
1. Introduction
When computing resources first permitted the multi-week, convection-resolving simulations of radiative-convective 
equilibrium (RCE), an interesting behavior was noted. After an initial period in which deep convection was 
randomly distributed throughout the domain of the cloud resolving model (CRM), a transition occurred to a 
state in which the convection was clustered in one part of the domain, surrounded by dry, clear-sky regions. This 
behavior, termed self-aggregation, was observed to occur in both 2D (Held et al., 1993) and 3D (Tompkins & 
Craig, 1998a) modeling frameworks, and can be interpreted as a phase transition in moist convective systems.

The drier mean atmosphere resulting from the self-aggregation (Bretherton et al., 2005) implies that the occur-
rence and strength of the phenomenon may have implications for tropical climate sensitivity (Mauritsen & 
Stevens,  2015). Indeed, it has been proposed that the aggregation can act as a regulator of tropical climate, 
as the associated drying allows the system to efficiently cool through reduced water vapor absorption (Wing 
et al., 2017). Emanuel et al. (2014) hypothesized that the self-aggregated state could be the preferred equilibrium 
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observations, providing a positive feedback that could lead to aggregation. We show that the simple model 
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we call the aggregation number, Nag, that predicts whether a specific model and experiment setup will result 
in an aggregated or random state. The parameter includes the moistening feedback strength, the horizontal 
moisture transport efficiency, the subsidence timescale, the domain size and spatial resolution. Using large 
ensembles of experiments, we show that the transition between random and aggregated states occurs at a 
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Plain Language Summary Dynamical models of convection including detailed representation 
of microphysics and radiative processes can simulate idealized states of radiative-convective equilibrium. 
Sometimes in these simulations the tropical atmosphere shows a behavior whereby all convective storms 
evolve from a state where they occur randomly in space, to one where they are clustered together, with large 
areas of the simulation domain free from convection. This phenomenon is important to understand due to its 
implications for climate sensitivity, but the problem is that these full-physics models do not agree on when or 
how clustering occurs. We therefore introduce a much simpler stochastic model of the tropical atmosphere, 
whose minimal representation of the physics is nevertheless adequate to reproduce much of the behavior of the 
full-physics models. Convection can aggregate or remain random, depending on the model parameter settings as 
well as the domain size and resolution chosen. The simplicity of the model allows us to derive a dimensionless 
parameter, which we call the aggregation number and incorporates all the model parameters and the domain 
size and resolution. Convection is found to aggregate when this parameter falls below a critical threshold. We 
suggest that this parameter can help to explain the differences between the full-physics models.
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state of tropical convection under warm sea-surface temperatures (SSTs), which implies that global warming 
may lead to the tropics switching to this regime in future climates. However, much uncertainty remains about 
the temperature dependence of self-aggregation, as its occurrence has been detected in models at temperatures 
well below the current tropical SSTs (Abbot, 2014; Holloway & Woolnough, 2016; Wing & Cronin, 2016; Wing 
et al., 2020).

Many studies have used a range of mechanism denial/suppression experiments to demonstrate that a range of 
diabatic feedback processes all contribute to convective aggregation to various degrees. This includes the feed-
back between convection and water vapor, radiative feedbacks with the water vapor field and clouds, and contri-
butions from surface fluxes (Held et al., 1993; Holloway & Woolnough, 2016; Muller & Bony, 2015; Stephens 
et al., 2008; Tompkins, 2001; Tompkins & Craig, 1998a; Wing & Emanuel, 2014; Wing et al., 2017). The role 
of advective processes has also been pointed out by several studies, in particular the development of a radiatively 
driven, shallow circulation transporting moist static energy (MSE) upgradient has been recognized to be peculiar 
of aggregated runs and can help sustain the clustering (Bretherton et al., 2005; Muller & Bony, 2015; Muller 
& Held, 2012). Nonetheless, there is still debate in the literature about which feedback is the most important in 
driving the aggregation. Moreover, most of the feedbacks also change in strength and there is not a single leading 
feedback throughout the evolution of the aggregation process (Wing & Emanuel, 2014), to the point that the 
physical mechanisms that trigger the clustering of convection have been found to differ from those that maintain 
it once established (Muller & Bony, 2015; Muller & Held, 2012). It is also possible that some processes first favor 
and then even oppose (or vice versa) the organization, that is, the feedbacks change in sign between the pre- and 
post-aggregated states (Tompkins & Semie, 2021; Wing & Emanuel, 2014).

Despite the fact that models agree on the general role that the diabatic processes play in driving self-aggregation, 
there is much disparity between models regarding their aggregated states as measured by a range of aggregation 
indices, the sensitivity of these indices to underlying SST, and in some case even whether models aggregate at all 
for a given experimental framework (Wing et al., 2020). This is due to the sensitivity of aggregation to the specif-
ics of the CRM's subgrid parameterizations, such as the details of the microphysical schemes and subgrid-scale 
turbulence and mixing schemes used (Huang & Wu, 2022; Shi & Fan, 2021; Tompkins & Semie,  2017). In 
addition, the aggregation is sensitive to the details of the experimental framework, with aggregation delayed 
by the use of an interactive lower boundary (Bretherton et al., 2005; Hohenegger & Stevens, 2016; Shamekh 
et al., 2020; Tompkins & Semie, 2021) and prevented altogether when small domains and finer grid resolutions 
are employed (Muller & Held, 2012), indicating a lack of numerical convergence regarding aggregation.

To better understand the differences between cloud resolving models, it is beneficial to examine simpler models 
of the atmosphere which may mimic aspects of the full-physics systems. Within this framework, the occurrence 
of self-aggregation has long been regarded as caused by an instability of the spatially uniform RCE state of 
tropical convection (Bretherton et al., 2005; Emanuel et al., 2014; Shi & Fan, 2021). For example, Raymond and 
Zeng (2000) coupled two single column models using the weak temperature gradient (WTG) approximation later 
formalized by Sobel et al. (2001), and showed instabilities representing the onset of aggregation. Single-column 
experiments by Sobel et al. (2007) subsequently demonstrated that, under certain circumstances, two stable equi-
libria can coexist whose occurrence depends on the initial moisture profile. These results provide a direct link to 
CRM findings to the extent that the non-convective equilibrium may correspond to the dry patch of a self-organized 
climate and the moist equilibrium to the deep convective areas. Emanuel et al. (2014) produced a two layer model 
and showed how an instability due to infrared radiation could occur in warmer, moister atmospheres.

In contrast to these column models, other models are spatially explicit in that they represent the horizontal vari-
ability of convection and/or humidity on spatial grids, but simplify the physics of the system to a highly concep-
tualized representation. The first such model was a 2D stochastic representation of cumulus self-aggregation of 
Randall and Huffman (1980). More recently, Böing (2016), Haerter (2019) have introduced 2D horizontal ideal-
ized models of convective cold pools to show how they could contribute to clustering while Yang (2021) used a 
1D linear shallow water model to investigate aggregation.

Some simple, very idealized models have been equipped with stochastic components to make such models 
more relevant for the real tropical atmosphere. In the more general context of tropical convection modeling, 
stochastic approaches have been used for parameterization purposes and to investigate its impacts on atmospheric 
spatiotemporal variability (Khouider, 2014; Khouider et al., 2003, 2010; Lin & Neelin, 2000, 2002; Majda & 
Khouider, 2002; Plant & Craig, 2008). Another recent research strand has focused on the analogy between the 
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onset of strong precipitation as a function of column water vapor in the tropics and the theory of continuous phase 
transitions, and to this aim stochastic models have been developed that are able to capture the salient features of 
tropical convection (Hottovy & Stechmann, 2015a, 2015b; Stechmann & Neelin, 2011). In particular, the model 
by Hottovy and Stechmann (2015b) considers a single prognostic equation for column water vapor supplemented 
with both space- and time-uncorrelated noise (white noise) field. Ahmed and Neelin (2019) further elaborated on 
this model and introduced a more complex formulation in terms of the representation of physics and the addition 
of a temporal red noise to include the variability induced by the absent processes, which is assumed to possess 
a temporal auto-correlation. Their model is capable of closely reproducing the observed statistics of tropical 
precipitation and can also sustain self-aggregation if the radiative feedbacks are strong enough and the amplitude 
of the stochastic forcing is properly reduced. Their moisture budget equation is of the advection-reaction-dif-
fusion type, and it is in fact not uncommon to study the intriguing convective self-organization through simple 
differential problems that can be even more minimal in terms of physical complexity, often consisting of a single 
reaction-diffusion equation (e.g., Li, 2021; Shi & Fan, 2021; Windmiller & Craig, 2019).

In another spatially explicit approach of the reaction-diffusion type, a 2D model with a representation of phys-
ics controlling the vertically integrated tropical water vapor (W) budget was introduced by Craig and Mack (2013) 
(CM13 hereafter) to examine aggregation of convection. The prognostic equation for W consists of three terms. 
Convection locally moistens the atmosphere and the moisture is then advected laterally using a diffusive mixing 
approximation, while the troposphere is subject to subsidence drying. Clustering of convection is driven by a func-
tion that dictates greater convective moistening where the atmosphere is more humid, basing this positive feedback 
on the observed exponential increase of tropical precipitation as a function of W documented in Tropical Rainfall 
Measuring Mission (TRMM) precipitation data (Bretherton et al., 2004; Rushley et al., 2018). The model has three 
physical parameters that describe the efficiency of the horizontal vapor transport, the subsidence drying timescale 
and a parameter that determines the strength of the convective-water vapor feedback. Starting from a homogeneous 
state with random fluctuations, CM13 found that the model reproduces the phenomenon of self-aggregation, termed 
“coarsening,” for most parameter ranges, except for values of the convection-water vapor feedback strength far below 
those reported by Bretherton et al. (2004), Rushley et al. (2018). They described the conditions for instability in terms 
of the subsidence timescale and the feedback parameter, but without considering the impact of the horizontal trans-
port, which we will show is also relevant. The theory also did not incorporate the domain size or resolution and thus 
could not explain the sensitivity to these simulation parameters that have been documented in the full-physics CRMs.

