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GeoCrack: A High-Resolution 
Dataset For Segmentation of 
Fracture Edges in Geological 
Outcrops
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GeoCrack is the first large-scale open source annotated dataset of fracture traces from geological 
outcrops, enabling deep learning-based fracture segmentation, setting a new standard for natural 
fracture characterization datasets. GeoCrack contains images from photogrammetric surveys of 
fractured rock exposures across 11 sites in Europe and the Middle East, capturing diverse lithologies 
and tectonic settings. Each image was cleaned, normalized, and manually segmented, followed by a 
recursive annotation vetting process to ensure the quality and accuracy of the digitized fracture edges. 
The processed images and corresponding binary masks were divided into 224 × 224 patches, yielding 
12,158 pairs. GeoCrack captures representive real-world challenges in fracture edge annotation, 
such as contrast variations between fracture traces and the host medium due to geological and 
geomorphological factors like aperture dilation, host rock composition, outcrop weathering, and 
groundwater staining. Physical occlusions like shadows and vegetation are also considered to minimize 
false positives. GeoCrack was validated using a U-Net implementation for fracture segmentation, 
achieving satisfactory IoU of 85%. GeoCrack holds strong potential to advance deep fracture 
segmentation in geological applications, effectively tackling the diverse challenges of real-world 
fracture identification.

Background & Summary
The analysis of fracture networks hosted within rock formations represents a key component of many geosci-
ence, geoengineering and geotechnical engineering workflows. For example, natural fracture systems impart 
petrophysical anisotropy within the upper crust, often playing an integral role in the movement and trapping of 
mobile geofluids within both porous and crystalline geologic media, and determining the pathways and eventual 
fates of contaminants released into the shallow subsurface. Consequently, the characterization and modelling of 
fracture networks represents a first order consideration within numerous subsurface engineering applications, 
including CO2 sequestration1, hydrocarbon and geothermal reservoir characterization2,3, and nuclear waste 
geological disposal facility site appraisal4. Furthermore, fracture networks govern rock mass strength, with the 
relative density of natural and induced fractures forming key inputs into rock mass classification schemes, com-
monly used to evaluate slope stability and steer the safe implementation of engineering structures, such as bridge 
footings, dam foundations, and tunnel portals5. Finally, discontinuity networks often formed the locus of strain 
accommodation during deformation within the brittle crust6, acting as an archive for paleostress fields, aiding 
the study of ancient plate kinematics7,8.
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While fracture systems can be observed in-situ via quasi-1D sampling of wellbore micro-resistivity images 
and core9, rock exposures at the Earth’s surface are the most common medium used for the study of discontinu-
ity network geometry10–15, both directly for rock mass classification and as analogues for subsurface equivalents. 
The intersection of a quasi-planar discontinuity with the rock exposure is typically expressed as a lineament 
or trace2,16. Fracture characterization studies seek to interrogate these structural traces to elicit the key prop-
erties (e.g., size, intensity, topology) of the underlying fracture network, either through manual surveys2 or 
digitization of trace maps from remotely sensed imagery (esp. RGB photography11,13). With respect to fracture 
characterization from outcrop images, considerable effort has been expended over the past several decades to 
automate trace map digitization. Conventionally, these efforts have focused upon the use of classic edge detec-
tion algorithms which leverage discontinuities in pixel intensity (e.g., Hough Transform, Sobel, Canny, Phase 
Congruency13,17–20). More recently, deep-learning based edge detection/segmentation has emerged as a powerful 
tool for the automatic extraction of structural traces21–23, potentially overcoming key limitations of classic pixel 
intensity-based approaches, such as challenging manual parameter selection and the unwanted detection of 
non-trace objects.

Presently, there is an ostensible lack of comprehensive and standardized datasets focused on fracture edges 
in outcrop images, which acts as a major bottleneck restricting the development and benchmarking of deep 
learning-based semantic edge segmentation approaches for the automated extraction of structural traces from 
rock exposures. Existing research is often fragmented and lacks large-scale, high-precision annotated image edge 
datasets which are common within other scientific disciplines (i.e., materials science24, civil infrastructure25–27, 
food recognition28, and biomedical imaging29–31). To address this gap, we have developed a first-of-a-kind exten-
sive dataset of annotated fracture edges, amenable to the training and testing of diverse deep learning architec-
tures, such as convolutional neural networks (CNNs)32–36 and Vision Transformers (ViTs). This dataset includes 
images of rock outcrops from 11 geologically diverse and extensively characterized study areas, with digital 
photographs captured using both terrestrial and unmanned aerial vehicle (UAV) based surveys. A subset of 49 
representative high-quality images has been selected from this global database and subjected to filtering, clean-
ing, and manual annotation. The selected images contain a variety of fracture geometries, as well as non-fracture 
scene elements (e.g., roots, shadows) which give rise to false positives during edge segmentation, providing a 
test-bed for automated discontinuity extraction under real-world conditions. Annotation quality was main-
tained using both peer-to-peer evaluations between operators and consultation with structural geologists, 
ensuring pixel-level accuracy and objective validity. Vetted annotated images were split into 224 × 224 patches 
suited for deep learning model training, which were further vetted for image quality and fracture density, result-
ing in 12158 patches containing 127659 individual fracture edges. To demonstrate the utility of the GeoCrack 
dataset37 for deep edge segmentation model development, we have implemented a U-Net classifier trained with 
a subset of 1245 patches. With an Intersection over Union (IoU) score of 85% and a pixel accuracy of 92%, this 
rudimentary model demonstrates the GeoCrack’s utility for deep learning model development for geological 
fracture edge segmentation tasks. Consequently, we believe that the GeoCrack dataset37 holds substantial poten-
tial not only for semantic edge segmentation routines but also as a foundation for future multi-class segmenta-
tion efforts that could incorporate additional classes such as vegetation and fractures. This expansion promises 
to be transformative towards numerous geoscientific, geoengineering, and geotechnical application areas, such 
as fractured outcrop analog modeling, rock mass classification, and paleotectonic reconstruction.

