
Reconciling transparency, low
Δ0-complexity and axiomatic weakness in
undecidability proofs

DOMENICO CANTONE, Department of Mathematics and Computer Science,
University of Catania, Italy.

EUGENIO G. OMODEO, Department of Mathematics and Earth Sciences,
University of Trieste, Italy.

MATTIA PANETTIERE, Department of Ethics, Governance and Society, Vrije
Universiteit Amsterdam, The Netherlands.

Abstract
In a first-order theory Θ , the decision problem for a class of formulae Φ is solvable if there is an algorithmic procedure that
can assess whether or not the existential closure ϕ∃ of ϕ belongs to Θ , for any ϕ ∈ Φ. In 1988, Parlamento and Policriti
already showed how to tailor arguments à la Gödel to a very weak axiomatic set theory, referring them to the class of Σ1-
formulae with (∀∃∀)0-matrix, i.e. existential closures of formulae that contain just restricted quantifiers of the forms (∀x ∈ y)
and (∃x ∈ y) and are writable in prenex form with at most two alternations of restricted quantifiers (the outermost quantifier
being a ‘∀’). While revisiting their work, we show slightly less weak theories under which incompleteness for recursively
axiomatizable extensions holds with respect to existential closures of (∀∃)0-matrices, namely formulae with at most one
alternation of restricted quantifiers.

Keywords: weak set theories, Gödel incompleteness, essential undecidability

Introduction

One often resorts to meta-level reasoning within a formal system, in order to support meta-
mathematical investigations (e.g. concerning syntactic boundaries beyond which the decision prob-
lem for an axiomatic theory becomes algorithmically unsolvable), meta-programming in declarative
languages [10] or agent-based explainable AI applications (if the agents are to exhibit self-awareness
of any form [6]).

The resources that a first-order theory must provide to make meta-level reasoning doable at all are
surprisingly simple. In the realm of number theory, a minimal arithmetic (extremely weak relative to
Peano’s arithmetic) was proposed by Robinson [21]; in the realm of set theory, an even simpler
axiomatic endowment (only consisting of the null-set axiom along with an axiom enabling the
adjunction of an element to a set) was proposed by Vaught [24]. In either case, the proposed axiom
system specifies an essentially undecidable theory, i.e. a theory none of whose consistent axiomatic
extensions has an algorithmically solvable derivability problem—as can be proved à la Gödel.

Vaught’s result can be improved in at least two ways: (i) by making all steps needed for
the ‘arithmetization of syntax’ task more transparent; (ii) by basing such a task on formulae of
an extremely low syntactic structure. Parlamento and Policriti [18, 19] contributed to these two

Vol. 33, No. 4, © The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
Advance Access Publication on 31 March 2023 https://doi.org/10.1093/logcom/exad010

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/logcom/exad010

Essential undecidability in weak set theories 739

amelioration goals, referring as a yardstick for measuring syntactical complexity to the number of
quantifier alternations in the lowest level of Azriel Lévy’s hierarchy of set-theoretic formulae [12].
The axiom system that they exploited was still finite but slightly broader than the one by Vaught.

This paper further develops the techniques by Parlamento and Policriti, by broadening the
axiomatic system even further in order to achieve greater transparency and to reduce by one the
number of quantifier alternations.

Key points of our present contribution are recourse to an alternative definition of ordered pair
(see Definition 1); the modelling of certain functions as sets formed by doubletons instead of by
ordered pairs (an idea originating from [3] and also exploited in [5]); the introduction of a rather
elaborate structure to encode natural numbers (cf. Section 2.1), inspired by the specification of
natural numbers in [5], that characterizes numbers and the successor function at the same time in the
setting of the full f ledged ZF axiomatic system. The structure for natural numbers that we propose
overcomes the limitations due to the absence of the infinity axiom by pairing each finite ordinal
with the segment of the successor function needed to characterize it. The insights provided by this
technique are an essential part of our contribution (cf. Remark 1), and they are a recurrent ingredient
in the design of almost all the specifications that lead to the main result of this paper (Theorem 3).

The decision problem for a class of formulae Φ of the language of a given theory Θ—a consistent
axiomatic set theory in the ongoing—is said to be solvable when there is an algorithmic procedure
that, taken in input any ϕ ∈ Φ with n free variables x1, x2, . . . , xn, establishes whether or not
Θ � ∃x1∃x2 · · · ∃xn ϕ holds, and outputs: true if things are so, false if Θ �� ∃x1∃x2 · · · ∃xn ϕ.
In particular, under minimal assumptions on the strength of Θ ,1 the procedure returns false if
Θ � ¬∃x1∃x2 · · · ∃xn ϕ. While studying (un)decidability in fragments of set theory, it is worth
considering restricted quantifiers, i.e. quantifiers of the forms:

(∀ x0, . . . , xn ∈ y)ϕ
Def←→ ∀ x0 · · · ∀ xn

(
(x0 ∈ y ∧ · · · ∧ xn ∈ y) → ϕ

)
,

(∃ x0, . . . , xn ∈ y)ϕ
Def←→ ∃ x0 · · · ∃ xn

(
x0 ∈ y ∧ · · · ∧ xn ∈ y ∧ ϕ

)
.

(1)

When a formula involves only restricted quantifiers, it is said to be a Δ0-formula (see [12]).
Furthermore, if it is logically equivalent to some prenex formula with m alternating batches of
unbounded quantifiers in the prefix starting with universal quantifiers, then it is said to be of class
(∀∃∀ · · · Qm)0 (where Qm is ∀ when m is odd and ∃ otherwise). In [18], it was investigated how, by
taking into account the very weak set theory T0 comprising extensionality, null-set axiom, single-
element addition and removal axioms, an argument akin to the ones leading to Gödel incompleteness
theorems can be applied to the class of (∀∃∀)0-formulae. Thanks to those arguments, it is possible
to show that every recursively axiomatizable extension Θ of T0 is incomplete with respect to the
class of (∀∃∀)0-formulae, and therefore, the decision problem for that class is undecidable in every
extension Θ of T0. Since the base theory T0 is extremely elementary, the argument applies to virtually
any reasonable set theory.2 The limit found in [18] on the Δ0-complexity of the class of formulae
seems to be rather tight, with no room for improvement in that direction. Nevertheless, by slightly
expanding the axiomatic core, we have found a way to lower that limit under suitable conditions.
Indeed, we consider extensions of T0 that include the axiom of foundation and prove that if the
concept of ‘being a natural number’ is expressible by a (∀∃)0-formula, then the incompleteness
arguments can be generalized with respect to the whole class of (∀∃)0-formulae. At the end, we will

1Such as in any reasonable set theory (see [18, Sec. 1]), i.e. a theory that satisfies a subset of the axioms that we propose.
2Concerning typical set theories, cf. [23, Sec. 4.6].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

740 Essential undecidability in weak set theories

cite two examples that allow for such arguments, expanding the core theory with either the separation
axiom schema or an axiom stating that every set is (hereditarily) finite.

1 A Succinct Axiomatic Endowment for Set Theory

We will consider the first-order language L∈ endowed with

– an infinite supply ν0, ν1, ν2, . . . of set variables;
– two dyadic relators ∈, =, designating membership and equality, respectively, as the only

predicate symbols of the language;
– a basis of propositional connectives adequate to express all truth functions: for definiteness,

we adopt ¬ (monadic) and → (dyadic), designating respectively negation and material
implication;

– the existential quantifier ∃ νi and the universal quantifier ∀ νi, associated with each set variable
νi .

The combinatorial core, dubbed T , of the axiomatic set theories we will consider consists of the
following five postulates:

Extensionality (E) ∀ x ∀ y ∃ v
(

(v ∈ x ↔ v ∈ y) → x = y
)

,

Null set (N) ∃ z ∀ v
(¬ v ∈ z

)
,

Adjunction (W) ∀ x ∀ y ∃ w ∀ v
(

v ∈ w ↔ (v ∈ x ∨ v = y)
)

,

Removal (L) ∀ x ∀ y ∃ � ∀ v
(

v ∈ � ↔ (v ∈ x ∧ ¬ v = y)
)

,

Regularity (R) ∀ x ∃ v ∀ y
(

y ∈ x → (v ∈ x ∧ ¬ y ∈ v)
)
.

In the light of axiom (E), stating that distinct sets cannot have the same elements, axiom (N)
ensures that exactly one empty set exists. Axiom (W) and axiom (L) induce two natural operations:

(x, y)
with�−→ x ∪{y} and (x, y)

less�−→ x \ {y}. Axiom (R) states that every non-empty set x has an element
v that does not intersect x; in synergy with (N) and (W), it ensures that ‘∈’ forms no cycles.

On occasions, we will consider extending T with further axioms: a theory we will consider is Tf ,
whose intended universe encompasses no infinite sets (cf. [22]); another one is Ts, enhancing T with
the separation axiom schema (cf. e.g. [11]), namely

(Sep) ∀ s ∃ r ∀ e
(

e ∈ r ↔ (
e ∈ s ∧ ψ

))∀
,

where neither of the variables r, s occurs in ψ .3 Since there are infinitely many formulae ψ , there
are infinitely many instances of the schema (Sep): a finite number of instances cannot suffice for an
autonomous full-f ledged set theory, as was proved in [14]. It should be noted that (N) and (L) are
logically equivalent to instances of (Sep); also the following two sentences, which we will take into
account later on, are instances of (Sep):

(S1) ∀ s ∃ r ∀ e
(
e ∈ r ↔ (

e ∈ s ∧ (∃ u ∈ e) (∃ v ∈ u) (v /∈ e)
))

,

(S2) ∀ s ∃ r ∀ e
(
e ∈ r ↔ (e ∈ s ∧ (∃ u ∈ e) (∃ v ∈ e) (u /∈ v ∧ v /∈ u ∧ v �= u))

)

3We use ϕ∃, respectively ϕ∀, as shorthands for the existential, resp. universal, closure of any formula ϕ . To wit, ϕ∀ is the
sentence obtained by prefixing ϕ with a universal quantifier ∀ v for each variable v occurring free in ϕ .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 741

FIGURE 1. Q is a quasi-pair, P an ordered pair; the former notion paves the way to the latter.

A remarkable fact is that each of (E), (R), (S1) and (S2), as well as the conjunction (N)∧(W)∧(L),
can be stated as a three variable sentence: this makes it possible to formalize the axiomatic theory
based on those seven sentences in entirely algebraic terms in accordance with [23]; cf. [7, Sec. 6.3.2].

As for Tf , one way of postulating the finitude of all sets in the universe of discourse is the
following [23, p.225]:

(F) ∀ f (∀ t ∈ f) (∃ a ∈ f) (∀ b ∈ f)
(

(∀ d ∈ b) (d ∈ a) → b = a
)

.

This asserts: every non-empty set f has an ⊆-minimal element a . The set t witnesses that f has
elements; (∀ d ∈ b) (d ∈ a) states the inclusion b ⊆ a .

