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Abstract
In the first part of the paper we consider periodic perturbations of some planar Hamiltonian 
systems. In a general setting, we detect conditions ensuring the existence and multiplicity 
of periodic solutions. In the second part, the same ideas are used to deal with some more 
general planar differential systems.
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1 Introduction

The meaning of the word resonance is well understood for a linear equation of the type

where λ is a positive constant and q(t) is a 2π-periodic forcing: resonance occurs when all 
the solutions are unbounded, both in the past and in the future. This may happen only when 
λ =  n2 for some integer n. On the contrary, if � ∉ {n2 ∶ n ∈ ℕ} , then all solutions of the 
differential equation are bounded, and among them there is a 2π-periodic solution, for any 
2π-periodic forcing term q(t).

For a more general nonlinear equation

the meaning of resonance does not appear so clearly. However, it seems to be commonly 
accepted to consider as nonresonance conditions on the function g(x) those ensuring that 

x�� + � x = q(t)

(1.1)x�� + g(x) = q(t) ,
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the differential equation admits at least one 2π-periodic solution, for any 2π-periodic forc-
ing term q(t).

Life becomes still more complicated if we consider equations of the type

where q(t, x), which is 2π-periodic in its first variable, is considered as some kind of pertur-
bation of the autonomous equation. There is a huge literature on the existence of periodic 
solutions for this type of equations (see e.g. [13] and the references therein). In this case, 
“nonresonance conditions” necessarily involve both the functions g(x) and q(t, x), and they 
are supposed to guarantee the existence of at least one 2�-periodic solution of the differen-
tial equation.

In this paper, we are looking for “nonresonance conditions” for more general planar 
systems of the type

Here, and throughout the paper, J =

(
0 −1

1 0

)
 is the standard symplectic matrix, the Ham-

iltonian function H ∶ ℝ
2
→ ℝ is continuously differentiable, and r ∶ ℝ ×ℝ

2
→ ℝ

2 is 
assumed to be continuous, and 2π-periodic in its first variable.

We search for conditions on H(z) and r(t, z) guaranteeing that system (1.3) has at least 
one 2π-periodic solution.

Since we need uniqueness of solutions, we will typically assume ∇H(z) to be locally 
Lipschitz continuous, and r(t, z) to have the same regularity property with respect to its 
second variable. However, we will also have to consider autonomous Hamiltonian systems 
without necessarily assuming the gradient of their Hamiltonian function to be locally Lip-
schitz continuous.

For the autonomous system

associated with  (1.3), it will be assumed that all large amplitude solutions are periodic. 
More precisely, we will assume that, for large energy levels E,  the sets H−1(E) are closed 
curves corresponding to periodic solutions of (1.4) with some minimal period T(E). In our 
approach for the study of system (1.3), we will consider it as some kind of perturbation of 
the autonomous system (1.4). Through a change of variables, we transform (1.3) into a sys-
tem of differential equations having, as variables, the energy and a phase. By the system-
atic use of the energy as a parameter, our aim is to obtain sharp nonresonance results and to 
provide new insights into the nonresonance problem.

When the forcing term does not depend on z,   i.e., when r(t, z) = r(t) , one expects 
that the system admits a 2�-periodic solution, unless the period 2� of the forcing term 
r(t) interferes with the periods of the large amplitude free oscillations, meaning that T(E) 
approaches 2�∕n , for some integer n,   when E goes to infinity. Consequently, we expect 
that a nonresonance condition should be of the type

including the case where

(1.2)x�� + g(x) = q(t, x),

(1.3)Jz� = ∇H(z) + r(t, z).

(1.4)Jz� = ∇H(z),

(1.5)lim
E→+∞

T(E) ≠ 2�

n
, for all integer n,
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It is the main objective of this paper to present conditions under which the inequality (1.5) 
guarantees the existence of a 2�-periodic solution for the system (1.3).

However, we believe that further restrictions on the Hamiltonian function H are required 
in order for (1.5) to become a valid nonresonance condition. We remark that, even for the 
particular case of the scalar equation (1.1), it has been shown in [7] that a nonresonance 
condition of type (1.5) is sufficient for the existence of a 2�-periodic solution provided that 
g is differentiable, with a globally bounded derivative. Some other set of restrictions on g 
can be found in [3].

The paper is organized as follows.
In Sect. 2, we present the general setting, showing how to cover some classical situa-

tions, like asymmetric oscillators, positively homogeneous Hamiltonians of degree 2, or 
Hamiltonians with separated variables, arising, e.g., from differential equations involving 
the scalar p-Laplacian operator.

Section 3 is devoted to the statement of our first existence theorem; it provides fairly 
general conditions which, combined with hypothesis (1.5), ensure that system (1.3) admits 
at least one 2�-periodic solution. Due to their generality, the assumptions of that theorem 
need to be analyzed in further detail. The proof of that existence theorem is carried out in 
Sect. 5.

In Sect. 4, we develop an approach to the nonresonance condition (1.5) by a comparison 
between the Hamiltonian function of equation  (1.4), and two other Hamiltonians, which 
would typically be isochronous. Examples are provided by scalar second-order equations 
and systems where the Hamiltonian function H has separated variables.

In Sect. 6, we extend our existence theorem in several directions. First, we consider the 
case when the limit of period function T(E) is +∞ as E → +∞ . Then, we obtain an exist-
ence result in the critical case when, for some positive integer n0,

assuming that the approach to resonance is “not too fast”. As an example, we can deal with 
an equation of the type

with p > 2 and q(t, x) satisfying a growth condition at infinity. In the last part of the sec-
tion, we also show how to formulate some Landesman–Lazer type conditions in our setting.

In Sect.  7, assuming that our system has a Hamiltonian structure, we show how the 
Poincaré–Birkhoff Theorem can be applied to provide multiplicity of periodic solutions 
when the time map has an oscillatory behaviour, i.e., when (1.6) holds. In order to be brief, 
we limit our attention to this situation, where only the asymptotic behaviour of the time 
map is considered. Other situations could also be dealt with, following a similar approach; 
further developments along these lines are expected in the future.

Finally, in Sect. 8, we consider the more general system

and still obtain existence conditions for periodic solutions through a comparison with 
Hamiltonian systems.

(1.6)lim inf
E→+∞

T(E) ≠ lim sup
E→+∞

T(E).

lim
E→+∞

T(E) =
2�

n0
,

x�� + k x+ − a [x−]p−1 = q(t, x) ,

Jz� = F(t, z),
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In the following, we always denote by ⟨⋅ , ⋅⟩ the Euclidean scalar product in ℝ2 , with associ-
ated norm | ⋅ |.

2  General setting and preliminaries

In the first part of this section, we list some conditions on the Hamiltonian function 
H ∶ ℝ

2
→ ℝ that will be assumed to hold throughout the paper. In the second part, we 

define some notation, and we place emphasis on a result that will be useful in the sequel.

2.1  The structural assumptions

We recall that the function H ∶ ℝ
2
→ ℝ is supposed to be continuously differentiable. We 

start with two basic assumptions and their consequences for the autonomous equation

 

A1.  The Hamiltonian function H is coercive:

A2.  There exists a number 𝜌 > 0 such that

 With those hypotheses, there is uniqueness for the solutions of the associated initial value 
problems with a starting point of sufficiently large norm (cf. [28]), and it results from the 
Poincaré–Bendixson theory that all these solutions are periodic. Because of (2.2), we also 
see that the solutions of large amplitude circle the origin, and that the corresponding tra-
jectories are oriented clockwise; there exists thus an annulus of closed orbits, extending to 
infinity. Notice that these orbits are not necessarily star-shaped. Among them, we select a 
particular one, denoted by Γ1 and, by convention, we take

We assume that Γ1 has been chosen in such a way that |z| ≥ �, for all z ∈ Γ1.

We want to parametrize the solutions of large amplitude of equation (2.1) by the energy. 
More precisely, we make the following structural assumption.

A3. There exists a differentiable function � ∶ ℝ× ]1,+∞[→ ℝ such that

and

As a consequence, the system (2.1) being conservative, we have that

(2.1)Jz� = ∇H(z) .

(2.2)lim
|z|→∞

H(z) = +∞ .

∇H(z) ≠ 0 , for |z| ≥ �.

H(z) = 1 , for every z ∈ Γ1 .

J
𝜕𝜑

𝜕t
(t;E) = ∇H(𝜑(t;E)) , for all t ∈ ℝ and E > 1 ,

H(𝜑(0;E)) = E , for all E > 1 .

H(𝜑(t;E)) = E , for all t ∈ ℝ and E > 1 ,
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and, differentiating this relation,

2.2  About condition A3

Let us describe a standard way to construct the function � . Fix a point z∗
0
 in Γ1 , and con-

sider a solution w(�) of the Cauchy problem

Since

integrating on [1, E] we see that

In other words, E corresponds to the “energy” at the point w(E),  which motivates the nota-
tion E. Now, for any E > 1 , let �(⋅ ;E) be the solution of the Hamiltonian system (2.1) such 
that �(0;E) = w(E) . It is clear that both equalities in A3 hold true. The regularity of � is 
surely guaranteed if H is twice continuously differentiable, but we will see that it is satis-
fied also in some more general situations. As will appear below, advantage can be taken 
of the possibility of carefully choosing z∗

0
, in order to get a function �(t;E) having some 

convenient properties.
From the definition of �(t;E), we also have that

this property of �(0;E) will play an important role in the sequel, and we will assume it to 
hold throughout.

As a first example, consider a Hamiltonian function of the type

with G(0) = 0. The autonomous system (2.1) is then equivalent to the scalar second-order 
equation

where g(x) = G�(x) . Notice that conditions A1 and A2 will be satisfied assuming

and

(2.3)
⟨
∇H(𝜑(t;E)),

𝜕𝜑

𝜕E
(t;E)

⟩
= 1 , for all t ∈ ℝ and E > 1 .

(2.4)w�(�) =
∇H(w(�))

|∇H(w(�))|2
, w(1) = z∗

0
.

d

d�
H(w(�)) = 1 , for every � ≥ 1 ,

H(w(E)) = E , for every E > 1 .

(2.5)
𝜕𝜑

𝜕E
(0;E) =

∇H(𝜑(0;E))

||∇H(𝜑(0;E))||
2
, for every E > 1 ;

(2.6)H(x, y) =
1

2
y2 + G(x) ,

x�� + g(x) = 0 ,

(2.7)x g(x) > 0 , for |x| large ,
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In the above example, the regularity assumption in A3 is surely satisfied if g is continu-
ously differentiable. However, it is also satisfied if, e.g.,

for some positive constants a+, a− (here, as usual, x+ = max{x, 0} and x− = max{−x, 0}) . 
This last example leads us to study more carefully the case of positively homogeneous sys-
tems of degree 2.

Let the Hamiltonian function H be such that

In this case, it is well known that the autonomous system (2.1) is isochronous, all the non-
constant orbits having the same minimal period T̂  . (For the reader’s convenience, this fact 
will also be proved below, as an easy consequence of Lemma 2.1.) Assumptions A1, A2 
are readily verified. Concerning A3, let us show that in this case it is possible to choose z∗

0
 

in (2.4) so that the resulting function �(t;E) satisfies

Indeed, if z is a solution of the autonomous equation (2.1) of energy equal to 1,  because the 
function t ↦ |z(t)|2 reaches its extremal values in [0, T̂], there exists a number t∗ ∈ [0, T̂] 
such that

Consequently, since ⟨z,∇H(z)⟩ = 2H(z) > 0, for z ≠ 0, there exists 𝜈 > 0 such that 
z(t∗) = �∇H(z(t∗)). Using the fact that ∇H(�z) = �∇H(z) for any � ≥ 0, if we then take 
z∗
0
= z(t∗) in  (2.4), we note that a solution of this system is given by w(�) =

√
� z(t∗), 

implying that �(0;E) =
√
E�(0;1) , from which (2.10) follows. As a consequence, in this 

case we have

Notice that, as a particular case, we could have H(z) =
1

2
⟨�z, z⟩ , with a positive definite 

symmetric matrix �.
In the sequel, we will also frequently refer to Hamiltonian functions of the form

with a and b positive constants, p > 1 and q > 1 . It must be kept in mind that the gradient 
of such a function is not necessarily locally Lipschitz continuous. Nevertheless, its proper-
ties will prove useful when comparing the minimal period of solutions of various Hamilto-
nian systems. If �(t;1) is a solution of (2.1) of energy 1,  we observe that

where

(2.8)lim
|x|→∞

G(x) = +∞ .

g(x) = a+x
+ − a−x

−,

(2.9)0 < H(𝜆z) = 𝜆2H(z) , for every 𝜆 > 0 and z ∈ ℝ
2 ⧵ {0} .

(2.10)�(t;E) =
√
E�(t;1) .

⟨z(t∗), z�(t∗)⟩ = −⟨z(t∗), J∇H(z(t∗))⟩ = 0 .

(2.11)
��

�E
(t;E) =

1

2
√
E
�(t;1) .

H(x, y) = a |x|p + b |y|q,

(2.12)�(t;E) = diag(E1∕p,E1∕q)�(E� t;1) ,
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is also a solution of (2.1), implying that, for 𝜇 > 0, the minimal period tends to 0 when E 
tends to +∞, whereas, for 𝜇 < 0, it tends to +∞. On the other hand, if � = 0, i.e., if

the autonomous system is isochronous, and

If we choose �(0;1) = ((1∕a)1∕p, 0), it can be checked that (2.5) is satisfied.

2.3  A basic property

Let us denote by int(Γ1) and ext(Γ1) the bounded and the unbounded connected compo-
nents of ℝ2 ⧵ Γ1 , respectively. For every z0 ∈ ext(Γ1), let T(z0) be the minimal period of the 
solution issuing from it. We define the continuous function T ∶ ]1,+∞[→ ℝ as

it expresses the period as a function of the energy. Moreover, for E > 1, we introduce the 
open bounded set

Notice that, for E sufficiently large, Ω(E) is the bounded set delimited by the level curve 
H−1(E) . The following lemma expresses a fundamental relation between the area a(E) of 
Ω(E) and the minimal period T(E).

Lemma 2.1 Let the assumptions A1 to A3 hold. Then,

Proof Given E > 1, let us consider the open sets

Notice that B differs from ℝ2 ⧵Ω(1) by a set of zero Lebesgue measure. Define the func-
tion Φ ∶ A → B as Φ(�, e) = �(�;e) . It is one-to-one and onto. Using (2.3), we have

for every (�, e) ∈ A , so that Φ is a diffeomorphism. For E > 1 , the area of Ω(E) is then 
given by

� = 1 −
1

p
−

1

q
,

(2.13)
1

p
+

1

q
= 1 ,

(2.14)
��

�E
(t;E) =

1

E
diag

(
1

p
,
1

q

)
�(t;E) = diag

(
1

pE1∕q
,

1

q E1∕p

)
�(t;1).

T(E) = T(�(0;E)) ;

Ω(E) = {z ∈ ℝ
2 ∶ H(z) < E} ∪ int(Γ1) .

a�(E) = T(E) , for every E > 1 .

A ={(�, e) ∈ ℝ
2 ∶ e ∈ ]1,+∞[ , � ∈ ]0, T(e)[ } ,

B =ℝ2 ⧵
(
Ω(1) ∪ �

(
{0}× ]1,+∞[

))
.

detΦ�(�, e) =

⟨
J��(�;e),

��

�E
(�;e)

⟩
=

⟨
∇H(�(�;e)),

��

�E
(�;e)

⟩
= 1 ,



1040 C. Fabry, A. Fonda 

1 3

and the conclusion directly follows.   ◻

As a first example of application we can show that, when H satisfies  (2.9), 
the system  (2.1) is isochronous. Indeed, the homogeneity property implies that 
Ω(E) =

√
E Ω(1) , for any E ≥ 0, so that a(E) = E a(1). Consequently, the period is given 

by T(E) = a�(E) = a(1).

Remark 2.2 Given a continuous function T ∶ [1,+∞[→ ]0,+∞[  , it is always possible 
to construct a Hamiltonian function H ∶ ℝ

2
→ ℝ for which T(E) is the time map for the 

orbits of energy E ≥ 1. Indeed, define a ∶ [1,+∞[→ [�,+∞[ by

This function is strictly increasing and onto, hence invertible; consider a C1-extension 
a ∶ [0,+∞[→ [0,+∞[ , for which we keep the same notation, with a(0) = 0 and a�(E) > 0 
for every E ≥ 0 . Define f ∶ [0,+∞[→ [0,+∞[ by f (r) = a−1(� r2), and consider the 
associated Hamiltonian system (2.1), with H(z) = f (|z|) . It is clear that the orbit of energy 
E > 0 of this system is a circle with area a(E). Consequently, by Lemma  2.1, for every 
E ≥ 1, the minimal period of the corresponding solution is T(E).

3  Existence of periodic solutions

In this section, we first state our existence theorem, its proof being postponed to Sect. 5. 
We then make some remarks on the assumptions of the theorem, and derive some useful 
corollaries.

We will make use of the following regularity conditions on H and r. 

L1.  The function H ∶ ℝ
2
→ ℝ is differentiable with a locally Lipschitz continuous 

gradient.
L2.  The function r ∶ ℝ ×ℝ

2
→ ℝ

2 is continuous, 2�-periodic in its first variable, and 
locally Lipschitz continuous in its second variable.

3.1  Statement of the existence result

Here is the main result of this section.

Theorem 3.1 Let the assumptions A1 to A3 hold, as well as L1, L2, and the following 
nonresonance conditions:

a(E) = a(1) + ∫
E

1

(

∫
T(e)

0

||detΦ�(�, e)|| d�
)
de

= a(1) + ∫
E

1

T(e) de ,

a(E) = � + ∫
E

1

T(e) de .
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A4.  The function T(E) is controlled as follows:

A5.  For any integer n,  

Assume also that:

A6.  There is a constant C > 0 such that

and

A7.  For any given compact interval I ⊆ ℝ , 

Then, Eq. (1.3) admits at least one 2�-periodic solution.

Before going to the proof of Theorem 3.1, we make some comments and draw some 
consequences.

3.2  About conditions A4 and A5

It is to be understood that assumptions A4 and A5 hold if and only if

Therefore, assuming A4 and A5 is equivalent to assuming the existence of a sequence (Ek)k 
such that

Notice that, by Lemma 2.1 and the general l’Hôpital rule,

so that conditions A4 and A5 will surely be verified if the following two hold. 

A4’.  The function a(E)/E is controlled as follows:

lim sup
E→+∞

T(E) > 0 , lim inf
E→+∞

T(E) < +∞ .

lim
E→+∞

T(E) ≠ 2�

n
.

lim sup
�z�→∞

��⟨J∇H(z), r(t, z)⟩��
H(z)

≤ C , uniformly in t ∈ [0, 2�] ,

lim
E→+∞

⟨
��

�E
(s;E), r(t,�(s;E))

⟩
= 0 , uniformly for (t, s) ∈ [0, 2�] × I .

- either lim inf
E→+∞

T(E) ≠ lim sup
E→+∞

T(E) ,

- or lim inf
E→+∞

T(E) = lim sup
E→+∞

T(E) ∈ ]0,+∞[ ⧵
{
2�

n

||| n = 1, 2,…
}
.

lim
k
Ek = +∞ and lim

k
T(Ek) ∈ ]0,+∞[ ⧵

{
2�

n

||| n = 1, 2,…
}
.

lim inf
E→+∞

T(E) ≤ lim inf
E→+∞

a(E)

E
≤ lim sup

E→+∞

a(E)

E
≤ lim sup

E→+∞

T(E) ,
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A5’.  For any integer n,  

 We can thus state the following immediate consequence of Theorem 3.1.

Corollary 3.2 Let the assumptions A1 to A3 hold, as well as L1, L2, A6, and A7. Suppose 
that the nonresonance conditions A4’, A5’ are satisfied. Then, Eq. (1.3) admits at least one 
2�-periodic solution.

The interest of the above corollary lies in the observation that, under hypotheses  A1 
to A3, A6 and A7, a 2�-periodic solution will exist if, for some integer n0,

This condition is less stringent than the condition

it is also likely to be easier to check, since estimates on lim infE→+∞ a(E)∕E and 
lim supE→+∞ a(E)∕E are deduced from estimates on a(E),  which, in turn, can be obtained 
by comparing the Hamiltonian H to other Hamiltonians, as will be shown below.

3.3  About conditions A6 and A7

In order to better understand conditions A6 and A7, let us first consider the particular case 
when the Hamiltonian function is positively homogeneous of degree 2, i.e., when  (2.9) 
holds. In this case, taking into account (2.10), condition A6 holds if there exists a constant 
c > 0 such that

On the other hand, taking into account (2.11), condition A7 holds if

We thus have the following.

Corollary 3.3 Assume that L1, L2, and  (2.9) hold. Let T̂  be the minimal period of the 
solutions of the isochronous system (2.1). If T̂ ≠ 2�∕n , for all integers n, and the forcing 
term satisfies (3.3), then equation (1.3) admits at least one 2�-periodic solution.

In order to deal with more general situations, we introduce an assumption which will 
ensure that A7 is satisfied for a function H which is twice continuously differentiable.

lim sup
E→+∞

a(E)

E
> 0 , lim inf

E→+∞

a(E)

E
< +∞ .

lim
E→+∞

a(E)

E
≠ 2�

n
.

(3.1)
2𝜋

n0 + 1
< lim inf

E→+∞

a(E)

E
≤ lim sup

E→+∞

a(E)

E
<

2𝜋

n0
.

(3.2)
2𝜋

n0 + 1
< lim inf

E→+∞
T(E) ≤ lim sup

E→+∞

T(E) <
2𝜋

n0
;

|r(t, z)| ≤ c(1 + |z|) , for every (t, z) ∈ [0, 2�] ×ℝ
2.

(3.3)lim
|z|→∞

r(t, z)

|z| = 0 , uniformly in t ∈ [0, 2�] .
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A8. There exist a continuous function D ∶ [1,+∞) → GL(ℝ2) (the group of invertible 
2 × 2 real matrices) and a continuous function � ∶ ℝ

2
→ ]0,+∞[ such that, for E > 1,

and

Moreover, for any given compact interval I ⊆ ℝ,

Let us show that A8 implies A7. Indeed, from the variational equation

we see that

and we deduce by (3.4) and Gronwall Lemma that

for every t ∈ ℝ. Using (2.5) and (3.5), we now see that A7 results from (3.6).
Based on the above considerations, the following corollary is an immediate conse-

quence of Theorem 3.1.

Corollary 3.4 Let the assumptions A1 to A3, and L2 hold, as well as A6 and A8, H being 
twice continuously differentiable. Then, if the nonresonance conditions A4 and A5 are sat-
isfied, Eq. (1.3) admits at least one 2�-periodic solution.

A noteworthy situation is the case where H′′ is globally bounded. Taking as D(E) the 
identity matrix, we see that  (3.4) is plainly satisfied with � being a constant function, 
whereas (3.6) holds if, for any given compact interval I ⊆ ℝ,

(3.4)
⟨
D(E)JH��(�(t;E))D−1(E) v, v

⟩ ≥ −�(�(t;E)) |v|2,
for all t ∈ ℝ and v ∈ ℝ

2,

(3.5)∫
t

0

�(�(s;E)) ds remains bounded for E → +∞,

independently of t in compact sets.

(3.6)
lim

E→+∞

|D(E) ∇H(�(0;E))|
|∇H(�(0;E))|2

|||(D
T (E))−1r(t,�(s;E))

||| = 0 ,

uniformly for (t, s) ∈ [0, 2�] × I .

d

dt

��

�E
(t;E) = −J H��(�(t;E))

��

�E
(t;E) ,

d

dt

|||D(E)
��

�E
(t;E)

|||
2

=2
⟨
D(E)

��

�E
(t;E) , D(E)

d

dt

��

�E
(t;E)

⟩

= − 2
⟨
D(E)

��

�E
(t;E) , D(E) J H��(�(t;E))

��

�E
(t;E)

⟩
,

(3.7)
|||D(E)

��

�E
(t;E)

||| ≤ |||D(E)
��

�E
(0;E)

||| exp
|||||�

t

0

�(�(s;E)) ds
|||||
,

(3.8)lim
E→+∞

r(t,�(s;E))

|∇H(�(0;E))| = 0 , uniformly for (t, s) ∈ [0, 2�] × I .
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Under this condition, we will show that hypothesis A6 also holds, obtaining the following 
corollary.

Corollary 3.5 Let the assumptions A1 to A3 hold, as well as L2. Assuming H to be twice 
continuously differentiable, let H′′ be globally bounded and suppose that (3.8) holds. Then, 
if the nonresonance conditions A4 and A5 are satisfied, Eq.  (1.3) admits at least one 2�
-periodic solution.

Proof We first observe that, with H′′ globally bounded, (3.4) implies

hence, by Gronwall Lemma,

for every s ∈ ℝ. Taking (3.8) into account, it then follows that condition A6 will hold if

But, this inequality is a consequence of the boundedness property of H′′. Indeed, differenti-
ating |∇H(�(0;E))|2 with respect to E,  we get, using (2.5),

Since H′′ is assumed to be globally bounded, it follows that there exist constants C1, C2 
such that

implying (3.10). The proof is thus completed.   ◻

Remark 3.6 Because of (3.9), it is clear that, when H′′ is globally bounded, condition (3.8) 
will hold if

Remark 3.7 Consider the scalar second-order equation

with g continuously differentiable, g′ being globally bounded, and r continuous and 2�
-periodic. Denoting by G a primitive of g,  we can associate with this equation the Hamil-
tonian function defined by (2.6). If we assume that, for some d > 0,

d

dt
|∇H(�(t;E))|2 ≤ 2� |∇H(�(t;E))|2 ;

(3.9)|∇H(�(s;E))| ≤ |∇H(�(0;E))| e�|s| ,

(3.10)lim sup
E→∞

|∇H(𝜑(0;E))|2
E

< +∞ .

�

�E
|∇H(�(0;E))|2 =2

⟨
H��(�(0;E))

��

�E
(0;E),∇H(�(0;E))

⟩

=
1

|∇H(�(0;E))|2
⟨
H��(�(0;E)) ∇H(�(0;E)),∇H(�(0;E))

⟩
.

|∇H(�(0;E))|2 ≤ C1E + C2 ,

(3.11)lim
|z|→∞

r(t, z)

|∇H(z)| = 0 , uniformly in t ∈ [0, 2�] .

(3.12)x�� + g(x) = r(t) ,

(3.13)xg(x) > 0 , for |x| > d ,
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it is clear that  A1,  A2 hold. Condition  A3 also holds since g is continuously differenti-
able. Moreover, if we take �(0;E) = (0,

√
E) , it is immediate that (3.8) is satisfied. Conse-

quently, we are in a situation where Corollary 3.5 applies, and we may conclude that (3.12) 
admits at least one 2�-periodic solution, provided that the nonresonance conditions  A4 
and A5 are satisfied. This result had been obtained in [7], under a more restrictive condi-
tion than (3.13), namely, that there exists a positive constant c > 0 such that g(x)∕x ≥ c, for 
|x| > d.

The above remark can be adapted to the equation

provided that

Assuming the existence of 𝜂 > 0 such that

we see that (3.8) is satisfied if we take �(0;E) = (0,
√
E) . The following corollary can thus 

be deduced from Corollary 3.5.

Corollary 3.8 Let the function g(x) be continuously differentiable, with a globally 
bounded derivative, and such that (3.13) and (3.16) hold. Assume moreover that q(t, x) is 
continuous, 2�-periodic in t, locally Lipschitz continuous in x,  and satisfies (3.15). Then, 
if the nonresonance conditions A4 and A5 are satisfied, equation (3.14) admits at least one 
2�-periodic solution.

4  Comparison between Hamiltonians

In this section, we provide some corollaries of the results of the previous sections. The main 
idea is to compare the Hamiltonian function H with other Hamiltonians for which the assump-
tions are easier to check.

4.1  Comparison with isochronous Hamiltonians

Suppose that, for some number 𝜌 > 0,

the three functions H,H1,H2 being continuously differentiable and satisfying the hypoth-
eses A1 to A3 of Sect. 2. We do not require however the gradients of H1, H2 to be locally 
Lipschitz continuous. For E large enough, we denote by Ω1(E) , Ω(E) , Ω2(E) the bounded 
sets delimited by the curves H−1

1
(E), H−1(E), H−1

2
(E) , and by a1(E) , a(E), a2(E) their areas, 

respectively. Then,

(3.14)x�� + g(x) = q(t, x) ,

(3.15)lim
|x|→∞

q(t, x)

x
= 0 , uniformly in t ∈ [0, 2�] .

(3.16)G(x) ≥ 𝜂 |x| , for |x| > d ,

(4.1)H1(z) ≤ H(z) ≤ H2(z) , for |z| ≥ � ,

Ω2(E) ⊆ Ω(E) ⊆ Ω1(E) ,
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and hence

So, if for some integer n0, one has that

it is clear that  (3.1) is satisfied. Moreover, if H1, H2 are isochronous Hamiltonians with 
respective minimal periods T1 , T2, by Lemma 2.1 we will have that a1(E) = T1E + C1 and 
a2(E) = T2E + C2, for some constants C1, C2, and necessarily T2 ≤ T1 . This leads to the fol-
lowing consequence of Theorem 3.1.

Corollary 4.1 Let H,H1,H2 satisfy (4.1) and the hypotheses A1 to A3, the Hamiltonians 
H1,H2 being isochronous with respective minimal periods T1, T2 . Assume moreover that H 
and r satisfy L1, L2, A6, A7. Then, Eq. (1.3) admits at least one 2�-periodic solution, pro-
vided that, either T2 > 2𝜋 , or, for some integer n0,

If we now recall the situation considered in Corollary  3.5, we immediately get the 
following.

Corollary 4.2 Let H,H1,H2 satisfy (4.1) and the hypotheses A1 to A3, the Hamiltonians 
H1,H2 being isochronous with respective minimal periods T1, T2 . With H twice continu-
ously differentiable and r satisfying L2, let H′′ be globally bounded, and assume that (3.8) 
holds. Then, Eq.  (1.3) admits at least one 2�-periodic solution, provided that, either 
T2 > 2𝜋 , or, for some integer n0, condition (4.2) holds.

Notice that, for condition  (3.8), advantage can be taken of the freedom of choice in the 
construction of �(0;E).

4.2  Scalar second‑order equations

We illustrate the above results with an application to the second-order equation  (3.14). As 
before, we assume the function g(x) to be continuously differentiable, and q(t, x) to be continu-
ous, 2�-periodic in t, and locally Lipschitz continuous in x. We denote by G a primitive of g,  
and associate with this equation the Hamiltonian function defined by (2.6). Assume that G has 
a quadratic growth; more precisely, suppose that there exist numbers G−,G+, G−,G+ such that

We fix a small 𝜀 > 0 and define

a2(E) ≤ a(E) ≤ a1(E) .

2𝜋

n0 + 1
< lim inf

E→+∞

a2(E)

E
≤ lim sup

E→+∞

a1(E)

E
<

2𝜋

n0
,

(4.2)
2𝜋

n0 + 1
< T2 ≤ T1 <

2𝜋

n0
.

(4.3)0 < G± = lim inf
x→±∞

2G(x)

x2
≤ lim sup

x→±∞

2G(x)

x2
= G± < +∞ .

H1(x, y) =
1

2

(
G+[x

+]2 + G−[x
−]2 + y2 − �(x2 + y2)

)
,

H2(x, y) =
1

2

(
G+[x+]2 + G−[x−]2 + y2 + �(x2 + y2)

)
.
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The Hamiltonians H1 , H2 being positively homogeneous, conditions A1 to A3 are satisfied, 
and we see that (4.1) holds for � sufficiently large. On the other hand, the minimal periods 
T1,�, T2,� associated with H1,H2 are such that

In order to apply Corollary 3.8, we assume that g�(x) is globally bounded. Hypothesis (3.16) 
of that corollary is satisfied because there exists a constant 𝜂 > 0 such that G(x) ≥ � x2 for 
|x| sufficiently large. Using the fact that � can be chosen arbitrarily small, we then deduce 
the following result.

Corollary 4.3 Let the function g(x) be continuously differentiable, with a globally 
bounded derivative, and such that  (3.13) holds. Denoting by G(x) a primitive of g(x),   
assume that positive numbers G±,G

± exist for which (4.3) holds, these numbers being such 
that, either

or, for some integer n0,

Assume moreover that q(t, x) is continuous, 2�-periodic in t, locally Lipschitz continuous in 
x,  and satisfies (3.15). Then, Eq. (3.14) admits at least one 2�-periodic solution.

The conditions (4.4) can be interpreted in terms of the Fučík spectrum for the 2�-periodic 
boundary value problem. They amount to requiring that the rectangle [G+,G

+] × [G−,G
−] 

lies between two successive Fučík curves (or below the first one). This is an improvement with 
respect to the “classical” conditions of Drábek and Invernizzi [8] for the equation considered 
here, which is a perturbation of a Hamiltonian equation. Indeed, our hypotheses are based on 
the limits, for x → ±∞, of the ratio 2G(x)∕x2, rather than on the limits of g(x)/x.

Notice that the assumption (4.4) does not necessarily imply that condition (3.2) holds for 
the periods T(E). We illustrate this with the equation

to which we can associate a Hamiltonian function like the one in (2.6), with

We deduce from the above expression that

so that (4.4) is satisfied for n0 = 1. However, numerical computations show that

T̂1 ∶= lim
�→0+

T1,� =
�√
G+

+
�√
G−

, T̂2 ∶= lim
�→0+

T2,� =
�√
G+

+
�√
G−

.

𝜋√
G+

+
𝜋√
G−

> 2𝜋 ,

(4.4)
2𝜋

n0 + 1
<

𝜋√
G+

+
𝜋√
G−

≤ 𝜋√
G+

+
𝜋√
G−

<
2𝜋

n0
.

(4.5)x�� +
5

2
x +

5

3
x sin(ln(1 + 2x+ + 3x−)) = q(t, x) ,

G(x) =
5 x2

4
+

√
5 x2

3
sin

�
ln
�
1 + 2x+ + 3x−

�
+

�

4

�
+ O(�x�) , for �x� → ∞ .

G+ = G− =
5

2
+

2
√
5

3
, G+ = G− =

5

2
−

2
√
5

3
,
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4.3  Hamiltonians with separated variables

We now consider systems with Hamiltonian functions of the form

we will suppose that G,K ∶ ℝ → ℝ are twice continuously differentiable, their first deriva-
tives being denoted respectively by g(x),  k(y). We assume that, for some numbers p > 1, 
q > 1 related by (2.13),

More precisely, we introduce numbers C1 , C2 such that

From there, it is easy to deduce constants C′
1
 , C′

2
 such that

We will also assume that for some positive constants c1 , c2,

The above hypotheses imply that there exist constants L ≥ � > 0 and C > 0 such that

and it can be checked that the function H satisfies the assumptions A1 to A3. We can also 
observe that the curves H−1(E) are star-shaped for E large.

Writing r(t, x, y) = (rx(t, x, y), ry(t, x, y)) , we want to apply Corollary 4.1 to the system

assuming rx, ry to be continuous, 2�-periodic in t,   and locally Lipschitz continuous in 
(x,  y). For simplicity, we only deal here with symmetric conditions on G,  K,   i.e. with 
bounds for the limits independent of the signs of x and y. We therefore take positive num-
bers �1, �2, �1, �2 such that

and consider the Hamiltonian functions H1,H2 defined by

lim inf
E→+∞

T(E) ≃ 3.09… < 𝜋 and lim sup
E→+∞

T(E) ≃ 6.51… > 2𝜋 .

H(x, y) = G(x) + K(y) ;

g�(x) = O(|x|p−2) , for x → ±∞ , k�(y) = O(|y|q−2) , for y → ±∞ .

(4.6)|g�(x)| ≤ C1 |x|p−2, for |x| ≥ 1 , |k�(y)| ≤ C2 |y|q−2, for |y| ≥ 1 .

(4.7)|g(x)| ≤ C�
1
|x|p−1, for |x| ≥ 1 , |k(y)| ≤ C�

2
|y|q−1, for |y| ≥ 1 .

(4.8)x g(x) ≥ c1 |x|p, for |x| ≥ 1 , y k(y) ≥ c2 |y|q, for |y| ≥ 1 .

(4.9)�(|x|p + |y|q) − C ≤ H(x, y) ≤ L(|x|p + |y|q) + C , for all (x, y) ∈ ℝ
2,

(4.10)x� = k(y) + ry(t, x, y) , −y� = g(x) + rx(t, x, y) ,

𝛼1 < lim inf
x→±∞

pG(x)

|x|p ≤ lim sup
x→±∞

pG(x)

|x|p < 𝛼2 ,

𝛽1 < lim inf
y→±∞

qK(y)

|y|q ≤ lim sup
y→±∞

qK(y)

|y|q < 𝛽2 ,

H1(x, y) = �1
|x|p
p

+ �1
|y|q
q

, H2(x, y) = �2
|x|p
p

+ �2
|y|q
q

.
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When the exponents p,  q satisfy condition  (2.13), both H1 and H2 are isochronous 
(cf. (2.12), with � = 0 ); their respective minimal periods are given by

where

(see, e.g., [6, 24]). It is clear that

In order to apply Corollary 4.1, we need to show that

T(E) denoting, as before, the minimal period of solutions of  (2.1), for E > 1. Actu-
ally, using (4.7) and (4.8), it can be shown that T(E) is bounded away from 0,  as well as 
bounded above. More precisely,

T̃1, T̃2 being the minimal period of the nontrivial solutions of the equations associated with 
the Hamiltonians

where c1, c2, C′
1
, C′

2
 are the constants appearing in (4.7) and (4.8). We omit the proof, for 

briefness, the arguments being similar to those of Theorem 8.2 below. Notice that

strict inequalities being possible.
Considering that (4.12) holds, we deduce the following result from Corollary 4.1.

Corollary 4.4 Let H(x, y) = G(x) + K(y), with G,  K twice continuously differentiable 
functions, their first derivatives being denoted by g(x), k(y), respectively. Assume that the 
conditions  (4.6),  (4.8) hold, and that the exponents p, q satisfy condition  (2.13). Assume 
moreover that

Then, system (4.10) admits at least one 2�-periodic solution, provided that, either T2 > 2𝜋 , 
or there exists an integer n0 such that (4.2) holds.

T1 =
2�p

�
1∕p

1
�
1∕q

1

, T2 =
2�p

�
1∕p

2
�
1∕q

2

,

(4.11)�p = 2 (p − 1)1∕p
�∕p

sin(�∕p)

H1(x, y) ≤ H(x, y) ≤ H2(x, y) , for |(x, y)| sufficiently large .

(4.12)lim inf
E→+∞

T(E) > 0 ,

T̃2 ≤ lim inf
E→+∞

T(E) ≤ lim sup
E→+∞

T(E) ≤ T̃1 ,

H̃1(x, y) = c1
|x|p
p

+ c2
|y|q
q

, H̃2(x, y) = C�
1

|x|p
p

+ C�
2

|y|q
q

,

T̃2 ≤ T2 ≤ T1 ≤ T̃1 ,

(4.13)rx(t, x, y) =o(|x|p−1) , for x → ±∞, uniformly in t, y ,

(4.14)ry(t, x, y) =o(|y|q−1) , for y → ±∞, uniformly in t, x .
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Proof We have seen that assumptions  A1 to  A3 are satisfied. Moreover, it results 
from (4.7), 4.9),  (4.13), and  (4.14), using Young’s inequality again, that condition A6 is 
satisfied.

Let us show that, if we take D(E) = diag(E1∕q,E1∕p), condition  A8 will be satisfied, 
implying that the same holds true for A7.

Let �(t;E) be a solution of energy E for the Hamiltonian system

As explained below, we will need later a solution built in a particular way; but, at this 
stage, this particular construction plays no role. Denoting by �x(t;E), �y(t;E), the compo-
nents of the solution �(t;E) we compute, with v = (v1, v2),

The inequality (3.4) then holds if we define

We now have to to show that, with this definition, � satisfies  (3.5). Let us consider, for 
instance, the case where p ≥ 2 (the case q ≥ 2 being analogous). Using (4.6), (4.9) and the 
relation (2.13) between p and q,  we observe that E1−2∕q g�(�x(t;E)) is bounded, indepen-
dently of t and E. The same property holds for E1−2∕p k�(�y(t;E)), as long as |�y(t;E)| ≥ 1. 
To prove (3.5), it remains to show that, given any compact interval I, 

where Σ(E) = {t ∈ I ∶ |�y(t;E)| ≤ 1} . The curve H−1(E) being star-shaped for E large, and 
the motion being clockwise, the set Σ(E) is contained in the union of intervals, correspond-
ing to transitions between the values −1 and +1 for the function �y(t;E). Because of (4.12), 
the number of those intervals can be assumed to be finite. Considering for instance one of 
those intervals, let t1, t2 ∈ [0,T(E)], with t1 < t2, be such

Assuming E sufficiently large, we have 𝜑x(t;E) > 0, for t ∈ [t1, t2]. Moreover, by  (4.8) 
and (4.9), we see that if H(x, y) = E and if |y| ≤ 1, then |g(x)| ≥ c0 E

1−2∕p for some constant 
c0 > 0, so that the equation −y� = g(x) leads to

It then follows that t2 − t1 = O
(
E

2

p
−1) for E → +∞. Consequently, since |�y(t;E)| ≤ 1 for 

t ∈ [t1, t2], we have that

This, combined with the observations made above, finally proves that the function � indeed 
satisfies (3.5).

x� = k(y) , −y� = g(x) .

⟨
D(E)JH��(�(t;E))D−1(E) v, v

⟩
=
(
E
1−

2

q g�(�x(t;E)) − E
1−

2

p k�(�y(t;E))
)
v1v2 .

�(x, y) = E
1−

2

q |g�(x)| + E
1−

2

p |k�(y)| .

∫Σ(E)

E
1−

2

p |k�(�y(s;E))| ds remains bounded for E → +∞ ,

�y(t1;E) = +1 , �y(t2;E) = −1 , �y(t;E) ∈ [−1, 1] , for t ∈ [t1, t2] .

2 = �
t2

t1

g(�x(s;E) ds ≥ (t2 − t1) c0 E
1−

2

p .

∫
t2

t1

E
1−

2

p |k�(�y(s;E))| ds remains bounded for E → +∞ .
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To establish  A8, we still have to prove that  (3.6) holds. From  (4.13) and  (4.14) we 
deduce that

so that (3.6) will be satisfied if

We will show that this is the case if the function �(0;E) has been built in an appropriate 
way. Notice first that, by (4.8), there exists y0 such that k(y0) = 0. Moreover, the function 
G is strictly increasing for x ≥ 1, so that, for E ≥ G(1) + K(y0), we may define �(0;E) by

with xE ≥ 1 such that G(xE) = E − K(y0). Since k(y0) = 0, we have ∇H(�(0;E)) = (g(xE), 0), 
and it is easily checked that �(0;E) satisfies (2.5), at least for E “large”. Condition (4.15) 
then amounts to finding a constant C > 0 such that

Taking into account the relation (2.13) between p and q,  the fact that such a constant can 
be found is then deduced from (4.7), (4.8). Condition A8 is thus satisfied, and the conclu-
sion then follows from Corollary 4.1.   ◻

The case where g(x) = �0|x|p, k(y) = |y|q is covered by results of Jiang [22], who also 
deals with asymmetric functions g(x). (See also [2] for a more general system.) It must 
be emphasized again that our hypotheses are based on the limits of the ratios G(x)∕|x|p, 
K(y)∕|y|q, yielding less restrictive conditions with respect to more classical assumptions 
based on the limits of the ratios x g(x)∕|x|p, y k(y)∕|y|q. By Theorem 6.1 below, it will also 
be possible to deal with the case where (1∕p) + (1∕q) > 1 ; in that situation, besides condi-
tions (4.6), (4.8) and (4.13)–(4.14), no further hypotheses will be needed.

5  Proof of Theorem 3.1

The proof is based upon degree arguments. We will use the homotopy

with � ∈ [0, 1], and denote by P(�)

2�
 the Poincaré map for the period 2�, associated with the 

above equation. We look for fixed points of P(1)

2�
, which correspond to 2�-periodic solutions 

of (1.3).
We first need to prove that P(�)

2�
 is well-defined for � ∈ [0, 1], and continuous. Since 

we will assume ∇H(z) and r(t,  z) to be locally Lipschitz continuous in z, uniqueness of 
the solutions of  (5.1) and continuity with respect to initial conditions are guaranteed. It 
remains to show that the solutions of (5.1) do not escape to infinity. This is a consequence 
of condition A6. Indeed, if z(�)(t) denotes a solution and if we define e(�)(t) = H(z(�)(t)), we 
have

lim
E→+∞

(DT (E))−1r(t, z) = 0 , uniformly for t ∈ [0, 2�], z ∈ H−1(E) ,

(4.15)
|D(E) ∇H(�(0;E))|
|∇H(�(0;E))|2

remains bounded, for E → +∞ .

�(0;E) = (xE, y0) ,

E1∕q ≤ C g(xE), independently of E ≥ G(1) + K(y0) .

(5.1)Jz� = ∇H(z) + � r(t, z) ,
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We then deduce from A6 that, for some positive constants C′,C′′,

showing that e(�)(t) remains bounded on any compact interval. It then follows, by the coer-
civity condition (2.2), that z(�)(t) can be extended to the whole real line.

We are now in a position to formulate a lemma which describes the guiding idea of the 
proof of Theorem 3.1. We recall that, for E0 > 1,

Lemma 5.1 Let the assumptions A1 to A3 hold, as well as L1, L2, and let E0 > 1 be such 
that T(E0) ≠ 2�∕n, for any integer n. Then, we have deg(I − P

(0)

2�
,Ω(E0), 0) = 1 . Moreover, 

if

then deg(I − P
(1)

2�
,Ω(E0), 0) = 1 and, consequently, equation  (1.3) admits at least one 2�

-periodic solution.

Proof The degree deg(I − P
(0)

2�
,Ω(E0), 0) is clearly well-defined if T(E0) ≠ 2�∕n, for 

all integer n. Indeed, we then have P(0)

2�
(z0) ≠ z0, for all z0 belonging to the boundary of 

Ω(E0). Moreover, the closed set Ω(E0), which is homeomorphic to a closed ball, is mapped 
into itself by P(0)

2�
, so that the result concerning I − P

(0)

2�
 follows from Brouwer’s theorem. 

Finally, using hypothesis (5.4), the property of invariance of the degree with respect to a 
homotopy implies that

so that P(1)

2�
 has a fixed point in Ω(E0).   ◻

To apply the above lemma for proving Theorem 3.1, we need to estimate P(�)

2�
(z0). This will 

be done by considering the large amplitude solutions of equation (5.1) as perturbations of the 
solutions of the autonomous equation (1.4). We therefore write the solutions of (5.1) under the 
form

so that

Simple calculations making use of (2.3) then lead to the system

(5.2)(e(�))�(t) = �⟨J∇H(z(�)(t)), r(t, z(�)(t))⟩ .

(5.3)|(e(�))�(t)| ≤ C�e(�)(t) + C��,

Ω(E0) = {z ∈ ℝ
2 ∶ H(z) < E0} ∪ int(Γ1) .

(5.4)P
(�)

2�
(z0) ≠ z0 , for any z0 ∈ H−1(E0) and any � ∈ [0, 1] ,

deg(I − P
(1)

2�
,Ω(E0), 0) = deg(I − P

(0)

2�
,Ω(E0), 0) = 1 ,

z(t) = �
(
t + � (�)(t);e(�)(t)

)
,

∇H
(
�
(
t + �(�)(t);e(�)(t)

))
(� (�))�(t) + J

��

�E

(
t + � (�)(t);e(�)(t)

)
(e(�))�(t)

= � r
(
t,�

(
t + � (�)(t);e(�)(t)

))
.

(5.5)(� (�))� =�
⟨ ��

�E

(
t + � (�);e(�)

)
, r
(
t,�

(
t + � (�);e(�)

))⟩
,
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Notice by the way that this last equation is just a rewrite of  (5.2). Let us denote the 
solution of the above system for the initial conditions � (�)(0) = �0, e(�)(0) = E0 by 
(� (�)(t;�0,E0), e

(�)(t;�0,E0)) , or briefly by (� (�)(t), e(�)(t)), when there is no risk of ambiguity 
in omitting the initial conditions. The basic point for the proof of our existence results is 
the observation that (5.4) will be satisfied unless, for some integer n,  some �0 ∈ [0, T(E0)], 
and some � ∈ [0, 1], we have

By assumptions  A4 and  A5, it is always possible to find a sequence (Ek)k, with 
limk Ek = +∞, such that T(Ek) converges to some strictly positive finite value T∗, with 
T∗ ≠ 2�∕n for any integer n. Hence, a number 𝜂 > 0 exists such that, for k sufficiently 
large, |2� − n T(Ek)| ≥ �, for any integer n. On the other hand, it follows from (5.3) that

and, considering (5.5), we deduce from A7 that

(the above choice of the interval [0, 2T∗] is somehow arbitrary; what is needed, is just an 
interval going beyond T∗). Consequently, the second equality in (5.7) is impossible for any 
integer n, when E0 is replaced by a sufficiently large element Ek.   ◻

6  Some extensions of Theorem 3.1

In this section, we extend Theorem 3.1 in several directions. First, in Sect. 6.1, we consider 
the case when the limit of the period function T(E) is +∞ as E → +∞ . Then, the critical case 
when the limit of T(E) is equal to some 2�∕n0 is considered, with two different approaches: in 
Sect. 6.2 we approach resonance, but “not too fast”, while in Sect. 6.3 we add some conditions 
of Landesman–Lazer type.

6.1  The case when lim
E→+∞ T(E) = +∞

The nonresonance conditions A4 - A5 are satisfied when

so that Theorem 3.1 can be invoked to deal with such situations. On the other hand, Theo-
rem 3.1 does not apply when

However, it is still possible to obtain existence conditions for this last case, as shown by the 
next theorem, where an auxiliary Hamiltonian function H0 is introduced. We associate with 
it a function �0(0;E) defined by an equation of the type (2.4).

(5.6)(e(�))� =�
⟨
J∇H

(
�
(
t + � (�);e(�)

))
, r
(
t,�

(
t + � (�);e(�)

))⟩
.

(5.7)e(�)(2�;�0,E0) = E0 , 2� + �(�)(2�;�0,E0) = �0 + n T(E0) .

lim
k
e(�)(t;�0,Ek) = +∞ , uniformly in (t, �0, �) ∈ [0, 2�] × [0, 2T∗] × [0, 1] ,

lim
k
� (�)(t;�0,Ek) = �0 , uniformly in (t, �0, �) ∈ [0, 2�] × [0, 2T∗] × [0, 1]

lim sup
E→+∞

T(E) > 2𝜋 and lim inf
E→+∞

T(E) < +∞ ,

(6.1)lim
E→+∞

T(E) = +∞ .
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Theorem 6.1 Let the assumptions A1 to A3 hold, as well as L1, L2, A6, A7, and

Assume also the following condition:
A9. There exist a differentiable function H0 ∶ ℝ

2
→ ℝ, satisfying the assumptions A1 

to A3, and a constant E∗ > 0 such that

Then, Eq. (1.3) admits at least one 2�-periodic solution.

Proof As already observed, we only need to consider the case when (6.1) holds. Referring 
to Lemma 5.1, we aim to show that, for sufficiently large values of E0 ,

where P(�)

2�
 denotes, as before, the Poincaré map for the period 2�, associated with Eq. (5.1). 

Assume by contradiction that this is not true. Let z(�)(t;0, z0) denote the solution of (5.1) 
corresponding to the initial condition z(0) = z0 ; that solution is assumed to be 2�-peri-
odic. Arguing as in the proof of Theorem 3.1, and using hypothesis A6, we can show that 
H(z(�)(t;0, z0)) can be made arbitrarily large by choosing E0 large enough, uniformly for 
t ∈ [0, 2�]. Provided that E0 is taken sufficiently large, it then results from A9 that, when 
the trajectory of the solution z(�)(t;0, z0) crosses the gradient curve E ↦ �0(0;E), associ-
ated with the Hamiltonian H0, the crossing occurs in the clockwise direction. That solution 
being, by assumption, 2�-periodic, we then conclude that, on the interval [0, 2�], the tra-
jectory must make at least one turn around the origin, in the clockwise direction. We will 
show that the other hypotheses prevent this possibility.

For this aim, we want to use the same arguments as in the proof of Theorem 2. Some 
modification is needed however, because condition A7 holds only for s in a compact set, 
whereas the natural domain of this variable is [0, T(E)],  with the period T(E) of the free 
oscillations going to +∞, for E → +∞. We will therefore manage to consider only values 
of the argument s of ��(s;E)∕�E in an interval slightly larger than [0, 2�].

The curve [0, 2�] → ℝ
2 ∶ t ↦ z(�)(t;0, z0) , making at least one turn in the phase plane, 

must also cross all the gradient curves associated with the Hamiltonian H,   provided that 
E0 = H(z0) is large enough. It will cross in particular the curve E ↦ �(0;E) . Therefore, we 
can find a value t∗ ∈ [0, 2�] such that

Define then

a solution of

with the initial condition z̃(0) = z(�)(t∗;0, z0) = �(0;H(̃z(0))). We have already observed 
that H(z(�)(t∗;0, z0)) can be made arbitrarily large by choosing E0 large enough. We will 

(6.2)lim sup
E→+∞

T(E) > 2𝜋 .

⟨∇H0(z),∇H(z) + 𝜆 r(t, z)⟩ > 0 , with z = 𝜑0(0;E) ,

for every (t, 𝜆) ∈ [0, 2𝜋] × [0, 1] and E ≥ E∗.

P
(�)

2�
(z0) ≠ z0 , for any z0 ∈ H−1(E0) and any � ∈ [0, 1] ,

z(�)(t∗;0, z0) = �(0;H(z(�)(t∗;0, z0))) .

z̃(t) = z(�)(t + t∗;0, z0) ,

Jz̃ � = ∇H(̃z) + � r(t + t∗, z̃) ,
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now compare z̃(t) with �(t;H(̃z(0)) for t ∈ [0, 2�], and show that, because of hypothesis A7, 
the difference in “phase” remains “small”. More precisely, letting

we see that the function � (�) satisfies an equation similar to (5.5), i.e.,

with the initial conditions � (�)(0) = 0, e(�)(0) = H(̃z(0)). The hypothesis of the contradic-
tion argument would then imply that

for some integer n ≠ 0. Using  A7 (with s in an interval slightly larger than [0, 2�]) and 
working as in the proof of Theorem 3.1, it can be proved that

showing that the equality  (6.3) is impossible if E0 is taken sufficiently large, since 
limE→+∞ T(E) = +∞.   ◻

It is, of course, admissible to choose H0 = H in assumption A9. Therefore, that condi-
tion is fulfilled if there exists a E∗ > 1 such that

This observation, together with those made at the end of Sect. 3.3, lead to the following 
corollary.

Corollary 6.2 Let the assumptions A1 to A3 hold, as well as (6.2). With H twice continu-
ously differentiable and r satisfying L2, let H′′ be globally bounded, and assume that (3.8) 
holds. Then, equation (1.3) admits at least one 2�-periodic solution.

We remark that a similar situation has been considered by Fernandes and Zanolin in 
[12] for a second-order scalar equation of the type (1.1). See also [19, 20].

6.2  Approaching resonance

When

Theorem  3.1 cannot be invoked to prove the existence of 2�-periodic solutions for 
Eq. (1.3). But, adapting the arguments of the proof of Theorem 3.1, it is still possible to 
provide some existence conditions. This is the object of the next theorem.

Theorem 6.3 Let the Hamiltonian H satisfy assumptions A1 to A3, and be such that (6.4) 
holds. Assume that L1, L2 hold, that

z̃(t) = �
(
t + � (�)(t);e(�)(t)

)
,

(� (�))� = �
⟨ ��

�E

(
t + � (�);e(�)

)
, r
(
t + t∗,�

(
t + � (�);e(�)

))⟩
,

(6.3)2� + � (�)(2�;0,H(̃z(0))) = n T(H(̃z(0))) ,

lim
E0→+∞

� (�)(2�;0,H(̃z(0))) = 0 , uniformly in z0 ∈ H−1(E0) ,

|r(t,𝜑0(0;E))| < |∇H(𝜑0(0;E))| , for every t ∈ [0, 2𝜋] and E ≥ E∗ .

(6.4)lim
E→+∞

T(E) =
2�

n0
, for some positive integer n0 ,
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A6’.

and that
A7’. there exists a number 𝛾 > 0, and a constant C ≥ 0 such that, for any given compact 

interval I ⊆ ℝ,

Then, Eq. (1.3) admits at least one 2�-periodic solution, provided that, either

or

Proof By hypotheses (6.5), (6.6), it is possible to find a sequence (Ek)k, with limk Ek = +∞, 
such that

so that, by (6.4) and Lemma 5.1, the degree deg(I − P
(0)

2�
,Ω(Ek), 0) is equal to 1. Working 

as in the proofs of Theorem 3.1 and Theorem 6.1, we want to show that, for k sufficiently 
large,

where P(�)

2�
 denotes, as usual, the Poincaré map for the period 2� associated with Eq. (5.1). 

Writing, as in the proof of Theorem 3.1, the solutions of equation (5.1) under the form

we have to find values Ek such that, for any integer n,

As already explained, the choice of the interval [0, 4�∕n0] is somehow arbitrary, as long as 
it contains 2�∕n0 in its interior. Notice that, A6’, A7’ being stronger than A6, A7, it is clear 
that

lim
�z�→∞

⟨J∇H(z), r(t, z)⟩
H(z)

= 0 , uniformly in t ∈ [0, 2�] ,

lim sup
E→+∞

E�
|||||

⟨
��

�E
(s;E), r(t,�(s;E))

⟩|||||
≤ C ,

uniformly for (t, s) ∈ [0, 2�] × I .

(6.5)lim sup
E→+∞

E𝛾
(
n0 T(E) − 2𝜋

)
> 2𝜋 C ,

(6.6)lim inf
E→+∞

E𝛾
(
n0 T(E) − 2𝜋

)
< −2𝜋 C .

T(Ek) ≠ 2�

n0
, for all k ,

P
(�)

2�
(z0) ≠ z0 , for any z0 ∈ H−1(Ek), and any � ∈ [0, 1] .

z(t) = �
(
t + � (�)(t);e(�)(t)

)
,

(6.7)2� + � (�)(2�;�0,Ek) ≠ �0 + n T(Ek), for all �0 ∈

[
0,

4�

n0

]
and � ∈ [0, 1].

lim
k
� (�)(t;�0,Ek) = �0 , uniformly in t ∈ [0, 2�], �0 ∈

[
0,

4�

n0

]
, � ∈ [0, 1] ,
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so that, by (6.4), the above inequality is certainly verified if n ≠ n0 . Referring to the sys-
tem (5.5)–(5.6), and using the same notation � (�)(t;�0,E0), e(�)(t;�0,E0) as in the proof of 
Theorem 3.1, we deduce from A6’ that

Using that result, it follows from A7’ that

The combination of (6.8) with (6.5) or (6.6) then implies that large values Ek can be found 
for which (6.7) holds also with n = n0 .   ◻

We notice that similar nonresonance results have been proposed by Hao and Ma in [21] for 
the second-order equation (1.1), with � = 1∕2. A somewhat related approach to resonance was 
also proposed by Omari and Zanolin in [26].

We now provide an example of application of Theorem 6.3 to the second-order equation

where m is an integer, p > 2, a > 0, and where q(t, x) is assumed to be continuous and 2�
-periodic in t,  with

This condition is surely satisfied if q(t, x) is globally bounded. The Hamiltonian function 
associated to the unperturbed equation is

and the minimal periods of the free oscillations are given by

where T−(E) is the transit time in the negative phase plane. It can be computed that

where Γ(⋅) is the Euler gamma function. Consequently,

lim
E0→+∞

e(�)(t;�0,E0))

E0

= 1 , uniformly in t ∈ [0, 2�], �0 ∈

[
0,

4�

n0

]
, � ∈ [0, 1] .

(6.8)

lim sup
E0→+∞

E
�

0

|||�
(�)(t;�0,E0)) − �0

||| ≤ 2� C ,

uniformly in t ∈ [0, 2�], �0 ∈

[
0,

4�

n0

]
, � ∈ [0, 1] .

(6.9)x�� +
m2

4
x+ − a [x−]p−1 = q(t, x) ,

(6.10)q(t, x) = o(|x|2∕p) , for |x| → ∞ , uniformly in t ∈ [0, 2�] .

(6.11)H(x, y) =
y2

2
+

m2

8
[x+]2 +

a

p
[x−]p,

T(E) =
2�

m
+ T−(E) ,

T−(E) =
2

1

2
+

1

p

√
� Γ

�
1 +

1

p

�

a
1

p E
1

2
−

1

p Γ
�

1

2
+

1

p

� ,



1058 C. Fabry, A. Fonda 

1 3

The condition (6.5) is thus fulfilled with � = (1∕2) − (1∕p) , for some positive constant C. 
Consider now the solution �(t;E) associated with the autonomous equation for the Hamil-
tonian (6.11), built from the initial value �(0;1) = (0,

√
2). It is fairly immediate that

On the other hand, denoting by �x,�y the components of �, and adapting  (2.12) with 
� = 1 − (1∕2) − (1∕p) , we see that

From there, it can be checked that 
√
E ��x(t;E)∕�E remains bounded for E → +∞, 

uniformly for t in compact sets. Hence, using  (6.10), it follows that  A7’ holds with 
� = (1∕2) − (1∕p) , the limit being equal to 0. Moreover, under  (6.10), hypothesis A6’ is 
also satisfied. We conclude by Theorem 6.3 that equation (6.9) admits at least one 2�-peri-
odic solution.

Remark 6.4 Actually, the conclusion still holds for the equation

no matter what value the coefficient k > 0 takes. Indeed, if k ≠ m2∕4 for any integer m,   
Theorem 3.1 applies.

Remark 6.5 Similar situations have been considered in [4, 5, 15, 31] for more general 
nonlinearities. Since problems “near resonance” are concerned, some restrictions must be 
imposed on the nonlinearity (in our approach, condition (6.10)). They may take the form of 
conditions of Landesman–Lazer type.

6.3  Landesman–Lazer conditions

A huge literature exists concerning existence conditions for periodic solutions based on 
the so-called Landesman–Lazer conditions (see, for instance, [13] and [25] for references). 
We want to discuss briefly the relation between those conditions and the results presented 
above.

Since the forcing term r(t, z) in Eq. (1.3) is 2�-periodic in t, Landesman–Lazer condi-
tions would typically concern situations where the Hamiltonian function H is isochronous 
(at least for solutions of large amplitude), with solutions having a minimal period of the 
form 2�∕n0, for some positive integer n0. In that case, it is no longer possible to resort 
directly to Lemma 5.1, since deg(I − P

(0)

2�
,Ω(E0), 0) is no longer defined. But the arguments 

still work with an adapted homotopy, i.e.,

lim
E→+∞

T(E) =
2�

m
,

lim
E→+∞

E
1

2
−

1

p

�
T(E) −

2�

m

�
=

2
1

2
+

1

p

√
� Γ

�
1 +

1

p

�

a
1

p Γ
�

1

2
+

1

p

� .

�(t;E) =
�√

2E sin
�
m t

2

�
,
√
2E cos

�
m t

2

��
, for t ∈

�
0,

2�

m

�
.

�(t;E) =
(
E

1

p �x(E
� t;1),E

1

2 �y(E
� t;1)

)
, for t ∈

[
2�

m
,
2�

m
+ T−(E)

]
.

x�� + k x+ − a [x−]p−1 = q(t, x) ,
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the choice of � ≠ 0, its sign in particular, being explained below. It is immediate that, for 
� = 0, the minimal period of the large solutions now becomes 2�∕(n0(1 + �)). Hence, if 
P
(�)

2�
 now denotes the Poincaré map for the period 2� associated with Eq. (6.12), the argu-

ments used in Lemma  5.1 tell us that, provided that � ≠ 0 is taken small enough, the 
degree deg(I − P

(0)

2�
,Ω(E0), 0) is well-defined for E0 large, and equal to 1. In order to obtain 

an existence result, it remains once more to find conditions ensuring that, for well-chosen 
values E0,

Here is our result.

Theorem 6.6 Let the assumptions A1 to A3 hold, as well as L1, L2, A6’ and A7’. Let H be 
isochronous with period 2�∕n0. With � the constant appearing in assumption A7’, assume 
that there exists 𝜂 > 0 such that either, for every �0 ∈ [0, 4�∕n0],

or, for every �0 ∈ [0, 4�∕n0],

Then, equation (1.3) admits at least one 2�-periodic solution.

Proof As in the proof of Theorem 3.1, we write the solutions of equation (6.12) under the 
form

Adapting (5.5), (5.6) leads to

Assume that  (6.14) holds. In this case, since T(E0) = 2�∕n0 , we will take 𝜎 > 0 small 
enough, in order to show that, for any integer n, 

Using A6’ in (6.17), we have that

(6.12)Jz� = [1 + (1 − �) �] ∇H(z) + � r(t, z) ,

(6.13)P
(�)

2�
(z0) ≠ z0 , for any z0 ∈ H−1(E0) and any � ∈ [0, 1] .

(6.14)�
2𝜋

0

lim inf
E→+∞

E𝛾 min
|s−t|≤𝜂

⟨ 𝜕𝜑

𝜕E
(𝜏0 + s;E), r(t,𝜑(𝜏0 + s;E))

⟩
dt > 0 ,

(6.15)�
2𝜋

0

lim sup
E→+∞

E𝛾 min
|s−t|≤𝜂

⟨ 𝜕𝜑

𝜕E
(𝜏0 + s;E), r(t,𝜑(𝜏0 + s;E))

⟩
dt < 0 .

z(t) = �
(
t + � (�)(t);e(�)(t)

)
.

(6.16)(� (�))�=(1 − �) � + �
⟨ ��

�E

(
t + � (�);e(�)

)
, r
(
t,�

(
t + � (�);e(�)

))⟩
,

(6.17)(e(�))�=[1 + (1 − �) �]
⟨
J∇H

(
�
(
t + � (�);e(�)

))
, r
(
t,�

(
t + � (�);e(�)

))⟩
.

(6.18)2� + � (�)(2�;�0,E0) ≠ �0 + n
2�

n0
, for all �0 ∈

[
0,

4�

n0

]
and � ∈ [0, 1] .

lim
E0→+∞

e(�)(t;�0,E0))

E0

= 1 , uniformly in t ∈ [0, 2�], �0 ∈

[
0,

4�

n0

]
, � ∈ [0, 1] ,
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while using A7’ in (6.16), we get, for any compact interval I ⊆ ℝ,

and hence, by Lebesgue’s Theorem,

Then, taking 𝜎 > 0 small enough, we see that (6.18) could hold only if n = n0 ; moreover, 
by (6.14),

for every �0 ∈ [0, 4�∕n0] . It then follows from Fatou’s Lemma and A7’ that there exists a 
number 𝜂 > 0 such that

Hence, if E0 is taken large enough,

showing that (6.18) cannot hold even if n = n0.
The case when (6.15) holds can be treated similarly.   ◻

Remark 6.7 We notice that it is not really necessary that H be isochronous of period 2�∕n0; 
under the above conditions, it suffices that

Remark 6.8 Conditions like (6.14) and (6.15) appear in [1, 14, 17] for Hamiltonians which 
are positively homogeneous of degree 2. Also the “double resonance” situation has been 
considered there (see also [9–11]).

As an illustration, consider the case of the Hamiltonian function

with

lim
E→+∞

⟨��
�E

(s;E), r(t,�(s;E))
⟩
= 0 ,

uniformly for (t, s) ∈ [0, 2�] × I ,

lim sup
E0→+∞

|� (�)(t;�0,E0) − �0| ≤ 2� � ,

uniformly in t ∈ [0, 2�], �0 ∈

[
0,

4�

n0

]
, � ∈ [0, 1] .

�
2𝜋

0

lim inf
E→+∞

E𝛾 min
|s−t|≤3𝜋𝜎

⟨ 𝜕𝜑

𝜕E
(𝜏0 + s;E), r(t,𝜑(𝜏0 + s;E))

⟩
dt > 0 ,

(6.19)

lim inf
E0→+∞

E
�

0

(
� (�)(2�;�0,E0) − �0

) ≥ � ,

uniformly in �0 ∈

[
0,

4�

n0

]
, � ∈ [0, 1] .

� (�)(2�;�0,E0) ≠ �0 , for any �0 ∈

[
0,

4�

n0

]
and � ∈ [0, 1] .

lim
E0→+∞

E
�

0

(
T(E0) −

2�

n0

)
= 0 .

H(x, y) =
1

2

(
a+[x

+]2 + a−[x
−]2 + y2

)
,
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n0 being a positive integer, and let r(t, x, y) = (rx(t, x), 0). We are thus dealing with the sca-
lar second-order differential equation

The solutions of the autonomous equation all have the same minimal period 2�∕n0 . Denot-
ing by �x,�y the components of �, using (2.11), condition (6.14) with � = 1∕2 reduces to

for every �0 ∈ [0, 2�∕n0] . Since � can be taken arbitrarily small, if we assume rx(t, x) to be 
globally bounded, this condition is fulfilled when, for every �0 ∈ [0, 2�∕n0],

This is the classical Landesman–Lazer condition (first introduced in [23] for the Dirichlet 
problem). For the example considered here, the problem has been treated by Dancer [4, 5] 
(in the case where r does not depend on x). See also [13] and the references therein.

7  Multiplicity of periodic solutions

When the Eq.  (1.3) has a Hamiltonian structure, i.e., when the perturbation r(t,  z) is 
a gradient, with respect to z,   of a function R(t,  z),   it is possible to obtain multiplic-
ity results for the periodic solutions by the use of a generalized version of the Poin-
caré–Birkhoff Theorem, cf. [13, 18, 29].

Let us then consider the system

We will prove the existence of an infinite number of periodic solutions under the assump-
tions of Theorem 3.1, only replacing A5 by the following.

A5′′ . The function T(E) is such that

The idea of a using a condition on the period of the free oscillations in order to apply the 
Poincaré–Birkhoff Theorem can also be found, for instance, in [16].

We need a preliminary result concerning the forced system (1.3); it does not require 
r(t, z) to be a gradient. In the following, we will denote by z(t;z0) the solution of (7.1) 
with initial condition z(0) = z0.

1√
a+

+
1√
a−

=
2

n0
,

x�� + a+ x
+ − a− x

− + rx(t, x) = 0 .

�
2𝜋

0

lim inf
𝜆→+∞

min
|s−t|≤𝜂[𝜑x(𝜏0 + s;1) rx(t, 𝜆𝜑x(𝜏0 + s;1))] dt > 0 ,

∫𝜑x(𝜏0+ ⋅ ;1)>0

𝜑x(𝜏0 + t ;1) lim inf
x→+∞

rx(t, x) dt+

+ ∫𝜑x(𝜏0+ ⋅ ;1)<0

𝜑x(𝜏0 + t ;1) lim sup
x→−∞

rx(t, x) dt > 0 .

(7.1)Jz� = ∇H(z) + ∇zR(t, z) .

0 ≤ lim inf
E→+∞

T(E) < lim sup
E→+∞

T(E) < +∞ .
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Lemma 7.1 Let the function H ∶ ℝ
2
→ ℝ be twice continuously differentiable. Assume 

that the hypotheses of Theorem  3.1 hold, except for  A5, not needed here. Then, for any 
given compact interval I ⊆ ℝ,

Proof Let us write

Since the function H is twice continuously differentiable, it is well-known that the function 
E ↦ T �(E) is continuously differentiable (see, for instance, [27, Theorem  3.4.1]). Since 
Δ(0;z0) = 0, the lemma will be proven if we can show that

Writing z(t) for z(t;z0), since z(t) is a solution of (1.3), we have

Assuming E0 to be sufficiently large, working as in Theorem 3.1, we can write z(t) under 
the form

where e(t) = H(z(t)), and �(t;E) being, as before, a solution of the autonomous sys-
tem (2.1), as introduced in Sect. 2.1. Since �(t;E) is, by definition, of period T(E) in t,  we 
have obviously

from which follows, differentiating with respect to E, 

or

Since the above relation holds for all t ∈ ℝ, and all E sufficiently large, we can also write

Taking the scalar product with r(t, z(t)) and remembering that

lim
E0→+∞

[
T(H(z(t;z0)) − T(H(z0))

]
= 0 ,

uniformly in (t, z0) ∈ I × H−1(E0) .

Δ(t;z0) = T(H(z(t;z0)) − T(H(z0)) .

lim
E0→+∞

�Δ

�t
(t;z0) = 0 , uniformly in (t, z0) ∈ I × H−1(E0) .

(7.2)
�Δ

�t
(t;z0) =T

�(H(z(t))) ⟨∇H(z(t)), z�(t)⟩

=T �(H(z(t))) ⟨J∇H(z(t)), r(t, z(t))⟩ .

z(t) = �(t + �(t);e(t)) ,

�(t + T(E);E) = �(t;E) , for every t ∈ ℝ ,

��

�t
(t + T(E);E) T �(E) =

��

�E
(t;E) −

��

�E
(t + T(E);E) ,

(7.3)−J∇H(�(t;E))T �(E) =
��

�E
(t;E) −

��

�E
(t + T(E);E) .

−J∇H(z(t))T �(e(t)) =
��

�E
(t + �(t);e(t)) −

��

�E
(t + �(t) + T(e(t));e(t)) .

lim
E0→+∞

e(t) = lim
E0→+∞

H(z(t;z0)) = +∞ , uniformly in (t, z0) ∈ I × H−1(E0) ,
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and

the conclusion follows from (7.2) and assumption A7.   ◻

We are now in a position to state a multiplicity result based on a generalized version 
of the Poincaré–Birkhoff Theorem.

Theorem  7.2 Let the function H ∶ ℝ
2
→ ℝ be twice continuously differentiable and 

satisfy

Assume that the hypotheses of Theorem 3.1 hold, with r(t, z) = ∇zR(t, z) , except for the non-
resonance condition A5, replaced by A5 ′′ . Moreover, let

Then, system (7.1) admits an infinite number of periodic solutions.

Proof By assumption A5′′ , it is possible to find positive integers m, n,  and a positive num-
ber �, such that

We then build increasing sequences (Ek)k , (E∗
k
)k , with Ek → +∞ , such that 

E2k < E∗
2k

< E∗
2k+1

< E2k+1 and

We may assume that 𝜀 > 0 has been chosen small enough so that

which implies that

To the above defined sequences we associate, for large values of k,  the annuli

�(t + �(t) + T(e(t));e(t)) = �(t + �(t);e(t)) ,

(7.4)⟨∇H(z), z⟩ > 0 , for H(z) sufficiently large .

(7.5)lim
E→+∞

T �(E)R(t, z) = 0 , uniformly for (t, z) ∈ [0, 2�] × H−1(E) .

lim inf
E→+∞

T(E) <
2𝜋m

n
− 2 𝜀 <

2𝜋m

n
+ 2 𝜀 < lim sup

E→+∞

T(E) .

T(E2k) =
2𝜋m

n
− 2 𝜀 , T(E∗

2k
) =

2𝜋m

n
− 𝜀 ,

2𝜋m

n
− 2 𝜀 < T(E) <

2𝜋m

n
− 𝜀 , for E ∈ ]E2k,E

∗
2k
[ ,

T(E∗
2k+1

) =
2𝜋m

n
+ 𝜀 , T(E2k+1) =

2𝜋m

n
+ 2 𝜀 ,

2𝜋m

n
+ 𝜀 < T(E) <

2𝜋m

n
+ 2 𝜀, for E ∈ ]E∗

2k+1
,E2k+1[ .

3 � ≤ 2�m

n(n + 1)
,

(7.6)
|n∗T(E) − 2�m| ≥ � n∗,

for any integer n∗ and any E ∈ [E2k,E
∗
2k
] ∪ [E∗

2k+1
,E2k+1] .

A∗
k
= Ω(E∗

2k+1
) ⧵Ω(E∗

2k
) , Ak = Ω(E2k+1) ⧵Ω(E2k) .
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Notice that A∗
k
 is contained in Ak.

For some sufficiently large k, to be fixed below, we now modify our system. The idea is 
to leave it unchanged in A∗

k
, and to cancel the forcing term on ℝ2 ⧵Ak, the transition in the 

zone Ak ⧵A
∗
k
 being built as described below. We thus replace R(t, z) by

with � ∶ ℝ → ℝ a C∞-function, built in such a way that

We may assume that |� �(s)| ≤ 4∕� , for every s ∈ ℝ.
We now consider the modified system

Since

it is readily seen that r̃(t, z) ∶= ∇zR̃(t, z) inherits from r(t,  z) the regularity properties 
required for the application of Theorem 3.1. Moreover, using hypothesis (7.5), we observe 
that ∇zR̃(t, z) satisfies the same conditions A6 and A7 as r(t, z). Consequently, arguing as in 
the proof of Theorem 3.1, if we write a solution z̃(t;z0) of the modified system (7.7) under 
the form

we can show that, if k is large enough, we will have

Let us first show that, if k is sufficiently large, any solution z̃(t;z0) of system  (7.7) 
issued from a point z0 in A∗

k
 does not enter the zone where the equation has been modi-

fied, when t ∈ [0, 2�m] . Indeed, with z0 ∈ A
∗
k
, assume that for some t0 ∈ [0, 2�m] either 

H(̃z(t0;z0)) = E∗
2k

 , or H(̃z(t0;z0)) = E∗
2k+1

 , and

Applying Lemma 7.1 with z̃(t0;z0) instead of z0 , if k is taken large enough, then

R̃(t, z) =

⎧
⎪
⎨
⎪⎩

R(t, z) , for z ∈ A∗
k
,

�(T(H(z)))R(t, z) , for z ∈ Ak ⧵A
∗
k
,

0 , for z ∈ ℝ
2 ⧵Ak ,

�(s) =

⎧
⎪
⎨
⎪⎩

1 , if s ∈
�
2�m

n
−

5

4
�, 2�m

n
+

5

4
�
�
,

0 , if s ∈
�
2�m

n
−

7

4
�, 2�m

n
+

7

4
�
�
.

(7.7)Jz� = ∇H(z) + ∇zR̃(t, z) .

∇zR̃(t, z) =

⎧
⎪
⎨
⎪⎩

∇zR(t, z) , for z ∈ A
∗
k
,

�(T(H(z))) ∇zR(t, z)+

+� �(T(H(z)))T �(H(z))R(t, z)∇H(z) , for z ∈ Ak ⧵A
∗
k
,

0, for z ∈ ℝ
2 ⧵Ak ,

(7.8)z̃(t;z0) = �(t + �̃(t;�̃0, ẽ0);̃e(t;�̃0, ẽ0)) ,

(7.9)|�̃(t;�̃0, ẽ0) − �̃0| ≤ �

4
, for every (�̃0, ẽ0) ∈ ℝ × [E2k,E2k+1] .

E∗
2k

≤ H(̃z(s;z0)) ≤ E∗
2k+1

, for every s ∈ [0, t0] .

|T(H(̃z(t;z0))) − T(H(̃z(t0;z0)))| ≤ �

4
, for any t ∈ [0, 2�m] ,
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from which follows that

This means that, for any t ∈ [0, 2�m], either z̃(t;z0) belongs to A∗
k
, or �(T(H(̃z(t;z0)))) = 1. 

In any case, we have that r̃(t, z̃(t;z0)) = r(t, z̃(t;z0)), for t ∈ [0, 2�m], meaning that z̃(t;z0) is 
actually a solution of the original system (7.1).

On the other hand, we claim that there are no 2�m-periodic solutions z̃(t;z0) of sys-
tem (7.7) starting from a point z0 in Ak ⧵A

∗
k
 , with k large enough. Indeed, if z̃(t;z0) is such 

a solution, writing it under the form (7.8), we have

for some integer n∗. But, using (7.6) and (7.9), we see that, if k is large enough, this equal-
ity is impossible, for any integer n∗.

We will now apply the version of Poincaré–Birkhoff Theorem presented in [18, Theo-
rem  1.2]. To this aim, first notice that, by assumption  (7.4), for k large enough the two 
curves delimiting the set Ak are strictly star-shaped with respect to the origin; moreover, if 
z0 ∈ Ak , then z(t;z0) ≠ (0, 0) , for every t ∈ [0, 2�m] . This allows us to consider continuous 
determinations arg z(t;z0) of the argument function along these trajectories, and to define 
their rotation numbers

Let us now estimate these rotation numbers when z0 belongs to the inner and to the outer 
boundary of the annulus Ak . For k sufficiently large, by  (7.4) the function arg z(⋅ ;z0) is 
strictly decreasing when z0 ∈ H−1(E2k) , and by the definition of E2k we get

By a similar argument, using the definition of E2k+1 we see that, for k sufficiently large,

Then, by [18, Theorem 1.2], system (7.7) has at least two 2�m-periodic solutions z(1)(t) , 
z(2)(t) , starting from the interior of Ak , such that

By the above arguments, these are 2�m-periodic solutions of the original system (7.1), and 
the proof is thus completed.   ◻

We end this section with two remarks.

Remark 7.3 When the system satisfies assumption  A8, it is possible to deduce condi-
tion (7.5) in Theorem 7.2 from conditions based more directly on H(z) and R(t, z). In par-
ticular, if H is twice differentiable and H′′ globally bounded, using  (3.7) (with D(E) the 
identity matrix) and (3.9), it results from (7.3) that there exists a constant such that

2�
m

n
−

5 �

4
≤ T(H(̃z(t;z0))) ≤ 2�

m

n
+

5 �

4
, for any t ∈ [0, 2�m] .

2�m + �̃(t;�̃0, ẽ0) = �̃0 + n∗T(H(z0))) ,

Rot(z(t;z0);[0, 2�m]) =
arg z(2�m;z0) − arg z(0;z0)

2�
.

Rot(z(t;z0), [0, 2𝜋m]) < −n , if z0 ∈ H−1(E2k) .

Rot(z(t;z0), [0, 2𝜋m]) > −n , if z0 ∈ H−1(E2k+1) .

Rot(z(1)(t), [0, 2�m]) = Rot(z(2)(t), [0, 2�m]) = −n .

|T �(E)| |∇H(�(0;E))|2 ≤ C ,
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so that condition (7.5) reduces to

For the second-order equation

with g differentiable and g′ globally bounded, this allows to recover multiplicity results 
obtained in [7] (see also [32] and the references therein).

Remark 7.4 In a situation of resonance, i.e. when

for some positive integer n0, conditions of existence of infinitely many periodic solutions 
can still be obtained, the idea being then to use the hypotheses of Theorem 6.3 rather than 
those of Theorem 3.1. We will not give the details here, but simply indicate that a “twist 
condition” would be met by asking the conditions (6.5) and (6.6) to hold simultaneously, 
whereas (7.5) should be replaced by the stronger condition

with 𝛾 > 0 the same constant as in (6.5) and (6.6). The resulting periodic solutions would 
then be of period 2�, making n0 turns around the origin on a time interval of length 2�.

8  More general differential equations

In this section, we consider the planar system

We will assume throughout that F(t, z) is continuous, 2�-periodic in t,   and locally Lip-
schitz continuous in z. We will provide existence conditions for 2�-periodic solutions, 
through a comparison with Hamiltonian systems.

We first state a preliminary result concerning the number of turns, around the origin, of 
a closed curve; il will be applied below to trajectories of (possible) periodic solutions of 
equations like (8.1).

Lemma 8.1 Let H∗ ∶ ℝ
2
→ ℝ satisfy conditions A1 to A3, and let �∗(t;E) be the func-

tion associated with H∗ by hypothesis A3. Assume that �∗(t;E) is of minimal period T∗ in 
t,  the period being independent of E,  for E > 1, and that �∗(0;E) satisfies (2.5). Consider 
a parametric curve t ↦ z(t) = �∗(�(t);e(t)), with z(T) = z(0) , the functions �(t) , e(t) being 
differentiable on ℝ, and such that e(t) > 1, for all t ∈ [0, T]. Assume that

If the curve t ↦ z(t) makes n turns around the origin on the interval [0, T],  then

lim
|z|→∞

R(t, z)

|∇H(z)|2
= 0 .

x�� + g(x) = p(t) ,

lim
E→+∞

T(E) =
2�

n0
,

lim
E→+∞

E� T �(E)R(t, z) = 0 , uniformly for (t, z) ∈ [0, 2�] × H−1(E) ,

(8.1)Jz� = F(t, z) .

(8.2)𝜎(t) = 0 mod T∗
⟹ ⟨∇H∗(z(t)), Jz�(t)⟩ > 0 .
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Conversely, if the above equality holds for some nonnegative integer n,  the curve t ↦ z(t) 
makes n turns around the origin on the interval [0, T],  in the clockwise sense.

Proof The curve z ∶ t ↦ z(t) crosses the gradient curve E ↦ �∗(0;E), when and only 
when �(t) = 0 mod T∗. The condition (8.2) means that the curve z is transversal to the gra-
dient curve �∗(0;⋅), the crossing occurring in the clockwise direction. This gradient curve 
extends from a point on the closed curve H(z) = 1 to infinity. Since the curve z remains 
in the unbounded set {z ∈ ℝ

2 ∣ H(z) > 1} for t ∈ [0, T], the number of turns of z around 
the origin on the interval [0, T) is equal to the number of crossings with the curve �∗(0;⋅). 
Because of (8.2) and (2.5), we have 𝜎�(t) > 0 when �(t) = 0 mod T∗. Hence, each revolu-
tion of the curve z corresponds to an increase T∗ of the parameter t. Therefore, the number 
n in (8.3) is necessarily the number of turns of the curve z,  around the origin, on the inter-
val [0, T].   ◻

Notice that the above result also makes sense with n = 0.

8.1  An existence result

We now state an existence result for Eq.  (8.1) based on a comparison between F(t, z) 
and the gradients of two Hamiltonian functions H1, H2. The proof is based again on 
degree arguments, a homotopy

being used. The hypotheses on the third Hamiltonian function H,   which appears in that 
equation, aim essentially at controlling the energy of the possible periodic solutions, 
whereas the hypotheses on H1, H2 concern their number of revolutions in the plane.

Many existence results have been obtained in the past by considering this number of 
turns, namely by means of a so-called “rotation number" (see, for instance, [1, 33]). Our 
aim, here, is to present a result in the line of our approach of Sect. 3, transforming again 
the system (8.4) into a system whose variables are the energy and the phase. An objec-
tive will then be to compare, for an equation like (1.3), the results presented below to 
the results of Sect. 3. As will be seen, the main difference is that, in the present section, 
the hypotheses used for the comparison are based essentially on ∇H1, ∇H2, whereas, in 
Sect. 3, the hypotheses concern more directly the functions H1, H2 themselves, through 
the relations (4.1).

Let the three Hamiltonian functions H,  H1, H2 satisfy conditions A1 to A3. Assume 
that the functions �1(t;E), �2(t;E), associated respectively with H1, H2, satisfy Eq. (2.5). 
The respective minimal periods of H,   H1, H2, will be denoted by T(E),   T1, T2, the 
Hamiltonian functions H1 and H2 being assumed to be isochronous. Notice that ∇H1(z), 
∇H2(z) are not required to be locally Lipschitz continuous.

Theorem  8.2 Assume that the functions H,H1, H2 satisfy the assumptions  A1 to  A3, 
that ∇H is locally Lipschitz continuous, and that the Hamiltonian functions H1 and H2 are 
isochronous. Assume that

(8.3)�(T) = �(0) + n T∗.

(8.4)Jz� = (1 − �)∇H(z) + �F(t, z) .
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With

assume that

for � ∈ {0, 1}, t ∈ [0, 2�], and E sufficiently large. Assume moreover that, for any given 
compact interval I ⊆ ℝ,

for � ∈ {0, 1}, uniformly for (t, s) ∈ [0, 2�] × I . If for some integer n0,

then Eq. (8.1) admits at least one 2�-periodic solution.

The hypotheses in the above theorem may seem awkward, but have been stated at that 
level of generality to allow applications in a large variety of situations. We will provide 
below various sets of conditions ensuring that these hypotheses are satisfied.