In this paper, we adapt the model of CM13 to investigate convective aggregation onset in CRM-like experiments 
which resolve convection and use spatially limited domains of size 𝐴𝐴 

(

10
2
− 10

3
km

)

 with periodic boundaries. In 
order to do this, the model presented here differs from CM13 in several respects, the key difference regarding the 
spatial resolution employed. The water budget equation of CM13 was integrated on a 40 km climate-model sized grid 
in which convection was treated deterministically. This means that the convective moistening term operated contin-
uously in all locations, since the coarse resolution implied convection could be always occurring somewhere within 
a cell at a rate determined by the cell's humidity. Here we instead use a cloud resolving grid resolution of 𝐴𝐴  (1 km) 
and treat the spatiotemporal occurrence of convective activity as a stochastic binary process, either on or off. Using  a 
weighted random variable, a subset of cells will be selected at each time step to develop new convective activity to 
supplement the existing convection. This stochastic approach with its dependence on grid spacing will allow us to 
incorporate both the model resolution and the simulation domain size into the theory for aggregation onset.

We will demonstrate that the model presented here can produce equilibrium states of both random or aggregated 
convection, depending on the exact parameter settings and experiment set up employed, with the transition to 
organization occurring at model parameter values that are reasonable approximations of the present tropical 
atmosphere. We will use dimensional arguments to derive a dimensionless parameter that is a function of the 
three model processes (horizontal transport, subsidence and convective moistening) as well as the domain size 
and resolution, and successfully predicts which simulation configurations result in convective aggregation.

2. Methods
2.1. Description of the Model

The model presented here is closely related to the model presented in CM13. The model of CM13 introduces a 
prognostic partial differential equation for the vertically integrated water budget W in the tropical troposphere, 
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whose derivation follows from arguments by Yanai et al. (1973). Instead of using W as a prognostic variable, 
we write the model in terms of the column total water relative humidity 𝐴𝐴 𝐴𝐴 = 𝐴𝐴(𝐱𝐱, 𝑡𝑡) , where x denotes the spatial 
coordinates and t is time. R is defined as the sum of the density-weighted, column-integrated ice water (qi), liquid 
water (ql) and water vapor (qv) specific humidities normalized by the column-integrated saturation value (qs),

𝑅𝑅 =
∫ 𝜌𝜌(𝑞𝑞𝑣𝑣 + 𝑞𝑞𝑙𝑙 + 𝑞𝑞𝑖𝑖)𝑑𝑑𝑑𝑑

∫ 𝜌𝜌𝑞𝑞𝑠𝑠𝑑𝑑𝑑𝑑
. (1)

Changes in R primarily reflect those in the vertically integrated water content, owing to the horizontal tempera-
ture gradients being small in the tropical troposphere, the WTG approximation (Sobel et al., 2001). R is dimen-
sionless and less sensitive to temperature than W, which shows exponential dependence on temperature through 
the Clausius-Clapeyron relationship. We also assume time-invariance of temperature, so that the system consists 
of a single prognostic equation for R.

In our model, as in CM13, three processes affect R:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕conv +𝜕𝜕trans +𝜕𝜕sub. (2)

The model assumes that column relative humidity is rapidly increased in locations where deep convection occurs 
(Rconv), these moisture sources are subsequently redistributed horizontally by lateral vapor transport (Rtrans), while 
subsidence (Rsub), that balances the convective mass flux, dries the atmosphere.

Considering the horizontal transport first, we follow CM13 in approximating the lateral transport of water vapor 
by a down-gradient diffusion, Rtrans = K∇ 2R, which is parameterized using a simple fixed value for the diffu-
sivity K. This is an oversimplification as it neglects the enhanced mixing expected near updrafts compared to 
stably stratified subsidence regions (Tompkins & Semie, 2017) and also neglects temporal variations. However, 
Windmiller and Craig (2019) demonstrated that a diffusive treatment of lateral transport can reasonably represent 
the evolution of water vapor at least in the early stages of self-aggregation. The use of a down-gradient mixing 
implies horizontal transport always acts to reduce spatial variance of R and thus opposes aggregation onset.

The treatment of subsidence also follows CM13, as subsidence is modeled as a relaxation process toward a 
completely dry atmosphere, thus Rsub = −R/τsub, with a characteristic timescale τsub set to be uniform throughout 
the domain. In assuming this, we have implicitly hypothesized that the adjustment due to gravity wave propa-
gation from convective events is instantaneous, which is still reasonable since this propagation is fast relative to 
other processes and subsidence is a superposition of drying from all convective events. The relaxation representa-
tion of subsidence implies that this term will also always reduce spatial variance of R, since it ultimately leads to 
a homogeneous dry atmosphere.

The interesting behavior of the model, namely, its ability to represent convection in both random and aggregated 
configurations, derives from the specification of the convective moistening term. The key novelty with respect to 
CM13 is the adoption of a stochastic treatment for the convective moistening term, so that the model lends itself 
to be run at convection resolving resolutions. This is particularly suited to mimic the typical CRM experimental 
setup, with the modified governing equation integrated on a 2D mesh of grid cells using a 𝐴𝐴 Δ𝑥𝑥 ∼ Δ𝑦𝑦 ∼ (1 km) 
horizontal resolution and 𝐴𝐴 𝐴𝐴 = 

(

10
2
− 10

3
km

)

 domain sizes. In some previous idealized modeling studies 
(Hottovy & Stechmann, 2015b), the grid spacing was chosen to be the minimum scale of a single tropical deep 
convective cell, but we will not similarly constrain the resolution here.

Convective moistening is modeled as a fast relaxation with characteristic time τc  ≪  τsub toward Rc, the total 
water relative humidity in convective columns, which exceeds unity due to the detrainment of cloud conden-
sate: 𝐴𝐴 𝐴𝐴conv = 𝑐𝑐(𝐴𝐴𝑐𝑐 −𝐴𝐴)∕𝜏𝜏𝑐𝑐 . This term contains a diagnostic indicator random variable 𝐴𝐴 𝑐𝑐 = 𝑐𝑐(𝐱𝐱, 𝑡𝑡) that 
maps the domain to convecting 𝐴𝐴 (𝑐𝑐(𝐱𝐱, 𝑡𝑡) = 1) and non-convecting (0) locations according to a non-uniform, 
humidity-dependent probability function pc(R(t)). Thus, unlike the horizontal transport and subsidence terms that 
operate continuously in all cells, the moistening only occurs in locations occupied by convective updrafts, where 

𝐴𝐴 𝑐𝑐 = 1 . In all other cells 𝐴𝐴 𝑐𝑐 = 0 and the convective moisture source is zero. The moistening term represents the 
sole stochastic contribution to the humidity budget. The details of the sampling procedure are outlined below. 
Finally, no large-scale dynamical forcing is imposed and the Coriolis effect is excluded. Diurnal and seasonal 
cycle representations are also omitted.
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The continuous form of the budget equation for R is thus given by

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

(𝜕𝜕𝑐𝑐 −𝜕𝜕)

𝜏𝜏𝑐𝑐
𝑐𝑐 +𝐾𝐾∇

2
𝜕𝜕 −

𝜕𝜕

𝜏𝜏sub

, (3)

where the first term on the RHS represents the humidity source associated with convection, the second term 
expresses the lateral moisture transport, while the third term describes the drying action of subsidence. To mimic 
the behavior of the full-physics models, we will solve this equation on a square discretized grid with periodic 
boundary conditions of equal resolution in the x and y directions.

To initialize the model a specific number Nc(t = 0) of cells are chosen at random to be convective, according to a 
weighted probability which will be discussed below. There is a memory for convection, and on subsequent time 
steps, each convective cell has a fixed probability of dying, to give an average convective duration of 30 min. 
Locations are then chosen for initiating new convective events, to ensure that the desired total population size 
Nc(t), imposed as an external constraint, is maintained. We require the time-averaged value of convective popu-

lation size 𝐴𝐴

(

𝑁𝑁𝑐𝑐

)

 , and thus also the convective fraction, be prescribed by a simple mass conservation argument 
proposed by Tompkins and Craig (1998a). Specifically,

𝑁𝑁𝑐𝑐 = 𝑁𝑁xy

|𝑤𝑤sub|

𝑤𝑤𝑐𝑐

= 𝑁𝑁𝑥𝑥𝑥𝑥

ℎ

𝜏𝜏sub𝑤𝑤𝑐𝑐

=

(

𝐿𝐿

Δ𝑥𝑥

)2
ℎ

𝜏𝜏sub𝑤𝑤𝑐𝑐

, (4)

where Nxy is the total number of grid points in the computational domain, wsub and wc indicate the subsidence and 
the convective updraft vertical velocities, respectively, h is the approximate depth of the troposphere. We empha-
size that, as 𝐴𝐴 𝑁𝑁𝑐𝑐  is a function of the domain size, horizontal resolution and imposed subsidence rate, it remains 
invariant throughout simulations.

