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In this paper, we propose the use of data symmetries, in the sense of equivalences under signal trans- 

formations, as priors for learning symmetry-adapted data representations, i.e., representations that are

equivariant to these transformations. We rely on a group-theoretic definition of equivariance and provide

conditions for enforcing a learned representation, for example the weights in a neural network layer or

the atoms in a dictionary, to have the structure of a group and specifically the group structure in the dis- 

tribution of the input. By reducing the analysis of generic group symmetries to permutation symmetries,

we devise a regularization scheme for representation learning algorithm, using an unlabeled training set.

The proposed regularization is aimed to be a conceptual, theoretical and computational proof of concept

for symmetry-adapted representation learning, where the learned data representations are equivariant or

invariant to transformations, without explicit knowledge of the underlying symmetries in the data.
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. Introduction

Symmetry is ubiquitous from subatomic particles to natural

atterns, man-made design, art and mathematics. Invariance to

ymmetries in pattern recognition and computational neuroscience

s an old challenging problem [1–12] . More recently, in the con-

ext of machine learning, data symmetries have been used to de-

ive data representations with the properties of equivariance and

nvariance [13–17] to unknown, symmetry-generating transforma-

ions, for example geometric transformations. These properties are

eflected as structure in the representation atoms and can be ex-

licitly used for reducing the complexity of downstream super-

ised learning. This is achieved, for example, by constructing rep-

esentations that are invariant to transformations irrelevant for the

earning task, that preserve the data distribution and prediction

unction [18–20] . For example, for image classification, object posi-

ion or scale are data symmetries that are irrelevant. 

Representations that reflect symmetries inherent in the data

istribution define a quotient representation space where points

re equivalent up to transformations [21] . In this space, the sam-

le complexity of learning (the size of the labeled training set)

16,22,23] can be reduced by pooling on the representation coef-
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cients. Indeed, the pooling operation has a crucial role in Con-

olutional Neural Networks (CNNs) for enforcing stability to small,

ocal perturbations [24,25] . On the other hand, learning symmetry-

dapted representations is in the direction of (a) generalizing CNNs

o arbitrary weight sharing schemes and invariances by learning

he symmetry group from the data and (b) learning, as opposed to

nformed designing, network architectures and feature map prop-

rties, such as locality, connectivity patterns and weight-sharing

opologies. 

CNNs and Convolutional Sparse Coding schemes [26] have an

xplicit parameterization for equivariance and robustness to shifts

n the input (translations) through convolutions and pooling re-

pectively (see also [27] ). However, data symmetries extend to

ore general transformations depending on the data domain, for

xample geometric changes such as scaling, rotation or affine maps

or the case of images, which, in general are unknown or complex

o model. A symmetry-blind data representation will have to com-

ensate for transformation variability using more parameters, and

s a result an increased demand for labeled examples or data aug-

entation and adaptation assuming simple and known transfor-

ation models [28,29] . Extensions of CNNs to known transforma-

ions, beyond translations, were explored with scale-space pooling

30] , convolutional maxout networks [31] , pooling over neighbor-

ng values and similar filters [32] , tiled CNNs [33] , cyclic weight

haring and pooling [34] , and wavelet scattering networks [35,36] ,

but see also [37] ). In particular symmetry networks [23] and group-

quivariant networks [17,38] highlighted the complexity gains of in-

orporating other symmetries in the representations at each layer
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of CNNs. In [39] the parameters of a neural network are tied

to achieve equivariance with respect to a known group. Weight

sharing over transformations capturing perceptual changes, such

as speaker characteristics, were used for speech representations

through group-CNNs [40] . 

The more general problem of learning symmetries has been pre-

viously approached as estimating the infinitesimal generators of

Lie groups generating data transformations [41–44] . Symmetries in

learning have been used in the context of categorizing symmetry

groups (mirror, roto-translation) in random patterns [45] . The re-

lations between typical, e.g., l 1 , l 2 , l ∞ 

, and group-based regulariza-

tion schemes, for known groups, have been explored in [46] . 

The contributions of this work are: (1) Outlining principles for

learning symmetries in data, and learning equivariant representa-

tions, without explicit knowledge of the symmetry group. As op-

posed to learning with known symmetries , like many existing meth-

ods, we propose learning the symmetries ; (2) Reducing the analysis

of generic group symmetries to permutation symmetries; (3) De-

riving an analytic expression for a regularization term acting on

the representation matrix that promotes a group structure and

specifically the group structure in an unlabeled observation set. 

The rest of the paper is organized as follows: In Section 2 ,

we briefly recall the setting of representations with equivari-

ance or invariance to transformations captured by group symme-

tries [14,16,17,21,47] . In Section 3 we formulate the problem of

symmetry-adapted representation learning and provide a general

principle ( Section 4 ) for designing the regularization term. The

main theoretical contributions are stated in Section 5 along with a

computable, analytic form for a regularization term. Section 6 pro-

vides proof of concept results on learning exact, analytic, group-

transformations. 

2. Equivariant and invariant representations

We briefly recall the setting of constructing data represen-

tations with equivariance or invariance to transformations using

group symmetries [14,16,17,21,47] . Intuitively, a representation is

equivariant with respect to a transformation on the input space,

if it can be equivalently expressed as some transformation on the

representation space. If this is the identity, the representation is

invariant to the transformation. 

