nature methods

Supplementary information

https://doi.org/10.1038/s41592-024-02374-8

The DNA-PAINT palette: a comprehensive performance analysis of fluorescent dyes

In the format provided by the authors and unedited

Supplementary Information

The DNA-PAINT palette: A comprehensive performance analysis of fluorescent dyes

Philipp R. Steen^{1,2}, Eduard M. Unterauer^{1,2}, Luciano A. Masullo², Jisoo Kwon², Ana Perovic², Kristina Jevdokimenko³, Felipe Opazo^{3,4,5}, Eugenio F. Fornasiero^{3,6}, and Ralf Jungmann^{1,2}

¹Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany. ²Max Planck Institute of Biochemistry, Martinsried, Germany. ³Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany. ⁴Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany. ⁵NanoTag Biotechnologies GmbH, Göttingen, Germany. ⁶Department of Life Sciences, University of Trieste, Italy. Correspondence should be addressed to R.J. (jungmann@biochem.mpg.de).

Supplementary Figure 1	Dye analysis, Alexa Fluor 488
Supplementary Figure 2	Dye analysis, Abberior Star 488
Supplementary Figure 3	Dye analysis, Atto488
Supplementary Figure 4	Dye analysis, CF488A
Supplementary Figure 5	Dye analysis, Atto565
Supplementary Figure 6	Dye analysis, CF568
Supplementary Figure 7	Dye analysis, Cy3B
Supplementary Figure 8	Dye analysis, Janelia Fluor 585
Supplementary Figure 9	Dye analysis, Alexa Fluor 647
Supplementary Figure 10	Dye analysis, Abberior Star 635p
Supplementary Figure 11	Dye analysis, Atto643
Supplementary Figure 12	Dye analysis, Atto647N
Supplementary Figure 13	Dye analysis, Atto655
Supplementary Figure 14	Dye analysis, CF640R
Supplementary Figure 15	Dye analysis, CF660R
Supplementary Figure 16	Dye analysis, Cy5
Supplementary Figure 17	Dye analysis, Cy5B
Supplementary Figure 18	Dye analysis, Janelia Fluor 646
Supplementary Table 1	Imaging Parameters
Supplementary Table 2	Sequences
Supplementary Table 3	Antibodies
Supplementary Table 4	Cross-talk in 3-channel imaging
Supplementary Table 5	DNA origami scaffold sequence

Supplementary Figs. 1-18 | Dye analysis. a, Absorption (grey) and emission (black) spectra with QY where available. b, Achievable precision illustrated by 20 nm DNA origami. **c**, Emission photon distribution and mean number of photons (\overline{N}) per 100 ms. **d**, Bright time distribution and mean bright time ($\overline{\tau_h}$). e, Dye stability expressed as localizations over time (per 20 seconds per docking site) over the course of the measurement. f, Mean DNA origami-based dye analysis results for all tested buffer conditions. Spectra, quantum yields (QY) where available and extinction coefficients from respective manufacturers. Uncertainties represent s.d. from 3 repeat measurements. g, Representative NPC (Nup96 labeled) illustrating achievable resolution in 3D, in cells. Left: top view, right: side view. h, Emission photon distribution. i, Comparison of representative nuclear (left) vs. cytoplasmic (right) localizations. j, Mean dye analysis results for cellular experiments. Uncertainties represent s.d. from 3 repeat measurements.

20 mW

HILO + 3D

75×75 µm²

15 mW 75 W / cm²

30,000×

100 ms

DNA origami average results for all buffer conditions

Dye	Ex. max. (nm)	Em. max. (nm)	QY	Ext. (×10 ³ M ⁻¹ cm ⁻¹)	Buffer additive	Precision (nm)	Photons per 100 ms	Bright time (s)	Signal to background ratio	Localization drop (%)	Destroyed binding sites (%)	20 mW 100 W / cm
					-	8.7 ± 1.5	1908 ± 209	0.21 ± 0.01	2.3 ± 0.2	28.3 ± 11.0	3.7 ± 1.6	
Alexa Fluor 488	499	520	0.92	73	Trolox	6.3 ± 0.5	2811 ± 290	0.24 ± 0.03	2.7 ± 0.5	33.6 ± 3.5	7.4 ± 1.8	Ц
					PCA PCD Trolox	8.1 ± 2.3	1979 ± 1131	0.23 ± 0.01	1.9 ± 0.2	24.5 ± 16.0	3.5 ± 1.3	20,000× 100 ms