The privileged model for the axiomatic core (E) ∧ (N) ∧ (W) ∧ (L) ∧ (F) consists of the pure
hereditarily finite sets (‘pure’ in the sense that no urelements enter in their construction): these form
a universe which is, in essence, an alias of the domain N of natural numbers and can, accordingly,
serve as the support for a theory of computability (cf. [1]). As a matter of fact, a Turing-complete
programming language for manipulating the hereditarily finite sets is discussed in [2, Sec. 4.2.1]:
some of the primitive constructs of that language (in particular, the constant ∅, adjunction and
removal dyadic operations with and less and a monadic arbitrary selection operation) implement
Skolem functions associated with the said axioms.

2 Ordered Pairs, Functions and Natural Numbers

At the core of our definitional machinery lie the definitions of [un]ordered pair and (un)ordered
functions. Indeed, most of the definitions hinge on an extensive use of these set-theoretic structures
to lower their Δ0-complexity. Consider, for instance, the variant

{
x, {x, y}} of Kuratowski’s classical

ordered pair
{{x}, {x, y}}, which one can adopt under (N), (W) and (R). This is problematic since,

while the extraction of the first component
1(p) of such a pair p = {
x, {x, y}} is specifiable by

means of an (∃)0-formula, the extraction of the second projection
2(p) calls for a formula with at
least one quantifier alternation:

x =
1(p)
Def←→ x ∈ p ∧ (∃q ∈ p) x ∈ q ,

y =
2(p)
Def←→ (∃ x, q ∈ p)

(
x ∈ q ∧ y ∈ q ∧ (∀z ∈ q)(z = x ∨ z = y)

)
.

We rely on a definition that works under (E), (N), (W) and (L)—foundation is not required—
introduced in [8]. We use the dyadic operator @ to construct quasi-pairs. These will be used in the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

742 Essential undecidability in weak set theories

formation of ordered pairs:

x@ y
Def= {

x less y , x with y
}
, 〈x, y〉 Def= (x@y)@ x.

DEFINITION 1
Quasi-pairs and ordered pairs are characterized by the following (∀∃)0-conjunctions:

QPair(q)
Def←→ (∃ u, v ∈ q) ¬ u = v ∧

(∀ u, v ∈ q)(∀ t ∈ u)(∀ x ∈ v) (x ∈ u ∨ t ∈ v) ∧
(∀ u, v ∈ q)(∀ x, z ∈ v) (x ∈ u ∨ z ∈ u ∨ x = z) ,

OPair(p)
Def←→ QPair(p) ∧ (∃ q ∈ p)(∃ u, v ∈ q) ¬ u = v ∧

(∀ q ∈ p)(∀ u, v ∈ q)(∀ t ∈ u)(∀ y ∈ v)(y ∈ u ∨ t ∈ v) ∧
(∀ q ∈ p)(∀ u, v ∈ q)(∀ y, z ∈ v)(y ∈ u ∨ z ∈ u ∨ y = z) .

We use the first projection extraction on quasi-pairs to obtain the components of ordered pairs,
aka 2-tuples, through the following (∃)0-specifications:4

x = π2
1 (q)

Def←→ (∃ u, v ∈ q)(x ∈ v ∧ ¬ x ∈ u) ,

y = π2
2 (p)

Def←→ (∃ q ∈ p) y = π2
1 (q).

For any n, one often specifies n-tuples in terms of 2-tuples. Their projections πn
i (0 < i ≤ n) can

then be captured by (∀∃)0- and (∃)0-formulae, respectively; for instance,

Triple(t)
Def←→ OPair(t) ∧ (∀v1 ∈ t)(∀v2 ∈ v1)(∀s ∈ v2)(s = π2

2 (t) → OPair(s)),
x = π3

1 (t)
Def←→ x = π2

1 (t),

y = π3
2 (t)

Def←→ (∃v1 ∈ t)(∃v2 ∈ v1)(∃s ∈ v2)(s = π2
2 (t) ∧ y = π2

1 (s)),

z = π3
3 (t)

Def←→ (∃v1 ∈ t)(∃v2 ∈ v1)(∃s ∈ v2)(s = π2
2 (t) ∧ z = π2

2 (s)).

Functions. Putting ∈1 ≡ ∈, it will be handy to make use of the following recursive definition of
∈n+1, for n ≥ 1 and for every variable y and formula ϕ:

(∀x ∈n+1 y)ϕ
Def←→ (∀z ∈ y)(∀x ∈n z)ϕ .

We can define functions in the classical way, namely as suitable sets of ordered pairs; their
specification is straightforward:

Fnc(f)
Def←→ (∀p ∈ f)OPair(p) ∧

(∀p1, p2 ∈ f)(∀x ∈3 f)(x = π2
1 (p1) = π2

1 (p2) → p1 = p2).

We will often write (∀x ∈ dom f)ϕ in place of (∀p ∈ f)(∀x ∈2 p)(x = π2
1 (p) → ϕ) and (∀y ∈

π2
1 [dom f])ψ in place of (∀x ∈ dom f)(∀y ∈5 f)

(
y = π2

1 (x) → ψ
)

when f is a function and
we want to quantify over the first projections of the elements of its domain. In general, to improve
readability, these and alike compact forms of restricted quantification will be used, their precise

4In specifying projections, it would be pointless to insist that the argument must be an OPair ; consequently, rigorously
speaking, we are abbreviating a dyadic relation rather than a monadic function.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 743

specifications sometimes being left as understood. We will also make use of the following function-
related notions (cf. [18]), which properly work provided that f is a function:

x ∈ dom f
Def←→ (∃p ∈ f) x = π2

1 (p) , (∃)0

d = dom f
Def←→ (

(∀x ∈ d) x ∈ dom f
) ∧ (

(∀x ∈ dom f) x ∈ d
)

, (∀∃)0

y ∈ ran f
Def←→ (∃p ∈ f) y = π2

2 (p) , (∃)0

y = f (x)
Def←→ (∃p ∈ f)

(
x = π2

1 (p) ∧ y = π2
2 (p)

)
, (∃)0

v ∈ f (x)
Def←→ (∃y ∈ ran f)

(
y = f (x) ∧ v ∈ y

)
, (∃)0

Fun(f (x))
Def←→ (∀y ∈ ran f)

(
y = f (x) → Fun(y)

)
, (∀∃)0

v ∈ dom f (x)
Def←→ (∃y ∈ ran f)

(
y = f (x) ∧ v ∈ dom y

)
, (∃)0

f (x) = g(y)
Def←→ (∀v ∈ ran f)(∀w ∈ ran f)

((
v = f (x) ∧ w = g(y)

) → v = w
)
, (∀)0

0 = dom f
Def←→ (∀x ∈ dom f)(x ∈ dom f → x �= x), (∀)0

0 ∈ dom f
Def←→ (∃x ∈ dom f)(x ∈ dom f ∧ y = 0), (∃)0

v ∈ f (0)
Def←→ (∀y ∈ ran f)(∀x ∈ dom f)(x = 0 ∧ y = f (x) → v ∈ y). (∀)0

Now and then other akin predicates, not listed here, will show up.5

After von Neumann [15], it is convenient to think of natural numbers as simply being the finite
ordinals. While the definition of ordinals—see below—is (∀)0 and hence has a very low syntactic
complexity (in the sense explained in the Introduction), expressing their finitude in weak theories
requires more effort. We put

s = ∅
Def←→ (∀x ∈ s) x �= x , (∀)0

t = s+ Def←→ s ∈ t ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x = s ∨ x ∈ s) , (∀)0

t = s− Def←→ (s = t+) ∨ (t = ∅ ∧ s = ∅) , (∀)0

so that s+ and s− denote, resp., the successor s ∪ {s} and the predecessor of s.
Under (E), (N), (W), (L) and (R), natural numbers are expressed by the following (∀∃∀)0-

specifications (cf. [20]):

Trans(X)
Def←→ (∀ v ∈ X) (∀ u ∈ v) u ∈ X ,

Ord(X)
Def←→ Trans(X) ∧ (∀ u, v ∈ X)

(
u ∈ v ∨ v ∈ u ∨ v = u

)
,

Num1(X)
Def←→ (∀ t ∈ X) (∃ y ∈ X) (∀ u ∈ X) (u = y ∨ u ∈ y) ∧

(∀ y ∈ X) (∀ t ∈ y) (∃ z ∈ y) (∀ u ∈ y) (u = z ∨ u ∈ z) ∧ Ord(X) .

In Ts, more specifically thanks to the above-cited instances (S1) and (S2) of the separation axiom
schema (Sep), the latter can be simplified into the following simpler (∀∃∀)0-formula:

Num2(X)
Def←→ (∀ y ∈ X+)

(
y = ∅ ∨ (∃ z ∈ X) z+ = y

) ∧
(∀ u, v ∈ X) (u ∈ v ∨ v ∈ u ∨ v = u) .

(†)

The second quantifier alternation in the definiens of this (†) is caused by the occurrence z+ = y
within it. In the next section, we will get rid of this alternation by resorting to a less demanding yet
functionally equivalent specification of the successor function.

5One should view the notations x ∈ dom f and y ∈ ran f as designating dyadic relations over the universe of sets, devoid
of any ‘ontological commitment’ about dom f and ran f . In fact, under weak axioms neither dom f nor ran f are guaranteed
to designate entities that one can view as sets inside the theory. On the other hand, d = dom f ensures the status of a genuine
set to the class dom f .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

744 Essential undecidability in weak set theories

Note that in Tf the property ‘being a natural number’ simply amounts to Ord; hence, its definiens
belongs to the class (∀)0 . In other extensions of T , in order to lower the complexity of the Δ0-
specification of natural numbers, we must strengthen the structure of this property in the manner
discussed next.

2.1 Natural numbers

In [4], a (∀∃)0-characterization of the first limit ordinal is framed in the full-f ledged ZF theory, the
driving idea being that the set of natural numbers should be characterized together with the (infinite)
successor function on natural numbers. However, in the present setting, the same approach is not
viable, as no guarantee of existence of an infinite set comes from our axiomatic core. Nevertheless,
it is useful to note that it is sufficient to require a bit less to enable some important reductions
in (∀∃)0-complexity. Indeed, a streamlined definition of the natural numbers predicate that models
each number as an object pairing a finite ordinal with the restriction of the successor function to it,
allows us to characterize the successor of each number by means of an (∃)0-formula, instead of a
(∀)0 one. This approach adds f lexibility w.r.t. (†), thanks to the general idea of ‘storing information’
inside functions so that it can be ‘accessed’ by means of an (∃)0-formula (cf. Remark 1 below); here
is one major ingredient contributed by this paper.

