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ABSTRACT 
Integration of artifcial intelligence (AI) into clinical decision sup-
port systems (CDSS) poses a socio-technological challenge that 
is impacted by usability, trust, and human-computer interaction 
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(HCI). AI-CDSS interventions have shown limited beneft in clinical 
outcomes, which may be due to insufcient understanding of how 
health-care providers interact with AI systems. Large language 
models (LLMs) have the potential to enhance AI-CDSS, but haven’t 
been studied in either simulated or real-world clinical scenarios. 
We present fndings from a randomized controlled trial deploying 
AI-CDSS for the management of upper gastrointestinal bleeding 
(UGIB) with and without an LLM interface within realistic clinical 
simulations for physician and medical student participants. We 
fnd evidence that LLM augmentation improves ease-of-use, that 
LLM-generated responses with citations improve trust, and HCI 
varies based on clinical expertise. Qualitative themes from inter-
views suggest the perception of LLM-augmented AI-CDSS as a 
team-member used to confrm initial clinical intuitions and help 
evaluate borderline decisions. 
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1 INTRODUCTION 
Artifcial intelligence (AI) and machine learning (ML) algorithms 
have the potential to provide value to clinicians in their already-
complex clinical workfows. AI interventions in medicine in ran-
domized controlled trials have shown limited improvement in clini-
cal outcomes, with no clear evaluation of the human-AI interaction 
[76]. In order to optimize the benefcial efect of these AI interven-
tions and mitigate the potential harms, there is a need to study 
and involve clinicians as end-users in ML technology to create and 
iterate systems that improve clinical workfows [117]. ML-based 
clinical decision support systems can achieve practical clinical rele-
vance when they work seamlessly with existing workfows [116] 
that utilize the electronic health record (EHR) [85]. 

Previous eforts at qualitatively characterizing healthcare provider 
interaction with AI systems has spanned multiple domains, in-
cluding alert systems [88, 92], risk estimators [10, 12], and image-
retrieval [16]. These studies usually explore user interactions as 
single-user systems between providers and ML models or integrat-
ing interactions between patients and ML models [40]. While these 
single-user interactions may be salient in specifc care settings, 
such as patients in an outpatient clinic, the complexity of modern 

medicine has led to a transition from receiving care from a single 
provider to provider teams. This includes cooperation among physi-
cians and medical providers across specialties, training levels, and 
responsibilities [31]. There is a paucity of studies that evaluate the 
behavior of provider teams and their user experience with AI clini-
cal decision support systems (AI-CDSS). One challenge to shifting 
this paradigm is the accessibility of these AI systems to multiple 
users. 

Recently, large language models (LLMs) have emerged as systems 
with potential to aid clinical decision-making. Recent exploratory 
studies have assessed LLMs’ ability to answer clinical questions 
[97, 120]. LLMs are accessible to users across a spectrum of ex-
pertise, which provides an opportunity to design AI-CDSS that 
can be used in a team-based setting. LLMs’ ability to generate text 
answers to clinical questions positions it as a potentially useful 
tool that providers can interact with similarly to how they interact 
with human team members and experts [95]. Previous work has 
shown that adoption of ML tools in medicine is more likely when 
clinicians view the tool as a “partner” to enhance their expertise, 
this is similar to the role of team members in the clinical team [36]. 
To our knowledge, there are no studies that evaluate usability of 
large language model (LLM)-based systems for active clinical work-
fows in a team-based clinical decision setting. Our study seeks to 
understand the user patterns that emerge when physicians utilize 
AI-CDSS and LLMs to make clinical decisions in a live simulated 
clinical workfow. 

We developed a risk-prediction machine learning model trained 
on data from patients with upper gastrointestinal bleeding (UGIB). 
We introduce an interactive dashboard for visualization of risk and 
GutGPT, an LLM trained on gastroenterology guidelines for UGIB 
[52]. Limiting GutGPT’s context to the risk-prediction ML model 
or UGIB guidelines places bounds on the LLM in an efort to limit 
hallucinations and response variability. To test the implementation 
of the dashboard and GutGPT, we designed a randomized controlled 
trial to determine how physician and medical student teams utilize 
and interact with these systems in a series of simulated patient 
encounters. Using UGIB as a disease process is instructive as it 
is an acute high-stakes, time-constrained clinical problem with a 
clear value proposition for risk assessment (in our case, assisted 
with a high-performing AI-CDSS) that necessitates strong team-
work within provider teams for optimal patient care and frequent 
inter-specialty collaboration. Evidence-based management of UGIB 
requires considering guidelines authored by professional societies. 
The guidance from these guidelines can be difcult to parse quickly 
while applying to unique patient scenarios [6]. LLM integration 
into GutGPT is designed to incorporate patient data to give answers 
that apply the guidelines to complicated situations. To our knowl-
edge, this is the frst study to deploy a LLM-based CDSS in a clinical 
simulation to assess usability, trust, and interaction patterns. 

Themes were generated from post-simulation interviews, survey 
data, and query data from GutGPT inputs. We found that LLM 
output format and integration into the electronic health record 
(EHR) infuences the perception of usability and may afect the 
adoption of AI-CDSS technology into physicians’ workfows. Trust 
in AI systems for physicians was limited by preconceived notions 
of AI-CDSS being unreliable or untrustworthy, and improved after 
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increased use of the system with exposure to answers with high-
reliability features (e.g. detailed citations). We contribute to the 
human-computer interaction community (HCI) by delineating bar-
riers to wide-spread adoption of AI-CDSS in physician workfows, 
providing understanding of factors that infuence physician trust 
in AI, and presenting three design principles for LLM-augmented 
AI-CDSS. 

2 RELATED WORKS 

2.1 Upper Gastrointestinal Bleeding 
UGIB is one of the most common causes for hospitalization for 
gastrointestinal disease in the United States, accounting for over 
400,000 emergency department (ED) visits a year in the United 
States [74]. It is a common cause of hospital readmission, morbidity, 
and mortality [74]. Common etiologies for UGIB include peptic 
ulcer disease, esophageal varices, and esophagitis, and the diagnosis 
of UGIB may include obvious symptoms such as bright red blood 
in gastric contents or stool to insidious symptoms such as fatigue 
and dark stools [18, 105]. 

Multiple elements from patient reported clinical history, physi-
cal examination, and laboratory measurements that may suggest 
UGIB. Diagnosis and management of UGIB usually requires inter-
play between diferent medical providers and staf in the healthcare 
environment. For example, patients with UGIB often frst present 
to the ED. They are frst seen and assessed by emergency medicine 
physicians and clinical staf who provide an initial diagnosis and-
management. If the condition is deemed to be severe enough to 
require specialist evaluation, the emergency medicine physician 
initiates communication with specialist gastroenterologists and 
internal medicine physicians to consider admission to the hospital 
with urgent endoscopic evaluation [98]. Risk stratifcation to iden-
tify patients who are “very low risk” and can be discharged from 
the ED is the frst key management decision for the provider caring 
for a patient with UGIB; identifying very-low-risk patients is rec-
ommended by national guidelines for the management of patients 
with acute UGIB [52]. However, it is possible that these patients 
may require urgent care: high-risk patients with UGIB can clinically 
deteriorate quickly if they have uncontrolled bleeding and may re-
quire hospital-based interventions such as transfusion of red blood 
cells or interventions to stop bleeding [48]. No existing studies eval-
uate the implementation of AI-CDSS for UGIB risk assessment. Our 
paper provides qualitative themes of provider behaviors when in-
teracting with an AI-CDSS for UGIB risk assessment in a simulated 
environment. 

2.2 Clinical Decision Support Systems with and 
without Artifcial Intelligence 

Clinical Decision Support Systems (CDSS) have existed in health-
care for decades as an attempt to reduce errors made by medical 
staf [44, 63]. CDSS are designed to improve healthcare delivery 
by providing relevant, timely, and useful clinical knowledge to 
providers that help them to make decisions regarding diagnosis, 
prognosis, and treatment [72]. The most basic CDSS usually func-
tion by matching the characteristics of an individual patient to 
a computerized clinical knowledge base. Patient-specifc assess-
ments or recommendations are made, and subsequently presented 

to the clinician for a decision [94]. The clinician’s role is to combine 
these evaluations with their own prior knowledge to make the fnal 
decision. 

Despite only providing simple diagnostic support, early forms 
of rules-based CDSS (i.e., a treatment that is suggested when a 
certain part of patient history is fagged) still showed efective-
ness in clinical decision support by identifying high-risk patient 
groups and reducing cases of misdiagnosis [50, 66]. CDSS are able 
to support many aspects of the healthcare process including dis-
ease prevention, screening, diagnosis, treatment, and follow-up [29] 
while reducing medical costs by minimizing side efects from drug 
treatments [60, 73]. In the modern era of electronic health records 
(EHR), CDSS are often integrated into the EHR [68]. However, many 
clinicians have expressed concerns regarding their trust in CDSS 
when introduced into their workfows[75]. 