Proof We denote by P(�)

2�
 the Poincaré map for the period 2�, associated with Eq. (8.4); rea-

soning as in the proof of Theorem 3.1, this map can be shown to be well defined. Indeed, 
letting z(�)(t;z0) denote the solution of (8.4) for the initial condition z(0) = z0, and defining 
e(�)(t;z0) = H(z(�)(t;z0)), we have

We then deduce from (8.5) that e(�)(t;z0) remains bounded on any compact interval, from 
which follows, by the coercivity condition A1, that z(�)(t;z0) can be extended to the whole 
real line and |z(�)(t;z0)| tends to +∞, for E0 → +∞, uniformly for z0 ∈ H−1(E0). Notice that, 
by hypothesis A1 for H1 and H2, both H1(z

(�)(t;z0)) and H2(z
(�)(t;z0)) also tend to +∞ for 

E0 → +∞, uniformly for z0 ∈ H−1(E0) , t ∈ [0, 2�] , � ∈ [0, 1].

The theorem will be proved if we can show that, for E0 sufficiently large,

(8.5)
⟨J∇H(z),F(t, z)⟩

H(z)
remains bounded for �z� → ∞, uniformly in t .

(8.6)F(�)(t, z) = (1 − �)∇H(z) + �F(t, z) ,

(8.7)⟨∇H1(𝜑1(0;E)),F
(𝜆)(t,𝜑1(0;E))⟩ > 0 ,

(8.8)⟨∇H2(𝜑2(0;E)),F
(𝜆)(t,𝜑2(0;E))⟩ > 0 ,

(8.9)1 ≤ lim inf
E→+∞

⟨
��1

�E
(s;E),F(�)(t,�1(s;E))

⟩
,

(8.10)lim sup
E→+∞

⟨
��2

�E
(s;E),F(�)(t,�2(s;E))

⟩
≤ 1 ,

(8.11)
2𝜋

n0 + 1
< T2 and T1 <

2𝜋

n0
,

(8.12)(e(�))�(t;z0) = �⟨J∇H(z(�)(t;z0)),F(t, z
(�)(t;z0))⟩ .

(8.13)P
(�)

2�
(z0) ≠ z0 , for any z0 ∈ H−1(E0) and � ∈ [0, 1] .
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In order to prove that (8.13) holds for E0 sufficiently large, we will look at the number of 
turns of possible 2�-periodic solutions of  (8.4) around the origin. For that purpose, we 
will, in a first stage, consider those solutions as perturbations of the solutions of equation

We therefore write them under the form

Taking (2.3) into account, simple calculations lead to the system

The solution of the above system for the initial conditions � (�)
1
(0) = �0, e

(�)

1
(0) = H1(z0), 

where �0 is such that z0 = �1(�0,H1(z0)), will be denoted by �
(�)

1
(t;�0,H1(z0)), 

e
(�)

1
(t;�0,H1(z0)).

Condition  (8.13) will be satisfied unless, for some integer n (which may be positive, 
negative or zero), some �0 ∈ [0, T1], some � ∈ [0, 1], we have

Using Lemma  8.1 with H∗ = H1, we see that n is the number of turns of the solution 
around the origin, counted positively in the clockwise sense. Indeed, condition (8.2) fol-
lows from hypothesis  (8.7), for any � ∈ [0, 1] . Using  (8.9), we deduce from  (8.15) that, 
given any 𝜂 > 0, for sufficiently large values of E0,

for any z0 ∈ H−1(E0) (remember that �0 depends on z0). Hence, by (8.11), the periodicity 
condition (8.17) can hold only if n > n0.

A similar argument, with the solutions of (8.4) considered as perturbations of the solu-
tions of

shows that n < n0 + 1, so that (8.17) is impossible, n being an integer.   ◻

We illustrate the above theorem by considering the simple case where H1 and H2 are posi-
tively homogeneous of degree 2, i.e., they satisfy (2.9). Due to the homogeneity property of 
H1,H2, as observed in Sect. 2.2, we can build �1(;E), �2(t;E) in such a way that

(see (2.10) and (2.11)). Moreover, for i = 1, 2, the gradients ∇Hi(�i(0;E)) , i = 1, 2 , are then 
positive multiples of �i(0;E) so that conditions (8.7), (8.8) are satisfied if

(8.14)Jz� = ∇H1(z) .

z(�)(t;z0) = �1

(
t + �

(�)

1
(t);e

(�)

1
(t)
)
.

(8.15)(�
(�)

1
)� =

⟨
��1

�E

(
t + �

(�)

1
;e

(�)

1

)
,F(�)

(
t,�1

(
t + �

(�)

1
;e

(�)

1

))⟩
− 1 ,

(8.16)(e
(�)

1
)� = �

⟨
J∇H1

(
�1

(
t + �

(�)

1
;e

(�)

1

))
,F(�)

(
t,�1

(
t + �

(�)

1
;e

(�)

1

))⟩
.

(8.17)
e
(�)

1
(2�;�0,H1(z0)) =H1(z0) ,

2� + �
(�)

1
(2�;�0,H1(z0)) =�0 + n T1 .

�1
(�)(2�;�0,H1(z0)) − �0 ≥ −� ,

(8.18)Jz� = ∇H2(z) ,

��i

�E
(t;E) =

1

2E
�i(t;E) (i = 1, 2)
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On the other hand, conditions (8.9), (8.10) hold if

Notice that, by the homogeneity property of H1, H2, the conditions (8.19) imply that, for 
any 𝜀 > 0, we have H1(z) ≤ (1 + �)H2(z), for |z| sufficiently large. Using, for instance, the 
arguments of Sect. 4.1, this in turn entails that T2 ≤ T1. We can deduce the following corol-
lary from Theorem 8.2.

Corollary 8.3 Assume that the functions H,  H1, H2 satisfy the assumptions A1 to A3, that 
∇H is locally Lipschitz continuous, and that the functions H1, H2 satisfy (2.9), and hence 
are isochronous, their respective minimal periods being denoted by T1, T2. Assume moreo-
ver that (8.5) is satisfied. If conditions (8.19) hold and if, for some integer n0,

then equation (8.1) admits at least one 2�-periodic solution.

Remark 8.4 When H1 is positively homogeneous of degree 2, the computation of the “rota-
tion number” associated with the auxiliary function H1, as introduced, for instance, in [1, 
33], is equivalent to the computation of 2� + �

(�)

1
(t;�0,H1(z0)) − �0, with � (�)

1
 being defined 

by (8.15).

It is interesting to compare the above corollary to results of Sect. 4. We will do this 
for the equation

with r continuous and 2�-periodic, assuming that H is twice continuously differentiable, 
that H′′ is globally bounded, and that

the Hamiltonians H1 and H2 satisfying (2.9). Notice that condition (8.5) is then automati-
cally satisfied. With T1, T2 denoting the minimal periods of the nontrivial solutions of the 
systems associated with H1, H2, respectively, assume that (8.20) holds. The application of 
Corollary 8.3 requires that

whereas such conditions on ∇H are not needed in Corollary 4.2, the condition (8.22) com-
bined with the hypotheses on T1 , T2 being sufficient. This difference is explained by the fact 
that Corollary 8.3 does not exploit the Hamiltonian structure of the autonomous equation 
associated with (8.21). The application of the above corollary to equation (8.21) allows to 
recover results obtained long ago by Sȩdziwy [30].

⟨z,F(𝜆)(t, z))⟩ > 0 , for t ∈ [0, 2𝜋] and �z� “large”.

(8.19)1 ≤ lim inf
�z�→∞

⟨F(t, z), z⟩
2H1(z)

, lim sup
�z�→∞

⟨F(t, z), z⟩
2H2(z)

≤ 1 , uniformly in t .

(8.20)
2𝜋

n0 + 1
< T2 ≤ T1 <

2𝜋

n0
,

(8.21)Jz� = ∇H(z) + r(t) ,

(8.22)H1(z) ≤ H(z) ≤ H2(z) , for |z| large,

1 ≤ lim inf
�z�→∞

⟨∇H(z), z⟩
2H1(z)

, lim sup
�z�→∞

⟨∇H(z), z⟩
2H2(z)

≤ 1 ,
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8.2  The case when n0 = 0

In the case when n0 = 0 , the function H1 is superfluous, and the following result can be stated.

Theorem 8.5 Assume that the functions H,  H2 satisfy the hypotheses A1 to A3, and that 
∇H is locally Lipschitz continuous. Let H(z),  F(t, z) be such that (8.5) holds. Assume that

for t ∈ [0, 2�], |z| sufficiently large. Assume moreover that, for any given compact interval 
I ⊆ ℝ,

uniformly for (t, s) ∈ [0, 2�] × I . If

then Eq. (8.1) admits at least one 2�-periodic solution.

The proof is analogous to the one of Theorem 8.2, hence we omit it, for brevity. Notice 
however the difference between conditions (8.23) and (8.8). The conditions (8.23) ensure 
that a possible periodic solution of  (8.4) crosses all the gradient curves associated with 
H2, whereas in Theorem 8.2, condition (8.8), which concerns only one particular gradient 
curve, suffices. Notice also that it is not necessary here to assume the Hamiltonian function 
H2 to be isochronous.

8.3  Application to equations with separated variables

Consider the case where the variables are “separated” in the planar system (8.1), i.e., the 
right-hand side has the form

We will assume that g, k are continuous, 2�-periodic in t,  locally Lipschitz continuous in 
x, y, and that, for some p > 1, q > 1 related by condition (2.13), we have

uniformly in t. More precisely, we will assume that there exist numbers 𝛼2 ≥ 𝛼1 > 0 and 
𝛽2 ≥ 𝛽1 > 0 such that

(8.23)⟨∇H2(z),F(t, z)⟩ > 0 , ⟨∇H2(z),∇H(z)⟩ > 0 ,

lim sup
E→+∞

⟨
��2

�E
(s;E),F(t,�2(s;E))

⟩
≤ 1 ,

lim sup
E→+∞

⟨
��2

�E
(s;E),∇H(�2(s;E))

⟩
≤ 1 ,

lim inf
E→+∞

T2(E) > 2𝜋 ,

F(t, (x, y)) = (g(t, x), k(t, y)) .

g(t, x) = O(|x|p−1) , for |x| → ∞ , k(t, y) = O(|y|q−1) , for |y| → ∞ ,

(8.24)�1 ≤ lim inf
|x|→+∞

x g(t, x)

|x|p ≤ lim sup
|x|→+∞

x g(t, x)

|x|p ≤ �2 ,

(8.25)�1 ≤ lim inf
|y|→+∞

y k(t, y)

|y|q ≤ lim sup
|y|→+∞

y k(t, y)

|y|q ≤ �2 ,
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the limits being assumed to be uniform in t. Actually, we could write more general results 
by considering separately the limits for x going to +∞ and for x going to −∞, and analo-
gously for y. This involves no particular difficulty, but makes the formulation of the hypoth-
eses more involved.

In order to apply Theorem 8.2 or  8.5, we will use the following functions as refer-
ences for the comparison:

We also need a Hamiltonian function H having the properties required for Theorem 8.2 and 
8.5; it is possible to choose a function, whose gradient is locally Lipschitz continuous, and 
which is of the form

with |∇R(z)| = o(|z|) for |z| → +∞. Denoting, as before, by �1(t;E), �2(t;E) the functions 
associated with the Hamiltonians H1, H2, and remembering (2.14), i.e.,

it can be checked that all the conditions for the application of Theorem 8.2 or 8.5 are satis-
fied. Altogether, the following corollary is obtained.

Corollary 8.6 Assume that, for some p > 1, q > 1 related by  (2.13), the condi-
tions (8.24), (8.25) hold (with �1, �1 positive). Let the Hamiltonians H1, H2 then be defined 
by (8.26), the minimal period of their nontrivial solutions being denoted by T1 , T2, respec-
tively. If either T2 > 2𝜋 , or for some integer n0, condition (8.20) holds, then the system

admits a 2�-periodic solution.

A result close to the above corollary can be found in [6], for the case of a second-
order equation with a p-Laplacian operator, corresponding to the choice k(t, y) = c |y|q, 
for some constant c > 0.

As already observed above in the case of systems with positively homogeneous Ham-
iltonians of degree 2, sharper results can be obtained for systems of the form

by exploiting the Hamiltonian structure and resorting to the results of Section 4, the Ham-
iltonian being defined by H(x, y) = G(x) + K(y), where G and K denote some primitives of 
g and k,  respectively.
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(8.26)H1(x, y) = �1
|x|p
p

+ �1
|y|q
q

, H2(x, y) = �2
|x|p
p

+ �2
|y|q
q

.

H(z) =
1

2

(
H1(z) + H2(z)

)
+ R(z) ,

��i

�E
(t;E) =

1

E
diag

(
1

p
,
1

q

)
�i(t;E) (i = 1, 2) ,

x� = k(t, y) , −y� = g(t, x)

x� = k(y) + ry(t) , −y� = g(x) + rx(t) ,
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