REMARK 1
Suppose that D(x) is an (∃)0 predicate and F(x, y) is some (∀∃)0 functional predicate over the class
where D(x) holds6 containing at least one restricted universal quantifier. Of course, writing F under
the scope of a restricted existential quantifier yields a formula which is not (∀∃)0. However, for any
variable f (either universally or existentially quantified),

Fnc(f) ∧ (∀x ∈ domf)(∀y ∈ ranf)
[
y = f (x) → F(x, y)

]

is a (∀∃)0-formula that characterizes a function f which is a restriction of F. Let us call this formula
ϕf . For any set X such that D(x) holds for every x ∈ X (so F is defined on X), if it is possible
to express that every element of X is in the domain of f by means of a (∀∃)0-formula ψf , then
F(x, y) is expressible by an (∃)0 formula for the elements in X ; thus, making it possible to write
(∀∃)0-formulae where the predicate occurs under the scope of a restricted existential quantifier.

Our next example illustrates how to apply the technique described above.

EXAMPLE 1
Consider again the predicate

y = x+ Def←→ (∀z ∈ y)(z ∈ x ∨ z = x) ∧ x ∈ y ∧ (∀z ∈ x)z ∈ y,

as defined on finite ordinals. Suppose that n is some finite ordinal. While expressing F(x, y)
Def←→

y = x+ for ordinals that satisfy D(x)
Def←→ x ∈ n would normally be possible only by means of a

(∀)0-formula, if we characterize some variable f in the following way:

Fnc(f) ∧ (∀x ∈ dom f)(∀y ∈ ranf)
[
y = f (x) → y = x+]

6Functional predicate over D means that ∀x∃y∀y′[D(x) ∧ F(x, y′) ⇔ y′ = y].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 745

and

(∀m ∈ n) m ∈ dom f ,

then y = x+ for ordinals x ∈ n turns out to be expressible by the (∃)0-formula

y = f (x).

Much as in [4], we think of the successor function as a set of doubletons (proper), as, since the
function is monotonic, it is always possible to discern which one of the elements of each unordered
pair is part of the domain. We think of natural numbers as specially constrained unordered pairs,
where one of the elements is the finite ordinal representation of the number, and the other one is the
restriction of the successor function on it. The following predicates:

NPair(p)
Def←→ [((∃x ∈ p)� ∧ (∀x ∈ p)(∀y ∈ x)⊥) ∨ (∃u, f ∈ p)(∃q ∈ f)(u ∈ q)] ∧

(∀v1, v2, v3 ∈ p)(v1 = v2 ∨ v2 = v3 ∨ v1 = v3)

x ∈∈ p
Def←→ x ∈ p ∧ [(∃f ∈ p)(∃q ∈ f)(u ∈ f) ∨ ((∀z ∈ x)⊥ ∧ (∀z ∈ p)z = x)]

x ∈∈ p
Def←→ y ∈ p ∧ [(∃x ∈ p)(x ∈∈ p ∧ y �= x) ∨ ((∀z ∈ y)⊥ ∧ (∀z ∈ p)z = y)] ,

serve as a base for our definition of natural numbers.7 The first one characterizes unordered pairs
where one of the two elements belongs to one of the elements of the other, and the last two
characterize the first and second projection, respectively (which will concretely be the natural
number and the restriction of the successor function, respectively). We are now ready to present
yet another characterization of the natural number predicate—henceforth, our official one:

Num(P)
Def←→ NPair(P) ∧

(∀f ∈∈ P)(∀q ∈ f)
[
(∀v1, v2, v3 ∈ q)(v1 = v2 ∨ v2 = v3 ∨ v1 = v3)∧

(∃v1, v2 ∈ q)(v1 ∈ v2)
]∧

(∀f ∈∈ P)(∀q ∈ f)(∀x, y ∈ q)(x ∈ y → (∀z ∈ y)(z ∈ x ∨ z = x)) ∧
(∀n ∈∈ P)(∀u ∈ n)(∃f ∈∈ P)(∃q ∈ f)(∃y ∈ q)(u ∈ q ∧ u ∈ y) ∧
(∀n ∈∈ P)(∀ y ∈ n++)(∀f ∈∈ P)

(
y = ∅ ∨ (∃ z ∈ n) z++ = y

) ∧
(∀n ∈∈ P)(∀ u, v ∈ n) (u ∈ v ∨ v ∈ u ∨ v = u),

where (∀y ∈ n++)ϕ(y) and z++ = y abbreviate and

ϕ(n) ∧ (∀y ∈ n)ϕ(y) and (∃q ∈ f)(z ∈ q ∧ y ∈ q ∧ z ∈ y),

respectively. The conditions in the specification assert that

1. a natural number is an unordered pair P such that NPair(P);
2. each element of the second projection f of the said P is a doubleton one of whose elements is

a member of the other, i.e. f is an ∈-monotonic unordered map;
3. for each ordinal u smaller than the first projection n, an unordered pair belonging to f consists

of u and its successor;
4. both conditions that define finite ordinals according to (†) hold for n.

An (∃)0-characterization of item 4 was possible thanks to the fact that z+ = y can be expressed by
an (∃)0-formula in this context (cf. Example 1, Remark 1 and the definition of z++ = y). This insight
that, under the circumstances in Remark 1, sets characterized by (∀∃)0-formulae can be ‘stored’ in

7The symbols � and ⊥ can be characterized by (∀x)x = x and its negation, respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

746 Essential undecidability in weak set theories

maps and ‘accessed’ where needed with just an (∃)0-formula is one of the main Δ0-complexity
reduction techniques used throughout the paper.

All of the following definitions can be straightforwardly re-adapted to use this last (∀∃)0-formula;
however, it is possible to use the ideas developed in the specification above to characterize finite
ordinals (instead of pairs containing a finite ordinal and a restriction of the successor function) in
all the formulae in this paper, while writing them as Σ1 formulae with (∀∃)0 matrix. Indeed, the
reason why the pair characterization seems necessary is that the presence of the successor function
allows to reduce the complexity of the finite ordinal specification. Hence, if there was some constant
s representing the successor function on finite ordinals, the specification of natural number would
become

Nums(n)
Def←→ (∀ y ∈ n++)

(
y = ∅ ∨ (∃ z ∈ n) z++ = y

)∧
(∀ u, v ∈ n) (u ∈ v ∨ v ∈ u ∨ v = u),

where z++ = y stands for

(∃q ∈ s)(z ∈ q ∧ y ∈ q ∧ z ∈ y),

i.e. a (∀∃)0-formula. This comes at no cost, as in all formulae that we consider, it is possible to
characterize the restriction of the successor function up to the highest finite ordinal defined without
altering the Δ0-complexity of the formula. Indeed, for each Σ1-formula with (∀∃)0-matrix

∃x1 · · · ∃xnϕ ,

consider the Σ1-formula

∃s∃x1 · · · ∃xn
(
(∀p ∈ s)(∀v1, v2, v3 ∈ p)(v1 = v2 ∨ v2 = v3 ∨ v1 = v3) ∧
(∀p ∈ s)(∀x, y ∈ p)(x �= y ⇒ x ∈ y ∨ y ∈ x) ∧
(∀p ∈ s)(∀x, y ∈ p)(x ∈ y ⇒ (∀z ∈ y)(z ∈ x ∨ z = x)) ∧
(∀p ∈ s)(∀x, y ∈ p)(x ∈ y ⇒ (∀z ∈ x)(∃q ∈ s)(∃w ∈ q)

(z ∈ q ∧ z ∈ w)) ∧
ψ ∧ ϕ

)
,

where ψ asserts that all finite ordinals occurring in ϕ are in the domain of s. Whenever ψ is (∀∃)0,
the whole formula is clearly Σ1 with (∀∃)0-matrix. In all the formulae needed to prove the main
result of this paper, ψ is (∀∃)0.

Given a numeral n, we can easily express the predicate x = n by means of a Σ1-formula having a
(∀)0-matrix:

x = 0
Def←→ ∃x0(x0 = ∅ ∧ x = x0)

x = n + 1
Def←→ (∃x0) · · · (∃xn) (x0 = ∅ ∧ ∧n

i=1 xi = x+
i−1 ∧ x = x+

n).

REMARK 2
The definition of x = 0 has not been written as just x = ∅, a (∀∃)0-formula. The reason is that,
such as with s, it is possible to introduce an existentially quantified unrestricted variable x0 which is
forced to represent the empty set, so that no quantifiers are needed at all to express x = 0. Literals
of this form should henceforth be read in this way that does not introduces universal quantifiers.

The following claims are plain (cf. [18]).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 747

LEMMA 1
In T , the following are provable:

1. (n)+ = n + 1, x = n ∧ y = x+ → y = n + 1;
2. x+ = n + 1 → x = n, Num(x) → x �< x;
3. Num(x) ∧ y ∈ x → Num(y), Num(x) ∧ Num(y) ∧ x �= y → x+ �= y+;
4. Num(x) ∧ Num(y) ∧ y ≤ x → x = y ∨ x < y;
5. Num(0), Num(n), Num(x) → Num(x+), ∀x(Num(x) → x �< 0);
6. ∀x(Num(x) → x < n ∨ x = n ∨ n < x);
7. ∀x

(
Num(x) → (x < n + 1 ↔ x = 0 ∨ · · · ∨ x = n)

)
;

8. if n < m, then T � n < m; if n �= m, then T � n �= m.

Provided that T ′ preserves the previous lemma (under retouched definitions), the following holds.

THEOREM 1 ([18]).
Every total recursive n-ary function f on N

Def= 0, 1, 2, . . . is strongly representable in T ′, in the sense
that there is a formula ϕ such that for k1, . . . , kn, k ∈ N:

– f (k1, . . . , kn) = k implies T ′ � ϕ(k1, . . . , kn, k) and
– T ′ � ∃ x ∀ y

(
ϕ(k1, . . . , kn, y) ↔ y = x

)
.

3 Codes

We will revamp the original definition of code in [18] in order to give it a more explicit structure. Our
codes are finite-length sequences that represent the syntax trees of formulae by means of a linear
structure. As such, the first element is a natural number, whose presence will allow us to restrict
all universal quantifiers in Definitions 2 and 3, while the remaining ones are triples that encode the
nodes of the tree. Each triple has the node type as its first component, and either two leaves (variable
nodes) or pointers to nodes previously appearing in the sequence as second and third components.
The last triple in the sequence is considered to be the root of the tree. As will be clear, for each
formula ϕ, there is a countable infinity of code sequences encoding ϕ.

In order to get a simple definition, we will make use of unordered functions in our definitions.

DEFINITION 2 (Code sequence).

SeqC(f)
Def←→ Num(f � 0) ∧ (∀ x ∈2 f)

(
x ∈ domC f → (∃ w ∈ f � 0) x ∈ w

) ∧
(∀x ∈ f � 0)

(
x ∈ domC f → (∀y ∈ x) y ∈ domC f

) ∧
(∀p ∈ f)

(
(∀x, y, z ∈ p)(x = y ∨ y = z ∨ x = z) ∧ (∃x, y ∈ p)(x �= y)

) ∧
(∀p ∈ f)(∀x, y ∈ p)

[
x �= y ∧ x �= 0 ∧ y �= 0 →

y /∈ x ∧ x /∈ y ∧ (
x ∈ f � 0 ∨ y ∈ f � 0

)]
,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

748 Essential undecidability in weak set theories

where

x ∈ domC f
Def←→ (∃p ∈ f)(∃y ∈ p)[x ∈ p ∧ x �= y ∧ (x ∈ y ∨ 0 ∈ x)],

y = f � x
Def←→ x ∈ domC f ∧ (∃p ∈ f) x, y ∈ p ∧ y �= x ∧ (x ∈ y → x = 0),

(∀x ∈ f � 0)ϕ
Def←→ (∀p ∈ f)(∀z ∈ p)(∀y ∈ p)(z = 0 ∧ y = f � z → (∀x ∈ y)ϕ),

so that x ∈ domCf means ‘x is in the unordered domain of the code sequence f ’ and f � x is the
image of x under f .

The fourth condition in the definiens of SeqC(f) forces f to be made up of doubletons proper,
while the fifth one establishes that each such doubleton in f , save 0 paired with its image, is made of
a number and a non-number. The first three conjuncts state that the first element (height, f � 0, of
the sequence) is a natural number and that it exceeds the domain (length) of the sequence.

These definitions have the desired meanings; in fact, as the length of any code sequence is nonnull,
its height must exceed 1. Hence, 0 ∈ f � 0 whenever SeqC(f) holds. The basic principle that makes
the above constructs have the desired meaning is that, thanks to regularity, it is always possible
to prove that two natural numbers are comparable by membership. Combining this result with the
fact that no ordered pair, and hence no triple, satisfies the predicate Num, it is always possible to
distinguish the element in the range from the one in the domain. Thence, the complexity of the
formula entirely depends on the complexity of Num: the formula is (∀∃)0 whenever Num is (∀∃)0
and (∀∃∀)0 when it is (∀∃∀)0. We will often write fx instead of f � x, and we will also make use of
the following specification in the coming sections:

y ∈ ranC f
Def←→ (∃p ∈ f)(∃x ∈ p)[y ∈ p ∧ x �= y ∧ (x ∈ y ∨ 0 ∈ x)] .

DEFINITION 3 (Code).

Cod(f)
Def←→ SeqC(f) ∧ (∃p ∈ f)(∃q ∈ f)(p �= q) ∧

(∀i ∈ domC f)
[
i �= 0 → Triple(fi) ∧ Symbol(π1(fi)) ∧

(π2(fi) ∈ f � 0 ∨ π2(fi) ∈ i) ∧ (π3(fi) ∈ f � 0 ∨ π3(fi) ∈ i)
]

.

We already noted that Triple is (∀∃)0 and the last two conjuncts in the consequent of the
implication are (∃)0; hence, it has the same Δ0-complexity of SeqC . The first projection of a triple
is a Symbol set, i.e. a set that represents a connective or a relator in L∈. In practice, Symbol can be
thought as Num, as we require just a countable amount of them. The second and third projections of
the triples are either indices of variables (relative to their standard ordering ν0, ν1, ν2, . . .) or pointers
to previous nodes. Pointers of previous nodes precede i, while we impose that the index of a variable
shall be less than the height of the code. Note that this restriction does not reduce the power of codes,
as it is sufficient to increase the height in order to be able to encode any variable.

A total order on codes. The given definition, Cod(f), of code implies a natural total order on the
class of codes. We put

f ≤C g
Def←→ [f � 0 < g � 0] ∨ [f � 0 = g � 0 ∧ domC f < domC g] ∨[

f � 0 = g � 0 ∧ domC f = domC g ∧
(∀m ∈ domC f)([(∀i ∈ domC f)(m ∈ i → fi = gi) ∧

f � m �= g � m] → ϕless(f , g, m))
]
,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 749

where ϕless(f , g, m) stands for
[
π3(fm) <S π3(gm)

] ∨ [
π3(fm) = π3(gm) ∧ π2(fm) < π2(gm)

] ∨[
π3(fm) = π3(gm) ∧ π2(fm) = π2(gm) ∧ π1(fm) < π1(gm)

]
.

Here, by <S , we are denoting a strict total order on the collection of symbols. Since the projections
of f can be extracted by means of (∃)0-formulae, and domC f = domC g can be stated as a (∀∃)0-
formula, the overall syntactic complexity mostly relies on <S . Under suitable definitions of Symbol
and <S (e.g. if we identify symbols with natural numbers up to some finite bound n), f ≤C g turns
out to be a (∀∃)0-formula. The following proposition is trivially proved by contradiction.

LEMMA 2
In T , since <S is a total order, also ≤C is total.

We can also explicitly define the strict variant of ≤C by means of a (∀∃)0-formula:

f <C g
Def←→ f ≤C g ∧ (∃p ∈ g)(p /∈ f).

We next specify a successor function that will enable an enumeration of all code sequences. To
achieve simpler specifications, we will consider natural numbers below f � 0 as symbols. We have
three cases.

1. There is some triple in which one of the values is not f � 0 − 1: in this case, we interpret the
sequence of all triples as a base-f � 0 number and take its successor.

2. None of the triples can be increased, but the domain of the code is smaller than its height:
in this case, the successor is the code which has the same height, one more triple and whose
triples are made up of zeroes.

3. Neither of the previous cases holds: in this case, the successor has the height increased by one
and has just one triple of zeroes.

This informal definition shall be written as

g = NextC(f)
Def←→ (C1) ∨ (C2) ∨ (C3).

3.0.1 Condition (C1):

We define two utility predicates. The first one, y = NextT (x, c, v), is true when y is the successor
triple of x, thinking of x as a base-c number. The variable v is conveniently used in the antecedent of
the implications in order to be able to write a (∃)0-formula.

y = NextT (x, c, v)
Def←→ (π1(x) �= c ∧ v = π1(x)+ → π1(y) = v) ∧

(π1(x) = c ∧ π2(x) �= c ∧ v = π2(x)+ → π2(y) = v)∧
(π1(x) = c ∧ π2(x) = c ∧ π3(x) �= c ∧ v = π3(x)+ → π3(y) = v).

The second formula, CarryT (f , c, i), is true when the i-th triple of the sequence is the last one that
takes the carry in the successor operation considering the sequence as a number in base c. This is a
(∀)0-formula. We have:

CarryT (f , c, i)
Def←→ (∀j ∈ i)(∀v1 ∈ π1(ranC f))(∀v2 ∈ π2(ranC f))(∀v3 ∈ π3(ranC f))

(∀u1 ∈ π1(ranC f))(∀u2 ∈ π2(ranC f))(∀u3 ∈ π3(ranC f))
[j �= 0 ∧ v1 = π1(fj) ∧ v2 = π2(fj) ∧ v3 = π3(fj) ∧

u1 = π1(fi) ∧ u2 = π2(fi) ∧ u3 = π3(fi) →
v1 = c ∧ v2 = c ∧ v3 = c ∧ (u1 �= c ∨ u2 �= c ∨ u3 �= c)].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

750 Essential undecidability in weak set theories

We are now ready to produce a compact (∀∃)0-specification of Condition (C1):

(∃m ∈ domC f)(∃y ∈ f � 0)[m �= 0 ∧ (π1(fm) ∈ y ∨ π2(fm) ∈ y ∨ π3(fm) ∈ y)] ∧
(∀m ∈ domC f)(∀c ∈ f � 0)(∀i ∈ m)[f � 0 = c+ ∧ CarryT (f , c, m) ∧

(∀j ∈ m)CarryT (f , c, j) → fi = (0, 0, 0)] ∧
(∀m ∈ domC f)(∀c ∈ f � 0)(∀v1 ∈ π1(ranC g))(∀v2 ∈ π2(ranC g))(∀v3 ∈ π3(ranC g)))

[f � 0 = c+ ∧ CarryT (f , c, m) → gm = NextT (fm, c, v1) ∨ gm = NextT (fm, c, v2) ∨
gm = NextT (fm, c, v3)],

where fi = (0, 0, 0) is syntactic sugar for π1(fi) = 0 ∧ π2(fi) = 0 ∧ π3(fi) = 0.

3.0.2 Condition (C2):

(C2) is a (∀∃)0-formula:

(∀x ∈ domC f)(∀y ∈ f � 0)(f � 0 = y+ ∧ x �= 0 → fx = (y, y, y)) ∧
domC f < f � 0 ∧ g � 0 = f � 0 ∧ (domC f)+ = domC g ∧
(∀i ∈ domC g)(i �= 0 → gi = (0, 0, 0)).

3.0.3 Condition (C3):

With this last (∀∃)0-condition, we cover every possible case:

(∀x ∈ domC f)(∀y ∈ f � 0)(f � 0 = y+ ∧ x �= 0 → fx = (y, y, y)) ∧
domC f = f � 0 ∧ g � 0 = f � 0

+ ∧ domC g = 2 ∧ g(1) = (0, 0, 0).

The previous discussion readily yields

LEMMA 3
NextC(f) is a (∀∃)0-formula.

It is clear that, starting with the code {{0, 3}, {1, 〈0, 0, 0〉}} and through successive applications
of NextC , we can enumerate all codes; things are so as, given a length and a height, only a finite
amount of codes are endowed with those length and height. The bottom code, 0C , is characterized
by the (∀∃)0-formula

f = 0C
Def←→ Cod(f) ∧ f0 = 2 ∧ Triple(f1) ∧

π1(f1) = 0 ∧ π2(f1) = 0 ∧ π3(f1) = 0.

Throughout the rest of the section, we will state some useful facts about codes that will be essential
in developing an argument à la Gödel within the weak set theories we are considering. As most of
these facts admit proofs very similar to the ones available in [18], we will not provide details.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 751

LEMMA 4
In T :

(a) ∀x∀y
(
Cod(x) ∧ NextC(x) = y → Cod(y)

)
;

(b) ∀x∀y∀z
(
Cod(x) ∧ Cod(y) ∧ Cod(z) ∧ x ≤C z ∧ z ≤C y ∧

y = NextC(x) → z = x ∨ z = y
)
;

(c) ∀x∀y
(
Cod(x) ∧ Cod(y) ∧ NextC(x) = y → x <C y

)
;

(d) ∀x∀y∀z
(
Cod(y) ∧ NextC(y) = x ∧ NextC(y) = z → x = z

)
.

For every natural number k, by x = (k)C , we mean

(∃x0, . . . , xk−1)
(

x0 = 0C ∧
k−1∧
i=0

xi+1 = NextC(xi) ∧ x = xk

)
.

LEMMA 5
For each natural number k, in T :

(a) (k + 1)C = NextC((k)C);

(b) x = (k)C ∧ y = NextC(x) → = (k)C;

(c) ∀x(Cod(x) ∧ (k + 1)C = NextC(x) → x = (k)C

(d) Cod((k)C);

(e) ∀x
(
Cod(x) → ¬ <C 0C

)

(f) ∀x
(
Cod(x) → (x ≤C (k)C ↔ x <C (k + 1)C)

)

(g) ∀x
(
Cod(x) → (x <C (k + 1)C ↔ x = 0C ∨ . . . ∨ x = (k)C)

)
;

(h) ∀x
(
Cod(x) → (x <C (k)C ∨ x = (k)C ∨ (k)C <C x)

)

COROLLARY 1
For all natural numbers h and k, we have that if h = k, then T � (h)C = (k)C; if h < k, then
T � (h)C <C (k)C .

4 Formulae

We require the following symbols (and the related identifying predicates): Symbol⇒, Symbol∀,
Symbol∈, Symbol= and a renaming symbol for each variable vi, SymbolRi

. The intent of the last
predicate is to integrate a rename operator for each variable in the language. Each one of the symbols
has two parameters, either variables or subformulae; thus, we add predicates to recognize the type
(the symbol on top of the syntax tree of the formula) of code sequences. Remember that the topmost
node of the generation tree is the last element of a code sequence. We start by defining predicates

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

752 Essential undecidability in weak set theories

that recognize the function of a triple t of index i inside a code f of height c:

impl(f , t, i, c)
Def←→ Symbol⇒(π1(t)) ∧ π2(t) ∈ i ∧ π2(t) �= 0 ∧ π3(t) ∈ i ∧ π3(t) �= 0,

forall(f , t, i, c)
Def←→ Symbol∀(π1(t)) ∧ π2(t) < c ∧ π3(t) < i ∧ π3(t) �= 0,

rename(f , t, i, c)
Def←→ SymbolR(π1(t)) ∧ π2(t) < c ∧ π3(t) < i ∧ π3(t) �= 0,

equals(f , t, i, c)
Def←→ Symbol=(π1(t)) ∧ π2(t) < c ∧ π3(t) < c.

in(f , t, i, c)
Def←→ Symbol∈(π1(t)) ∧ π2(t) < c ∧ π3(t) < c.

All of these are (∃)0-formulae. We can now define the formula predicate, which holds when every
node of some code is one of the elementary nodes.

DEFINITION 4 (Code of a formula).

Form(f)
Def←→ (∀c ∈ ranC f)(∀i ∈ domC f)(∀t ∈ ranC f)[c = f � 0 ∧ t = fi →

impl(f , t, i, c) ∨ forall(f , t, i, c) ∨ rename(f , t, i, c) ∨
equals(f , t, i, c) ∨ in(f , t, i, c)] ∧ Cod(f).

This clearly is a (∀∃)0-formula. We can also straightforwardly define predicate symbols for
derived connectives and quantifiers as we can express ⊥ as ∀ v0(v0 ∈ v0) and thus ¬ϕ as ϕ → ⊥;
accordingly, ∃vϕ will stand for

(∀v(ϕ → ⊥)
) → ⊥.

We adopt as logical axioms for first-order predicate calculus with equality the following
schemata:8

(A1) (((((ϕ → ψ) → ((χ → ⊥) → (θ → ⊥))) → χ) → τ) → ((τ → ϕ) → (θ → ϕ))) ;
(A2)

(∀vi(ϕ → ψ)
) → (ϕ → ∀vi(ψ)) (if vi does not occur free in ϕ) ;

(A3)
(∀vi ϕ(vi)

) → ϕ(vj) ;
(A4) x = x ;
(A5) x = y → (ϕ(x) → ϕ(y)) .

For each such schema, we can write a (∀∃)0-formula that recognizes whether the code
of a formula is in the schema. As the reader can check, most of these specifications are
rather trivial. However, the specifications of (A2), (A3) and (A5) are more problematic.
Formulae that are instances of the schema (A3) are captured by the following predicate A3:

A3(f)
Def←→ (∀x ∈ domC f)(∀u ∈4 f)(∀v ∈5 f)(∀i ∈4 f)(∀t ∈5 f)[

x+ = domC f ∧ π2(fx) = u ∧ π3(fx) = v ∧ π2(fu) = i ∧ π3(fu) = t →
impl(f , fx, x, f � 0) ∧ forall(f , fu, u, f � 0) ∧

(∃j ∈ f � 0)[renamei(f , fv, v, f � 0) ∧ t = π3(fi)]
] ∧ Cod(f).

One can proceed similarly with (A5). As for (A2), we also need means to express whether a variable
has free occurrences in a formula. While this problem is particularly hard to solve in general, it will
be easy in the context in which it will be needed. We are now able to define

LAxiom(f)
Def←→ A1(f) ∨ A2(f) ∨ A3(f) ∨ A4(f) ∨ A5(f),

which recognizes whether the code of a formula is a first-order logic axiom. Depending on the
theory we are considering, we also have several theory axioms that are usually trivial to express.

8Axiom A1 alone encodes propositional logic à la Meredith [13, p. 39].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 753

Using similar specifications, one can define the TAxiom that holds whenever a formula code is an
axiom in the theory. We also put

Axiom(f)
Def←→ LAxiom(f) ∨ TAxiom(f).

We define next two ‘CleanCopy’ predicates holding when f is a left, resp., a right copy of g:

CLCopy(f , g)
Def←→ (∀i ∈ dom f)(∀x ∈ π2(ranf))[x = π2(lastf) → (fi ∈ ran g ↔

(∃j ∈ dom f)(j ≤ x ∧ PtBy(i, fj)) ∨ i = x)],

CRCopy(f , g)
Def←→ (∀i ∈ dom f)(∀x ∈ π2(ranf))[x = π3(lastf) → (fi ∈ ran g ↔

(∃j ∈ dom f)(j ≤ x ∧ PtBy(i, fj)) ∨ i = x)].

The formula PtBy(i, t) holds when the triple t has a pointer to the ith node. This is clearly an (∃)0-
formula, which can be written as

PtBy(i, t)
Def←→ (

Symbol⇒(π1(t)) ∧ (i = π2(t) ∨ i = π3(t))
) ∨

(Symbol∀(π1(t)) ∧ i = π3(t)) ∨
(SymbolR(π1(t)) ∧ i = π3(t)) .

The temporary notation last f can be eliminated by means of the rewriting rules explained below:

– add (∀n ∈ dom f), involving a new n, in front of the quantificational prefix;
– conjoin n+ = dom f with the antecedent of the matrix;
– replace every occurrence of last f by the term fn.

The added complexity depends on the complexity of checking n+ = dom f that normally has a
∀∃-prefix. Although this would yield a (∀∃∀)0-formula, we will use it in a context in which we will
be able to rewrite it as an (∃∀)0-formula; hence, we will be able to write the two predicates with
(∀∃)0-formulae. Given a code c, in order to recognize bound variables, we will consider a sequence
of the same length that contains the bound variables in each triple (subformula). The following
(∀∃)0-predicate establishes that b is the bound list of a code c:

BoundList(b, c)
Def←→ Fnc(b) ∧ dom b = domC c ∧

(∀i ∈ domC c)(∀j ∈ domC c)(PtBy(i, bj) → bj ⊆ bi) ∧
(∀i ∈ domC c)(∀v ∈4 b)

(
v ∈ bi ↔

(∃j ∈ domC c)(PtBy(i, bj) ∧ v ∈ bj) ∨
(Symbol∀(π1(fi)) ∧ π2(fi) = v)

)
,

where bi ⊆ bj is a shorthand for (∀x ∈ bi)x ∈ bj, so that BoundList(b, c) is clearly (∀∃)0. When
BoundList(b, c) holds and we encounter a variable v in some triple ci, it is sufficient to check if
v ∈ bi holds in order to know whether v is bound.

Proofs. Accessing the domain and the predecessor of a natural number can be done with a (∀∃)0-
and a (∀)0-formula, respectively. This can be problematic when the former is in the antecedent of
an implication and when the latter is in the consequent of some implication, as we would almost
certainly end up with ∀∃∀-formulae in both cases. To solve this problem, we will embed two
sequences that contain all the needed predecessors and domains in the definition of the Proof
predicate. The idea is that a proof is a sequence composed of three parts: (i) a value at index 0
that contains the point in the sequence that separates the other two parts; (ii) a list of triples, one for
each one of the subformulae of the formulae that occur in the proof, that contain the subformula in
the first projection, a copy of the left child in the second and a copy of the right child in the third

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

754 Essential undecidability in weak set theories

(between index 1 and (f � 0)−); and (iii) a list of indices between 1 and f � 0 that point to the
formulae that are supposed to be the steps of the proof. We also fill a list of bound variables for each
of the subformulae in order to be able to always tell which variables are bound in a given formula.

Proof′ (f , x, p, d, df , b)
Def←→

Fnc(f) ∧ Num(dom f) ∧ Num(f (0)) ∧ f (0) ∈ dom f ∧ df = dom f
Fnc(p) ∧ dom p = dom f ∧ (∀i ∈ dom p)(i �= 0 → pi = i−) ∧
Fnc(d) ∧ dom d = dom f ∧ (∀i ∈ dom d)(f (0) ∈ i → di = dom fi) ∧
(∀i ∈ f (0))[Triple(fi) ∧ Form(π1(fi)) ∧ Form(π2(fi)) ∧ Form(π3(fi)) ∧

(NotAtom(fi) → (∃j1, j2 ∈ i)(π1(fj1) = π2(fi) ∧ π1(fj2) = π3(fi)))] ∧
(∀i ∈ f (0))[i ∈ f (0) ∧ NotAtom(π1(fi)) ∧ i �= 0 →

CLCopy(π1(fi), π2(fi)) ∧ CRCopy(π1(fi), π3(fi))] ∧
(∀i ∈ dom f)(f (0) ≤ i → fi ∈ f (0) ∧ fi �= 0) ∧
Fnc(b) ∧ dom b = f (0) ∧ (∀i ∈ f (0))(BoundList(bi, π1(fi))) ∧
(∀i, n, j ∈ dom f)[df = n+ ∧ f (0) ≤ i → π1(f (f (n)) = x ∧ Ψ],

where the formula Ψ will be defined below. Clearly, NotAtom is easily definable starting from last
and the Symbol predicates. This is the point in the formula in which d is implicitly used in order to
be able to express last as an (∃)0-formula occurring in antecedents. All the conjuncts, but the last
one, enforce that the three stated conditions hold on the formula. The last one states that x must be
the conclusion of the proof steps, and with the formula Ψ defined below, we intend to verify that
all the steps are either axioms or results of the application of some inference rule. Given a (∀∃)0-
definition of Ψ , the whole formula plainly becomes (∀∃)0. The formula Ψ is the disjunction of the
following four formulae.

1. Axiom(fi). Clearly, to recognize axiom (A5), we have to use the bound variables list properly.
This clearly does not raise the Δ0-complexity, as it is sufficient to access the list that comes
with just existential quantifiers.

2. Modus Ponens:

(∃j1, j2 ∈ i)(f (0) ∧ f (0) ≤ j2 ∧ Symbol⇒(π1(last(π1f (fj1))) ∧
π1(f (fi)) = π3(f (fj1)) ∧ π1(f (fj2)) = π2(f (fj1))).

3. Universal generalization:

(∃j1 ∈ i)[f (0) ∧ π1(f (fj1)) = π3(f (fi)) ∧ Symbol∀(π1(last(π1(f (fi)))].

4. Rename resolution:

(∀k ∈ dom π3(f (fpi)))(∀t ∈ ranπ3(f (fpi)))(∀j ∈ f (0))[
j = rfrom(lastf (fi)) ∧ t = π3(f (fpi))(k) → ψ

] ∧ f (0) ≤ pi,

where rfrom extracts the variable that has to be renamed from a rename node (depending on
the encoding, with natural numbers it is (∀)0), and ψ is a (big) formula (cf. Section 4.1 below)
that forces the nodes in the formula to be a renamed version of the preceding formula. Hence,
ψ just checks for each triple t if it contains the variable that has to be renamed and states that
it is renamed in f (fi). Clearly, the entire formula is (∀∃)0.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 755

Thus, Ψ and also Proof′ are (∀∃)0. Finally, we have the (∀∃)0-specification:

Proof(p, x)
Def←→ Quintuple(p) ∧ Proof′

(
π1(p), x, π2(p), π3(p), π4(p), π5(p)

)
.

Notice that it is easy to express that all the natural numbers occurring in a proof belong to the
successor function s introduced in Section 2.1. Indeed, each of such numbers is characterized by a
(∀)0-formula; therefore, it is possible to state that it belongs to the domain of s by using a (∀)0-
formula.

4.1 Expanded version of the rename resolution disjunct

Here, follows the expanded version of the formula ψ in the ‘Rename Resolution’ disjunct in Proof′:

(∀k ∈ dom π3(f (fpi)))(∀t ∈ ranπ3(f (fpi)))(∀j ∈ f (0))

(j = rfrom(lastf (fi)) ∧ t = π3(f (fpi))(k) → ψ ′) ∧ f (0) ≤ pi,

where ψ ′ is the conjunction of the following formulae representing the different possible cases:

– SymbolRj
(π1(last(π1(f (f (pi)))))),

– Symbol⇒(π1(t)) →(π1(f (fi)))(k) = t,
– Symbol∀(π1(t)) ∧ π2(t) = j → (π1(f (fi)))(k) = 〈π1(t), j, π3(t)〉,
– Symbol∀(π1(t)) ∧ π2(t) �= j → (π1(f (fi)))(k) = t,
– Symbol=(π1(t)) ∧ π2(t) = j ∧ π3(t) = j → (π1(f (fi)))(k) = 〈π1(t), π2(lastπ1(f (fi))),

π2(lastπ1(f (fi)))〉,
– Symbol=(π1(t)) ∧ π2(t) = j ∧ π3(t) �= j → (π1(f (fi)))(k) = 〈π1(t), π2(lastπ1(f (fi))), π3(t)〉,
– Symbol=(π1(t)) ∧ π2(t) �= j ∧ π3(t) = j → (π1(f (fi)))(k) = 〈π1(t), π2(t), π2(lastπ1(f (fi)))〉,
– Symbol=(π1(t)) ∧ π2(t) �= j ∧ π3(t) �= j → (π1(f (fi)))(k) = t,
– Symbol∈(π1(t)) ∧ π2(t) = j ∧ π3(t) = j → (π1(f (fi)))(k) = 〈π1(t), π2(lastπ1(f (fi))),

π2(lastπ1(f (fi)))〉,
– Symbol∈(π1(t)) ∧ π2(t) = j ∧ π3(t) �= j → (π1(f (fi)))(k) = 〈π1(t), π2(lastπ1(f (fi))), π3(t)〉,
– Symbol∈(π1(t)) ∧ π2(t) �= j ∧ π3(t) = j → (π1(f (fi)))(k) = 〈π1(t), π2(t), π2(lastπ1(f (fi)))〉,
– Symbol∈(π1(t)) ∧ π2(t) �= j ∧ π3(t) �= j → (π1(f (fi)))(k) = t.

5 Essential Undecidability

What follows presupposes an essential preliminary step for an arithmetization of the syntax, namely
that a map ϕ �→ �ϕ� has been implemented (cf. [16]) sending every formula into a natural number;
a number whence one can retrieve a formula ϕ′ such that ϕ′ �� ϕ. Our next lemma will be useful in
exploiting such a ‘Gödel numbering’.

LEMMA 6
The function that associates a Cod, c, with its index k is strongly representable in T ′ through the
existential closure of a (∀∃)0-formula ϕind(c, k) (f is meant to be a function Cod → N):

∃f
(

Fnc(f) ∧ Cod(c) ∧ Num(k) ∧ dom f = k+ ∧ f (0) = (0)C ∧
(∀z ∈ k)

(
Cod(fz+) ∧ fz+ = NextC(fz)

) ∧ fk = c
)

.

PROOF. Clearly, if k is the index of a code c, then ϕind(c, k) holds. We must prove that if c is the
k-th code following the <C order, then the formula holds on c only when the second argument is k

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

756 Essential undecidability in weak set theories

(so that ϕind represents a function), namely

∀y
(
ϕind(c, y) → y = k

)
.

We proceed by induction on k. When k = 0, then c = (0)C . Suppose there is y such that ϕind((0)C , y)
for some function f , that y �= 0, and

∀y
(
ϕind((k)C , y) → y = k

)
.

Therefore, y has some predecessor z such that (0)C = NextC(fz) holds, in view of ϕind((0)C , y). But
this is untenable, as it would mean that fz <C (0)C , and we already proved that this is impossible.

Let us now consider the inductive case. Suppose that ϕind((k + 1)C , y) holds and y �= k. As
clearly (k + 1)C �= (0)C , then y �= 0, and, hence, y has a predecessor z. Consider now

h = f less 〈y, (k + 1)C〉.

Such h is guaranteed to exist thanks to axiom (L). By inductive hypothesis, we have that z = k; thus,
y = k + 1. �

LEMMA 7
The predicate SubstV(c, v, d) that holds when the formula with code d is obtained from the formula
with code c substituting the first variable (lowest index) with the variable of index v is strongly
represented in T ′ by a Σ1-formula with a (∀∃)0-matrix ϕsubv(c, v, d):

∃c′∃m∃f(
(∀p ∈ c)(c ∈ c′) ∧ domC c′ = domC c+ ∧ (∃i ∈ domC c)

(
VarIn(m, ci)

) ∧
(∀i ∈ domC C)(∀v ∈ π2(ranC c))(VarIn(v, ci) → m ≤ v) ∧
(∀i ∈ domC C)(∀v ∈ π3(ranC c))(VarIn(v, ci) → m ≤ v) ∧
SymbolRm

(π1(c′(domC c))) ∧ π2(c′(domC c)) = v ∧
π3(c′(domC c)) = domC c− ∧ ϕren(c′, d, f)

)
,

where ϕren(c′, d, f) is the formula that strongly represents the rename resolution operation (cf.
Lemma 10 below) and VarIn(i, t) holds whenever i is a variable in the triple t (plainly an (∃)0-
formula).

PROOF. It is trivial to note that c′ is forced to be the formula represented by c, plus a rename of the
variable with lowest index m to the variable v. As we already proved that ϕren resolves the renaming,
d has to be the formula code obtained by renaming m to v. �

We will use ϕsubv(c, v, d, w) to indicate the same formula, where w is a triple containing c′, m
and f ; hence, it will be possible to existentially quantify w in the prefix of the formulae in which
we will use ϕsubv. Using a similar technique, we also define a formula that strongly represents
term substitution. In order to do so, we need to define a formula that strongly represents code
concatenation.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 757

LEMMA 8
The function that, given two codes c1 and c2, outputs their concatenation d with corrected pointers
is strongly representable through a Σ1-formula with a (∀∃)0-matrix ϕcat(c1, c2, d):

∃f ∃g∃n1∃n2∃n(
Fnc(f) ∧ Fnc(g) ∧
n1 = domC c1 ∧ n2 = domC c2 ∧ dom g = n+

2 ∧ g(0) = n1 ∧
(∀i ∈ n2)(gi+ = g+

i) ∧ n = gn2 ∧ dom f = n+
1 ∧ fn1 = d ∧

(∀i ∈ n2)(∀j ∈ n1)(Cod(fi) ∧ domC fi = n ∧ (fi)j = (c1)i) ∧
(∀j ∈ n)

(
j ≥ n1 ∧ (f (0))j = c2(g−1(j))

) →
(∀i ∈ n2)(∀j ∈ n)

(
i �= 0 ∧ j ≥ n1 ∧ Symbol⇒(π1((fi)j)) →
π2((fi+)j) = π2((fi)j)

+ ∧ π3((fi+)j) = π3((fi)j)
+) ∧

(∀i ∈ n2)(∀j ∈ n)
(
i �= 0 ∧ j ≥ n1 ∧ Symbol=(π1((fi)j)) →
π2((fi+)j) = π2((fi)j)

+ ∧ π3((fi+)j) = π3((fi)j)
+) ∧

(∀i ∈ n2)(∀j ∈ n)
(
i �= 0 ∧ j ≥ n1 ∧ Symbol∀(π1((fi)j)) →
π3((fi+)j) = π3((fi)j)

+))
.

PROOF. The formula is plainly Σ1 with a (∀∃)0-matrix. The function g computes the sum of the
domains of the two input codes c1 and c2. The function f maps the domain of c2 to codes. In each one
of the codes, the formula (∀i ∈ n2)(∀j ∈ n1)(Cod(fi) ∧ domCfi = n ∧ (fi)j = (c1)i) guarantees that
the first part of the code is exactly c1. The formula (∀i ∈ n2)(∀j ∈ n)

(
j ≥ n1 ∧ (f (0))j = c2(g−1(j))

)
guarantees that the first element of f is the concatenation of the two codes without pointer correction.
Note that, as g is injective, g−1 is easily characterized by an (∃)0-formula similarly to the direct
image. The remaining formulae enforce that, at each i, all the pointers in the c2 part of fi are increased
by 1 with respect to fi−1, thus yielding a properly shifted code at fn1 . �

As usual, we will write ϕcat(c1, c2, d, w) to indicate the same formula without the existential
quantifiers, but where w is a quintuple whose components are f , g, n1, n2 and n.

LEMMA 9
The predicate Subst(c, t, d) that holds when the formula with code d results from the formula with
code c by replacement of the first variable with the code of a term t is strongly represented by the
following Σ1-formula ϕsub(c, t, d), whose matrix is of form (∀∃)0:

∃m∃f ∃c′∃w′∃f ′∃n∃n′∃k∃q(
(∃i ∈ domC c)

(
VarIn(m, ci)

) ∧ (∀i ∈ domC c)(ci = di) ∧
(∀i ∈ domC C)(∀v ∈ π2(ranC c))(VarIn(v, ci) → m ≤ v) ∧
(∀i ∈ domC C)(∀v ∈ π3(ranC c))(VarIn(v, ci) → m ≤ v) ∧
Cod(c′) ∧ ϕcat(c, q, c′, w′) ∧ domC d = domC c′ + 2 ∧
n = domC c ∧ n′ = domC c′ ∧ ϕind(t, k, f ′) ∧ ϕithc(m, k, q) ∧
(∀i ∈ n′)(di = c′

i) ∧
Symbol⇒(π1(dn′)) ∧ π2(dn′) = n′− ∧ π3(dn′) = n− ∧
Symbol∀(π1(dn′+)) ∧ π2(dn′+) = m ∧ π3(dn′+) = n′

)
.

