
DEGLI STUDI DI TRIESTE

XXXV CICLO DEL DOTTORATO DI RICERCA IN

SCIENZE DELLA, TERRA, FLUIDODINAMICA E MATEMATICA.

INTERAZIONI E METODICHE

ADVANCED EMPIRICAL DATA ANALYSIS AND

NUMERICAL SIMULATIONS FOR STRUCTURE AND

SOIL DYNAMIC BEHAVIOR AS CONTRIBUTIONS

TO SEISMIC RISK ASSESSMENT

Settore scientifico-disciplinare: GEO/10

DOTTORANDO:

MELESE TEMESGEN SALILIH

COORDINATORE:

PROF. STEFANO MASET

SUPERVISORE DI TESI:

PROF. STEFANO PAROLAI

CO-SUPERVISORE DI TES:

DR. VALERIO POGGI

ANNO ACCADEMICO 2021/2022





Acknowledgment

I am deeply indebted to my supervisor, Prof. Stefano Parolai, for giving me the
opportunity to work on my PhD project and for giving me his time to comment,
guide, and and follow the progress of this work. I have benefited immensely from
his help, advice, and encouragement throughout my studies. I would like to thank
the National Institute for Oceanography and Experimental Physics - OGS for funding
this Ph.D. project. I would like to thank research group at the Seismological Research
Center - CRS for their technical help and encouragement.

I would also like to thank my co-supervisor Dr. Valerio Poggi for his continuous
technical support, especially in familiarizing me with the codes I worked with, and
for his valuable comments and encouragement. I would like to express my special
thanks to Dr. Bojana Petrovic, who helped me to access programs and data. I am
grateful to my colleagues Ilaria Dreossi, AnnaMaria Sklodowska, and Elisa Venturini
for their constant encouragement throughout my studies.

I





Abstract
Separate estimation of the attenuation due to intrinsic absorption and scattering in
near-surface geology and built-in structures is essential in engineering seismology.
Knowledge of the intrinsic absorption and scattering attenuation parameters could
be used for site response studies; and prediction of strong motions in engineering
seismology for seismic hazard and risk studies. In this study, two methods were
used in this study to estimate the intrinsic and scattering attenuation parameters: the
coda method to estimate the coda quality factor for the uniform half-space model
and the Multi-Lapse Time Window Analysis (MLTWA) to separately estimate the
intrinsic (Q−1

i ) and scattering (Q−1
sc ) attenuation for the uniform half-space model for

a more realistic depth-dependent earth media model.

MLTWA is a method for estimating the attenuation due to intrinsic absorption and
scattering separately. It compares the seismic energy integrated from three consecu-
tive seismogram windows starting from the S-wave arrival time and plotted against
hypocentral distance. In this study, the MLTWA method is modified to use a verti-
cal array of seismograms to separately estimate the scattering and intrinsic seismic
attenuation. To overcome the problem of intensive computational requirements as-
sociated with the application of MLTWA to the multi-layer earth model, a simulated
annealing inversion strategy is developed. The parameter space is constrained using
grid search to our search domain of those with a potential solution. This parame-
ter space is used in simulated annealing to rapidly converge to the solution in a few
hundred iterations or less.

Seismic data collected from a vertical array of seismic sensors installed in a borehole
and a nearby building test site in Atakoy, Istanbul, Turkey are used to estimate the
attenuation parameters of the building and the subsurface beneath it.

Intrinsic and scattering attenuation parameters are estimated for a building and two
layers below the building. Frequency dependent shear wave attenuation values Qi,
Qsc, and Qs are estimated for the frequency range from 1 to 15 Hz. Qs values of
Qs = 2 f 1.25, Qs = 2 f 1.75 and Qs = 20 f 1.0 are estimated for the building, the first layer,
and the half-space below, respectively. It is generally observed that the scattering
attenuation dominates over the intrinsic absorption. The results of this study are
in agreement with to a previous study on the same site by Parolai et al. (2010). He
estimated Qs values of 30, 46, and 99 for the 0-50, 0-70, and 0-140 m depth ranges,
respectively, using spectral fitting for the 1 to 15 Hz frequency band. This study
estimates Qs values of 16, 23, and 83 for the 45 m high building, the 50 m thick
shallow layer, and the half space below at 5 Hz, respectively, which are comparable
to the previous study



Keywords: Seismic coda, Intrinsic absorption, Scattering, MultiLapse Time Window
analysis (MLTWA), Simulated annealing, Grid search
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Chapter 1
Introduction

1.1 Background of the study

The propagation of the S-wave through the crust is strongly influenced by scattering
loss, intrinsic absorption and geometric scattering. The energy oss due to seismic
scattering determines the shape of the seismic envelope and the spatial distribution
of the energy, while intrinsic absorption leads to an exponential decay of the S-wave
envelope. Geometric scattering is due to the elastic wavefront that propagates with
increasing distance from the source. Intrinsic and scattering attenuation patterns re-
veal the nature of the Earth’s interior and impose constraints on seismic wave prop-
agation. Thus, the ability to separately estimate the spatial distributions of intrinsic
(Q−1

i ) and scattering (Q−1
sc ) attenuation is critical for improving our understanding

of the Earth’s structure.

Several different scattering theories have been developed to model seismic coda en-
velopes.Wu and Aki (1985) was the first to include multiple scattering to account for
the relative contributions of scattering and intrinsic attenuation. relative contribu-
tions of scattering and intrinsic absorption to total attenuation. attenuation. Hoshiba
(1991) provided the numerical basis for the method by calculating the S-wave energy
density from a Monte Carlo simulation of multiple isotropic scattering.

Studies of scattering (Q−1
sc ) and intrinsic (Q−1

i ) attenuation, as well as total S-wave
attenuation (Q−1

s ), have been performed worldwide (Fehler et al., 1992; Bindi et al.,
2006; Sato et al., 2012). These studies are useful for inferring both the materials and
the physical state of the lithosphere. Q−1

sc reflects the presence of heterogeneities that
redistribute wave energy without any loss, and Q−1

i represents the anelasticity that
converts seismic energy to thermal energy due to internal friction between grain par-
ticles. Several mechanisms for intrinsic attenuation as described by O’Connell and
Budiansky (1977) include the resistive and viscous properties of oscillator models of
atoms in crystalline lattices, the movement of interstitial fluids between grain bound-
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aries and cracks, and the frictional sliding of cracks. Vargas et al. (2004) reported high
values of both Q−1

sc and Q−1
i from volcanic regions, while high Q−1

i was observed in
region of high heat flow (Abdel-Fattah et al., 2008).

Multiple Lapse Time Window Analysis (MLTWA) is a commonly used approach for
separating Q−1

sc and Q−1
i (Hoshiba, 1993; Fehler et al., 1992; Sato et al., 2012), based on

the application of radiative transfer theory proposed by (Wu and Aki, 1985). MLTWA
allows one to estimate the relative contributions of scattering loss (Q−1

sc ) and intrinsic
absorption (Q−1

i ) to the total S-wave attenuation (Q−1
T ) of S-wave envelopes (Fehler

et al., 1992); Sato et. al (2012). The MLTWA is based on the observations of (Fehler
et al., 1992) that the direct S-wave, whose amplitude is controlled by the early part of
the seismogram is controlled by the total attenuation of the media and the S-coda is
composed entirely of scattered S-waves whose amplitudes are mainly controlled by
the scattering coefficients.

Previous studies such as (Fehler et al., 1992; Bindi et al., 2006; Akinci et al., 2020) have
used MLTWA to estimate attenuation for the crust and upper mantle using earth-
quakes recorded by multiple stations spaced tens of kilometers apart at the Earth’s
surface. Hoshiba (1993) proposed a method to use seismic data from a single sta-
tion recording multiple earthquakes using MLTWA. In this study, we propose a new
approach for estimating the scattering and intrinsic attenuation of the shallow crust
using MLTWA. The new approach uses seismograms from a vertical array of seismo-
logical stations installed inside boreholes and buildings to estimate attenuation due
to scattering and intrinsic absorption.

1.2 Seismic wave attenuation

Seismic wave attenuation is an intrinsic property of earth materials that causes en-
ergy dissipation as seismic waves propagate through earth materials. This phe-
nomenon causes the amplitude of seismic waves to decrease as they propagate away
from the source through the earth’s medium.

The most common parameter used to measure the attenuation of seismic waves is
the dimensionless parameter called quality factor Q, and its reciprocal Q−1 (attenua-
tion). Many studies have been conducted to understand the characteristics of seismic
attenuation by quality factor Q. It measures the relative loss of energy per vibration
cycle.

Q =
2πE
∆E

(1.1)

E and ∆E are the energy of seismic waves and energy lost during a wave cycle, re-
spectively. Q increases with the density and velocity of a material. The reciprocal
of the quality factor Q (Q−1 is sometimes called the attenuation or internal friction
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(Knopoff and Hudson, 1964), and is related to the strength of attenuation..

When Q is frequency independent, i.e., each frequency loses the same amount of
energy per cycle.

Q = Q0. f α (1.2)

where Q is the quality factor for each phase (P and S wave). Each mode has its own
amplitude decay rate, so the attenuation factor Q must be calculated for each mode.
Different values of Q result from the way each mode samples the ground.

When an earthquake occurs, some of the seismic energy released is dissipated in the
form of heat generated by friction as the rock masses slide along the fault surface.
The remaining energy is dissipated partly as work, resulting in the displacement
of masses and partly in the form of seismic waves. Therefore, the following three
phenomena are the main causes of seismic wave attenuation: geometric propagation,
intrinsic absorption, and seismic scattering.

1.2.1 Geometrical spreading

Geometric spreading decreases the energy density as an elastic wave-front expands
with increasing distance from its source, as shown in figure 1.1. Seismic energy ra-
diates as a wave-front from a point source to be distributed over a spherical surface
of increasing size. As the wave-front travels away from the source, the initial energy
released by the seismic source is distributed over an increasing volume. Therefore,
the amplitude of the seismic wave decreases with distance from the source.

Figure 1.1: Geometrical decay (Lore.trango, 2010)

In a homogeneous Earth of constant velocity and density, the amplitude of body
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waves decays proportional to the reciprocal of the distance between the source and
receiver (1

r ). The energy density of seismic waves is proportional to 1
r2 , where r is the

radius of the wave-front.

1.2.2 Seismic scattering

The modification of seismic waves caused by the three-dimensional heterogeneities is
generally referred to as seismic wave scattering. Scattering attenuation occurs when
elastic energy is scattered and redistributed in directions away from the receiver or in
waves arriving at the receiver in later time windows. Scattering occurs by Reflection,
refraction, and mode conversion of elastic energy by wavelength-scale irregularities
in the medium. In the presence of obstacles or lateral variations of elastic parame-
ters, wave-fronts are distorted, and seismic energy can be deflected in all possible
directions .

Scattering is an important phenomenon caused by the heterogeneity of the Earth’s
crust and mantle. Scattering of high-frequency seismic waves reveals the presence of
small-scale heterogeneity in the lithosphere. Since the scatterers are assumed to be
randomly distributed, the scattered waves are inherently incoherent and their phase
can be neglected. Therefore, the scattered wave power is the sum of the individ-
ual scattered waves from all the heterogeneity. A hypothetical diagram is shown in
Figure 1.2 to illustrate the scattering process of an incident seismic wave through a
heterogeneous medium.

4



Figure 1.2: Illustration of seismic scattering by Ludovic Margerin in Encyclopedia of

Solid Earth Geophysics (2011)

The Earth’s crust contains a wide variety of rock types, with grain sizes ranging from
a few millimeters to many kilometers. Small-scale heterogeneities in the crust are
revealed by the scattered high-frequency components of seismic waves. The dis-
continuity in the crust is contributed by tectonic faulting and folding processes and
large-scale crustal movements associated with plate tectonics. Distributed cracks and
cavities also cause heterogeneity in the crust (Kikuchi, 1981).

