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A B S T R A C T 

Subsonic turbulence plays a major role in determining properties of the intracluster medium (ICM). We introduce a new meshless 
finite mass (MFM) implementation in OPENGADGET3 and apply it to this specific problem. To this end, we present a set of test 
cases to validate our implementation of the MFM framework in our code. These include but are not limited to: the soundwave and 

Kepler disc as smooth situations to probe the stability, a Rayleigh–Taylor and Kelvin–Helmholtz instability as popular mixing 

instabilities, a blob test as more complex example including both mixing and shocks, shock tubes with various Mach numbers, a 
Sedov blast wave, different tests including self-gravity such as gravitational freefall, a hydrostatic sphere, the Zeldovich-pancake, 
and a 10 

15 M � galaxy cluster as cosmological application. Advantages o v er smoothed particle hydrodynamics (SPH) include 
increased mixing and a better convergence behaviour. We demonstrate that the MFM-solver is robust, also in a cosmological 
context. We sho w e vidence that the solver preforms extraordinarily well when applied to decaying subsonic turbulence, a problem 

very difficult to handle for many methods. MFM captures the expected velocity power spectrum with high accuracy and shows 
a good convergence behaviour. Using MFM or SPH within OPENGADGET3 leads to a comparable decay in turbulent energy 

due to numerical dissipation. When studying the energy decay for different initial turbulent energy fractions, we find that MFM 

performs well down to Mach numbers M ≈ 0 . 01. Finally, we sho w ho w important the slope limiter and the energy-entropy 

switch are to control the behaviour and the evolution of the fluids. 

Key words: hydrodynamics – turbulence – methods: numerical – galaxies: clusters: general. 
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 I N T RO D U C T I O N  

urbulence plays a key role in a variety of astrophysical systems
t all scales, ranging from stellar structure, star-formation in the
nterstellar medium (ISM) all the way up to the instracluster medium
ICM). It leads to enhanced small-scale mixing, and contributes to
he global pressure of a system. While being mostly supersonic in
he ISM, turbulence is mainly subsonic in the ICM (compare, e.g.
chuecker et al. 2004 , for observations on the Coma cluster). A

heoretical framework for subsonic turbulence has been provided
y Kolmogorov ( 1941 ), assuming isotropy. Simulations are an
ssential tool to better understand physical properties of astrophysical
urbulence as well as its influence on local observables such as star
ormation in the ISM or its contribution to heating in the ICM. 

Historically, there exist different methods to solve the hydrody-
amical equations in comoving/cosmological context. Hereby, one
as the option to discretize the hydrodynamic equations by mass or
olume. The former leads to the concept of ‘Lagrangian’ (particle
ased) codes and the concept of smoothed particle hydrodynamics
SPH), and the more recent meshless finite mass (MFM) and
 E-mail: fgroth@usm.lmu.de 
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eshless finite volume (MFV). The latter gives rise to the concept
f ‘Eulerian’ (grid based) codes and the Godunov finite volume
pproach. 

Popular SPH codes include GADGET in the different versions
ncluding GADGET-1 (Springel, Yoshida & White 2001 ), GADGET-2
Springel 2005 ), and GADGET-4 (Springel et al. 2021 ), PHANTOM

Lodato & Price 2010 ; Price et al. 2018 ), and GASOLINE (Wadsley,
tadel & Quinn 2004 ; Wadsley, Keller & Quinn 2017 ). An improved
PH scheme with non-standard enhancements has been implemented

n MAGMA2 (Rosswog 2020 ). MFM has been implemented in
.g. GIZMO (Hopkins 2015 ), GANDALF (Hubber, Rosotti & Booth
018 ), GADGET-3 (Steinwandel et al. 2020 ), and PKDGRAV-3 (Alonso
sensio et al. 2023 ). 
Mesh codes exist in two fla v ours: either as a stationary mesh,

ossibly with adaptive mesh refinement, as implemented e.g. in ZEUS

Stone & Norman 1992 ), TVD (Ryu et al. 1993 , 1998 ), ENZO (Bryan
t al. 1995 , 2014 ), FLASH (Fryxell et al. 2000 ), RAMSES (Teyssier
002 ), ATHENA (Stone et al. 2008 ), and ATHENA ++ (Stone et al.
020 ) or as a moving mesh as in AREPO (Springel 2010 ; Weinberger,
pringel & Pakmor 2020 ), and SHADOWFAX (Vandenbroucke &
e Rijcke 2016 ). The latter have the advantage of being Pseudo-
agrangian. While mesh codes as well as MFM employ a Godunov-
ethod and calculate fluxes between neighbours (Godunov 1959 ),
© 2023 The Author(s) 
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PH directly retrieves the hydrodynamical fluid vectors from the 
ernel density estimation that is obtained by adopting a weighted 
um o v er a certain (typically non-constant) number of neighbours. 

All of them can be used for computations of turbulence, with 
arlier calculations primarily carried out in the supersonic regime, 
ele v ant in the ISM for regulating star formation. Many results have
een obtained assuming driven turbulence in which an energy input 
t large scales is provided during the whole simulation. In contrast 
o driven turbulence, we expect decaying turbulence to be present in 
alaxy clusters. Turbulence is injected at large scales for example due 
o collapse of large scale structure and subsequent merger activity 
Roettiger & Burns 1999 ; Subramanian, Shukurov & Haugen 2006 ), 
fter which, it energy is transported down to the smaller scales 
‘turbulent cascade’) on which it is dissipated (generally below the 
esolution scale of any given code). 

In the series of papers by Federrath, Klessen & Schmidt ( 2008 ,
009 ) and Federrath et al. ( 2010 ), the y hav e used a stationary grid
ode to calculate turbulent boxes with driven turbulence. They found 
hat the choice of the driving scheme plays an important role in deter-

ining properties of the resulting turbulence, leading to significant 
ifferences in the density statistics. Their results suggest a different 
ixture of driving mechanisms for different star-forming regions. 
v erall, the y found good agreement with observations as well as
ther results, independent of the driving mechanism employed. More 
ecently, Federrath et al. ( 2021 ) increased the resolution to even
esolve the sonic scale, starting from supersonic turbulence with a 
esolution of ∼10 000 3 cells. 

Kitsionas et al. ( 2009 ) and Price & Federrath ( 2010 ) also compared
he performance of different implementations of SPH and hydro 
chemes with a stationary mesh, and find good agreement between 
hese two methods at high Mach numbers. Mesh codes are more 
fficient to obtain volumetric statistics such as the power spectrum, 
hile SPH reco v ers the high-density tail better due to automatically

dapting the resolution. 
While all these methods work well in the supersonic turbulent 

e gime, the y hav e problems dealing with subsonic turbulence. Going
o smaller Mach numbers ( M ), Padoan et al. ( 2007 ) showed that SPH
erforms sub-optimum when compared to finite volume methods. 
ased on this work, Bauer & Springel ( 2012 ) studied the capabilities
f SPH for subsonic turbulence at M = 0 . 3. They found that classic
vanilla) SPH fails in reproducing the expected velocity power 
pectrum as well as the dissipation range. Reasons are mainly the 
rtificial viscosity scheme used and velocity noise introduced by the 
ernel. These results raised the general question of whether SPH can 
eal with subsonic turbulence to begin with. 

An answer has been provided by Price ( 2012 ) who showed that
hese limitations are not intrinsic to SPH, but rather a consequence of
ome SPH set-ups adopted to study subsonic turbulence. In contrast 
o what previous studies reported, SPH can capture the expected 
ower spectrum by using more modern formulations of SPH that are 
ble to reduce artificial viscosity in subsonic regimes. 

