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ABSTRACT
We consider the problem of predictive monitoring (PM), i.e., pre-

dicting at runtime the satisfaction of a desired property from the

current system’s state. Due to its relevance for runtime safety assur-

ance and online control, PM methods need to be efficient to enable

timely interventions against predicted violations, while providing

correctness guarantees. We introduce quantitative predictive moni-
toring (QPM), the first PM method to support stochastic processes

and rich specifications given in Signal Temporal Logic (STL). Unlike

most of the existing PM techniques that predict whether or not

some property 𝜙 is satisfied, QPM provides a quantitative mea-

sure of satisfaction by predicting the quantitative (aka robust) STL

semantics of 𝜙 . QPM derives prediction intervals that are highly

efficient to compute and with probabilistic guarantees, in that the

intervals cover with arbitrary probability the STL robustness values

relative to the stochastic evolution of the system. To do so, we take a

machine-learning approach and leverage recent advances in confor-

mal inference for quantile regression, thereby avoiding expensive

Monte Carlo simulations at runtime to estimate the intervals. We

also show how our monitors can be combined in a compositional

manner to handle composite formulas, without retraining the pre-

dictors or sacrificing the guarantees. We demonstrate the effective-

ness and scalability of QPM over a benchmark of four discrete-time

stochastic processes with varying degrees of complexity.
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1 INTRODUCTION
Predictive monitoring (PM) [7, 8, 10] is the problem of predicting at

runtime the satisfaction of a certain requirement from the current

system’s state. Unlike traditional monitoring [5], PM has the poten-

tial to detect failures before they occur, thereby enabling preemptive

countermeasures, such as switching to a fail-safe mode [29]. To

enable effective deployment at runtime, PM methods need to be

efficient and respond quickly, so that any system failure can be

prevented in time.

Performing model checking at run-time would provide a precise

solution to the PM problem (precise up to the accuracy of the

system’smodel), but such a solution is computationally expensive in

general, unless the model is fully deterministic. In particular, when

the system is stochastic, a statistical model checking solution [39]

would require simulating at runtime a typically large number of

Monte-Carlo trajectories to achieve desired error levels
1
.

For this reason, a number of approximate PM techniques

based on machine learning have been recently proposed (see

e.g. [13, 22, 30, 37]), including the so-called Neural Predictive Moni-

toring (NPM) method [7, 8, 10]. In NPM in particular, the predictive

monitor is a neural network classifier trained using data generated

through a model checker to predict for any system state whether or

not the state satisfies some reachability property. To improve the

reliability of the reachability predictions, NPM relies on conformal

prediction [3, 36] to produce prediction regions with guaranteed

coverage and derive uncertainty measures used to infer whether a

particular prediction can be trusted.

In this paper, we introduce a predictive monitoring method for

stochastic processes and Signal Temporal Logic (STL) [15] speci-

fications. We call it quantitative predictive monitoring (QPM) as it
represents, to the best of our knowledge, the first method that can

predict the quantitative semantics 𝑅𝜙 of an STL formula 𝜙 (aka the

STL robustness) for a general class of stochastic systems and with

probabilistic validity guarantees. QPM is inspired by NPM but it

addresses two significant limitations of the latter, which supports

only Boolean reachability specifications (as opposed to the full spec-

trum of STL properties and their quantitative interpretation), and

cannot adequately deal with stochastic dynamics.

By supporting arbitrary STL specifications, with QPM we gain

expressiveness in the type of requirements that can be actually

monitored and thus in the type of violations that can be detected.

In particular, by predicting STL robustness values, QPM provides

key quantitative information on the degree of property satisfaction,

unlike existing predictive monitoring approaches that can only

predict Boolean satisfaction. STL robustness predictions can be

1
Numerical/symbolic probabilistic model checking techniques typically are at least as

expensive as statistical methods and can be applied only to a restricted class of models.
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meaningfully used to determine the extent of any corrective actions

and enable efficient online model predictive control for STL [32]:

for instance, depending on the specification 𝜙 , if QPM predicts a

high value of 𝑅𝜙 , then little or no intervention might be needed,

while a low 𝑅𝜙 value might require a more substantial intervention

to steer the system back to safety.

A major challenge when dealing with stochastic processes is

that every state induces a distribution of robustness values (condi-

tional on the state), relative to the future, time-bounded, stochastic

evolution of the system. In general, such distribution is analytically

intractable
2
and an accurate empirical estimate of such conditional

distribution can be very expensive to obtain, potentially requiring

a high number of Monte-Carlo simulations.

Our approach overcomes this computational bottleneck by de-

riving monitors able to directly predict some relevant quantiles of

the conditional STL robustness distribution. Such quantiles have a

two-fold purpose. First, they provide a measure of risk [21, 23]: for

instance, if the 10%-quantile of 𝑅𝜙 is zero, then “only” 10% of the

system’s future trajectories will violate 𝜙 (i.e., lead to a negative

𝑅𝜙 ), which, depending on the application, can be interpreted as a

low-risk scenario. Second, and most crucially, it allows us to de-

rive prediction intervals that cover a certain mass of probability. For

small 𝛼 ∈ (0, 0.5), if the (𝛼, 1−𝛼)-quantile interval for 𝑅𝜙 is entirely

above (below) zero, then we can be fairly confident that the system

will evolve into satisfying (violating) 𝜙 with high probability. On

the other hand, intervals straddling the zero denote states whose

future trajectories may or may not violate the property, which we,

therefore, label as uncertain.

To predict the quantiles in a reliable manner, our approach builds

on Conformalized Quantile Regression (CQR) [34], a recent confor-
mal inference technique that produces statistically valid predic-

tion intervals on top of quantile regression models. Crucially, this

method provides us with probabilistic guarantees, in that, for an

arbitrary level 𝛼 , the resulting interval for 𝑅𝜙 is guaranteed to in-

clude the true STL robustness value with probability at least 1− 2𝛼 .

Such guarantees are akin to those of statistical model checking,

with the key difference that CQR prediction intervals are extremely

fast to compute and thus, can be used at runtime.

By default, our QPM approach derives a monitor for a fixed

choice of STL property 𝜙 . On one hand, this is advantageous in that

the monitor is tailored, and hence, highly accurate at predicting 𝑅𝜙
but on the other hand, it lacks flexibility. To this purpose, we further

show how monitors trained for different properties 𝜙1 and 𝜙2 can

be combined in a modular way to monitor Boolean combinations of

𝜙1 and𝜙2, without retraining the underlying models and preserving

the desired probabilistic guarantees,

In summary, our contributions are:

- We introduce quantitative predictive monitoring (QPM), the
first predictive monitoring method to support stochastic

processes and the quantitative semantics of arbitrary STL

specifications. QPM builds on recent conformal inference

techniques to provide prediction intervals for STL robustness

with probabilistic guarantees.

2
With simple stochastic models and simple properties, it may become tractable but

still impractical to analyze at runtime.

- We demonstrate the compositionality of our approach by

showing that composite formulas can be monitored by com-

bining the QPM monitors of the subformulas.

- We evaluate the effectiveness and scalability of QPM on

several case studies of stochastic processes.

2 PROBLEM STATEMENT
We illustrate the predictive monitoring problem we target with

QPM, after introducing background about stochastic processes and

Signal Temporal Logic.

2.1 Stochastic Processes
The systems we consider can be modeled as stochastic processes.

A stochastic process is defined as a collection of random variables

indexed by some index set 𝑇 . These random variables are defined

on a common probability space (Ω, F , P), where Ω is the sample

space, F is the 𝜎-algebra and P is the probability measure. We can

denote the stochastic process as {S(𝑡, 𝜔), 𝑡 ∈ 𝑇 }. A random variable

S(𝑡, 𝜔) in the collection is thus a function of two variables 𝑡 ∈ 𝑇 and

𝜔 ∈ Ω. In our application, the index set is countable and represents

discrete time 𝑇 = {0, 1, . . .}. Each random variable in the collection

takes values in a space 𝑆 ⊆ R𝑛 , the state space of dimension 𝑛,

that should be measurable. A discrete-time step makes the stochas-

tic process move from index 𝑖 to index 𝑖 + 1. Given a stochastic

process {S(𝑡, 𝜔) : 𝑡 ∈ 𝑇 }, then for any point 𝜔 ∈ Ω, the mapping

S(·, 𝜔) : 𝑇 → 𝑆, is called a realization, or a sample trajectory of the

stochastic process {S(𝑡, 𝜔) : 𝑡 ∈ 𝑇 }. We assume that the dynamics

of the system is Markovian. This assumption is not strict as most

systems of interest – Markov chains, stochastic hybrid systems

(without non-determinism), and stochastic difference equations –

are Markovian or can be made so by augmenting the state space.

