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Abstract: Wireless sensor networks have gained significant attention in recent years due to their wide
range of applications in environmental monitoring, surveillance, and other fields. The design of a
groundwater quality and quantity monitoring network is an important aspect in aquifer restoration
and the prevention of groundwater pollution and overexploitation. Moreover, the development
of a novel localization strategy project in wireless sensor groundwater networks aims to address
the challenge of optimizing sensor location in relation to the monitoring process so as to extract
the maximum quantity of information with the minimum cost. In this study, the improved hybrid
butterfly artificial gorilla troop optimizer (iHBAGTO) technique is applied to optimize nodes’ position
and the analysis of the path loss delay, and the RSS is calculated. The hybrid of Butterfly Artificial
Intelligence and an artificial gorilla troop optimizer is used in the multi-functional derivation and
the convergence rate to produce the designed data localization. The proposed iHBAGTO algorithm
demonstrated the highest convergence rate of 99.6%, and it achieved the lowest average error of 4.8;
it consistently had the lowest delay of 13.3 ms for all iteration counts, and it has the highest path loss
values of 8.2 dB, with the lowest energy consumption value of 0.01 J, and has the highest received
signal strength value of 86% for all iteration counts. Overall, the Proposed iHBAGTO algorithm
outperforms other algorithms.

Keywords: artificial gorilla troop optimizer; butterfly artificial intelligence; localization accuracy;
localization errors; node localization; wireless sensor networks; groundwater

1. Introduction

Wireless sensor networks (WSNs) are becoming increasingly widespread in various
areas, especially in environmental monitoring applications. Optimizing sensor location in
relation to the monitoring process can help to extract the maximum quantity of information
with the minimum cost. In the field of groundwater pollution, the utilization of sensors
that provide real-time measurements would significantly reduce site characterization times
and costs and provide more complete and continuous data-sets for long-term monitoring.
However, within the use of sensors in the environmental monitoring field, one of the most
relevant problems is linked, in addition to the requisites of the sensor itself, to the correct
individuation of the sensor’s position in relation to the phenomenon to monitor [1].

2. Literature Review

The development of a novel localization strategy project in wireless sensor networks
aims to address the challenge of accurately locating wireless sensor nodes in an ad hoc
network environment [2]. Wireless sensor networks have gained significant attention
in recent years due to their wide range of applications in environmental monitoring,
surveillance, and other fields. In such networks, the accurate localization of sensor nodes

Water 2024, 16, 1134. https://doi.org/10.3390/w16081134 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16081134
https://doi.org/10.3390/w16081134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-5743-493X
https://doi.org/10.3390/w16081134
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16081134?type=check_update&version=1


Water 2024, 16, 1134 2 of 21

is critical for effective data processing, resource allocation, and network management.
Traditional localization strategies in wireless sensor networks rely on various techniques
such as time of arrival, time difference of arrival, received signal strength, and angle of
arrival measurements. However, these techniques have limitations such as high complexity,
low accuracy, and dependence on specific hardware configurations [3]. Therefore, there
is a need to develop novel localization strategies that can overcome these limitations and
provide a more accurate and efficient localization of sensor nodes. The literature review on
wireless sensor network is shown in Table 1 as follows:

Table 1. Literature review on WSS.

Author and Year Proposed System Method Algorithm Future Enhancement

El Zini et al. (2019) [4] In this study, the detection of
the bright spot is performed.

The transfer learning method
and the data argumentation

method are used
Machine learning algorithm

In the future, earthquake
prediction will also be

conducted for problems other
than seismic problems.

Guo et al. (2021) [5]

The measurement of grip
force using the elongated

surgical instrument is
performed. Also, the

performance of robot-assisted
minimally invasive surgery

(RMIS) is measured.

The deep
learning method is used for

the analysis

Binary butterfly
optimization algorithm

The performance of the
surgery mechanism
will be improved.

Muhammad et al. (2021) [6]
In this study, the detection of

voice pathology detection
is performed.

A deep learning-based
pathology detection method

is used
Deep learning algorithm

The signal transmission effects
are to be analyzed using the

enhanced VPD system.

Singh et al. (2021) [7] This study uses the strategy of
optimal biding.

The MCP method and the
game theory model are used

The gorilla troop
optimizer algorithm

The profitable management of
the integration will

be conducted.

M. A. El-Dabah et al. (2022) [8]
In this study, the forecasting of

an application is performed
based on the streamflow.

Preprocessing and the
adjustment method are used

in this study for
data intelligence

Optimization algorithm
Using LSTM, a performance

analysis is conducted in
this study.

This study developed and implemented a novel localization strategy based on machine
learning and optimization techniques. The proposed strategy addresses existing techniques’
limitations and provides accurate localization in various network scenarios. This paper also
involves evaluating and comparing the proposed strategy with existing techniques using
simulation and experimental studies (Figure 1). The development of a novel localization
strategy in wireless sensor networks project aims to advance wireless sensor network
technology through the development of a more accurate and efficient localization strategy
to improve various applications’ performances in this field [7].