In the era of increasing data volume and computational capacity, 
modern CDSS integrate the use of ML and AI in AI-CDSS [61]. 
AI interventions in healthcare have been studied in randomized 
controlled trials with a steadily increasing number of Food and 
Drug Administration (FDA) - approved medical ML applications 
[76]. AI-CDSS have evolved to provide predictive clinical insights 
using medical data available across multiple domains, with over 
500 clinical prediction models built on EHR data published and 
44 published reports of implementation studies [56, 115]. A slight 
majority of EHR-based AI-CDSS implemented in published studies 
have demonstrated some improvement in clinical outcomes after im-
plementation [56]. For example, CDSS have showcased the capacity 
to predict the probability of diabetic complications among individ-
uals with diabetes and guide clinicians with the optimal timing for 
diagnostic tests [37, 90]. The issue of trust remains challenging for 
clinician adoption of AI-CDSS. This includes a lack of justifcation 
of model predictions [77], which has been partially addressed with 
the emergence of “Explainable” AI [7]. Explanations from AI models 
can be categorized as global or local; in ofering an explanation of 
the entire model or single predictions, respectively [4]. Ante-hoc, 
or inherently explainable methods, are understandable on their 
own while post-hoc understandability methods communicate in-
formation about an output after the model produces the output [7]. 
Recent advances in explainable AI-CDSS to improve clinician trust 
have spanned domains of text, graphical, and image explanations, 
among others. For example, a convolutional neural network to aid 
glaucoma diagnosis used class activation mapping to generate heat 
maps for image analysis [24]. An AI-CDSS for identifying women 
at risk for gestational diabetes mellitus used Shapley additive expla-
nations to graphically represent model features [25].Stakeholder 
analysis suggests that clinicians prefer AI-CDSS with feature impor-
tance and transparency regarding how confdent or uncertain the 
model was in its predictions, and clinicians also indicated that the 
ML tools had to be tested in real clinical situations so users could 
grasp their strengths and weaknesses and foster sustainable trust 
[101]. Our paper provides qualitative and quantitative descriptions 
of usability for an AI-CDSS with post-hoc explainability methods 
that contributes towards the understanding of clinician trust when 
utilizing AI-CDSS. 
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2.3 Human-Computer Interaction in Artifcial 
Intelligence-Clinical Decision Support 
Systems 

Currently CDSS are implemented in conjunction with clinicians’ 
medical knowledge, intuition, and willingness to incorporate such 
systems into their decision-making process. Thus, HCI inherently 
plays a crucial role in the design of CDSS [85]. This is particularly 
relevant in healthcare, where providers have sufered from the 
unintended consequences associated with high alert burden in EHR 
CDSS that are caused due to system design processes that are not 
physician-centered, such as sepsis alerts [70, 104, 113, 114]. Poorly 
designed CDSS can lead to nonadherence, high override rates, and 
“alert fatigue” in which clinicians neglect the alert, thereby reducing 
their efectiveness and potential benefts [65]. 

To prevent such adverse efects and maximize CDSS usability, 
several methodological approaches for usability engineering and 
cognitive task analysis have been developed [51]. Most notably, 
heuristic evaluation of medical device interaction and patient safety 
[118], cognitive factor analysis for GUI evaluation in tele-mental 
health psychotherapy services [3], the Task, User, Representation 
and Function (TURF) framework for EHR usability [119], an ethno-
graphic study to create guidelines on designing electronic com-
municable disease reporting systems [89], and natural language 
querying to resolve time-event dependencies in clinical information 
systems [86] are frameworks for exploring diferent HCI methods 
to evaluate and develop CDSS. 

HCI becomes particularly crucial when it comes to AI-CDSS, 
as the complexity and lack of usability of sophisticated computa-
tional systems like AI may discourage clinician use [93]. Indeed, 
the difculty in explaining modern AI-based systems that have 
a “black-box” nature may also hinder integration into clinicians’ 
workfow [32, 107]. To address these issues, the frst step of HCI 
should be to provide training to users about the inner workings 
of AI-CDSS and its strengths and weaknesses [17]. The goal of 
HCI frameworks for developing AI-CDSS is to seamlessly inte-
grate them into pre-existing healthcare information and clinician 
workfows [67]. Since AI cannot completely emulate physicians’ 
mental models and physicians are unable to access large amounts 
of data to make conclusions, AI-CDSS should be designed as inter-
active systems that physicians can use to support their cognitive 
processes, as part of a human-AI collaboration paradigm [85, 111]. 
While explainability plays an important role in trust in AI tools, 
there are other factors that are vital in clinician adoption. Even 
in studies where the ML tool underlying the CDSS was opaque, 
trust was increased when adoption was endorsed by colleagues or 
superiors [35]. Trust is enhanced by reference to resources that are 
familiar to clinicians; previous research in AI-CDSS has found that 
clinicians preferred evidence-based explanation of outputs over 
model features [41]. Physicians’ cognitive model for risk stratif-
cation and management incorporates information from reputable 
clinical guidelines. AI-CDSS that delivers guideline-driven advice 
mimics the role that human teammates play in the medical team 
[59]. In this paper, we provide a unique perspective by studying 
AI-CDSS in a team setting, where diferent team dynamics may 
afect perceptions towards interactions with AI-CDSS. 

2.4 Large Language Models in Artifcial 
Intelligence-Clinical Decision Support 
Systems 

LLMs represent a subset of AI models that excel in diverse natural 
language understanding and generation tasks since they are au-
toregressive, with the ability to predict the next word in a given 
context [79]. These models owe their profciency to the massive 
scale of the transformer-based neural networks (with billions of 
parameters) and extensive training on a vast corpora of text [14]. 
In the realm of healthcare, LLMs’ exceptional natural language 
processing capabilities render them a powerful tool to be integrated 
into EHRs, which are vast repositories of patient data that include 
substantial amounts of unstructured note text. The potential for 
LLMs has already attracted signifcant research and commercial 
attention, with partnerships established between electronic health 
record vendors and AI companies with cutting-edge LLMs. Ex-
amples include the collaboration between Microsoft and Epic on 
integrating GPT-4-powered services into EHR, as well as the incor-
poration of Google-designed Med-PaLM 2 healthcare AI chatbot 
into Meditech [15, 19]. 

ChatGPT is a famous application of LLMs [71]. Its underlying 
LLM, the Generative Pre-trained Transformer (GPT), is trained on 
diverse online text sources to produce human-like responses in ver-
satile conversational interactions [79]. Since its release in November 
2022, active investigations into ChatGPT’s potential in healthcare 
have spanned research, practice, and education [57, 87]. ChatGPT’s 
ability to process health-related information from the EHR and 
ability to interact with users in natural language ofers unique op-
portunities for a wide scope of potential applications in clinical 
decision support [27]. By comparing GPT-3.5-powered ChatGPT’s 
responses to human medical experts’ answers to clinical questions 
in multiple subspecialties, several studies in general medicine, ra-
diology, and pediatrics have suggested the adequacy of LLMs for 
providing decision support throughout the pathway of clinical care, 
from diagnosis to treatment recommendations [42, 80, 81]. 

However, these studies also reveal limitations in ChatGPT in-
cluding the opacity of its training data, the phenomenon of hallu-
cinations, and limited model explainability [42, 58, 80, 81]. Recent 
studies suggest that new LLMs reproduce and amplify human bi-
ases [49]. Misuse of ML tools in the healthcare environment can 
also promote over-reliance on these tools, leading to errors when 
clinicians delegate verifcation and safety checks [61]. While cer-
tain strategies and frameworks for ChatGPT-based CDSS have been 
suggested to address these limitations [27], an AI-CDSS that queries 
reliable clinical guidelines with guardrails could ameliorate many 
of these complaints while reducing response variability. There is 
an urgent need for a deeper understanding of user behavior when 
integrating an LLM in clinical workfows to further develop design 
principles and usage guidelines for real-world adoption. Our study 
seeks to elucidate specifc patterns of user behavior with LLMs 
within simulation scenarios. 

2.5 Medical Simulation 
Medical simulation can be defned as a technique to replace or 
amplify real experiences with immersive guided interactive experi-
ences to replicate aspects of the real world [28]. Simulations can 
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have enough fdelity with real clinical environments that they can 
be used to study human factors and behaviors that contribute to the 
efectiveness of a provider team [38]. In medicine, simulation has a 
key role in maintaining and promoting patient safety and quality 
improvement for high-stakes scenarios where provider error could 
have adverse efects on patient outcomes. 

In 1999, the Institute of Medicine released a report on medical 
errors that revolutionized the approach towards patient safety [47]. 
The report highlighted simulation as a key driver of healthcare 
improvement [109]. Simulation allows for improvement both for 
individual practitioners and for provider teams. On the individual 
level, simulation centers can help individual medical trainees to 
practice skills and techniques in safe environment to prepare for 
situations in which real patients might be at risk, such as learning 
central line insertion techniques to increase successful insertion 
rates [9] and lower central line infection rates [8]. On the provider 
team level, simulation studies have been successful at studying the 
human factors involved in domains of teamwork [82] and team com-
munication [11]. As medicine has increased in complexity providers 
increasingly work in teams to provide clinical care for disease man-
agement. 