Rather than imposing a constant convective fraction (i.e., 𝐴𝐴 𝐴𝐴𝑐𝑐(𝑡𝑡) = 𝐴𝐴𝑐𝑐  ), we assume that the temporal variation 
of Nc(t) follows a Poisson distribution with parameter 𝐴𝐴 𝑁𝑁𝑐𝑐  , subjected to a running mean with a window length 
equal to the assumed convective lifetime of 30 min, to ensure that the convective birth-rate on any time step is 
(nearly always) zero or positive. Occasional negative rates are subject to a correction procedure to ensure the 
time-averaged convective population is precisely 𝐴𝐴 𝑁𝑁𝑐𝑐  in all experiments. We note that increasing (decreasing) the 
average convective lifetime would make self-aggregation more (less) likely, but this aspect of the model sensitiv-
ity is not investigated further.

When choosing the locations for new convective cells, all cells in the domain with 𝐴𝐴 𝑐𝑐 = 0 are sampled with-
out replacement (i.e., no two convective cells can occupy the same location), using a non-uniform probability 
distribution pc(R(t)) that depends on the column relative humidity R at current time t. We base the probability 
of a cell being chosen as convective on the observations of the non-linear moisture-precipitation relationship by 
Bretherton et al. (2004) and Rushley et al. (2018) using TRMM data, which gives surface precipitation P increas-
ing exponentially with R:

𝑃𝑃 (𝑅𝑅) = 𝑃𝑃0𝑒𝑒
𝑎𝑎𝑑𝑑𝑅𝑅, (5)

where P0 and ad are constant coefficients quantifying the horizontal mean RCE rain rate and the sensitivity of 
precipitation to column humidity, respectively. This form was also confirmed independently by Holloway and 
Neelin (2010).

An increase in precipitation could result from an increase in the occurrence of convective events and/or an 
increase in precipitation intensity per event. To allow us to use Equation 5 to define the probabilities pc(R), we 
make the assumption that the increase in precipitation rate as a function of R is solely due to the more frequent 
occurrence of convection in moister atmospheres. In other words, we assume that the rainfall intensity per event 
is constant. This assumption, also adopted by previous idealized modeling studies (Hottovy & Stechmann, 2015a; 
Stechmann & Neelin, 2011, 2014), seems to be reasonable according to a recent analysis of (mid-latitude) station 
data by Yano and Manzato  (2022) and neglects the limited contribution of increased humidity to increased 
precipitation efficiency (Narsey et al., 2019). It would be straightforward to include a relationship for this latter 
effect, but while it would change the critical threshold for aggregation onset, it would not affect the conclusions 
of the work and is omitted for simplicity. Making the above assumption means we can apply Equation 5 to give 
the probability of convective occurrence associated with the random sampling as
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𝑝𝑝𝑐𝑐(𝑅𝑅𝑗𝑗𝑗𝑗𝑗) = 𝐶𝐶(𝑡𝑡)𝑒𝑒𝑎𝑎𝑑𝑑𝑅𝑅𝑗𝑗𝑗𝑗𝑗 𝑗 (6)

where the subscripts 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 = 1𝐴 . . . 𝐴
𝐿𝐿

Δ𝑥𝑥
 refer to the spatial grid and the relationship is normalized each timestep by 

C(t) to ensure the sum of probabilities across all convective-free cells is unity. CM13 modified the fit of Bretherton 
et al. (2004) by subtracting unity from the exponential (i.e., Equation 5 would become 𝐴𝐴 𝐴𝐴 (𝑅𝑅) = 𝐴𝐴0

(

𝑒𝑒
𝑎𝑎𝑑𝑑𝑅𝑅 − 1

)

 ) to 
give the limit of zero precipitation when R = 0. This assumption introduces a second dry equilibrium state as 
convection can not remoisten a completely dry domain where R = 0 everywhere. We instead retain the original 
form of Bretherton et al.  (2004) to allow our model to trigger convection in dry columns, and our closure of 
specifying 𝐴𝐴 𝑁𝑁𝑐𝑐  thus differs from that adopted by CM13, who instead constrained the domain-mean accumulated 
precipitation by assuming that the latent heat release balances the radiative cooling above the boundary layer. In 
practice, the difference to CM13 in the P-R relationship has very limited effect at the values of R found in the 
domain.

Through Equation 6 the model incorporates the observed correlation between convection and water vapor. The 
convective term, unlike the transport and subsidence terms, can act to increase or decrease the spatial variance 
of R, depending on the spatial distribution of R itself and the choice of convective locations. If convection occurs 
in the moistest regions of the domain the impact is to increase spatial variance, possibly leading to aggregation. 
Thus the model will be sensitive to ad, which describes the correlation between convection and R. CRM studies 
associate this correlation with the moisture-memory feedback (Muller & Bony, 2015), which has been shown to 
be key in organizing convection (Grabowski & Moncrieff, 2004; Tompkins, 2001). Deep convection moistens its 
local environment, while enhanced humidity encourages persistence of convection owing to reduced cooling due 
to entrainment mixing, thereby yielding stronger convection (Derbyshire et al., 2004). In addition, CRM studies 
have also acknowledged the important role of the radiative and surface flux contribution to the localization of 
convection (Stephens et al., 2008; Tompkins & Craig, 1998a; Wing & Emanuel, 2014). This primarily occurs 
through enhanced longwave heating and shortwave absorption in the moist areas due to the high infrared opacity 
and the presence of deep convective cloudiness and through increased fluxes due to the strengthening of the 
storm-induced gustiness. These effects jointly act to amplify the positive MSE anomalies in the moist patches. 
In this perspective, the parameter ad can be thought of as representing the net positive feedback of all diabatic 
processes driving aggregation.

In summary, the net effect of convection as represented by the model is to locally moisten around the sites of 
convection through column saturation and detrainment of cloud condensate and to dry the far-field through 
compensating subsidence. Note that this treatment is more simplistic than the stochastic model of Ahmed and 
Neelin (2019) who modeled microphysics processes directly, and also included a treatment of horizontal vapor 
divergence and large-scale dynamics in addition to local diffusive mixing.

2.2. Numerical Solution

Adequate numerical treatment is needed to ensure the results are not time step sensitive. We use an implicit 
solution technique to ensure stability. The use of operator splitting schemes (e.g., Hundsdorfer & Verwer, 2007) 
was invoked, with the RHS of Equation 3 additively decomposed into two terms (the first including subsidence 
and horizontal transport, the second only convection), and the adoption of a second-order accurate Strang-type 
strategy (Strang, 1968). To solve the differential problem corresponding to the first term of the decomposition, 
we employed second-order finite difference approximations in space and we developed a modified version of 
the classical Peaceman-Rachford Alternating Direction Implicit method in time (Peaceman & Rachford, 1955), 
whereas the analytical solution was derived for the problem with the convection term solely. A full description of 
the numerical solver and a number of idealized experiments to demonstrate numerical robustness is contained in 
the Supporting Information S1.

2.3. Choice of the Model Parameters, Constants and Setup

In the paper large ensembles of several thousand simulations are carried out in order to find the combination 
of model parameters and simulation configuration that lead to random or aggregated convection. All exper-
iments are run for at least 120 days (with some extended to 180 days), a period long enough such that there 
is a long-term steady state of variables indicating equilibrium has been achieved. As a metric of clustering or 
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random convection we mostly use the domain spatial standard deviation of 
the column relative humidity R averaged over the last 20 days of simulation 

𝐴𝐴
(

𝜎𝜎𝑅𝑅𝑅20

)

 . Low values of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 indicate random convection while high values 
indicate convection is aggregated. In addition we also use the Iorg parameter 
of organization described in the appendix of Tompkins and Semie (2017), a 
more quantitative metric of aggregation as it allows one to classify scenes 
as random or aggregated (or even regular, where inter-convective spacing is 
larger than expected from a random distribution).

Details of these ensembles with the default values and ranges used for each 
of the parameters are reviewed below and summarized in Table  1. The 
subsidence timescale τsub is derived assuming that in subsidence areas, in 
the absence of large-scale convergence, subsidence heating approximately 
balances the net radiative cooling, Qrad:

𝜏𝜏sub =

ℎ
d𝜃𝜃

d𝑧𝑧

𝑒𝑒𝑒𝑒rad

, (7)

which, inserting characteristic values for the depth of the free troposphere (h  ≈  10  km), the mean environ-
mental lapse rate of potential temperature 𝐴𝐴

d𝜃𝜃

d𝑧𝑧
≈ 6.5 K km

−1 and the vertically integrated radiative cooling rate 
Qrad ≈ 1.5 K day −1, gives τsub = 16 days, with the ensembles spanning 5–40 days. We note that this timescale is 
much longer than that used in CM13 of 2 days.

Analysis of TRMM data by Rushley et al. (2018) gave the convection sensitivity factor ad values of 14.72 and 
16.12, depending on the TRMM retrieval version, and our ensembles span values of 10–30. The default values of 
ad used here refer to the daily-mean precipitation-R relationships, but the same exponential law Equation 5 applies 
to the monthly-mean relationship, with a coefficient of 11.4 that was estimated by Bretherton et al. (2004) and 
employed by CM13 in their simulations. We note that this latter value is also included in our experimentation 
(see Table 1).