U2OS Nup96 imaged using Alexa Fluor 488 with Trolox

ratio

specificity

0.42 ± 0.14

(%)

21.2 ± 7.0

Alexa Fluor 488 Trolox 9.3 ± 0.4 2191 ± 860 0.23 ± 0.01 1.3 ± 0.3

Supplementary Figure 1 | Dye analysis, Alexa Fluor 488

(nm)

1532 ± 274

ratio

1.0 ± 0.2

0.23 ± 0.03

(%)

11.4 ± 10.5

specificity

0.55 ± 0.11

30,000×

100 ms

Supplementary Figure 2 | Dye analysis, Abberior Star 488

(nm)

11.5 ± 2.9

Abberior Star 488

Trolox

16.4 ± 3.5

0.71 ± 0.19

30,000×

100 ms

ratio

0.8 ± 0.1

0.26 ± 0.00

Supplementary Figure 3 | Dye analysis, Atto488

11.4 ± 1.4

1388 ± 181

Trolox

Atto488

15.5 ± 7.4

0.48 ± 0.07

30,000×

100 ms

ratio

1.3 ± 0.1

0.21 ± 0.01

Supplementary Figure 4 | Dye analysis, CF488A

Trolox

CF488A

(nm)

10.7 ± 0.1

2240 ± 305

HILO + 3D

75×75 µm²

20 mW 100 W / cm²

> 30,000× 100 ms

Dye	Buffer additive	Precision (nm)	Photons per 100 ms	Bright time (s)	Signal to background ratio	Localization drop (%)	Relative specificity
Atto565	Trolox	6.0 ± 0.6	6287 ± 917	0.28 ± 0.01	8.4 ± 0.9	4.2 CI (0.0, 9.3)	0.87 ± 0.39

Supplementary Figure 5 | Dye analysis, Atto565

ratio

7.1 ± 2.5

0.24 ± 0.02

(%)

2.4 CI (0.0, 6.6)

0.51 ± 0.21

30,000×

100 ms

Supplementary Figure 6 | Dye analysis, CF568

-

(nm)

6.0 ± 0.8

6332 ± 62

Dye

CF568

U2OS Nup96 imaged using Cy3B with PCA / PCD / Trolox

Dye	Buffer additive	Precision (nm)	Photons per 100 ms	Bright time (s)	Signal to background ratio	Localization drop (%)	Relative specificity
СуЗВ	PCA PCD Trolox	4.5 ± 0.4	6991 ± 2203	0.34 ± 0.03	6.3 ± 1.4	4.9 CI (0.0, 14.3)	1.04 ± 0.09

Supplementary Figure 7 | Dye analysis, Cy3B

-	•	-					
Dye	Buffer additive	Precision (nm)	Photons per 100 ms	Bright time (s)	Signal to background ratio	Localization drop (%)	Relative specificity
Janelia Fluor 585	Trolox	17.4 ± 2.5	741 ± 219	0.22 ± 0.01	1.0 ± 0.7	8.8 CI (0.0, 19.6)	1.30 ± 0.47

Supplementary Figure 8 | Dye analysis, Janelia Fluor 585

U2OS Nup96 imaged using Alexa Fluor 647 with PCA / PCD / Trolox

Dye	Buffer additive	Precision (nm)	Photons per 100 ms	Bright time (s)	Signal to background ratio	Localization drop (%)	Relative specificity
Alexa Fluor 647	PCA PCD Trolox	8.9 ± 2.2	10213 ± 2592	0.19 ± 0.01	2.1 ± 0.9	51.3 ± 5.2	0.69 ± 0.41

Supplementary Figure 9 | Dye analysis, Alexa Fluor 647

Bright time (s)

0.22 ± 0.01

ratio

1.7 ± 0.3

(%)

6.7 ± 6.1

0.37 ± 0.29

30,000×

100 ms

Supplementary Figure 10 | Dye analysis, Abberior Star 635p

9609 ± 2651

(nm)

8.0 ± 1.3

Dye

Abberior Star 635p

Trolox

ratio

2.8 ± 0.5

0.26 ± 0.02

(%)

5.8 CI (0.0, 13.9)

specificity

0.66 ± 0.13

30,000×

100 ms

Supplementary Figure 11 | Dye analysis, Atto643

Trolox

Atto643

(nm)

5.3 ± 1.3

14803 ± 4342

ratio

3.2 ± 0.3

0.27 ± 0.01

(%)