Let the input space be a vector space endowed with dot prod-

uct 〈 · , · 〉 , X = R 

d . We denote the transformations of a point x ∈ X 

through a representation of a group G, of order |G| < ∞ in d di-

mensions. In the following, we identify G with the set of d × d ma-

trices { g }, (e.g. rotation or reflection matrices), and each transfor-

mation by gx . The group orbit of x ∈ X is the set of transformed

signals 

O x = { gx ∈ X | g ∈ G} , x ∈ X . (1)

Thus the action of the group, and the associated orbit definition,

induces a partition of X into orbit sets. More precisely, it defines

an equivalence relation 

x ∼ x ′ ⇔∃ g ∈ G: x ′ = gx, ∀ x, x ′ ∈ X , (2)

that separates points in X on the basis of x being a transformation

of x ′ . 
Orbits can be used to derive a representation � : X →

F ( e.g. R 

k ) selected from some hypothesis space of maps with

a specific parametrization. A parametrization for an equivariant,

or invariant as a special case, representation is a nonlinear mea-

surements of the projections on the orbit elements [16,21] . More

specifically, given an orbit of group G of some vector t j ∈ X writ-

ten in a matrix form as 

W j = 

[
g 1 t j , . . . , g |G| t j 

]
, t j ∈ X , (3)
2

he nonlinear projection of x on W j is 

� j,α(x ) = σα(W 

T 
j x ) = 

(
σα( 

〈
g 1 t j , x 

〉
) , . . . , σα( 

〈
g |G| t j , x 

〉
) 
)T

, (4)

here { σα : R → R | α ∈ R } is a set of nonlinear functions with a

calar parameter α, e.g. sigmoids σα(·) = (1 + e ·−α) −1 or rectifier

unctions σα(·) = max (0 , · − α) . 

It is easy to see, using the closure property of the group compo-

ition, that � j,α : X → R 

|G| is a permutation-equivariant representa-

ion w.r.t. the transformations in G i.e.: 

� j,α(gx ) = P g � j,α(x ) , g ∈ G, ∀ j, α (5)

here P g ∈ R 

|G |×|G | is a permutation matrix that depends on the

ransformation g . Indeed, transforming x amounts to simply re-

rdering the entries in vector (4) . This can be easily seen noting

hat each entry i in the vector in (4) is 

(� j,α (gx )) i = σα( 〈 g i t , gx 〉 ) = σα

(〈
g −1 g i t , x

〉)
,

nd due to the closure property of the group composition, i.e.

 i g k = g l , ∀ i, k ∃ l, we have that setting x → gx in �j, α( x ) amounts

o a permutation of the vector entries. 

Further, by summing the components of �j, α( x ) (or any point-

ise function of them), we obtain a representation �̄ j,α : X → R

nvariant to transformations in G: 

�̄ j,α(x ) = 

|G| ∑ 

i =1

σα

(〈
g i t j , x 

〉)
= 1 

T 
|G| � j,α(x ) , (6)

here α ∈ R and 1 |G| is the all-ones vector of dimension |G| . In-

eed, using the permutation equivariance in (5) we have for all

 ∈ G: 

¯
j,α(gx ) = 1 

T 
|G| � j,α(gx ) = 1 

T 
|G| P g � j,α(x ) 

= 1 

T 
|G| � j,α(x ) = �̄ j,α(x ) (7)

ince 1 T |G| P g = 1 T |G| . Another example of invariant quantity, being P g 

nitary, is the � 2 norm of the representation vector: ∥∥� j,α(gx ) 
∥∥2 

2 
= 

∥∥P g � j,α(x ) 
∥∥2 

2 
= 

∥∥� j,α(x ) 
∥∥2

2
(8)

Furthermore, given a set of Q such orbits 
{

W j 

}Q

j=1
of the same

roup G, the map � : X → R 

Q×|{ σα}| obtained by concatenating

 ̄� j,α} can be shown to be selective to the partition of X by G,

r equivalently, sufficient for separating the equivalence classes in-

uced by the group action [16] . 

. Problem formulation

In the above sense, deriving equivariant and invariant represen-

ations is conditioned upon having access to an orbit set W , or

earning a set W such that it reflects the same generating symme-

ries of the target group. In this paper, we focus on learning such

 symmetry set, without supervision, from an observation set for

hich we make the following simplifying assumption: 

ssumption 1. The observation set S N = { x i } Ni =1 
⊂ X is a finite col-

ection of Q orbits in X = R 

d w.r.t. a finite group G

S N = { x i } Ni =1 = { gx j , ∀ g ∈ G} Q 
j=1 

, x i , x j ∈ X (9)

here N = |G| Q and |G| is the group cardinality. 

A symmetry-adapted representation learning problem will be

ormulated as learning W from data S N such that 

arg min 

W ∈ R d×|G| 

(
L (W, S N ) + γL 

′ (W, S N ) + βR (W ) 
)

(10)

ith β, γ ∈ R + where L (W, S N ) is the representation loss selected

o satisfy some objective criterion, e.g. reconstruction, similarity or



e  

t  

a  

i  

t

 

t

s

4

 

s  

o  

t

t  

t

w  

i  

g  

t  

p

P  

g  

w

P  

c  

m  

o  

m  

c

 

o  

 

t

 

a

 

t  

o  

g  

o

w  

t

T

G

i  

o

5

 

d  

f  

b

t

5

 

t  

c  

t  

d  

p

w  

δ  

fi  

s  

[  

o  

m

T  

W

w  

f  

c  

0

P  

g

w

w

1

mpirical error (supervised) [24] ; R : R 

d×|G| → R + is a regulariza-

ion term, controlled by β , that enforces the columns of W to be

n orbit of a finite group; L 

′ (W, S N ) is a data-dependent regular-

zation term to further restrict the group in W to be the same as

he latent group in the observation set. 