A reasonable estimate for the horizontal moisture transport efficiency K can be calculated by defining it as a 
function of characteristic length and velocity scales, ℓ0 and v0, associated with convective motions:

𝐾𝐾 = 𝜖𝜖𝓁𝓁0𝑣𝑣0, (8)

where ϵ is a eddy-size related coefficient set to ϵ = 0.1. Typical scales are the free tropospheric depth, ℓ0 = 10 km, 
and v0 = wc = 10 m s −1 (updraft velocity observed in convective cores), implying that reliable values for K are on 
the order of 10 4 m 2 s −1, but our experiments evaluate values from 10 3 to 4 × 10 4 m 2 s −1.

The convective moistening characteristic time τc is set to a very fast timescale of 1 min to lead to almost instanta-
neous saturation. We did find some sensitivity of the model to the choice of τc but using slower adjustment times 
did not change the conclusions derived from the model. We set Rc accounting for column cloud water detrainment 
using estimates from CRM simulations to give Rc = 1.05.

To keep the total simulation size tractable while exploring the parameter space, we constructed series of ensem-
bles of 𝐴𝐴 (1000) members that investigate two parameters while keeping others fixed. Two ensembles of exper-
iments using a domain size L = 300 km and resolution Δx = 2 km cover combinations of τsub and K (results 
shown in Figure 10), and K and ad (Figure 11). An additional ensemble of experiments employed a limited range 
of fixed values for the three model key parameters, combined with a range of domain sizes (L = 200, 300, 400, 
1,000 km, Figure 4) and spatial resolutions (Δx = 0.5, 1, 1.5, 2, 4 km, Figure 6), see also Figures S6 and S7 in 
Supporting Information S1. To construct the final analysis exploring the five-parameter space (K, τsub, ad, L, Δx), 
a sub-sampled ensemble of 1,160 members was used.

Simulations are initialized with R field assumed to be completely horizontally homogeneous with R  =  0.8 
everywhere. There is sensitivity to the initial conditions with the model exhibiting a weak hysteresis, but this 
is not investigated here. No perturbations are imposed on the initial R distribution since stochasticity is already 
accounted for in the model through the convective location function. Periodic lateral boundary conditions are 
applied.

Table 1 
Parameters (Default and Ranges) Used in the Simulations

Default value Range

K (m 2 s −1) 10 4 10 3 − 4 × 10 4

τsub (days) 16 5–40

ad 14.72 10–30

16.12

L (km) 300 200–1,000

Δx (km) 2 0.5–4
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3. Results
Before analyzing the large ensembles it is useful to demonstrate how the 
model can produce both random and aggregated convective states depending 
on the parameter settings chosen. We start by showing two experiments, one 
with the default values of K, ad, and τsub (CTRL, see Table 2) and the second 
with a reduced value of the horizontal transport efficiency (0.5K). Five 
time slice panels show the evolution of the horizontal R field (Figure 1 and 
Movie S1). In the default experiment (upper panels), the convective sources 
remain randomly distributed throughout the domain, even on day 180, and 
the domain-mean R remains moist. In contrast, halving the strength of the 
lateral transport of water vapor (lower panels) causes the model to evolve 

toward a dramatically different state. After an initial period of random convection, the variability of R in the 
domain increases during the transition toward a spatially organized atmospheric state, characterized by the emer-
gence of a single, almost circular, intensely convecting area surrounded by a dry environment. Close examination 
shows many examples of localized moist cells caused by the stochastic convective selection in those locations. 
Once aggregation has established, the dry patch is very rarely disrupted by moistening processes from local 
sources, but it is not guaranteed that deep convective events necessarily trigger in the wettest cells and occasion-
ally drier cells are chosen. This behavior would be missing from a deterministic formulation of the model. These 
experiments highlight the ability of the simple model to mimic both random and aggregated equilibrium states, 
with results resembling those yielded by more complex, full-physics CRMs, at least from a qualitative point of 
view (e.g., Bretherton et al., 2005; Muller & Held, 2012).

Also in accordance with the full-physics CRMs (e.g., Bretherton et al., 2005; Wing & Emanuel, 2014), the mean 
state is much drier in the aggregated simulation relative to the random case, and column relative humidity has 
a higher spatial variability, clear from the temporal evolution of the probability density function (PDF) of the 
spatial moisture field (Figure 2). In the control experiment with higher horizontal moisture transport efficiency, 
the PDF stays essentially unimodal throughout the simulation, although a second minor mode corresponding 
to saturated cells is in evidence and is directly due to the externally imposed constraint (Equation  4) on the 
number Nc of convectively active columns per time step.  The primary unimodal feature of the PDF is to be 
ascribed to larger diffusive effects (combined with relatively slow drying tendencies), which prevent the domain 
from developing some drier-than-average background region surrounding moist patches. A transition toward a 
broader distribution is apparent in the lower diffusion experiment which undergoes aggregation, since the action 

Table 2 
Summary of the Simulations of Figure 3

Simulation name

Parameters

K (m 2 s −1) τsub (days) ad

CTRL 10 4 16 14.72

0.5K 5 × 10 3 16 14.72

τsub10 10 4 10 14.72

ad16.12 10 4 16 16.12

Figure 1. Evolution of the spatial column relative humidity field R (color shading and contours, with intervals of 0.1) for simulations with K = 10 4 m 2 s −1 (a–e), 
K = 5 × 10 3 m 2 s −1 (f–j), τsub = 16 days and ad = 14.72. The domain size and the grid resolution are kept at their default values, L = 300 km and Δx = 2 km.
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of moistening processes is able to overcome the counter-gradient smoothing by subsidence and diffusion. As 
self-aggregation progresses and the dry and humid regions are increasingly separated, a bimodal PDF develops 
reminiscent of tropical observations (Mapes et al., 2018; Zhang et al., 2003). The dry mode here is linked to the 
long diffusive tail of the distribution and the moist mode is related to detrainment area, possibly exaggerated by 

Figure 2. Time evolution of the absolute frequency of occurrence of R values for the simulations reported in Figure 1, 
namely (a) non-aggregating case with K = 10 4 m 2 s −1, and (b) aggregating case with K = 5 × 10 3 m 2 s −1. The other model 
settings are τsub = 16 days and ad = 14.72.

Figure 3. Temporal evolution of the spatial R distribution, in terms of domain mean (upper panel) and standard deviation 
(middle panel), and the organization index Iorg (lower panel) for the simulations CTRL (blue line), 0.5K (green line), τsub10 
(orange line), ad16.12 (red line). The dashed line in the Iorg plot marks Iorg = 0.5, which is the value for a random distribution 
of convective cells. For details on the experimental setup, refer to Table 2.
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the use of a single detrainment value. This behavior is almost identical to that shown in coarser resolution deter-
ministic experiments of CM13.

Time series of R show the impact of aggregation on the mean humidity field (Figure 3) in four simulations includ-
ing the control run (CTRL) and three perturbation experiments, which alter the horizontal transport efficiency 
(0.5K), the subsidence rate (τsub10) or the convective-humidity feedback strength (ad16.12) in turn. A brief over-
view of these runs is reported in Table 2. These simulations show that it is possible to generate self-aggregation 
in the model by reducing the diffusive humidity transport, increasing the subsidence rate or strengthening the 
convective-moisture feedback. It is interesting to note that the two ad values corresponding to different TRMM 
retrieval versions can produce either random or aggregated states, all else being kept fixed. The existence of 
two characteristic timescales is apparent, the first associated with the initial fast adjustment on the convective 
timescale, and the second representing the time of adjustment to equilibrium related to the overturning times-
cale determined by the subsidence rate. This is also in agreement with previous CRM experiments using fixed 
surface temperatures (Cohen & Craig, 2004; Tompkins & Craig, 1998b) although Cronin and Emanuel (2013) 
highlight that longer timescales are possible if an interactive lower boundary is used. After the equilibrium state is 
reached,  temporal fluctuations in the field are limited to shorter timescale variability associated with the relative 
position of convective events. The temporal variability is restrained by the condition that the convective popula-
tion variation in time is limited (see Methods). The non-aggregated case, conversely, after the very first transient 
phase where initial convective events increase the humidity variance, reaches an equilibrium rapidly with a low 
spatial variance associated with the domain that is moistened throughout by local convective sources. The time 
evolution of the organization index Iorg introduced by Tompkins and Semie (2017) shows that the convection 
remains random in the control run, with a time-average value of 0.5, while in the three perturbation experiments 
it increases toward values exceeding 0.9, indicating highly aggregated convection.

3.1. Sensitivity to Domain Size

CRM simulations show that self-aggregation is facilitated by large domains, with abrupt transition to clustered 
convection taking place when the domain size L exceeds a certain threshold, typically L ≳ 200–300 km (Bretherton 
et al., 2005; Jeevanjee & Romps, 2013; Muller & Bony, 2015; Muller & Held, 2012; Patrizio & Randall, 2019). 
Li (2021) provided an analytical argument to explain the domain-size dependence of self-aggregation within the 
framework of a conceptual, two-dimensional, stochastic reaction-diffusion model for the column moist static 
energy (CMSE) budget. In particular, such a dependence is found to result from the competing influences of 
vertical and horizontal advective transports on the CMSE anomalies.

Here too the occurrence of aggregated states is found to be sensitive to the domain size (Figure  4; another 
example is shown in Movie S2). Convection in the smallest domain of size L = 200 km remains in a random 
state for these parameter choices (see caption). For L = 300 km, there is no aggregation, but some variance of 
moisture over the scale of the domain is apparent, and the moist patch is elongated. This simulation was extended 
to 150 days which confirmed that this state is a quasi-stationary equilibrium. Extending the domain to 400 km 
results in aggregation with a single center.