4.8 ± 2.7

specificity

0.38 ± 0.03

30,000×

100 ms

6.1 ± 0.8 Supplementary Figure 12 | Dye analysis, Atto647N

(nm)

15396 ± 1254

Dye

Atto647N

Trolox

2.3 CI (0.0, 6.3)

1.44 ± 0.42

1.2 ± 0.1

30,000×

100 ms

Supplementary Figure 13 | Dye analysis, Atto655

-

7.3 ± 0.5

5763 ± 1736

0.31 ± 0.04

Atto655

ratio

1.3 ± 0.3

0.21 ± 0.01

(%)

5.7 ± 5.0

specificity

1.15 ± 0.39

30,000×

100 ms

Supplementary Figure 14 | Dye analysis, CF640R

-

CF640R

(nm)

7.3 ± 0.8

7539 ± 2114

Dye	Buffer additive	Precision (nm)	Photons per 100 ms	Bright time (s)	Signal to background ratio	Localization drop (%)	Relative specificity
CF660R	-	6.8 ± 0.1	7219 ± 583	0.24 ± 0.01	1.6 ± 0.1	1.8 ± 1.7	0.83 ± 0.20

Supplementary Figure 15 | Dye analysis, CF660R

U2OS Nup96 imaged using Cy5 with PCA / PCD / Trolox

-	-	-						
Dye	Buffer additive	Precision (nm)	Photons per 100 ms	Bright time (s)	Signal to background ratio	Localization drop (%)	Relative specificity	
Cy5	PCA PCD Trolox	10.0 ± 2.0	6031 ± 540	0.21 ± 0.03	1.1 ± 0.2	54.4 ± 18.0	0.72 ± 0.14	

Supplementary Figure 16 | Dye analysis, Cy5

9483 ± 2068

2.2 ± 0.6

(%)

20.9 ± 18.4

specificity

0.77 ± 0.16

30,000×

100 ms

Bright time (s)

0.25 ± 0.01

Supplementary Figure 17 | Dye analysis, Cy5B

PCA PCD Trolox

(nm)

5.6 ± 0.5

Dye

Cy5B

7.0 ± 6.8

0.43 ± 0.06

1.7 ± 0.1

30,000×

100 ms

Supplementary Figure 18 | Dye analysis, Janelia Fluor 646

8221 ± 1152

0.26 ± 0.01

9.3 ± 3.0

Janelia Fluor 646

-

Target & imaging round	Laser [nm]	Laser power at objective [mW]	Laser power density [W/cm ²]	Imager	Imager conc. [pM]	Buffer and additive	Number of frames	Imaging time [min]
DNA origami, barcode & reference	560	35	175	R1-Cy3B R3-Cy3B	500 500	B with PCA, PCD, Trolox	10,000	16.7
DNA origami, blue dyes	488	20	100	R1-Dye of interest	500	B, all conditions	20,000	33.3
DNA origami, green dyes	560	35	175	R1-Dye of interest	500	B, all conditions	20,000	33.3
DNA origami, red dyes	640	70	350	R1-Dye of interest	300 (Cy5, Atto643, Atto647N), 500 (rest)	B, all conditions	20,000	33.3
DNA origami, var. powers, CF488	488	10, 20, 40, 60, 80, 100	50, 100, 200, 300, 400, 500	R1-CF488A	500	B with Trolox	20,000	33.3
DNA origami, var. powers, Cy3B	560	35, 50, 100, 150	175, 250, 500, 750	R1-Cy3B	500	B with PCA, PCD, Trolox	20,000	33.3
DNA origami, var. powers, Atto643	640	35, 70, 100, 150, 200	175, 350, 500, 750, 1000	R1-Atto643	500	B with Trolox	20,000	33.3
U2OS NPC, reference	560	20	100	R1-Cy3B	80	C with PCA, PCD, Trolox	30,000	50
U2OS NPC, blue dyes	488	15	75	R1-Dye of interest	80 - 120	C with optimal additive	30,000	50
U2OS NPC, green dyes	560	20	100	R1-Dye of interest	80 - 100	C with optimal additive	30,000	50
U2OS NPC, red dyes	640	40	200	R1-Dye of interest	40 - 80 (Atto643), 20 - 50 (Atto647N), 80 -100 (rest)	C with optimal additive	30,000	50
U2OS Tom20, reference	560	20	100	R1-Cy3B	100	C with PCA, PCD, Trolox	30,000	50
U2OS Tom20, blue dyes	488	15	75	R1-Dye of interest	100	C with optimal additive	30,000	50
U2OS Tom20, green dyes	560	20	100	R1-Dye of interest	100	C with optimal additive	30,000	50
U2OS Tom20, red dyes	640	40	200	R1-Dye of interest	100	C with optimal additive	30,000	50
Neurons, round 1	488 560 640	15 20 40	75 100 200	R1-CF488A R4-Cy3B R6-Atto643	200 150 350	C with Trolox	30,000	50
Neurons, round 2	488 560 640	15 20 40	75 100 200	R5-CF488A R3-Cy3B R2-Atto643	150 300 100	C with Trolox	30,000	50

