHEP03(2016)050
http://arxiv.org/abs/1512.06877
http://dx.doi.org/10.1007/JHEP10(2022)108
http://arxiv.org/abs/2207.03862
http://dx.doi.org/10.1140/epjc/s10052-021-09200-x
http://arxiv.org/abs/2103.04956
http://arxiv.org/abs/2310.01477
http://dx.doi.org/10.1103/PhysRevA.61.052306
http://arxiv.org/abs/quant-ph/9907047
http://dx.doi.org/10.1103/PhysRevLett.96.220503
http://dx.doi.org/10.1016/j.rinp.2022.106155
http://arxiv.org/abs/2212.07067
http://arxiv.org/abs/2307.05205
http://dx.doi.org/10.1103/PhysRevD.105.116004
http://arxiv.org/abs/1912.04798
http://dx.doi.org/10.1103/PhysRevD.108.076025
http://arxiv.org/abs/2307.06991
http://dx.doi.org/10.1016/j.physletb.2023.138409
http://arxiv.org/abs/2308.07412
http://dx.doi.org/10.1103/PhysRevLett.122.102001


Progress in Particle and Nuclear Physics 139 (2024) 104134A.J. Barr et al.
[230] I. Low, T. Mehen, Phys. Rev. D 104 (7) (2021) 074014, http://dx.doi.org/10.1103/PhysRevD.104.074014, arXiv:2104.10835.
[231] S.R. Beane, R.C. Farrell, M. Varma, Internat. J. Modern Phys. A 36 (30) (2021) 2150205, http://dx.doi.org/10.1142/S0217751X21502055, arXiv:

2108.00646.
[232] Q. Liu, I. Low, T. Mehen, Phys. Rev. C 107 (2) (2023) 025204, http://dx.doi.org/10.1103/PhysRevC.107.025204, arXiv:2210.12085.
[233] D. Bai, Z. Ren, Phys. Rev. C 106 (6) (2022) 064005, http://dx.doi.org/10.1103/PhysRevC.106.064005, arXiv:2212.11092.
[234] Q. Liu, I. Low, arXiv:2312.02289,
[235] M. Carena, I. Low, C.E.M. Wagner, M.-L. Xiao, 2023, arXiv:2307.08112,
[236] M.-D. Choi, Linear Algebra Appl. 10 (3) (1975) 285–290, http://dx.doi.org/10.1016/0024-3795(75)90075-0.
[237] R.P. Feynman, in: L.M. Brown (Ed.), Internat. J. Theoret. Phys. 21 (1982) 467–488, http://dx.doi.org/10.1007/BF02650179.
[238] C. Altomonte, A.J. Barr, Phys. Lett. B 847 (2023) 138303, http://dx.doi.org/10.1016/j.physletb.2023.138303, arXiv:2312.02242.
[239] T.S. Humble, et al., Snowmass 2021, 2022, arXiv:2203.07091.
[240] C.W. Bauer, et al., PRX Quantum 4 (2) (2023) 027001, http://dx.doi.org/10.1103/PRXQuantum.4.027001, arXiv:2204.03381.
[241] S. Catterall, et al., Snowmass 2021, 2022, arXiv:2209.14839.
[242] G. Rodrigo, 45th International Conference of Theoretical Physics: Matter To the Deepest Recent Developments in Physics of Fundamental Interactions,