Fig. 1  Schematic of the data development and validation process, including image selection, fracture 
annotation, validation, patch retention, and dataset assembly.
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Methods
Compilation of the GeoCrack dataset37 involved the following stages: (1) photogrammetric survey acquisition 
and preprocessing, (2) manual annotation of fracture traces, (3) verification and correction of annotated edge 
masks, (4) extraction and retention of optimal image-mask patches using a smart patch retention algorithm, and 
(5) final verification and compilation of the complete dataset (see Fig. 1). Detailed descriptions of these steps are 
provided below to ensure reproducibility and facilitate future expansion of the dataset towards different lithol-
ogies and/or structural domains.

Image acquisition, selection, preprocessing.  Images were acquired during photogrammetric survey 
campaigns conducted within Europe (Greece, Malta, and Italy) and the Middle East (Oman and the United Arab 
Emirates), mapping naturally fractured outcrops. Surveys targeted a range of lithologies (carbonate and clastic 

Study Site Location Discontinuity styles/tectonic regime Host lithology Literature

Aurisina quarry, 
Aurisina-Duino, Trieste, 
Italy.

45°5′26.4″N 13°9′13.1″E

The outcrop has bedding-parallel stylolites 
dipping southwest. Despite evident 
anthropogenic cuts, normal faults and 
fractures, often highlighted by karst features, 
are still recognizable.

Cretaceous limestone with 
abundant rudists (Aurisina 
limestones)

Consorti et al.59: Description of 
Aurisina Formation Jurkovšek et 
al.60: General geological context

Bagnoli Quarry at Mt. 
Carso, San Dorligo della 
Valle, Trieste, Italy.

45°6′49.8″N 13°1′39.2″E
The quarry is at the axial portion of an 
asymmetric anticline with an overturned 
forelimb. The outcrop is intensely fractured 
and features stylolites and cleavages.

Eocene shallow-water 
limestones with large 
foraminifera: miliolids, 
Alveolina, Nummulites

Jurkovšek et al.60: General 
geological context Consorti et 
al.59: 3D model study of nearby 
stratigraphy

Balmuccia peridotites, 
Val Sesia, Italy. 45°9′14.9″N 8°9′22.0″E

The outcrop features faults, fractures, two 
generations of pseudotachylyte veins, and 
dykes of at least two compositions.

Ultrabasic rocks of the 
Balmuccia peridotites

Quick et al.61: Description of 
mafic complex Souquière and 
Fabbri, 201062: Two generations 
of pseudotachylyte Menegoni et 
al.63: Structural elements from 
3D model

Cava Scoria, Trieste, Italy. 45°7′37.6″N 13°1′04.9″E

The study area, formed by a compressional 
tectonic regime, lies in the frontal area of 
the Karst anticline, the NW extent of the 
Dinarides. Discontinuities include faults, 
bedding-parallel stylolites, cleavages, and 
fractures.

Eocene shallow-water 
limestones with large 
foraminifera: miliolids, 
Alveolina, Nummulites

Jurkovšek et al.60: General 
geological context Consorti et 
al.59: 3D model study of nearby 
stratigraphy

Maghlaq fault, Malta. 35°9′24.9″N 14°6′18.9″E

The WNW-ESE Maghlaq Fault in southern 
Malta is a normal fault with a vertical 
separation of over 210 meters. It brings the 
Upper Coralline Limestone into contact with 
the Lower Coralline Limestone and resulted 
from N-S extension. The fault plane features 
striations and fractures.

Lower Coralline Limestone 
Formation (Oligocene)

Dart et al.64 Bonson et al.65 
Martinelli et al.66

San Lorenzo quarry, 
San Dorligo della Valle, 
Trieste, Italy.

45°7′36.0″N 13°1′32.5″E

The study area, formed by a compressional 
tectonic regime, is in the frontal Karst 
anticline, the NW extent of the Dinarides. 
Discontinuities include faults, bedding-
parallel stylolites, cleavages, and fractures.

Eocene shallow-water 
limestones with large 
foraminifera: miliolids, 
Alveolina, Nummulites

Consorti et al.59: 3D model 
study of nearby stratigraphy 
Jurkovšek et al.60: General 
geological context

Torrioni Monrupino, 
Monrupino, Trieste, Italy. 45°2′58.5″N 13°8′16.6″E

The outcrop, formed by the chemical 
dissolution of carbonates by meteoric waters, 
is characterized by numerous fractures and 
wavy bedding.