Figure 4. Plan views of the spatial field of column relative humidity R (shading and contours, interval 0.2) after 120 days of simulated time for runs with K = 10 4 
m 2 s −1, τsub = 15 days, ad = 14.72 and domain sizes L = 200 km (a), 300 km (b), 400 km (c), 1,000 km (d).
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The largest domain with L = 1,000 km exhibits an interesting behavior in that the convection originally organizes 
into two distinct convective clusters that last until around day 20, at which point the larger of the two centers 
starts to dominate and the first center dies out (Figure 5). This behavior is reminiscent of the 2D simulations of 
Held et al. (1993) which show two competing centers of convection for a period of time before collapsing to a 
single convective center, although this was on smaller domains. In our simple diffusive model, we hypothesize 
that the convection will always collapse to a single center due to the fact that the subsidence term is treated as 
a uniform relaxation toward zero R and does not account for the location of convection events, in contrast to 
the transport term which diffuses moisture out from the centers. In the real atmosphere, the subsidence occurs 
through the propagation of gravity waves from the convective centers, and thus the aggregated convective clus ters 
would be separated by a Rossby deformation radius determined by the Coriolis effect off the equator and by 
diffusive dissipation, which would give a cluster spacing on 𝐴𝐴  (1,000  km) scales on the equator (Bretherton 
& Smolarkiewicz, 1989). Wing and Cronin (2016) offered an alternative mechanism for both the cluster sepa-
ration distance and the spatial scale of aggregation based on boundary layer recovery through surface fluxes, 
which would also be a physical process missing in this simple model, that does not account for surface fluxes. 
Yang (2018) proposed that the characteristic horizontal scale of self-aggregation is determined by the boundary 
layer height and the density variations between moist and dry regions in the boundary layer, the latter owing 
to the virtual effect of water vapor. Additionally Beucler and Cronin (2019) recently used a new diagnostic to 
interpret the role of different diabatic forcings on the spatial scale of aggregation. In any case it remains that the 
formulation of the simple model presented here will always lead eventually to a single convective center in the 
cases where aggregation occurs.

3.2. Sensitivity to Horizontal Resolution

Aggregation in CRM studies is also resolution sensitive, with coarser grids favoring the occurrence of clus-
tered convection. For instance, Muller and Held (2012) found that, for spacings Δx < 2 km, self-aggregation 

Figure 5. Horizontal maps of R (shading and contours every 0.1) after 7 (a), 13 (b) and 19 (c) days in the experiment with 
domain size L = 1,000 km.

Figure 6. Snapshots of the R field (shading and contours, interval of 0.2) after 120 days of simulation in the case K = 5 × 10 3 m 2 s −1, τsub = 10 days, ad = 14.72, with 
L = 300 km, Δx = 4 km (a), 2 km (b), 1 km (c), 500 m (d).
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never develops when starting from homogeneous initial conditions (but, when an aggregated initial profile is 
prescribed, it manages to persist even at resolutions as fine as Δx = 500 m if the domain size is sufficiently large, 
namely L ≳ 200 km). Similar results are found here, examining the atmospheric states at day 120 for simulations 
with the numerical grid successively refined (halved), with parameters K, τsub, ad, and L invariant (Figure 6 and 
Movie S3). For a grid resolution of 4 and 2 km, the convection aggregates into a single center. Refining the 
resolution to 1 km, the aggregated state takes on the form of an elongated band, instead of the usual circular 
shape, spanning one horizontal dimension entirely, while using a resolution of 500 m leads to random convection 
that does not undergo aggregation at all.

Holloway and Woolnough  (2016) provided a geometric argument to explain the preferred shape taken by 
self-aggregated convection in doubly-periodic RCE simulations, suggesting the structure of wet patches is such as 
to minimize their perimeter-to-area ratio, because lateral mixing acts to reduce any horizontal moisture gradient. 
In particular, if the area Acl of the cluster is 𝐴𝐴 𝐴𝐴cl > 𝐴𝐴cl,crit ≡

𝐿𝐿
2

𝜋𝜋
 (i.e., the moist patch occupies roughly more than 

one third of the computational domain), then a band-like arrangement is likely to appear, as observed in the first 
3-dimensional simulations of RCE by Tompkins and Craig (1998a), which only used a 100 × 100 km domain. In 
extremely large domain experiments, however, Patrizio and Randall (2019) actually show a transition from circular 
clusters toward elongated bands in the largest 𝐴𝐴  (6,000 km) domain experiments. For smaller ratios, and indeed over 
an infinite plane, the preferred form would be a circle in all cases, as in the seminal study of Bretherton et al. (2005).

For Δx = 2 km and Δx = 4 km, the time series of the spatial R mean show contrasting behavior at the simulation 
outset, with the initial adjustment in the R-mean profile completely absent in the 4 km case (Figure 7, top panel), 
as the initial phase involves the development of larger, but fewer, convection cells, while most columns start to be 
progressively dried by the subsidence. This prevents R from increasing at the beginning of the 4 km simulation 
when starting from these relatively moist initial conditions.

The 1 km simulation was repeated three times to ascertain any eventual, additional stochastic contribution to 
the final self-aggregated shape and indeed the results of the multi-run ensemble simulation, shown in Figure 7 

Figure 7. Time evolution of spatial R mean and standard deviation for the simulations presented in Figure 6 (solid lines) and 
a 4-member ensemble performed in the case Δx = 1 km (dashed lines).
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(orange solid line and dashed lines), manifest various evolutions. For the same parameter set and experimental 
design, the simulation may end up either with the usual spatial pattern typical of convective clustering, marked 
by a pronounced reduction in domain-mean R and a slightly lower variance, or with convective centers being 
aligned in a band. This indicates proximity to a critical cluster area Acl, crit beyond which the wet spot arranges 
itself in a banded structure, and whether or not the corresponding radius is reached depends on the large stochastic 
effects present in the modeled system. The temporal evolution of one run (green dashed line in Figure 7) even 
shows an initial banded equilibrium state, which transitions to a circular cluster around day 40–45. Wing and 
Emanuel (2014) found similar behavior in their CRM simulations, pointing out that, in some runs, convection 
was confined to a single band maintained for tens of days before collapsing into a circular clump, the evolution 
of the spatial orientation of the cluster being thus attributed to the largely stochastic nature of self-aggregation. 
For Δx = 500 m, the profile is extraordinarily moist from the very beginning and so it persists throughout the run 
(Figures 6d and 7, blue line).

4. A Dimensionless Parameter to Predict Aggregation Onset
In the previous section it was shown that the occurrence of aggregation is sensitive to the settings of the three 
model parameters, K, τsub, and ad, representing the strength of the horizontal transport, subsidence and the convec-
tive indicator function, respectively, as well as the domain size L and resolution Δx. Here we wish to derive a 
method to predict when aggregation will occur as a function of these five parameters. As a first step, we will use 
dimensional analysis to empirically derive a dimensionless quantity that predicts the onset of aggregation. We 
discuss the five parameters in turn to understand their impact on aggregation, and then construct the dimension-
less parameter.

4.1. Sensitivity to K and τsub

The occurrence of the self-aggregated state is sensitive to the value of the horizontal moisture transport efficiency 
and subsidence strength. In this model, convection locally moistens its environment while drying the far-field 
instantaneously through subsidence. Thus the onset of aggregation will depend on how quickly moisture sources 
are communicated relative to the subsidence drying. Stronger diffusive transport reduces the spatial variance 
of humidity and makes aggregation less likely. Indeed, in the limit of infinite diffusion, convective moisture 
sources would be communicated instantaneously throughout the domain resulting in random convection. Like-
wise, stronger subsidence drying would act to promote aggregation. The competing influences of subsidence and 
horizontal transport are fundamental.

On dimensional grounds, the subsidence timescale (units s) and the horizontal transport efficiency (m 2 s −1) can 
be combined together to give an area of influence (Kτsub) on the moisture field of an individual convective cell. 
Such a quantity (or related ones) would naturally appear in the context of reaction-diffusion problems. For exam-
ple, the stationary solution 𝐴𝐴 𝑅𝑅(𝑥𝑥) of the one-dimensional heat equation with linear sink term

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐾𝐾

𝜕𝜕
2
𝜕𝜕

𝜕𝜕𝜕𝜕2
−

𝜕𝜕

𝜏𝜏sub

, 𝜕𝜕 𝑥 0, 𝜕𝜕 𝑥 0, (9)

with conditions R(0, t) = Rc and limx→∞R(x, t) = 0, is given by

𝑅𝑅(𝑥𝑥) = 𝑅𝑅𝑐𝑐𝑒𝑒
−

𝑥𝑥
√

𝐾𝐾𝐾𝐾sub , (10)

which shows that 𝐴𝐴 (𝐾𝐾𝐾𝐾sub)

1

2 is the e-folding length scale of the steady-state R in this simple problem. Therefore, the 
area of influence can be intuitively viewed as a measure of the potential (rather than the actual, due to the finite 
cloud lifetime) maximum area impacted by an individual deep convective event.

As highlighted by the sensitivity studies (Figure 4 and Movie S2), when the diffusion-based communication of 
moisture from the sources acts over scales comparable to the domain size, aggregation may be easily prevented. 
This is consistent with results from previous literature. The stability analyses conducted by Shi and Fan (2021) 
proved that, if the diffusive tendencies are strong, large-scale humidity perturbations would be required to desta-
bilize the spatially homogeneous state of tropical convection, up to completely inhibiting the clustering. By means 
of a conceptual model, Li (2021) analytically determined a threshold domain size below which the homogenizing 
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effect of diffusive transport dominates, thereby preventing incipient CMSE anomalies from amplifying and lead-
ing to self-aggregation. Thus one could scale Kτsub by the area of the computational domain, L 2. This would 
provide a dimensionless quantity, but does not yet account for the dependence of the resolution or the convective 
sensitivity to the moisture field, which will be considered below.