The role of subsonic turbulence in galaxy clusters has been 
nalysed both from observational and theoretical perspectives. Sim- 
lations of turbulence in the ICM have been carried out mostly
sing grid codes (Iapichino & Niemeyer 2008 ; Vazza et al. 2009 ;
apichino, Federrath & Klessen 2017 ; Vazza et al. 2018 ; Mohapatra,
ederrath & Sharma 2021 ; Mohapatra et al. 2022 ). Miniati ( 2014 ,
015 ) found a lack of turbulent energy at small scales depending on
he refinement technique. In addition, they discussed the importance 
f microphysics for the evolution of turbulence. A possible impro v e-
ent for modelling turbulence has been presented by Maier et al. 

 2009 ) combining AMR with large eddy simulations. Simulations by 
olag et al. ( 2005b ) have shown that also SPH can model turbulence
n galaxy clusters when properly reducing artificial viscosity. 

In addition to the impact on gas dynamics, turbulence is respon-
ible for amplifying magnetic fields through a turbulent dynamo. 
imulations by Schekochihin et al. ( 2001 , 2004 ) and Steinwandel
t al. ( 2022 ) have focused on this turbulent dynamo, analysing its
rowth. Another work of Kritsuk et al. ( 2020 ) has focused again
n turbulent boxes with stochastic forcing, comparing different 
ydrodynamical methods and finding reasonably good convergence 
ut significant differences in computational costs. 

More recently, Sayers et al. ( 2021 ) have compared simulated
lusters to observed ones. Especially, there should be a difference 
epending on the dynamical state, with more relaxed clusters 
howing less turbulence. Simulations, however, do not al w ays find
uch a difference. Thus, it is important to accurately capture the
urbulent cascade and the decay in turbulent energy. While the latter
ould require including additional microphysics such as viscosity, 

he former also depends on the hydro scheme. 
We use MFM as an alternati ve, ne wer method to the aforemen-

ioned ones to study subsonic turbulence. MFM combines ideas of 
PH with those of a moving mesh and thus aims at solving several of

heir individual issues. The development of MFM goes back to first
deas presented by Vila ( 1999 ) and Godunov SPH (Inutsuka 2002 ;
ha & Whitworth 2003 ), which was still unstable, and to a meshless
nite element method suggested by Idelsohn et al. ( 2003 ), until the
owadays used version first formulated by Lanson & Vila ( 2008a ,
 ). We present a new implementation in the GADGET deri v ati ve
PENGADGET3 , originally based on that in the code GANDALF , where

he skeleton of the MFM implementation has been originally taken 
rom their code-base and then adjusted. Sev eral e xtensions allow its
se in cosmological simulations compared to the implementation in 
ANDALF that is focused on star and planet formation. This allows
or a stable baseline framework for applications on scales of star and
lanet formation that we extend into the cosmological integration 
ramework of OPENGADGET3 , which is a re-base of GADGET-2 with
he ability to be compiled with C ++ compilers, and making vast
se of templating. It comes with modules containing state-of-the-art 
hysics and sub-resolution models, as for instance: self-interacting 
ark matter (Fischer et al. 2022 ), magnetohydrodyanamics (MHD) 
Dolag & Stasyszyn 2009 ; Stasyszyn, Dolag & Beck 2013 ), thermal
onduction (Arth et al. 2014 ), cosmic rays (B ̈oss et al. 2023 ), star for-
ation and stellar/blackhole feedback according to the Magneticum - 
odel (Springel & Hernquist 2003 ; Tornatore et al. 2003 , 2004 ,

007 ; Hirschmann et al. 2014 ; Dolag 2015 ; Steinborn et al. 2015 ),
r with the MUPPI (MUlti Phase Particle Integrator) extension for 
on-equilibrium star formation (Murante et al. 2010 , 2015 ; Valentini
t al. 2017 , 2020 ). These extensions are so far coupled only to the
PH hydro-solver. Further work will be required to couple them also

o MFM. 
To make use of modern computer architectures, OPENGADGET3 

ncludes a hybrid MPI-OpenMP parallelization. In addition, calcula- 
ions of gravity , density , SPH hydro-force, and thermal conduction,
an be carried out on GPUs. These modules requiring most of the
untime (Ragagnin et al. 2020 ) GPU offloading can be useful for
ome applications, leading to a speed up by a factor of a few (2–4,
epending on the exact application). The long-term goal is to have
 fully publicly available updated GADGET version for OpenMP and 
penACC. 
Before the introduction of this paper, the code was solving the

ydrodynamical equations using modern SPH as formulated by 
pringel & Hernquist ( 2002 ), including modern time-dependent 
rtificial viscosity (Beck et al. 2016a ) and conduction (Price 2008 ).
MNRAS 526, 616–644 (2023) 
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ith the new implementation of MFM as a modern meshless
ethod, we can combine advantages both of this method and efforts

reviously made to optimize the pre-existing code base. This also
nvolves a treatment in order to evolve strong shocks for which
e need the time-step limiter to be non-local which is ensured by a
 ak eup scheme (Saitoh & Makino 2009 ; Pakmor 2010 ; Pakmor et al.
012 ). OPENGADGET3 closely follows the implementation described
y Beck et al. ( 2016a ). 
A main goal of this paper is to use MFM to study decaying,

ubsonic turbulence, as present in galaxy clusters. To this end,
e present a new implementation in the cosmological simulation

ode OPENGADGET3 as an alternative hydro-solver to the currently
mplemented SPH. 

This paper is structured as follows. We first describe the codebase
f OPENGADGET3 including its SPH implementation in Section 2 .
e continue with a brief o v erview on MFM and a description of

ur MFM implementation in Section 3 . In Section 4 , we use a suite
f test cases, each probing specific aspects and properties of the
ode, to validate the performance of our MFM implementation. All
ettings are kept exactly the same between test cases, independent
f the individual test case, without further tuning. We continue
ith an analysis of decaying subsonic turbulence with our new

mplementation presented in Section 4.6 . In all cases, comparisons
etween different codes and methods are provided, including MFM
nd SPH in OPENGADGET3 , MFM in GIZMO and a moving and
tationary mesh in the publicly available AREPO version. We analyse
he effect of specific numerical parameters in Section 4.8 . Our main
ndings are discussed in Section 5 . 
Additional material such as the formulation of the slope-limiters

nd a comparison of the Riemann solvers implemented are presented
n Appendices A and B , respectively. 

 OPENGADGET3 – BAC K B O N E  

olving the system of differential equations describing the evolution
f the gas requires discretizing them. In the temporal dimension,
 sufficiently small time-step � t is introduced. The spatial dis-
retisation can be obtained using various different approaches. In
PENGADGET3 , hydrodynamics is discretized either using smoothed
article hydrodynamics (SPH) or with the newly implemented MFM.
ravity is solved by a TreePM method. 

.1 Integrator and time-stepping 

or the time integration, we employ a Leapfrog scheme in kick–
rift–kick (KDK) form to achieve second order accuracy (compare
.g. Hernquist & Katz 1989 ) in the implementation following Verlet
 1967 ) and Springel ( 2005 ). 