2.2 Signal Temporal Logic
System requirements can be expressed via Signal Temporal Logic

(STL) [15, 24], which enables the specification of properties of dense-

time, real-valued signals, and the automatic generation of monitors

for testing properties on individual trajectories. The rationale of

STL is to transform real-valued signals into Boolean ones, using

formulae built on the following STL syntax: 𝜙 := 𝑡𝑟𝑢𝑒 | ` | ¬𝜙 | 𝜙 ∧
𝜙 | 𝜙 𝑈𝐼𝜙, where 𝐼 ⊆ T is a temporal interval, either bounded,

𝐼 = [𝑎, 𝑏], or unbounded, 𝐼 = [𝑎, +∞), for any 0 ≤ 𝑎 < 𝑏. Atomic

propositions ` are (non-linear) inequalities on the states of a signal

®𝑠 at a time 𝑡 , ` = (𝑔(®𝑠 (𝑡)) > 0), where 𝑔 : 𝑆 → R and ®𝑠 (𝑡) is a state
in 𝑆 . From this essential syntax, it is easy to define other operators,

used to abbreviate the syntax in an STL formula: 𝑓 𝑎𝑙𝑠𝑒 := ¬𝑡𝑟𝑢𝑒 ,
𝜙 ∨𝜓 := ¬(¬𝜙 ∧¬𝜓 ), 𝐹𝐼 := 𝑡𝑟𝑢𝑒 𝑈𝐼𝜙 and𝐺𝐼 := ¬𝐹𝐼¬𝜙 . Monitoring

the satisfaction of a formula is done recursively by leveraging the

tree structure of the STL formula. The satisfaction relation is defined

as follows.

(®𝑠, 𝑡) |= ` ⇔ 𝑔(®𝑠 (𝑡)) > 0

(®𝑠, 𝑡) |= ¬𝜙 ⇔ ¬((®𝑠, 𝑡) |= 𝜙)
(®𝑠, 𝑡) |= 𝜙1 ∧ 𝜙2 ⇔ (®𝑠, 𝑡) |= 𝜙1 ∧ (®𝑠, 𝑡) |= 𝜙2
(®𝑠, 𝑡) |= 𝜙1𝑈𝑎,𝑏𝜙2 ⇔ ∃ 𝑡 ′ ∈ [𝑡 + 𝑎, 𝑡 + 𝑏] s.t. (®𝑠, 𝑡 ′) |= 𝜙2∧

∀ 𝑡 ′′ ∈ [𝑡, 𝑡 ′], (®𝑠, 𝑡 ′′) |= 𝜙1
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Quantitative semantics. The robustness of a trajectory quantifies

the level of satisfaction w.r.t. 𝜙 . Positive robustness means that

the property is satisfied, whereas negative robustness means that

the property is violated. Robustness is denoted as a function 𝑅𝜙 :

𝑆𝐻 ×𝑇 → R that maps a given signal ®𝑠 of length𝐻 , a formula 𝜙 and

a time 𝑡 to some real value, 𝑅𝜙 (®𝑠, 𝑡) ∈ R. It measures the maximum

perturbation that can be applied to the signal without changing its

truth value w.r.t. 𝜙 .

Similarly to the Boolean semantics, the quantitative semantics

of a formula 𝜙 over a signal ®𝑠 is defined recursively over the tree

structure of the STL formula, as described below:

𝑅` (®𝑠, 𝑡) = 𝑔(®𝑠 (𝑡))
𝑅¬𝜙 (®𝑠, 𝑡) = − 𝑅𝜙 (®𝑠, 𝑡)
𝑅𝜙1∧𝜙2

(®𝑠, 𝑡) =min(𝑅𝜙1
(®𝑠, 𝑡), 𝑅𝜙2

(®𝑠, 𝑡))

𝑅𝜙1𝑈 [𝑎,𝑏 ]𝜙2
(®𝑠, 𝑡) = sup

𝑡 ′ ∈ [𝑡+𝑎,𝑡+𝑏 ]

(
min

(
𝑅𝜙2

(®𝑠, 𝑡 ′), inf

𝑡 ′′ ∈ [𝑡,𝑡 ′ ]
𝑅𝜙1

(®𝑠, 𝑡 ′′)
) )
.

The sign of 𝑅𝜙 indicates the Boolean satisfaction of signal ®𝑠 , and in

particular, we have

• 𝑅𝜙 (®𝑠, 𝑡) > 0 ⇒ (®𝑠, 𝑡) |= 𝜙 ;
• 𝑅𝜙 (®𝑠, 𝑡) < 0 ⇒ (®𝑠, 𝑡) ̸|= 𝜙 .

Given a stochastic process S = {S(𝑡, 𝜔), 𝑡 ∈ 𝑇 }, an STL require-

ment 𝜙 and a state 𝑠0 ∈ 𝑆 , the robustness over future evolutions of
the system starting from 𝑠0 is stochastically distributed according

to the conditional distribution

P
(
𝑅𝜙 (®𝑠, 0) | ®𝑠 (0) = 𝑠0

)
,

where ®𝑠 is a random signal given by the sequence of random vari-

ables (S(0, ·), S(1, ·), . . . , S(𝐻 − 1, ·)). For time 𝑘 , ®𝑠 (𝑘) = S(𝑘, ·) de-
notes the random variable corresponding to the state at time 𝑘 in ®𝑠 .
This conditional distribution captures the distribution of the STL

robustness values for trajectories of length 𝐻 starting in 𝑠0.

We now formulate the quantitative predictive monitoring problem:

from any state 𝑠∗ of the stochastic process, we aim to construct a

prediction interval guaranteed to include, with arbitrary probability,

the true STL robustness of any (unknown) stochastic trajectory

starting at 𝑠 . A formal statement of the problem is given below.

Problem 1 (Quantitative Predictive Monitoring). Given
a discrete-time stochastic process S = {S(𝑡, 𝜔), 𝑡 ∈ 𝑇 } over a state
space 𝑆 , temporal horizon 𝐻 , a significance level 𝛼 ∈ [0, 1] and an
STL formula 𝜙 , derive a monitoring function 𝐼 that maps any state
𝑠∗ ∼ S(·, ·) into an interval 𝐼 (𝑠∗) such that

P
(
𝑅𝜙 (®𝑠, 0) ∈ 𝐼 (𝑠∗) |®𝑠 (0) = 𝑠∗

)
≥ 1 − 𝛼.

We frame Problem 1 as a conditional quantile regression prob-

lem. This boils down to learning for a generic state 𝑠∗ an upper

and a lower quantile of the random variable 𝑅𝜙 (®𝑠, 0) induced by

®𝑠 conditioned on ®𝑠 (0) = 𝑠∗. We then use these two quantiles to

build the output of function 𝐼 in 𝑠∗. To ensure that such an interval

is well-calibrated, meaning that the probabilistic guarantees are

satisfied theoretically and empirically, we resort to the framework

of conformal prediction. These machine-learning techniques are

introduced in the next section.

3 BACKGROUND ON CONFORMAL
PREDICTION

Consider a generic supervised learning frameworkwhere𝑋 denotes

the input space,𝑌 the target space, and𝑍 = 𝑋×𝑌 . LetZ be the data-

generating distribution, i.e., the distribution of the points (𝑥,𝑦) ∈ 𝑍 .
We assume that the target 𝑦 of a point (𝑥,𝑦) ∈ 𝑍 is the result of the

application of a function 𝑓 ∗ : 𝑋 → 𝑌 , typically unknown or very

expensive to evaluate. The goal of a supervised learning algorithm

is to find a function 𝑓 : 𝑋 → 𝑌 that, from a finite set of observations,

learns to behave as similarly as possible to 𝑓 ∗ over the entire input
space. For an input 𝑥 ∈ 𝑋 , we denote with 𝑡 the true target value of
𝑥 and with 𝑦 the prediction by 𝑓 , i.e. 𝑦 = 𝑓 (𝑥). Test inputs, whose
unknown true target values we aim to predict, are denoted by 𝑥∗.
For the sake of clarity, we start by showing conformal prediction

approaches for deterministic predictors and then move to present

Conformalized Quantile Regression (CQR) [34], an approach to

handle the stochastic case.

Conformal predictions (CP) associate measures of reliability with

any traditional supervised learning problem, either regression or

classification [3, 36]. CP enriches point-wise predictions with pre-
diction regions with guaranteed validity.

Definition 1 (Prediction region). For significance level 𝛼 ∈
(0, 1) and test input 𝑥∗, the 𝛼-prediction region for 𝑥∗, Γ𝛼∗ ⊆ 𝑌 , is a
set of target values s.t.

P(𝑥∗,𝑦∗ )∼Z (𝑦∗ ∈ Γ𝛼∗ ) ≥ 1 − 𝛼. (1)

The idea of CP is to construct the prediction region by “inverting”

a suitable hypothesis test: given a test point 𝑥∗ and a tentative

target value 𝑦′, we exclude 𝑦′ from the prediction region only if it

is unlikely that 𝑦′ is the true value for 𝑥∗. The test statistic is given
by a so-called nonconformity function (NCF) 𝛿 : 𝑍 → R, which,
given a predictor 𝑓 and a point 𝑧 = (𝑥,𝑦), measures the deviation

between the true value 𝑦 and the corresponding prediction 𝑓 (𝑥).
In this sense, 𝛿 can be viewed as a generalized residual function. In

other words, CP builds the prediction region Γ𝛼∗ for a test point 𝑥∗
by excluding all targets 𝑡 ′ whose NCF values are unlikely to follow

the NCF distribution of the true targets:

Γ𝛼∗ =
{
𝑦′ ∈ 𝑌 | 𝑃𝑟 (𝑥,𝑦)∼Z

(
𝛿 (𝑥∗, 𝑦′) ≥ 𝛿 (𝑥,𝑦)

)
> 𝛼

}
. (2)

This prediction region is guaranteed to contain the true (unknown)

value 𝑦∗ with confidence 1 − 𝛼 . The probability term in Eq. (2)

is often called the p-value. From a practical viewpoint, the NCF

distribution 𝑃𝑟 (𝑥,𝑦)∼Z (𝛿 (𝑥,𝑦)) cannot be derived in an analytical

form, and thus we use an empirical approximation derived using

a sample 𝑍𝑐 of Z. This approach is called inductive CP [26] and

𝑍𝑐 is referred to as calibration set. CP’s theoretical guarantees hold
under the exchangeability assumption (a “relaxed” version of i.i.d.)

by which the joint probability of any sample of Z is invariant to

permutations of the sampled points.

Validity and Efficiency. CP performance is measured via two

quantities: 1) validity (or coverage), i.e. the empirical error rate

observed on a test sample, which should be as close as possible

to the significance level 𝛼 , and 2) efficiency, i.e. the size of the

prediction regions, which should be small. CP-based prediction

regions are automatically valid, whereas the efficiency depends

3



on the chosen nonconformity function and on the accuracy of the

underlying model.

3.1 Conformal Prediction for Regression
In regression problems, we have a continuous target space 𝑌 ⊆ R𝑛 .
The inductive CP algorithm is divided into an offline phase, exe-

cuted only once, and an online phase, executed for every test point

𝑥∗. In the offline phase (steps 1–3 below), we train the classifier 𝑓

and construct the calibration distribution, i.e., the empirical approx-

imation of the NCF distribution. In the online phase (steps 4–5), we

derive the prediction region for 𝑥∗ using the computed regressor

and distribution.

(1) Draw sample 𝑍 ′
ofZ. Split 𝑍 ′

into training set 𝑍𝑡 and cali-

bration set 𝑍𝑐 .

(2) Train regressor 𝑓 using 𝑍𝑡 . Use 𝑓 to define an NCF 𝛿 .

(3) Construct the calibration distribution by computing, for each

𝑧𝑖 ∈ 𝑍𝑐 , the NCF score 𝛽𝑖 = 𝛿 (𝑧𝑖 ).
(4) Identify the critical value 𝛽 (𝛼 ) of the calibration distribution,

i.e. its empirical (1 − 𝛼)-quantile, or the ⌊𝛼 · ( |𝑍𝑐 | + 1)⌋-th
largest calibration score.

(5) Return the prediction region

Γ𝛼∗ = 𝑓 (𝑥∗) ± 𝛽 (𝛼 ) . (3)

Notice that such prediction intervals have the same width (𝛽 (𝛼 ) )
for all inputs. A natural NCF in regression is the norm of the

difference between the real and the predicted target value, i.e.,

𝛿 (𝑥) = | |𝑦 − 𝑓 (𝑥) | |.

Predictive uncertainty. A CP-based prediction region provides a

set of plausible predictions with statistical guarantees, and as such,

also captures the uncertainty about the prediction. The size of the

prediction region is determined by the chosen significance level 𝛼 .

Specifically, from Eq. (3) we can see that, for levels 𝛼1 ≥ 𝛼2, the

corresponding prediction regions are such that Γ𝛼1 ⊆ Γ𝛼2
, as a

smaller 𝛼 yields a larger critical value 𝛽 (𝛼 ) .

3.2 Conformalized Quantile Regression
We now switch to the stochastic setting. Let us consider a proba-

bilistic function mapping an input 𝑥 ∈ 𝑋 into a distribution over

the target space 𝑌 .

Quantile Regression. The aim of conditional Quantile Regression

(QR) is to estimate a given quantile of such a distribution over 𝑌

conditional on an input𝑥 ∈ 𝑋 . Let 𝐹 (𝑦′ |𝑥 = 𝑥 ′) := P(𝑦 ≤ 𝑦′ |𝑥 = 𝑥 ′)
be the conditional distribution function of 𝑦 given 𝑥 . Then, the 𝛼-th

conditional quantile function is defined as

𝑞𝛼 := inf{𝑦′ ∈ R | 𝐹 (𝑦′ |𝑥 = 𝑥 ′) ≥ 𝛼}. (4)

Given a significance level 𝛼 , we consider lower and upper quan-

tiles w.r.t. 𝛼𝑙𝑜 = 𝛼/2 and 𝛼ℎ𝑖 = 1 − 𝛼/2, respectively. We define

the desired prediction interval as 𝑃𝐼 (𝑥) := [𝑞𝛼𝑙𝑜 (𝑥), 𝑞𝛼ℎ𝑖 (𝑥)]. By
construction, this interval satisfies

P(𝑦 ∈ 𝑃𝐼 (𝑥 ′) |𝑥 = 𝑥 ′) ≥ 1 − 𝛼. (5)

Since the prediction interval is conditional on the input, the length

of the interval is not fixed in general and changes at different values

of 𝑥 . QR infers such prediction interval from the data. In particular,

estimating the quantiles can be expressed as approximating the

quantile function and thus it can be framed as an optimization

problem. In a nutshell, the idea is to propose a parametric function

𝑓 (𝑥 ;\ ) as a candidate approximator for 𝑞𝛼 (𝑥) and then optimize

over its parameters \ so that it closely resembles the quantile func-

tion. The optimization problem can be formally expressed as finding

the optimal parameters
ˆ\ such that

ˆ\ = argmin

\

[
1

𝑛

∑︁
𝑖

L𝛼 (𝑌𝑖 , 𝑓 (𝑋𝑖 ;\ )) + G(\ )
]
,

where L𝛼 is the check or pinball loss, defined as

L𝛼 (𝑦,𝑦) = 𝛼 max(𝑦 − 𝑦, 0) + (1 − 𝛼)max(𝑦 − 𝑦, 0), (6)

and G is an optional regularization term. In this work, we use

deep neural networks (NN) as candidate parametric approximators

𝑓 (·, \ ) of the quantile function and train them using Eq. (6) as loss

function. Once trained, the output of 𝑓 (𝑥 ; ˆ\ ) is a prediction 𝑞𝛼 (𝑥)
of the conditional 𝛼-th quantile. In general, each quantile requires

the training of a different neural network. However, one could also

train a single multi-output NN that learns to approximate multiple

quantile functions at the same time. The multi-output objective

function is obtained by averaging over the respective losses. In this

work, we decide to simultaneously learn 𝑞𝛼𝑙𝑜 , 𝑞0.5 (the median) and

𝑞𝛼ℎ𝑖 , where for a choice of 𝛼 ∈ (0, 0.5), 𝛼𝑙𝑜 = 𝛼 and 𝛼ℎ𝑖 = 1 − 𝛼 .
The loss then becomes

L𝛼 (𝑦,𝑦) = 1

3
· (L𝛼𝑙𝑜 (𝑦,𝑦) + L0.5 (𝑦,𝑦) + L𝛼ℎ𝑖 (𝑦,𝑦)) .

In general, a single NN could simultaneously learn even a larger

number of quantiles.

Conformalized Quantile Regression. The goal of Conformalized

Quantile Regression (CQR) is to adjust the QR prediction interval

so that it is guaranteed to contain the (1 − 𝛼) mass of probability,

i.e. to satisfy (5). As for CP, we divide the dataset 𝑍 ′
in a training

set 𝑍𝑡 and a calibration set 𝑍𝑐 . We train the QR 𝑓 (·;\ ) over 𝑍𝑡 and
on 𝑍𝑐 we compute the nonconformity scores as

𝐸𝑖 := max{𝑞𝛼𝑙𝑜 (𝑥𝑖 ) − 𝑦𝑖 , 𝑦𝑖 − 𝑞𝛼ℎ𝑖 (𝑥𝑖 ) | (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝑍𝑐 }. (7)

In our notation, 𝑞𝛼𝑙𝑜 (𝑥) and 𝑞𝛼𝑙𝑜 (𝑥) denotes the two outputs of

𝑓 (𝑥 ; ˆ\ ). The conformalized prediction interval is thus defined as

𝐶𝑃𝐼 (𝑥∗) = [𝑞𝛼𝑙𝑜 (𝑥∗) − 𝜏, 𝑞𝛼ℎ𝑖 (𝑥∗) + 𝜏],
where 𝜏 is the (1 − 𝛼) (1 + 1/|𝑍𝑐 |)-th empirical quantile of {𝐸𝑖 : 𝑖 ∈
𝑍𝑐 }.

In the following, we will abbreviate with PI a (non-calibrated)
QR prediction interval and with CPI a (calibrated) conformalized

prediction interval.

Remark 1. This nonconformity function, and thus 𝜏 , can be nega-
tive and thus the conformalized prediction interval can be tighter than
the original prediction interval. This means that the CPI can be more
efficient than the PI, where the efficiency is the average width of the
prediction intervals over a test set. The CPI has guaranteed coverage
(the PI does not), meaning P(𝑥∗,𝑦∗ )∼Z (𝑦∗ ∈ 𝐶𝑃𝐼 (𝑥∗)) ≥ 1 − 𝛼 .

Remark 2. In principle, one could use traditional CP for regression
(see Section 3.1) to obtain valid prediction intervals for the stochastic
case. The main advantage of CQR is that it produces CPIs that are
adaptive to heteroscedasticity, i.e., they account for the fact that the
variability in the output may be affected by the value of the input.
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Figure 1: Diagram illustrating the generation of the dataset.

On the other hand, intervals produced by CP for regression have fixed
sizes and hence, do not account for heteroscedasticity. Moreover, the
PI of CP for regression would be relative to the conditional mean of
the STL robustness, not to the conditional quantile range that we are
interested in.

4 QUANTITATIVE PREDICTIVE MONITORING
We present a method to solve Problem 1

3
. For a given a discrete-

time stochastic process S = {S(𝑡, 𝜔), 𝑡 ∈ 𝑇 } over state space 𝑆 and
a state 𝑠 ∼ S(𝑘, ·) at time 𝑘 ∈ 𝑇 , the stochastic evolution (bounded

by horizon 𝐻 ) of the system starting at 𝑠 can be described by the

conditional distribution

P(®𝑠 | ®𝑠 (𝑘) = 𝑠),
where ®𝑠 = (®𝑠 (𝑘), . . . , ®𝑠 (𝑘 + 𝐻 )) ∈ 𝑆𝐻 is the random trajectory of

length 𝐻 starting at time 𝑡𝑘 , ®𝑠 (𝑖) = S(𝑖, ·) for any 𝑖 ∈ 𝑇 .
The quantitative STL semantics inherits the stochasticity from

the dynamics of the system. For an STL property 𝜙 , we denote

with R𝜙 (𝑠) the random variable denoting the STL robustness value

relative to 𝜙 of trajectories starting from 𝑠 ∈ 𝑆 at time 𝑡𝑘 , i.e.,

R𝜙 (𝑠) ∼ P(𝑅𝜙 (®𝑠, 0) | ®𝑠 (𝑘) = 𝑠) .
Our conformal solution to the QPM aims at finding, for each

state 𝑠 ∈ 𝑆 of the system, a prediction region that covers a certain

probability mass of the STL robustness distribution R𝜙 (𝑠), see Prob-
lem 1. In simpler terms, we aim at monitoring how safe the system

is relative to the unknown and stochastic future evolution from its

current state 𝑠 . In this way, one can intervene preemptively on the

system in order to prevent any failures. However, the distribution

of R𝜙 (𝑠) is impossible to compute exactly and in an efficient man-

ner. Thus, we resort to Conformalized Quantile Regression (CQR),

introduced in Section 3.2, to compute a prediction interval that,

for each state 𝑠 , is guaranteed to cover a desired level (1 − 𝛼) of
the probability mass for the conditional distribution of robustness

values R𝜙 (𝑠).
In short, our solution consists of four steps, detailed below:

dataset generation, QR training, residuals computation, and inference.
Note that only the last step, which is by far the quickest, is per-

formed online, the others are performed offline and hence, do not

affect runtime performance.

Dataset generation. In this step, we collect data for training the

QR function and constructing the calibration set. To do so, we

perform Monte-Carlo simulations of the process in order to obtain

an empirical approximation of R𝜙 (𝑠).

3
When the context is clear, we’ll use the term “Quantitative Predictive Monitoring” to

refer to both the problem and the solution method.

Figure 2: Overview of the conformal quantitative predictive
monitoring technique.

In particular, we randomly sample 𝑁 states 𝑠1, . . . , 𝑠𝑁 ∼ S(·, ·).
Then, for each state 𝑠𝑖 , we simulate 𝑀 trajectories of length 𝐻 ,

®𝑠1
𝑖
, . . . , ®𝑠𝑀

𝑖
where ®𝑠 𝑗

𝑖
is a realization of P(®𝑠 | ®𝑠 (𝑘) = 𝑠𝑖 ), and compute

the robustness value 𝑅𝜙 (®𝑠
𝑗
𝑖
, 0) of each of these trajectories. We note

that {𝑅𝜙 (®𝑠
𝑗
𝑖
)}𝑀

𝑗=1
is an empirical approximation of R𝜙 (𝑠𝑖 ).

Moreover, for a choice of𝛼 ∈ (0, 1), we derive empirical quantiles

𝑞𝑖
𝛼/2 and 𝑞

𝑖
1−𝛼/2 from samples 𝑅𝜙 (®𝑠1𝑖 ), . . . , 𝑅𝜙 (®𝑠

𝑀
𝑖
) and use these to

label the state into one of safe, unsafe, or risky: if the trajectories
starting from 𝑠𝑖 satisfy 𝜙 with probability above 1−𝛼/2 (i.e., 𝑞𝑖

𝛼/2 >

0), then we label 𝑠𝑖 as ℓ𝑖 = +1 (safe); if the probability of satisfaction
rather than violation here is below 𝛼/2 (i.e., 𝑞𝑖

1−𝛼/2 < 0), then we

label 𝑠𝑖 as ℓ𝑖 = −1 (unsafe); otherwise, we use label ℓ𝑖 = 0 (risky).

The dataset is thus defined as

𝑍𝜙 =

{(
𝑠𝑖 ,

(
𝑅𝜙 (®𝑠1𝑖 ), . . . , 𝑅𝜙 (®𝑠

𝑀
𝑖 )

)
, ℓ𝑖

)
, 𝑖 = 1, . . . , 𝑁

}
. (8)

Fig. 1 shows an overview of the steps needed to generate the dataset.

The generation of the test set 𝑍
𝜙
𝑡𝑒𝑠𝑡 is very similar to that of 𝑍𝜙 .

The main difference is in that the number of trajectories that we

simulate from each state 𝑠 is much larger than 𝑀 . This allows us

to obtain a highly accurate empirical approximation of the distri-

bution of R𝜙 (𝑠), which we use as the ground-truth baseline in our

experimental evaluation
4
.

QR training and residuals computation. We divide the dataset 𝑍𝜙

into a training set 𝑍
𝜙
𝑡 and a calibration set 𝑍

𝜙
𝑐 . We then use 𝑍

𝜙
𝑡 to

train a QR that learns how to map states 𝑠 into three quantiles

𝑓 (𝑠; ˆ\ ) = {𝑞𝛼𝑙𝑜 (𝑠), 𝑞0.5 (𝑠), 𝑞𝛼ℎ𝑖 (𝑠)},
where 𝛼𝑙𝑜 = 𝛼/2 and 𝛼ℎ𝑖 = 1 − 𝛼/2. In order to better reconstruct

the shape of the target distribution, we also predict the median

quantile, 𝑞0.5 (𝑠).
We then apply CQR, i.e. we compute the residuals of the QR over

𝑍
𝜙
𝑐 , as described in Equation 7 of the previous section, and find the

critical residual value 𝜏 .

Inference. For a test state 𝑠∗, this step involves predicting the

relevant quantiles, 𝑞𝛼𝑙𝑜 (𝑠∗) and 𝑞𝛼ℎ𝑖 (𝑠∗), using the QR predictor

and correct the resulting interval using the critical residual value 𝜏 .

The calibrated interval returned at inference time becomes

𝐶𝑃𝐼 (𝑠∗) := [𝑞𝛼𝑙𝑜 (𝑠∗) − 𝜏, 𝑞𝛼ℎ𝑖 (𝑠∗) + 𝜏] ⊆ R

and it is guaranteed to contain the true unknown robustness value

with probability (1 − 𝛼).

4
In the limit of infinite sample size, the empirical approximation approaches the true

distribution
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4.1 Composing monitors for composite
properties

The above-described QPM approach is end-to-end, in that it directly

predicts the robustness of a fixed property 𝜙 . On one hand, this

is advantageous in that the monitor is tailored, and hence, highly

accurate at predicting 𝑅𝜙 but on the other hand, it lacks flexibil-

ity. Thus, it becomes natural to ask oneself whether and how two

predictive monitors trained for distinct properties 𝜙1 and 𝜙2 can

be combined in a compositional manner to construct a monitor for

a Boolean combination of the two properties, 𝜙1 ∧ 𝜙2 or 𝜙1 ∨ 𝜙2,
in such a way that the resulting monitor meets the desired proba-

bilistic guarantees and doesn’t require additional data collection or

training.

Here we propose two solutions to combine monitors for logical

conjunction and disjunction. Handling the negation of a property,

¬𝜙 , is rather simple as we can take the interval with opposite signs.

Therefore, we cover the basic Boolean logic. In what follows we will

use a superscript 𝜙𝑖 with 𝑖 = 1, 2 to distinguish predictors, datasets,

critical values, and prediction regions of the two properties.

1. Union of intervals. The first, simple, solution considers the

union of the two property-specific prediction intervals. Mathemati-

cally,

𝐶𝑃𝐼𝜙1,2
:= 𝐶𝑃𝐼𝜙1 ∪𝐶𝑃𝐼𝜙2 .

We now prove that 𝐶𝑃𝐼𝜙1,2
has a guaranteed coverage of (1 − 𝛼),

the same of 𝐶𝑃𝐼𝜙1
and 𝐶𝑃𝐼𝜙2

, for both 𝜙1 ∧ 𝜙2 and 𝜙1 ∨ 𝜙2.

Proposition 1. Given two properties 𝜙1 and 𝜙2, let 𝐶𝑃𝐼𝜙𝑖 be the
monitor that maps each state 𝑠 ∈ 𝑆 into a prediction interval for
R𝜙𝑖

(𝑠) with coverage 1 − 𝛼 . Then, the interval 𝐶𝑃𝐼𝜙12
:= 𝐶𝑃𝐼𝜙1 ∪

𝐶𝑃𝐼𝜙2 is a valid prediction interval for both R𝜙1∧𝜙2
and R𝜙1∨𝜙2

, i.e.,

P
(
𝑅𝜙1∧𝜙2

(𝑠) ∈ 𝐶𝑃𝐼𝜙12 (𝑠)
)
≥ 1 − 𝛼 (9)

and
P
(
𝑅𝜙1∨𝜙2

(𝑠) ∈ 𝐶𝑃𝐼𝜙12 (𝑠)
)
≥ 1 − 𝛼 (10)

for every state 𝑠 ∈ 𝑆 .

The proof is provided in the Supplementary Material
5
.

2. Calibrated interval arithmetic. The second solution lever-

ages the fact that CP (and CQR) can provide valid intervals on top

of any predictor. Hence, we build a monitor for the composite prop-

erty by first combining the predictors of the individual properties

and then re-calibrating such obtained predictor. In particular, for

𝜙1 ∧ 𝜙2 we define for a state 𝑠 ∈ 𝑆 the prediction interval as

𝑃𝐼𝜙1∧𝜙2 (𝑠) :=
[
min

(
𝑞
𝜙1

𝛼𝑙𝑜
(𝑠), 𝑞𝜙2

𝛼𝑙𝑜
(𝑠)

)
,min

(
𝑞
𝜙1

𝛼ℎ𝑖
(𝑠), 𝑞𝜙2

𝛼ℎ𝑖
(𝑠)

) ]
.

See Fig. 3 for a schematic visualization. We then compute the resid-

uals of 𝑃𝐼𝜙1∧𝜙2
over the calibration set, obtaining the critical value

𝜏𝜙1∧𝜙2
and the conformalized prediction interval

𝐶𝑃𝐼𝜙1∧𝜙2 (𝑠) :=
[
min

(
𝑞
𝜙1

𝛼𝑙𝑜
(𝑠), 𝑞𝜙2

𝛼𝑙𝑜
(𝑠)

)
− 𝜏𝜙1∧𝜙2 ,

min

(
𝑞
𝜙1

𝛼ℎ𝑖
(𝑠), 𝑞𝜙2

𝛼ℎ𝑖
(𝑠)

)
+ 𝜏𝜙1∧𝜙2

]
,

which has a guaranteed coverage of 1 − 𝛼 .
5
Supplementary Material is available online in [11].

Figure 3: Overview of the combination of the conformal quan-
titative predictive monitors for two different properties 𝜙1
and 𝜙2.

The procedure is the same for property 𝜙1 ∨ 𝜙2, with the only

difference that the prediction interval is given by

𝑃𝐼𝜙1∨𝜙2 (𝑠) :=
[
max

(
𝑞
𝜙1

𝛼𝑙𝑜
(𝑠), 𝑞𝜙2

𝛼𝑙𝑜
(𝑠)

)
,max

(
𝑞
𝜙1

𝛼ℎ𝑖
(𝑠), 𝑞𝜙2

𝛼ℎ𝑖
(𝑠)

) ]
.

Solution (2) is expected to produce tighter intervals compared to

solution (1)
6
. On the other hand, solution (2) requires the generation

of the respective calibration set, 𝑍
𝜙1∧𝜙2

𝑐 or 𝑍
𝜙1∨𝜙2

𝑐 , which solution

(1) does not need.

We remark that such compositionality is defined only for Boolean

connectives and not for temporal operators.

5 EXPERIMENTAL RESULTS
We experimentally evaluate the proposed QPM over a benchmark

of four discrete-time stochastic processes with varying degrees of

complexity.

5.1 Case Studies
The first two case studies are selected from the stochastic hybrid

benchmarks presented in the ARCH-COMP competitions [1]. We

then consider two stochastic hybrid systems with modular nature

where the complexity can arbitrarily grow, making them suitable to

test the scalability of the proposed solution. See the Supplementary

Material (SM) for more details about the case studies presented

below.

Automated Anaesthesia Delivery. (AAD) [1] is a 3-

dimensional discrete-time stochastic process with state

𝑠 (𝑡) = (𝑞(𝑡), 𝑣 (𝑡)) evolving according to linear dynamics

with a controller and a Gaussian disturbance. The properties to be

monitored are: 𝜙1 = 𝐺 [0,𝑡𝐻 ] (𝑣 ∈ Safe) and 𝜙2 = 𝐹 [0,𝑡𝐻 ] (𝑣1 < 𝑣2),
where Safe = [1, 6; 0, 10; 0, 10], 𝐻 = 60𝑚𝑖𝑛, Δ𝑡 = 20𝑠 . The controller

is defined as follows: 𝑞 = 7 if 𝑣1 < 3.5 and 𝑞 = 3.5 if 𝑣1 ≥ 3.5.

Heated Tank. (HT) is a stochastic hybrid system composed of

a tank containing a liquid whose level is influenced by two inflow

pumps 𝑃1 and 𝑃2 and an outflow valve𝑊 , all managed by a con-

troller𝐶 (see Fig. 4). The liquid should absorb and transport the heat

from a heat source. The discrete state space is five-dimensional. The

continuous state space is two-dimensional and composed of a state

𝑣 (𝑡) = (𝑣ℎ𝑒𝑖𝑔ℎ𝑡 (𝑡), 𝑣𝑡𝑒𝑚𝑝 (𝑡)) representing the liquid height and the

liquid temperature. The general model adopted for this heated tank

system is that of piece-wise deterministic Markov processes, where

the continuous part evolves according to switching differential equa-

tions. The switching is managed by the controller and by two expo-

nentially distributed failure events. The property to be monitored is:

6
In particular, the PI of solution (2) is strictly tighter than the CPI of solution (1).
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Figure 4: Scheme of the heated tank system whose compo-
nents can undergo exponentially distributed failures.

the liquid level is always in the safe range Safe = [Hdryout ,Hoverflow]
and the temperature is never too high and it can be expressed by the

STL property 𝜙 = 𝐺 [𝑡0,𝑡𝐻 ]
(
(𝑣ℎ𝑒𝑖𝑔ℎ𝑡 ∈ Safe) ∧ (𝑣𝑡𝑒𝑚𝑝 ≤ 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡 )

)
.

Multi-Room Heating. (MRH) [2, 16, 25]: discrete-time stochas-

tic hybrid system modeling the temperature evolution in a building

with ℎ rooms. In each room is located a heater that switches be-

tween on and off depending on the current temperature in the

room. The state of the system is hybrid 𝑆 = 𝑄 ×𝑉 : the discrete state
represents the status of the ℎ heaters, 𝑄 = {𝑜𝑛, 𝑜 𝑓 𝑓 }ℎ , and the con-

tinuous state represents the temperatures in the ℎ rooms, 𝑉 = Rℎ .
The average temperature evolves according to a stochastic differ-

ence equation that depends on the rooms’ layout (see Fig. 5 (left)).

The room-specific requirement to be monitored is: the temperature

𝑣𝑖 of room 𝑖 always stays in a desirable range [𝑉 𝑙𝑏
𝑖
,𝑉𝑢𝑏

𝑖
] and it can

be expressed by the STL property 𝜙𝑖 = 𝐺 [0,𝑡𝐻 ] (𝑉 𝑙𝑏
𝑖

≤ 𝑣𝑖 ≤ 𝑉𝑢𝑏
𝑖

).

Gene Regulatory Network. (GRN) [4, 20]: discrete-time stochas-

tic hybrid system modeling a genetic regulatory network composed

of ℎ genes that produce respectively ℎ proteins that repress each

other in a cyclic fashion (see Fig. 5 (right)). Each gene could either

be on, actively producing its protein, or off, expression is deacti-

vated when a repressing protein binds to the gene. The state is thus

hybrid 𝑆 = 𝑄 ×𝑉 : the state of the genes is discrete,𝑄 = {𝑜𝑛, 𝑜 𝑓 𝑓 }ℎ ,
whereas the proteins count is continuous, 𝑉 = Nℎ . Protein counts

change deterministically according to a linear differential equation,

whereas transitions between modes follow a Markov jump process.

The gene-specific requirement to monitor is: the count 𝑣𝑖 of protein

𝑖 stabilize under a certain threshold 𝑉𝑢𝑏
𝑖

and it can be expressed by

the STL property 𝜙𝑖 = 𝐺 [𝑡𝐻/2,𝑡𝐻 ] (𝑣𝑖 ≤ 𝑉𝑢𝑏
𝑖

).

Figure 5: Schematic visualization of the layout of the two
modular case studies: multi-room heating (left) and gene
regulatory network (right).

5.2 Evaluation metrics
We want our method to be capable of working at runtime in safety-

critical applications, which translates into the need for high reliabil-

ity and high computational efficiency in producing the predictive

intervals and in calibrating them. We emphasize that the time re-

quired to train the quantile regressor and to compute the calibration

score 𝜏 does not affect its runtime efficiency, as it is performed in

advance (offline) only once. Once trained, the time needed to have

a prediction interval for the current state is simply the time needed

to evaluate a neural network with a rather simple architecture. This

time is almost negligible (in the order of microseconds on GPU).

In addition, we do not want an over-conservative predictor as an

unnecessarily large interval would reduce the effectiveness of our

QPM. Keeping that in mind, we introduce some relevant metrics to

evaluate the performances of our QPM.

Accuracy. We compare the sign of the predicted interval with the

sign ℓ of the empirical quantile range over the test set. In simpler

words, the latter can be interpreted as a classification accuracy

over the sign of the prediction intervals and the dataset labels ℓ .

If both the real and the estimated interval are risky, i.e. if they

both straddle zero, then the prediction is correct. If the signs of the

two intervals are opposite the prediction is wrong. On the other

hand, if the state is either safe or unsafe and it is predicted as risky,

we label the prediction as uncertain. Moreover, we analyze the

percentage of false positive (FP) errors, the most dangerous ones as

they compromise the safety of the system. A false positive occurs

when the state is either unsafe or risky but it is predicted to be safe.

Coverage and efficiency. We experimentally check that the guar-

anteed validity of CQR is empirically met in the test evaluation.

The efficiency represents the average width of the prediction inter-

vals over the test set. In general, the larger the prediction interval

the more conservative the CQR predictions. If the prediction in-

tervals over the robustness values are always very large we have

little information about the satisfaction of the property 𝜙 . How-

ever, the predictive efficiency must be compared with the width of

the empirical quantile range (EQR), i.e. the interval that contains

(1−𝛼) of the simulated robustness values. We can thus measure the

conservativeness as the difference in width between the predicted

efficiency and the EQR width. We also compare the coverage and

the efficiency of QR against those of CQR.

Overall, we aim at reaching high accuracy in the reconstruction

of the robustness distribution, which translates into a high per-

centage of correct predictions, i.e. intervals with agreeing signs.

However, it is even more important to reduce the number of wrong

predictions, especially false positives as they can compromise the

safety of the system. We rather have more uncertain predictions

but avoid erroneous ones. We check if the statistical guarantees

about the coverage are met empirically by measuring the robust-

ness of how many trajectories fall inside the predicted interval. Let

us remark that the coverage and the percentage of correct predic-

tions denote two different quantities and that the efficiency is not a

percentage but the average width of the prediction interval mea-

suring how conservative the predictor is compared to the empirical

efficiency (EQR width).

5.3 Experiments
The workflow can be divided into steps: (1) define the model of the

stochastic process, (2) generate the synthetic datasets 𝑍𝜙 (simulate

and compute STL robustness), (3) train the QR, (4) compute the

calibration score 𝜏 (obtaining CQR prediction intervals), (5) evaluate

both the QR and the CQR on a test set 𝑍
𝜙
𝑡𝑒𝑠𝑡 .
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Experimental settings. The entire pipeline is implemented in

Python. The quantitative semantics of pcheck library
7
is used to

quantify the satisfaction of a certain formula for a specific trajectory.

The neural networks of the quantile regressors are trained with

PyTorch [27]. The experiments were conducted on a shared virtual

machine with a 32-Core Processor, 64GB of RAM and an NVidia

A100 GPUwith 20GB, and 8 VCPU. Our implementation is available

at https://github.com/ailab-units/CQR_Quantitative_NPM.

Datasets. For every model, we generate a dataset 𝑍𝜙 with size

that increases with the dimensionality of the model. In general, the

chosen datasets are not too large. In particular, being 𝑛 the model’s

dimension, we sample 𝑁𝑡𝑟𝑎𝑖𝑛 = 𝑛 · 1000 states for the training set,
𝑁𝑐𝑎𝑙 = 𝑛 · 500 states for the calibration set and 𝑁𝑡𝑒𝑠𝑡 = 𝑛 · 100 states
for the test set. From each state, we simulate𝑀 = 50 trajectories for

the training and for the calibration set and𝑀𝑡𝑒𝑠𝑡 = 500 trajectories

for the test set. Data are scaled to the interval [−1, 1] to avoid

sensitivity to different scales.

Training details. In all the experiments we use the same neural

network architecture. The network is composed of 3 hidden layers

with 20 neurons each. We use the Adam optimizer with a learning

rate of 0.0005 and a dropout rate of 0.1 applied on each layer. We

use a LeakyReLU activation function with slope 0.01 and train the

network for 500 epochs over batches of size 512.

Offline costs. The offline overhead consists of the time needed to

generate the dataset and the time needed to train the neural network.

The cost of the latter depends on the chosen architecture and on the

dataset size. In our experiments, it ranges from 30minutes to 6 hours

for larger models. On the other hand, the time needed to generate

the dataset depends on the time needed to simulate the trajectories

and label them. These quantities are influenced by many factors:

the chosen horizon 𝐻 , the complexity of the STL property, and

the complexity of the stochastic dynamics. For instance, the time

needed to generate a dataset of 2000 × 50 = 100𝐾 = observations

for the 𝐺𝑅𝑁2 model is double (1 hour) compared to the 𝑀𝑅𝐻2

model (30minutes), even if they have the same dimensionality. The

dataset generation time explodes easily around 20 hour for 𝐺𝑅𝑁 6

and𝑀𝑅𝐻8.

Performance evaluation. We choose in all the experiments 𝛼 =

0.1, so that 𝛼𝑙𝑜 = 0.05 and 𝛼ℎ𝑖 = 0.95. The results are presented with

the following structure. For each case study and for each property

we train the QR and then recalibrate the predicted interval bymeans

of CQR. For the modular case studies, i.e. MRH and GRN, we have

a property regarding each individual component, i.e. for each room

and for each gene respectively. To analyze how the performance

scales with the dimensionality of the underlying system, we test

our QPM over different configurations of the modular system. In

particular, we consider a multi-room heating (MRH) system with

respectively 2, 4, and 8 rooms and a gene regulatory net (GRN)

system with 2, 4, and 6 genes.

5.3.1 Results. Fig. 6 (additional figures in SM) shows a comparison

of the predicted intervals, both PI (cyan) and CPI (purple), over 40

states randomly sampled from the test set and compare them with

the empirical samples (orange) collected in the test set. Intervals

7
https://github.com/simonesilvetti/pcheck

AAD correct uncertain wrong FP coverage efficiency EQR width

QR 83.00 14.50 2.50 2.50 87.86 0.1342 0.0497

CQR 83.00 14.50 2.50 2.50 87.98 0.1349

AAD-F correct uncertain wrong FP coverage efficiency EQR width

QR 95.50 3.50 1.00 1.00 89.92 0.4333 0.1942

CQR 95.50 3.50 1.00 1.00 91.28 0.4495

HT correct uncertain wrong FP coverage efficiency EQR width
QR 99.00 1.00 0.00 0.00 88.70 0.2778 0.2583

CQR 99.00 1.00 0.00 0.00 90.47 0.2812

Table 1: Correct, uncertain, wrong and coverage represent
percentage values (%). EQR width denotes the average width
of the empirical quantile range over the test set.

MRH2 correct uncertain wrong FP coverage efficiency EQR width

Room 1

QR 99.50 0.00 0.50 0.00 89.25 0.3221 0.3167

CQR 99.50 0.00 0.50 0.00 90.19 0.3313

Room 2

QR 86.50 11.00 2.50 2.50 90.94 0.2568 0.1644

CQR 86.50 11.00 2.50 2.50 91.58 0.2591

Room 1 ∧ Room 2

QR 99.50 0.00 0.50 0.00 89.40 0.3137 0.3026

CQR 99.50 0.00 0.50 0.00 90.33 0.3225

MIN 99.50 0.00 0.50 0.0 90.64 0.3230

UNION - - - - 93.17 0.3169

MRH4 correct uncertain wrong FP coverage efficiency EQR width

Room 1

QR 100.00 0.00 0.00 0.00 89.71 0.2945 0.2788

CQR 100.00 0.00 0.00 0.00 90.03 0.2967

Room 2

QR 91.00 6.75 2.25 2.25 90.10 0.2129 0.1540

CQR 91.00 6.75 2.25 2.25 90.31 0.2151

Room 3

QR 94.50 4.75 0.75 0.75 91.21 0.2170 0.1707

CQR 94.50 4.25 1.25 1.00 90.40 0.2117

Room 4

QR 100.00 0.00 0.00 0.00 90.70 0.3019 0.2766

CQR 100.00 0.00 0.00 0.00 90.14 0.2970

Room 1 ∧ Room 2

QR 100.00 0.00 0.00 0.00 90.19 0.2820 0.2547

CQR 100.00 0.00 0.00 0.00 90.70 0.2861

MIN 100.00 0.00 0.00 0.00 90.13 0.2747

UNION - - - - 93.50 0.2815

Room 1 ∧ Room 3

QR 100.00 0.00 0.00 0.00 89.57 0.2818 0.2584

CQR 100.00 0.00 0.00 0.00 90.04 0.2860

MIN 100.00 0.00 0.00 0.00 90.17 0.2764

UNION - - - - 93.96 0.2850

Room 1 ∧ Room 4

QR 100.00 0.00 0.00 0.00 90.73 0.3016 0.2760

CQR 100.00 0.00 0.00 0.00 90.16 0.2965

MIN 100.00 0.00 0.00 0.00 89.59 0.2938

UNION - - - - 91.79 0.3336

Table 2: Multi room heating results with either two or four
rooms. Correct, uncertain, wrong and coverage represent
percentage values (%). EQR width denotes the average width
of the empirical quantile range over the test set.

above zero mean that the state is safe, intervals below mean that

the state is unsafe, whereas intervals that straddle zero mean that

the state is risky. Empirical samples that lie outside the EQR are

denoted in a lighter orange.
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Figure 6: Visualization of prediction intervals – cyan for QR and blue for CQR – over 40 randomly selected states (top) and for a
runtime evaluation (bottom) for the automated anesthesia delivery system (AAD-F) w.r.t. property 𝜙2 (eventually operator).

GRN2 correct uncertain wrong FP coverage efficiency EQR width

Gene 1

QR 90.00 6.50 3.50 3.50 88.95 0.8551 0.7998

CQR 89.50 7.00 3.50 3.50 89.94 0.8744

Gene 2

QR 86.00 11.50 2.50 1.00 89.55 0.5773 0.4229

CQR 86.00 11.50 2.50 1.00 89.59 0.5780

Gene 1 ∧ Gene 2

QR 81.50 16.50 2.00 0.00 88.18 0.6332 0.5266

CQR 81.50 16.50 2.00 0.00 88.25 0.6345

MIN 81.50 16.00 2.50 2.00 89.02 0.6432

UNION - - - - 93.88 0.6308

Table 3: Gene regulatory network results. Correct, uncertain,
wrong ∧ coverage represent percentage values (%). EQR width
denotes the average width of the empirical quantile range
over the test set.

Tables 1-4 (additional tables in SM) provide a detailed summary

of the performance and of the generalization capabilities of our QPM

method. In particular, they compare the accuracy (rate of correct,

uncertain, wrong and false positive predictions), the coverage and

the efficiency of our solution over all the different case studies.

We observe that the percentage of wrong and FP predictions

is extremely low in all the experimental configurations (always

lower than 4%). The percentage of uncertain prediction interval is,

in general, very low (lower than 10%). Some case studies make an

exception and present a high percentage of uncertain predictions

(around 30% of the test predictions). This happens because most of

the empirical quantile ranges in the test set have one of the two

extremes very close to zero (see SM for an intuitive visualization

of the problem). Therefore, even if numerical results may seem

to suggest that we have a poor reconstruction, in reality, we are

successfully capturing the fact that most of the states are on the

verge of violating the property.

From Tables 1- 4 (and SM) we can also experimentally observe

that CQR always meets the statistical guarantees: when QR is

over-conservative CQR refines the predicted interval (negative

𝜏), whereas when QR is over-confident CQR enlarge the predicted

interval (positive 𝜏 ). That is, the conformal recalibration adjusts the

width of the interval w.r.t. desired confidence level, reducing the

GRN4 correct uncertain wrong FP coverage efficiency EQR width

Gene 1

QR 93.25 4.25 2.50 2.50 89.69 0.5713 0.5062

CQR 93.00 4.50 2.50 2.50 90.00 0.5756

Gene 2

QR 90.75 6.50 2.75 2.75 89.49 0.5232 0.4359

CQR 90.75 6.50 2.75 2.75 89.09 0.5187

Gene 3

QR 100.00 0.00 0.00 0.00 89.04 0.3759 0.2620

CQR 100.00 0.00 0.00 0.00 90.74 0.3942

Gene 4

QR 91.75 6.25 2.00 1.25 90.49 0.3877 0.2820

CQR 91.75 6.25 2.00 1.25 90.46 0.3873

Gene 1 ∧ Gene 2

QR 85.50 10.75 3.75 3.50 89.13 0.5299 0.4723

CQR 85.50 11.00 3.50 3.25 89.43 0.5346

MIN 86.50 9.00 4.50 4.00 89.23 0.5196

UNION - - - - 91.44 0.5884

Gene 1 ∧ Gene 3

QR 92.75 4.25 3.00 3.00 89.22 0.5482 0.4763

CQR 92.75 4.25 3.00 3.00 89.30 0.5439

MIN 93.25 4.25 2.50 2.50 89.30 0.5334

UNION - - - - 91.40 0.5384

Gene 1 ∧ Gene 4

QR 86.00 10.00 4.00 2.50 88.22 0.4857 0.4133

CQR 85.25 10.75 4.00 2.75 89.06 0.4943

MIN 85.50 10.75 3.75 3.25 89.37 0.4708

UNION - - - - 90.60 0.5289

Table 4: Caption as in Table 3.

number of over-conservative predictions. The efficiencies of the PI

and CPI predicted intervals are compared to the width of the empir-

ical quantile range computed over the test set (EQR width column).

CQR produces intervals that are on average 34% more conservative

than the EQR, with a minimum of 0.3% and a maximum of 170%

(for the 𝐴𝐴𝐷). Recall that the efficiency is the width of the interval

and so lower values are in general more desirable.

The modular experiments,𝑀𝑅𝐻2, 𝑀𝑅𝐻4, 𝑀𝑅𝐻8, 𝐺𝑅𝑁 2,𝐺𝑅𝑁 4

and 𝐺𝑅𝑁6, allow us to analyse the compositionality of QPM over

the conjunction of properties (each property is room- or gene-

specific). Due to space limitations, we focus only on the conjunction

(∧ operator). The same analysis can be done for the disjunction (∨
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operator). In Tables 1- 4 (and SM), we compare the performances of

four different approaches: QR and CQR trained over the training set

𝑍
𝜙1∧𝜙2

𝑡 and calibrated over𝑍
𝜙1∧𝜙2

𝑐 , the minimumw.r.tinterval arith-

metic (MIN in tables) of the PI intervals calibrated once again over

𝑍
𝜙1∧𝜙2

𝑐 (solution (2) presented in Sec. 4.1), and finally the union

(UNION in tables) of the CPI intervals (solution (1) presented in

Sec. 4.1). Results confirm our intuition that the UNION approach

produces over-conservative predictions, i.e. intervals with high cov-

erage and high efficiency. The MIN approach, on the other hand,

provides better coverage (less conservative) and better efficiency

(comparable to that of CQR). In particular, the CQR approach pro-

duces intervals that are on average 12.50% more conservative than

the EQR, MIN’s intervals are on average 10% more conservative

than the EQR, and UNION’s intervals are on average 19% more

conservative, i.e. the intervals are wider.

Sequential data. All the results presented so far consider a dataset
of states independently sampled from a distribution S. By doing

so, we aim at quantifying the generalization capabilities of our

QPM. However, we are also interested in applying our QPM at

runtime to systems that are evolving in time. States will thus have

a temporal dependency, meaning that we lose the exchangeability

requirement behind the theoretical validity of the CPI. Fig. 6 (bot-

tom) – additional figures in SM –shows the performance of QPM

applied to such sequential data. In particular, we randomly sampled

a trajectory of length 20 and applied the QPM to each state in the

trajectory. We observe that QPM well captures the evolution of the

robustness values but it tends to be either slightly over-confident

or slightly over-conservative. This behaviour is typical of CP when

the data-generating distribution at test time differs from the one

used during the training and the calibration phase.

5.4 Discussion
In summary, we can see that the proposed QPM is effective in tack-

ling the scalability issues surrounding the predictive problem for

stochastic processes. The solution is inevitably approximate, as an

exact solution is unfeasible even for extremely simple stochastic

processes. In this sense, the statistical guarantees our method pro-

vides play a crucial role when dealing with safety-critical applica-

tions. We show that QPM performs reasonably well also at runtime

with sequentially generated data. We plan to further investigate

the theoretical guarantees of QPM when applied to sequential and

non-exchangeable settings. We stress that the proposed method-

ology is not strictly related to the chosen measure of robustness.

For instance, one could decide to focus on a notion of time ro-

bustness [21] and apply the same methodology described here for

spatial robustness.

6 RELATEDWORK
Learning-based approaches to runtime PM have been recently pro-

posed, including the so-called Neural Predictive Monitoring (NPM)

method [7, 8, 10, 12, 28]. In NPM, neural networks are used to infer

the Boolean satisfaction of a property and conformal prediction

(CP) are used to provide statistical guarantees. However, NPM is

restricted to reachability properties. NPM has been extended to

support some source of stochasticity in the system: in [10] they

allow partial observability and noisy observations, whereas in [12]

the system dynamics are stochastic but the monitor only evaluates

the Boolean satisfaction of some quantile trajectories, providing

a limited understanding of the safety level of the current state.

Predictive monitoring under partial observability is also analysed

in [13], where the authors combine Bayesian state estimation with

pre-computed reach sets to reduce the runtime overhead. While

their reachability bounds are certified, no correctness guarantees

can be established for the estimation step.

Other learning-based approaches for reachability prediction of

stochastic systems include [6, 9, 14, 17, 35, 37]. Of these, [37] de-

velop techniques to detect potential prediction errors using neural

network verification methods [18]. These verification methods,

however, do not scale well on large models and support only spe-

cific classes of neural networks. In [6], the authors introduce an

efficient approximate Bayesian monitor for the satisfaction of STL

properties for stochastic systems. However, this work focuses, once

again, on the Boolean satisfaction.

Various learning-based PM approaches for temporal logic prop-

erties [22, 30, 31, 33, 38, 40] have been recently proposed. In par-

ticular, [30] provide (like we do) guaranteed prediction intervals,

but (unlike our method) they are limited to ARMA/ARIMA models.

Ma et al. [22] use uncertainty quantification with Bayesian RNNs

to provide confidence guarantees. However, these models are, by

nature, not well-calibrated (i.e., the model uncertainty does not

reflect the observed one [19]), making the resulting guarantees not

theoretically valid.

We contribute to the state of the art by developing a quantitative

predictive monitoring method that offers good scalability, provides

statistical guarantees, and supports stochastic systems with rich

STL-based requirements. Another important novelty is to monitor

and predict the quantitative STL satisfaction of a requirement rather

than the Boolean one.

7 CONCLUSIONS
We presented quantitative predictive monitoring (QPM), a tech-

nique to reliably monitor the evolution of a stochastic system at

runtime. In particular, given a requirement expressed as an STL

formula, QPM quantifies how robustly this requirement is satisfied

by means of a range of STL robustness values. This interval under-

goes a principled recalibration that guarantees a desired level of

coverage, i.e. the interval covers the exact STL robustness values

with a given confidence. The proposed technique avoids expensive

Monte-Carlo simulations at runtime by leveraging conformalized

quantile regression. The resulting method has very little overhead

during runtime execution.

Our experimental evaluation demonstrates that we overall reach

a high accuracy and low rate of prediction errors, and the statistical

guarantees are always met. The conformal approach also adjusts

the width of the interval w.r.t. desired confidence level, reducing

the number of over-conservative predictions. These results support

the claim of having an efficient and reliable QPM.

In future work, we intend to explore the effects of our QPM

method over temporal, rather than spatial, STL robustness. We will

investigate a possible dynamics-aware approach to inference. The

latter should aim at limiting the inference only to an estimate of

the system manifold, i.e. the region of the state space that is likely

to be visited by the evolving stochastic process.
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