Imaging conditions for all measurements. The exposure time was set to 100 ms for all measurements. DNA origami "dye of interest" experiments were carried out with only buffer B, buffer B with Trolox, and buffer B with PCA, PCD, and Trolox for all dyes. U2OS NPC and Tom20 "dye of interest" experiments were carried out with the optimal buffer additive for each dye, specified in **Supplementary Figures 1-18**.

Supplementary Table 2 | Sequences

Imager name	Imager Sequence	Docking strand sequence
R1	AGGAGGA	тсстсстсстсстсстс
R2	TGGTGGT	ACCACCACCACCACCACCA
R3	GAGAGAG	стстстстстстстстс
R4	TGTGTGT	ACACACACACACACACA
R5	GAAGAAG	СТТСТТСТТСТТСТТСТТС
R6	TTGTTGTT	AACAACAACAACAACAACAA

Supplementary Table 3 | Antibodies

Antibody	Vendor	Information	Dilution
Mouse monoclonal (SAP7F407) anti-Bassoon	Enzo	Cat# ADI-VAM-PS003-F; RRID:AB_11181058	1 in 200
Rabbit polyclonal anti-VGAT	invitrogen	Cat# PA5-27569; RRID:AB_2545045	1 in 300
Rabbit monoclonal (EPR15581-54) anti-Tom20	Abcam	Cat# ab186735; RRID:AB_2889972	1 in 200
Mouse monoclonal (69H10) anti-Neurofilament L	Synaptic Systems	Cat# 171011; RRID:AB_2891275	1 in 200
Mouse monoclonal (42/B) anti-βII Spectrin	BD Biosciences	Cat# 612562; RRID:AB_399853	1 in 100
sdAb anti-PSD95 (1B2)	NanoTag Biotechnologies	Cat# N3705	1 in 200
sdAb anti-GFP (1H1)	NanoTag Biotechnologies	Cat# N0305	1 in 200
sdAb anti-Mouse IgG (10A4)	NanoTag Biotechnologies	Cat# N2005	1 in 300
sdAb anti-Rabbit IgG (10E10)	NanoTag Biotechnologies	Cat# N2405	1 in 300
Multiplexing Blocker Mouse	NanoTag Biotechnologies	Cat# K0102-50	1 in 200
Multiplexing Blocker Mouse	NanoTag Biotechnologies	Cat# K0202-50	1 in 200

Supplementary Table 4 | Cross-talk in 3-channel imaging

Dye added	Atto643	Cy3b	CF488
Number of locs detected in red channel	1145912	894	1720
Number of locs detected in green channel	1497	1798626	6253
Number of locs detected in blue channel	4818	14587	993884
Total number of locs	1152227	1814107	1001857
	·	·	·
Percent of locs detected in red channel	99.45	0.05	0.17
Percent of locs detected in green channel	0.13	99.15	0.62
Percent of locs detected in blue channel	0.42	0.80	99.20
Ratio red / correct	1.000000	0.000497	0.001731
Ratio green / correct	0.001306	1.000000	0.006291
Ratio blue / correct	0.004205	0.008110	1.000000