Starting from values at time-step number n , velocities v are
pdated in a first half-step kick. It is followed by drifting the positions

r , and another, second half-step kick 

 

n + 1 / 2 = v n + 

1 

2 
a ˜ n �t (1) 

r n + 1 = r n + v n + 1 / 2 �t (2) 

 

n + 1 = v n + 1 / 2 + 

1 

2 
a ˜ n + 1 �t. (3) 

he acceleration a ̃ n = a ˜ n hydro + a n grav consists of hydrodynamical ac-
elerations a hydro and gravitational accelerations a grav . Following the
perator splitting approach, they are calculated separately. Gravity
nd hydrodynamical accelerations are e v aluated between the drift
NRAS 526, 616–644 (2023) 
nd the second half kick. Gravitational interactions depend only on
he position, and can thus be calculated at time-step n . While for
raditional SPH entropy does not change, such that also a calculation
f the hydrodynamical forces at time-step n is possible, there is an
volution of entropy and also a velocity dependence for the viscous
erms of modern SPH. Thus, we use predicted values based on the
hanges calculated during the previous time-step, updated at the drift.
he dependence of the predicted variables is indicated by ˜ n . 
For SPH, the entropic function 

 = ( γ − 1) U/ργ−1 (4) 

s integrated in two half-steps at the kicks 

 

n + 1 / 2 = A 

n + 

1 

2 

(
d A 

d t 

) ˜ n 

hydro 

�t, (5) 

 

n + 1 = A 

n + 1 / 2 + 

1 

2 

(
d A 

d t 

)
˜ n + 1 

hydro 

�t. (6) 

hile traditional SPH is conserving entropy, it is allowed to change
n the modern SPH implementation due to e.g. artificial viscosity and
onductivity. 

OPENGADGET3 uses hierarchical time-stepping to ensure synchro-
ization, while allowing adaptive time-steps, depending on different
ime-step limiters such as a Courant-like time-step criterion 

t Courant 
i = 

C Courant ah i 

c max ,i 
(7) 

ith maximum signal velocity over the neighbours c max, i , scale factor
 , smoothing length h i , and free parameter C Courant , as described by
pringel ( 2005 ). Time-steps are chosen as the largest time-step that
ulfills �t i = 2 −n �t global ≤ �t Courant 

i with time bin n ∈ N 0 . 
Accelerations are calculated only for active particles, which are

n synchronization with the current time-step, while they are not
odified for particles located on a smaller time bin, corresponding

o larger time-steps. 
For strong shocks, large differences can occur between the time-

teps of close-by particles. This is a v oided by a w ak e-up scheme,
escribed in more detail by Pakmor ( 2010 ), Pakmor et al. ( 2012 ),
nd Beck et al. ( 2016a ). OPENGADGET3 uses a criterion based on the
ignal velocity. If for any neighbour j , the signal velocity varies
trongly c max, i > f w c j with tolerance factor f w = 3, wake-up is
riggered. In this case, the particle is considered active and moved to
 shorter time-step, such that synchronization is still ensured. 

While this scheme will break conservation, it works reasonably
ell and a v oids numerical errors in strong shocks. 

.2 Gravity Solver–TreePM 

he accurate treatment of gravity is of great importance for cosmo-
ogical simulations (Springel 2010 ). In principle, it can be solved
ccurately by a direct summation, which is, ho we ver, computation-
lly e xpensiv e ( O( N 

2 )). Instead, we follo w the much more ef ficient
ombined Oct-Tree-Particle Mesh (PM) approach (Xu 1995 ; Bode,
striker & Xu 2000 ; Springel 2005 , 2010 ; Springel et al. 2021 ).
PENGADGET3 mainly follows the implementation in GADGET-2 ,
hich has been e xtensiv ely described by Springel ( 2005 ). In the

ollo wing, we briefly re vie w the main concept. The potential is split
nto short-range and long-range contributions. Short-range forces
re calculated following the oct-tree algorithm, while long-range
orces are calculated using a particle mesh. The idea of a tree
lgorithm has been proposed by Appel ( 1985 ) and Barnes & Hut
 1986 ). Nodes of an oct-tree are constructed by splitting the domain
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nto a sequence of cubes. Force-contributions of nodes satisfying an 
pening angle criterion are calculated. For numerical reasons to keep 
he equation linear with respect to adding and removing particles 
rom nodes, only the monopole contributions are taken into account. 
he implementation in GGADGET has been described by Springel 
t al. ( 2001 ). The total gravitational acceleration of particle i from
ther nodes/particles j with mass m j at location r ij relative to particle 
 and with (gravitational) softening length εj is given by 

 grav ,i = G 

N tot ∑ 

j 

r ij 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

m j 

r 3 ij 

if r ij > εj 

m j 

ε3 
j 

Corr ( r ij /εj ) if r ij ≤ εj , 
(8) 

ith total number of particles and nodes N tot . Corr is a correction
erm, taking into account the softening. G is the gravitational 
onstant. For the particle mesh (Eastwood & Hockney 1974 ), all 
articles are assigned to grid-cells, such that a discrete Fourier- 
ransformation can be calculated, with the gravitational potential 
 k in Fourier space at wavenumber k being calculated as 

− k 2 � k = 4 πGρk . (9) 

orrections for small-range truncation as well as periodic boundaries 
re applied by multiplications in Fourier space. The gravitational 
otential in real space is calculated as inverse Fourier-transform, 
nd is interpolated to the original particle positions to finally obtain 
ravitational accelerations. O PENGADGET3 uses the more modern 
FTW3 (‘Fastest Fourier Transform in the West’) library (Frigo & 

ohnson 2005 ) instead of FFTW2 for the implementation of the 
ourier transform. 

.3 Hydrodynamical Solver–SPH 

or smoothed particle hydrodynamics (SPH), the domain is decom- 
osed into a finite number of ‘particles’. The physical quantities 
t each point are represented by contributions of close-by (neigh- 
ouring) particles weighted by a kernel W i ( r i , h i ), depending on the
istance r i from particle i , and its smoothing length h i . The kernel
as to be continuous, radially symmetric, have compact support, 
nd fulfill the limit lim h → 0 W = δ, but otherwise can be chosen
rbitrarily. OPENGADGET3 offers the choice between different com- 
only used kernels, including a cubic spline (Monaghan & Lattanzio 

985 ), quintic spline (Morris 1996 ), or a Wendland C2/C4/C6 kernel
Wendland 1995 ; Dehnen & Aly 2012 ). The ef fecti ve volume of each
article is well approximated by V 

−1 
i = W( r i ), such that the density

ollows as 

( r i ) = 

∑ 

j∈ Ngb 

m j W 

(∣∣r i − r j 
∣∣ , h i 

)
, (10) 

umming o v er the neighbouring particles (Ngb). We allow for
daptive smoothing, automatically increasing resolution in high- 
ensity regions compared to low-density ones. Smoothing length 
nd ef fecti ve neighbour number N Ngb are related to the density via 

4 π

3 
ρi h 

3 
i = m̄ N Ngb (11) 

ith mean neighbour mass m̄ . As equations ( 10 ) and ( 11 ) are coupled
or fixed neighbour number, one solves for smoothing length and 
ensity iteratively via finding roots. Quantities other than the density, 
abelled with X , are approximated via 

( r 0 ) ≈
∑ 

i∈ Ngb 

X i 

ρi 

W( | r 0 − r i | , h i ) m i . (12) 
Different formulations of the hydrodynamical acceleration can be 
erived. In OPENGADGET3 the fully conservative formulation for the 
ydrodynamical acceleration (Springel & Hernquist 2002 ) 

 hydro ,i = −
∑ 

j∈ Ngb 

m j 

( 

f i 
P i 

ρ2 
i 

∇ i W ij ( h i ) + f j 
P j 

ρ2 
j 

∇ i W ij ( h j ) 

) 

, (13) 

 i = 

(
1 + 

h i 

3 ρi 

∂ ρi 

∂ h i 

)−1 

(14) 

s utilized. Instead of calculating gradients of physical quantities, all 
patial deri v ati v es are e xpressed by gradients of the kernel function.
raditional SPH has problems dealing with shocks, as well as 
eproducing mixing instabilities (Morris 1996 ; Agertz et al. 2007 ).
hese issues can be resolved by including artificial viscosity and 
onductivity. In OPENGADGET3 , time and spatial dependent artificial 
iscosity (Beck et al. 2016a ) and artificial conductivity (Price 2008 )
re utilized, minimizing their impact in regions where they are not
esired. 