Alternating limestone-
dolomite layers with 
fossiliferous dark limestone 
levels (mudstone, 
wackestone, packstone) 
with radiolitids and 
Chondrodonta joannae 
(Cenomanian)

Jurkovšek et al.60: General 
geological context

Villa Giulia park, Trieste, 
Italy. 45°9′52.4″N 13°7′30.4″E

Foredeep siliciclastic deposits from the 
Dinarid orogeny are present. The outcrop 
features flysch deposits affected by normal 
faulting, slumping, and post-orogenic 
fracturing.

Flysch units: sandstones 
and marls of Lutetian age

Jurkovšek et al.60: General 
geological context

Vliziana, Xiromero, 
Greece. 38°8′32.9″N 21°5′14.5″E

The outcrop features sub-vertical bedding 
surfaces of calcareous resediments, two 
orthogonal fracture sets, stylolites, and 
stylolite-perpendicular veins. Normal faults 
with a throw of less than 1 meter, rotated along 
with the bedding, are also observed.

Paleocene-Eocene 
resedimented limestones

Tavani et al.67: Early-orogenic 
deformation in the Ionian zone 
of the Hellenides

Wadi al Muaydin, Birkat 
Al-Mouz, Oman. 22°8′42.70″N 57°0′14.96″E

The study area is in southern Jabal Akhdar 
Dome, Oman Mountains, at the entrance 
to Wadi Al-Muaydin, featuring large non-
layerbound systematic joints.

Natih Formation: 
Cretaceous aged (Albian to 
Turonian) shallow marine, 
commonly organic rich 
limestones

Mattern et al.68: Detailed 
description of the Natih 
Formation Searle et al.69: 
Tectonic evolution of Oman 
Mountains

Wadi Bih, Ras Al-
Khaimah, United Arab 
Emirates.

25°8′11.2″N 56°5′18.3″E

The study area, in the northern Oman 
Mountains thrust-and-fold belt, features Late 
Cretaceous ophiolite obduction and Cenozoic 
thrusting from the Zagros collision. The 
outcrop is pervasively fractured with various 
joints, including layer-bound, non-layer-
bound, bedding plane joints, and stylolites.

Dolomitized early to middle 
Triassic mud-dominated 
carbonates of the Ghail 
Formation

Maurer et al.70: Sedimentology 
of the Ghail Formation Searle 
et al.69: Tectonic evolution of 
Oman Mountains

Table 1.  Details of outcrop locations, host lithology, and relevant literature for various geological sites.
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sedimentary rocks, crystalline ultramafic igneous rocks), hosting different styles of discontinuities (e.g., joints, 
faults, shear fractures, styolites) formed a variety of stress regimes (see Table 1). Surveys were conducted using 
both unmanned aerial vehicle (UAV) and terrestrial image capture using a range of camera models and lenses (see 
Table 2). An advantage of photogrammetric surveys in the context of the current dataset is that the high degree 
of image overlap required for surface reconstruction produces redundancy in outcrop coverage, providing a large 
database for optimum image selection. Moreover, the photogrammetric post-processing of the photo-survey 
dataset also facilitates the removal of lens distortion effects via self calibration38. However, terrestrial and aerial 
surveys were conducted using prime lenses in order to minimize distortion aberrations. Images were collected 
using photogrammetric survey best practices outlined in Tavani et al.39. For example, surveys were conducted 
wherever possible under a limited time window with cloud cover and/or the sun behind the camera to ensure 
homogeneous illumination and to minimize shadowing and lens flare. Moreover, where possible images were 
captured orthonormally and equidistant to the target exposure surfaces to minimize perspective effects and dis-
parities in ground sampling distance (the distance between two neighboring pixel centroids as measured on the 
ground: GSD) across individual surveys.

We implemented stringent quality control measures to select a subset of representative images from each 
site, ensuring that only those with a minimum resolution of 300 DPI and dimensions of 4032 × 3024 pixels were 
retained post-cropping to remove non-geological scene elements. Survey distances varied from several meters 
to several tens of meters depending on the scale of the exposure and accessibility. Images were chosen based 
on fracture density and excluded if they had low exposure or significant non-geological elements, such as sky, 
foreground, drift, vegetation, or were heavily impacted by optical artifacts, such as lens flare or diffraction spikes. 
Motion blur was quantified using Discrete Wavelet Transform (DWT), with a threshold set at less than 0.5% 
deviation in pixel alignment consistency, following empirical studies that indicate this limit minimizes percep-
tible blur40,41. Aliasing was assessed using Fourier analysis, ensuring high-frequency artifacts did not exceed 2% 
of the total image spectrum, as supported by literature on spatial accuracy42,43. Our quantitative analysis revealed 
an average motion blur deviation of 0.3% and a 12% discard rate due to artifacts, demonstrating the robustness 
of our selection criteria.