The Earth is laterally heterogeneous everywhere, from the crust and mantle to the
core, with scales ranging from the grain size of rocks to the lowest orders of global
spherical harmonics. Heterogeneities with different scales have different effects on
seismic waves. The velocity and density heterogeneities can cause changes in the
waveform, phase (or travel time), amplitude variations, and apparent attenuation of
the direct arrivals. They can also generate coda waves such as the P-coda, S-coda,
and Lg-coda caused by lithospheric heterogeneities.
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Figure 1.3: (a) Well-logs showing P- and S-wave velocities and mass density vs.

depth for well YT2 in Kyushu, Japan. (b) Scattergrams showing correlation among

the physical properties measured at the same depth. The figure is adopted from Sh-

iomi et al. (1997).

The heterogeneity is stronger in the near-surface part of the crust, and its direct evi-
dence for random inhomogeneities in the shallow crust can be seen in log data from
boreholes as shown in the figure 1.3. The velocity of seismic waves generally in-
creases with increasing depth in the Earth; However, there is considerable spatial
variation of velocity is evident in the logs. This increase in the velocity of the medium
from the surface down also affects the seismic wave’s amplitude of the seismic waves
recorded in boreholes. It is observed that the amplitude of the seismograms increases
as the seismic wave propagates vertically upward toward the surface in borehole sen-
sors. This is due to the decreasing impedance from depth to the surface.

The scattered seismic wave strongly depends on the size of the heterogeneity. For
heterogeneities of scale "a" and strength (perturbation index ν), the seismic wave
propagation regime can be characterized by three dimensionless numbers: ka = 2πa

λ ,
L/a and ν where k is the wave number and λ is the wavelength in the medium, L
is the propagation length or the extent of the heterogeneous region. If ka ≪ 1 or
ka ≫ 1, the waves are not affected by the obstacle, and the medium behaves like
a homogeneous body. Seismic scattering increases as the wavelength approaches to
the size of the heterogeneities. Figure 1.4 summarizes the scattering strength of the
Earth’s medium at different scales.
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Figure 1.4: Strength-scale distribution of heterogeneities in the earth (Wu and Aki,

1988)

1.2.3 Intrinsic attenuation

Intrinsic attenuation describes the loss of energy to heat or other forms of energy due
to anelasticity of the medium. Attenuation mechanisms are based on the observa-
tion that crustal rocks have microscopic cracks and pores that may contain fluids.
In an elastic medium, mechanical energy is extracted from each passing wave and
converted to another form, such as heat. This occurs through shear wave motion
associated with lateral motion of the lattice, movement of interstitial fluids between
grain boundaries and cracks (O’Connell and Budiansky, 1977), frictional sliding of
cracks, and changes in viscosity. Therefore, a softer medium or the presence of water
in the pores of the rock will increase the amount of energy lost as heat as the wave
passes through it. This process is called absorption, and is irreversible.

Absorption is related to the frequency of the seismic waves. In general, the higher
the frequency, the greater the absorption. This transformation results in a decrease
in amplitude and a broadening of the pulse. This phenomenon is called the low-
pass filter effect. As the wave spreads, the attenuation removes the high frequency
component of the pulse.

Intrinsic attenuation of seismic waves is modeled by a harmonic oscillator composed
of a spring and a dash-pot. F = ma, is used to describe the displacement u(t) of the
mass m.
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m
d2u(t)

dt2 + ku(t) = 0 (1.3)

Once set in motion by an impulse, the frictionless system has a purely elastic response
described by a harmonic oscillation.

u(t) = Aeiω0t + Beiω0t, (1.4)

The mass moves back and forth with a natural frequency.

ω0 = (
k
m
)

1
2 (1.5)

One example of this general solution is

u(t) = A0cos(ω0t) (1.6)

This undamped oscillation continues forever once the motion is started because no
energy is lost. For a spring-mass system with a dashpot. The damping force is pro-
portional to the velocity of the mass and opposes its motion. Therefore, the equation
of motion becomes

m
d2u(t)

dt2 + γm
du(t)

dt
+ ku(t) = 0 (1.7)

Where γ is the damping factor. For simplicity simplify, we use the quality factor.

Q =
ω0

γ
(1.8)

rewriting the above equation

d2u(t)
dt2 +

ω

Q
du(t)

dt
+ ω2

0u(t) = 0 (1.9)

The solution is based on the fact that the displacement is the real part of the complex
exponential.

u(t) = A0eipt, (1.10)

Where p is a complex parameter. Substituting eqn. 1.7 into eqn. 1.6

(−p2 +
ipω0

Q
+ ω2

0)A0eipt = 0. (1.11)
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For this to be satisfied for all values of t,

(−p2 +
ipω0

Q
+ ω2

0) = 0. (1.12)

Breaking p into real and imaginary parts,

p = a + ib, p2 = a2 + 2iab − b2, (1.13)

so Eqn. 1.11 gives

−a2 − 2iab + b2 +
iaω0

Q
− b

ω0

Q
+ ω2

0 = 0 (1.14)

splitting the real and imaginary

Real : − a2 + b2 − b
ω0

Q
+ ω2

0 = 0, (1.15)

Imaginary : − 2ab + a
ω0

Q
= 0 (1.16)

Solving the imaginary part for b gives

b =
ω0

2Q
(1.17)

and inserting this into the equation for the real part gives

a2 = ω2
0 −

ω2
0

4Q2 = ω2
0(1 −

1
4Q2 ) (1.18)

Thus

ω0 = a = ω2
0(1 −

1
4Q2 )

1
2 , (1.19)

Rewrite Eqn 1.19 with separate real and imaginary parts

u(t) = A0ei(ωt+ibt) = A0e−bteiωt (1.20)

The real part is the solution for the damped harmonic displacement,

u(t) = A0e−
ωt
2Q cos(ωt) (1.21)
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The exponential term expresses the decay of the envelope of the signal, or the overall
amplitude as shown in the figure 1.5.

A(t) = A0e−
ωt
2Q (1.22)

Since the energy of the oscillating system is proportional to the square of the ampli-
tude

E(t) =
1
2

kA(t)2 =
1
2

kA2
0e−

ωt
Q = E0e−

ωt
Q (1.23)

Figure 1.5: Wave amplitude for a damped harmonic oscillator

1.3 Objectives of the Study

The purpose of this study is to develop an approach using vertical seismic array to
estimate the contribution of scattering and intrinsic seismic attenuation in the near-
surface geology and inside buildings.

Therefore, the goal of this research is to

• Estimate the scattering and intrinsic seismic attenuation separately and their
contribution to the total seismic waves attenuation.

• A better understanding of the mechanism of seismic wave attenuation by the
shallow crust and buildings.

• Development of an alternative approach for estimating scattering and intrinsic
seismic attenuation coefficients from vertical seismic arrays.
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• Separately estimate the scattering and intrinsic quality factors of in near-surface
geology and buildings.

• Estimate near-surface crustal and building attenuation parameters from seis-
mograms recorded by a vertical array of seismic sensors installed in boreholes
and buildings.

1.4 Significance of the Study

The amplitudes of earthquake ground motions at observation sites are influenced
by source characteristics, propagation path, and local site conditions. The effects of
propagation paths on ground motions are due to the attenuation of propagating seis-
mic waves. Therefore, the study of seismic wave attenuation is essential for earth-
quake ground motion simulation and seismic hazard analysis in a region.

The study of the attenuation of the seismic wave is important because of the follow-
ing reasons

• The study of the attenuation of the propagating seismic waves along the propa-
gation path provides information about the characteristics of the medium, such
as the physical properties of the material and the degree of heterogeneity of the
Earth’s interior.

• Knowledge of the attenuation characteristics of the medium along the source-
station path provides for obtaining more reliable information about the earth-
quake source parameters.

• A good estimation of scattering and intrinsic attenuation will help for the pre-
diction of strong motions in engineering seismology , which is essential for
seismic hazard and risk studies.

• Knowledge of scattering and attenuation is important in the study of geother-
mal reservoirs. A high intrinsic attenuation could indicate that a region is satu-
rated with a large amount of water, possibly indicating a greater porosity, which
would mean more water for the geothermal plant (Hess:2013)
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Chapter 2
Seismic wave propagation

2.1 Seismic wave equation

Earthquakes and other disturbances create seismic waves that provide information
about the sources of the waves and the material they pass through. Seismic waves
propagate through the earth because the material within it can undergo internal de-
formation.

The equation of motion has solutions that describe the two types of seismic (elastic)
waves. These are compressional and shear waves.

The equation of motion

σij,j(x, t) + fi(x, t) = ρ
∂2ui(x, t)

∂t2 (2.1)

These types of waves propagate at different speeds that depending on the different
on the elastic properties of the material.

Let us consider a homogeneous region one of the uniform properties of the mate-
rial. We assume that the region does not contain a source of seismic waves, which is
required by a body force. As the waves propagate away from the source, the relation-
ship between the stresses and displacements is given by the homogeneous equation
of motion, which does not include any a body force term, so F = ma becomes

σij,j(x, t) = ρ
∂2ui(x, t)

∂t2 (2.2)

Solve the equation 2.2 in Cartesian (x, y, z) coordinate system, starting with the x
component

12



∂σxx(x, t)
∂x

+
∂σxy(x, t)

∂y
+

∂σxz(x, t)
∂z

= ρ
∂2ux(x, t)

∂t2 (2.3)

To express this in terms of displacements, we use the constitutive law for an isotropic
elastic medium,

σij = λθδij + 2µσij (2.4)

Writing the strain in terms of displacements, we get

σxx = λθδ + 2µexx = λθ + 2µ
∂ux

∂x

σxy = 2µexy = µ(
∂ux

∂y
+

∂uy

∂x
)

σxz = +2µexz = µ(
∂ux

∂z
+

∂uz

∂x
)

(2.5)

Next, we take the derivatives of the stress components.

∂σxx

∂x
= λ

∂θ

∂x
+ 2µ

∂2ux

∂x2

∂σxy

∂y
= 2µ(

∂2ux

∂y2 +
∂2uy

∂x∂y
)

∂σxz

∂z
= 2µ(

∂2ux

∂z2 +
∂2uz

∂x∂z
)

(2.6)

For a homogeneous material, the elastic constants do not vary with position. Substi-
tute the derivatives into the equations of motion and use the definition of dilatation.

Θ = ∇ · u =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
(2.7)

And of the Laplacian

∇2u =
∂2ux

∂x2 +
∂2ux

∂y2 +
∂2ux

∂z2 (2.8)

Gives
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(λ + µ)
∂θ

∂x
+ µ∇2(∂ux) = ρ

∂2ux

∂t2 (2.9)

For the x component of the equation of motion

A similar equation can be obtained for the y and z displacement components. The
three equations can be combined using the Laplacian of the displacement field oper-
ator.

u∇2 = (∇2ux +∇2uy +∇2uz) (2.10)

Into a single equation

(λ + µ)∇(∇ · u(x, t)) + µ∇2u(x, t) = ρ
∂2u(x, t)

∂t2 (2.11)

This is the equation of motion for an isotropic elastic medium written entirely in
terms of displacement, with the dependence on position and time explicit. Eqn. 2.11
can be written using vector identity.

∇2u = ∇(∇ · u)−∇× (∇× u) (2.12)

To get

(λ + 2µ)∇(∇ · u(x, t)) + µ∇× (∇× u(x, t)) = ρ
∂2u(x, t)

∂t2 (2.13)

We express the displacement field in terms of two other functions, Φ and Υ, which
are potentials

u(x, t) = ∇Φ(x, t) +∇× Υ(x, t) (2.14)

In this representation, the displacement is the sum of the gradient of a scalar poten-
tial,(x, t), and the curl of a vector potential, Υ(x, t), which are both Φ(x, t) functions
of space and time. Since the vector identity

∇Φ = 0 (2.15)

Split the displacement field into two parts. The part associated with the scalar po-
tential has no-curl or rotation and gives rise to compressional waves. Conversely,
the part associated with the vector potential has zero divergences, causes no volume
change, and corresponds to shear waves. Because taking the curl discards any part
of the vector potential that would give rise to a non-zero divergence, we require that
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the vector potential satisfy Υ(x, t) = 0. Substituting the potential into equation 2.13
and rearranging the terms using equation Eqn. 2.15 yields.