 MESHLESS  FINITE  MASS  

s a second, newly implemented option, the hydrodynamical equa- 
ions can be discretized and solved following the MFM approach. 
his method conceptually combines SPH with a moving mesh, 
alculating fluxes between neighbouring particles in a scheme 
therwise similar to SPH, including weighting by a kernel. Thus, 
t is combining advantages of both methods. In contrast to SPH, the
omain associated to a particle is not spherical, but rather corresponds
o a smoothed Voronoi tesselation (Hopkins 2015 ). 

.1 Basic hydrodynamical equations 

he evolution of any ideal fluid is described by three main equations.
ass conservation leads to the continuity equation. The second 

quation is an equation of motion (Euler’s equation), corresponding 
o Newton’s second law. Energy conservation is ensured by the first
aw of thermodynamics. Within an inertial frame of reference, all 
hese equations can be combined into 

d U 

d t 
+ ∇ · ( F − v frame ⊗ U ) = S (15) 

ith outer product ⊗ and, for pure hydrodynamics, field vector U = 

 ρ, ρv , ρe), flux F = ( ρv , ρv ⊗ v + P 1 , ( ρe + P ) v ) and vanishing
ource terms S = 0 . 

In total, equation ( 15 ) provides 5 constraints for 6 variables: fluid
ensity ρ, energy density e , pressure P , and the three components of
he velocity v . The missing constraint is provided by an equation of
tate, connecting the pressure to the internal energy density u . For an
deal gas, it takes the form 

 = ( γ − 1 ) ρu (16) 

here the adiabatic index γ amounts to 5/3 if the gas is monoatomic.

.1.1 Equations in an expanding universe 

n a cosmological context, the expansion of the universe has to be
aken into account. One possibility is to rewrite equation ( 15 ) for a
niverse with scale factor a , accounting for these effects, as realized
.g. in GADGET-1 

∂ v 

∂ t 
+ 

1 

a 
( v · ∇ ) v + 

ȧ 

a 
v = − 1 

aρ
∇ P − 1 

a 
∇ �, (17) 
MNRAS 526, 616–644 (2023) 
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Figure 1. Sketch of extrapolation from central particle/cell values to face 
values. Using the central values corresponds to a zeroth order interpolation, 
leading to a first order scheme (black solid lines). It can be extended to be 
second order by extrapolating using a slope defined by neighbouring parti- 
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at the faces (see left face) or ev en ne gativ e densities/pressures (see right face). 
This issue can be solved by limiting the slopes using different procedures (red 
dash–dot line). See the text for further details. 
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∂ ρ

∂ t 
+ 

3 ̇a 

a 
ρ + 

1 

a 
∇ · ( ρv ) = 0 , (18) 

∂ 

∂ t 
( ρu ) + 

1 

a 

 v · ∇ ( ρu ) = − ( ρu + P ) 

(
1 

a 
∇ · v + 3 

ȧ 

a 

)
. (19) 

In OPENGADGET3, we follow a different approach, and do cal-
ulations using the so called supercomoving coordinates, as first
ntroduced by Martel & Shapiro ( 1998 ). Code units (denoted by
ubscript c ) are related to physical units ( p ) via 

 c = a −1 x p (20) 

c = a 3 ρp (21) 

 c = av p (22) 

 c = a 3 γ P p (23) 

 c = a 3( γ−1) u p , (24) 

uch that equation ( 15 ) keeps the same form when written in
ode units except for an additional contribution in the energy and
omentum evolution due to the Hubble expansion. As we use

eculiar v elocities, the e xplicit dependence on the Hubble flow for
omentum is absorbed into the choice of units. 

.2 MFM discretization 

athematically, equation ( 15 ) is discretized by multiplying by a
artition function 

 i = 

1 ∑ 

j∈ Ngb W j 

W i (25) 

here W k = W( | r − r k | , h k ) and inte grating o v er the volume. A
ore detailed deri v ation has been provided by Lanson & Vila ( 2008a )

nd Gaburov & Nitadori ( 2011 ). In this paper, we only focus on the
ey results rele v ant for the implementation. For e very particle i ,
hanges in the quantities U i = ( ρi , ρi v i , ρi e i ) are given by source
erms S i , which vanish for pure hydrodynamics, and pairwise fluxes
 ij with the neighbours j 

d 

d t 
( V i U i ) 

˜ n + 

∑ 

j∈ Ngb 

(
F 

˜ n 
ij · A 

eff ,n 
ij 

)
= S ˜ n i V 

n 
i . (26) 

alculating pairwise fluxes automatically ensures mass, momentum
nd energy conservation. The effective interface area A 

eff 
ij depends

n the partition function and ef fecti ve volume V i , 

A 

eff 
ij = V i 

˜ ψ j − V j 
˜ ψ i . (27) 

here 

˜ 
 

α
j ( x i ) = B 

αβ

i ( x j − x i ) βψ j ( x i ) (28) 

ith Einstein summation convention over β in equation ( 28 ). The
atrix B is chosen in order to be second order accurate (Lanson &
ila 2008a ) 

 i = E 

−1 
i (29) 

 

αβ
i = 

∑ 

j∈ Ngb 

( x j − x i ) α( x j − x i ) βψ j ( x i ) . (30) 

Also, the ef fecti v e volume depends on the inte grated partition
unction and can be expressed in terms of the number density n i : 

 i = 

∫ 
ψ i ≈ n −1 

i (31) 
NRAS 526, 616–644 (2023) 
For highly unisotropic particle arrangements, the matrix E can
ecome ill-conditioned, preventing an accurate numerical matrix
nversion. As described by Hopkins ( 2015 ), we use the condition

umber N cond ,i = N 

−1 
dimensions 

√ ∣∣∣∣E 

−1 
i 

∣∣∣∣ | | E i | | as measure of how well
onditioned the matrix is. For N cond, i > 100 gradients are calculated
nly first order in an SPH-like way. 
Most importantly, no tessellation has to be calculated explicitly as

t would be necessary for a moving mesh, but an SPH-like neighbour
earch is used, drastically reducing the computational costs compared
o the mesh reconstruction. 

In contrast to SPH, for which the mass density is estimated
ccording to equation ( 11 ), for MFM, the number density n i is
stimated together with the smoothing length in an iterative process,
olving 

 ( r i ) = 

∑ 

j∈ Ngb 

W 

(∣∣r i − r j 
∣∣ , h i 

)
, (32) 

4 π

3 
n i h 

3 
i = N Ngb . (33) 

lso for MFM, N Ngb corresponds to the ef fecti ve neighbour number.
The flux in equation ( 26 ) is calculated numerically using a

iemann solver, where we use an exact Riemann solver, following
he implementation by Toro ( 2009 ) with a tolerance of 10 −4 , and
 maximum of 8 iterations. Alternatively, we implemented the
iemann-solv er that pro vides an e xact solution to the linearized

ystem of equations (Roe-solver; Roe 1981 ), as well as the two
ost common fla v ours of a Harten–Lax–van–Leer solver (HLL) and
LLC (Toro 2009 ). For all these, the exact Riemann solver is used

s fallback in case the faster approximate solver fails. The effect of
he choice of the solver is discussed in more detail in Appendix B . 