Supplementary Table 5 | DNA origami scaffold sequence

TTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGGCTCCCTTTAGGGTTCCGA TTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTG ATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAA CACTCAACCCTATCTCGGGCTATTCTTTGATTTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGAT TTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAAT CAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCG CGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCA ATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGGGA ATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCGGGG ATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAA CCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCC GCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGA AGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAG ATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACG GAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAA TTATTTTTGATGGCGTTCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAATGCGAATTTTAACAAAATA TTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGGGGGCTTTTCTGATTATCAACCGGGGTACA TATGATTGACATGCTAGTTTTACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTG ATAGCCTTTGTAGATCTCTCAAAAATAGCTACCCTCTCCGGCATTAATTTATCAGCTAGAACGGTTGAATATCATAT TGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTA AAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTC ATAATGTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGC CTGTATGATTTATTGGATGTTAATGCTACTACTATTAGTAGAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGA AAATATAGCTAAACAGGTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACTCGTTCGCAGAAT TGGGAATCAACTGTTATATGGAATGAAACTTCCAGACACCGTACTTTAGTTGCATATTTAAAACATGTTGAGCTA CAGCATTATATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAAAGGTA CTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCGGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTG AAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACC TGATTTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGGATTCAATGAATATTTATGA CGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTACCCCCCTCTGGCAAAACTTCTTTTGCAAAA GCCTCTCGCTATTTTGGTTTTTATCGTCGTCTGGTAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCTCGTA ATTCCTTTTGGCGTTATGTATCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAACTGATGAATCTTTCTACCTGT AATAATGTTGTTCCGTTAGTTCGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACTGGTATAATGAGCCAG TTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAACCATCTCAAGCCCAATTTACTACTCGT TCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATAT

TCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTGACCGTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCA GGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTCGCGCTTGGTATAATC GCTGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCA TTACGTATTTTACCCGTTTAATGGAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCT ACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAGC CTCAGCGACCGAATATATCGGTTATGCGTGGGCGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCT GTTTAAGAAATTCACCTCGAAAGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTG GAGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTATTCTCACTCCGCTGAAACTG TTGAAAGTTGTTTAGCAAAATCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATC GTTACGCTAACTATGAGGGCTGTCTGTGGAATGCTACAGGCGTTGTAGTTTGTACTGGTGACGAAACTCAGTGT TACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTG AGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTAT ATCAACCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAG TCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGCATTAACTGTTTATACG GGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGTATCATCAAAAGCCATGTAT TATCAAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCTCTGGTGGTGGTTCTGGTGG GTGGCTCTGGTTCCGGTGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGGCTATGACCGAAAATGCC GATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGGTGCTGCTATCGA TGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCA AATGGCTCAAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAATATTTACCTTCCCTCCAAT TAATAAGGAGTCTTAATCATGCCAGTTCTTTTGGGTATTCCGTTATTATTGCGTTTCCTCGGTTTCCTTCGGTAAC TTTGTTCGGCTATCTGCTTACTTTTCTTAAAAAGGGCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTCTTGCTC TTATTATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTACCCTCTGACTTTGTTCAG GGTGTTCAGTTAATTCTCCCGTCTAATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCAT ATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAATAGCA ACTAATCTTGATTTAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAAT ACCGGATAAGCCTTCTATATCTGATTTGCTTGCTATTGGGCGCGGTAATGATTCCTACGATGAAAATAAAACGG CTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTAATACCCGTTCTTGGAATGATAAGGAAAGACAGCCGATTAT TGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTCTTGTTCAGGACTTATCTATTGTTGATAAAC AGGCGCGTTCTGCATTAGCTGAACATGTTGTTTATTGTCGTCGTCGGACAGAATTACTTTACCTTTGTCGGTA CTTTATATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTTGTTAAATATGGCGATTCT CAATTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTATAACGCATATGATACTAAACAGGCTT ATTTAGGTCAGAAGATGAAATTAACTAAAATATATTTGAAAAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATT TGCATCAGCATTTACATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACCTATGAT TTTGATAAATTCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTATCGCTATGTTTTCAAGGATTCTAAGGGAA AGGTAATTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGGTATTCAAAGCAATCAGGCGAATCCGTTA TTGTTTCTCCCGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTT ATTTCTGTTTTACGTGCAAATAATTTTGATATGGTAGGTTCTAACCCTTCCATTATTCAGAAGTATAATCCAAACAA TCAGGATTATATTGATGAATTGCCATCATCTGATAATCAGGAATATGATGATAATTCCGCTCCTTCTGGTGGTTTCT TTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATTAATAACGTTCGGGCAAAGGATTTAATACGAGTTG TCGAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTGACGGCTCTAATCTATTAGTTGTTA GTGCTCCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCAACTGTTGATTTGCCAACTGACCAGATATTGATT GAGGGTTTGATATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTTCATTTGCTGCTGGCTCTCAGCGTGGCAC GGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCAAAAATATTGTCTGTGCCACGTATTC TTACGCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGTGTGACTGGTG AATCTGCCAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGT TGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTG