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Abstract 

The differential diagnosis between Ischemic Heart Disease (IHD) and Dilated Cardiomyopathy (DCM), particularly 
in the early stages of the diseases, can often be difficult. Left ventricular ejection fraction (LVEF) and heart rate 
variability (HRV) analysis are shown to be helpful tools for diagnosing several cardiac diseases. There is a growing 
interest in application of machine learning techniques to guide the diagnosis. However, often black-box machine 
learning models create dissatisfaction among clinicians due to the lack of a model interpretability. The aim of our 
study was to compare the classification performance of interpretable and clinically plausible models applied for 
early differential diagnosis between DCM and IHD (NYHA ≤ 1) based on LVEF and HRV features. The study 
encompassed 196 IHD and 117 DCM subjects. The models were produced by classification tree, logistic regression 
and naïve Bayes algorithms considering the set of selected HRV and LVEF features, chosen with the information 
gain method. The results showed that the most informative features for classification between IHD and DCM were 
LVEF, LF, NN50, pNN50, and meanRR. The naive Bayes model with classification accuracy of 73.5% 
outperformed classification tree and logistic regression models with 67.4% and 67.1% accuracies, respectively. We 
also demonstrated that the produced models together with nomograms allow probabilistic interpretation of the 
classification output between IHD and DCM, which is an important factor to guide the clinical decision making in 
differential diagnosis.   
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1. Introduction 

According to the World Health Organization, cardiovascular diseases are the leading cause of mortality 
worldwide [1]. Ischemic Heart Disease (IHD) and Dilated Cardiomyopathy (DCM) are the most important 
cardiovascular diseases and the leading cause of mortality worldwide. The incidence of cardiac events is reduced 
and the prognosis is improved when IHD and DCM is detected early and treated with appropriate medical therapy 
[2]. DCM, a progressive cardiac muscle disease characterized by left ventricular chamber expansion and contractile 
failure in the absence of chronic pressure and/or volume overload, is a leading cause of heart failure and the most 
prevalent indication for heart transplantation globally [3]. IHD, a subtle pathology due to its silent behaviour before 
developing into unstable angina, myocardial infarction, or possibly, sudden cardiac death, is a major cause of death 
with a growing clinical impact [4]. The differential diagnosis between IHD and DCM, particularly in the early 
stages of the diseases, can often be difficult and only invasive, or often not readily available exams can provide a 
definite diagnosis of IHD and DCM.  

The most often used variable for measuring heart function and predicting outcomes in DCM patients is left 
ventricular ejection fraction (LVEF). However, it has some inherent drawbacks, including late reduction only in 
patients with advanced cardiac disease, low reliability in patients with left ventricular hypertrophy and volume 
reduction, very poor inter- and intra-observer variability, and problematic endocardial boundary identification [5]. 
On the other hand, many authors use heart rate variability (HRV) for the prediction of various heart diseases [6–12]. 
HRV or the variation over time of the interval between successive heartbeats (RR intervals) is shown to be a helpful 
tool for diagnosis and it is retrieved from ECG. The HRV measurement is used to quantify cardiac autonomic 
activity as a result of sympathetic and parasympathetic activity interaction. The pathophysiologic alterations 
associated with heart diseases, as well as, the resulting changes in HRV, might give crucial prognostic information 
[13].  

There is growing research interest in the development of machine learning models for computer-aided diagnosis 
that exploits HRV extracted parameters in combination with other available clinical data [14]. Such models may be 
used to predict illness risk, readmission risk, and the need for treatment, among other things. However, the limited 
interpretability of produced models still creates dissatisfaction among the clinicians, as they cannot be evaluated on 
the level of single input features. For this reason, methods such as classification trees, naive Bayes, and 
linear/logistic regression algorithms are more desirable in medicine [15]. Such interpretable models not only provide 
output information about a certain disease but also help to intrinsically evaluate the plausibility of the model by 
examining the selected thresholds and branches in comparison to the existing knowledge reported in the disease 
diagnostic manuals. Therefore, end-users and healthcare workers can examine the logic behind prediction models in 
order to accept or reject output [14]. 