The Riemann solver requires knowledge about velocity , density ,
nd pressure values at the interfaces, summarized in the primitive
uid vector 

W = 

⎛ 

⎝ 

ρ

v 

P 

⎞ 

⎠ . (34) 

n principle, values at the particle centre can be used directly,
ollowing a zeroth order interpolation. While such a scheme would
e stable, it is only first order accurate and very dif fusi ve (Godunov
959 ; Barth & Jespersen 1989 ). To this end, we follow a two-step
pproach, as illustrated in Fig. 1 , similar to what is usually done for
rid-based methods and in other MFM implementations. 
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In a first step, gradients of the primitive fluid vector are calculated
sing a second-order accurate matrix gradient estimator 

 ∇ ⊗ W ) αi = 

∑ 

j∈ Ngb 

(
W j − W i 

)
˜ ψ 

α
j ( x i ) . (35) 

he position and velocity of the face is estimated via 

 r frame 
ij = d r ij s i , (36) 

 

frame 
ij = s j v j + s i v i , (37) 

here we set 

 i = 

h i 

h i + h j 

(38) 

o be second order accurate instead of s i = 1/2 for a first-order
ccurate interpolation. 

By choosing the reference frame corresponding to the rest frame 
f the interface, the scheme becomes Lagrangian. In MFM, also the 
oundaries are assumed to deform in a Lagrangian way, eliminating 
ass fluxes between neighbours. As the actual face velocity and 

eformation does not exactly correspond to the one assumed during 
 time-step, second order errors are introduced (Hopkins 2015 ). An 
lternati ve is allo wing for mass fluxes using the MFV method, which,
o we ver, also is only second order accurate. In addition, it has been
hown that MFV can run into problems by draining the mass for
articles accelerated into low-density environments in cosmological 
imulations (Alonso Asensio et al. 2023 ). For this reason, we do not
se this scheme here but focus on the MFM method. An additional
dvantage of MFM and finite volume schemes in general o v er SPH
s that no additional dissipation terms are necessary. 

The face-values are extrapolated according to 

 

frame 
i = W i + d r frame 

i · ∇ ⊗ W i . (39) 

o a v oid o v er or undershooting or ev en unphysical, ne gativ e
ensities, or pressures when strong gradients are present in the fluid, 
hese gradients are reduced by a factor ∇ W i , k → αi , k ∇ W i , k , 0 ≤
i , k ≤ 1 in a second step in the face interpolation where αi , k can 
e different for each particle i and component k . We implement
ifferent options for such a slope-limiter, including a total variation 
iminishing (TVD) one (Duffell & MacFadyen 2011 ), the one 
rom AREPO (Springel 2010 ) originally presented by Barth & 

espersen ( 1989 ), the scalar limiter from the GANDALF code (Hubber
t al. 2018 ), and the one used in the GIZMO code (Hopkins 2015 ),
escribed further in Appendix A . In addition, the pairwise limiter 
ccording to the GIZMO code can be used. 

In a third, final step the Riemann solver is used to calculate
uxes, which can then be converted to hydrodynamical acceleration 
nd energy changes 1 . All these steps are only applied to particles
hich currently reside in an active time bin. While this workflow 

s computationally convenient, it makes the scheme less exact, as 
ld gradients are used for the flux calculation. Nevertheless, the 
cheme still performs accurate enough in practical applications, as 
lso argued by Hopkins ( 2015 ). 

In addition, in our implementation fluxes are updated only for the 
ctive particle, which breaks conservation. This could be impro v ed by 
pdating fluxes for both particles and only considering neighbours on 
ower time bins. As we found no significant disadvantage for practical 
pplications, we kept the computationally more convenient version. 
 As the Riemann solver requires physical units instead of (comoving) code 
nits, variables have to be converted accordingly (compare also Hopkins 
015 , appendix H5). As flux calculations are done at the interface, no Hubble 
xpansion has to be taken into account for the momentum changes. 

3

T
h  
.3 Energy-entropy switch 

hile the Riemann solver outputs total energy changes, the rest 
f the code requires internal energies. Total energy itself is never
sed in the code. The total energy change can straightforwardly be
onverted into internal energy change starting from equation (26) of 
aburov & Nitadori ( 2011 ), rewriting it as a difference equation, as
e have small, but finite time-steps (
d U 

d t 

)n 

= 

(
d E tot 

d t 

)n 

−
(

d 

d t 

(
1 

2 
m v 2 

))n 

(40) 

≈
(

d E tot 

d t 

)n 

− 1 

2 
m 

n 

(
( v + d v ) 2 − v 2 

d t 

)n 

(41) 

≈
(

d E tot 

d t 

)n 

− m 

n 

(
v n + 

1 

2 

(
d v 

d t 

)n 

�t n 
)

·
(

d v 

d t 

)n 

. (42) 

he velocity change can be calculated directly from the momentum 

hange returned by the Riemann solver, as for MFM, the mass is kept
onstant. Thus, both time deri v ati ves of total energy and velocity
an be obtained from the Riemann solver output. We introduce the
dditional term 

1 
2 

(
d v 
d t 

)n 
�t n in the bracket, which is a second order

orrection and impro v es the accuracy in the discretized equation,
hich is a result of discrete time-steps. While this transformation 

rom total to internal energy does not conserve total energy to
achine precision, it increases the precision in the evolution of 

he internal energy itself. F or v ery cold flows, the internal energy
volution is still dominated by numerical errors. This is a v oided by
ssuming purely adiabatic changes in these rare cases. We follow the
dea of the implementation in the GIZMO code, where the switch is
nly active for specific test problems such as the Zeldovich pancake. 
f active, internal energy 

 est ,i = U i + d U i (43) 

s compared to potential and/or kinetic energy 

 pot ,i = m i a grav · 0 . 5 h i , (44) 

 kin ,i = 0 . 5 m i max 
j∈ Ngb 

(
v j − v i 

)2 
. (45) 

f the internal energy is small enough compared to other energy
ontributions 

 est ,i < α1 E pot ,i + α2 E kin ,i (46) 

n physical units, the new internal energy for particle i is instead
alculated assuming adiabatic expansion or contraction. The param- 
ters α1/2 have to be tuned to only affect the evolution of particles
here necessary. We provide a comparison between different values 

n Section 4.8.2 . 
The internal energy is updated similarly to the entropy for SPH in

wo half-steps at the kicks, following a second order time integration
imilar to the entropy in SPH 

 

n + 1 / 2 = U 

n + 

1 

2 

(
d U 

d t 

) ˜ n 

�t, (47) 

 

n + 1 = U 

n + 1 / 2 + 

1 

2 

(
d U 

d t 

)
˜ n + 1 

�t. (48) 

or cosmological simulations, additional adiabatic contributions due 
o the Hubble flow are added. 

.4 Switching between SPH and MFM in OPENGADGET3 

o substitute SPH with MFM, the general code-structure does not 
ave to be altered. Mainly, the SPH specific force calculation has to
MNRAS 526, 616–644 (2023) 
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e replaced by the three steps of the MFM calculation, consisting of
radient calculations, slope-limiting, and the actual flux calculation.
s the Riemann solver both requires and outputs physical quantities,
hile the rest of the code deals with code units, these units have to
e converted according to equations ( 20 ) to ( 24 ) just before the
ux calculation. At all places, where results of that calculation,

ncluding the hydrodynamical acceleration, are used, they first have
o be converted back to physical units. 

Also, MFM calculates internal energy changes following the
utput of the Riemann solver, while in SPH the entropy is evolved. 