Ref. [9] presented Artificial Rabbit Optimization (ARO), a meta-heuristic algorithm
inspired by the survival strategies of rabbits. ARO’s performance was evaluated through
comparisons with other optimization algorithms on 31 benchmark functions and five
engineering problems. The findings indicated that ARO consistently outperforms its coun-
terparts in addressing these challenges. Furthermore, the practical application of the ARO
optimizer in the fault diagnosis of a rolling bearing showcases its effectiveness in tackling
complex real-world issues. The research in [10] introduced a novel swarm intelligence algo-
rithm named Northern Goshawk Optimization (NGO) that emulates the hunting behavior
of northern goshawks. The algorithm’s effectiveness was evaluated across sixty-eight
objective functions and benchmarked against eight established algorithms. Results from
simulations indicated the superior performance of NGO, which was validated further
through its successful resolution of four real-world design problems. The study in [11]
used ten chaotic maps from the Hunger Games Search (HGS) method, with an emphasis
on animal foraging behavior and hunger instincts. The incorporation of chaotic maps into
HGS improves performance across three distinct scenarios, with faster convergence in
Scenario 2. The algorithm’s efficacy was evaluated using CEC2017 and 23 classical bench-
mark problems, as well as through its application in real-world engineering challenges,
and the results were promising when compared to those in the existing literature. The
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Slime Mould Algorithm (SMA) [12] is a metaheuristic algorithm based on populations,
characterized by a balance between exploitation and exploration. A study introduced an
enhanced version called the MSMA, which incorporates chaotic opposition-based learn-
ing, adaptive parameter control techniques, and a spiral search approach. The MSMA
demonstrated superior performances compared to alternative algorithms in terms of conver-
gence accuracy, speed, and stability, showcasing its effectiveness in addressing real-world
optimization challenges.

The main objectives of this study were as follows:

1. For the localization of the nodes, a multi-objective improved hybrid butterfly artificial
gorilla troop optimizer is used.

2. The hybrid (butterfly artificial intelligence + artificial gorilla troop optimizer) and
improved hybrid butterfly artificial gorilla troop optimizer techniques are used for
the analysis.

As required by the article, the following sections are organized as follows. Section 1
provides a description of the Introduction, and Section 2 discusses the literature evaluation.
Section 3 describes research on the proposed new node localization model. Section 4
presents the results and discussion. In Section 5, the conclusion is provided alongside
appropriate citations.
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Figure 1. Flowchart of proposed method.

3. Materials and Methods
3.1. New Node Localization Model

The Butterfly Optimization Algorithm (BOA) has been used in various applications,
including wireless sensor network (WSN) localization strategies. In localization strategies,
the BOA can be used to optimize the positions of sensor nodes in the network, which is
crucial for the accurate localization of the sensor nodes [13] in wireless sensor networks
(WSNs). The BOA optimizes the positions of anchor nodes by minimizing errors between
measured and estimated distances. It efficiently explores solutions to converge toward the
global optimum, enhancing the localization accuracy, whereas anchor node optimization
is vital for precise localization, as it aids in distance estimation, minimizes errors, and im-
proves the overall WSN performance in environmental monitoring applications. The BOA’s
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role in optimizing anchor nodes is essential for improving the efficiency and effectiveness
of WSNs in environmental monitoring tasks. The optimization is based on minimizing the
error between the distances measured by the anchor nodes and the distances estimated
by the sensor nodes. To use the BOA for localization, the algorithm’s objective function is
the sum of the errors between the measured distances and the distances estimated by the
sensor nodes. The BOA then optimizes the positions of the anchor nodes to minimize this
objective function. The BOA’s ability to explore the solution space efficiently and converge
to the global optimum makes it a suitable optimization algorithm for localization strategies.
In addition, the BOA can be combined with other optimization algorithms, such as the
artificial gorilla troop optimizer, to enhance its performance and improve the localization
accuracy. Resulting hybrid algorithms, such as the iHBAGTO algorithm, have been shown
to outperform other localization algorithms in terms of accuracy and convergence rate. In
developing a new node localization model, the performances of wireless sensor networks
(WSNs) should be improved [14]. The localization model should be able to accurately
determine the locations of sensor nodes in dense networks to enable the efficient placement
of WSNs. The precise positioning of sensor nodes can track small variations in various
applications such as pollutant concentrations, temperature, pressure monitoring, and gas
leaks. To achieve this goal, a new heuristic algorithm can be used to solve the complexities
of localization in dense networks. This algorithm is designed to solve multi-functional
derivations and optimize the localization process. The algorithm considers signal strength,
time of flight, and arrival angle to determine the sensor nodes’ locations accurately [15].

The new node localization model was developed using a combination of simulation
and experimental techniques (Figure 2). The simulation used a suitable network simulator,
and the experimental work was performed using real sensor nodes. The performance of the
new localization model was evaluated based on several metrics, such as accuracy, precision,
and computation time. The proposed localization model has several benefits, including
improved efficiency in WSN placement, higher accuracy in tracking minute variations,
and improved performances in various applications [16]. Overall, developing a new node
localization model is an essential step toward improving the performances of WSNs and
enhancing their applicability in various fields.

AHD = ∑i = j di,j
∑i = j hi,j

(1)

This equation represents the average hop distance (AHD) metric used to evaluate the
performance of a routing protocol in wireless sensor networks (Figure 3). The numerator of
the equation (∑i = j di, j) represents the sum of distances between all pairs of nodes i and j
that have successfully communicated with each other. The denominator of the equation
(∑i = j hi, j) represents the number of successfully established communications between
all pairs of nodes i and j. Therefore, the AHD metric measures the average number of
hops required for successful communication between pairs of nodes in the network. The
lower the AHD value, the better the performance of the routing protocol in terms of energy
efficiency and data delivery [17].

du, i = AHD × hu (2)

Here, i represents the approximate distance between an anchor node “i” and an unlocalized
node “u” in a wireless sensor network. The AHD is the average hop distance calculated
using the equation AHD = ∑i = j di, j/∑i = j hi, j. The value of di, j is calculated as
(xi − xj)2 + (yi − yj)2 and represents the Euclidean distance between the coordinates of
anchor nodes i and j. The minimum hop value between i and j is represented by hi, j. The
hop size is the hop size from anchor node i to its neighbors, and it is broadcasted by node i
using controlled flooding throughout the network [18]. The value of hu, i represents the
number of hops between anchor node i and the unlocalized node u.
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3.2. Hybrid Butterfly Artificial Gorilla Troop Optimizer (iHBAGTO)

A hybrid algorithm combines two or more algorithms to solve problems and achieve
better results than individual algorithms. In the context of wireless sensor networks
(WSNs), the design of a novel hybrid heuristic algorithm called iHBAGTO is proposed to
improve localization performance by reducing localization errors and increasing conver-
gence rates [19].