2024, arXiv:2401.16208.
[243] M. Eckstein, P. Horodecki, Proc. Roy. Soc. Lond. A 478 (2259) (2022) 20210806, http://dx.doi.org/10.1098/rspa.2021.0806, arXiv:2103.12000.
[244] W. Bernreuther, A. Brandenburg, Phys. Rev. D 49 (1994) 4481–4492, http://dx.doi.org/10.1103/PhysRevD.49.4481, arXiv:hep-ph/9312210.
58

http://dx.doi.org/10.1103/PhysRevD.104.074014
http://arxiv.org/abs/2104.10835
http://dx.doi.org/10.1142/S0217751X21502055
http://arxiv.org/abs/2108.00646
http://arxiv.org/abs/2108.00646
http://arxiv.org/abs/2108.00646
http://dx.doi.org/10.1103/PhysRevC.107.025204
http://arxiv.org/abs/2210.12085
http://dx.doi.org/10.1103/PhysRevC.106.064005
http://arxiv.org/abs/2212.11092
http://arxiv.org/abs/2312.02289
http://arxiv.org/abs/2307.08112
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1016/j.physletb.2023.138303
http://arxiv.org/abs/2312.02242
http://arxiv.org/abs/2203.07091
http://dx.doi.org/10.1103/PRXQuantum.4.027001
http://arxiv.org/abs/2204.03381
http://arxiv.org/abs/2209.14839
http://arxiv.org/abs/2401.16208
http://dx.doi.org/10.1098/rspa.2021.0806
http://arxiv.org/abs/2103.12000
http://dx.doi.org/10.1103/PhysRevD.49.4481
http://arxiv.org/abs/hep-ph/9312210

	Quantum entanglement and Bell inequality violation at colliders
	Introduction
	The ``quantum'' in quantum field theory
	Spin correlations at colliders
	The story so far

	Entanglement and Bell locality
	Quantum states and observables
	Quantum correlations
	Bell nonlocality
	Qubits
	Qudits, mostly qutrits

	Quantum correlations and relativity

	The toolbox
	A Cartesian basis for bipartite systems at colliders
	Polarization density matrices
	Qubit polarization matrices: Spin-half fermions
	Qubit polarization matrices: Photons
	X states
	Qutrit polarization matrices

	Reconstructing density matrices from events
	Qubits
	Qutrits
	Tensor representation for qutrits


	Qubits: Λ baryons, top quarks, τ leptons and photons
	Entangled Λ baryons
	Entanglement and Bell inequality violation in ηc Λ+ Λ

	Top-quark pair production at the LHC
	Entanglement in tt production
	Bell inequalities
	Monte Carlo simulations and predictions

	τ-lepton pair production at the LHC and SuperKEKB
	Entanglement in ττ production
	Bell inequalities
	Monte Carlo simulations of events

	Higgs boson decays in τ-lepton pairs and two photons
	Entanglement and Bell inequalities in hττ
	Monte Carlo simulations and predictions
	Entanglement and Bell inequalities in hγγ


	Qutrits: massive gauge bosons and vector mesons
	B-meson decays in two vector mesons
	Diboson production at LHC via quark-fusion
	Computing the observables: p p W+W-
	Computing the observables: p p ZZ
	Monte Carlo simulations and predictions

	Higgs boson decays into  WW* and ZZ*
	Computing the observables
	Monte Carlo simulations and predictions

	Vector-boson fusion

	Possible loopholes in testing Bell inequalities at colliders
	Probing new particles and fields with entanglement
	Top quark
	Gluon magnetic-like dipole moment

	τ lepton
	Contact interactions
	CP properties of the coupling to the Higgs boson
	Electromagnetic couplings and compositeness

	Diboson production
	Higgs boson coupling to W"2D and Z

	Other processes and ideas
	Three-body decays
	Post-decay entanglement
	Maximum entanglement
	Minimum entanglement
	Quantum process tomography and beyond-quantum tests

	Outlook
	CRediT authorship contribution statement
	Acknowledgments
	Declaration of competing interest
	Appendix A. Qubits
	Kinematics
	Top-quark pairs
	τ-lepton pairs

	Appendix B. Qutrits
	Spin and Gell-Mann matrices
	The Wigner functions qqqqn"2D and ppppn"2D and the matrix aaaanm
	Polarization density matrix for qqZZ
	Polarization density matrix for hZZ*
	Polarization density matrix for hWW* and hZZ* in presence of anomalous couplings

	References