Moreover, the sensitivity of the occurrence of self-organization to τsub is more subtle, because the mean number 
𝐴𝐴 𝑁𝑁𝑐𝑐  of convective points active at each time step introduces an additional dependence on the subsidence charac-

teristic time through Equation 4. Since the number of updraft centers is inversely proportional to the subsidence 
timescale τsub, stronger subsidence, while reducing the area of influence Kτsub, also increases the density of 
convective events within the domain, reducing the mean inter-convective spacing. This means that experiments 
with different values of K and τsub, but the same product Kτsub, may exhibit different behavior; experiments with 
larger K and smaller τsub, and hence higher number of convective cells, are more likely not to organize.

These arguments and the evolution shown in Movie S4 undoubtedly motivate the necessity of including Nc in 
the dimensional analysis, either explicitly or implicitly. It seems reasonable to represent the contribution from Nc 
in terms of the distribution of spatial distances between convective towers, recalling that convection is initially 
randomly distributed prior to aggregation (or remains random in non-aggregating experiments).

4.2. Sensitivity to Resolution and Domain Size

Regarding first the domain-size sensitivity, it is intuitive that small domains may prevent aggregation especially 
when the moisture diffusion starts to act over scales on the order of the domain size, as already anticipated. 
Conversely, for large domains, even though the number of grid points occupied by convection increases accord-
ingly as specified by the argument Equation  4, the maximum inter-convective distance will also increase as 
expected with a Poisson process. In the construction of the dimensionless parameter therefore, we shall heuristi-
cally argue that the key parameter is a measure of the expected maximum distance from the nearest convection, 
that is, a measure of the largest convective-free area, which will determine the magnitude of the spatial humid-
ity variance in the pre-aggregated state. Larger distances from convection imply greater dry perturbations and 
humidity variance in the domain, more likely to lead to aggregation through the indicator random variable. The 
choice of this distance metric as a relevant one to the clustering onset is motivated by the evolution observed in 
the simple model (cf. Figure 1 and Movie S1) and also by the findings from previous literature, which, unless 
very few exceptions (Holloway & Woolnough, 2016), documents the formation, expansion and amplification of 
a dry patch with suppressed convection to be crucial in initiating the aggregation (e.g., Coppin & Bony, 2015; 
Wing & Emanuel, 2014).

Considering the resolution dependence, while the prominent sensitivity of self-aggregation to the horizon-
tal resolution might be attributed to numerical artifacts, for instance the possibility of lateral mixing being 
resolution-dependent, grid refinement studies conducted to evaluate the spatial convergence properties of the 
numerical solver excluded this eventuality (cf. Figure S2 in Supporting Information S1). Instead, the resolu-
tion sensitivity here is a direct result of the number of convective sources. The scaling closure Equation 4 only 
constrains the cumulus fraction and not the number nor the size of convective points, and, as the resolution is 
refined, the convective fraction is the result of more convective centers. Put another way, with a resolution of 
2 km, the minimum convective size is 4 km 2, but if Δx is halved, that same area now consists of four separate 
convective towers of 1 km 2 in different locations, since the model does not impose a horizontal scale on the 
updraft. This reduces the maximum distance between the convective cores and makes convective aggregation less 
likely. If a fixed area were set for a single convective updraft core, in order to avoid that the convection centers 
could become unrealistically small when moving to finer resolution below 𝐴𝐴  (1 km), we predict that no sensitivity 
to horizontal resolution would be found.

Although this explanation for resolution sensitivity seems simplistic, it is supported by recent experiments using 
an ensemble of CRM simulations of a mesoscale convective system at different resolutions (Prein et al., 2021). 
The study shows that the updraft dimension decreases monotonically with decreasing resolution and has still 
not converged even when the horizontal grid size reaches 250 m. Additionally, Sueki et al. (2019) show that the 
nearest neighbor distance between updraft cores reduces with finer resolutions and no convergence is reached 
at 200 m, directly supporting the hypothesized mechanism for resolution sensitivity represented in the simple 
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stochastic model. Note that some stochastic approaches instead impose a specific fixed scale for convective events 
and would not exhibit this facet of resolution sensitivity (Fu & O'Neill, 2021; Showman, 2007; Yang, 2021).

4.3. A Distance Scaling in a Discrete Domain

The above findings further motivate the definition of a relevant distance for aggregation, which will account for 
the contribution from Nc and will also allow the incorporation of the resolution and domain size into the theory. 
In particular, in the discussion of the resolution and domain size dependence, it was heuristically argued that 
a relevant distance would be one that describes the largest distance from convection within the domain, which 
would determine the magnitude of the driest perturbation.

If the initial R distribution is horizontally homogeneous, as prescribed in all the experiments presented in this 
work, the convection locations are random at the simulation outset. In an infinite domain with a homogene-
ous planar Poisson point process, the cumulative distribution function of nearest neighbor distances between 
points  is  given by the Weibull distribution (Stoyan et al., 1987; Weger et al., 1992) as

NNCDF = 1 − 𝑒𝑒
−𝜆𝜆𝜆𝜆𝜆𝜆

2 (11)

where λ is the density of the points (convective cells) and r is a radius. However, this approach is not appropriate 
here, as we need to consider the finite nature of the periodic domain, and treat convection as a binary occurrence 
on a discrete grid, that is, we consider cells to be either convective or non-convective.

During the entire pre-onset phase, the positions of the updraft centers can still be regarded as the restriction of a 
Poisson process to a compact set, the computational domain, and it is well known (e.g., Stoyan et al., 1987; Illian 
et al., 2008) that the resulting process obeys a binomial law. For a finite domain consisting of discrete cells we 
consider the probability, pclr(n, Nc), of not finding any of Nc convective events within a square window of size 
nΔx (consisting of n 2 grid boxes), centered at an arbitrary non-convective cell in the domain. This is termed void 
probability and can be approximated by

𝑝𝑝clr(𝑛𝑛𝑛𝑛𝑛𝑐𝑐) ≈

(

1 −

(

𝑛𝑛Δ𝑥𝑥

𝐿𝐿

)2
)𝑛𝑛𝑐𝑐

𝑛 𝑛𝑛 ∈ ℕ𝑛 𝑛𝑛 ≤
𝐿𝐿

Δ𝑥𝑥
𝑛 (12)

with 𝐴𝐴 ℕ denoting the set of non-negative integers. If the base point has instead been chosen as convective, the void 
probabilities would simply be pclr(n, Nc − 1). Owing to the imposed periodicity, no corrections are required if 
the central cell is in proximity to the edges of the domain. This relationship is an approximation since we should 
account for the fact that the sampling of convective grid boxes is without replacement (i.e., we should consider 

𝐴𝐴
(

𝑛𝑛
2
− 1

)

(

Δ𝑥𝑥

𝐿𝐿

)2

 in place of 𝐴𝐴 𝐴𝐴
2

(

Δ𝑥𝑥

𝐿𝐿

)2

 in the previous formula), but this is negligible if the convective fraction is 

small (i.e., Nc ≪ Nxy = (L/Δx) 2) as is the case here.

We consider two related metrics of the spacing of convective cells relevant to the onset of aggregation, 
which are illustrated in a schematic (Figure  8). The first distance metric is the size dmax,clr of the largest 
convective-free box, which would describe the greatest dry perturbation. The second metric instead consid-
ers a measure of the largest inter-convection nearest neighbor distance, specifically the dimension dmax,nn of 
the maximum box surrounding a convective cell that is devoid of further convective sources. The behav-
ior of these two length scales is anti-correlated over the long term as convection starts to aggregate, since 
the size of the maximum convective-free region grows with the onset of aggregation, while the maximum 
inter-convective nearest neighbor spacing reduces, as shown comparing the left and right panels of Figure 8. 
This is also confirmed diagnosing the two quantities directly from the model simulations in Figure S4 in 
Supporting Information S1.

Using Equation 12, we can derive the distribution of dmax,nn, by considering the central point of the search box to 
be each of the convective cells in turn. The probability that the maximum size of convection-free box centered at 
one of the convective towers is less than nΔx is thus

𝑝𝑝(𝑑𝑑max,nn ≤ 𝑛𝑛Δ𝑥𝑥) ≈ (1 − 𝑝𝑝clr(𝑛𝑛,𝑛𝑛𝑐𝑐 − 1))
𝑛𝑛𝑐𝑐 , 𝑛𝑛 ∈ ℕ, 𝑛𝑛 ≤

𝐿𝐿

Δ𝑥𝑥
. (13)

 19422466, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003231 by C
ochraneItalia, W

iley O
nline L

ibrary on [16/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

BIAGIOLI AND TOMPKINS

10.1029/2022MS003231

16 of 23

Equation  13 defines a cumulative distribution function, from which it is straightforward to calculate the 
percentiles and the expected value, 𝐴𝐴 𝑑𝑑max,nn , which represents, for a given density of randomly distributed 
convective sources, the average dimension of the maximum box surrounding any tower that is free from 
further events:

𝑑𝑑max,nn =

𝐿𝐿

Δ𝑥𝑥
∑

𝑖𝑖=1

𝑖𝑖Δ𝑥𝑥

⎛

⎜

⎜

⎝

(

1 −

(

1 −
𝑖𝑖
2
Δ𝑥𝑥

2

𝐿𝐿2

)𝑁𝑁𝑐𝑐−1
)𝑁𝑁𝑐𝑐

−

(

1 −

(

1 −
(𝑖𝑖 − 1)

2
Δ𝑥𝑥

2

𝐿𝐿2

)𝑁𝑁𝑐𝑐−1
)𝑁𝑁𝑐𝑐

⎞

⎟

⎟

⎠

. (14)

In the Supporting Information S1, we present the result of 70,000 artificially generated random convective scenes 
with varying Nc in order to show that the theoretical estimate for 𝐴𝐴 𝑑𝑑max,nn presented in Equation 14 fits the numer-
ical data perfectly (Figure S5 in Supporting Information S1).