(λ + 2µ)∇(∇2Φ) + µ∇×∇×∇× Υ = ρ
∂2∇Φ +∇× Υ

∂t2 (2.16)

Using Eqn. 2.13, the second part of Eqn. 2.16 simplifies to

(λ + 2µ)∇(∇2Φ) + µ∇×∇×∇× Υ = ρ
∂2∇Φ +∇× Υ

∂t2 (2.17)

∇×∇×∇× Υ = −∇2(∇× Υ) +∇(∇ · (∇× Υ)) = −∇2(∇× Υ) (2.18)

Because the divergence of the curl is zero. After this substitution, the terms in eqn.
2.16 can be regrouped to give

∇
[
(λ + 2µ)∇2ϕ(x, t)− ρ

∂2ϕ(x, t)
∂t2

]
= −∇×

[
µ(∇2ϕ(x, t)− ρ

∂2ϕ(x, t)
∂t2

]
(2.19)

because the elastic constants do not vary with position, and the order of has no effect.

A solution to the equation can be found when both terms in the brackets are zero.

∇
[
(λ + 2µ)∇2ϕ(x, t)− ρ

∂2ϕ(x, t)
∂t2

]
= 0 (2.20)

The scalar potential satisfies.

∇2ϕ(x, t) =
1
α

∂2ϕ(x, t)
∂t2 (2.21)

with velocity α =

[
λ+2µ

ρ

] 1
2

this solution corresponds to P waves or compression

waves.

Similarly, the vector potential satisfies.

∇2Υ(x, t) =
1
β

∂2Υ(x, t)
∂t2 (2.22)

with velocity β =
(2µ

ρ

) 1
2 this solution corresponds to P waves or compression waves.

Waves on a string satisfied the wave equation.

∂2u(x, t)
∂x2 =

1
v2

∂2u(x, t)
∂t2 (2.23)
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Describes the propagation of a scalar quantity in one-dimensional space. The scalar
potential satisfies a similar scalar wave equation, except that the spatial variable x is
in three dimensions. The vector potential, a vector quantity, satisfies the analogous
wave equation in three dimensions.

The wave equations 2.20 and 2.22 are strictly valid only for a homogeneous medium
because they were derived under the assumption that all derivatives of the elastic
constants are zero. The wave equations are valid in any coordinate system.

2.2 Plane waves

The scalar wave equation in three dimensions,

∂2ϕ(x, t)
∂x2 =

1
v2

∂2ϕ(x, t)
∂t2 (2.24)

describes how the scalar field ϕ(x, t) propagates in three dimensions. It is a homo-
geneous wave equation with no forcing function acting to act as a source of waves.
If there were, it would be a homogeneous scalar wave equation in three dimensions
with a source term f(x,t).

∇ϕ(x, t)− 1
v2

∂2ϕ(x, t)
∂t2 = f (x, t) (2.25)

would apply.

The harmonic wave solution of the scalar wave equation in one dimension is

u(x, t) = A exp(iωt±kx) (2.26)

can be generalized to solve the three-dimensional scalar wave equation. This solu-
tion, known as the harmonic plane wave, is written down.

ϕ(x, t) = A exp(iωt±k·x) = A exp(iωt±kxx±kyy±kzz) (2.27)

Where x is the position vector, and k = (kx, ky, kz) is now the wave vector, also called
the wavenumber vector. This solution describes a plane wave propagating in an
arbitrary direction given by the wave vector. To show this, we write k = [k]k̂, where
k̂ is a unit vector along the direction of k; thus Eqn. 2.27 becomes

ϕ(x, t) = A exp(iωt±|k|k̂) (2.28)

A plane wave propagating in the k̂ direction with velocity
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v =
ω

|k| (2.29)

The wave vector describes two important properties of a propagating wave. Its mag-
nitude gives the wavenumber and the spatial frequency, and its direction gives the
direction of propagation. The wavefront, which at any given time has constant phase
(ωt − k · x) and constant values of ϕ(x, t), are planes perpendicular to the direction
of propagation (Fig. 2.1).

Figure 2.1: Wave fronts for the harmonic plane wave traveling in the direction indi-

cated by the wave vector. The wavelength is λ = 2π/|k| (Stein and Wysession, 2009).

Note that since all points on a plane perpendicular to the wave vector have the same
value of k · x, since this scalar product is the projection of k onto x. The phase is
periodic over a distance along the propagation direction equal to the wavelength,
2π/|k|.

This solution of the three-dimensional scalar wave equation can be generalized to
solve the vector wave equation in three dimensions,

∇2Υ(x, t) =
1
v

∂2Υ(x, t)
∂t2 (2.30)

which describes the propagation of a vector field. In Cartesian coordinates, this
breaks down into three scalar wave equations
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∇2Υx(x, t) =
1
v

∂2Υx(x, t)
∂t2

∇2Υy(x, t) =
1
v

∂2Υy(x, t)
∂t2

∇2Υz(x, t) =
1
v

∂2Υz(x, t)
∂t2

(2.31)

The harmonic plane wave solution to the vector wave equation is then.

u(x, t) = A exp(iωt±k·x) (2.32)

where, Υ(x, t) and the constant A are vectors.

2.3 Spherical waves

A second solution of the three-dimensional scalar wave equation yields waves with
spherical rather than planar wavefronts. To obtain this solution, we express a scalar
potential, ϕ(x, t), and its Laplacian in spherical coordinates.

∇2ϕ(r, t) =
1
r2

∂

∂r
(
r2 ∂ϕ(r, t)

∂r
)
+

1
r2sinθ

∂

∂θ

(
sinθ

∂ϕ(r, t)
∂θ

)
+

1
r2sin2θ

∂

∂θ

(∂2ϕ(r, t)
∂θ2

)
(2.33)

We consider spherically symmetric solutions where ϕ is a function of time and the
radius r, so only the ∂ϕ

∂r term in the Laplacian survives. The spherically symmetric
waves satisfy the homogeneous wave equation.

∇2ϕ(r, t) =
1
r2

∂

∂r
(
r2 ∂ϕ(r, t)

∂r
)
=

1
v2

∂2ϕ(r, t)
∂t2 (2.34)

The space variable is the radius r rather than the position vector r. To solve this
equation, we substitute

ϕ(r, t) =
ξ(r, t)

r
(2.35)

And get
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1
r

[
∂2ξ

∂r2 − 1
v2

∂2ξ

∂t2

]
= 0 (2.36)

Since the term in parentheses is the scalar wave equation in one dimension, any func-
tion of the form ξ = f (r ± vt) satisfies Eqn. 2.36 when r ̸= 0. Thus any function of
the form Eqn. 2.37 is a spherically symmetric solution of the scalar wave equation.

ϕ(r, t) =
f (r, t)

r
(2.37)

This solution describes spherical wave fronts centered at the origin r = 0, whose
amplitude depends on the distance from the origin. The minus sign in the above
equation represents waves diverging outward from a source at the origin, with the
amplitude decaying as 1/r.

However, eqn.2.37 is not a solution of the homogeneous equation everywhere in
space because it is infinite at r = 0. Physically this is because a wave propagating
from a point must have been generated by a seismic source there. Thus the outgoing
wave ϕ(r, t) = f (t− r

v )
r , is a solution of the inhomogeneous wave equation.

∇2ϕ(r, t)− 1
v2

∂2ϕ(r, t)
∂t2 = −4πδ(r) f (t) (2.38)

This represents a point source at the origin with a time function f(t). The delta func-
tion δ(r) is zero except at r = 0, but its integral over a volume including the origin
is 1. Thus integration over a volume, including the origin, shows that eqn. 2.37 is a
solution to the inhomogeneous scalar wave eqn. 2.38 even at the origin.

Figure 2.2: Spherical wavefront spreading out from a source (Stein and Wysession,

2009)
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The spherical wave solution (eqn. 2.37) represents a continuous wave generated at
the origin and explains the distance-dependent amplitude factor 1/r, which has no
equivalent in the plane wave solution. As a spherical wave front, 4πr2 increases. The
energy per unit area of the wavefront carried by a propagating wave is proportional
to the square of the amplitude, and the energy per unit wavefront decays as 1

r2 . This
decay, called geometrical spreading, conserves energy (Fig. 2.2).

A plane wavefront can be regarded as a limit of a spherical wave far from the source
because the spherical wavefront becomes almost planar. This approximation is often
used in seismology when seismometers are far from earthquakes.

2.4 Body waves

Elastic waves propagate in the ground at the surface with velocity, frequency and
amplitude depending on the elastic properties of the medium and the source. Seismic
waves carry energy that is converted into stresses and deformations of the ground
and, resulting in displacements (seismic shaking). Based on the type of stress and
the deformation caused on in the ground to which they are subjected and how they
propagate, seismic waves are classified as body waves (P and S waves) and surface
waves (Love and Rayleigh waves).

We found earlier that the displacement can be decomposed into a scalar potential
corresponding to P waves satisfying the scalar wave equation.

∇2ϕ(r, t) =
1
α2

∂2ϕ(r, t)
∂t2 (2.39)

And a vector potential corresponds to S waves that satisfy the vector wave equation.
To the same equation. 2.24, we apply the curl operator. The curl of the gradient of the
scalar function θ is zero, and the curl of the displacement u(x,t) is the rotation vector
ω. The curl of ω is equal to the gradient of the divergence, which is zero minus the
Laplacian. The results are

∇2Υ(r, t) =
1
β2

∂2Υ(r, t)
∂t2 (2.40)

The equations 2.24 and 2.25 are wave equations for the scalar function θ and the
vector function ω. The solutions of both equations represent waves propagating in
the elastic medium, and the parameters α and β are their velocities. These velocities
are functions of the elastic coefficients λ and µ and the density ρ.

Sinceθ represents changes in volume without changes in shape, solutions of the equa-
tion 2.24 correspond to compressional and dilational motion, or longitudinal waves,
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also called P waves. Solutions of the equation 2.25 represent shear waves propagat-
ing with at velocity β. The medium changes shape but not volume since the diver-
gence of ω is zero. These waves are called S-waves. Let us consider a plane wave
propagating in the z-direction. The scalar potential for a harmonic plane P wave
satisfying Eqn. 2.24 is

Φ(z, t) = A expi(ωt−kz) (2.41)

So the resulting displacement is the gradient.

u(z, t) = ∇ϕ(z, t) = (0, 0,−kz)A expi(ωt−kz) (2.42)

Which has a non-zero component only along the propagation direction z the corre-
sponding dilatation is non-zero,

∇ · u(z, t) = −k2A expi(ωt−kz) (2.43)

Therefore, there is a change in volume. Furthermore, as the wave propagates, the
displacements in the direction of propagation cause the material to alternately com-
press and expand. Thus, the P-wave generated by the scalar potential is called a
compression wave.

On the other hand, the S-wave, or shear wave, described by the vector potential

∇ · u(z, t) = (Ax + Ay + Az)A expi(ωt−kz) (2.44)

The curl gives the resulting displacement field.

u(z, t) = ∇× Υ(z, t) = (−ikAx + ikAy + 0)A expi(ωt−kz) (2.45)

whose component along the propagation direction z is zero. Thus the displace-
ment associated with a propagating shear wave is perpendicular to the direction of
propagation. Therefore, a shear wave causes no change in volume due to dilation.
∇ · u(z, t) is zero.

P-waves produce displacement in the direction of wave propagation and volume
change. S-waves produce displacement perpendicular to the direction of wave prop-
agation and deform the material without volume change. A compression wave is
an example of a longitudinal wave because the propagating displacement varies in
the direction of propagation. An example of a longitudinal wave is a sound wave
in air, which is described as a compressional (elastic) wave in an ideal fluid. On
the other hand, a shear wave is an example of a transverse wave because the prop-
agating displacement field varies at a right angles to the direction of propagation.
Electromagnetic waves are another well-known example of transverse waves.
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The component of Υ(z, t) in the direction of wave propagation Az has no effect on the
displacement field because it is discarded with the curl . Only Ax and Ay contribute
to the displacement. Since each displacement component depends on only one of
these terms, there can be two independent shear wave fields. If Ax or Ay is zero, then
there is only one y and one x-component of the displacement. Thus, shear waves can
have two independent polarization, like other transverse waves, such as light.