.5 Differences to previous implementations of MFM 

hile the general concept of MFM with respect to the implemen-
ations introduced in GIZMO and GANDALF stays the same, there
re se veral dif ferences compared to these pre viously made imple-
entations. Our implementation is based on the one in GANDALF ,
hich is originally intended to be well suited for star and planet

ormation. We expand this implementation by including comoving
ntegration and other extensions such as an energy-entropy switch
o be used for cosmological applications. In addition, we change
he time integration scheme from a second-order accurate MUSCL-
ancock to a second-order accurate Leapfrog KDK, consistent with
PH in O PENGADGET3 . 
The main difference of O PENGADGET3 compared to GIZMO is that

uxes are by default calculated using an iterative, exact Riemann
olver compared to an approximate HLLC Riemann solver used in
IZMO , with an exact Riemann solver only used as fallback. 
In comparison to PKDGRAV-3 (Alonso Asensio et al. 2023 ), the

nergy-entropy switch and the implementation of how to deal with
nisotropic particle distributions is different and more similar to
IZMO . 
In addition, there are a few minor differences such as the second-

rder correction in equation ( 42 ). We also made the pairwise limiter
agrangian, as described in Appendix A , which was independently
one also in PKDGRAV-3 . The convergence of the density calculation
s slightly different between the codes. We follow the same imple-
entation as for SPH in OPENGADGET3 , just replacing the mass

ensity by the number density . Finally , our implementation employs
 hybrid MPI-OpenMP parallelization as done for other modules of
 PENGADGET3 . 

 TEST  CASES  

e use several test cases to probe the ability of the different
ydro-methods to accurately follow gas evolution. Only few tests
ave an analytical solution, including soundwaves and different
hocks. Also a set of MHD waves with analytical solution has
een presented by Berlok ( 2022 ), which could be used for tests of
ater MHD e xtensions. Man y other tests can be used for a more
ualitative analysis. All of them explore specific numerical aspects
mportant for cosmological simulations. 

We use these tests to compare our new MFM implementation
n OPENGADGET3 to SPH in OPENGADGET3 , MFM in the public
IZMO 

2 version and the publicly available version of the moving
esh code A REPO 

3 . 
NRAS 526, 616–644 (2023) 

 Obtained from https:// bitbucket.org/ phopkins/gizmo-public/ src/ master/ 
021 February. 
 Obtained from https:// gitlab.mpcdf.mpg.de/ vrs/ arepo 2021 June. 

i  

c  

c

4

.1 Settings 

e aim for a fair comparison of the different codes throughout the
aper but adopt a general setting for slope limiters, Riemann-solvers
MFM) as well as the artificial diffusion terms (SPH) that one would
dopt in cosmological simulations. While this leads to o v erall good
erformance of all solvers on almost all test cases, there are a few test
roblems (e.g. the square test in Section 4.3.3 ) for which, this is not
orking ideal and we will discuss this in detail in the remainder of

he paper. If not otherwise mentioned, we assume an ideal gas with
= 5/3 and all code operate on adaptive time-steps for all tests (i.e.
e never force a small constant time-step to impro v e the accurac y of

he results). 
MFM is used with a cubic spline kernel and 32 (24) neighbours

n 3d (2d). The slope limiter from GIZMO in combination with their
airwise limiter, both as presented in Appendix A , is used. Consistent
ettings are chosen between O PENGADGET3 and GIZMO . For SPH,
 Wendland C6 kernel, including bias correction (Dehnen & Aly
012 ), with 295 (64) neighbours in 3d (2d) is used. The modern
ime-dependent artificial viscosity scheme of Beck et al. ( 2016a )
nd artificial conductivity (Price 2008 ) are included. For AREPO, we
se additional mesh regularization based on the centre of mass, and
he ‘roundness’ of the cells. An o v erview of all settings is made
ublicly available. 4 If not otherwise stated, the initial conditions
ICs) are created with equal particle masses. In most cases, particles
re arranged in a (perturbed) regular grid in order to reduce noise
ntroduced by the initial particle distribution. 

.2 Stability 

.2.1 Soundwave 

s a first test, we adopt a sinusodial soundwave with density ρ = 1
nd small perturbation amplitude �ρ = 10 −4 in a box of length 1 in
 -direction and 0.75 in y / z-direction. The particles are arranged in a
erturbed hexagonal close packed (hpc) grid with varying resolution.
he number of particles is ranging from 64 3 · 0.75 2 up to 128 3 · 0.75 2 .

n the following, we will define the resolution by the number of
articles per unit-length in x -direction. We adopt a wavenumber k =
 π and a speed of sound of c s = 2/3. For this test, there is an analytic
olution ρ( x , t ) = ρ0 + �ρsin ( k ( x + c s t )), which makes this test
ell suited to perform a conv ergence analysis. F or this purpose, we
easure the L1 error norm 

1 
N tot 

∑ N tot 
i | ρi − ρ( x , t) | , shown in Fig. 2 .

All methods are able to evolve the soundwave, while the accuracy
s well as the precise convergence behaviour differ among the codes.
e observe a similar convergence between the MFM implementation

n GIZMO and OPENGADGET3 being between first and second order.
hile theoretically second order convergence would be expected,

he slope-limiter reduces the order of convergence, as discussed
y Alonso Asensio et al. ( 2023 ). The convergence for SPH in
PENGADGET3 and the A REPO code are similar, but e ven belo w first
rder. For AREPO , the main reasons for this low-order convergence
re the mesh regularization, which introduces small numerical noise,
nd the fact that faces which contribute by less than 10 −5 to the total
ace area are neglected (R. Pakmor, 2023 pri v ate communication).
he convergence can be improved fixing these two points, as shown

n Appendix C , leading to a similar convergence as for MFM much
loser to second order. Nevertheless, these changes w ould mak e the
ode more unstable in cosmological simulations. 
 ht tps://github.com/fgrot h/hydro t ests 

https://bitbucket.org/phopkins/gizmo-public/src/master/
https://gitlab.mpcdf.mpg.de/vrs/arepo
https://github.com/fgroth/hydro_tests
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Figure 2. L1 norm for the soundwave at different resolutions. The order of 
convergence b is obtained from a fit. While MFM in both implementations 
shows between first and second order convergence, SPH and the moving mesh 
have a convergence even below first order. 
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Figure 3. Offset-, amplitude- and scatter-errors of the density of a soundwave 
at t = 

2 
c s 

calculated with MFM and SPH in OPENGADGET3 , MFM in GIZMO 

and a moving mesh in AREPO at different resolutions. The scatter converges 
second order for all methods, while other errors show different convergence 
behaviour. MFM shows between first and second order convergence for all 
error-components. 
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In order to get a more detailed analysis, we split the error between
rrors in the position, in the amplitude, and scatter as shown in Fig. 3 .

A sinusodial soundwave is fit to the density distribution, such 
hat the offset and amplitude differences to the e xpected wav e are
btained. The remaining deviations, mostly being scatter, are then 
uantified by an L1-norm. 
Deviations from the expected sound speed are related to dispersion 

rrors, and will lead to an offset compared to the analytical solution.
his offset error is shown in the upper panel. We observe for MFM

n both implementation the convergence to be between first and 
econd order, consistent between both codes. For SPH and AREPO , 
he o v erall error is roughly one order of magnitude smaller at the
owest resolution, b ut ha ving a conv ergence ev en worse than first
rder. For SPH, this trend can be explained by low-order errors,
hich are prominent for traditional SPH, and still partly left for
odern SPH. 
The error in the amplitude, shown in the middle panel, is related

o numerical diffusion. As we see also in other tests, the Rie-
annn solver and the slope-limiter introduce numerical dif fusi vity 

or MFM, which thus has the largest error. Differences between 
he different MFM implementations can be explained by different 
iemann solvers used. SPH and AREPO show much lower errors. The 
on vergence behaviour , ho we ver, is again better for MFM compared
o the other methods. In both implementations, it is roughly second 
rder, while for the other methods, it appears to be approximately 
rst order. 
Finally, it is worth to note that the resulting soundwave does not

ave perfect sinusodial shape but shows scatter in the amplitude. 
his is mainly a result of the smoothing length/density iteration and 

he threshold chosen for the value to be taken as converged. We
uantify this error by the L1 error norm, shown in the bottom panel
f Fig. 3 . All methods show roughly second order convergence, 
hile the amplitude of the error is dif ferent. Dif ferences between
FM and SPH in OPENGADGET3 can be explained by the different 

ernel used, while other codes have differences in the iteration and 
MNRAS 526, 616–644 (2023) 
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Figure 4. Evolution of the Kepler disc using different hydro-methods. 
Surface density at two times per method: t = 12.5 (upper left) and t = 
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reat parameters for convergence slightly differently. The large error
or AREPO , even at higher resolution, makes the values for the other
rrors more uncertain. In addition to the errors already mentioned,
he soundwave deforms and steepens up due to non-linear terms
n the evolution. This non-linearity will lead to an additional small
ut constant term in the scatter error in the bottom panel of Fig. 3 .
 reduction could be achieved by reducing the amplitude, which
ould also make scatter errors be more significant or the convergence
ore e xpensiv e. As non-linear contribution are e xpected to become

mportant when L 1 ≈ ( �ρ/ ρ) 2 = 10 −8 in our set-up, this term will
ot be rele v ant for the resolutions considered. 

.2.2 Kepler disc 

he Kepler disc is an important test case for cosmological simula-
ions, allowing to study the ability of the code to conserve angular
omentum and maintain stable orbits o v er time. Especially, the

ffect of viscosity can be analysed. To this end, we initialize a two-
imensional box sufficiently large to contain all particles. The ICs
re taken from Hopkins ( 2015 ) and are initialized with 48 240 gas
articles with equal masses, arranged in a grid-like structure and
et-up with vanishing pressure of P = 10 −6 . The gas surface density
istribution is given via 

 = 0 . 01 + 

⎧ ⎨ 

⎩ 

( r/ 0 . 5) 3 if r < 0 . 5 
1 if 0 . 5 ≤ r ≤ 2 
(1 + ( r − 2) / 0 . 1) −3 if 2 < r. 

(49) 

or the AREPO run, we adopt a low-density mesh with vanishing
ressure at a resolution of 16 particles per unit length distributed
round the disc as well as inside the central hole of the disc. 

We adopt an external potential � = −( r 2 + ε2 ) −1/2 with resulting
ravitational acceleration of the form 

g = −r 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
( r/ 0 . 35 ) 2 

( r 2 ) 1 . 5 
− ( 0 . 35 −r ) / 0 . 35 

( r 2 ) 1 . 5 

)
if r ≤ 0 . 35 (

1 

( r 2 ) 1 . 5 

)
if 0 . 35 < r < 2 . 1 (

1 + ( r−2 . 1 ) / 0 . 1 

( r 2 ) 1 . 5 

)
if 2 . 1 ≤ r. 

(50) 

e follow the evolution of the disc until t = 120, corresponding to
20 orbits at r = 1. The resulting density at t = 120 and t = 12.5 is

hown in Fig. 4 . 
Initially, all methods produce spirals as a result of perturbations in

he ICs. While for more traditional SPH with Balsara viscosity switch
Balsara 1998 ) these lead to a destruction of the disc after only a few
rbits, consistent with the results of Beck et al. ( 2016a ), the modern
PH implementation in OPENGADGET3 with the impro v ed viscosity
cheme of Beck et al. ( 2016a ) drastically increases the stability of
he disc. While the inner and outer regions still show some decay,
he main part of the disc is stable for the whole evolution considered.
or MFM, the disc remains stable for more than 20 orbits. We
bserve that the inner and outer parts of the disc degrade much less
ompared to SPH. The initial perturbations are diffused throughout
he disc, which shows slightly larger perturbations in the main
art compared to the SPH calculation. Both, our implementation
nd the one in GIZMO , show qualitatively similar results. The
REPO run turns out to produce the most stable disc. Only a slight
egeneration at the boundaries can be observed. Further studies
ould be needed to analyse whether this is a numerical effect or
ue to interaction with the ambient medium not present in the other
alculations. 
NRAS 526, 616–644 (2023) 
.3 Tests for fluid mixing instabilities 

ixing occurs in a variety of cosmological situations, most promi-
ently during ram-pressure-stripping. To this end, we analyse the
bility of the different codes and methods to evolve such mixing
nstabilities. 

.3.1 Rayleigh–Taylor instability 

ne popular fluid-mixing test is the Rayleigh–Taylor instability. It
an be used to explore how well the code can describe unstable
rowing modes. The set-up we use is taken from Hopkins ( 2015 ). The
alculations are preformed in a two-dimensional periodic box with
ide-lengths 1, populated with 65 536 particles where the particles at
 < 0.1 and y > 0.9 are fixed as boundary conditions. In contrast to
he other codes, for AREPO the boundary particles are not fixed but
nstead a relflective boundary condition is used. 

A fluid of high density ( ρ = 2) is placed on top of a low-density
edium ( ρ = 1) in hydrostatic equilibrium. For this test-case, we

ake γ = 1.4, as for a diatomic gas, such as molecular hydrogen and
pply the constant gravitational acceleration 

a grav = −0 . 5 ̂  y . (51) 

o allow the instability to grow, a small velocity perturbation at the
hase boundary is introduced (for more details see Hopkins 2015 ). 
In Fig. 5 , we show that all methods are perfectly able to evolve the

nstability. 
A major difference between the different methods is the presence

f asymmetries and secondary instabilities. While these can be
een clearly for MFM, both in OPENGADGET3 and GIZMO , and
re also present in the AREPO calculation where they appear more
ymmetric, we find that they are absent from the SPH calculation,
ue to the smoothing o v er the larger kernel and the ef fecti vely
ower spatial resolution (e.g. Marin-Gilabert et al. 2022 , for a more
etailed discussion of the occurance of secondary insatbilties and
heir physical meaning). The results of AREPO indicate the sharpest
oundary and highest density in the tip, followed by MFM. The



MFM in OPENGADGET3 625 

Figure 5. Rayleigh–Taylor instability at time t = 3.6. Comparison between the different hydro-methods. Vertical line marks the initial position of the phase 
boundary. Differences are mainly the presence or absence of secondary instabilities. 
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articles close to the boundary for AREPO show still a clear imprint
f the initial grid-like particle distribution. We note that the numerical 
if fusi vity within modern SPH causes the boundary of the instability
o have a shallower gradient and smears out initial asymmetries. In
ddition, the ef fecti ve spatial resolution is lo wer by a factor of ≈2
ompared to MFM due to the larger neighbour number and thus SPH
eaches a much lower density in the tip of the instability. 