The contribution of this paper is to develop analytic formula-

ions for L 

′ and R assuming S N as above, given |G| and no form of

upervision on the partition of S N or the group identity. 

. The Gram matrix of orbits

The simple observation for designing R (W ) comes from the in-

pection of the matrix of all inner products of the vectors of an

rbit (the so called Gram matrix). If the columns of W correspond

o an orbit of a vector t ∈ R 

d : 

W = 

[
g 1 t , . . . , g |G| t 

]
, (11) 

hen the associated Gram matrix G = W 

T W ∈ R 

|G |×|G | has entries of

he form: 

(G ) i j = 

〈
g i t , g j t 

〉
= 

〈
t, g ∗i g j t 

〉
= νt (g −1 

i 
g j ) (12) 

here g ∗
i 

the conjugate transpose of g i and νt : G × G → R is an

njective function that depends on the vector t . Assuming a unitary

roup, i.e. g ∗ = g −1 , a hypothesis that can be relaxed, and using

he closure property of group composition, we have the following

roposition (see also [48] , Ch5, Th.2 and [49] ). 

roposition 1. If a set of vectors forms an orbit w.r.t. a finite, unitary

roup, then their Gramian matrix G is a permuted matrix i.e. a matrix

hose columns are permutations of a single vector. 

roof. Each entry of G is a pointwise function, νt , of the multipli-

ation table of G. By the Cayley theorem [50] , the columns of the

ultiplication table of a group are permuted versions one of the

ther. In other words the statement that G = W 

T W is a permuted

atrix follows from the property that the group is closed under

omposition. �

As an intuition for the proposition, consider the simple example

f the cyclic group of order 3. Let Z 3 = { 0 , 1 , 2 } with law i ◦ j =
(i + j ( mod 3)) . Each column in the multiplication table associated

o the elements of Z 3 is a permutation of the others. 

◦ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Therefore a function of the multiplication table entries will give

 permuted matrix. 

To further give an intuition of the idea behind the construc-

ion of the regularization term we consider the group of rotations

f angles θ = { 0 , 120 , 240 } . In dimension two the elements of the

roup are 2 × 2 matrices that we indicate with R θ . The orbit matrix

f a vector t ∈ R 

2 is then 

W = (et , R 120 t , R 240 t ) 

ith e = R 0 the matrix implementing a rotation of a angle zero i.e.

he identity matrix. The associated gramian elements are given by 

(G ) i j = 

〈
t, R 

∗
θi 

R θ j 
t 
〉
= 

〈
t, R −θi 

R θ j 
t 
〉
= 

〈
t, R θ j −θi 

t 
〉
.

he explicit computation of the gramian shows: 
3

 = 

[ 〈 t , t 〉 〈 t, R 120 t 〉 〈 t, R 240 t 〉
〈 t, R −120 t 〉 〈 t , t 〉 〈 t, R 120 t 〉
〈 t, R −240 t 〉 〈 t, R −120 t 〉 〈 t , t 〉 

]

= 

[ 〈 t , t 〉 〈 t, R 120 t 〉 〈 t, R 240 t 〉
〈 t, R 240 t 〉 〈 t , t 〉 〈 t, R 120 t 〉
〈 t, R 120 t 〉 〈 t, R 240 t 〉 〈 t , t 〉 

]
.e. the columns of the gramian are permuted versions of each

ther. 

. Analytic expressions for regularization

In this section we provide closed-form expressions for two con-

itions: a) the permuted matrix condition , from Proposition 1 , en-

orcing a group orbit structure on the representation matrix W and

) the same-symmetry condition penalizing groups different than

he generating group G of an observation set S N . 

.1. Permuted matrix condition 

Following Proposition 1 , we provide an analytical condition for

he Gram matrix G to be a permuted matrix, by imposing the

olumns (or rows) of G to be permuted versions of the same vec-

or. A straightforward way of doing this is to impose the Euclidean

istance between the distribution of column values, for all column

airs, to be null. Mathematically the condition can be written as: 

|G| ∑ 

i, j=1

∫ 
dλ (h i (λ) − h j (λ)) 2 = 0 , (13) 

h i (λ) = 

|G| ∑ 

k =1

δ(G ki − λ) 

ith G ki = (G ) ki the element in row k and column i of G and

(a ) = 1 , i f a = 0 and 0 otherwise. This is a necessary and suf-

cient condition for the columns of G to be permutations of a

ingle vector, as the distribution of values is a maximal invariant

19,51] with respect to the permutation group. The following the-

rem provides an explicit expression for computing (13) given a

atrix G . 