The iHBAGTO algorithm was designed to discover the locations of anchor nodes
close to the near-optimal target nodes, improving the localization accuracy. The algorithm
combines the benefits of two popular algorithms, i.e., the Butterfly Algorithm (BA) and
the gorilla troops optimizer (GTO), to achieve better results than individual algorithms.
The proposed hybrid algorithm, iHBAGTO, combines the strengths of the BA and GTO
algorithm using the search capabilities of the BA to find the optimal anchor node positions
and the exploration capabilities of the GTO to refine the positions of the anchor nodes [20].
Combining the Butterfly Optimization Algorithm (BOA) with the artificial gorilla troop
optimizer (GTO) brings several benefits to enhancing the localization accuracy in wireless
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sensor networks (WSNs). The BOA efficiently explores solution spaces and converges to
global optima, making it suitable for localization strategies, while the GTO offers unique
optimization capabilities inspired by gorilla troops’ behavior. This combination leverages
their individual strengths to improve the overall optimization for sensor node localization,
leading to enhanced accuracy, reduced errors in distance estimation, faster convergence
rates, adaptability to complex environments, and superior performance compared to
other localization algorithms, as demonstrated by the iHBAGTO algorithm. This helps
to maximize the accuracy of localization and reduce localization errors. The algorithm is
as follows:

1. Initialization: Initialize the population of solutions randomly.
2. Objective Function: Evaluate the fitness of each solution using an objective function.
3. Butterfly Movement: Apply butterfly movement to update the positions of solutions

based on the best solution found so far.
4. Local Search: Apply local search to improve the solutions by exploring the neighbor-

hood of each solution.
5. Update Best Solution: Update the best solution found so far.
6. Stopping Criteria: Check if the stopping criteria are met. If not, go back to step 2.
7. Output: Return the best solution found as the final solution.

The input data include the coordinates of anchor nodes and the range of the sensors
in the wireless sensor network (WSN) (Figure 4). The Butterfly Optimization Algorithm
component aims to optimize the positions of anchor nodes to improve the accuracy of
node localization. This component optimizes the localization by considering the energy
efficiency and connectivity of the nodes. The gorilla troop optimizer algorithm component
is responsible for optimizing the positions of the anchor nodes to improve the convergence
rate and minimize localization errors. The hybrid algorithm component integrates the
output of both the Butterfly Optimization Algorithm and gorilla troop optimizer algorithm
to determine the optimized coordinates of the anchor nodes. The localization strategy
component uses the optimized coordinates of anchor nodes to determine the locations of
the target nodes in the WSN. The output data include the coordinates of the target nodes in
the WSN, which are localized with higher accuracy and precision [21].

The hybrid butterfly artificial gorilla troop optimizer (iHBAGTO) algorithm is a heuris-
tic optimization technique designed to efficiently locate the anchor nodes close to the
near-optimal target nodes to increase localization accuracy and reduce localization errors.
The algorithm starts by initializing the populations of gorillas and butterflies, where each
individual represents a candidate solution. The fitness of each individual is evaluated
based on the localization error [22]. The Hybrid Butterfly Artificial Gorilla Troop Optimizer
algorithm is represented in Algorithm 1.
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Algorithm 1 Algorithm for Hybrid Butterfly Artificial Gorilla Troop Optimizer

Input:
Number of anchor nodes (n), number of target nodes (m), number of iterations (T), lower and upper bounds for the variables,
parameters for GTO algorithm (x, D, β), parameters for butterfly operator (p, r)

Output:
The best solution found during the optimization process
// Initialize populations of gorillas and butterflies

for k = 1 to n + m
randomly initialize the position of the individual and evaluate the fitness of the individual

End for
for t = 1 to T

for k = 1 to n
randomly select a gorilla individual A(k)
if Rand < z then

perform ‘Move to an unknown location’ operation
else if Rand >= 0.5, then

perform ‘Transition to other gorillas’ operation
else

perform ‘Migrate to a known position’ operation
End if

evaluate the fitness of the new individual
if (new individual fitness > A(k))

replace A(k) with the new individual
End if

// Perform exploitation phase using GTO strategies
for i = 1 to n

randomly select a gorilla individual A(k)
If (V >= D)
perform ‘Follow the Silverback’ strategy

Else
perform ‘Competition for adult females’ strategy
evaluate the fitness of the new individual

End if
End for
if (new individual > fitness than A(k))

replace A(k) with the new individual
End if
for i = 1 to do n

randomly select a gorilla individual A(k)
if (Rand < p)

apply butterfly operator to A(k) with parameter r
evaluate the fitness of the new individual

else if the new individual has a better fitness than A(k)
replace A(k) with the new individual

End if
// Select best solutions from both populations
sort individuals in both populations based on fitness
select the top n individuals from the gorilla population
select the top m individuals from the butterfly population
replace the worst n individuals in the gorilla population with the selected individuals
replace the worst m individuals in the butterfly population with the selected individuals
// Output the best solution found
sort individuals in both populations based on fitness
return individuals with best fitness

In the exploitation phase, two strategies, Follow the Silverback and Competition for
adult females, are used to select and modify the positions of the gorillas. In the exploration
phase of the algorithm, the GTO operators—Move to an unknown location, Transition
to other gorillas, and Migrate to a known position—are applied to randomly selected
gorilla individuals [11]. Additionally, the butterfly operator is applied to randomly selected
gorillas to explore the solution space further. After evaluating the fitness values of the
modified individuals, the best solutions from both populations are selected, and the worst
individuals in each population are replaced with them. This process is repeated for a fixed
number of iterations.

The output of the iHBAGTO algorithm is the best solution found during the opti-
mization process. Combining the GTO algorithm with the butterfly operator allows the
iHBAGTO algorithm to effectively balance exploration and exploitation to improve the
localization accuracy and convergence rate. Overall, this algorithm is useful for solving
optimization problems related to localization, especially because the locations of anchor
nodes being close to near-optimal target nodes is crucial.

The artificial gorilla troop optimizer (GTO) is a nature-inspired optimization algorithm
modeled after gorilla troops’ behavior in the wild. The GTO algorithm consists of two main
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phases: exploration and exploitation. In the exploration phase, three different operators are
used to explore the search space, including moving to an unknown location, transitioning
to other gorillas, and migrating to a known position [23]. These operators are represented
using a set of equations that involve random values and parameters:

(UB − LB) × r1 + LB Rand < x

PA(t + 1) = {(r2 − V) × Er(t) + W × U Rand ≥ 0.5 (3)

E(k) − W × (E(t) − ZEr(t) + r3 × (E(t) − ZEr(t))) Rand < 0.5

V = (cos(2 × r4) + 1) ×
(

1 − kt
Maxt

)
(4)

W = V × i (5)

U = X × E(t) (6)

X = [−V, V] (7)

where PA(t + 1) denotes the gorilla position at time t + 1, LB and UB denote the lower and
upper bounds, and random values range from 0 to 1. A(t) refers to the current position
of the gorilla. Then, the pseudocode for the Artificial Gorilla Troop Optimizer (GTO)
Algorithm is represented in Algorithm 2:

Algorithm 2 Pseudocode for the Artificial Gorilla Troop Optimizer (GTO) Algorithm

Input: objective function
Output: the best solution
Initialization: population of gorillas within the search space
Set max_iter = maximum number of iterations, parameters x, M, β, and i.
For each gorilla

Evaluate fitness
End for

a. Perform the exploration phase:
For each gorilla

Generate a random number, Rand
If (Rand < x)
move to a new random location within the search space
Else If (Rand ≥ 0.5)
follow the silverback gorilla using the equation PA(t + 1)
Else If (Rand < 0.5)
compete for adult females using the equation PE(k)
End if

End for
b. Evaluate the fitness of each gorilla after the exploration phase.
c. Perform the exploitation phase:

for each gorilla
Calculate the values of V and D
If (V ≥ D)

follow the silverback using the equation PA(t + 1)
Else If (V < D)

compete for adult females using the equation PE(k)
End if

End for
Evaluate fitness
Output best solution found

In the exploitation phase, two strategies are applied, depending on the value of a
parameter D. The first strategy, called Follow the Silverback, is applied when V (a calculated
value based on the position of the gorilla candidate) is greater than or equal to D. In this
strategy, the best solution, Esilverback, is followed, and the candidate position is updated
based on the distance between the current position and Esilverback.

PA(t + 1) = W × M × (E(t) − Esilverback) + E(t) (8)

M = (|1/n ∑n PEk(t)|G)1/8 (9)

G = 2W (10)
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The second strategy, Competition for adult females, is applied when V is less than D.
In this strategy, the candidate position is updated using a formula that involves a parameter
β, a random value r5, and a function of the total number of gorillas as n. The GTO algorithm
is designed to balance exploration and exploitation in the search for the optimal solution.

PE(k) = Esilverback − (Esilverback × Q − E(t) × Q) × A (11)

Q = 2 × r5 − 1 (12)

T = β × h (13)

h = {n1, Rand ≥ 0.5
n2, Rand < 0.5

(14)

The Butterfly Optimization Algorithm is a metaheuristic optimization algorithm
inspired by the flight behavior of butterflies. The algorithm process involves initializing a
population of butterflies within the boundaries of the search space and evaluating their
stimulus intensity through the objective function. The algorithm starts by defining the
objective function f(x), sensory morphology c, power exponent a, boundary, and probability
p. It then creates a population of butterflies A = {a1, a2, ..., an}. It determines their stimulus
intensity Ik through the objective function and then proceeds through a series of iterations
where the fitness of each butterfly is calculated and the best position of the butterfly is found.
Each butterfly’s fragrance is calculated based on its fitness value during each iteration,
and a random number is generated to determine whether a global or local search method
should be used.

Ak
(t + 1) = Ak

t + (r2 × b* − Ak
t) Fk (15)

Here, Ak
(t+1) is the current position of the butterfly k at time t, b* is the position of the

best butterfly found so far, r is a random number between 0 and 1, and Fk is the fragrance
of the butterfly k. If a global search is chosen, the butterfly flies toward the butterfly with
the highest fitness using the global search equation. If a local search is chosen, the butterfly
randomly selects two other butterflies (i, j) and flies toward a position between them using
the local search equation.

Ak
(t+1) = Ak

t + (r2 × Ai
t − Aj

t) Fk (16)

Here, Ai
t and Aj

t are the positions of two randomly selected butterflies i and j at time t.
The power exponent a is updated during each iteration to control the global and local search
balance. As the number of iterations increases, the power exponent decreases, which gives
more weight to the global search. The algorithm repeats this process until a termination
condition is met, such as reaching the maximum number of iterations, and outputs the
best solution found [13]. Further, the steps involved in the Butterfly Artificial Intelligence
process is represented in Algorithm 3.

The design of the novel hybrid heuristic algorithm, iHBAGTO, is an essential step
toward improving the localization performances of WSNs by reducing localization errors
and increasing convergence rates. The performance of the iHBAGTO algorithm was
evaluated based on convergence rate, average error, and standard deviation. The results
show that the iHBAGTO algorithm achieves a lower average error and faster convergence
rate than individual algorithms. The iHBAGTO algorithm can be applied in various
applications, such as military, robotics, and environmental monitoring, to improve the
accuracy of localization and aid decision making [24].
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Algorithm 3 Algorithm for Butterfly Artificial Intelligence Process

Input: Objective function f(a), sensory morphology c, power exponent x, boundary probability p, butterfly population size n,
the maximum number of iterations max_iter, F-fitness
Output: Best solution found b*
Initialization: population A = {a1, a2, ..., an} with intensity Ik
for t = 1 to max_iter

Calculate the fitness of each butterfly i in A
Find best_position
End for
While convergence not met
for k = 1 to n
Calculate the fragrance of butterfly k
Generate a random number P between 0 and 1
if (P <= p)

Select a butterfly j with the highest fitness
Update the position of a butterfly i using the global search equation:
Ak

(t+1) = Ak
t + (r2 * b* − Ak

t) Fk

r = random number between 0 and 1
b* = best solution found
Fk = fragrance of butterfly k

else
Select two random butterflies i and j
Update the position of butterfly k using the local search equation:
Ak

(t+1) = Ak
t + (r2 * Ai

t − Aj
t) Fk

Ai
t and Aj

t are the positions of butterflies i and j in the current iteration
End if
if (new_F < F(k))

Update solution space
F(k) = new_F

end if
if (new_F ≤ f_min)

f_min = new_F
update best_position

end if
end for
Update the power exponent a and p

a = 1 − (t/max_iter)
end while
end for
Output the best solution found b*

3.3. Multi-Functional Derivation

Multi-functional derivation is a mathematical process that considers multiple variables
and their relationships to each other to derive an optimal solution. By considering multi-
ple variables and their relationships, multi-functional derivation enables the formulation
of a comprehensive localization strategy that can be used in various WSN applications,
including environmental monitoring, military, and robotics. The multi-functional deriva-
tion process in wireless sensor networks (WSNs) optimizes node positions by analyzing
variables like delay, path loss, energy consumption, and received signal strength (RSS),
enhancing communication and energy efficiency. Delays are assessed to improve commu-
nication efficiency, while path loss variations inform optimal node placements for accurate
signal propagation. Energy patterns are analyzed for sustainability, and RSS variations
are examined for reliable communication. This analysis of variables’ interplay results in a
balanced solution for enhanced localization, integrating delay, path loss, energy, and RSS
analyses to optimize anchor node positions, ensuring precise localization, improved data
collection, and adaptive strategies for ongoing network optimization, ultimately enhancing
network performance, efficiency, and data accuracy in WSNs [25]. The designed local-
ization strategy based on multi-functional derivation maintains a reasonable localization
accuracy while increasing the number of target nodes. The iHBAGTO algorithm, a hybrid
algorithm combining the strengths of the Butterfly Algorithm and gorilla troop optimizer,
is used to implement this strategy and achieve better localization results.

3.4. Test and Efficiency of the Designed iHBAGTO

To evaluate the effectiveness of the designed HBAGTO-based node positioning strat-
egy in wireless sensor networks (WSNs), a series of experiments can be conducted by
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creating five networks with varying parameters such as network area, number of target
nodes, anchor nodes, and sensing range. The experiments can be designed to test the effi-
ciency of the iHBAGTO algorithm in different scenarios and conditions. The performance
of the iHBAGTO algorithm can be compared with those of other custom algorithms in
terms of metrics such as delay, path loss, energy, and RSS. The metrics can be measured
for each network, and the results can be compared to determine the effectiveness of the
iHBAGTO algorithm. By analyzing the experimental results, the performance of the iH-
BAGTO algorithm can be evaluated, and its strengths and weaknesses can be identified.
The results can be used to refine the algorithm and improve its performance in different
scenarios. Evaluating the iHBAGTO algorithm’s performance can provide insights into
the effectiveness of the multi-functional derivation approach and the hybrid algorithm
design [26]. It can also help identify the algorithm’s potential applications and limitations in
real-world scenarios. Overall, the hybrid algorithm of Butterfly Optimization and a gorilla
troop optimizer combines the strengths of both algorithms to improve the localization
accuracy, convergence rate, and energy efficiency in WSNs.

4. Results and Discussion

This study developed a new node localization model for wireless sensor networks
(WSN) using a novel hybrid heuristic algorithm called the improved hybrid butterfly
artificial gorilla troop optimizer (iHBAGTO). The main goal of the localization strategy was
to achieve the efficient and precise positioning of sensor nodes in dense WSNs, which is
very useful in groundwater monitoring. In this context, one of the most relevant problems
is linked, in addition to the requisites of the sensor itself, to the correct individuation
of a sensor’s position in relation to the phenomenon to monitor. Therefore, optimizing
sensor location can allow us to extract the maximum quantity of information with the
minimum cost. This would significantly improve the characterization process by reducing
site characterization times and costs and provide more complete and continuous data-sets
for long-term monitoring.

The iHBAGTO algorithm was designed to discover the locations of anchor nodes
close to the near-optimal target nodes to increase the convergence rate and maximize
accuracy in localization while reducing localization errors. The existing Artificial Rabbit
Optimization (ARO) [27], Northern Goshawk Optimization (NGO) [28], Hunger Games
Search (HGS) [29], and Slime Mould-inspired Algorithm (SMA) [30] approaches were
compared with the proposed iHBAGTO algorithm.

Table 2 presents a comparative analysis of the convergence rates achieved by the
proposed iHBAGTO algorithm and four other algorithms: Artificial Rabbit Optimization
(ARO), Northern Goshawk Optimization (NGO), Hunger Games Search (HGS), and the
Slime Mould-inspired Algorithm (SMA). The comparison is based on the number of itera-
tions required for these algorithms to converge. The convergence rate is a critical metric
in optimization algorithms as it indicates how quickly an algorithm reaches an optimal
solution or a near-optimal solution. A lower number of iterations typically signifies a faster
convergence rate, implying that the algorithm is efficient in finding solutions. By examining
the convergence rates of these algorithms, the effectiveness and efficiency of each algorithm
in solving optimization problems can be assessed. The iHBAGTO algorithm’s performance
was evaluated alongside those of these established algorithms to provide insights into the
algorithm’s comparative strengths and weaknesses [14].

Figure 5 displays the convergence rates of five optimization algorithms. The con-
vergence rate measures how fast an algorithm can converge to the optimal solution. The
proposed system converges faster to the optimal solution within few iterations than the
other algorithms. As we can see from Figure 5, the iHBAGTO algorithm achieved the
highest convergence rate among all algorithms, reaching 89.6% after just 10 iterations and
increasing up to 99.6% after 90 iterations. NGO follows this with a convergence rate of
70.3% at 10 iterations, which improves up to 94.5% at 100 iterations.
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Table 2. Convergence rate of existing and proposed systems.

Iteration Counts
Convergence Rate (%)

ARO [23] NGO
[24]

HGS
[25]

SMA
[26]

Proposed
iHBAGTO

10 43.2 70.3 54.8 62.8 89.6

20 58.2 82.7 65.5 73.9 93.5

30 66.4 87.9 72.3 78.6 96.2

40 71.5 90.4 77.6 81.4 97.8

50 74.8 91.7 81.2 83.8 98.5

60 77.3 92.3 83.9 85.9 99.0

70 79.2 93.1 86.1 87.8 99.3

80 80.7 93.6 87.9 89.3 99.5

90 82.0 94.1 89.4 90.6 99.6

100 83.1 94.5 90.7 91.7 99.6
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On the other hand, ARO, HGS, and the SMA had relatively low convergence rates
ranging from 43.2% to 78.6% after 10 iterations, which increased to 83.1%, 90.7%, and
91.7%, respectively, at 100 iterations. Figure 5 shows that the iHBAGTO algorithm has the
highest convergence rate at all iterations, followed by the HGS algorithm. The ARO, NGO,
and SMA had lower convergence rates at all iterations. This indicates that the iHBAGTO
algorithm is more efficient in finding the optimal solution than the other algorithms.

Table 3 compares several existing optimization algorithms (ARO, NGO, HGS, and
SMA) to the proposed algorithm called iH-BAGTO. The comparison is based on the average
error over different numbers of iterations. The average error metric outlines the typical
deviation of a solution from the ideal or optimal solution. Comparing these algorithms
allows us to evaluate their performance in terms of convergence to the optimal solution over
multiple iterations. Lower average error values indicate greater accuracy and efficiency
in obtaining the optimal solution within a given number of iterations. This comparison
assists in understanding the strengths and weaknesses of each algorithm and can guide the
selection of the best optimization approach for specific problem domains.



Water 2024, 16, 1134 13 of 21

Table 3. Average errors for ARO, NGO, HGS, the SMA, and the proposed iHBAGTO algorithm for
different numbers of iteration.

Iteration Counts
Average Error

ARO [23] NGO
[24]

HGS
[25]

SMA
[26]

Proposed
iHBAGTO

10 107.2 79.6 93.8 101.5 56.7

20 88.6 59.3 75.2 86.7 32.1

30 72.3 45.2 60.1 70.5 19.3

40 61.5 36.1 49.4 59.8 13.5

50 54.4 29.9 42 52.4 10.1

60 49.2 25.8 36.9 47.1 8.1

70 45.2 23 33.1 43 6.9

80 41.9 20.9 30.2 39.8 6

90 39.2 19.3 28 37.1 5.3

100 36.8 18 26.1 34.7 4.8

Figure 6 shows a comparison of various algorithms in terms of average error. At the
beginning iterations (10–20), the ARO and HGS algorithms have higher average errors than
the others, whereas the proposed iHBAGTO algorithm has the lowest average error. As
the number of iterations increases, the average error decreases for all algorithms, but the
iHBAGTO algorithm consistently outperforms the others with the lowest average error.
After 100 iterations, the iHBAGTO algorithm achieves the lowest average error of 4.8, while
the next best algorithm, NGO, achieves an average error of 18.0. ARO, HGS, and the SMA
perform relatively poorly, with average errors ranging from 26.1 to 36.8. Overall, Figure 6
demonstrates the superior performance of the iHBAGTO algorithm in achieving the lowest
average error compared to the other optimization algorithms [16].
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Table 4 presents a comparison of iteration counts and corresponding delays (measured
in milliseconds) for five different optimization algorithms applied to a specific optimization
problem. These algorithms are Artificial Rabbit Optimization (ARO), Northern Goshawk
Optimization (NGO), Hunger Games Search (HGS), the Slime Mould-inspired Algorithm
(SMA), and the newly proposed iHBAGTO algorithm. The iteration counts refer to the
number of iterations or cycles that each algorithm goes through during the optimization
process. A higher iteration count typically indicates that the algorithm requires more cycles
to converge to an optimal or near-optimal solution. The delays, measured in milliseconds,
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represent the time taken by each algorithm to complete a set number of iterations. Lower
delay values suggest that the algorithm processes iterations more quickly, which can
be advantageous in time-sensitive applications or scenarios where rapid optimization is
crucial [26].

Table 4. Comparison of the existing ARO, NGO, HGS, and SMA approaches and the iHBAGTO
algorithm regarding the delay (RSS).

Iteration Counts
Delay (ms)

ARO [23] NGO
[24]

HGS
[25]

SMA
[26]

Proposed
iHBAGTO

10 10.5 9.2 9.8 10.8 7.5

20 11.2 9.8 10.4 11.4 8.1

30 11.8 10.4 11.0 12.0 8.8

40 12.5 11.0 11.6 12.6 9.4

50 13.2 11.6 12.2 13.2 10.1

60 13.9 12.2 12.8 13.8 10.7

70 14.6 12.8 13.4 14.4 11.4

80 15.3 13.4 14.0 15.0 12.0

90 16.0 14.0 14.6 15.6 12.7

100 16.7 14.6 15.2 16.2 13.3

Figure 7 compares iteration counts versus delay for the five algorithms. The x-axis
represents the number of iterations, and the y-axis represents the millisecond delay. As can
be seen from the graph, the proposed iHBAGTO algorithm has the lowest delay compared
to the other algorithms for all iteration counts. As the number of iterations increases, the
delays for all algorithms increase, but the proposed iHBAGTO algorithm consistently has
the lowest delay. The delay for the proposed iHBAGTO algorithm is consistently lower
than those of the other algorithms, with a minimum delay of 7.5 ms and a maximum
delay of 13.3 ms. The delay for ARO ranges from 10.5 ms to 16.7 ms. The delay for NGO
ranges from 9.2 ms to 14.6 ms. The delay for HGS ranges from 9.8 ms to 15.2 ms, and
the delay for the SMA ranges from 10.8 ms to 16.2 ms. Overall, the proposed iHBAGTO
algorithm outperforms the other algorithms regarding the delay, even as the number of
iterations increases.
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At each iteration count, the path loss values for each algorithm were observed and are
shown in Table 5. It can be observed that for all algorithms, the path loss decreases as the
iteration count increases, indicating improved performance.

Table 5. Comparison of various methods based on path loss.

Iteration Counts
Path Loss (dB)

ARO [23] NGO
[24]

HGS
[25]

SMA
[26]

Proposed
iHBAGTO

10 4.1 4.4 4.2 4.0 5.5

20 3.8 4.1 3.9 3.7 5.8

30 3.5 3.8 3.6 3.4 6.1

40 3.2 3.2 3.3 3.1 6.4

50 2.9 3.2 3.0 2.8 6.7

60 2.6 2.9 2.7 2.5 7.0

70 2.3 2.6 2.4 2.2 7.3

80 2.0 2.3 2.1 1.9 7.6

90 1.7 2.0 1.8 1.6 7.9

100 1.4 1.7 1.5 1.3 8.2

Figure 8 shows that the proposed iHBAGTO algorithm has the highest path loss
values among all the algorithms for all iteration counts. At 10 iterations, the path loss
for iHBAGTO is 5.5 dB, while the path loss values for ARO, NGO, HGS, and the SMA
are 4.1 dB, 4.4 dB, 4.2 dB, and 4.0 dB, respectively. At iteration count 100, the iHBAGTO
algorithm has the highest path loss value of 8.2 dB, while the other algorithms have path
loss values ranging from 1.3 dB to 1.7 dB. However, as the iteration count increases, the
iHBAGTO algorithm outperforms the other algorithms, achieving the lowest path loss
value of 8.2 dB at iteration count 100. Overall, the proposed iHBAGTO algorithm performs
better than the other algorithms in path loss reduction.
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Table 6 presents a comparison of energy consumption among different optimization
algorithms concerning the number of iterations. The table outlines the results for the
Artificial Rabbit Optimization (ARO), Northern Goshawk Optimization (NGO), Hunger
Games Search (HGS), the Slime Mould-inspired Algorithm (SMA), and the proposed
improved Hybrid Bat Algorithm (iHBAGTO) algorithm. This comparison aims to evaluate
the energy efficiency of these algorithms during optimization processes, providing insights
into their resource utilization patterns over varying iteration counts.

Table 6. Comparison of energy consumption for ARO, NGO, HGS, the SMA, and proposed iHBAGTO
algorithm over iterations.

Iteration Counts
Energy Consumption (J)

ARO [23] NGO
[24]

HGS
[25]

SMA
[26]

Proposed
iHBAGTO

10 0.05 0.06 0.04 0.05 0.05

30 0.04 0.05 0.03 0.04 0.03

50 0.03 0.04 0.03 0.03 0.02

70 0.03 0.04 0.04 0.03 0.02

90 0.03 0.03 0.04 0.03 0.01

100 0.03 0.03 0.04 0.03 0.01

Figure 9 indicates the energy consumed by each algorithm at different iteration counts.
As the iteration count increases, the energy consumption values for each algorithm may
increase or decrease. For instance, at 10 iterations, the ARO algorithm and SMA have energy
consumption values of 0.05 J, while the iHBAGTO algorithm has an energy consumption
value of 0.05 J at the same iteration count. Overall, the iHBAGTO algorithm has the lowest
energy consumption values across all iteration counts, while the HGS algorithm has the
highest. This information is useful in evaluating the efficiency and effectiveness of each
algorithm in terms of energy consumption, which can be an important factor in practical
applications where energy resources are limited.
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Table 7 shows the RSS values for the Artificial Rabbit Optimization (ARO), North-
ern Goshawk Optimization (NGO), Hunger Games Search (HGS), Slime Mould-inspired
Algorithm (SMA), and proposed iHBAGTO algorithm at different iteration counts. The
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numerical measures indicate the signal strength in decibel-milliwatts (dBm), with higher
values indicating stronger signal strength.

Table 7. Increasing iteration counts versus RSS for ARO, NGO, HGS, SMA, and proposed
iHBAGTO algorithm.