For compilation of the present dataset, fracture identification and delineation are performed manually, lev-
eraging the textural expression of discontinuities on the imaged exposure surfaces. When exposed at the earth’s 
surface, fractures typically appear as linear or curvilinear objects, detectable as a visible discontinuity within the 
exposed rock mass. In outcrop, fractures can vary significantly in size, from hairline cracks to laterally extensive 
fissures with broad apertures. It should be noted that the ability to detect a given discontinuity from an image 
is heavily dependent upon numerous factors. GSD (itself a function of image resolution and distance to the 
targeted exposure surface) and the apparent fracture aperture (which can be positively correlated to fracture 
size44,45) arguably offer the primary controls over the detectability of a given fracture. Additionally, the degree 
of contrast between fracture trace and its host medium depends upon a multitude of geological, geomechanical, 
and geomorphological factors, such as the occurrence and relative magnitude of displacement across the dis-
continuity plane (i.e., in the case of faults), host rock composition and color, the degree of outcrop induration 
and weathering, the presence of fracture cement and/or discoloration/staining related to groundwater seepage, 
all of which may serve to highlight or obfuscate the target discontinuity. Physical occlusions, such as the pres-
ence of shadows, drift, and vegetation/roots may also hamper fracture identification (Fig. 2D). In some cases, 

Study Site
Image 
Dimensions Camera/Lens Specification Image Capture Details

Aurisina quarry, Aurisina-Duino, 
Trieste, Italy. 5472 × 3648 Model: DJI: Air 2S/FC3411 Focal Length: 

8.38 mm Colors: 3 bands, uint8 F-stop: F/2.8, ISO: 100 Shutter Speed: 1/1600

Bagnoli Quarry at Mt. Carso, San 
Dorligo della Valle, Trieste, Italy. 5472 × 3648 Model: DJI Phantom 4 Pro/FC6310S Focal 

Length: 8.8 mm Colors: 3 bands, uint8 F-stop: F/2.8, ISO: 160 Shutter Speed: 1/1000

Balmuccia peridotites, Val Sesia, 
Italy. 5472 × 3648 Model: DJI: Air 2S/FC3411 Focal Length: 

8.38 mm Colors: 3 bands, uint8 F-stop: F/2.8, ISO: 100 Shutter Speed: 1/15

Cava Scoria, Trieste, Italy. 5472 × 3648 Model: DJI: Air 2S/FC3411 Focal Length: 
8.38 mm Colors: 3 bands, uint8 F-stop: F/2.8, ISO: 100 Shutter Speed: 1/1250

Maghlaq fault, Malta. 5472 × 3648 Model: DJI: Air 2S/FC3411 Focal Length: 
8.38 mm Colors: 3 bands, uint8 F-stop: F/2.8, ISO: 100 Shutter Speed: 1/1250

San Lorenzo quarry, San Dorligo 
della Valle, Trieste, Italy. 5472 × 3648 Model: DJI: Air 2S FC3411 Focal Length: 

8.38 mm Colors: 3 bands, uint8 F-stop: F/2.8, ISO: 100 Shutter Speed: 1/640

Torrioni Monrupino, Monrupino, 
Trieste, Italy. 4032 × 3024 Model: DJI Mini 3 Pro/FC3582 Focal Length: 

6.72 mm Colors: 3 bands, uint8 F-stop: F/1.7, ISO: 130 Shutter Speed: 1/500

Villa Giulia park, Trieste, Italy. 5472 × 3648 Model: DJI: Air 2S FC3411 Focal Length: 
8.38 mm Colors: 3 bands, uint8 F-stop: F/2.8, ISO: 100 Shutter Speed: 1/80

Vliziana, Xiromero, Greece. 6000 × 4000 Model: NIKON D5300 Focal Length: 18 mm 
Colors: 3 bands, undefined F-stop: F/6.3, ISO: 400 Shutter Speed: 1/160

Wadi al Muaydin, Birkat Al-
Mouz, Oman. 4912 × 3264 Model: Sony NEX-5R Focal Length: 30 mm 

Colors: 3 bands, uint8 F-stop: F/5, ISO: 100 Shutter Speed: 1/200

Wadi Bih, Ras Al-Khaimah, 
United Arab Emirates. 8688 × 5792 Model: Canon EOS 5DS R Focal Length: 35 mm 

Colors: 3 bands, undefined F-stop: F/9, ISO: 100 Shutter Speed: 1/320

Table 2.  Details of the outcrop locations, camera specifications, and image capture settings for various 
geological sites.
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scene artifacts such as surficial staining and shadowing may even mimic the appearance of cracks (Fig. 2B,C), 
potentially resulting in false positives during fracture identification. In addition, not all compositional and/
or structural discontinuities within the rock mass constitute fracture traces, which may result in the errone-
ous annotation of non-fracture objects. Bedding interfaces, sedimentary structures, and stylolites, which form 
coevally to the deposition of sedimentary rocks and preclude brittle deformation, can represent pronounced 
lineations within the rock mass. Man-made discontinuities related to excavation and extraction activities, such 
as blast holes, which mimic the presence of geologic fractures (Fig. 2A), represent additional sources of error 
during fracture identification. Finally, the geometry and topology of the fracture network itself impact the oper-
ator’s ability to identify individual fracture traces, with blind fractures isolated within the rock mass (see Seers 
et al.13) generally being more readily separable than complex branching or anatomizing discontinuity forms.