heorem 1 (Symmetry regularization) . Let matrix W ∈ R 

d×|G| , G =
 

T W and r : R 

|G |×|G | → R + such that 

r(G ) = τ T δ(C vec (G )) (14) 

here vec (G ) ∈ R 

|G| 2 is the vectorization of G, δ is the elementwise

unction δ(a ) = 1 , i f a = 0 (otherwise 0), and τ , C are respectively a

onstant weight vector and matrix that depend only on |G| . If r(G ) =
 , then G is a permuted matrix and viceversa. 

roof. A direct calculation of (13) for all pairs of columns in G

ives: 

|G| ∑ 

i, j,k,l=1

(|G| δ(i − j) − 1) δ(G ki − G l j ) = 0 , (15) 

hich can be rewritten in a compact way by vectorizing G : 

τ T δ(C vec (G )) = 0 , (16) 

here τ is the |G | 2 (|G | 2 − 1) / 2 × 1 vector of weights (|G| δ(i − j) −
) , i, j = 1 , . . . , |G| and C is a (|G| 2 − 1) |G| 2 / 2 × |G| 2 sparse, con-
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stant matrix that encodes all pairwise differences in a right multi-

plied vector of size |G| 2 × 1 , namely: 

Since the condition is derived by a chain of equalities, the con-

verse is also true. �

The regularizer R (W ) in (10) can then be chosen to be the

function of G that minimizes (14) , namely R (W ) = r(W 

T W ) . The

size of W , or equivalently the orbit size |G| , which would corre-

spond to the size of the representation matrix is left as a hyper-

parameter or can be chosen so that the size of the associated

Gram matrix allows for a fast and memory-efficient computation

of R (W ) . Further, using G instead of the representation matrix W ,

allows us to work with the permutation group only, and thus for

a uniform treatment of arbitrary, finite groups. In representations

with additional structure, e.g. multilayer as in deep neural net-

works, the regularizer can be the sum over subsets of weights in

the same layer. 

We make a few additional remarks on Theorem 1 : (a) Making

the regularizer (14) null is a necessary and sufficient condition to

have an orbit with respect to an Abelian group; see Proposition 2

in [52] and [49] where these orbits are also called geometrically

uniform frames . (b) In addition, it can be used, as a pseudo-metric,

to test the equivariance and invariance properties of a represen-

tation ( Eq. (30) and Appendix B). (c) Choosing different nonlin-

ear functions than δ [51] or distances in (13) can give alterna-

tive expressions for regularization. (d) For the case of permutation

groups, the result can be generalized to a class of regularization

terms. In this case, any elementwise function of the orbit matrix,

i.e. f ((W ) i j ) , f : R → R , will induce a Gram matrix with entries

(G ) i j = 

〈
f (g i t) , f (g j t) 

〉
which is also a permuted matrix and the fol-

lowing holds 

Corollary 1. For any permutation group G and any f : R → R act-

ing pointwise on the matrix W, if W 

T W is a permuted matrix then

r( f (W 

T ) f (W )) = 0 and viceversa. 

In fact, the action of the function on the orbit W is equivalent to

a change of the vector t since for a permutation group ( f (g i t)) q =
(g i f (t)) q , ∀ i, q . This observation will be useful for having addi-

tional constraints for representation learning (see (29) ). 

5.2. Same-symmetry condition 

The permuted-matrix condition in Proposition 1 is not condi-

tioned on an observation set, i.e. the group generating the orbit

for W and the data could be different. One way to constrain the

solutions to those with same symmetries as the observation set

S N comes from looking at the data covariance matrix. In fact if

X = [ x 1 , · · · , x N ] ∈ R 

d×N is the nonzero matrix storing S N (as in (9) ),

a simple calculation shows: 

X X 

T = 

|G| ∑ 

i =1

g i T T 
T g T i (17)

where T = [ t 1 , . . . , t Q ] is the d × Q matrix of representatives for

each orbit in S (e.g. an arbitrary element of each). The matrix in
N 

4

17) has a high degree of symmetry that can be used to prove the

ollowing Lemma. Let [ A, B ] = AB − BA denote the commutator of

atrices A, B . 

emma 1. Let W ∈ R 

d×| ̃ G | a nonzero orbit matrix w.r.t. a finite group
˜ 
 and X = [ x 1 , · · · , x N ] ∈ R 

d×N , x i ∈ S N (as in 9 ) with | ̃  G | = |G| . If

 X X T , W W 

T ] = 0 then ˜ G and G are the same up to a fixed unitary

onjugation. 

Towards proving this Lemma, we start with two preparatory

emmas: the first states that the elements of a G−orbit of an

igenvector are also eigenvectors with the same eigenvalue; the

econd states that the linear span of the G−orbit of eigenvector

ith eigenvalue λ coincides with the eigenspace associated to λ. 

emma 2. If v ∈ R 

d is an eigenvector of XX 

T with eigenvalue λ, the

et { gv | g ∈ G} is a set of eigenvectors of XX 

T with the same eigenvalue.

roof. Multiplying the right hand side of Eq. (17) by some g j ∈ G
e have 

X X 

T g j = 

|G| ∑ 

i =1

g i T T 
T g T i g j = g j 

|G| ∑ 

k =1

g k T T 
T g T k = g j X X 

T , (18)

here we used the change of variables g k = g T 
j 
g i , the unitary group

ssumption and the closure property of the group. Thus 

[ X X 

T , g] = 0 , ∀ g ∈ G. (19)

et v ∈ R 

d be an eigenvector of XX 

T with eigenvalue λ, i.e. X X T v =
v . Then, using (19) , for any element of the G-orbit of v , O v =
 gv | g ∈ G} : 

X X 

T gv = gX X 

T v = λgv , ∀ g ∈ G, (20)

.e. any element of the orbit O v is an eigenvector of XX 

T with eigen-

alue λ. �

emma 3. Let E λ the eigenspace of XX 

T associated to eigenvalue λ
nd v an arbitrary vector in E λ. Then the eigenspace coincides with

he linear span of the G-orbit of v, i.e. span (O v ) = E λ. Further the

epresentation of G on E λ is irreducible, i.e. E λ is the smallest subspace

ontaining v that is left invariant by the action of the group G. 

roof. Let B = { b i } | B |i =1
an orthogonal basis in E λ with | B | =

dim (E λ) . Any v ∈ E λ can be expressed as a linear combination of

he basis elements 

v = 

| B | ∑
i =1

αi b i , (21)

nd an element of its G-orbit O v as: 

gv = 

| B | ∑ 

i =1

αi gb i , ∀ g ∈ G. (22)

ince each gb i is an eigenvector (by Lemma 2 ), gv is a linear com-

ination of eigenvectors. Clearly this holds also for any linear com-

ination of the orbit elements, i.e., we have span( O v ) ⊆E λ. Note now

hat for any two u, v ∈ E λ: 

span (O u ) = span (O v ) , (23)

.e., span( O u ) and span( O v ) coincide since they both consist of all

linear combinations of the set { gb i }. This implies: ⋃ 

u ∈ E λ
span (O u ) = span (O v ) . (24)

owever: 

E λ ⊆
⋃ 

u ∈ E λ
span (O u ) = span (O v ) ⊆ E λ (25)

hich implies that span (O v ) = E λ for any v ∈ E λ and clearly is the

mallest invariant space w.r.t. G (since any such space is a span of
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Fig. 1. Permutation sensitivity of the pseudo-metric for a permutation group

(Abelian group, Cyclic C 6 ) and (a) representation through a random orbit of C 6 , (b)

representation through (unsupervised) learned orbit. Details on the distance matrices

and plots are as in Fig. 2 .
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n orbit of a vector in E λ). In other words G acts irreducibly on

 λ. �

We can now prove Lemma 1 : 

roof. Let E λ and 

˜ E ˜ λ the eigenspaces and eigenvalues respectively

f the matrices XX 

T and WW 

T . From Lemma 2 we have 

gE λ = E λ, ˜ g ̃  E ˜ λ = 

˜ E ˜ λ, ∀ g ∈ G, ˜ g ∈ 

˜ G . (26) 

ote that XX 

T , WW 

T are Hermitian matrices. Now, if two Hermitian

atrices commute they have the same eigenspaces and eigenval-

es [53] , so E λ = 

˜ E ˜ λ. Thus,

˜ g E λ = g ̃  E ˜ λ = gE λ = E λ, ∀ λ, ̃  λ, ∀ g ∈ G, ∀ 

˜ g ∈ G̃ (27) 

r in other words ˜ G and G preserve, respectively, the eigenspaces

f XX 

T , WW 

T i.e. [ g, W W 

T ] = [ ̃ g , X X T ] = 0 . Further, by Lemma 3 ,

he action of the representation of G and 

˜ G restricted to E λ
s irreducible. Since G and 

˜ G act irreducibly on the same sub-

paces E λ they are equivalent up to a unitary conjugation, i.e.

˜  = U 

T gU, ∃ U . �

.3. Representation learning with symmetry conditions 

The main result of this work is summarized in the following

heorem 2 , which puts together Proposition 1, Theorem 1 and

emma 1 . 

heorem 2 (Symmetry-adapted regularization) . Let W ∈ R 

d×| ̃ G | a

onzero matrix whose columns are the elements of an orbit of a finite

roup ˜ G with cardinality | ̃  G | . Then W 

T W is permuted and r(W 

T W ) =
 . Further, let X ∈ R 

d×Q|G| a matrix whose columns are all elements

rom the union of Q orbits of a finite group G, with |G| = | ̃  G | . If

 X X T , W W 

T ] = 0 then ˜ G and G are the same up to a fixed unitary

onjugation. 

roof. Follows by putting together Theorem 1 and Lemma 1 . �

Theorem 2 provides the two regularization conditions for the

ymmetry-adapted representation learning problem (10) : 

arg min 

W ∈ R d×|G| 
L (W, S N ) + γ

∥∥[
X X 

T , W W 

T 
]∥∥2 

F
+ βr(W 

T W ) (28) 

here β, γ ∈ R + are regularization parameters, L 

′ (W, S N ) =[
X X T , W W 

T 
]∥∥2 

F 
, R (W ) = r(W 

T W ) and the loss L (W, S N ) is task-

ependent. We use a smooth version of (14) , substituting the δ
unction with a Gaussian function g σ : R → R of width σ � 1;

he regularizer is then r(W 

T W ) = τ T g σ (C vec (W 

T W )) . The analytic

orm of the gradients, for use in gradient-based methods for mini-

izing (28) , is provided in Appendix A . 

. Results on unsupervised orbit learning

As a proof of concept, we pose the following unsupervised

earning problem: Given an unlabeled observation set as in (9) ,

amely a union of orbits of the same, finite, unknown group G, learn

 single orbit W, of an arbitrary vector t ∈ R 

d , with respect to the

latent) group that generated the data. 

.1. Synthetic group data 

We use synthetic data generated by known permutation groups,

f different orders |G| , acting on R 

6 : 

• Cyclic group ( C 6 ), Abelian group, |G| = 6

• Dihedral group ( D 6 ), non-Abelian group, |G| = 12

• Pyritohedral group ( T h ), non-Abelian group, |G| = 24

he data X were generated using Q vectors uniformly sampled at

andom from the unit ball in R 

6 , for train and validation sets of

izes Q = 10 0 0 and Q = 20 0 orbits (or Q|G| observations). 
5

.2. Optimization for learning 

We use (28) , without a loss L (W, S N ) , i.e. the commutator norm

rives the representation, and γ = 1 . Instead of r ( W 

T W ), since
e are testing permutation group, following Corollary 1 , we use

 sum of regularizers r(σ j (W ) T σ j (W )) , j = 1 . . . J, where σ j (x ) =
ax (0 , x − α j ) the rectifier function applied pointwise. Then, the

inimization problem takes the form 

arg min 
W∈ R d×|G| 

( 
∥∥[ X X T , W W 

T ] 
∥∥2

F
+ 

β

J

J ∑ 

j=1

r(σ (W 

T − α j ) σ (W − α j )) , β ∈ R + 

(29) 

here X is the d × N matrix storing the observation set, σ (x − α j ) = max (x −
j , 0) is the rectifier nonlinearity with parameter αj , J is the number of non-

inearities and β is the regularization constant. Note that the scheme with

 single r ( W 

T W ) term can be derived as a special case by setting J = 1 and

1 < < 0. 

Minimization was performed using quasi-Newton iterative op-

imization with a cubic line search, using Broyden-Fletcher-

oldfarb-Shanno (BFGS) [54] for the Hessian matrix approxima-

ion. The matrix W is set to size d × |G| , assuming the target orbit

ize |G| is given, and initialized at random. For each β , we ini-

ialize and run the minimization process m times to obtain m or-

it solutions, corresponding to different local minima of the loss.

or the results we used schemes with J set to 100 and 300, se-

ecting αj values uniformly spaced in [ −1 , 1] . For β , we used a

ange of orders of magnitude, namely log 10 β = { 0 , . . . , −7 } . For the

earned weights ( Figs. 1 (b) and 2 (b)) correspond to the minimum

oss (commutator norm) solution for m = 50 random initializations

f W . In Fig. 1 ( C 6 ), we used β = 10 −4 , J = 100 , |G| = 6 . In Fig. 2 we

sed J = 300 , β = 10 −5 , |G| = 12 (for D 6 ) and β = 10 −6 , |G| = 24

for T h ). 

.3. Equivariance of learned data representations 

To test symmetry structure in a representation W for the so-

utions given by the algorithm we used the fact that ( Section 2 )

 representation � of the form of (4) is permutation-equivariant

nd thus if two signals x, x ′ ∈ R 

d are part of an orbit O x then their

epresentations �( x ), �( x ′ ), with respect to an orbit dictionary W ,

re permuted vectors if W is an orbit of a vector generated by the

ame group. We can then define the following pseudometric 

D (x, x ′ ) = r([�(x ) , �(x ′ )]) = r(W 

T [ x, x ′ ]) , (30) 



Fig. 2. Dihedral group D 6 of order 12 (a-c, left) and Pyritohedral group T h of order 24 (a-c, right) : pseudo-distance r ([ �( x i ), �( x j )]) (30) , where �(x i ) = W 

T x i and W a 

6 × 12 and 6 × 24 dictionary, for different representations. Learning performed from a training set of 10 0 0 orbits. Shown are the distance matrices (top) for 6 orbits (arranged 

in 6 blocks of 12 elements) and 3 orbits (arranged in 3 blocks of 24 elements) and inter/intra-orbit distributions on log x-axis (bottom) for 50 orbits from a validation set.
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where the input to r : R 

m ×2 → R + is now the m × 2 matrix ( �( x ),

�( x ′ )). Details are provided in Appendix B. Using D we can check

if W induces an equivariant representation and, for the case of ma-

trices learned with the proposed method, if the equivariance is in-

duced by a matrix with the symmetries in the data. For evaluation

purposes only, we consider a labeled validation set, i.e. the orbit

assignment for each point is known. 

In Figs. 1 and 2 we evaluate the following cases: a) W is an or-

bit selected from the same distribution as the training set, i.e. a

ground truth W ; this serves as a sanity check that the same sym-

metry will indeed induce equivariance in �( x ), b) W is a learned

representation via minimization of (29) , and c) W are the eigen-

vectors of the data covariance (PCA), to check if symmetries can

be discovered through high-variance directions or the result of a

sparse dictionary learning algorithm (K-SVD [55] ). The last two

are included as baseline comparisons to check if symmetries can

be discovered through projections in max-variance directions or

sparsity/reconstruction constraints. In Fig. 1 we also depict the

case W = I d×|G| , corresponding to �(x ) = x . This serves as a san-

ity check for the validity of the pseudodistance as, for the case of

permutation groups, each orbit is composed from permuted vec-

tors. 

The figures depict the distance matrices (of 12, 6 and 3 random

orbits resp.) for C 6 , D 6 and T h and the probability distributions of

pairwise distances for the validation set (50 orbits and 300 points

in total), estimated for inter- and intra-orbit pairs separately. The

block diagonal structure of the distance matrices support the main

claims of this work ( Theorem 2 ), and the separability of the inter-

and intra- distributions suggest that the learned W implies a quo-

tient representation with respect to the unknown group of trans-

formations. 

7. Conclusion

We studied the problem of learning data symmetries, in par-

ticular group symmetries, as a prior on structure due to transfor-

mations in the data. Our motivation was to derive representations

that are adapted to symmetries and reduce the sample complex-

ity of downstream supervised learning. In particular we explored

mathematical conditions that can drive, in an unsupervised way, a

learned representation to reflect the symmetries in an unlabeled

training set.The approach is particularly relevant for data that have

a low-dimensional intrinsic structure (e.g. transforming images or

sounds) and can be applied to any finite group since it reduces

their analysis to permutation groups whose size | \ mathcall(G)|can
6

e chosen to be efficiently computable. This is in contrast with

ther proposed methods, [41,42] where transformations matrices

f size d 2 � | \ mathcall(G) ̂ 2| are learned from data. 

In this work, we focused on global group transformations as a

roof of concept. However, the same theoretical framework can be

pplied to real data, for dealing with non-group, arbitrary transfor-

ations. The key notion for relaxing the assumptions on the ob-

ervation set is locality. Arbitrary transformations can be approxi-

ated by smooth transformations of a number of instances, on lo-

al neighborhoods (of each instance). The transformation can then

e described in terms of a group, i.e. the Lie group associated to

he tangent space of the manifold of the signal transformations.

he proposed regularization scheme can then be applied for learn-

ng localized filters, each representing a small, local signal neigh-

orhood. This would be applicable to a general family of CNNs,

here local filters are employed at each layer for local, position-

obust feature detection. 

Additional directions for future work include addressing the de-

endency on noise (both in the unsupervised setting and super-

ised/semisupervised setting, [56–58] ), size of the dictionary and

artial orbits. For the latter, Lemma 1 can be restated in terms

f empirical covariance matrices and the validity of the approxi-

ation can be measured using concentration inequalities. Interest-

ngly, group codes (first studied by Slepian in his seminal paper

59] ) or dictionaries ( [60] ) tend to have low self-coherence which

s related to the exact recovery condition of a signal x of given

parsity [61] . 

The long-term goal of this work is to learn data-symmetries

riven group convolutions and network topologies in CNNs. Im-

osing structure in subsets of weights, corresponding to multiple

lters transforming under one or more groups, will necessitate

n extension to learning multiple orbits or multiple symmetries.

oreover, extensions to multilayer representations, e.g. deep net-

orks, can be formulated by noting that the representation will

e permutation-equivariant after the first layer, given a map as in

5) . Subsequent layers will then process permutation-transformed

ignals. 
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ppendix 

In the following we let G, ˜ G two finite groups with cardinality

G| and X ∈ R 

d×Q|G| a matrix whose columns are all elements from

he union of orbits of Q vectors in R 

d w.r.t. G. 

ppendix A. Analytic gradients 

Regularizer gradient: 

We calculate the derivative of r(W 

T W ) = τ T g σ (C vec (W 

T W ))

ith respect to the vectorization of W ; using the chain rule we

ave: 

∂r(W 

T W ) 

∂ vec (W ) 
= 

(
∂ 〈 τ, p 〉 

∂ p 

∂ p 

∂q 

∂q 

∂s 

∂s 

∂ vec (W ) 

)T

(A.1) 

ith p = g σ (q ) , q = Cs and s = vec (W 

T W ) . The first three factors

re easy to calculate and the right side of Eq. (A.1) is: 

∂r(W 

T W ) 

∂ vec (W ) 
= − 2

σ 2 

(
τ T diag 

(
(C vec (G )) � g σ (C vec (W 

T W )) 
)

× C 
∂ vec (G ) 

∂ vec (W ) 

)T

(A.2) 

here � denotes the Hadamard product and diag( · ) a (|G| 2 (|G| 2 −
) / 2) × (|G| 2 (|G| 2 − 1) / 2) diagonal matrix. For the last partial

erivative we have: 

∂ vec (W 

T W ) 

∂ vec (W ) 
= (I |G| 2 + T )(I |G| � W 

T ) (A.3) 

here the matrix T is defined as T vec (v ) = vec (v T ) and I |G| 2 , I |G| 
re the identity matrices of dimensions |G | 2 × |G | 2 , |G | × |G | . It can

e shown that T can be written explicitly as: {
T i j = 1 , i f j = 1 + |G| (i − 1) − (|G| 2 − 1) floor

(
i −1
|G|

)
T i j = 0 , otherwise . 

(A.4) 

utting everything together, right hand side of (A.1) becomes: 

∂r(W 

T W ) 

∂ vec (W ) 
= − 2 

σ 2 
(I |G| � W ) P T (C vec (W 

T W )) � g σ

× (C vec (W 

T W )) � τ (A.5) 

ith P = C(I |G| 2 + T ) a constant matrix, which can be pre-

alculated given the group cardinality. Correctness of the gradient

as been tested with numerical simulations. 

Commutator gradient : It is easy to derive the analytic gra-

ient of the norm ‖ M(X, W ) ‖ 2 F = trace (M(X, W ) T M(X, W )) , where

(X, W ) = [ X X T , W W 

T ] is the commutator of the data and repre-

entation covariance matrices. A simple calculation shows that the

radient has the analytic form: 

∂ ‖ 

M(X, W ) ‖ 

2
F 

∂W 

= −4[ M(X, W ) , X X 

T ] W, (A.6) 

y expanding the gradient as follows: 

∂
∂W

(
−2 T r(X X 

T W W 

T X X 

T W W 

T ) + 2 T r(X X 

T W W 

T W W 

T X X 

T ) 
)

= −8 X X 

T W W 

T X X 

T + 4 X X 

T X X 

T W W 

T W + 4 W W 

T X X 

T X X 

T W 

= −4[ X X 

T , W W 

T ] X X 

T W + 4 X X 

T [ X X 

T , W W 

T ] W 

= −4[[ X X 

T , W W 

T ] , X X 

T ] W 

T 
= −4[ M(X, W ) , X X ] W. g

7

ppendix B. Permutation invariant pseudometric 

Quantifying equivalence under permutations is a way to test for

quivalence under general symmetries, provided that W has the

ame symmetries, and thus a way to quantify same-symmetry, or-

it structure in a given W . To measure equivalence under permu-

ations, we can use a modified version of the regularizer function

14) , where the input is a 2-column matrix instead of the Gram

atrix. Indeed the representations �( x ), �( x ′ ) of two elements

, x ′ ∈ R 

d of the same orbit O x , w.r.t. a same-group orbit dictionary

 are permuted vectors. 

Given matrix W ∈ R 

d×m , and the corresponding representation

(x ) = W 

T x = ( 〈 w 1 , x 〉 , . . . 〈 w m 

, x 〉 ) , � : R 

d → R 

m , let

D (x, x ′ ) = r([�(x ) , �(x ′ )]) = τ T δ(C[�(x ) , �(x ′ )])

here the input to r is now the m × 2 matrix [ �( x ), �( x ′ )]. The

uantity r : R 

m ×2 → R + is a pseudometric and 

�(x ) = P g �(x ′ ) ⇐⇒ r([�(x ) , �(x ′ )]) = 0 . (B.1) 

n addition, if the conditions 
∥∥[ X X T , W W 

T ] 
∥∥2 

F
= 0 and r(W 

T W ) = 0

re also satisfied, as is the case for W learned by minimizing (29) ,

e have the following. 

emma 4. If W satisfies the conditions of Theorem 2 and is invertible,

hen: 

r(W 

T [ x, x ′ ]) = 0 ⇐⇒ x = gx ′ , ∀ x, x ′ ∈ X , ∀ g ∈ G. (B.2) 

roof. First note that the Gram matrix W 

T W identifies W up to an

rbitrary (but fixed) unitary transformation U ; together with the

ondition r(W 

T W ) = 0 , this implies that W can be written as W =
W t , where W t is a group orbit matrix of some vector t ∈ R 

d and

 

T 
t W t = W 

T W . 

For the direct implication, if r(W 

T [ x, x ′ ]) = 0 then there exists a

ermutation matrix P g such that 

W 

T x = P g W 

T x ′ ⇒ W 

T 
t U 

T x = P g W 

T 
t U 

T x ′ = W 

T 
t gU 

T x ′ (B.3) 

ince the action of g on W t is a permutation of its columns i.e.

W t = W t P g . If W is invertible from the previous equation we have

U 

T x = gU 

T x ′ , (B.4) 

hich suffices since the rotation U 

T is irrelevant from the learn-

ng point of view since U 

T X = X . For the inverse implication we

roceed by contradiction. Suppose x = gx ′ but r ([ �( x ), �( x ′ )]) � = 0.

hen: 

W 

T x � = P W 

T x ′ , x = gx ′ (B.5) 

or all permutations P . By the assumptions 

(W ) : ,i = (U W t ) : ,i = U g i t = U g i U 

T U t = 

˜ g i ̃  t = ( ̃  W ˜ t ) : ,i , (B.6) 

.e. the columns of matrix W are an orbit of vector ˜ t w.r.t. the con-

ugate representation 

˜ G of G induced by U , namely W t = 

˜ W ˜ t . We

an then write (B.5) as ˜ W 

T 
˜ t 

x � = P ̃  W 

T 
˜ t 

x ′ = 

˜ W 

T 
˜ t 

˜ g x ′ , ∀ ̃

 g ∈ 

˜ G . (B.7) 

s W t is invertible, so is ˜ W ˜ t . Thus, from (B.7) we have that x � = ˜ g x ′ 
nd we can conclude as in the direct implication. �

Lemma 4 states that r is zero for elements of the same or-

it (inter-orbit distance) and large for elements of different orbits

intra-orbit distance). Examples of the distributions of these dis-

ances are shown in Figs. 1 and 2 . Concretely, the value of r for

airs of vectors can be used to test the following: (a) are �( x ) and

( x ′ ) permuted vectors (from (B.1) )? and (b) for �(x ) = W 

T x and

 satisfying the symmetry conditions, are x, x ′ on the same orbit

 And, as an extension, does the representation matrix W provide

n equivariant map, i.e. are the column vectors an orbit of the same

roup ? 
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