Beyond training individuals and provider teams on existing best 
practices and protocols, simulation centers can also add value in 
the testing of new medical devices and advanced technology, such 
as AI/ML. [62, 96] Usability testing for EHR technology, anesthe-
sia machines, and numerous other medical devices is frequently 
performed in simulation centers [53, 64]. AI and ML products in 
medicine are considered software as medical devices (SaMD) [103] 
and require rigorous real-world clinical deployment and evaluation 
[102]. Simulation environments are underutilized in the develop-
ment pipeline of these SaMDs to be tested within simulation center 
environments. 

LLMs have rapidly evolving capabilities relevant to clinical appli-
cations, and solutions integrating LLMs into AI-CDSS are potential 
SaMDs that may be integrated into the clinical workfow [43]. Exist-
ing partnerships between EHR vendors and LLM companies provide 
a trajectory for LLMs to be used by providers in routine clinical 
care [15, 34]. However, clinician skepticism remains a formidable 
challenge [78]. Among several concerns regarding safety is the 
potential for hallucinations that result in fabricated citations [21] 
that may lead to errors when integrated into high-stakes clinical 
environments. No study to our knowledge has used medical sim-
ulation to test LLM-augmented AI-CDSS, which we believe may 
be useful for developers of AI healthcare systems to facilitate clini-
cal evaluation and safety testing by understanding user needs and 
behavior. 

Our paper demonstrates the feasibility of using a simulation 
setting to test and to evaluate usability, trust, and human-AICDSS 
interaction for an EHR-integrated LLM-augmented AI-CDSS. 

3 METHODS 

3.1 GutGPT 
GutGPT is an in-house CDSS designed and developed to provide 
a natural language-based interface for two tasks: guideline-based 
question answering and an interactive dashboard for risk predic-
tion. It is built on top of a high-fdelity ML model validated using an 

existing clinical dataset. With patient data automatically loaded at 
launch, GutGPT provides patient-specifc predictions of the risk for 
hospital-based intervention and grounds its reasoning on this infor-
mation to generate responses to clinicians’ questions. Formulation, 
development, and implementation of dashboard and chatbot tools 
were performed by a multidisciplinary team. Practicing clinicians 
in this team directly contributed to the creation of GutGPT and 
oversaw building the tools from their genesis to experimental trial. 

GutGPT’s risk-prediction machine learning model was devel-
oped using electronic health records (EHR) of patients presenting 
with signs or symptoms of gastrointestinal bleeding at a large health 
system. The inputs to the model include demographic data (age 
and sex), nursing assessments, lab test results, personal medical his-
tory, and medication classes in the form of Clinical-Classifcation-
Software codes [1]. We consider a composite binary variable as 
the outcome, where the value of 1 signifying a high-risk patient 
that required a hospital-based intervention, such as red blood cell 
transfusion, intervention to stop bleeding, or 30-day all-cause mor-
tality, and 0 otherwise. Multiple machine learning (ML) and deep 
learning models were explored, including LASSO regression [100], 
random forests with honesty [110], gradient boosted trees [23], 
and feedforward neural networks with 2 and 5 layers [84]. Data 
pre-processing included dimensionality reduction via LASSO re-
gression to the patients’ medical history and medication classes 
tuned using 10-fold cross validation. Random forests with honesty 
was applied to the variables with non-zero coefcients, in addition 
to demographics, nursing assessments, and lab test variables. This 
fnal model exhibited the highest true negative rate (TNR) at a true 
positive rate (TPR) of 99% recommended by national UGIB guide-
lines as the very low risk threshold [52]. The model had an AUC 
0.91 (0.88-0.93) on an internal validation set and 0.92 (0.90-0.95) on 
an external validation set (data from a diferent hospital). At the 
99% sensitivity threshold, our model exhibited a specifcity of 0.46 
on the internal validation set and 0.33 on the external validation 
set, which outperforms existing recommended clinical risk scores. 

The interactive dashboard displays risk predictions with inter-
pretability plots for the ML model used within GutGPT. Users can 
visualize partial dependency plots (PDPs), individual conditional 
expectation (ICE) plots, and accumulated local efects (ALE) plots 
for any covariate in the model, assisting their understanding of 
the efect of selected covariates on the model’s predicted risk [69]. 
The incorporation of these interpretability plots was implemented 
after an iterative process where a multidisciplinary team including 
clinicians, data scientists, statisticians, and human factors experts to 
enhance users’ understanding of the ML model’s decision-making 
process, ensuring alignment with their clinical mental model. 

Furthermore, users have the ability to modify patient covariate 
values in real time and observe how the predicted risk of hospital-
based intervention or 30-day mortality changes accordingly. The 
dashboard also provides other information to help contextualize the 
risk with regards to the general population of patients with acute 
gastrointestinal bleeding. For example, it reports a patient similarity 
index, quantifying how similar the queried patient is to patients 
in the training data. To facilitate population-level understanding, 
histograms depict the distribution of each variable and highlight 
the target patient’s value relative to all patient values in the training 
data. 

https://0.90-0.95
https://0.88-0.93
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Figure 1: GutGPT chatbot interface. The chat interface on the left adopts a typical conversation-like design. Figures on the 
right display the patient’s vital data and their efect on hospital-based-intervention risks predicted by our model’s underlying 
ML model, in the context of patients in the training database. 

Figure 2: GutGPT dashboard interface. The left column displays on top the hospital-intervention risk for the current patient 
and has sliders below for the users to calibrate the model by adjusting the patient’s vitals, labs, medications, and more (not 
entirely captured). The same fgures in the chatbot interface are displayed on the right. 
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When a user types a question into the chatbot interface, GutGPT 
classifes the query as either a question about the predicted risk from 
the ML model or regarding clinical management from the guideline 
recommendations. For both types, the structured datafelds stored 
in the EHR are automatically loaded onto GutGPT for individual-
ized prediction. If the query pertains to the risk prediction of GIB, 
GutGPT retrieves the interactive dashboard, extracts information 
relevant to the user’s query, and provides interpretation of graphi-
cally presented information in human language. For example, for 
a question regarding the predicted risk itself, GutGPT generates 
a paragraph stating the risk score of a specifc patient, with an 
addendum according to clinical guidelines. It notes that a risk score 
below the 99% sensitivity threshold should be considered as “very 
low risk” according to the American College of Gastroenterology 
(ACG), and “not very low risk” otherwise. 

GutGPT also can answer a user’s questions regarding clinical 
management by drawing upon care recommendations for a patient’s 
profle based on the guidelines from the ACG for the management 
of upper GIB [52]. These guidelines are organized into discrete 
sections, including pre-endoscopic and endoscopic management, 
summary of evidence, recommendations, and conclusions. Prepro-
cessing of the sections include separating each section into separate 
text chunks and converting each chunk into a vector embedding us-
ing OpenAI’s text embedding model. When a user types a question, 
the query is converted into a vector embedding and then compared 
with the vector embeddings of the guideline text sections. This 
process enables the retrieval of the most relevant sections from the 
guidelines through a similarity search. The retrieved portions of the 
guidelines are then integrated into a user’s question, along with the 
patient’s EHR data. Instructions on text and reference formatting 
is also provided in the prompt, which is then supplied to the GPT 
model to generate a response for the user. 

3.2 Participants and Simulation 
We recruited 31 participants from various medical education levels. 
Of those participants, 9 were Emergency Medicine (EM) resident 
physicians, 6 were internal medicine (IM) resident physicians, and 
16 were medical students (MS). They were placed into provider 
teams of 2-4 participants, for a total of 12 provider teams across the 
study period. Eforts were made to recruit resident physicians and 
medical students of all experience levels. IM resident physicians 
ranged from training levels of post-graduate year 1 (PGY-1) to PGY-
3. EM resident physicians ranged from PGY-1 to PGY-4. Medical 
students ranged from the second year of medical school to fourth 
year students (including students taking a research year and MD-
PhD candidates in the research portion of their degrees). 

We sought to include both internal medicine and emergency 
medicine as these two specialties have frequent contact with pa-
tients who have UGIB. Resident physicians of diferent experience 
levels were solicited to help identify trends in the experience using 
the AI system based on training level. Medical students were sought 
to further diversify the participant pool based on experience - med-
ical students are less likely to be familiar with UGIB management 
and ACG guidelines than resident physicians. The provider teams 
performing the simulation activities consisted solely of one training 
category (EM, IM, or MS). However, within that category, provider 

teams had varying experience levels. This was done to mimic a 
typical provider team in clinical environments. 