Iteration Counts
Received Signal Strength (RSS) (dBm)

ARO [23] NGO
[24]

HGS
[25]

SMA
[26]

Proposed
iHBAGTO

10 90 94 92 88 95

20 86 92 91 86 92

30 85 90 90 87 91

40 83 89 88 85 89

50 81 88 87 86 88

60 80 87 86 86 87

70 79 87 85 85 86

80 78 86 84 85 85

90 77 86 83 85 86

100 76 88 82 85 86

Figure 10 depicts the received signal strengths of various algorithms. At 10 iterations,
the iHBAGTO algorithm has the highest RSS value (95 dBm), followed by the NGO
algorithm (94 dBm), while the ARO and HGS algorithms have the lowest values (90 dBm
and 92 dBm, respectively). As the iteration count increases, the iHBAGTO algorithm
consistently shows the highest RSS values, reaching 86 dBm at 100 iterations. The NGO
algorithm also has relatively strong RSS values, ranging from 94 dBm at 10 to 88 dBm at
100 iterations. In contrast, the ARO algorithm and SMA have lower RSS values, ranging
from 90 to 83 dBm and 88 dBm to 85 dBm, respectively. The HGS algorithm has the
lowest RSS values, ranging from 92 to 82 dBm. Overall, the proposed iHBAGTO algorithm
outperforms the other algorithms in terms of RSS, achieving the highest signal strength
values over all iterations.
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5. Application in the Monitoring of Fractured and Karstic Aquifers

When monitoring contaminant plumes in fractured and karstic aquifers, the presence
of heterogeneity and especially the anisotropy of a medium could invalidate the results of
the monitoring if the positioning of the sensors results in the assumption of an equivalent
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porous medium (EPM) [31]. In aquifers characterized by a fractured matrix, prior to devel-
oping monitoring and remediation strategies, it is necessary to set up mathematical flow
and solute transport models that are able to take into account the presence of discontinuities
that act as preferential flow pathways [32]. The available commercial codes generally as-
sume of a homogeneous and isotropic medium, which has proved to be oversimplified and
unrealistic in such complex systems and can therefore make monitoring unreliable [33,34].

In this case, study [35] simulated plume by means of a rough walled parallel plate
model coupled with a geostatistical analysis [36] that clearly exhibits (Figure 11) a locally
anisotropic behavior in correspondence to the hotspot area, due to the anticline formation of
the fractured rock limestone formation in the ENE–WSW direction. In this case, it appeared
evident that the position of the monitoring points realized by the Water Agency under the
EPM assumption partially failed to capture the contamination. Moreover, in the study, the
wells showing the highest values of contamination, which were determined after the model
construction, were the initial points available and were not representative enough.
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The proposed multi-objective improved hybrid butterfly artificial gorilla troop opti-
mizer (iHBAGTO) could be successfully adopted for cost-effective groundwater monitoring
network designs by combining it with a calibrated groundwater flow and transport nu-
merical model and a deterministic interpolator method (Ordinary kriging), adopting a
framework similar to the ones proposed by Reed et al. [37] and Wu et al. [38]. The contami-
nant plume at time tm (to represent future conditions to be monitored) will be simulated
using the calibrated flow and transport model. An interpolated plume on the basis of
known concentrations on selected well locations will be compared, in terms of both mass
and first and second moments, with the simulated plume output from the transport model.
The iHBAGTO will undergo several iterations until the difference between the simulated
and interpolated plumes is minimal and convergence is achieved. The objective function
for each potential monitoring network sampling scheme will be evaluated in terms of total
monitoring costs while considering the accuracies of the estimated global mass and spatial
plume moments based on the sampling data.

6. Conclusions

The long-term monitoring of large-scale contaminant plumes in groundwater requires
a cost-effective monitoring network design based on simulation–optimization methodolo-
gies in order to achieve substantial cost savings by eliminating unnecessary samples. The
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planning and management of a monitoring system for soil and/or groundwater is a process
that requires subsequent adjustments during project execution, by eliminating the useless
or inefficient points or by eventually adding more points, i.e., optimizing the monitoring
point locations.

When monitoring contaminant plumes in fractured and karstic aquifers, the presence
of heterogeneity and especially the anisotropy of the medium could invalidate the results of
the monitoring if the positioning of the sensors results in the assumption of an equivalent
porous medium [39]. Therefore, the number of points to monitor and their positions cannot
be excluded from optimization studies on reducing data redundancy with consequent re-
ductions in costs, without significantly affecting the accuracy and adequacy of the sampled
data [1].

This study developed a new node localization model for wireless sensor networks
(WSNs) using a novel hybrid heuristic algorithm called the improved hybrid butterfly
artificial gorilla troop optimizer (iHBAGTO), which was specifically designed to discover
the locations of anchor nodes close to near-optimal target nodes to increase the conver-
gence rate and maximize accuracy in localization while reducing localization errors. The
existing Artificial Rabbit Optimization (ARO), Northern Goshawk Optimization (NGO),
Hunger Games Search (HGS), and Slime Mould-inspired Algorithm (SMA) approaches
were compared with the iHBAGTO algorithm. The results show that the latter algorithm
improved the localization performance regarding convergence rate and average error and
outperformed the other custom algorithms in metrics such as delay, path loss, energy, and
RSS. Overall, this study showed that the proposed iHBAGTO-based localization strategy
could significantly improve the localization performances of WSNs in dense networks [40].

Future research directions will be focused on coupling the proposed iHBAGTO with a
calibrated groundwater flow and transport model and a deterministic interpolator method
to provide an optimization approach for the realization of a cost-effective groundwater
monitoring network design.

The proposed approach can be useful for water service companies, water managers,
policymakers, and other stakeholders involved in groundwater monitoring and cleanup
for more sustainable groundwater management.
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