Here, domC c′ + 2 is a shorthand for
(
(domC c′)+

)+ and ϕithc(m, k, q) is a (∀∃)0-formula that
holds when q is the code of the formula m = (k)C defined in the obvious (albeit longish) way.
The predicate VarIn(i, t) checks whether the variable νi is present in the triple t and is not bound

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

758 Essential undecidability in weak set theories

(implicitly via bound lists). Its definition is plain, being similar to the one of PtBy, and it clearly is
(∃)0.

More specifically, we have that for each formula ϕ and term code t:

T ′ � Subst(�ϕ�, t, �∀x(x = t → ϕ)�)
T ′ � ∀z(Subst(�ϕ�, t, d) → z = �∀x(x = t → ϕ)�).

In practice, we will write ϕsub(c, t, d, w), where w is an n-tuple containing all the existentially
quantified variables, to intend the same formula after dropping its external existential quantifiers.

PROOF.The statement is trivially implied by the conditions in ϕsub thanks to the previous lemma
and fact, as they force d to be the code of �∀x(x = t → ϕ)� when c = �ϕ�. �

LEMMA 10
The function which evaluates all the renamings in a formula is strongly representable through a
Σ1-formula with a ∀∃-matrix ϕren(c, d), namely

∃f ∃l{ Fnc(f) ∧ Cod(c) ∧ Cod(d) ∧ dom f = domC c ∧
l+ = dom f ∧ f (0) = 〈〈l, 0, 0rangle, crangle ∧ d = fl ∧
(∀i ∈ dom f)[Cod(π2(f(i+1))) ∧ dom fi+1 = domC c ∧

Fnc(π1(fi+1) ∧ Num(dom π1(fi+1)) ∧
domC π2(fi+1) = domC c ∧ π2(fi+1)(0) = c(0) ∧
(∀j ∈ domC c)(j /∈ π3

1 (π1(fi)) →
π2(fi)(j) = π2(fi+1)(j))

(∀j ∈ domC c)(∀z ∈ dom π1(fi))(j = π3
1 (π1(fi)(z)) → (�)) ∧

(∀j ∈ dom π1(fi+1))(#)]}
— apex 2 omitted in all pair projections —, where (�) is the formula

(∀k ∈ c(0))(∀h ∈ c(0))(∀s ∈ c(0))(∀v1 ∈ c(0))(∀v2 ∈ c(0))

(s = π3
1 (π2(fi)) ∧ h = π3

2 (π2(fi)) ∧ k = π3
3 (π2(fi)) ∧

v1 = π3
2 (π1(fi)(z)) ∧ v2 = π3

3 (π1(fi)(z)) → (�)2),

(�)2 is the conjunction of the following implications:

Symbol⇒(s) → 〈h, v1, v2〉 ∈ π1(fi+1) ∧ 〈k, v1, v2〉 ∈ π1(fi+1),
Symbol=(s) ∧ h = v1 ∧ k �= v1 → 〈s, v2, k〉 = π2(fi+1)(j),
Symbol=(s) ∧ k = v1 ∧ h �= v1 → 〈s, h, v2〉 = π2(fi+1)(j),
Symbol=(s) ∧ k = v1 ∧ h = v1 → 〈s, v2, v2〉 = π2(fi+1)(j),
Symbol∈(s) ∧ h = v1 ∧ k �= v1 → 〈s, v2, k〉 = π2(fi+1)(j),
Symbol∈(s) ∧ k = v1 ∧ h �= v1 → 〈s, h, v2〉 = π2(fi+1)(j),
Symbol∈(s) ∧ k = v1 ∧ h = v1 → 〈s, v2, v2〉 = π2(fi+1)(j),
SymbolRq

(s) ∧ k = v1 → π2(fi)(k) = π2(fi+1)(j) ∧ 〈j, q, v2〉 ∈ π1(fi+1),
SymbolRq

(s) ∧ k �= v1 → π2(fi)(k) = π2(fi+1)(j) ∧ 〈j, q, k〉 ∈ π1(fi+1),
Symbol∀(s) ∧ h �= v1 → 〈k, v1, v2〉 ∈ π1(fi+1) ∧ 〈s, h, k〉 = π2(fi+1)(j),
Symbol∀(s) ∧ h = v1 → 〈s, h, k〉 = π2(fi+1)(j)

and (#) states that π1(fi+1) has only the triples that (�) enforces. The latter formula, which is
similar to (�), is (∀∃)0 and it states that if a node is present in π1(fi+1), then one of the cases in (�)

holds in fi.
(Note that we have resorted to slight abuses of notation for the sake of clarity, e.g. j /∈ π1(π1(fi))

means (∀z ∈ domπ1(fi))(j �= π1(π1(fi))(z)) as π1(fi) is a function whose elements are triples).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 759

PROOF. The idea is that f is a sequence of pairs in
(⋃

i∈N(N3)i
) × Cod (where Cod is the class of

all codes), which represents the state of an iterative renaming algorithm. At each step, the second
projection is the code at that iteration, and the first projection is a ‘to-do list’. Indeed, the first element
of the pair is a list of triples whose first element indicates an index in the code (a subformula) to
check for renaming, the second is the index of the variable that has to be renamed and the third the
variable it has to be renamed to. In the initial state, the second projection is the input code and the
list of triples contains the triple 〈l, 0, 0〉, indicating to do an empty renaming starting from the root
of the formula (index l).

After the ith iteration, thanks to the formulae (�) and (#), the ith level of the syntax tree of the
formula is processed: all the variables in the level are checked against the current to-do list, and
every renaming symbol in the level pushes new a renaming in its subformula for the next iteration.

Let i be the current iteration. In each iteration, all the subformulae of the code are checked against
all the entries in the to do list; let j be the index of some subformula 〈s, h, k〉 of the current code (s is
the symbol at the root of the subformula, h its left subformula, k its right subformula) such that the
triple 〈j, v1, v2〉 is in the to-do list (in the formula, such triple has index z in the list). It is clear how
the cases for ⇒, ∀ and ∈ in the formula (�) encode the application of the renaming in the given triple
by specifying how the subformula becomes at the step i + 1 in the several cases and by propagating
renamings to its subformulae.

It remains to check what happens in the cases in which a renaming operator Rq is analysed.
Renaming operators substitute themselves with their child and push a new triple indicating that
the child has to be analysed with the substitution q �→ k. In the case in which k should be renamed
to some variable v2, the pushed triple contains the substitution q �→ v2.

From the previous discussion, |domC c| iterations are always sufficient to apply all renamings to
the starting code. �

LEMMA 11 (Fixpoint).
Given a formula ϕ(c), there is a formula χ that has the same free variables as ϕ, save c, such that
T ′ � χ ↔ ∀c

(
c = �χ� → ϕ(c)

)
, where �χ� is some code for the formula χ .

PROOF. Let D(c, d, w) ≡ ϕsub(c, c, d, w), and assume, without loss of generality, that w and d
are not free in ϕ. By the previous lemma, we have that for every formula ψ , ∀c

(
c = �ψ� →

∃d, wD(c, d, w)
)

and ∀c
(
c = �ψ� → ∀d, w

(
D(c, d, w) → d = �∀c(c = �ψ� → ϕ)�

))
.

Putting ψ = ∀d, w(D(c, d, w) → ϕ(d)), we have ∀c
(
c = �∀d, w(D(c, d, w) → ϕ(d))� →

∀d, w
(
D(c, d, w) → d = �∀c(c = �∀d, w(D(c, d, w) → ϕ(d))� → ϕ)�

))
. Let χ =

∀c(c = �∀d, w(D(c, d, w) → ϕ(d))� → ∀d, w(D(c, d, w) → ϕ(d))). Then ∀c∀d∀w
(
c =

�∀d, w(D(c, d, w) → ϕ(d))� ∧ D(c, d, w) → d = �χ�
)
. Since ∀c

(
c = �ψ� → ∃d, wD(c, d, w)

)
,

we have ∃d, w
(
c = �∀d, w(D(c, d, w) → ϕ(d))� ∧ D(c, d, w)

)
for any c such that c = �ψ�. Thus,

as c, d, w are not free in ϕ, we have

χ ≡ ∀c
(

c = �∀d, w(D(c, d, w) → ϕ(d))� →
∀d, w(D(c, d, w) → ϕ(d))

)
↔ ϕ(�χ�).

�
In general, c = (k)C is a Σ1-formula with a (∀∃)0-matrix, while χ can be seen as the universal

closure of the formula obtained from ϕ by eliminating its unbounded quantifiers. In general, c =
(k)C is a Σ1-formula with a (∀∃)0-matrix, while χ can be seen as the universal closure of the formula
obtained from ϕ by eliminating its unbounded quantifiers. When we take ϕ(x) ≡ ∀p(¬Proof(p, x)),

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

760 Essential undecidability in weak set theories

which is a Π1-formula with a (∃∀)0-matrix, then also χ is a Π1-formula with (∃∀)0-matrix. This
fact can be exploited to apply a Gödel incompleteness theorem-like argument.

THEOREM 2
If T ′ is Cod-consistent, i.e.

¬(∃α ∈ L∈)
(

T � ∃x
(
Cod(x) ∧ α

) ∧ (∀c ∈ Cod)
(
T � ¬α(c)

))
,

then it is incomplete with respect to the class of Σ1-formulae with a (∀∃)0-matrix.

PROOF. By applying the fixpoint lemma on the formula ϕ(x) = ∀p(¬Proof(p, x)), we obtain a
formula χ such that T ′ � χ ↔ ∀p(¬Proof(p, �χ�)). As T ′ is Cod-consistent, it neither proves nor
disproves χ . Therefore, since ¬χ is a Σ1-formula with a (∀∃)0-matrix, T ′ is incomplete with respect
to this class of formulae. �

The usual computability notions on functions over natural numbers can naturally be extended on
codes thanks to the fact that their index can be computed. If we take a recursively axiomatizable
theory Θ on L∈, the collection of the indices of its axioms is a recursive set. Therefore, as
computable functions are strongly representable, also the collection of code indices C′ is faithfully
representable in T ′, i.e. there is a formula ϕC′ such that n ∈ C′ ⇔ T ′ � ϕC′(n). We saw that also
the correspondence between codes and their indices is strongly representable through the formula
ϕind. Thus, the collection C of codes of the axioms of the theory is faithfully representable through
the following formula ϕC(x) ≡ ∃y(ϕind(x, y) ∧ ϕC′(y)). Clearly, for every formula ϕ of L∈,
assuming Cod-consistency, we have T ′ � ϕ ⇔ T ′ � ∃y Proof(ϕ, y), and, in particular, when we
instantiate ϕ with ϕC(c): T ′ � ϕC(c) ⇔ T ′ � ∃y Proof(ϕC(c), y). Thence, C(x) = ∃z, u, y, w

(
z =

�ϕC� ∧ ϕsub(z, x, u, w) ∧ Proof(u, y)
)

is a Σ1-formula with a (∀∃)0-matrix that faithfully represents
the collection of codes C. From the previous discussion, we have the following result.

LEMMA 12
If the theory T ′ is Cod-consistent, every r.e. collection of codes C is faithfully representable through
a Σ1-formula C with a (∀∃)0-matrix.

Hence, we can state our main result.

THEOREM 3
Let Θ be a recursively axiomatizable, Cod-consistent extension of the theory T ′. Then Θ is
incomplete with respect to the collection of Σ1-formulae with a (∀∃)0-matrix.

PROOF. Let C be the r.e. collection of codes of the theorems in Θ . It suffices to refer the fixpoint
lemma to ϕ(c) ≡ ¬C(c). �

To resume the discussion on decidability in the Introduction, we state the following corollary.

COROLLARY 2
In any recursively axiomatizable, Cod-consistent extensions of either Ts or Tf , the decision problem
for the collection of (∀∃)0-formulae is algorithmically unsolvable.

6 Related Work

In [18], a proof is provided of essential undecidability with respect to the class of (∀∃∀)0-formulae
under an axiomatic core closely related to the one adopted hereinabove (we have only added a few

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

Essential undecidability in weak set theories 761

instances of Sep). The main differences originating from our reduction in the number of quantifier
alternations are the following.

1. In [18], the definition of the Num property is more straightforward, as the second alternation of
quantifiers allows one to directly characterize successors, with no need of separate functions
‘storing’ the needed successors. The idea of using the successor function to reduce the Δ0-
complexity of the natural number predicate comes from [4], where the first limit ordinal and the
successor function on natural numbers are characterized together by means of a (∀∃)0-formula.
We imported the idea of this simultaneous definition by re-adapting it to finite ordinals (as no
guarantee of existence of an infinite set is given in a very weak axiomatic core).

2. In [18], the definition of code is more sophisticated due to one more inner universal
quantification. In the present work, codes are simplified to the bare minimum in order to
express them and a total order on them by (∀∃)0-formulae. The present definition lacks
some desirable properties, which makes most of the subsequent definitions unavoidably more
involved. In [18], for instance, checking whether or not two codes represent the same formula
is easily done by just checking whether their last components (representing the roots of the
respective trees) are the same. Our sameness comparison between codes is more roundabout,
as our encoding does not embed children syntax trees inside their parents, but just represents
them via pointers, i.e. indices in the code-sequence.9 Checking whether two codes represent
the same formula hence becomes a much more complicated endeavour, for which we require
the codes to be in some sort of normal form (using the CleanCopy predicates defined in p.55).
In general, the difference in the straightforwardness of the code definition, which by itself
paves the way to a reduction in the Δ0-complexity, is responsible for all further differences in
the definition of the Proof predicate.

3. The technique outlined in Remark 1 is used throughout the paper to reduce the complexity of
almost every specification.

Much as in [18], our aim has been to keep the complexity of the arithmetization machinery low—a
new goal with respect to [24], as recalled in the Introduction.

7 Conclusions

The claim of Corollary 2 is closely akin to the content of [4, Sec. 2], but the framework in which
this paper has cast it is much broader. Instead of referring the undecidability of (∀∃)0-formulae to a
full-f ledged set theory, we have been working under very weak, explicit axiomatic assumptions;
moreover, our limiting results contribute to a general investigation on essential (set-theoretic)
undecidability.

We have striven, while revisiting the material of [18], to balance transparency of the encodings
with complexity of the undecidable collection of formulae, and yet, we expect that further work
along the lines of this paper—possibly calling into play also the milestone result [17]—can improve
this tradeoff.

Meta-level reasoning is often exploited in multi-decision making or collaborative autonomous
agent systems. We hope that a theoretical investigation such as the one developed above can also be
clarifying in the practice of agent-based AI, but it goes without saying that there is an unavoidable

9One can find in [25] an interesting discussion on the double option ‘value-based vs pointer-based’ representation of
binary trees in a framework akin to ours.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

762 Essential undecidability in weak set theories

gap between a study concerning the first principles and the pragmatic needs of any software
application.

Acknowledgements

We gratefully acknowledge partial support from project ‘STORAGE—Università degli Studi di
Catania, Piano della Ricerca 2020/2022, Linea di intervento 2’ and from INdAM-GNCS 2019 and
2020 research funds. Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

References

[1] D. Cantone, M. Nicolosi Asmundo, C. Chiaruttini and E. G. Omodeo. Cumulative hierarchies
and computability over universes of sets. Le Matematiche, 63, 31–84, 2008.

[2] D. Cantone, E. G. Omodeo and A. Policriti. Set Theory for Computing: From Decision
Procedures to Declarative Programming with Sets. Texts and Monographs in Computer
Science. Springer, 2001.

[3] D. Cantone, V. Cutello and A. Policriti. Set-theoretic reductions of Hilbert’s tenth problem. In
CSL ‘89, 3rd Workshop on Computer Science Logic, Kaiserslautern, Germany, 2–6 October
1989, E. Börger, H. K. Büning and M. M. Richter, eds. Vol. 440 of Lecture Notes in Computer
Science, pp. 65–75. Springer, 1990.

[4] D. Cantone, E. G. Omodeo and M. Panettiere. From Hilbert’s 10th problem to slim, undecidable
fragments of set theory. In Proc. of the 21st Italian Conference on Theoretical Computer
Science, ICTCS 2020, G. Cordasco, L. Gargano and A. A. Rescigno, eds. Vol. 2756 of CEUR
Workshop Proc., pp. 47–60. CEUR-WS.org, 2020.

[5] D. Cantone, E. G. Omodeo and M. Panettiere. Very weak, essentially undecidabile set theories.
In Proceedings of the 36th Italian Conference on Computational Logic, Parma, Italy, 7–9
September 2021, S. Monica and F. Bergenti, eds. Vol. 3002 of CEUR Workshop Proceedings,
pp. 31–46. CEUR-WS.org, 2021.

[6] S. Costantini and V. Pitoni. Towards a logic of “Inferable” for self-aware transparent logical
agents. In Proc. of Italian Workshop on Explainable Artificial Intelligence, XAI.it@AIxIA 2020,
Online Event, 25–26 November 2020, C. Musto, D. Magazzeni, S. Ruggieri and G. Semeraro,
eds. Vol. 2742 of CEUR Workshop Proc., pp. 68–79. CEUR-WS.org, 2020.

[7] A. Formisano, E. Omodeo and A. Policriti. Reasoning on relations, modalities, and sets. In Ewa
Orłowska on Relational Methods in Logic and Computer Science, J. Golińska-Pilarek and M.
Zawidzki, eds, pp. 129–168. Springer International Publishing, 2018.

[8] A. Formisano, E. G. Omodeo and A. Policriti. Three-variable statements of set-pairing.
Theoretical Computer Science, 322, 147–173, 2004.

[9] J. van Heijenoort. From Frege to Gödel—A source book in mathematical logic, 1879–1931. In
Source Books in the History of the Sciences, 3rd edn. Harvard University Press, 1977.

[10] P. M. Hill and J. W. Lloyd. The Gödel Programming Language. MIT Press, 1994.
[11] T. Jech. Set Theory, Third Millennium edn. Springer Monographs in Mathematics. Springer,

Berlin Heidelberg, 2003.
[12] A. Levy. A Hierarchy of Formulas in Set Theory. Vol. 57. American Mathematical Society,

Providence, RI, 1965.
[13] E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall, 2015.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

CEUR-WS.org
CEUR-WS.org
CEUR-WS.org

Essential undecidability in weak set theories 763

[14] R. Montague. Semantical closure and non-finite axiomatizability I. In Infinitistic Methods.
Proc. of the Symposium on Foundations of Mathematics, Warsaw, 2–9 September 1959,
pp. 45–69. Państwowe Wydawnictwo Naukowe, Warsaw, and Pergamon Press, Oxford–
London–New York–Paris, 1961.

[15] J. von Neumann. Zur Einführung der trasfiniten Zahlen. Acta Scientiarum Mathematicarum, 1,
199–208, 1922. Available in English translation in [9, pp. 346–354].

[16] M. Panettiere. Essential Undecidability: Foundations versus Proof Technology. Master’s
Thesis, Università degli Studi di Catania, Italy, 2021.

[17] F. Parlamento and A. Policriti. The logically simplest form of the infinity axiom. Proceedings
of the American Mathematical Society, 103, 274–276, 1988.

[18] F. Parlamento and A. Policriti. Decision procedures for elementary sublanguages of set theory.
IX. Unsolvability of the decision problem for a restricted subclass of the {Δ}0-formulas in set
theory. Communications on Pure and Applied Mathematics, 41, 221–251, 1988.

[19] F. Parlamento and A. Policriti. Undecidability results for restricted universally quantified
formulae of set theory. Communications on Pure and Applied Mathematics, 46, 57–73, 1993.

[20] R. M. Robinson. The theory of classes, a modification of von Neumann’s system. J. Symb.
Logic, 2, 29–36, 1937.

[21] R. M. Robinson. An essentially undecidable axiom system. In Proc. of the International
Congress of Mathematicians (Harvard University, Cambridge, MA, 30 August to 6 September
1950). Vol. 1, pp. 729–730. AMS, Providence, RI, 1952.

[22] A. Tarski. Sur les ensembles fini. Fundamenta Mathematicae VI , 6, 45–95, 1924.
[23] A. Tarski and S. Givant. A Formalization of Set Theory without Variables. Vol. 41 of

Colloquium Publications. American Mathematical Society, 1987.
[24] R. L. Vaught. On a theorem of Cobham concerning undecidable theories. In Proc. of the 1960

International Congress on Logic, Methodology, and Philosophy of Science, E. Nagel, P. Suppes
and A. Tarski, eds. pp. 14–25. Stanford University Press, 1962.

[25] G. Weiss. Recursive Data Types in Setl: Automatic Determination, Data Language Description,
and Efficient Implementation (Compilers). PhD Thesis, New York University, USA, 1986.

Received 25 May 2022

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/33/4/738/7095786 by guest on 06 January 2024

	 Reconciling transparency, low <0:tex-math 0:notation="LaTeX" 0:id="ImEquation1" > varDelta 0-complexity and axiomatic weakness in undecidability proofs
	1 A Succinct Axiomatic Endowment for Set Theory
	2 Ordered Pairs, Functions and Natural Numbers
	3 Codes
	4 Formulae
	5 Essential Undecidability
	6 Related Work
	7 Conclusions