The randomized controlled study is comprised of two arms (see 
Figure 3). Each provider team was randomized to either the GutGPT 
arm or dashboard arm separately for the two separate phases of 
the study (Risk Assessment and Content Assessment). If random-
ized to the GutGPT arm, a workstation with access to GutGPT, 
the interactive dashboard, and any internet tool was available to 
the participants. If randomized to the dashboard arm, the work-
station could only access the interactive dashboard and any other 
internet tool. During the Risk Assessment phase, the participants 
underwent three risk scenarios in which they decided to admit the 
simulated patient to the hospital, observe in the ED, or discharge 
from the ED. During the Content Assessment phase the participants 
underwent two scenarios which tested their medical management 
of simulated patients. For all phases, the provider teams were pre-
sented with cases of UGIB and the order in which the scenarios 
were presented was randomized. They interacted with a SimMan 
full-body mannequin (Laerdal) for the interview and physical exam 
of the simulated patient. A gastroenterology specialist voiced the 
patient, and their voice was broadcasted through a speaker in the 
mannequin. In the simulated clinical environment, the simulated 
patient’s chart was accessible through a workstation that mimicked 
the electronic medical record - complete with past medical history, 
laboratory values, and medications. To simulate the clinical team 
dynamics, the most senior member was assigned to use the dash-
board and/or GutGPT interface. The other members occupied the 
rest of the clinical team involved in data gathering from the man-
nequin and the EHR. Figure 4 displays the number of sessions where 
the chatbot feature was accessible by the provider team for each 
simulation scenario. This study was deemed exempt by a university 
Institutional Review Board. 

3.3 Data Collection 
To understand the user interaction pattern of clinicians with AI-
CDSS in realistic clinical simulations, we collected three types of 
data: qualitative interviews, GutGPT chatbot conversations, and 
quantitative surveys. 

3.3.1 Post-simulation Qalitative Interview. We conducted brief 
one-on-one, semi-structured interviews with each of the partici-
pants in separate rooms directly following after participants had 
fnished both the Risk-focused and Care Management scenarios. 
Each interview lasted between 5-10 minutes. The interviews began 
with general refections on participant experiences interacting with 
the GutGPT during the session. Then, the researchers asked about 
the participant’s willingness to use GutGPT in their clinical deci-
sion making process in a real clinical situation, and to elaborate 
their reasoning. Next, the researcher asked for feedback on the user 
interface of the Chatbot and the Dashboard features within Gut-
GPT. Each interview session was audio recorded with participants’ 
consent. 

3.3.2 Post-trial Qantitative Survey. We administered an adapted 
version of the System Usability Scale (SUS) [13] to participants im-
mediately after completing the Risk-focused scenarios. We retained 
four positive items that encompassed similar themes covered in the 
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Figure 3: Flowchart depicting the study design. The study is comprised in two phases, with randomization occurring separately 
at each phase. 

Figure 4: Bar plot displaying number of sessions with the 
GutGPT chatbot. 

original scale (Table 1). The abbreviated SUS survey was appended 
to an already-long survey administered after the Risk scenarios for 
a diferent experiment. We chose the positively-keyed items from 
the SUS to add to the existing survey, they matched the existing 
positively-keyed survey items to prevent participant confusion or 
errors and reduce time taking the survey to avoid an excessively 
long simulation. We note here that this portion of data collection 
was added later, resulting in 22 available observations out of the 31 
participants. 

3.3.3 GutGPT Chatbot Prompting History. All conversations be-
tween GutGPT and the participants, including all question inputs 
(“prompts”; examples see Table 2) from the participants and re-
sponse outputs from the LLM-augmented chatbot, were automati-
cally recorded in text format with information about their corre-
sponding simulation sessions and scenarios. 

3.4 Analysis 
3.4.1 Qalitative Analysis of Participant Interviews. Our team of 
three researchers led the analysis of 31 participant’s interview data 
and regularly discussed emerging themes. We used rapid qualitative 
analysis methods to efectively extract insights from our data [33]. 
For the rapid analysis, we created an interview summary template 
that asked each reviewer to consider initial impressions, system 

usability, and the role of GutGPT in clinical decision-making. We be-
gan by holistically reviewing the transcripts to familiarize ourselves 
with the data and then delved into paragraph-level understanding. 
Subsequently, all three researchers compiled signifcant quotes and 
observations from the interview summaries onto a shared research 
board. Through an iterative process, we categorized and organized 
these notes into common themes and broader feedback categories. 
This analysis led to the identifcation of several key insights outlined 
in this paper: usability in managing various aspects of AI-CDSS and 
variations in chatbot utilization based on medical specialties and 
levels of training. Our team’s unique interdisciplinary composition, 
combined expertise in HCI, clinical practice (including specialized 
knowledge in UGIB), and AI/ML, facilitated a comprehensive un-
derstanding of our participants, especially when adhering to a 
user-centered research framework. 

3.4.2 Qantitative Analysis of Post-trial System Usability Scale Re-
sponses. In the SUS survey, participants rated the usability of Gut-
GPT for each statement using a 5-point Likert scale, from “strongly 
disagree” to “strongly agree”. We recorded the responses for each 
sentiment per statement. We quantifed participants’ average atti-
tude towards each SUS statement by assigning a numerical score to 
each sentiment category: “strongly disagree” as -2, “disagree” a as 
-1, “neutral” as 0, “agree” as 1, and “strongly agree” as 2. Following 
this assignment, the mean score was then zero-centered, hence 
“neutral”-centered, weighted by the frequency of responses for each 
sentiment. A positive mean value thus suggested a general agree-
ment with the statement, while a negative mean value indicated 
disagreement. Additionally, separate calculations of the average 
attitude were made based on the GutGPT chatbot’s accessibility 
(Figure 5). 

It is important to note that we determined a threshold of 85 
participants in each arm for the experiment to reach an efect size 
of the technology acceptance metrics of UTAUT (Unifed Theory of 
Acceptance and Use of Technology [108]) to reach Cohen’s � 2 = 0.1 
with 80% statistical power. While UTAUT data were used in another 
study in our GutGPT series [20], we adhered to this threshold for the 
sake of the overall study’s coherence. At the time of this manuscript, 
enrollment for the study has continued. Therefore, the quantitative 
scores presented herein are primarily indicative of observed trends 
rather than being conducive to conclusive statistical signifcance 
testing. 
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Table 1: SUS Statements in the Post-trial Survey. Responses were in 5-point Likert scale. 

Index Statement 

1 “I thought the system was easy to use.” 
2 “I would imagine that most people would learn to use this system very quickly.” 
3 “I found the various functions of this system were well integrated.” 
4 “I felt confdent using the system.” 

Table 2: Example Question Inputs to the GutGPT Chatbot 

Index Prompt 

1 “62 yo M w h/o active etoh cirrhosis, p/w 3 d dark stools, sudden episode of bloody vomit this morning. 
mentating well. mild tachy, MAP 68.” 

2 “85-year-old woman with history of hypertension presents with one day of hematemesis in the setting of 
persistent vomiting for the past two days. Her vitals are 110/70 without other hemodynamic changes, 
and she takes no medications other than Calcium and amlodipine. What is a relevant diferential and 
should we admit her? ” 

3 “Hello GutGPT, acting as a consulting gastroenterologist, write a consult note for a 70 y.o. male who 
presents with chest pain and a week ago with melena, with PMH of heart failure? THe patient is 
currently taking aspirin, statin and ACE inhibitor. What should the next steps for management be?” 

4 “Labs are all normal, I think this pt should be discharge do you agree?” 
5 “should i admit this patient” 
6 “What is this pt’s risk of in-hospital intervention?” 
7 “Can you help me calculate the patients GBS score” 
8 “what is the next best steps in management for a patient with GBS score of 7” 
9 “what is the patient’s age” 
10 “Do you give both octreotide and vasopressin or one” 

3.4.3 Qantitative Analysis of Chatbot Prompting Patern. We mea-
sured the frequency and length of questions asked by the partici-
pants when using the GutGPT chatbot, taking into consideration 
their medical education level and the type of clinical scenarios (risk 
versus content). 

As described in Section 3.2, participants were randomly assigned 
access to the GutGPT chatbot for both the content and risk scenar-
ios separately. In addition, we conducted simulation sessions with 
medical student and resident physician teams, with varying num-
bers of sessions for each group. Hence, to ensure fair comparison, 
we tallied the total number of sessions allowed for using the chat-
bot for each medical education level (medical students or resident 
physicians), type of scenario (risk or content), scenario (A, B, or 
C for risk scenarios, and A or B for content scenarios), and com-
bination of these conditions, respectively. The question frequency 
in each situation (e.g., by provider teams of medical students in 
risk scenario A) was then calculated by dividing the total number 
of questions typed into the chatbot with the corresponding total 
number of sessions when chatbot usage was allowed (Figure 6). 

Conversely, the average length of questions was straightfor-
wardly defned as the total word count of questions asked in a situ-
ation divided by the corresponding number of questions (Figure 7). 
To maintain simplicity and consistency, a “word” here referred 
to a continuous string of text between empty spaces. Under such 
defnition, abbreviations such as “yo” (short for “year old”) were 
considered as single words. 

Likewise, the insufcient number of participants restricts a ro-
bust statistical analysis, making these statistics indicative of trends 
rather than allowing for defnitive statistical signifcance testing. 

3.4.4 Elucidating Design Principles. After completing the initial 
quantitative and qualitative analysis, the research board created 
after rapid analysis (section 3.4.1) was re-examined. In conjunction 
with quotes and sentiments from the qualitative analysis, quanti-
tative results from the SUS and prompt data were analyzed with 
the goal to extract principles for the efective use of AI-CDSS in 
clinical care. Qualitative themes and preliminary conclusions from 
quantitative data were pooled into common themes and insights 
that constitute the three design principles outlined in 5.4. 

4 FINDINGS 
First, we explore in Section 4.1 user behavior with the LLM chatbot 
through quantitative and qualitative analysis of user-generated 
prompts, user reaction to the generated responses, and how either 
the LLM chatbot or the interactive dashboard afected the clinical 
workfow. Then, we focus in Section 4.2 on the efect of clinical 
context and user characteristics on human-computer interaction 
with the LLM chatbot, such as the type of clinical task expected, 
varying levels of prior exposure to AI-CDSS or clinical expertise, 
and provider team dynamics. Finally, we describe provider concerns 
specifcally pertaining to trust in Section 4.3. 
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4.1 Usability 
4.1.1 System Usability Score. With the score assignment described 
in 3.4.2, the reported agreement to the SUS statements one through 
four from our participants could be summarized as follows using 
the format mean (standard deviation): 0.75 (0.698), 0.7 (0.954), 0.55 
(0.921), and 0.35 (1.014), respectively. The medians were consistently 
near 1 (corresponding to Likert scale response “Agree”) for the frst 
three statements and 0.5 for the fourth, while the most frequent 
score (mode) across all respondents was 1 for each statement (Fig-
ure 5). The calculated average, median, and mode were all positive, 
suggesting with insufcient statistical power that participants ap-
peared to have an overall positive attitude towards our model’s 
usability, regardless of their access to the chatbot feature. 

4.1.2 User-Generated Prompts. LLM chatbots like ChatGPT have 
garnered signifcant attention from both the public and the media, 
given their widespread availability online [99]. As a result, many 
people have frst-hand experience with LLMs and have set expec-
tations for LLM performance and functionality. When interacting 
with GutGPT, many participants drew indirect or direct compar-
isons with other LLMs they had used previously. Eight participants 
referenced other LLM chatbots they had used in response to ques-
tions about GutGPT’s usability. Many cited their familiarity with 
ChatGPT as a reason for fnding GutGPT easy to use, noting simi-
larities between the two. One IM resident physician answered: “I 
think it was extremely user friendly, I had used ChatGPT before 
and so it seemed pretty similar to it.” An IM resident physician also 
reported “I immediately knew what to do when I started using it, 
it’s just like ChatGPT.” Many of these participants noted that prior 
experience with similar systems facilitated a smooth transition for 
users to GutGPT. We found that higher average prompt frequency 
per scenario (3.9 versus 2.4) and higher average word counts per 
prompt (15.3 versus 11.0) in content scenarios compared to risk 
scenarios, with similar frequency and word counts regardless of 
clinical expertise level. 

Unlike the interactive dashboard, the chatbot requires direct 
user input to produce an output. While this allows for personalized 
questions, it also means users must craft questions they believe 
the chatbot can answer. This extra decision-making step proved 
challenging for many participants, particularly for those unfamiliar 
with chatbots. An EM resident physician explained: “The hardest 
part is AI is brand new to everybody, we don’t really know the right 
questions to ask it or what it can and can’t do. What is it going to 
give me appropriate data for. . . is it going to mislead me because 
I don’t understand it?” However, as participants interacted more 
with the system as the trial progressed, their comfort grew. “At 
frst I wasn’t really sure what it knew and didn’t know and how to 
make sure the questions I asked were the appropriate questions, it 
got easier as I went” reported an IM resident physician. To make 
the transition to use easier, several participants recommended a 
frequently asked questions (FAQ) section or to adopt autocomplete 
functionality similar to email clients or search engines. 

4.1.3 GutGPT Text Responses. Clinicians value clinical decision 
support systems that are easy to use and deliver desired informa-
tion quickly and intuitively. Seven of the participants suggested 
that GutGPT’s text output was too lengthy for efcient use. One 

participant commented, “It puts out large blocks of text at times, 
especially when citing sources. . . that takes a while to read through.” 
Time pressure is a signifcant concern for all physicians, but it’s 
especially pressing for EM physicians who see a large number of 
patients during their shifts in the emergency department. They 
must process vast amounts of data and make numerous clinical 
decisions in short periods of time. An EM resident physician noted 
about the text output: “I like the response, however I can see myself 
saying ’this is taking too long to read’ on shift, and I don’t think I 
would do it for every patient, I would probably do it for patients 
I’m a little unsure about.” In addition to the volume of text in the 
typical chatbot responses, the structure of the responses were also 
emphasized. Three participants pointed out that the information 
was often presented as a dense paragraph, making it hard to skim 
or quickly comprehend. They suggested using bullet points or em-
phasizing key management principles for a clearer presentation, 
rather than the uniform format of GutGPT’s outputs. 

4.1.4 Integration into Existing Workflow. Resident physicians and 
medical students are accustomed to using the EHR to acquire pa-
tient information and aid their clinical decision-making. Users’ 
experience with the tool’s EHR integration varied based on their 
usage patterns and trust in the model’s incorporation of patient 
data. Several contrasted this with traditional CDSS data entry. A 
medical student noted, “I thought it made [GutGPT] very diferent 
than existing clinical prediction tools because I don’t need to input 
every detail myself because they are already incorporated in and 
it makes me more comfortable that I’m able to use such informa-
tion.” Five participants said they were not pleased with the EHR 
integration of the chatbot. While laboratory and vital data were 
populated into the chatbot’s risk calculations, some participants 
still took considerable time entering this data via text entry into 
the chat queries. As a result, several participants indicated during 
the post-trial interview that this data entry signifcantly slowed 
down their interaction with GutGPT and emphasized the need to 
refne this feature. When prompted to consider using GutGPT in a 
real clinical situation, a medical student indicates: “I think it could 
defnitely help, I feel like it would probably be dependent on its 
integration into Epic.” 

A common refrain from participants dealt with the scope of 
information the chatbot could access to generate its responses. 
Clinical workfows in evaluating UGIB by IM and EM physicians 
usually involve calculating the Glasgow-Blatchford score (GBS), a 
tool that stratifes patients with suspected UGIB into high or low 
risk bleeds [55]. High risk bleeds are more likely to require hospital 
intervention, while patients with low risk bleeds can likely be safely 
discharged. Physicians and medical students frequently use online 
medical reference tools such as MDCalc to access the GBS. During 
the simulations, several participants tried to use GutGPT to score 
their simulated patients on the GBS. Often they would directly 
query GutGPT to calculate the GBS for the patient. As GutGPT is 
an LLM trained on clinical gastroenterology guidelines, it does not 
have access to clinical calculators. Thus, when questioned about 
the GBS, GutGPT typically either stated its inability to compute the 
score or listed the GBS’s components without performing the actual 
calculation. Such responses understandably frustrated participants, 
three spoke about it during the qualitative interview. The prevailing 
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Figure 5: Participant responses to the System Usability Scale survey. Data from participants who had access to the chatbot 
feature are colored in turquoise, while data from those did not used the chatbot were in purple and hatched. The total height of 
each bar refects the combined data. 

Figure 6: Number of user prompts entered into GutGPT chatbot in each scenario per simulation session. Plot (b) displays the 
same data in (a) stratifed by level of clinical expertise. 

suggestion was to integrate GBS calculation within the chatbot. An 
IM resident physician remarked “it’s easier to go onto MDCalc and 
do [a GBS calculation] rather than using GutGPT if it’s going to 
say ‘well this is what GBS means, but we don’t actually have the 
data to pull’.” Participants had a preference to access familiar CDSS 
and anticipated that GutGPT had the ability to access those tools. 

4.1.5 Interactive Dashboard Usability. The interactive dashboard 
displays patient risk scores either numerically or via a graphical 
representation. One medical student noted their preference for the 

interactive dashboard over the chatbot interface: “I trust much more 
when I see the numbers than the words. . . I have seen other AIs that 
are text-based and I’ve personally experienced that they are not 
working well, so I’m less inclined to trust it.” They found it easier to 
comprehend the explainability of the interactive dashboard which 
fostered trust in the system. Five other participants did not fnd the 
dashboard as intuitive as the chatbot: “a quick glance didn’t tell 
me how to assess [the dashboard], but the [chatbot], I caught on 
pretty quick what the goal was, how to use it, how to interpret it.” 
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Figure 7: Average user prompt length submitted to the GutGPT chatbot in each scenario. Plot (b) displays the same data in (a) 
stratifed by level of clinical expertise. 

A number of participants volunteered answers that indicated that 
the dashboard was not as straightforward for quick interpretation. 
An IM resident physician explained, “I couldn’t fgure out how to 
use the dashboard in time,” a sentiment echoed by others. 

Participants found the graphical representation challenging to 
interpret. An EM resident physician likened it to “looking at the 
engine of a car that you just bought and you have no idea how it 
actually runs”, highlighting its complexity. The resident physician 
further reasoned that while potentially benefcial, learning how to 
use the tool would demand signifcant time. The intricacy of the 
graphical representation deterred some from further interaction, 
believing it wasn’t worth the time they could otherwise spend 
interacting with the scenario, collaborating with teammates, or 
using other clinical tools. Nine participants reported difculty in 
interpreting the graphs. 

4.2 Human-Computer Interactions 
4.2.1 Clinical Tasks. The qualitative analysis of the GutGPT chat-
bot conversations reveals a consistent interaction pattern among 
provider teams of clinicians, irrespective of their clinical expertise 
level. A provider team typically prompted the chatbot between 1 to 5 
times per simulation scenario, with an average of 3 times (Figure 6). 
The questions had an average length of 13 words (Figure 7). 

Notably, when faced with content scenarios, participants asked 
an average of 1.5 more questions than in risk scenarios. This dif-
ference can be possibly attributed to the varying complexity of 
tasks in these two scenarios. In risk scenarios, the only task for 
the participants is to decide whether to admit the patient. A brief 
query like “Should I admit the patient?” or a single search for risk 
scores could sufce. In contrast, content scenarios require the par-
ticipants to make a series of management decisions, necessitating 
reference to medical guidelines and adaptability to changing patient 
conditions. Ideally, a single query to our LLM chatbot could supply 
comprehensive guidance, but participants frequently probed further 
for detailed information or clarifcation, leading to an increased 
number of questions to the chatbot. 

A related observation is that the participants asked many more 
questions in Scenario B of the risk assessment phase compared 
to the other two risk scenarios. Scenario B is a “borderline” case, 
where the decision to admit or discharge is not as straightforward 
as in the other cases as the patient’s medical data could support 
either decision. This elevates the case’s complexity and requires 
additional decision support. 

4.2.2 Familiarity with the System. Alongside the diference in tasks, 
the sequence of risk scenarios before content scenarios might con-
tribute to the observed diference in the prompting frequency. As 
participants became more familiar with GutGPT through risk sce-
narios, their confdence and willingness to use the system were 
likely to be higher in the subsequent content scenarios. This might 
lead to an increase in their interactions with the model, including 
its chatbot feature. 

The reduced average word count per question in content scenar-
ios also suggests a possible infuence of familiarity with the system 
on clinician-chatbot interactions. By inspecting the prompting data, 
we fnd that longer questions often unnecessarily repeat patient 
information embedded in the model, indicating user unfamiliarity. 
Then, shorter questions in content scenarios could signify improved 
user understanding and more efcient interactions. 

However, we note that this interpretation should be taken with 
caution, since the conversation between the users and the GutGPT 
chatbot for each scenario appears to follow a pattern where the 
users list out the patient’s details in the frst question and ask 
follow-up questions without repeating the information. Therefore 
the lower average word count of questions in the content scenarios 
could simply be a result of participants asking more follow-up 
questions in those scenarios. 

4.2.3 Level of Clinical Expertise. While quantitative comparisons 
of participating medical students’ and resident physicians’ prompt 
data revealed similar model interaction patterns, qualitative post-
simulation interviews indicate that the purposes and experiences 
of the interactions difered across levels of clinical expertise. Com-
pared to the resident physicians, participating medical students 
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reported more frequently that GutGPT was “super helpful” and 
could “provide expertise” given their knowledge level. Nine medi-
cal students responded in this way, compared to only two resident 
physicians. Some medical students even positioned GutGPT in 
leadership roles such as “consultant” and “attending”, while resi-
dent physicians recognized GutGPT more as a “partner” or “team 
member” that performs an assistant role in decision-making. One 
medical student mentioned adopting the model’s suggestions even 
if they conficted with their own judgment. In contrast, half of 
resident physicians that performed the leader role during the simu-
lation reported that the recommendations generated by the model 
did not afect their decisions. 

4.2.4 Team Composition and Dynamics. In addition to individual-
level factors such as medical expertise, composition and dynamics 
of provider teams are expected to shape clinician-model interac-
tions as well. Our provider team-based simulation design did not 
refect this aspect in the quantitative data, but the post-simulation 
interviews provided some valuable insights. The roles of the team 
members in the simulation were designed to refect real life clinical 
teams, with senior members in executive decision-making roles 
(using the dashboard and/or GutGPT) and junior members more 
responsible for gathering information (e.g. interviewing the man-
nequin and gathering lab data). That perspective informed some 
of the participants’ responses in the interview. As an IM resident 
physician placed as a junior member stated: “I was focused on the 
patient so I didn’t get a good look [at the GutGPT system], but it 
seemed like a useful response from my brief look.” Several other IM 
resident physicians and medical students in the junior member role 
shared similar comments. Another junior IM resident physician 
said “I let [the senior team member] deal with the model, and I 
just worried about the history and physical.” Some participants also 
remarked that their adoption of an AI system depends on team dy-
namics. A medical student projected that their usage of the model 
would depend on other provider team members’ opinions toward 
the model: “I think I would be more likely to use it if my attend-
ing wanted me to use it.” Several participants’ opinions diverged 
when discussing if using GutGPT would be more amenable to good 
clinical practice in a team or alone. An IM resident physician noted 
“Typing into the chatbot takes you away from the primary focus 
of the patient, I would only use it if I’m part of a team for that 
reason.” Others appreciated the input of another source that could 
function like a team member. Two participants reported their per-
ceived benefts of using the model could depend on the number of 
people present in the provider team. The context the medical team 
works in also made a diference for some participants. A medical 
student said “I think I would feel weird using it in acute situation,” 
indicating the setting a team practices in could infuence adoption. 

4.3 Trust 
Clinicians’ trust in the AI-CDSS they interact with plays a large 
role in whether they decide to adopt the tool into their workfow 
[32, 107]. In our interviews, several participants discussed their 
trust of AI-CDSS, some refecting on their general attitudes about 
AI-CDSS, and others on their trust of GutGPT after interacting with 
it frst-hand. 

While talking about their general attitudes surrounding AI-CDSS, 
participants voiced concerns about the moral and legal implications 
of fully adopting these tools in healthcare. Many stated that they 
“did not believe that clinicians should 100% rely on the model,” while 
citing reasons such as how they were “concerned with liability and 
responsibility if [they] followed the model and the patient had a 
bad outcome.” Some participants who had prior knowledge of AI 
systems also reasoned that the AI may output false responses. For 
instance: “I was concerned that the chatbot will hallucinate, which 
is particularly bad in medicine.” Participants reported they would 
be less willing to employ LLM-augmented CDSS when there are 
inaccuracies in the information they output. 

Participants also provided direct feedback on their trust levels 
about GutGPT, based on their experience using the tool during 
the simulation scenarios. The most commonly cited reason for 
why participants could not trust the chatbot’s outputs was that 
they did not know what data the chatbot was drawing from. For 
example, one participant expressed dissatisfaction as the chatbot 
“did not provide any citations”, and another participant said “it 
would be nice to have hyperlinks of sources and knowledge of 
where the AI pulled from.” This is consistent with [26]’s fndings 
that having fully transparent insight into how an AI generates 
its output is principal in a clinician’s decision to utilize the tool. 
Further, some participants believed that an AI chatbot could not 
fully replace a clinician’s intuition, and therefore could not be 
trusted fully. One participant claimed that collecting atmospheric 
and “emotional” data when entering a patient room is an important 
part of their workfow, so a limitation of GutGPT was the fact that 
it did not have such information. We believe that further exploring 
the implications of these feedback is important for establishing 
trust in LLM-augmented AI-CDSS in the future. 

5 DISCUSSION 
Our qualitative and quantitative fndings suggest that an LLM-
augmented AI-CDSS may increase ease of use in Section 5.1, ad-
dress challenges with user trust in Section 5.2, and elicit diferent 
user patterns based on clinical context and user background in 
Section 5.3. In Section 5.4 we synthesize our fndings into three 
principles for building LLM-augmented AI-CDSS systems that can 
meaningfully enhance the work of provider teams in clinical care. 

5.1 Large Language Models May Increase Ease 
of Use for AI-CDSS, but Familiarity Afects 
User Perceptions 

Familiarity is a key aspect of usability, as users are more likely to 
fnd recognizable features intuitive. GutGPT was designed with 
popular AI systems like ChatGPT and text messaging platforms in 
mind. The participants’ opinions on usability sharply difered be-
tween the LLM-augmented AI-CDSS (GutGPT) and the interactive 
dashboard AI-CDSS alone. GutGPT had a recognizable interface 
that may have contributed to its positive initial reception supported 
by the interview feedback from many participants as well as the 
survey results suggesting the perception that systems are easy to 
use. While the chatbot was seen as immediately intuitive by a large 
portion of participants, the majority of participants commented 
that the dashboard was difcult to interpret or not worth taking the 
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time to interpret. However, the qualitative results are more nuanced 
- despite GutGPT being easier to use than the interactive dashboard, 
participants remarked on an “activation energy” required to use 
a chatbot that is not an issue for AI-CDSS without LLM. For ex-
ample, the interactive dashboard requires no user input for a risk 
score to be displayed. For GutGPT, there were specifc user remarks 
regarding hesitancy to use due to uncertainty regarding prompt 
formation that must be overcome. This hesitancy can be especially 
problematic if the user is unfamiliar with LLMs - refected by par-
ticipants who found themselves at a loss on what questions to ask 
GutGPT. The slight disagreement in the SUS statement “I felt conf-
dent using the system” among participants who used the GutGPT 
chatbot compared to those who used the dashboard alone could 
be explained by the unfamiliarity with the system as well, given 
that no one disagreed with the statements that “the system was 
easy to use” and “most people would learn to use this system very 
quickly”. Uncertainty with use can be problematic in a real clinical 
situation, as there are many competing demands make clinical care 
increasingly time-constrained. Typing a query and reading a re-
sponse in natural language places a further demand on the clinician 
that could be costly from a time and cognitive-load perspective. 
Reassuringly, difculty in prompting faded as participants became 
familiar with the chatbot and became comfortable working with 
it. From these observations, the initial approachability was a key 
factor in allowing participants to experiment with the chatbot and 
eventually become accustomed to it. However, the dashboard’s in-
terface seemed like too steep a challenge to interpret in a short 
simulated case - and was ignored in many trials. 

User familiarity with the interface is not the only experience that 
matters; in clinical decision-making, familiarity with existing and 
traditional CDSS can hinder use of AI-CDSS. In UGIB, traditional 
CDSS is a clinical score, the GBS. Since this CDSS is familiar to 
providers when caring for patients with UGIB, it was natural that 
participants reached for this CDSS rather than utilizing the AI-
CDSS in our study. This fnding refects similar fndings in another 
usability study of AI-CDSS [111], where the frustration at using the 
AI-CDSS comes in part from an incomplete understanding of the 
technical capabilities of AI-CDSS. Interestingly, participants also 
expressed a desire for the text output from GutGPT to mirror their 
preferred clinical reference styles. Many desired bullet points or 
highlighted management steps in the text output, similar to medical 
reference texts like UptoDate. Possible solutions proposed by users 
include clear statements of the AI-CDSS capabilities to prevent 
frustrations that impair usability, as well as the functionality to 
access traditional CDSS. 

The LLM efect on usability for AI-CDSS is consistent with “Un-
remarkable AI”, an idea that stresses unobtrusiveness as crucial to 
successful adoption of AI-CDSS [116]. If the ideal implementation 
scenario for an AI-CDSS is one that fts smoothly into the existing 
workfow of a clinician with little deviation, there should be efort 
made to craft AI-CDSS that resemble existing tools or applications 
that clinicians have confdence in navigating. Ideally, AI-CDSS 
would complement activities that physicians already perform in 
their jobs. Much of physician responsibility involves data collec-
tion, writing clinical notes in the EHR, and deciding which tests 
and treatments to order. EHR integration is an important factor to 
access the familiarity that will promote use of an AI-CDSS. EHRs 

not only contain patient data but also ofer clinical calculators, like 
MDCalc, and clinical pathways to guide diagnostic and treatment 
choices. During the trials, participants expressed the desire that any 
AI tool needed to be integrated seamlessly with EHRs. Adequate 
integration addresses the time pressure and ease of use that many 
participants alluded to in their answers - an embedded assistant 
within the EHR that is quickly accessible and helpfully collates 
relevant patient data. Borrowing from the TURF framework for 
EHR usability, a system attains acceptable usability when it is easily 
“learnable” and requires little mental efort to use [119]. 

5.2 Large Language Models Require 
Justifcation with Citations to Promote Trust 

We understand trust of algorithmic interfaces as Kizilcec does: “an 
attitude of confdent expectation in an online situation of risk that 
one’s vulnerabilities will not be exploited” [46]. Overall, participants 
expressed their lack of trust towards LLM-augmented CDSS, and 
that this lack of trust would deter them from adopting the tool into 
their workfow. This is consistent with fndings by Rousseau et al. 
that trust plays an important role in determining whether or not 
one is willing to adopt new technologies, particularly involving AI 
[83]. 

However, from qualitative interviews we found that one factor 
that may positively afect trust in the GutGPT responses was the 
presence of relevant citations, which may indicate the need for 
transparency regarding the data used to generate the responses. 
Clinicians are inundated with vast amounts information that they 
must sift through to make evidence-based diagnostic and man-
agement decisions. Clinical guidelines from medical professional 
societies can be lengthy and difcult to parse for relevant details 
pertaining to a specifc patient. The primary literature from which 
the guidelines are constructed can be even lengthier and sometimes 
contradictory. In response to this, clinical reference websites such as 
UptoDate or ClinicalKey have risen in popularity, ofering concise, 
aggregated information with relevant citations. Many participants 
reported that GutGPT chat outputs were hard to trust because some 
of them did not provide citations outlining the source of the infor-
mation provided. When the chat included citations, participants 
specifcally emphasized how useful they found the response to be. 
Clear communication about the data used to generate responses 
from LLM-augmented CDSS is consistent with other studies that 
found that high-quality labeling leads to higher perceived training 
data credibility, which in turn enhances users’ trust in AI [22]. It is 
thus imperative to be transparent about the data from which the 
LLM is generating its responses; when providing a recommenda-
tion for clinical management, direct relevant citations should be 
displayed with every response that is generated. While websites 
like UptoDate have made evidence-based clinical decision-making 
easier, they are still general reference materials. They need to be 
tailored to individual patient scenarios and might not cover unique 
clinical situations. This represents an opportunity for chat-based 
AI-CDSS, as information from primary sources can be presented to 
the clinician in easy-to-understand natural language. 
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5.3 Human-Computer Interactions Vary By 
Clinical Tasks and Team Dynamics, But 
Large Language Model Usage Metrics Are 
Similar 

We found that participants interacted with GutGPT diferently 
based on the clinical task required. Teams using GutGPT in con-
tent scenarios submitted more queries to the chatbot than teams 
in risk scenarios. There were an average of 3.9 queries in content 
scenarios compared to 2.4 in risk scenarios. This indicates that the 
chatbot feature was used more heavily when making decisions 
regarding a care plan, and less utilized for risk assessment. Teams 
in risk scenarios were asked to determine the risk assessment for 
the simulated patient - essentially sorting the patient into one of 
three risk categories. Teams in the content scenarios were asked 
to stabilize and treat the simulated patient - this is an open-ended 
situation in which the management options are numerous and 
unstructured. Choosing the “correct” management decisions re-
quires clinical expertise and a familiarity with UGIB guidelines. 
GutGPT’s guideline-driven recommendations can be perceived as 
more helpful in these management situations. This diferential use 
is consistent with the paradigm that workfow incorporation of 
CDSS depends on the needs of human practitioners [94]. 

We also found diferences in how teams interacted with Gut-
GPT according to their level of clinical expertise. Our qualitative 
interviews suggested that provider teams with more clinical ex-
pertise (resident physicians) usually interacted with the AI-CDSS 
to confrm their own impression or decision, whereas those with 
less real-world experience (medical students) attributed more ex-
pertise to the AI-CDSS and interacted with the system with more 
deference. From the qualitative interview data, inter-team dynamics 
contributed to potential use behaviors. The medical team can be 
a hierarchical structure, group dynamics are often modeled after 
senior members [106]. Participants assigned as junior team mem-
bers volunteered that their likeliness of using an AI-CDSS would 
be increased if those tools are accepted by superiors and peers, 
indicating that the social expectations of the medical team are an 
important infuence on AI-CDSS adoption and continued use. Divi-
sion of labor in the medical team also tracks along seniority level, 
with junior members of the team functioning primarily as data gath-
erers and reporters while senior members shoulder a larger burden 
in decision-making, resource allocation, and planning. These roles 
were reproduced in our simulations, with junior members reporting 
that they did not occupy their time with familiarizing themselves 
with the system but instead dove into their roles in interviewing 
and examining the simulated patient. As our simulated teams ap-
proximate real clinical teams, these fndings show the importance 
engaging the key stakeholders in targeting AI-CDSS. In the busy 
medical team, junior members may fnd lengthy interactions with 
an AI-CDSS poorly suited to their role while more senior mem-
bers might be better situated to devote time and cognitive energy 
to properly use AI-CDSS. Our fndings can be placed in context 
with existing literature suggesting that interactive technologies are 
highly dependent on team processes and can infuence leadership 
and team management [30, 54]. These team dynamics are partic-
ularly important to consider when deploying technologies such 

as LLM-augmented AI-CDSS in environments with heterogeneous 
teams. 

Interestingly, we found that provider teams had similar pat-
terns of prompt generation and length across diferent level of 
clinical expertise, and suggests a baseline for interactions of on 
average 3 prompts with 13 words each for provider teams using 
LLM-augmented AI-CDSS in time-limiting, high-stakes scenarios. 
This benchmark is particularly valuable because, to our knowl-
edge, we are the frst group to measure usage of a LLM-augmented 
AI-CDSS under real-world clinical simulation conditions. 

5.4 Design Principles 
Drawing from the user-model interaction insights gleaned from 
our study, we propose three design principles for AI-CDSS with 
LLM-augmented interfaces: 

5.4.1 Comprehensive Usability Focus. The reported common frus-
tration with dashboard graph interpretation as well as chatbot 
prompting in our study underscores the necessity of crafting an 
integrated solution that gives due attention to improving both the 
usability of the algorithmic output and the LLM-augmented user 
interface. While enhancing interpretability of algorithm-generated 
outputs remains crucial for AI-CDSS, equal importance should be 
placed on providing users with clear guidance on how to interact 
with and what to expect from new technologies like LLMs. More-
over, a strong design should prioritize seamless integration of these 
functionalities, an aspect our LLM-augmented AI-CDSS users ex-
pressed dissatisfaction with in the SUS survey. Parcipants placed a 
special emphasis on EHR integration, which is a common refrain 
from several usability studies with AI-CDSS [112]. 

5.4.2 Customized Deployment Strategies. As reported in their in-
terviews, participants formed diferent perceptions of our model’s 
usability and role in clinical decision-making through the same sim-
ulation setup, according to their own clinical expertise levels and 
roles in the workfow. This emphasizes the importance of tailoring 
the model’s deployment strategies to accommodate the varying 
medical specialties and specifc needs of diferent users within the 
healthcare ecosystem. As Sendak et al. highlights, stakeholders of 
varying specialties and expertise should be engaged to provide and 
iterate feedback of LLM-based AI-CDSS [91]. 

5.4.3 Understanding and Navigating Team Dynamics. Our study 
provides preliminary evidence that provider team composition (e.g., 
in a team or alone) and dynamics (e.g., other team members’ per-
ception of the model) exert a complex infuence on clinician-CDSS 
interactions. While further investigations are necessary for a deeper 
understanding of this topic, design of AI-CDSS should prioritize 
adaptability and customization to adapt to diverse team composi-
tions. Additionally, strategies such as training in the use of emerging 
technology may be implemented to ensure efective and harmo-
nious clinician-AI interactions. 

6 LIMITATIONS 
Medical simulation is primarily designed as an educational exercise 
to facilitate acquisition of skills by medical trainees in an environ-
ment that emulates some of the practical realities of interacting with 
a patient. However, the simulation environment is an imperfect 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Rajashekar, Shin, and Pu, et al. 

approximation of a real clinical environment. Use of a simulation 
mannequin, the lack of distractions, and the abridged time-course 
of a simulation are examples of factors that prevent medical simu-
lation from achieving strict fdelity with the clinical environment. 
As a result, medical simulation is a calmer environment than the 
clinical one, which could encourage AI-CDSS use when the time 
and social pressures of the real clinical environment might cause 
trainees to fall back on familiar traditional CDSS. Medical simu-
lation is an environment in which experimentation is welcomed, 
participants took time to test out and interpret the dashboard and 
chatbot - luxuries that might not have been aforded to them in 
the clinical environment. While we provide a quantitative snap-
shot of potential user patterns of an LLM-augmented AI-CDSS, 
the interactions were pooled by all members of the provider team 
and could not depict the individual-level user behaviors (e.g., how 
model interactions vary based on the user’s role in the provider 
team). Likewise, our study did not capture scenarios in which the 
clinician interacts with the model independently: some participants 
touched on this aspect in their qualitative interviews, presenting 
contradictory views for model usage in such situations. All par-
ticipants in this study were trainees, and had not yet qualifed to 
practice independently. The majority (76.7%) were under the age 
of 29, younger than the average independently practicing attend-
ing physician. Trainees are in a period of rapid learning of tools 
and methods that help in clinical care. It would likely be easier for 
trainees to adopt new technologies in their clinical workfows than 
more experienced clinicians. Clinicians with a greater amount of 
experience are more confdent in their clinical decision-making and 
might be less willing to incorporate a new tool into their workfow. 
Younger people are also more likely to have higher acceptance of 
AI technology [45]. 

Another limitation of our study arises from the ongoing and 
rapid advancement of AI. New models, architectures, and tech-
niques emerge with improvements in their capabilities and per-
formance, so the usability challenges associated with AI-powered 
systems are likely to shift quickly. One immediate example is that 
the response latency issue of GutGPT has been mitigated with 
recent improvements in GPT-3.5-Turbo’s inference time. 

Lastly, our research plan could be improved. The present design 
of the study struggled to distinguish between the impacts of in-
creased model familiarity from learning, task complexity, and model 
performance on our data, especially the prompting pattern. Further 
exploration of the dashboard’s usability through an independent 
assessment is needed to establish a baseline for better evaluating 
the value of LLM integration. The truncated SUS survey may limit 
its comparisons to standards of usability; the fact that the SUS sur-
vey was administered only for risk scenarios hindered its ability to 
reveal users’ perception of usability for the whole trial. 

7 FUTURE WORK 
Our work to evaluate GutGPT and elucidate a more comprehensive 
understanding about clinicians’ attitudes surrounding the AI-CDSS 
is still ongoing. 

We will continue recruiting participants for our usability re-
search to reach the efective size for statistical testing. We will im-
prove our study design to address the limitations described at the 

end of Section 6. More relevant data such as performance metrics of 
the LLM component, and time spent for each simulation scenario 
with or without the chatbot will be collected and assessed in the 
future trials for a better understanding user-model interactions. 

We acknowledge the importance of iterative design in the human-
centered approach. We plan to extend our current understanding 
of user preferences with the following research directions: 1) for 
usability, we plan to provide guidance on query construction and 
evaluate its efect on decreasing the initial activation energy that 
hampers use of the chatbot; 2) for trust, we plan to explore a more 
active role of an LLM as a team member that listens to and summa-
rizes provider team interactions during the clinical decision process; 
3) for user-computer interactions, we plan to customize a work-
fow that allows individuals to interact with the LLM-augmented 
AI-CDSS and integrate the user prompts with the provider team 
interaction with LLM-augmented AI-CDSS. 

We plan on updating GutGPT to refect the three design princi-
ples for LLM-augmented AI-CDSS that we proposed in Section 5.4. 
To improve usability in respect to the LLM-augmented user in-
terface, one potential solution is to provide guidance on writing 
queries: this can be achieved through query suggestions generated 
based on commonly asked questions, or “query building blocks” 
in which clinicians can simply click on components of queries to 
quickly build their prompt. To better serve users with diferent level 
of clinical expertise in UGIB, customizable modes might be devel-
oped: clinicians with fewer years of training could be defaulted 
to model responses with more detailed explanations and more ref-
erences that provide required expertise, while those from higher 
training level could choose to receive more concise replies for fact-
or decision-checking. To address difculties in model interactions 
in special cases such as when clinicians work alone in emergency 
care, advanced features like real-time speech recognition might 
be augmented to GutGPT to enable automatic patient-interview 
summarization that streamline the clinicians’ workfow. We plan 
on implementing these design changes to GutGPT before testing 
on additional participants, further examining how these changes 
infuence user behavior both at the individual- and team-level. 

We also believe that user experience should be studied under 
conditions that are difcult to achieve in the physical simulation 
environment. Medical simulations are a valuable training tool that 
has been found to enhance clinical competence at the undergradu-
ate and postgraduate levels [2]. Even so, medical trainees struggle 
when transitioning into a real clinical setting [5] due to discrepan-
cies including a static physical environment and lack of environ-
mental distractions present in simulation rooms. Virtual Reality 
(VR)/Augmented Reality (AR) solution has the potential to improve 
the levels of realism to enhance learning for simulation studies of 
LLM-augmented AI-CDSS [2, 39]. Transitioning to VR/AR simula-
tion would allow scalable research for new AI-CDSS like GutGPT, 
increase the capacity to introduce diversity in medical training (in-
cluding patient “dummies” of diverse demographics), and increase 
fexibility in creating and extending simulation environments. We 
are optimistic about this transition and are interested investigating 
how it afects future AI-CDSS HCI research. 
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8 CONCLUSION 
In this paper, we sought to extract insights from healthcare providers 
after they interacted with a LLM-augmented AI-CDSS in simulated 
clinical scenarios. We present preliminary fndings from a ran-
domized controlled trial with 31 participants arranged in provider 
teams who undergo simulated scenarios of UGIB with an inter-
active dashboard AI-CDSS with or without an LLM. We fnd that 
LLM-augmented AI-CDSS increases ease of use, and that trust can 
be improved with transparency with supporting evidence of ci-
tations in the responses. We found that there appeared to be a 
baseline utilization pattern of the LLM-augmented AI-CDSS of ap-
proximately 3 prompts averaging about 13 words per prompt in 
each scenario across all participants, though the perception of the 
LLM-augmented AI-CDSS in human-computer interaction varies 
by clinical expertise - medical students appreciated the model’s 
expertise while physicians used the model as a check on their in-
tuition. Senior and junior members of the clinical team displayed 
diferent behaviors towards AI-CDSS, with greater engagement 
from senior-level decision-makers. These insights underscore the 
importance of closely involving healthcare providers in the design 
and implementation of AI-CDSS. In light of our fndings, we pro-
pose three fundamental design principles that can guide future 
refnements of GutGPT and the broader spectrum of AI-CDSS. 
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