In real applications, we define the z-axis as the vertical direction and orient the x-z
plane along the great circle connecting a seismic source and a receiver. Plane waves
propagating in the direct path between the source and receiver thus propagate in the
x-z plane. The polarized directions of shear waves are defined as SV for shear waves
with displacements in the vertical x-z plane and SH for horizontally polarized shear
waves with displacements in the y-direction parallel to the Earth’s surface as seen in
the figure 2.3. Both have displacements perpendicular to the propagation direction
and the other.

Figure 2.3: Displacement fields for plane P and S waves propagating in the x-z, a

plane containing the source and receiver, where the z-axis is vertical.

P and SV waves are coupled when they interact with horizontal boundaries, while
SH remains separate.

Seismometers record the horizontal motions in the north-south and east-west direc-
tions, which rarely correspond exactly to the SH and SV polarizations. As a result,
data from the horizontal components of seismometers are often rotated. The direc-
tion connecting the source and the receiver, corresponding to the SV displacements,
is called the radial direction, so a seismogram rotated in this direction is called the ra-
dial component. Similarly, the direction orthogonal to the component corresponding
to the SH displacements, is called the transverse direction, so a seismogram rotated
to in this direction is called the transverse component.

The definition of P wave velocity, termed as α and vp

α =

[
λ + 2µ

ρ

] 1
2

=

[
K + 4µ/3

ρ

] 1
2

(2.46)

22



And S- wave velocity, terms β or vs

β =

√
µ

ρ
(2.47)

Shows that the seismic velocities depend in different ways on the elastic constants
of the material. Since the stiffness µ and the bulk modulus K are positive, P waves
travel faster than S waves. Thus, the first arriving wave of an earthquake is always
compressional. As a result, the nomenclature P originally referred to the first arriving
"primary" wave, while S referred to the "secondary" wave.

Although both velocities depend on the stiffness, the shear velocity does not depend
on the bulk modulus K because these waves do not involve volume changes. Since
the shear velocity is proportional to the square root of the stiffness, shear waves can-
not propagate through the ideal (µ = 0) fluid. However, compressional waves prop-
agate in the ideal fluid with a velocity proportional to K

1
2 . Thus, only compressional

waves can propagate through the Earth’s outer core or the ocean.

Body waves propagate inside the earth with spherical or hemispherical wavefronts
(depending on the position of the source) with increasing wider radius.

■ P-waves: The particle motion of compressional waves is parallel to the direc-
tion of the wave propagation, causing dilation and compression. They are also
called longitudinal waves (or compressional) waves because of the oscillations
of the infinite planes into which the rock can be imagined to divide the rock
body occur in the same direction of wave propagation (Fig. 2.4);

Figure 2.4: Compressional waves (Lore.trango, 2010)

■ S-waves: The particle motion associated with shear waves is perpendicular to
the direction of wave propagation and therefore therefore has both a vertical
(SV) and a horizontal (SH) component. The transverse particle motion causes
shear deformations (distortions) of volume elements within the medium (Aki,
1980) (as shown in Fig. 2.5).
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Figure 2.5: Compressional waves (Lore.trango, 2010)

The same result can be obtained from equations 2.2, and 2.3 for the potentials ϕ and
ψ defined in equation 2.4. If we neglect the contribution of the body forces ϕ and ψ

in equations 2.7 and 2.8 we obtain:

∇2ϕ =
1
α2

∂2ϕ

∂t2 (2.48)

∇2ψ =
1
β2

∂2ψ

∂t2 (2.49)

In the absence of body forces, the potentials ϕ and ψ are also solutions of the wave
equation. Since α and β are the velocities of the P and S waves, ϕ is the potential of
the P waves and ψ is that of the S waves. The total elastic displacement u is the sum
of the displacements of the P and S waves and can be written as:

u = uP + uS (2.50)

Velocities α and β of P and S waves, respectively, as:

α =

√
(λ + 2µ)

ρ
=

√
MV

ρ
(2.51)

where MV is the one-dimensional compressive stiffness modulus and ρ is the mass
density.

β =

√
µ

ρ
(2.52)

with µ stiffness shear modulus of the medium. The wave equation for P-waves can
be rewritten as: K are p

ρ
d2ϕ

dt2 = (λ + 2µ)∇2ϕ (2.53)
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where ρ is the density, ϕ is the of P-wave potential, while λ is the Lamè constant. µ is
the stiffness modulus, while λ is defined as λ = K − 2/3µ, where K is the compress-
ibility modulus.

The study of the dynamic equilibrium of the ideal elastic medium shows that the
the volume of the seismic waves associated with states of compression or volumetric
expansion, i.e., the P-waves, propagate in a direction parallel to the displacement of
the volume element hit by the wave and with α velocity.

Instead, a direction perpendicular to the displacement instead characterizes S-waves.
S-waves are characterized by a wave equation equal to:

ρ
d2ψ

dt2 = (µ)∇2ψ (2.54)

Introducing uP = ∇ϕ and uS = ∇ × Ψ we can write wave equations in terms of
displacement u:

∂2u1

∂x2
1
=

1
α2

∂2u1

∂t2 (2.55)

∂2u2

∂x2
1
=

1
α2

∂2u2

∂t2 (2.56)

with u1 and u2 solutions of the wave equations. The ratio of α and β can only be
expressed as a function of the Poisson ratio ν:

α

β
=

λ + 2µ

µ
=

2(1 − ν)

(1 − 2ν)
> 1 (2.57)

which shows that VS is always smaller than VP s. For ν = 1/4 (a typical value for
several materials), VP =

√
3 · VS

A typical solution of the wave equations (2-9) and (2-10) is a harmonic function as:

f (x, t) = Ae(kx−ωt) + Bei(kx−ωt) (2.58)

ω is the angular frequency, and k is the wave number. The speed of the wave prop-
agation is c = ω/k. Another form of the solution can be represented by using sine
and cosine functions:

f (x, t) = Acos(kx − ωt) + Bsin(kx − ωt) (2.59)

25



Chapter 3
Seismic data

3.1 Earthquake data sets

Figure 3.1: Epicenters of the earthquakes used in this study
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In this study, we used a seismic data set (Table 3.1) consisting of seismic recordings
from six earthquakes with magnitudes between Mw 3.7 and 4.8 (with epicentral dis-
tances between 20 and 165 km) that occurred between November 2013 and December
2015, four of which were located in the Marmara Sea region, as shown on the map
(Fig.3.1). It is important to note mention that three of the six events (Table 3.1, events
4 – 6) occurred after the new dense SOSEWIN installation, and therefore only three
of the six earthquakes are used to estimate the attenuation in the building.

The data from the SOSEWIN sensors, which have an initial sampling rate of 100
samples per second, are resampled using a MATLAB routine which is based on linear
interpolation to have the same sampling rate as the borehole sensors, which have a
sampling rate of 200 samples per second.

Table 3.1: List of events used in this study for the test site in Istanbul, Turkey

Event ID Date Time

(UTC)

Location Depth

(km)

Magnitude

(Mw)

Epicenter

(Km)

IS-2013-1 27.11.2013 04:13:37 40.85 N, 27.92 E 9 4.8 80

IS-2013-2 27.11.2013 04:21:35 40.85 N, 27.91 E 7 4.0 80

IS-2014 05.02.2014 01:56:44 41.36 N, 28.61 E 12 3.7 45

IS-2015-1 28.10.2015 16:20:03 40.80 N, 27.72 E 16 4.6 100

IS-2015-2 16.11.2015 15:45:43 40.83 N, 28.76 E 8 4.3 20

IS-2015-3 15.12.2015 01:13:39 42.34 N, 29.71 E 30 4.1 165

3.2 Description of the study site

The seismic data for this study were acquired from a vertical downhole array of
accelerometers installed in four wells boreholes in the Ataköy district of Istanbul,
Turkey. Three are shallow boreholes with depths of 25, 50, and 70 m, depths and one
deep borehole with a depth of 140 m (Figure 3.2a). In addition, one sensor was in-
stalled at the surface (0 m) (Parolai, 2012). The array was installed in December 2005
as part of a joint research project between the Kandilli Observatory and the Earth-
quake Research Institute (KOERI) of Bogazici University, Istanbul, Turkey, and the
German Research Centre for Geosciences (GFZ).

Due to the malfunction, there are no seismic data records for some earthquakes from
the sensor placed located 70 m downhole. Figure 3.2a shows the S-wave velocity
structure at the test site. The shear wave velocity profiles were obtained by Parolai
(2012) inverting the spectra of the deconvolved wavefields using earthquake data at
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the site. In this part of the city, alluvial deposits (unconsolidated sediments com-
posed of gravel, sand, silt, and clay) overlie of the Bakirköy Güngören Formation
overlie the Paleozoic bedrock (Sørensen et al., 2006).

(a) Borehole and B22 building (b) Stratigraphy of the ground at Ataköy test site

Figure 3.2: Installations in the building B22 (green squares) and in the borehole (blue

triangles) of the Ataköy, test site, Istanbul, showing a photograph of the building,

the shear wave velocity profile obtained from the inversion of the spectra of the de-

convolved wave field (Figures modified from Parolai et al. (2009), and Petrovic et al.

(2018).

Another set of recorded seismic data from a vertical array of accelerometers was used
from a 16-story (including one basement level) tunnel formwork (box-shaped steel
in a prefabricated form that allows walls and slabs to be cast in a single construc-
tion operation) building.) The building, locally known as , "B22", is equipped with
a SOSEWIN (Self-Organizing Seismic Early Warning Information Network) network
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consisting of 15 stations (four of them connected to 5TC Güralp strong motion ac-
celerometers) installed near the center of the building, and the fire escape staircase
(Fig. 3.2a) on different floors since September 2015. The first SOSEWIN installation,
consisting of only three SOSEWIN stations, was placed in the basement, the 8th floor,
and the roof was realized in the summer of 2013, and another station was added later.

The building is located about 50 m from the borehole, with a total height of about 45
m and an approximately square footprint with dimensions of 23.1 m and 9 23.9 m (see
Fig. 3.2a). The building’s exterior walls with windows were constructed of precast
panels. The interior and the remaining exterior walls of the building are made of 15
and 20-cm thick reinforced concrete, respectively.

Figure 3.2b summarizes the geology of the shallow soil beneath the study site at
Atakoy. In the first 15 m depth, the subsoil consists of light brown, hard gravelly
sandy clay. The second layer from the surface contains limestone. Clay inter-layers
were found at 35 m depth down, . From about 110 m down to the bottom of the
deepest borehole (140 m), very dense layers of sandy clay/clayey sand layers were
encountered.
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Chapter 4
Methodology

4.1 S-coda envelope

As primary waves from earthquakes propagate through, their amplitude slowly de-
cays leaving a tail after they have passed Aki (1969) coined the term "coda waves" for
these observed continuous wave trains after the arrival of the primary wave , and it
has since been used since then to describe the tail portion of regional seismograms.
The word "coda" refers to all wave trains after each primary wave. Thus, the P-codas
are means the waves between the direct P-waves and the S-waves, and the S-codas
waves are the seismic waves following the direct S-waves. The S-coda waves start af-
ter the S-waves and are composed of incoherent waves scattered by inhomogeneities.
Scattering requires that the scattered wave to travel a greater distance than the direct
wave, so the scattered wave will arrives were after the direct wave. Consequently,
the part of the seismic trace immediately after the arrival time will be dominated by
the direct wave, and the scattered waves will dominate the coda of the seismic trace.

Figure 4.1: P and S-coda wave shown in a local seismogram (Kim et al., 2017)
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Seismic coda results from the scattering of seismic waves by random heterogeneity
in the Earth’s crust (Aki, 1969). Coda waves are thought to be composed of scattered
waves, as shown in Figure 4.1. Evidence for the generation of coda by scattering can
be seen from the variation of the coda amplitude with the local geology at a recording
site.

Therefore, the later part of the regional seismograms can be considered as the result
of averaging over many samples of heterogeneities, suggesting a statistical treatment
where in which a small number of parameters characterize the average properties of
the heterogeneous medium.

The energy density of coda waves in a frequency band of width ∆ f with center fre-
quency f is written as a three-component sum of the mean square particle velocity of
the S-coda u̇i

S−Coda(t, fc) as

ES−Coda(t, fc) =

〈
3

∑
i=1

ρ0

2
|u̇i

S−Coda(t, fc)|2 + E

〉
T

∆ f

≈
〈 3

∑
i=1

ρ0

2
|u̇i

S−Coda(t, fc)|2
〉

T
∆ f

(4.1)

where ρ0 is the mass density, E is the elastic energy which is the potential energy
stored in the medium, and ⟨· · ·⟩T is a moving time average over a few cycles around
the central time t.

4.1.1 S-coda attenuation

The amplitude of coda waves is thought to decrease because of the seismic atten-
uation (both intrinsic and scattering) and because of the geometric propagation of
the wave from. As reported by Rautian and Khalturin (1978), for a given region,
the S-coda has a common amplitude decay curve for travel times greater than twice
the S-wave travel time. The single-back scattering model was proposed by Aki and
Chouet (1975) to explain the time dependence on the scattered energy density of the
regional earthquakes in the short-period frequency band (1 - 20 Hz) as a function of
the time from the of origin. For a source co-located with a receiver, the shape of the
time-domain S-coda envelope filtered at a given frequency and the band centered at
f can be explained by the exponential decay of the equation 4.2.

A( f , t) ∝
1
tn e−

π f t
Qc( f ) (4.2)

where Q−1
c is the coda decay factor, f is the center frequency, t is the propagation time

and n is, 0.5 or 1 for surface and body waves, respectively.

31



The exponential decay term is characterized by the coda attenuation Q−1
c , which is in-

dependent of the source and station location but dependent on the center frequency.
The coda attenuation Q−1

c characterizes the S-coda amplitude decay with lapse time.
A larger Q−1

c means more faster decay of the coda amplitude. It is possible to mea-
sure Q−1

c by analyzing records obtained at a single station (Aki and Chouet, 1975).

4.1.2 Coda normalization

Coda normalization is based on the idea that at any given time the seismic energy is
uniformly distributed in some a volume surrounding the source.

〈
|u̇Scoda

ij (t; f )|2
〉

T
∝ WS

i ( f )|NS
j ( f )|2 e−Q−1

c 2π f t

tn , (4.3)

where u̇Scoda
ij (t; f ) is the S coda velocity wave field at the ith receiver filtered in a

frequency band having the center frequency f , WS
i ( f ) is the energy radiation from

the ith source, NS
j ( f )2 is the S wave site gain factor for the jth site, and the power n =

2 for body waves.

4.2 Coda method

Seismic attenuation can be estimated from the decay of S-coda waves for local and
regional events (Filippucci et al., 2021). Many observations, as summarized in Sato
and Fehler (1998), show that the coda attenuation (Q−1

c ) is frequency dependent. Ex-
perimental Q−1

c results are close to the direct Q−1
s , which is interpreted as a kind of

"regional constant", that measures the average attenuation characteristics of a given
zone. Despite the Sato and Fehler (1998) demonstration that single-back scattering
happens to have no valid physical assumption, Q−1

s is close to a direct way of com-
paring the attenuation properties of different regions.

Frankel and Wennerberg (1987) using numerical solutions of the wave equation in
heterogeneous media, showed that Q−1

c estimated from the seismogram envelope
under the assumption of single scattering is close to the true intrinsic attenuation.
For n = 0.5, the equation 4.2 corresponds to a fully isotropic multiple scattering
solution in 2D; in this case, Q−1

c correctly takes the physical meaning of Q−1
i of the

medium Sato (1993).
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4.3 Multi-Lapse Time Window Analysis

Several methods such as in Aki (1980), Frankel and Wennerberg (1987), Jacobsen
(1987), and Taylor et al. (1986) have been proposed to determine the relative amounts
of scattering loss intrinsic absorption.The most commonly used method is “the mul-
tiple lapse-time window analysis” (MLTWA) as proposed by Fehler et al. (1992).
MLTWA is chosen due to its suitability to estimate scattering and intrinsic attenu-
ation separately from the S-wave coda envelope’s temporal and spatial distribution
of the seismic energy.

The MLTWA method estimates scattering loss (Q−1
sc ) and intrinsic absorption (Q−1

i )
from S-wave envelopes (Hoshiba, 1991; Fehler et al., 1992). Several different scatter-
ing theories have been developed to model seismic coda. Previous models of coda
wave generation models have often assumed spatial uniformity of seismic wave ve-
locity. Wu and Aki (1985) was the first to consider multiple scattering into account to
measure the relative contributions of scattering and intrinsic absorption to the total
attenuation. His method is based on the radiative transfer theory, which is a theo-
retical model of energy propagation in a randomly heterogeneous elastic medium.
The solution of the radiative transfer equation for scalar elastic waves describes the
s-coda envelope as a function of the propagation time from the time origin.

The models proposed for describing seismic wave scattering are summarized as fol-
lows:

1. Weak scattering (single back-scattering) (Aki, 1969).

2. Multiple scattering model (e.g. Kopnichev (1977); Gao et al. (1983); Hoshiba
(1991); Zeng et al. (1991); Sato (1993)).

3. Strong scattering or diffusion model (e.g., Wesley (1965)).

Weak and strong scattering models were based on the assumptions of isotropic scat-
tering of scalar waves (no wave conversion), spherical source radiation, and a homo-
geneous, isotropic and random distribution of scatterers (Chouet, 1990).

For depth-dependent scattering attenuation and intrinsic absorption the s-coda enve-
lope model Chouet (1990) synthesizes the coda envelope using the single-scattering
approximation. Hoshiba (1991) estimates higher-order solutions numerically and
Zeng et al. (1991) and Sato (1993) analytically. Hoshiba (1991) provided the numerical
basis for the method by computing theoretical curves from a Monte Carlo simulation
of multiple isotropic scattering.

Zeng et al. (1991) presented the analytical solution as
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E(r, t) ≈ E0e−ηvt

(
δ

(
t − r

v

)
4πvr2 + ηs

H
(

t − r
v

)
4πvrt

ln
1 + r

vt
1 − r

vt

)

+

[
cH
(

t − r
v

)(
3ηs

4πvrt

)3/2

e[
−3ηsr2

4πt −ηivt]

]
with

c = E0
[
1 − (1 + ηsvt)e−ηsvt]( 4√

π

∫ √
3ηsvt/2

0
e−α2

α2dα

)−1

, α =
vt
r

(4.4)

where E0 is the energy at t = 0, H is the Heaviside function, v is the wave velocity,
η = ηi + ηs and ηi and ηs are the intrinsic and the scattering attenuation, respectively.
The scattering and scattering coefficients related to attenuation

ηs =
2π f
Qsc.v

(4.5)

and intrinsic attenuation coefficients

ηi =
2π f
Qi.v

(4.6)

where Q−1
s is the scattering and Q−1

i is the intrinsic attenuation, f is the frequency,
and v is the S-wave velocity. Then the total is the combination of the scattering and
the intrinsic attenuation:

Q−1
s = Q−1

i + Q−1
sc (4.7)

The attenuation due to intrinsic absorption and scattering is typically characterized
by giving the values of the "seismic albedo", where B0 is the ratio of scattering atten-
uation to the total attenuation, and the extinction length Le (i.e., the distance over
which the primary S-wave energy is reduced by e−1).

B0 =
ηs

ηs + ηi
(4.8)

Le−1 = ηs + ηi = (Q−1
i + Q−1

sc )
ω

v
(4.9)

The seismic albedo ranges from 0 to 1; media with strong heterogeneity and no in-
trinsic absorption have an albedo close to one, and homogeneous media have zero
seismic albedo.
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Since no analytical solutions have been obtained (Bindi et al., 2006) for an inhomo-
geneous medium, such as a vertically layered medium Hoshiba (1997) numerically
(using a Monte Carlo approach) synthesized the energy envelopes for a stratified
earth model with assigned velocity, intrinsic, and scattering attenuation parameters
for each layer (Figure 6.10). He synthesized the energy density E(r, t) of multiple scat-
tered coda waves using many energy particles (each particle has unit energy at the
source) whose random walks simulate the wave energy propagation and scattering
process. Random walks of many particles simulate the seismic wave energy propaga-
tion and the scattering process. It is based on multiple scattering of energy particles
under the hypothesis of isotropic scattering and uniform distribution of scatterers.

According to Fehler et al. (1992), MLTWA is based on two observations.

1. The early part of the seismogram is dominated by the direct S-wave, whose
amplitude controls the total attenuation of the media.

2. S-coda consists entirely of scattered S-waves whose amplitudes of which are
controlled by the total scattering coefficients.

The strategy of the MLTWA method is to minimize the simultaneous discrepancy
between the observed seismic energy integrals and those predicted by theory. There-
fore, the MLTWA technique measures the seismic wave energy as a function of dis-
tance and frequency for three consecutive time windows (Fig. 4.2). To do this,
MLTWA first selects three seismogram windows, each 15 s wide, and a reference
window of 5 s in the s-coda envelope. The figure 4.2 shows the three time windows
and a reference window for the integrated energy calculations.

Figure 4.2: Seismograms of an event with three windows and a reference time win-

dow for MLTWA.
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Eqn. 4.10 is used to calculate the time integral of the energy density for each time
window, yielding the following three energy curves as a function of the hypocentral
distance and frequency :

EI1( f ) =
∫ ts+15s

ts
|u̇S(t, f )|2dt,

EI2( f ) =
∫ ts+30s

ts+15
|u̇S(t, f )|2dt,

EI3( f ) =
∫ ts+45s

ts+30
|u̇S(t, f )|2dt,

(4.10)

Each seismic integral is normalized by the average coda energy over in a fixed ref-
erence time interval of 5 seconds beginning at t1c and ending at t2c, where t1c ≫ 2tS
(where,tS is the S-wave travel time, and t1c and t2c are the start and end lapse times of
the reference window in the s-coda, respectively) (Bianco et al., 2005) using the coda
normalization method (Aki, 1980).

Coda normalization is based on the idea that the seismic energy is uniformly dis-
tributed at the the coda of S waves, it removes the effect of different sources and
site amplification effects. Finally, E(i)(r, f ) are corrected for geometrical spreading
multiplying by the square of the hypocentral distance.

E(i)(r, f ) =
EI(i)( f )

EIScoda( f )
· 4πr2 f or i = 1, 2, 3, ... (4.11)
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Chapter 5
Geophysical inversion

Geophysical data inversion involves the search for the optimal set(s) of Earth model
parameters that can be used to compute synthetic data-matched observations. A
defined misfit function is often used to measure the data misfit (or fitness). Opti-
mization methods search for a minimum (optimal) value of a misfit function. Global
optimization refers to finding the best set of parameters that are to the global mini-
mum of a function of multiple parameters.

To test the validity of the inversion strategy, synthetic data are generated for a hy-
pothesized model and compared with the observed data. If the agreement between
observed and synthetic data is acceptable, the model is accepted as the solution; oth-
erwise, the model is modified. The synthetics are recalculated and compared with
the observations according to the inversion scheme. This iterative forward mod-
eling process is repeated until an acceptable match between data and synthetics is
obtained. Thus, the main task of inversion is to find a model that best explains the
observed data.

The essential elements of a model-based nonlinear inversion algorithm are data,
model, forward problem, objective function, and optimization method. We restrict
ourselves the discrete data d and the model m defined by the following vectors

d =[d1, d2, d3 · · · dN]
2

m =[m1, m2, m3, · · ·mM]2
(5.1)

In general N ̸= M. The forward problem can be represented by the following equa-
tion

dsyn = g(m) (5.2)
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Figure 5.1: Principle of model-based inversion by optimization (modified from Sen

and Stoffa (2013)).

where g is a nonlinear forward modeling operator that operates on the model vec-
tor to produce the synthetic data vector dsyn. The misfit function measures a misfit
between the observed and synthetic data using an appropriately defined norm. The
data residual is given by

∆d = dobs − dsyn (5.3)

where dobs is the observed data vector and the data misfit norm can be written as

∆d =
N

∑
i=1

[
(∆di)

2
] 1

2
(5.4)

Which is the least squares minimization approach.