Approaches such as linear/logistic regression, classification trees, and naive Bayes models are employed in 
several sectors of healthcare, such as toxicology [15,16], endocrinology [18], neurology [16] and cardiology[19–21], 
due to their high degree of interpretability and ease of use in practice. In particular, Fenny et al.[19] found that the 
best model for prediction of echocardiographic cardiac resynchronization therapy response was based on the naive 
Bayes machine learning technique that included nine clinical and demographic variables, such as the New York 
Heart Association (NYHA) classification, LVEF value, and sex. Salman et al.[20], instead, compared different 
predictive models of hospital mortality for patients with myocardial infarction. Melillo et al.[21] developed an 
automatic classifier based on CART for risk assessment in patients suffering from congestive heart failure 
separating lower-risk patients from higher-risk ones using HRV measures. However, there is a lack of studies that 
explore HRV parameters to distinguish between IHD and DCM patients. 

Nonetheless of the importance of model interpretability, the majority of existing models focus only on accuracy 
prediction and seldom provide a relevant clinical explanation for their outcomes [14,22]. Interpretability approaches 
are unquestionably a key issue that must be considered while developing prediction models for healthcare [15]. 
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Hence, the production of clinically plausible machine learning models that can guide diagnosis and can provide 
information on the feature relevance is desired.  

Therefore, we aimed to produce interpretable and clinically plausible models for early differential diagnosis 
between DCM and IHD based on LVEF and HRV parameters, as well as compare their classification performance. 

 

2. Methods 

2.1. Study population and protocol 

In this study, we analyzed clinical data and processed ECG signals of 313 subjects. In particular, the study 
encompassed 196 patients affected by IHD (145 males, aged 70±11, and 51 females, aged 76±9) and 117 patients 
suffering from DCM (74 males, aged 57±15, and 43 females, aged 65±14). IHD subjects were diagnosed based on 
clinical and laboratory observations, and coronary angiography was used to confirm the diagnosis [23]. In the three 
months prior to Holter monitoring, none of the IHD patients had acute coronary syndrome. LVEF, acquired by 
echographic examination, was obtained by the Simpson biplane method [24]. Patients with DCM were included 
only if coronary artery disease was not sufficient to explain the dysfunction or if LVEF was less than 50% and 
cannot be explained by pressure or volume overload [25]. Coronary angiography was conducted on all individuals 
over the age of 35 who had cardiovascular risk factors and/or had a family history of DCM. Patients with established 
trigger factors such as toxic insults from alcohol or drugs, as well as tachyarrhythmias, were excluded from the 
study. Both groups of subjects were receiving beta-blocker medication and were classified as NYHA ≤ 1 according 
to the New York Heart Association severity scale. The study was performed according to the Declaration of 
Helsinki and all patients gave written consent. 

2.2. Heart Rate Variability acquisition and processing 

All of the participants had a 24-hour ECG Holter monitoring session with a three-channel tracking record (Sorin 
Group, Italy). The ECG signal was sampled at 200Hz and RR intervals were extracted from recordings using 
SyneScope analysis software (Sorin Group, Italy), which recognizes QRS complexes automatically. The data was 
analyzed using a MATLAB (MathWorks) program that evaluated the RR segments of 300s. A pre-processing of the 
RR times series was done to limit the effect of noise and artifacts. The longest ectopic beats sequence or the longest 
artifact in the studied segments had to be less than 10 seconds long, and the overall duration of artifacts and ectopic 
beats had to be less than 20% of the segment duration [26]. These segments were interpolated with cubic spline and 
resampled at 2 Hz, producing the total HRV signal. 

Following that, linear and non-linear HRV parameters were obtained for each segment. The linear parameters 
MeanRR, SDNN, RMSSD, NN50, and pNN50 evaluating RR variability were calculated directly from the RR 
sequence [27], whereas the absolute powers in the Low (LF=0.04-0.15Hz) and High (HF=0.15-0.40Hz) Frequency 
bands, related to vagal and sympathetic nerve control on the heart rhythm, were estimated from the interpolated 
HRV signal in the frequency domain. Furthermore, the latter parameters were used to determine the normalized low 
and high-frequency powers (LFn, HFn), as well as their ratio (LF/HF). The non-linear analysis was carried out by 
calculating Poincaré plot parameters (SD1, SD2) reflecting the short and long-term variability [28], and extracting 
Fractal Dimension (FD) and beta exponent (betaExp) [29] quantifying the complexity of the system generating the 
signal. Finally, the median of all features from valid 5 min segments during 24h were calculated and used as the 
input for the classifier. The set of considered linear and non-linear HRV features is summarized in Table 1. 



	 K. Iscra  et al. / Procedia Computer Science 207 (2022) 1378–1387� 1381
 K. Iscra et al. / Procedia Computer Science 00 (2019) 000–000  3 

Hence, the production of clinically plausible machine learning models that can guide diagnosis and can provide 
information on the feature relevance is desired.  

Therefore, we aimed to produce interpretable and clinically plausible models for early differential diagnosis 
between DCM and IHD based on LVEF and HRV parameters, as well as compare their classification performance. 

 

2. Methods 

2.1. Study population and protocol 

In this study, we analyzed clinical data and processed ECG signals of 313 subjects. In particular, the study 
encompassed 196 patients affected by IHD (145 males, aged 70±11, and 51 females, aged 76±9) and 117 patients 
suffering from DCM (74 males, aged 57±15, and 43 females, aged 65±14). IHD subjects were diagnosed based on 
clinical and laboratory observations, and coronary angiography was used to confirm the diagnosis [23]. In the three 
months prior to Holter monitoring, none of the IHD patients had acute coronary syndrome. LVEF, acquired by 
echographic examination, was obtained by the Simpson biplane method [24]. Patients with DCM were included 
only if coronary artery disease was not sufficient to explain the dysfunction or if LVEF was less than 50% and 
cannot be explained by pressure or volume overload [25]. Coronary angiography was conducted on all individuals 
over the age of 35 who had cardiovascular risk factors and/or had a family history of DCM. Patients with established 
trigger factors such as toxic insults from alcohol or drugs, as well as tachyarrhythmias, were excluded from the 
study. Both groups of subjects were receiving beta-blocker medication and were classified as NYHA ≤ 1 according 
to the New York Heart Association severity scale. The study was performed according to the Declaration of 
Helsinki and all patients gave written consent. 

2.2. Heart Rate Variability acquisition and processing 

All of the participants had a 24-hour ECG Holter monitoring session with a three-channel tracking record (Sorin 
Group, Italy). The ECG signal was sampled at 200Hz and RR intervals were extracted from recordings using 
SyneScope analysis software (Sorin Group, Italy), which recognizes QRS complexes automatically. The data was 
analyzed using a MATLAB (MathWorks) program that evaluated the RR segments of 300s. A pre-processing of the 
RR times series was done to limit the effect of noise and artifacts. The longest ectopic beats sequence or the longest 
artifact in the studied segments had to be less than 10 seconds long, and the overall duration of artifacts and ectopic 
beats had to be less than 20% of the segment duration [26]. These segments were interpolated with cubic spline and 
resampled at 2 Hz, producing the total HRV signal. 

Following that, linear and non-linear HRV parameters were obtained for each segment. The linear parameters 
MeanRR, SDNN, RMSSD, NN50, and pNN50 evaluating RR variability were calculated directly from the RR 
sequence [27], whereas the absolute powers in the Low (LF=0.04-0.15Hz) and High (HF=0.15-0.40Hz) Frequency 
bands, related to vagal and sympathetic nerve control on the heart rhythm, were estimated from the interpolated 
HRV signal in the frequency domain. Furthermore, the latter parameters were used to determine the normalized low 
and high-frequency powers (LFn, HFn), as well as their ratio (LF/HF). The non-linear analysis was carried out by 
calculating Poincaré plot parameters (SD1, SD2) reflecting the short and long-term variability [28], and extracting 
Fractal Dimension (FD) and beta exponent (betaExp) [29] quantifying the complexity of the system generating the 
signal. Finally, the median of all features from valid 5 min segments during 24h were calculated and used as the 
input for the classifier. The set of considered linear and non-linear HRV features is summarized in Table 1. 