One might consider the metric dmax,clr to be a more relevant metric related to the spatial variance of water vapor 
in the initial random convection phase, and thus to aggregation onset. An approximation for this metric is 
given  by

𝑝𝑝(𝑑𝑑max,clr ≤ 𝑛𝑛Δ𝑥𝑥) ≈ (1 − 𝑝𝑝clr(𝑛𝑛,𝑛𝑛𝑐𝑐))
𝑛𝑛𝑥𝑥𝑥𝑥−𝑛𝑛𝑐𝑐 , 𝑛𝑛 ∈ ℕ, 𝑛𝑛 ≤

𝐿𝐿

Δ𝑥𝑥
. (15)

However, this analytical formula somewhat over-estimates the size of the maximum clear-sky square when tested 
with numerical data as it considers the test at each cell in the domain to be independent, which is not the case. The 
trials can instead be safely assumed independent in the derivation of Equation 13 due to the constraint Nc ≪ Nxy. 
Additionally, the fact that Nxy is very large can lead to precision issues in the calculation of Equation 15. In any 
case, during the very early phase (first day) of the simulations, when convection is still random, an analysis of 
scene snapshots from the large ensembles shows that dmax,clr and dmax,nn are strongly linearly related (Figure 9), 
and thus either can be used in the scale analysis. We therefore choose to use dmax,nn, also because it relates more 
closely to the more familiar nearest neighbor metrics adopted in the derivation of the widely used Iorg aggregation 
metric. In the following sections, 𝐴𝐴 𝑑𝑑max,nn will be referred to as 𝐴𝐴 𝑑𝑑 for brevity.

Figure 8. Sketch of two potential metrics of convective spacing relevant for aggregation onset, namely the size of the largest 
clear-sky, convective-free box (dmax,clr, green boxes) and the maximum inter-convective nearest neighbor spacing (dmax,nn, blue 
boxes), in a random convective situation (left) and highly aggregated situation (right). The cell centroids are represented as 
gray dots, the convective grid boxes as red crosses and the doubly-periodic nature of the domain is accounted for.
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4.4. Initial Dimensional Analysis

Combining the above considerations, let us introduce the following dimen-
sionless parameter to explain the transition between homogeneous and aggre-
gated regimes:

𝛾𝛾 = 𝑓𝑓 (𝑎𝑎𝑑𝑑)
𝐾𝐾𝐾𝐾sub

𝐿𝐿2

𝐿𝐿

𝑑𝑑

= 𝑓𝑓 (𝑎𝑎𝑑𝑑)
𝐾𝐾𝐾𝐾sub

𝐿𝐿𝑑𝑑

, (16)

where 𝐴𝐴 𝑑𝑑 is given by Equation 14. The parameter γ consists of the normalized 
area of influence divided by the expected maximum inter-convective nearest 
neighbor distance, rescaled by the domain size L. Low values of γ (in turn 
corresponding to either lower K or τsub or larger L or 𝐴𝐴 𝑑𝑑 ) are supposed to 
represent aggregated states.

In addition to the four factors of domain size, resolution, horizontal trans-
port efficiency and subsidence rate that were discussed above, we have also 
incorporated the sensitivity of convection to water vapor through a generic 
function f(ad), where f expresses the (unknown) functional dependence on ad. 
As ad is dimensionless, the functional form of f will be derived empirically 
using an ensemble of numerical experiments.

However, treating ad and the other parameters in Equation  16 separately 
seems reasonable since we speculate that the evolution to aggregation 
requires the generation of R anomalies in the initial random phase, which 
are then magnified by the indicator function. As discussed, the formation of 
R anomalies is favored by large convection-free areas and results from the 
subsequent interplay between subsidence and horizontal transport, while 

Figure 9. Scatter plot of daily averaged diagnostics for dmax,nn versus dmax,clr 
from hourly snapshots of scenes taken from a large ensemble in the first day 
of each experiment when convection is still randomly distributed. The identity 
line is shown as a black dashed line for better visualization.

Figure 10. Contours of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 (black solid curves) along with the isopleths of 𝐴𝐴 𝐴𝐴𝐴𝐴sub

(

𝐿𝐿𝑑𝑑

)−1

 (red dashed curves) for single 
realizations of the system in a large set of simulations with different K and τsub and fixed ad, L and Δx.

 19422466, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003231 by C
ochraneItalia, W

iley O
nline L

ibrary on [16/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

BIAGIOLI AND TOMPKINS

10.1029/2022MS003231

18 of 23

ad does not contribute at the beginning and its role can be decoupled from the rest of the analysis. Indeed, 
if we decompose the column humidity field as 𝐴𝐴 𝐴𝐴(𝐱𝐱, 𝑡𝑡) = 𝐴𝐴(𝑡𝑡) + 𝐴𝐴

′
(𝐱𝐱, 𝑡𝑡) , 𝐴𝐴 𝑅𝑅(𝑡𝑡) and R′(x, t) being the domain-

mean R and the local departure from the mean, respectively, it is apparent that 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑑𝑑𝑅𝑅(𝐱𝐱,𝑡𝑡) = 𝐴𝐴

𝑎𝑎𝑑𝑑𝑅𝑅(𝑡𝑡)𝐴𝐴
𝑎𝑎𝑑𝑑𝑅𝑅

′
(𝐱𝐱,𝑡𝑡)

≈ 𝐴𝐴
𝑎𝑎𝑑𝑑𝑅𝑅(𝑡𝑡) 

if 𝐴𝐴 𝑅𝑅(𝑡𝑡) ≫ |𝑅𝑅
′
(𝐱𝐱, 𝑡𝑡)| ≈ 0 , as is the case prior to aggregation onset. At this stage, the weights of the selection 

process are dominated by the uniform term 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑑𝑑𝑅𝑅(𝑡𝑡) . Conversely, if substantial R anomalies are created, they 

are easily amplified by the exponential shape of the convection-vapor feedback. In this respect, we note that 
the exponential form of the moisture-convection feedback is not necessary for aggregation to occur, but a 
nonlinear relationship is still needed to retain the key behavior of the model (cf. Figure S9 in Supporting 
Information S1).

Thus, setting aside the functionality f for the moment and assuming ad = 14.72, and using the default domain size 
and resolution (L = 300 km, Δx = 2 km), we evaluate the ensemble experiments that vary K and τsub to see if the 
dimensionless quantity (16) correctly predicts the final state to be clustered or random. Figure 10 shows contours 
of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 , which we recall is the spatial standard deviation of R in the last 20 days. The region of dense contour lines 
marks the abrupt transition between those experiments that result in aggregated convection (high values of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 ) and 
those with random convection (low 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 ) equilibrium states. Below the transition zone, on the left, the pronounced 
curvature of the contours is due to increasingly weak diffusive effects that encourage convection to (re)develop in a 
very restricted number of points, thus limiting the size of the cluster (hence the variance of the spatial R distribution). 
The slope of the transition zone in (τsub, K) space is almost exactly parallel to the isopleths of 𝐴𝐴

𝐾𝐾𝐾𝐾sub

𝐿𝐿𝑑𝑑
 (recalling that ad is 

fixed here), represented as red dashed curves. Further sets of simulations from the grand ensembles were examined 
for other values of L and Δx, with the fit still holding for fixed ad, and the critical threshold value is the same as in 
this default case L = 300 km, Δx = 2 km (Figures S6 and S7 in Supporting Information S1). This means that there 
is a critical value that predicts the onset of aggregated convection. The critical isopleth that fits the transition will 
depend on ad and thus the final task is to determine the functional dependence on ad in the specification of γ.

Figure 11. Contours of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 (black solid curves) for an ensemble of runs carried out with different values of 𝐴𝐴 𝐴𝐴𝐴𝐴sub

(

𝐿𝐿𝑑𝑑

)−1

 
(here obtained varying K and keeping τsub, L, and Δx fixed) and ad. The red solid line represents the polynomial (quadratic) 
empirical fit for the transition regime.
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4.5. The Role of the Parameter ad

Intuitively, the relationship Equation 6 may strongly impact the aggregation of convection, via the steepness 
ad of the exponential function, which governs the choice of convective locations: low values of ad indicate that 
convection is very insensitive to water vapor anomalies and stochasticity of the convection choice may dominate, 
whereas high values produce organization as essentially only the moistest columns are likely to be selected after 
the initial perturbations are introduced in the water field. In fact, in the limit ad ≃ 0, Equation 6 is homogeneous 
in the interval [Rmin, Rmax], Rmin and Rmax being the minimum and maximum R values throughout the domain, 
and convection is rendered completely random by definition. It is thus expected that, as ad increases, the critical 
isopleth will be shifted upwards in the (τsub, K) space (Figure S8 in Supporting Information S1).