It is clear from the above discussion that the ability to detect and delineate a given fracture is highly 
case-specific, meaning that it is challenging to define unifying rules in terms of optimum image capture param-
eters, target image spatial resolution with respect to the feature resolution of the discontinuity network, or 
minimum cut-offs in terms of fracture trace length or aperture (i.e., in pixel units) with respect to fracture 
detectability. The diverse range of conditions and confounding elements in the selected images that constitute 
Geocrack37 highlights the real-world nature of the dataset and underlines the need for robust crack segmenta-
tion algorithms capable of handling such complexities (see Fig. 3). Rather than omit challenging scene elements, 
an effort was expended to include images that contain occlusions and scene elements that are potential false 
positives within an automated fracture detection routine. Indeed, the primary motivation behind the compila-
tion of GeoCrack37 is to develop a standardized structural trace image database that can act as a test bed for deep 
learning-based fracture segmentation techniques, subject to real-world conditions.

Preprocessing steps were implemented to further enhance image quality and consistency prior to fracture 
digitization and annotation. These steps included correcting lens distortion in OpenCV46 using its intrinsic 
radial distortion coefficients (k1, k2) calculated in Agisoft Metashape47 via self-calibration during photogram-
metric reconstruction, ensuring accurate geometric representation of the scene. Color balancing was achieved 
through the Gray World algorithm48, which adjusted color balance to account for varied lighting conditions 
present during image capture. Normalization was performed using histogram equalization to maintain uni-
formity in brightness and contrast across the dataset. Further to this, denoising was applied to the selected 
images to reduce noise (including Gaussian noise from low-light or overcast conditions, sensor noise from 
varying camera equipment, compression artifacts, and shadow-induced contrast noise), and enhance image 
clarity in order to aid fracture identification. Specifically, the Non-Local Means (NLM) filter49 was employed, 
due to its edge-preserving capabilities (parameters: h = 10, templateWindowSize = 7, searchWindowSize = 21). 
Further filtering, including the Gaussian filter (sigma = 1.5) and median filter (kernel size = 3 × 3) were utilized 
to smooth the images while preserving essential edge details. Morphological operations (morphological open-
ing/erosion and dilation: kernel size = 3 × 3) were applied to consolidate edges, cleaning fracture trace objects, 
aiding in the identification and extraction of discontinuity patterns. This process effectively refined the edges 
of thin, thread-like fractures, facilitating pixel-accurate identification and annotation. Additional image pro-
cessing, such as contrast enhancement and edge detection algorithms (Hessian-based edge detection50), further 
highlighted fracture edges by enhancing the visibility of subtle discontinuities.
Fracture annotation.  Binary mask creationCreating binary masks was an essential step in annotating frac-
tures within the selected outcrop images. Once the fractures were identified, each fracture was manually traced 
to ensure the mask accurately honored the fracture’s geometry, clearly delineating between fractured and 
non-fractured regions. Annotations were digitized using Adobe Photoshop, where fracture edges were marked 
on a second mask layer. A consistent brush size of 3px and hardness of 100 was used for all annotations to main-
tain uniformity across the dataset. We acknowledge this as a limitation, as it may impact precision for fractures 
narrower than 3 pixels, which would not be captured at a true pixel level (see Fig. 4).
Mask overlay and patchingTo create patches, the binary mask was overlaid on the original image and then seg-
mented (see Fig. 5). This overlay facilitated the verification of mask accuracy and provided a clear understanding 
of the fractures’ spatial distribution. To make the dataset suitable for computer vision (CV) tasks, the overlaid 
images were divided into smaller patches of 224 × 224 pixels. This resolution was selected based on its compat-
ibility with widely used convolutional neural network (CNN) architectures, such as ResNet and VGG, which 
commonly operate on image patches of this size51,52. The choice of 224 × 224 pixels strikes a balance between 

Fig. 2  Common scene artifacts: (A) Blast holes. Occlusions due to (B) vegetation and (C) roots. (D) Shadow 
effects.
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Fig. 3  Examples of diverse fracture edges in the dataset, showcasing various annotation challenges. (A) 
Rock overhang obscuring fracture traces; (B) multiple parallel discontinuities resulting in step-like outcrop 
topography; (C) roots occluding fractures traces; (D) dilated fissures resulting in shadow occlusions; (E) 
surficial weathering introducing textural complexity, obfuscating trace identification; (F) fine, (apparent) 
discontinuous layer-bound fractures; (G) vegetation partially obscuring fracture traces; (H) dilated aperture of 
a curvilinear fracture introducing ambiguity into trace digitization; (I) surficial-staining and vegetation growth 
within fracture apertures adds complexity into trace delineation; (J) pervasively fractured carbonate with high 
fracture densities and non-systematic orientations offering complexity for manual digitization; (K) plants and 
moss nucleating within fracture apertures occluding traces; (L) complex anatomizing and ladderlike fractures 
connecting systematic joints introducing complexity into the digitization task.

Fig. 4  Part of the high-resolution outcrop image (left) and its corresponding binary edge mask (right).
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retaining sufficient contextual information for common CV tasks and ensuring computational efficiency during 
future model training and inference51.
Smart patch retention algorithmThe patches created from the annotated images vary in quality. Some patches 
only contain non-fracture scene elements, such as sky, vegetation, or drift cover, while others include edges that 
are not representative of the targeted geological features (e.g., corner cases, vehicles, or scale references such as 
pens and measuring tapes). This variability necessitates a rigorous algorithm to selectively retain patches that are 
optimal for fracture edge extraction.

The primary criterion for patch selection was to retain only square patches (224 × 224 pixels), discarding 
edge cases where patches did not meet the criteria. The secondary criterion focused on edge density: each 
patch must contain at least 25% of its area marked by fracture edges. This threshold ensures preserving patches 
rich in geological fracture data, thereby enhancing the dataset’s signal-to-noise ratio. We empirically deter-
mined the 25% threshold by testing various levels of edge density, ranging from 10% to 50%, and evaluating 
the signal-to-noise ratio and relevance of the resulting patches. This process balanced the inclusion of relevant 
objects while excluding noisy, low-quality patches.

Additionally, the patches were Min-Max normalized and Z-score standardized to enhance image quality 
and consistency. Normalization adjusts the pixel intensity values to a common scale, typically between 0 and 1. 
Standardization ensures consistent lighting conditions and removes artifacts introduced during image acqui-
sition, such as shadows or reflections, which could affect the accuracy of fracture detection. These steps are 
crucial after the original image processing chain to mitigate residual inconsistencies and artifacts. Normalizing 
and standardizing ensure uniformly scaled pixel values and minimized lighting variations, which leads to more 
reliable and robust modeling. Since most deep learning models incorporate these preprocessing steps, their 
performance and accuracy are significantly enhanced53. Consequently, this improves the accuracy of fracture 
detection by providing a consistent and artifact-free dataset.
Assembling the dataThe high-resolution outcrop image pool comprised 49 annotated images, which were 
segmented into 12158 224 × 224-pixel patches and compiled into the GeoCrack database37 (see Table 3 for a 
detailed breakdown of the dataset). The images were stored in two main formats: preserved outcrop images 
accompanied by a complete annotation mask and patched format amenable to model training and inference. 
With respect to porting the patch data towards the training of deep architectures, this component of the dataset 
was split into a 50-25-25 ratio for a segmentation model, which resulted in 6079 images for training, 3039 for 

Fig. 5  Example of patches created from annotated outcrop images.

Study Site # Images Image Format Image Resolution Patches Created Patches Retained

Aurisina quarry, Aurisina-Duino, Trieste, Italy. 14 .png 5472 × 3648 5551 2990

Bagnoli Quarry at Mt. Carso, San Dorligo della 
Valle, Trieste, Italy. 3 .png 5472 × 3648 1275 703

Balmuccia peridotites, Val Sesia, Italy. 1 .png 5472 × 1233 150 91

Maghlaq fault, Malta. 3 .png 5472 × 3648 986 654

San Lorenzo quarry, San Dorligo della Valle, 
Trieste, Italy. 10 .png 5464 × 3640 4250 2739

Torrioni Monrupino, Monrupino, Trieste, Italy. 2 .png 4032 × 3024 396 168

Villa Giulia park, Trieste, Italy. 4 .png 5472 × 3648 1535 875

Vliziana, Xiromero, Greece. 4 .png 6000 × 4000 1872 1055

Wadi al Muaydin, Birkat Al-Mouz, Oman. 2 .png 4912 × 2717 616 264

Wadi Bih, Ras Al-Khaimah, United Arab 
Emirates. 3 .png 8688 × 5792 3042 1908

Total 49 Images 20948 patches 
created

12158 patches 
retained

Table 3.  Summary of images from the selected study areas, including the number of images, image format, 
image resolution, and statistics on patches created and retained.
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validation, and 3040 for testing. Metadata containing the paths to the patches for each category is provided as 
a.csv file. The chosen number of patches and their split align with established practices in the literature, provid-
ing a robust foundation for effective model training54.

Data Records
The dataset titled GeoCrack: A High-Resolution Dataset of Fracture Edges in Geological Outcrops37 is hosted in 
the Harvard Dataverse (https://doi.org/10.7910/DVN/E4OXHQGeoCrack Dataset) and is structured into three 
primary folders: Raw Data, Patched Data, and Code (see Fig. 6 for the complete repository structure).

Raw data.  This folder encompasses the original outcrop images, which are further categorized into three 
subfolders:

•	 Raw Images: Contains unprocessed images captured directly from the camera. These images are named 
according to the location and time of capture, providing a comprehensive record of the geological outcrops 
in their unprocessed form.

•	 Cleaned Images: Features images that have undergone noise reduction and sharpening to enhance clarity 
for subsequent annotation. These images are crucial for precise edge segmentation and are identified by the 
suffix _cleaned.png.

•	 Edge Mask: This subfolder includes the fully annotated edge masks corresponding to the cleaned images. 
These masks highlight fracture edges and are named with the suffix _mask.png.

Additionally, the Raw Data folder contains a text file named metadata.txt. This file holds extensive 
metadata for each image, detailing geographic and geological information, such as location in Universal 
Transverse Mercator (UTM) coordinates, elevation, and geological context. It also includes comprehensive cam-
era details, such as the make and model of the camera, lens specifications, exposure settings, and environmental 
conditions at the time of capture. This metadata is critical for researchers aiming to correlate image data with 
geological and environmental parameters.

Fig. 6  Directory structure of the fracture dataset, organized into Raw Data, Patched Data, and Code folders.
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The Patched Data folder contains merged patches derived from the high-resolution images. The patches are 
named systematically to indicate their source and type. For instance, an edge patch is labeled as image_name_
patch_number_mask.png, where image_name refers to the original outcrop image, patch_number 
identifies the specific patch, and mask denotes it as an edge mask.

The Code folder consists of three python scripts:

•	 make_patches.py: This script generates image-mask pairs by implementing a smart patch retention algo-
rithm. It processes an input image and its annotation mask to create high-resolution patches.

•	 make_dataset.py: This script creates datasets for deep learning model training. It accepts the directory 
path containing the patches and outputs three.csv files: train.csv, test.csv, and validation.
csv.Each.csv file lists paths to image-mask pairs, ensuring a structured and balanced dataset split for 
training, testing, and validation.

•	 unet.py: This script implements a U-Net for demonstrating the dataset’s utility for training deep learning 
models in edge segmentation tasks.

This structure ensures that the dataset is highly organized and functional for researchers and practition-
ers in the field of geoscience, subsurface/geotechnical engineering, and deep learning. The inclusion of raw, 
cleaned, and annotated data, along with scripts for data preparation and model training makes this dataset a 
robust resource for advancing the study and analysis of geological fracture edges using state-of-the art artificial 
intelligence-based methodologies.

Technical Validation
Creating an accurately annotated fracture dataset through manual digitization is a resource-intensive task. 
To ensure the integrity and cost-efficiency of our annotated fracture edges on geological outcrop images, we 
adopted a robust validation methodology, originally proposed by55. This validation framework effectively mit-
igates three major sources of error: (1) overlooked fracture edges, (2) inaccurately delineated fracture edges, 
and (3) misclassified edges. Such a method is crucial for maintaining the precision and reliability of our dataset 
annotations.

Error categories and mitigation strategies.  To ensure the accuracy and reliability of the fracture-annotated 
image dataset, we identified potential error categories and implemented corresponding mitigation strategies:

	 1.	 Overlooked Fracture Edges: As discussed above, identifying every fracture edge is inherently challenging 
due to varying image resolutions, lighting conditions, and geological characteristics of the host rock and 
fracture network. To mitigate this, we conducted multiple review rounds involving experienced annotators 
and an expert geoscientist to ensure thorough labeling.

	 2.	 Inaccurate Delineation of Fracture Edges: Accurate edge delineation is critical. Overly broad edges 
may incorporate extraneous pixels, while excessively narrow edges might exclude essential parts of the 
fractures. Annotation workshops were conducted to standardize the annotation process among all team 
members, ensuring consistency and precision.

	 3.	 Incorrectly Classified Edges: Misclassification can occur when annotators mistake other features for 
fracture edges, or when shadows obscure the edges. Feedback mechanisms, including regular peer reviews 
and having an expert geologist available constantly to validate, supervise, and facilitate annotation, were 
established to ensure continuous improvement during the annotation process.

By implementing these quality assurance measures, we aimed to enhance the accuracy and reliability of the 
fracture annotations, ensuring a high-quality dataset for future research.

Fig. 7  Validation of fracture edge annotations: original image patch, pre-validation mask, post-validation mask, and 
IoU map showing previously identified edges (green), newly identified edges (orange), and discarded edges (red).
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Recruitment and training of annotators.  To implement these error mitigation measures, we recognized 
that annotator compensation could significantly impact data quality56. To balance cost and quality, we employed 
annotators who were motivated by both fair compensation and the valuable experience offered by the project.

Training protocol.  The research assistants (RAs) underwent rigorous training by the expert geologist to famil-
iarize themselves with the project objectives, annotation tools, and the criteria for accurate fracture edge anno-
tation. They were trained to label all visible fracture edges, including partially visible traces, and to classify 
ambiguous fractures as undefined for later review.

Validation process.  Each annotated image was reviewed in two stages. The first stage involved review by two 
RAs following a structured workflow. The first RA ensured comprehensive fracture edge annotation, focusing 
on small and boundary-proximal fractures. The second RA verified the precision of the annotations, making 
necessary adjustments. Both RAs then confirmed the correct identification of fractures and re-evaluated any 
undefined edges. The second stage of review involved validation by expert geoscientists. They evaluated the 
correctness of the RAs’ reviews and resolved any doubts or differing opinions on the annotations.

Assessment of validation efficacy.  Consistency across annotators is crucial for dataset reliability. We 
employed multiple metrics to assess the effectiveness of our validation process. Coverage validation involved 
calculating the number of annotations added and removed during validation (see Fig. 7). Pre-validation, the 
dataset contained 12,158 image patches, with an average of 7 edges per image, totaling approximately 85,104 
fracture edges. Post-validation, the dataset was updated to reflect the addition and removal of edges. During 
validation, specific percentages of annotations were classified into different categories based on their quality and 
completeness. Post-validation, the dataset showed significant updates. The total number of edges increased to 
approximately 127,659 edges, with detailed classifications as follows: 33.3% (42,553 annotations) were identified 
as incomplete and required completion (orange), 25.0% (31,866 annotations) were previously identified (green), 
42.2% (53,240 annotations) required drawing (orange), and 25.0% (31,866 annotations) were found to be misclas-
sified (red) (Table 4). To evaluate annotation quality, we compared agreement and exact matches between pre- and 
post-validation annotations. Post-validation, a significant percentage of annotations agreed with pre-validation 
annotations, indicating consistency and reliability in our validation process. Post-validation, the dataset demon-
strated a marked improvement in annotation quality and completeness. The discrepancy between pre- and 
post-validation annotations underscores the necessity for rigorous validation to ensure the dataset’s reliability. 
The detailed breakdown of post-validation annotations provided insights into the image regions that required 
completion, identification, or correction. Overall, the validation process ensured that our dataset not only grew in 
terms of the number of annotations over the course of the vetting process but also improved in quality, providing 
a more robust and reliable resource for subsequent analysis and research in geological fracture edge segmentation.

Dataset validation for deep learning segmentation tasks.  To ensure the suitability of our 
fracture-annotated image dataset for deep learning segmentation tasks57,58, we conducted a thorough evaluation 
to verify its effectiveness for model training. The results demonstrated the dataset’s robustness in training deep 
learning models, ensuring precise fracture segmentation on validation and test sets.

For this evaluation, a U-Net model was trained on a subset of 1,245 images, each with dimensions of 224 × 224 
pixels. The model achieved satisfactory results in pixel-level classification, successfully detecting narrow cracks, as 
illustrated in Fig. 8. The model achieved an Intersection over Union (IoU) score of 85%, a pixel accuracy of 92%, a 
recall (true positive rate) of 88%, and a precision of 90%. This test confirms the dataset’s potential to develop robust 
deep learning models for segmentation tasks, highlighting its reliability and value for future research and applications.

Study Site
Patches 
Retained

Total Edges 
Pre-validation

Total Edges 
Post-validation

Incomplete Edges 
(Orange)

Correct Edges 
(Green)

Missed Edges 
(Orange)

Misclassified 
Edges (Red)

Aurisina quarry, Aurisina-Duino, Trieste, Italy. 2990 20930 31395 10465 7849 12812 7849

Bagnoli Quarry at Mt. Carso, San Dorligo della 
Valle, Trieste, Italy. 703 1470 2205 735 551 900 551

Balmuccia peridotites, Val Sesia, Italy. 91 8939 13409 4470 3352 5475 3352

Cava Scoria, Trieste, Italy. 711 6125 9188 3063 2297 3750 2297

Maghlaq fault, Malta. 654 1498 2247 749 562 917 562

San Lorenzo quarry, San Dorligo della Valle, 
Trieste, Italy. 2739 6454 9681 3227 2420 3951 2420

Torrioni Monrupino, Monrupino, Trieste, Italy. 168 17136 25704 8568 6426 10488 6426

Villa Giulia park, Trieste, Italy. 875 2674 4011 1337 1003 1632 1003

Vliziana, Xiromero, Greece. 1055 4578 6867 2289 1717 2793 1717

Wadi al Muaydin, Birkat Al-Mouz, Oman. 264 1946 2919 1460 730 1187 730

Wadi Bih, Ras Al-Khaimah, United Arab Emirates. 1908 13356 20034 6678 5009 8583 5009

Total 12158 85104 127659 42553 31866 51888 31866

Table 4.  Distribution of Patches and Edge Counts Pre- and Post-Validation.
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Usage Notes
For processing the dataset of rock edges, researchers may utilize software such as interpreted languages such 
as MATLAB or Python, or image processing software such as ImageJ, which are well-suited for image analysis 
tasks. We used OpenCV for preprocessing (functions: cvtColor, fastNlMeansDenoising, HessianEdgeDetection), 
and Adobe Photoshop for fracture annotation. Other annotation tools like LabelImg or VIA can also be used. 
Python was employed for image processing operations but proved slow (note that anecdotally, MATLAB may 
offer improved performance for patching and preprocessing). Custom scripts and workflows are provided on 
our GitHub repository to facilitate reproducibility and ease of use.

Data availability
The code used for dataset generation and processing is hosted on GitHub and can be accessed at: https://
github.com/YaqoobAnsari/GeoCrack-A-High-Resolution-Dataset-of-Fracture-Edges-in-Geological-
OutcropsGeoCrack Repo. The repository includes detailed documentation on the versions of software used, as 
well as specific variables and parameters applied in the generation, testing, and processing of the dataset. Access 
to the code is unrestricted and open to the public.
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