The goal of an optimization algorithm is to find search for the minimum of an objec-
tive function. The objective function may have multiple local minima; the minimum
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of all the local minima is called the "global" minimum (e.g., Gill et al. (1981)). In
most applications, once an objective function has been defined, the goal is to find
the global minimum of the objective function. Figure 5.1 shows a flowchart of an
optimization process.

Optimization methods are broadly divided into two categories: local optimization
and global optimization. The global optimization methods are mostly based on
stochastic rules and use more global information about the misfit surface to update
its their to current position. There are different types of global optimization meth-
ods, such as Grid Search (GS), Simulated Annealing (SA), Genetic Algorithms (GA),
Neighborhood Algorithms (NA), and Particle Swarm Optimization (PSO) (Kirkpatrick,
1983; Menke, 2012).

5.1 Grid search

One strategy for solving a nonlinear inverse problem is to examine exhaustively con-
sider “every possible” solution and choose the one with the smallest error E(m). Of
course, it is impossible to examine "every possible" solution; but it is possible to ex-
amine a large set of trial solutions. This procedure is called a grid search when the
trial solutions are drawn from a regular grid in model space. An example of non-
linear inversion of a problem with a two-parameter problem is shown in the figure
5.2.
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Figure 5.2: Example of grid search to solve a non-linear problem (taken from Menke

(2012)).

Grid search is most practical when the number of model parameters is small, say M
< 7. The grid is M-dimensional, so the number of trial solutions is proportional to
LM, where L is the number of trial solutions along each grid dimension. The forward
problem d = g(m) can be computed fast enough that the time needed to compute LM

of them is in a reasonable range.

5.2 Simulated annealing

Simulated annealing is an optimization method first proposed by Kirkpatrick (1983).
It is a statistical technique for finding optimal solutions to complex nonlinear op-
timization problems. The concept of simulated annealing is inspired by the physi-
cal annealing of metals. In the physical annealing of metals, an ordered minimum
energy crystal structure develops as the metal slowly cools from its red-hot state.
Atomic motion in hot metal is completely dominated by random thermal fluctua-
tions, but as the temperature gradually decreases, interatomic forces become increas-
ingly important. Eventually, the atoms become a crystal lattice representing a mini-
mum energy configuration.

The simulated annealing algorithm starts with an initial model m0, with the corre-
sponding error E(m0). A test solution m* with the corresponding error E(m∗) , which
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is in the neighborhood of m(p), by drawing an increment ∆m to m(p) from a Gaus-
sian distribution. The corresponding energy (objective function value) E(mnew)is
then calculated and compared against the initial error (E(m0)). If the new error is
smaller than the initial error, the new error is considered good. In this case, the
new error is accepted and unconditionally replaces the initial error. However, if the
energy of the new state is greater than the initial state then mnew is accepted with

the probability of e(
−E(m−E(m0)

T ), where T is a control parameter called the annealing
temperature that controls whether the "bad" model should be transferred to the new
model.This completes an iteration.

The rule for accepting a probability, thatallows Simulated Annealing to get stuck in
local minima. This process is repeated many times by gradually lowering the an-
nealing temperature. Hopefully, a global minimum can be found with a carefully
defined cooling schedule. For example, one can choose a linear or a logarithmically
decreasing cooling scheme. The trade-off here is between the computational demand
and the accuracy of the result. Fast cooling will not produce a crystal (the algorithm
gets stuck in a local minimum), and slow cooling takes a long time but may eventu-
ally find the global minimum. The simulated annealing process is summarized as a
flowchart in Figure ??. Figure 5.3 shows an example of a nonlinear problem solved
using simulated annealing inversion.

Figure 5.3: Example of simulated annealing algorithm used to solve non-linearly

curve-fitting problem (taken from Menke (2012)).

Previous studies, such as in Bindi et al. (2006), have used grid search methods to min-
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imize the residuals in MLTWA. However, this method has limitations in estimating
the attenuation parameters within each layer for media with more than two layers
due to the computational constraints imposed by the extensive computation involv-
ing the multilayer. To overcome this problem we have developed an inversion pro-
gram that uses a simulated annealing algorithm (Kirkpatrick, 1983) and is applied
to find the scattering and intrinsic attenuation coefficients that simulate theoretical
energy integral that fits the observed energy integrals. The simulated annealing pro-
gram is combined with the grid search procedure to estimate attenuation coefficients
that simulate the theoretical energy density that best fits the observed seismic energy
integrals. First, the grid search is used to estimate the range of parameters that give
the global minimum. Once we had narrowed down the range of model parameters,
we used this range for the simulated annealing inversion.

Figure 5.4 shows a flowchart of the simulated annealing algorithm used to write the
inversion program in this study.
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Figure 5.4: A flowchart for global optimization by simulated annealing (Figure mod-

ified from Odziemczyk (2020)).
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Chapter 6
Data analysis and results

(a) (b)

Figure 6.1: (a) An example of a vertical array of accelerograms(E-W component)

from borehole sensors and buildings from 2015 Istanbul earthquake. (b) Spectra of

accelerogram recorded from sensors
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6.1 Attenuation from the coda method

Q−1
c ( f ) can be easily estimated from the recorded seismograms by fitting the en-

velopes of the bandpass filtered seismic traces to A( f , t) ∝ 1
tn e−

π f t
Qc( f ) . We estimate

A( f , t) ∝ 1
tn e−

π f t
Qc( f ) at the frequency fc using the relationship

Figure 6.2: An example of a seismogram (in blue) analyzed for the estimation of Q−1
c .

The S-coda envelope is superimposed (dark lines) on the filtered trace. The part of

the coda envelope in the green dashed square is used in this study to in estimate Q−1
c .

Aobs( f , t) =
√

H(S)2 + S(t)2 (6.1)

where S(t) is the trace filtered at f c, H(S) is the Hilbert transform of t he trace itself,
and t starts at 2ts (where tS is the S-wave travel time) and ends when the coda signal
reaches the noise level.

We set the end coda at the time point of the seismogram when had a signal to noise
ratio of 5. In this way, the average coda duration was 65 s from the start time.

Q−1
c estimated by the Coda method for the study area. This is done by filtering the

coda waves in the frequency bands centered at f c from 1 to 16 Hz, with a bandwidth
ranging from f c/2 to

√
2 f c. Then we do a least-squares fit of the envelope to eqn.

4.2 with n = 1.
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Figure 6.3: Attenuation s-coda of the crust beneath Marmara region using coda

method.

Figure 6.2 shows an example of the filtered waveforms with the the relative envelope.

Table 6.1: Attenuation parameter results from the inversion

Frequency (Hz) g h Qsc Qi Qs Le−1 B0

1 0.097 0.037 17.5 45.4 12.6 0.134 0.722

2 0.090 0.043 37.4 78.6 25.3 0.134 0.677

3 0.114 0.045 44.7 114 32.1 0.150 0.718

4 0.092 0.043 74.0 156 50.3 0.135 0.069

5 0.094 0.051 90.0 166 58.3 0.145 0.648

6 0.091 0.053 111.6 299 75.3 0.135 0.672

7 0.073 0.053 161.2 220 93.1 0.127 0.577

8 0.064 0.030 211.8 445 143.5 0.094 0.677

9 0.059 0.039 255.5 329 153.3 0.099 0.599

11 0.059 0.040 312.7 467 187.1 0.099 0.599

13 0.059 0.039 369 552 221.6 0.099 0.599

15 0.069 0.039 374.9 644 237.1 0.107 0.632

Qc increases as a function of frequency according to the power law Qc = Q0 f n where
Q0 is the value of Qc at 1 Hz and n is the frequency dependence coefficient. The
average attenuation law for the is Qc = 24 f 1.01 (Fig. 6.3).

46



6.2 Attenuation from MLTWA

For this study, seismic energy integrals as a function of frequency and distance are
calculated from four accelerograms from vertical arrays of sensors installed in bore-
holes and four accelerograms recorded by sensors installed on different floors of
buildings about 50 m away from boreholes at the Ataköy test site. An example of an
array of accelerograms from the 2015 Istanbul earthquakes is shown in figure 6.1a.

(a) (b)

Figure 6.4: (a) Velocity seismograms and (b) their spectra converted from accelero-

grams

Recorded raw accelerograms must be converted to velocity seismograms for seismic
energy calculation. The calculation of velocity seismograms begins with the prepro-
cessed raw accelerograms. Preprocessing begins by removing trends or systematic
distortions from the raw accelerogram as it is recorded. Filtering was performed to
remove the unwanted noise from the seismograms and to extract the seismic energy
of our preferred frequency range. Next, the accelerograms are filtered with 2nd order
Butterworth bandpass filters between the 0.1 Hz and 60 Hz frequency ranges. Finally,
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the velocity seismograms are computed by time integration of the preprocessed ac-
celerograms.

Figure 6.4 shows the converted the velocity seismograms from the accelerograms and
Fourier spectra of the velocity seismograms.

Three consecutive seismogram windows and a reference window are selected for
MLTWA analysis. The first window starts at ts (s-wave arrival time) and is 15s wide.
The second seismic window is from 15 s to 30 s, and the third is from 30 s to 45 s.
The reference window for normalization of the three seismic windows is selected in
the coda of the seismogram between 57 s and 62 s from ts.The 15 s window length is
chosen so that the first window contains a significant contribution of direct S-wave
energy and the last two windows contain mainly the contribution of scattered energy.

Figure 6.5: A vertical array of velocity

seismograms with three 15 s seismogram

windows and a 5 s reference window. The

black part of the seismogram represents

the first window, red the second window

and green the third, and blue the reference

window.

For the four seismogram windows,
2% cosine tapering is applied at
the beginning and end of the seis-
mograms to reduce spectra leak-
age when the Fourier transform is
performed on the seismogram win-
dows. A Fast Fourier Transform
(FFT) is performed on each seis-
mogram window to compute the
Fourier amplitude spectra. The am-
plitude spectra for each time win-
dow are smoothed by applying the
Konno-Ohmachi window with (b =

60) using eqn. 6.2 (Konno and
Ohmachi, 1998) (see fig. 6.6a).
Then the seismic energy spectra are
calculated from the squares of the
smoothed amplitude spectra of each
window as shown in the figure 6.6b.

WB( f , fc) =

[
sin(log10(

f
fc
)b

log10(
f
fc
)b

]4

(6.2)

where b is the bandwidth coeffi-
cient,
and f and fc are frequency and
a center frequency, respectively.

The b-value controls the degree of smoothness of the the amplitude spectra, with
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(a) (b)

Figure 6.6: An example of (a) Smoothed Fourier spectra of four windows from a

single seismogram First (Black), second (red), third (green) and reference window

(blue)). (b) corresponding squared spectra.

lower b-values resulting in under-smoothed spectra and higher values resulting in
over-smoothed spectra. Choosing the of the appropriate b-value determines the
value of the seismic energy integral and thus the stability of the inversion.

The seismic energy spectra of the first three windows are normalized to the seismic
energy spectra of the reference window using the coda normalization method (Aki,
1980). Seismic energy spectra at the station are normalized to their reference coda en-
ergy. To account for the seismic energy loss due to the effect of geometrical spreading,
the seismic energy integrals at each station are then multiplied by 4πr2. The seismic
energy integral at the selected frequency can be obtained from the energy spectra
(E1( f ), E2( f ), E3( f )) at the preferred frequency.

Finally, the seismic energy integrals as a function of distance are computed for multi-
ple sensors in the borehole and the building (E1(r, f ), E2(r, f ), E3(r, f )) from a single
earthquake. The whole process is repeated to obtain the seismic energy integrals for
each station. In this case, the distances r are the depths of the sensors in the borehole
from the surface and the height of the accelerograms in the building under study.

The seismic energy integral for an earthquake event is calculated from the average of
the seismic energy calculated from the E-W and N-S components of the vertical array
seismograms. The mean seismic energy integral (E(r, f)) is then calculated from an
average of the energy integral of six earthquakes (values ranging from 3.7 to 4.8 Mw
) that occurred around Istanbul, Turkey (see Fig. 3.1).The calculated mean seismic
energy integral is shown in Fig.6.8.
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(a) (b)

Figure 6.7: Normalized energy spectra and spectra of energy corrected for geometri-

cal spreading of the three windows.

Figure 6.8: Energy integral E(r, f). The energy integrals are obtained from the seismic

recording of borehole sensors and the accelerometer installed in building B22 (light

shade). E1 (black solid lines), E2 (Red), and E3 (green) represent the observed energy

integrals from the first, second, and third windows, respectively.
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Figure 6.9: Schematic procedure for MultiLapse Time Window Analysis
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The entire Multi-Lapse Time Widow analysis procedure is summarized in the flowchart
in Figure 6.9.

The theoretical integral density is computed as a function of time and hypocentral
distance r, E(r, t), as shown in the figure 6.10 for fitting to the observed seismic in-
tegral. E(r, t) is computed numerically using the program Hoshiba (1997) for the
uniform and depth-dependent Earth model and using the analytical approximation
of Paasschens (1997) for the uniform medium for comparison.

The theoretical energy integral is calculated from the time integral of three, 15 s en-
ergy density windows and a 5 s reference window as we did for the observed seismic
energy integral using the equation 6.3. The geometric propagation loss is then cor-
rected by multiplying the integrals by 4πr2.

Etheo(i)(r) =

∫ ti+1
ti

E(r, t)dt

Ere f (r, tre f )
· 4πr2, (6.3)

where Ere f is the energy estimated at the reference time interval tre f .

Figure 6.10: Theoretical energy density computed numerical using (Hoshiba, 1997)

and using (Paasschens, 1997) analytically for half-space model.

The parameters B0 and L−1
e that simulate the theoretical energy integral that best fits

the observed seismic energy are obtained by minimizing the residual or misfit func-
tion.The residual function is computed from the difference between the logarithm of
the observed seismic energy and the theoretical energy integral. At site k, for a given
frequency band centered at f Hz, for a pair of L−1

e and B0 values, the residual is com-
puted from the sum of the logarithm of the energy in three windows for N events
using the equation 6.4.
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R(Le−1, B0) =

3

∑
i=1

N

∑
k=1

{
log10(Eobs(i)(rk))− log10(Etheo(i)(rk, Le−1, B0))

}2

(6.4)

where rk is the hypo-central distance of event k.

The minimum of the function R(L−1
e , B0) corresponds to the best estimate of B0 and

L−1
e in the sense of least squares. Grid search and simulated annealing inversion pro-

cedures were used to minimize the misfit function. There is a computational limit
to the grid search approach when the inversion involves multiple model parameters
for depth dependent earth models. The use of grid search is computationally inten-
sive but provides reliable results. To overcome the computational burden associated
with the use of depth-dependent simulated annealing inversion is used. Simulated
annealing dramatically reduces the computational time for inverting the observed
seismic integral multilateral Earth. In some cases, the combination of grid search
and simulated annealing is used for the inversion procedure.
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6.2.1 Crustal attenuation estimation

6.2.1.1 MLTWA using single station

Figure 6.11: Seismograms recorded at sur-

face station (0 m) at Atakoy borehole from

six earthquakes. Note that some earth-

quakes appear to arrive earlier than the

earthquakes near epicenter. This is be-

cause seismograms are not cut from the

origin time.

As a reference for the near-surface
study attenuation, the crustal at-
tenuation is estimated for the the
Marmara region. The common
procedure for estimating the crust
and mantle is to use seismic data
recorded from seismic stations lo-
cated several tens of kilometers from
the surface by multiple earthquakes.

In this study, since we have only
have the seismic data records from
sensors installed in one borehole
and one building at a test site in
the Atakoy area, we used a single-
station approach of MLTWA pro-
posed by Hoshiba (1993). Therefore,
seismogram records of six earth-
quakes from a sensor installed at the
surface (0 m) of the Atakoy borehole
test site were used for MLTWA and
are shown in Figure 6.11.

The seismic energy integrals com-
puted with MLTWA are shown in
Figure 6.12. A comparison of the en-
ergy integrals E1, E2 and E3 at epi-
central distances from 20 km to 165
km shows that the energy from the
first window E1 decreases in value
with increasing distance from the
station. The observed seismic energy
from the second and third windows, E2 and E3, respectively, are calculated from the
s-coda increase in value away from the station. This observation confirms that seis-
mic wave propagates away from the source, it encounters a lot of heterogeneity in
the medium. As a result, the direct S-wave energy is converted to S-coda energy by
scattering, reflection, and refraction.
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(a) (b)

(c) (d)

Figure 6.12: Seismic energy integrals (E(r, f)) computed at a single station from mul-

tiple earthquakes for selected frequencies of (a) 3 Hz, (b) 6 Hz, (c) 9 Hz and (d) 12

Hz. E1 (black), E2 (red) and E3 (green) represent the seismic energy integrals from

first, second and third window, respectively

The observed seismic energy integrals are inverted for a homogeneous half-space
model using the theoretical energy density computed with Hoshiba (1997). The grid
search estimates the scattering and intrinsic attenuation parameters that compute the
theoretical energy density that fits the observed seismic energy integrals.

10,000 pairs of (g, h), g = n × 0.001 (n=1,...,100), h = m × 0.001 (m = 1,..., 100) for
the synthetic energy were searched for the best fit. The residual is normalized to its
minimum and plotted as shown in Figure 6.13a, we accepted as possible solutions
those with value less than 1.1.
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(a) (b)

Figure 6.13: (a) plot of normalized residual with its minimum from the result of grid

search procedure. (b) Seismic energy integral (solid lines) & its best fit predicted

energy integrals (dashed line) for B0 and Le−1 pairs.

As seen in the residual plot from the grid search, (Figure 6.13a) there is a slight trade-
off between the scattering (g) and intrinsic (h) attenuation coefficients, and the inver-
sion is sensitive to the scattering attenuation coefficient. The curves in figure 6.13b
don’t fit well. One reason for this observation could be the use a simple(uniform)
crustal model to compute the theoretical energy integral which doesn’t represent the
real heterogeneous crust under the test site.

Figure 6.14: Estimated scattering (blue), intrinsic (red) and shear wave (black) at-

tenuation values of the crust under Marmara region from the result of grid search

procedure.
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From the best (g) and (h) values, we estimated the quality factors for the total (Qs),
scattering (Qsc ), and intrinsic (Qi ) quality factors by using the following relation-
ships:

Qsc =
2π f
g.v

, Qi =
2π f
h.v

, Qs =
2π f

v(h + g)
(6.5)

Fitting the values of Qs , Qsc and Qi by means of the relation Q = Q0 f n we obtained
the following attenuation relations: Qs = 11 f 1.2, Qsc = 16 f 1.26 and Qi = 40 f 1.02.

As can be seen from the attenuation of the crust under the Atakoy test site (Fig. 6.14),
the scattering attention is dominant over the intrinsic absorption. This observation
could be explained by the region containing heterogeneities on the scale of the wave-
length of the seismic waves, such as fractures and faults, due to its proximity to
tectonic faults passing through the region.

6.2.1.2 Estimation of attenuation using vertical seismic array

Figure 6.15: Seismograms recorded from

the vertical array of sensors installed bore-

hole at, Atakoy test site for 2013 Istanbul

earthquake.

Previous studies using MLTWA with
seismic data used multiple stations
with a separated by tens of kilome-
ters from multiple local and regional
earthquakes. They used these data to
estimate the attenuation of the crust
and upper mantle of a region under
study.

This study estimates the near-surface
scattering and intrinsic absorption
for shear waves in the subsurface of
Ataköy, Istanbul, Turkey, and of a
nearby building. The seismograms
used for the study is are recorded by
down-hole seismic arrays from sen-
sors deployed in four boreholes and
accelerograms were installed at dif-
ferent heights on a building about 50
m from the boreholes as shown in
Figure 6.1a at the Ataköy test site.

As can be seen from the seismogram
recordings (Figure 6.15), the ampli-
tude of the seismograms increases
from the deepest sensor (140 m) to-
wards the surface. This is explained
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by the decrease in impedance towards the surface.

The attenuation of the crust under the study area (Marmara region) is estimated us-
ing grid search (Fig. 6.16) and simulated annealing inversion (Fig. 6.18) to compare
the two inversion approaches. A total of 2500 pairs of (g, h), g = n × 0.03 (n=1,...,50),
h = m × 0.01 (m = 1,..., 50) for the synthetic energy were searched for the best fit.

(a) (b)

Figure 6.16: (a) Normalized residual from grid search result. The red plus sign rep-

resents the minimum. (b) Seismic energy integral (from vertical array) predicted

energy integral best-fit

Figure 6.17: Estimated scattering and intrinsic attenuation using a grid search proce-

dure for a vertical seismic array.

58



(a) (b)

(c) (d)

Figure 6.18: Results of simulated annealing inversion procedure. (a) Plot of residual

(top) and model parameters g (2nd row) and h (third row) as a function of iteration

number. (b) 3D plot of the residual as a function of the attenuation coefficients. (c)

Error surface (colors), showing true solution (green circle),and a series of solutions

(white circles) connected by red lines. (d) Seismic energy integrals with correspond-

ing best-fitted energy integral.
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The estimated scattering, intrinsic, and total shear wave attenuations are shown in
Fig. 6.17. The relative contribution of the scattering attenuation is larger than the
intrinsic absorption, similar to the estimation using the single-station approach (Fig.
6.14). This is observed at for the entire frequency range of 1-15 Hz.

(a) (b)

Figure 6.19: (a) Estimated attenuation using simulated annealing inversion. (b) Com-

parison of attenuation result from the grid search (black solid line) and simulated

annealing inversion (red solid ine)

The figure 6.19b compares the attenuation results of from the grid search and the
simulated annealing inversion. As can be seen from the plot in Figure 6.19b, the
results from the two inversion methods are comparable.

6.2.2 Attenuation in depth-dependent model using a vertical array

of seismograms

Since a non-uniform distribution of scatterers is more realistic than using a uniform
earth model, depth dependent earth model is applied to estimate the attenuation
parameters. This study estimates, the near-surface scattering and intrinsic absorption
for shear waves in the subsurface of Ataköy, Istanbul, Turkey, and a nearby building.
The intrinsic and scattering attenuations are estimated using a uniform half-space
and a more realistic depth-dependent earth media model over a frequency range of
1 to 15 Hz. For example, the shear wave attenuatio estimation through a building is
estimated by assuming that the building is a horizontal layer over a half-space (the
underlying ground).
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6.2.3 Attenuation through building (B22)

Figure 6.20: Vertical array of seismograms

recorded from sensors installed o n build-

ing ’B22’, at Atakoy test from 2015 Istan-

bul earthquake. Blue triangle are the sen-

sors position on the building.

Four accelerometers are installed
in the B22 building under study,
and the seismogram recordings are
shown in Figure 6.20. The amplitude
of the seismograms increases from
the bottom floor the upward to the
top floor due to the vibration of the
building.

Building "B22" has a height of 46.65
m, including 4.0 m in the basement
from the foundation to the roof, ex-
cluding the elevator machine room
at the top. The building has 20 cm
thick concrete interior walls as part
of the structure, except for the eleva-
tor shaft walls which are 15 cm thick.
Floor slabs are 16 cm thick. The ex-
terior walls are precast concrete pan-
els.

Petrovic et al. (2018) estimated an av-
erage shear wave velocity of 320 m/s
through the building using decon-
volution interferometry. The materi-
als from which the building is con-
structed have a density of 2.0 g/cm3.
These parameters are used in the in-
put model to simulate the theoretical
energy density for the inversion.

In order to estimate a realistic attenuation value through the building, we assumed
the building as a flat layer over a half-space(the lower surface). Intrinsic and scatter-
ing attenuation is estimated through the building using a grid search approach for
the frequency range of 1 to 16 Hz.
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(a) (b)

Figure 6.21: (a) Normalized residual from grid search result. (b) Seismic energy(from

vertical array of seismograms on the building) with the best-fit predicted energy

Figure 6.22: Estimated attenuation of inside reinforced concrete building B22.

The scattering attenuation contributes significantly to the total shear wave attenu-
ation. This could be explained by the large s-coda amplitude of the seismograms
recorded at the building. The s-coda amplitudes at the building, unlike those seis-
mograms in the borehole seismograms, do not consist entirely of scattered waves;
they are partly contributed by the vibration of the building. Therefore, the attenua-
tion result of the at the building is biased.
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6.2.3.1 Near-surface attenuation

The attenuation for depth depends on a layer (50 m deep from the surface) and a half-
space below the first layer. The attenuation coefficients that characterize the model
are h1 and g1 for the first layer, and h2 and g2 for the half-space below.

(a) (b)

Figure 6.23: Simulated annealing inversion results for depth dependent model. (a)

Residual(top) and g and h as a function of iteration for 1st layer. (b) Residual(top) g

and h as a function of iteration for the 2nd layer.

As the number of parameters increases, the grid search approach becomes imprac-
tical due to large computational requirements. Therefore, the simulated annealing
inversion approach is used for the depth-dependent near model.
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Figure 6.24: Seismic energy integral with its best fitted predicted energy.

Figure 6.24 shows the best fit of the observed energy integral (solid lines) with the
theoretical energy integral (dashed lines) of the two-layer Earth model. The two lines
are better fitted here than for the uniform half-space model because the two-layer
Earth model is a more realistic representation of the Earth’s crust , resulting in the
observed seismic energy integrals.

(a) (b)

Figure 6.25: Estimated attenuation for depth-dependent model using simulated an-

nealing inversion. (a) Estimated attenuation for a 50 m shallow layer. (b) Estimated

attenuation for half-space layer below 50 m

Figure 6.25 compares the shear wave attenuation through the a shallow layer of 50
m thickness and the half-space (crust) below. Comparing the total shear wave atten-
uation between the two layers, the attenuation in the first layer is higher than the
second (deeper) layer. This is also observed in the near-surface attenuation studies
by Dikmen et al. (2016) and Parolai et al. (2010) over the Atakoy test site.
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Chapter 7
Discussion of the results

7.1 Attenuation of half-space (uniform model)

According to several authors such Akinci et al. (2020) strong frequency dependence
could be related to the size of the heterogeneities. In such a hypothesis, a strong
frequency dependence of Qs−1 occurs when the heterogeneities responsible for the
scattering are, at least, comparable to the the wavelength for the lowest frequencies
analyzed (about 2 km).

Figure 7.1: Shear wave attenuation estimated for the crust below Marmara region

using MLTWA and coda attenuation using coda method.

The shear wave attenuation is estimated for the crust beneath the Marmara region
using a uniform half-space model. From our result we that obtained that Qs values
ranging from 21 at 1 Hz and up to 404 at 15 Hz. In addition, we observed that the
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scattering attenuation dominates over the intrinsic dissipation in all the frequency
bands.

The coda attenuation is estimated from the coda envelope of the seismogram recorded
by, the sensors installed borehole estimate for the same region using the coda method
to compare it with our results shear wave attenuation. The comparison of the two
methods is then shown in the figure 7.1. The results of the two methods are compa-
rable. This could be a way to verify the validity of the method we used to estimate
the shear wave attenuation.

Figure 7.2: Comparison of the Qs−1 versus frequency for different regions: Istanbul

(Bindi et al., 2006); California (Jin et al., 1994); Turkey (Akinci and Eyidoǧan, 2000).

Shear wave attenuation of the Marmara region is presented with attenuation studies
around Turkey is shown in Figure 7.2 for comparison.

7.2 Estimation of near-surface (depth dependent) atten-

uation

The important part of this study, is the separate estimation of scattering attenuation
and intrinsic absorption using a depth dependent model inside a building and for
the near surface geology beneath the Atakoy test site.

The shear wave attenuation through the three layers is shown in Figure 7.3 for com-
parison. The shear wave attenuation through a building (46 m high), a shallow layer
of 50 m thickness below the building, and the crust (half-space model) decreases with
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increasing depth from the surface.

When comparing the attenuation obtained in a layer and a half-space, the attenuation
due to both scattering and intrinsic absorption in the first layer is more significant
than the values in the half-space below. For example, at 5 Hz, the estimated shear
wave quality factor (Qs) in the building, the near-surface layer (50 m thick) and the
half-space are 16, 23, and 83, respectively. These results are in agreement with Dik-
men et al. (2016) and Parolai et al. (2010) estimation of the Qs values on the same
test site. Parolai et al. (2010) estimated an average of 30, 46, and 99 for the 0 - 50, 0
- 70, and 0 - 140 m depth ranges, respectively, using spectral fitting for the 1-15 Hz
frequency band. In addition, Hutchings and Viegas (2012) also estimated estimated
Qs value of between 10 and 100 for near-surface geology. Therefore, our estimate is
in a good agreement with these previous studies.

Figure 7.3: Attenuation (Qs−1) of building and two-layers underneath the building.

In this study, attenuation is observed to decrease with depth. The comparison of at-
tenuation layered media in this study reinforces the widely accepted observation
which is that heterogeneity decreases with increasing depth as demonstrated by
Hoshiba (1997), Hoshiba et al. (2001), and Giampiccolo et al. (2006). We found that
the attenuation due to scattering and intrinsic absorption is more significant in the
first layer than in the underlying half-space. Therefore, using the non-uniform distri-
bution of scatterers is more realistic than a uniform earth model and, as a result, the
attenuation decreases with depth.
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Chapter 8
Conclusion

Separate estimation of the attenuation due intrinsic absorption and scattering in
near-surface geology and built-in structures is essential in engineering seismology.
Knowledge of intrinsic absorption and scattering attenuation parameters could be
used for site response studies; and prediction of strong motions in engineering seis-
mology for seismic hazard and risk studies. In addition, knowledge of the structures
of intrinsic and scattering attenuation provides insight into the nature of the Earth’s
interior and imposes constraints on seismic wave propagation. Therefore, the abil-
ity to separately estimate the spatial distributions of intrinsic (Q−1

i ) and scattering
(Q−1

sc ) attenuation is crucial for improving our understanding of the wave propaga-
tion through near-surface geology and built-in structures.

In this study, two methods were used in this study to estimate the intrinsic and scat-
tering attenuation parameters: the coda method to estimate the coda quality fac-
tor for the uniform half-space model and the Multi-Lapse Time Window Analysis
(MLTWA) to separately estimate intrinsic (Q−1

i ) and scattering (Q−1
sc ) attenuation for

uniform half-space model for a more realistic depth-dependent earth media model.

This study attempted to estimate the intrinsic (Q−1
i ) and scattering (Q−1

sc ) attenua-
tion using seismic data collected from sensors installed in a borehole and a nearby
building test site in Atakoy, Istanbul, Turkey.

In this study, two methods were used in this study to estimate the intrinsic and scat-
tering attenuation parameter:

1) The coda method is used to estimate the coda quality factor for the uniform half-
space model. For a source co-located with a receiver, the shape of the time-domain
S-coda envelope filtered at a given frequency and the band centered at f can be ex-

plained by the exponential decay of the equation A( f , t) ∝ 1
tn e−

π f t
Qc( f ) . Then coda at-

tenuation (Q−1
c ( f )) is estimated from recorded seismograms by fitting the envelopes

of the band-pass filtered seismic traces to A( f , t) ∝ 1
tn e−

π f t
Qc( f ) . Using coda method the
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(Q−1
c ( f )) for the crust below the Marmara region, turkey is estimated using uniform

half-space model.

2) The Multi-Lapse Time Window Analysis (MLTWA) method is used to sepa-
rately estimate intrinsic (Q−1

i ) and scattering (Q−1
sc ) attenuation for uniform half-

space model for a more realistic depth-dependent earth media model. MLTWA com-
pares the seismic energy integrated from three consecutive seismic windows starting
from the S-wave arrival time and plotted against hypo-central distance, with the en-
ergy integrals predicted by a theoretical model suitable for the multiple scattering
problem. The theoretical energy envelopes computed numerically using Hoshiba
(1997) (which uses a Monte Carlo approach)for the depth-dependent model. In addi-
tion this study developed an innovative approach by modifying the MLTWA method
to use a vertical array of seismograms to separately estimate the scattering and in-
trinsic seismic attenuation of depth dependent near-surface media and buildings.

Since the application of MLTWA to a depth dependent medium model,is compu-
tationally demanding, an inversion strategy combining grid search and simulated
annealing is applied. Grid Search is used over a wide range of parameter space, but
with a relatively large grid spacing, to find possible narrow parameter spaces with
a potential solution. We use the narrowed parameter space identified by the Grid
Search to constrain our region of the search space of the solution using simulated
Annealing. Simulated Annealing converges to the solution in a few of hundred iter-
ations or sometimes less which much faster that the Grid Search approach.

MLTWA method is applied to estimate the intrinsic and scattering shear wave at-
tenuation is estimated for a building and two layers in the near surface beneath the
building. Frequency dependent Qi, Qsc, and Qs values are estimated for frequencies
from 1 to 15 Hz. Qs values Qs = 2 f 1.25, Qs = 2 f 1.75 and Qs = 20 f 1.0 are estimated
for the building, the first layer and the half-space below respectively.Finally the esti-
mated results fro uniform half space model from coda method MLTWA is compared
with each other.

Comparing the scattering attenuation for different layers obtained from this study,
we found that the scattering attenuation decreases with depth towards the deeper
layer. In general, this effect could be explained by a decrease in the heterogeneity of
the medium as we go deeper from the surface.

Finally result of the estimated near-surface shear wave attenuation values can ap-
plied for site response studies and for predicting strong motions in engineering seis-
mology for seismic hazard and risk studies. In addition, the result of the scattering
and intrinsic attenuation estimation could be important to study the heterogeneity of
the underlying medium. Estimated intrinsic attenuation values could be applied in
exploration geophysics to study geothermal reservoirs. A high intrinsic attenuation
value could indicate whether a region is saturated with water or not.
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8.1 Limitations of the study

The following are some limitation of the MLTWA method observed during the study:

A slight trade-off between the scattering and intrinsic attenuation parameters is ob-
served during the inversion process in our efforts to estimate the scattering and in-
trinsic of the attenuation parameters separately.

The use of MLTWA for the depth-dependent earth model results in a huge com-
putational demand during the inversion process, so it was not possible to estimate
the scattering and attenuation parameters for more than three layers. The compu-
tation time increases when using the MLTWA for shallow (low velocity) thin layers.
However, it is possible to use this approach to estimate attenuation through multiple
layers, using a more robust computational facility.

In the future I will further develop the methodology to use it for separate estimation
of the intrinsic and scattering attenuation in multi-layered depth-dependent shallow
crust and attenuation in buildings using more robust computational facility such as
hyper performance computing (HPC).
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Appendix A
Theoretical energy density

Paasschens (1997) provided the approximate analytical solution in 3-D space, assum-
ing an infinite half-space with constant characteristics and isotropic scattering, which
is represented as follows:

E(r, t) ≈ We−g0V0t

4πV0r2 δ
(

t − r
V0

)
+ W

(1 − r2/(V0t)2)1/8

(4πV0t/(3V0))3/2 e−g0V0tM
(

g0V0t(1 −
( r2

V2
0 t2

)3/4
)

H(t − r
V0

)

and

M(x) ≃ ex
√
(1 + 2.026/x)

(A.1)

where E(r,t) is the energy density, r is hypo-central distance, t is lapse time from the
origin time, f is frequency, v is seismic wave velocity (assumed constant), δ is the
Dirac function, H is the Heaveside unit step function, g(z) is scattering coefficient,
and h(z) represents the intrinsic absorption strength respectively,
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Appendix B
Best fit energy from single station

Figure B.1: Bestfit energy
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Appendix C
Best-fit energy from half-space model

Figure C.1: Bestfit energy from borehole station
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