The functional dependence of the transition on ad is determined empirically (Figure 11), using 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 for simula-
tions performed with a range of values of K and ad and fixed τsub, L, and Δx. The fit from empirical data shows that 
the position of the transition regime in the parameter space increases quadratically with ad. The changes of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 
for the simulations with aggregated convection are due to the absence of monotonicity of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 with ad. Indeed, 
for organized runs, the size of the moist, convectively active region is reduced for high values of ad. Owing to the 
increasingly steep shape of the exponential function Equation 6, the larger ad gets, the more likely is for convec-
tion to reactivate at the same spots (which are the moistest ones), thus shrinking the wet patch, enlarging the area 
occupied by subsiding air and therefore reducing the spatial R variance beyond the onset point of aggregation. 
This nonlinear behavior of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 in the clustered state seen in both Figures 10 and 11, with the spatial variance 
of humidity increasing sharply with aggregation onset but reducing as the degree of aggregation strengthens, 
implies that humidity variance can be used to determine whether aggregation has occurred or not, but is not an 
effective metric of the degree of aggregation for model inter-comparison studies such as Wing et al. (2020).

4.6. The Aggregation Number

Knowing the quadratic dependence of ad allows us to construct the full dimensionless quantity that incorporates 
all three model parameters and the experiment domain size and resolution, which will be referred to as the aggre-
gation number Nag:

𝑁𝑁𝑎𝑎𝑎𝑎 =
𝐾𝐾𝐾𝐾sub

𝑎𝑎
2

𝑑𝑑
𝐿𝐿𝑑𝑑

. (17)

We make an evaluation of the final dimensionless parameter using a complete ensemble of experiments which 
investigate the full 5-dimensional parameter space of changing K, τsub, ad and the domain size L and resolution 
Δx. The resulting scatter plot in Figure 12 shows that the dimensionless quantity Nag as specified in Equation 17 
predicts the transition from random to aggregated states when the combination of these five parameters gives 
a Nag value below a critical threshold, Nag,crit, of approximately 1.72  ×  10 −3. This estimate (i.e., the vertical 
line in Figure 12) has been obtained with an iterative procedure which yields equal number of misses on either 
sides of the vertical line itself. A threshold of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 = 0.05 was imposed to distinguish between aggregated and 
non-aggregated runs. There is some variation in the transition zone which we attribute to the stochastic nature 
of the model. Indeed, repeating some of the experiments with configurations such that Nag ∼ Nag,crit, with small 
initial random perturbations, showed that these could end up in either a random or aggregated state.

5. Discussion and Conclusions
Simulations of RCE that are run on 𝐴𝐴  (1,000  km) domains and convective permitting resolutions can often, 
but not always, undergo a transition from initially randomly distributed convection to end up in an equilibrium 
state in which all the convective events are aggregated into a moist zone. This phenomenon has been termed 
self-aggregation as it spontaneously occurs due to local diabatic feedbacks, despite homogeneous initial and 
boundary conditions or forcing. It is important to understand as it could have implications for our assessment 
of tropical climate sensitivity, since aggregated states are drier and thus lose energy to space more efficiently. 
Whether or not a particular model undergoes organization has been shown to depend on the resolution and 
domain configuration. Moreover, it is likely to be sensitive to the parameterization schemes used, such as the 
microphysics and sub-grid scale turbulence schemes, and recent model inter-comparison studies have shown little 
consensus between models concerning the details of aggregated states, the sensitivity of aggregation to lower 
boundary temperature, or even whether a particular experiment configuration undergoes aggregation or not.
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Here we have attempted further understanding of these differences by introducing a stochastic reaction-diffusion 
model of the tropical atmosphere that uses similar domain sizes and resolutions to the full-physics, cloud resolv-
ing models. In our model, which is a development of the model previously presented by Craig and Mack (2013), 
convection towers are located according to a weighted random selection process, which makes convection more 
likely in moist areas using an observed functional form. The towers then rapidly moisten their local environment 
for the entirety of their life span, which averages 30 min. This local moistening is spread laterally by a local 
diffusive transport term, while subsidence drying balances the moistening uniformly throughout the domain, 
mimicking the action of fast spreading gravity waves in a highly idealized way as they are effectively assumed to 
have infinite group velocity. The model thus has three key parameters that describe the efficiency of the horizon-
tal transport, the strength of the subsidence drying and the sensitivity of convection to humidity. Two additional 
parameters are the experiment domain size and resolution.

The model is found to produce both randomly distributed and aggregated states, depending on the five parameter 
settings. While over larger domains, two or more convective clusters can survive for a limited period in runs that 
aggregate, they always ultimately collapse to a single center, due to the fact that compensating subsidence occurs 
uniformly throughout the domain, that is, there is no explicit deformation radius. Sensitivities to the domain size 
and resolution are found in the simple model which mimic those found in the full-physics models, with aggre-
gation more likely using larger domains and coarser spatial resolutions. We argue that the horizontal transport 
efficiency and subsidence rate can be dimensionally combined to give an “area of influence” of convection. Large 
areas would inhibit convective aggregation by enlarging the humidity “halo” around convective events.

Concerning the domain size and resolution, we heuristically argue that the important factor is a measure of the 
maximum convective-free distance prior to clustering onset, as this would determine the size of the humidity 
fluctuations in the pre-aggregated state. Indeed, a takeover of subsidence in the field far from convection could 
promote the formation of some drier-than-average region with suppressed convective activity, which may further 
develop and eventually lead to organization. Finer resolutions lead to more (smaller) convective centers, making 
aggregation less likely. We note that this is different from the suggestion of Tompkins and Semie (2017), who 
instead attributed resolution dependence to the reduction of explicit entrainment. Our simple model here permits 
a reinterpretation of the sensitivity of aggregation to diffusion scheme found in Tompkins and Semie (2017) not 

Figure 12. Scatter plot referring to a collection of simulations with different values of the parameter Nag, as defined in 
Equation 17, each associated with the corresponding value of 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 . The horizontal dashed line 𝐴𝐴 𝜎𝜎𝑅𝑅𝑅20 = 0.05 separates aggregated 
and non-aggregated runs, the vertical dashed line represents the threshold value of Nag obtained as specified in the text.
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as the effect of humidity entrainment into updrafts, but instead as the impact on mean updraft size, and therefore 
inter-convective distance.

Using these arguments and fits from experimental data, we were able to combine the domain size, resolution, 
horizontal transport efficiency, subsidence rate and the parameter that describes the sensitivity of convection 
to humidity into a single dimensionless parameter, Nag, which we refer to as the aggregation number. Using 
super-ensembles of experiments that comprehensively explore the 5-dimensional parameter space of the model 
and experiment configurations, we demonstrate that the aggregation number Nag is able to predict almost exactly 
if a particular model and domain setup will lead to aggregation, with the transition occurring at a specific critical 
value of the aggregation number, subject to a small amount of uncertainty due to the stochastic nature of the 
model.

Despite the simplistic nature of the model, it could help to explain differences between the full-physics CRM 
simulations seen in model inter-comparison projects such as RCEMIP (Wing et  al.,  2020). Models that mix 
humidity laterally efficiently, through higher numerical diffusion or the generation of vertical wind shear during 
the simulation, would be less likely to aggregate (Tompkins, 2000). Likely of more relevance is sensitivity of 
convection location to past convective events. In our model, and that of Craig and Mack (2013), the feedback 
is presented as one between convection and water vapor, demonstrated to play a role in Tompkins (2001) and 
Grabowski and Moncrieff (2004). In full-physics models, a number of additional diabatic processes act in tandem 
to promote or prevent aggregation, including radiative feedbacks with the cloud and moisture fields, surface 
fluxes, and the action of cold pools. The parameter ad in the simple model, which essentially describes how likely 
convection is to occur in the vicinity of previous events, can be viewed as a proxy for all these feedbacks.

Ideally, the next step in this work is to devise a methodology to take consecutive CRM outputs and, using the 
auto-correlation of water vapor field and the locations selected for new convective events, to derive estimates for 
the three parameters of the simple model, and thus Nag. While Nag will likely evolve during the simulation, its 
calculation in the initial phase of the simulation when the convection is randomly distributed may predict if this 
random model state is unstable and will ultimately undergo aggregation. Moreover, if a given model is found 
to have a more complicated convective auto-correlation function, perhaps due to the mutual exclusivity of cold 
pools operating at scales smaller than 15 or 20 km, then this, conversely, could be incorporated into the simple 
model to explore the impact on aggregation in a wide parameter space.

While useful, the aggregation number does not tell the complete story. In fact, it would also be desirable to intro-
duce a more theoretical framework to predict when the instability of the RCE state that leads to self-aggregation is 
expected to occur. A reasonable analytical approximation of the stochastic formulation presented here could help 
investigate some unexplored features of the simple model. For instance, the experiments conducted here all start 
from identical homogeneous moist conditions of 80% relative humidity, but, similar to CRM studies, the simple 
model is also found to be sensitive to the initial conditions, with aggregation more likely starting from drier and/
or more heterogeneous conditions. That is, the model displays a (weak) hysteresis that can not be explored using 
the simple dimensionless parameter. To achieve this, a stability analysis of the system's variance equation is 
required, which will be a topic of future work.

Data Availability Statement
The numerical model code used for this work is freely available on github at https://github.com/adriantompkins/
toy_diffusion and the version used in this paper is tagged v1.1.JAMES. The numerical model output is available 
in netcdf format at https://samodel.dmg.units.it/ and will be maintained for a minimum period of 5 years.
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