4 K. Iscra et al. / Procedia Computer Science 00 (2022) 000–000 

 
 

Table 1. The set of linear and non-linear HRV features 

HRV parameter Definition 
MeanRR (ms) mean of RR intervals 

SDNN (ms) standard deviation of RR intervals 
RMSSD (ms) root mean square of the squared differences of successive RR intervals 

NN50 number of differences of successive RR intervals greater than 50ms 
pNN50 proportion of NN50 divided by the total number of RR intervals 

LF (ms2) Low Frequency Power (from 0.04 to 0.15Hz) 
HF (ms2) High Frequency Power (from 0.15 to 0.40Hz) 
LF/HF Low Frequency Power/High Frequency Power 

LFn Low Frequency Power / Total Power 
HFn High Frequency Power /Total Power 

betaExp (ms2/Hz) Beta exponent 
SD1 (ms) short-term variability of the RR sequence – from Poincarè Plot 
SD2 (ms) long-term variability of the RR sequence – from Poincarè Plot 
SD1/SD2 short-term variability / long-term variability of the RR sequence 

FD Fractal dimension 
 

2.3. Feature selection and classification 

The models were built considering selected HRV features together with LVEF. The features were chosen based 
on their correlation with the target parameter, which was computed using the information gain or the expected 
amount of information. The features that have information gain of at least 0.025 were considered for further 
modeling. 

Classification tree, logistic regression, and naive Bayes methods were employed to produce models capable of 
differentiating between the two groups (IHD and DCM). These three models were used for diagnostic modeling 
because of their easy interpretability in the clinical domain [15,22].  

The classification tree [30,31] is one of the simples methods and consists of two steps: tree growth and pruning. 
The tree grows in the first stage by picking from all potential splits those that produce nodes with just one class of 
components. The result of this stage is the large-tree. Following that, the tree is pruned using a minimal cost-
complexity function that takes into account both the number of nodes and the chance of misclassification. The best 
sub-tree that minimizes the cost-complexity function is the result of this stage. We used Mean Squared Error (MSE) 
to quantify the impurity of each node during tree growth.  

Another method for generating multivariable composites to distinguish two or more groups is to use logistic 
regression. In general, the sigmoid function argument of a logistic regression classifier can be a linear combination 
of more than one feature value or explanatory variable. The sigmoid function produces a number between 0 and 1 as 
its output. The middle value is used as a criterion to determine what belongs in class 1 and what belongs in class 0. 
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An input that produces a result larger than 0.5 is classified as belonging to class 1. In contrast, if the output is less 
than 0.5, the matching input is categorized as 0 class [32].  

Finally, a naive Bayes classifier is a basic probabilistic classifier that uses the Bayes theorem (from Bayesian 
statistics) and strong (naive) independence assumptions to classify data [33]. The naive Bayes classifier has the 
benefit of just requiring a modest quantity of training data to estimate the classification parameters [33]. In reality, 
the naive Bayes classifier performs admirably, frequently outperforming far more advanced algorithms [34]. Many 
practical applications of naive Bayes have been demonstrated, including text categorization, medical diagnosis, and 
system performance management [34]. 

2.4. Models Interpretability 

The selected classifiers were included in this study as they all satisfy the criteria of interpretability. The 
classification tree modeling, even though in practice it might represent slightly lower accuracy in comparison to the 
“black-box” models [22], provides better interpretability and practical usability in clinical application. Classification 
trees and their simple visualization allows clinicians to follow a set of rules and thresholds for selected clinical and 
HRV parameters. It also helps to evaluate the most important features that are always located at the root of the 
decision tree.  

On the other hand, the logistic regression and naive Bayes can be interpreted by means of nomograms. A 
nomogram is a basic and self-explanatory visualization that is both helpful and powerful in the diagnostic guidance 
between two diseases, and it is a graphical representation of numerical relationships. The primary purpose of a 
nomogram, which was invented by French mathematician Maurice d'Ocagne in 1891, was to allow the user to 
graphically derive the result of an equation without having to do any complicated calculations. Lubsen and 
coauthors [35] firstly used nomograms to interpret a logistic regression model. They demonstrated the efficacy of 
nomograms for predicting an acute myocardial infarction, as they were allowed to be printed on paper and utilized 
by doctors to determine the likelihood of the outcome. Besides allowing the prediction, the logistic regression and 
naive Bayesian nomogram reveal the structure of the model and the relative influences of the features on the class 
probability. In particular, the lengths of the lines correlate to the spans of odds ratios, implying that variables are 
important. In addition, nomograms allow the calculation of the scores for each feature, and such scores may be 
utilized not only to obtain the classification outcome but also the probability of having a specific disease [36,37].  

2.5. Models’ evaluation 

The classification accuracy, the area under the curve (AUC), F1 measure, precision, and recall on the dataset 
were estimated using 5-fold cross-validation. The process was then repeated 5 times, using each of the subsamples 
only once as the validation data. Therefore, the overall cross-validation performance measures were calculated as a 
mean of all 5 validation folds. In addition, the confusion matrix and ROC analysis were performed for each 
model. The approach based on the Bayesian comparison of classification algorithms [38] is used for comparing 
classification accuracies obtained by cross-validation for each of the selected algorithms. All analysis was carried 
out in Python Orange3 Data Mining library and toolbox [39].  

 

3. Results 

Table 2 shows the selected features by using the information gain as a metric. The features, LVEF, LF, NN50, 
pNN50 and meanRR with information gain of 0.109, 0.40, 0.037, 0.030, and 0.025 respectively were then used to 
produce three different classification models (classification tree, logistic regression, and naive Bayes). 
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Table 2. The set selected features and corresponding information gain 

Features Information Gain 
LVEF 0.109 

LF 0.040 
NN50 0.037 

pNN50 0.030 
MeanRR 0.025 

 

Table 3 reports the performance of the produced models. In particular, the model produced by naive Bayes 
showed the highest classification accuracy (73.5%) compared to models produced by logistic regression (67.4%) 
and classification tree (67.1%). Regarding the AUC, naive Bayes again presented the highest value (0.740), 
followed by classification tree (0.729) and logistic regression (0.674). Figure 1 depicts the ROC curves for each of 
the models and class (DCM Figure 1a and IHD Figure 1b). The same trend was also observed for F1, precision and 
recall and reported in Table 3. 

     Table 3. Performance measures of the naive Bayes, logistic regression and classification tree models 

Model Accuracy AUC F1 Precision Recall 

Classification tree 0.671 0.729 0.669 0.667 0.671 

Logistic regression 0.674 0.674 0.636 0.666 0.674 

Naive Bayes 0.735 0.740 0.734 0.733 0.735 

 

Confusion matrices obtained for classification tree, logistic regression and naive Bayes models are reported in 
Figure 2. Confusion matrices show that DCM patients were correctly classified with 53.0% (Figure 2a), 29.1% 
(Figure 2b) and 62.4% (Figure 2c) with classification tree, logistic regression and naive Bayes, respectively. On the 
other hand, IHD were correctly classified with 75.5% (Figure 2a), 90.3% (Figure 2b) and 80.1% (Figure 2c) with the 
same models. 

a)  b)  

Figure 1. ROC curves for classification tree (purple), logistic regression (green) and naive Bayes (orange) of (a) DCM and (b) IHD patients 

 

 

Figure 2.  Confusion matrices obtained by (a) classification tree; (b) logistic regression; (c) naive Bayes models. 
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The comparison of cross-validation classification accuracies by means of Bayesian comparison of classification 

algorithms shows that the probability that classification accuracy (CA) of naive Bayes is higher than CA of the 
classification tree p(CAnaiveBayes>CAtree) is 0.923 and classification of logistic regression p(CAnaiveBayes > 
CAlogregression) is 0.876. The nomogram for naive Bayes approach, that shows the highest classification accuracy, is 
depicted in Figure 3. 

 

 
Figure 3. Nomogram for naive Bayes classifier for the DCM patients. The scoring can be obtained as a sum of the score of each individual 
parameter. For IHD the probability with the same scoring obtained by nomogram can be calculated by subtracting DCM probability from 100. 

4. Discussion 

Ischemic Heart Disease and Dilated Cardiomyopathy are two of the most important cardiovascular diseases often 
leading to patient death. Nowadays, these two diseases can only be diagnosed through invasive diagnostic 
techniques that are expensive and often rarely available. Therefore, there is a growing interest in an auxiliary tool 
that can guide differential diagnosis between two groups. Several studies [6,40,41] have used various machine 
learning techniques to differentiate different cardiovascular diseases. However, black-box models often used, 
provide only final classification output, and they cannot be evaluated on the level of single input features. The 
evaluation of models by the level of the single features is important to examine the plausibility of the models by 
comparing the selected thresholds and branches to the existing knowledge reported in the disease diagnostic manual. 
For this reason, approaches such as classification trees, naive Bayes, and logistic regression not only provide output 
information about a certain disease but also reveal the structure of the model and the relative influences of the 
features. Therefore, we aimed at comparing the interpretable and clinically plausible models for early differential 
diagnosis between DCM and IHD based on LVEF and HRV parameters.  

Our results showed that left ventricular ejection fraction, LF, NN50, pNN50, and meanRR, used in naive Bayes 
approach with classification accuracy (73.5%), AUC (0.740), F1 (0.734), precision (0.733), and recall (0.735), 
outperforms classification trees and logistic regression. 

The feature ranking method selected LVEF as the most important feature, which is in line with the clinical 
literature as the parameter that can well characterize the DCM group. However, LVEF can be observed in patients 
with advanced cardiac disease, whereas usually not helpful in the early stages. In addition, LVEF presents a gray 
zone in the range (40% - 50%) [42] where the diagnosis cannot be performed based only on this parameter. For this 
reason, other HRV parameters can help toward better classification. In particular, LF is often associated with the 
joint action of the vagal and sympathetic system [43] that can be altered in both pathologies. In addition, the mean of 
RR interval (meanRR), number of differences of successive RR intervals greater than 50ms (NN50), the proportion 
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of NN50 divided by the total number of RR intervals (pNN50) are indicators of the irregularities of the heat rhythms, 
also characteristic for both diseases.  

The selection of interpretable machine learning approaches allows us to further investigate the relationship of 
these parameters to the output of the classifier. In regard, in the result section, the nomogram of the best approach 
has been reported. The nomogram reveals the structure of the naive Bayes approach and the influences of the 
features on the class probability. In particular, the longest length of the feature LVEF implies that is the most 
discriminatory feature for the two groups. The asymmetry around zero implies that the length to the right side is 
more important for the classification of DCM and vice versa, the length on the left side implies that the feature is 
more characteristic of the IHD.  For example, NN50 and pNN50 are more characteristic of IHD, which is in line 
with the literature [44], as they often might present higher heart rate irregularities captured by these two HRV 
temporal parameters.  

Moreover, the nomograms allow further validation of the produced model by observing the thresholds. For 
example, the clinical literature shows that patients with LVEF ≤ 45% [5] have a high probability of DCM. Indeed, 
our model depicted in Figure 3 demonstrates the same fact, that the subjects < 46.5 have the highest probability of 
being classified as DCM if only that parameter is considered. Similar validation can be performed also for other 
features. 

Furthermore, nomograms can be printed on paper and utilized by clinicians to determine the likelihood of being 
in the DCM or IHD group. The scoring is performed for each of the features and then summed up to obtain the final 
probability. For example, if the patient has the LVEF value between 46.5 and 55.5, (10 points in the scale), NN50 in 
the range from 30 to 91 (42 points), LF equal to or higher than 1016 (17 points), pNN50 higher then 0.288 (3 points) 
and meanRR in the range from 840 to 925 (23 points), and it gets total 95 points, that on the DCM probability score 
(reported in the nomogram in Figure 3) corresponds to 64%.  

In conclusion, we demonstrated that naive Bayes, a simple probabilistic classifier, outperformed other 
interpretable machine learning approaches (logistic regression and classification tree) with a moderately high 
classification accuracy of 73.5%. The obtained accuracy is important to guide the diagnostic procedure, as it allows 
clinicians to better decide the necessity of furthermore complex, invasive exams. We also showed the importance of 
the interpretability of the machine learning models, as their clinical plausibility can be evaluated by nomograms on 
the level of the single features. If the model is evaluated by the majority of the features, it can also bring more 
information about thresholds for yet unknown disease-related HRV parameters. Finally, our study highlighted the 
importance of nomograms, as a tool which allows a probabilistic classification supporting the clinical decision 
making in differential diagnosis between early IHD and DCM. 
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