.3.2 Kelvin–Helmholtz Instability 

imilar to the Rayleigh–Taylor instability, also the Kelvin–
elmholtz instability is a famous example for fluid mixing. Again, we 
se the set-up provided by Hopkins ( 2015 ). Two fluids of densities
1 = 1 and ρ2 = 2 in hydrostatic equilibrium are initialized in
 2D periodic box, with initial velocities v 1 = 0 . 5 ̂  x , v 2 = −0 . 5 ̂  x 
nd a small perturbation following McNally, Lyra & Passy ( 2012 ).
he set-up includes in total 774 144 particles. At time t = 2.5
orresponding to ≈1.2 τKH in units of the Kelvin–Helmholtz time- 
cale τKH = 

λ
�v x 

ρ1 + ρ2 √ 

ρ1 ρ2 
(compare e.g. Junk et al. 2010 ), the instability

as produced a roll for all methods, as shown in Fig. 6 . 
Differences are present in the inner structure of the roll. Overall, the 

ualitative results are very similar to those for the Rayleigh–Taylor 
nstability. SPH is smoothing the roll, showing no secondary instabil- 
ties and evolving more smoothly towards later times. Compared to 
MNRAS 526, 616–644 (2023) 
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Figure 6. Build-up of a 2D Kelvin–Helmholtz instability at t = 2.5 comparing different methods. Horizontal dashed lines mark the initial position of the phase 
boundary. All methods produce the roll, but with differences in their inner structure. 
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hat, MFM in both implementations shows a clear separation between
he higher-density roll and the less dense medium, with the presence
f secondary instabilities. A more detailed analysis of the Kelvin–
elmholtz instability, also using our new MFM implementation,
as been done by Marin-Gilabert et al. ( 2022 ). They also show
hat the secondary instabilities can be a v oided by using a higher
eighbour number in combination with a higher-order kernel. This
ill increase the intrinsic viscosity and prevent mixing in form of

econdary instabilities. Also, AREPO shows secondary instabilities,
resent especially inside the roll. When present, these perturbations
ill finally dominate the evolution o v er the build-up of the roll

or t � 3. 
NRAS 526, 616–644 (2023) 

m  
.3.3 Hydrostatic square 

s both aforementioned fluid-mixing tests contain sharp boundaries
hat deform due to instabilities, the understanding of the evolution
f such boundaries evolving without perturbations imprinted in the
Cs is important. The Hydrostatic square tests this behaviour, as it is
ell suited to study the stability of edges related to numerical surface

ension. Similar tests have been performed e.g. by Hess & Springel
 2010 ) and Hopkins ( 2013 , 2015 ). 

We set up a two-dimensional box of size L = 1 with periodic
oundary conditions. It is filled with 7168 gas particles with equal
asses, arranged in two regular grids, one grid for the ambient
edium ( ρa = 1, P a = 2.5) and one for the square with side-length
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Figure 7. Density of the hydrostatic square evolved until t = 10 using 
different methods. The initial location of the high density ‘square’ region 
is o v erplotted as contour. Only AREPO is able to keep the initial square shape, 
while other methods lead to deformation of the square. 
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Figure 8. Hydrostatic square at t = 10. Comparison of MFM and SPH at two 
different resolutions, Top: 7168 particles, Bottom: 114 688 particles (increase 
in resolution by factor 4. Both, MFM and SPH, show convergence of the shape 
of the square. 
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 /2 with increased density ρs = 4 in hydrostatic equilibrium ( P s =
 a ). In Fig. 7 , we compare the resulting density distribution at time
 = 10, evolved with the different methods. 

As the ICs are set in hydrostatic equilibrium, we would expect no
hanges to occur. This ideal state is only achieved using the moving
esh code AREPO . Theoretically, we would expect the same to be true

or MFM, as shown by Hopkins ( 2015 ). They use, however, a strongly
dealized set-up compared to ours. Especially, they use a regular grid 
or all particles, and increased particle masses within the square. For
ur set-up, the gradient estimate at the boundary does not conserve 
inear gradients. Instead, it is biased by the in-homogeneous particle 
istribution due to two separate grids, especially in combination with 
he slope-limiter. A more detailed analysis of the effect of the slope
imiter is provided in Section 4.8.1 , where we have shown that the
mount of surface tension and resulting deformation of the square 
trongly depends on the slope-limiter. We observe, using both our 

FM implementation and GIZMO , that for MFM, the edges of the
quare start to deform, followed by some numerical instability, which 
eads to a more asymmetric deformation. Increasing the resolution 
y a factor of 4, as shown in Fig. 8 , this instability occurs slower and
he square preserves its shape much better. 

Also using SPH, the square deforms. As expected, it becomes more
ircular, caused by numerical errors, which behave as surface tension 
compare e.g. Price 2008 ). For traditional SPH, these errors should 
e low-order. We observ e, howev er, that this effect can be drastically
educed by increasing the resolution, as shown in Fig. 8 indicating 
hat modern SPH implementations, as used in O PENGADGET3 , reduce 
ow-order errors and impro v e conv ergence. Ov erall, for this specific
est surface tension for SPH, but also for MFM can be observed. A
oving mesh performs best, preserving the situation perfectly. MFM 

t later times shows some numerical errors leading to a more asym-
etric deformation, which converge away with increasing resolution. 
.3.4 The ‘Blob’ test 

 more complex problem is the blob test. It is designed to mimic
am-pressure stripping by an interplay of the evolution of shocks and
uid-mixing instabilities. We use the set-up described by Hopkins 
 2015 ) (compare also Agertz et al. 2007 ). A three-dimensional box
ith side-length 2000 in x- and y -direction and 6000 in z-direction is
opulated with 9641 651 particles. A cloud of higher density ρcloud =
0 ρwind is placed into a wind tunnel with supersonic flow at M = 2 . 7
nd density ρwind = 2.6 · 10 −8 . Both phases are set up in pressure
quilibrium. 

The resulting density in a slice through the cloud at t = τKH and
 = 4 τKH is shown in Fig. 9 . 

In front of the cloud, a bow shock forms. At the Kelvin–Helmholtz
ime-scale τKH = 2, the cloud has developed instabilities. These are 
uch more pronounced for MFM and AREPO , while for SPH, the

loud deforms, without showing instabilities. The precise form of 
he cloud differs between our MFM implementation, that in GIZMO 

nd the moving mesh code AREPO . Nevertheless, the cloud mass,
efined by the particles obeying ρ > 0.64 ρcloud, i and u < 0.9 u amb, i ,
s very similar for all methods until τKH , shown in Fig. 10 . As
xpected, the MFM calculations line up with the calculations done 
y Hopkins ( 2015 ). 
The periodic bumps are a result of the self-interaction of the shock

ue to the choice of boundary conditions. 
At later times, the evolution strongly deviates. While for MFM as

ell a moving mesh, secondary instabilities build up and lead to a
isruption of the cloud, it is more stable in SPH. Compared to the
ore traditional SPH results of Hopkins ( 2015 ), ho we ver, we find the

lob to decay stronger, as modern SPH with time-dependent artificial 
iscosity and conductivity is able to evolve instabilities much better, 
hus allowing for more mixing. 
MNRAS 526, 616–644 (2023) 
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M

Figure 9. Blob at t = τKH and t = 4 τKH as small insertion comparing different hydro-methods. At the earlier time, SPH leads to much less deformation due to 
less instabilities building up, while MFM in both implementations as well as AREPO agree qualitatively. At late time, MFM and AREPO are fully mixed, while 
SPH still has some structure remaining. 

Figure 10. Decay of the cloud fraction surviving for the different methods. 
In the background, comparison lines of the results by Hopkins ( 2015 ) for 
MFM (black, solid) and (traditional) SPH (orange dashed) are shown. MFM 

and AREPO agree very well, while SPH shows less mixing. 
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.4 Tests for shock-capturing 

.4.1 Sod shock-tubes 

nother important capability of the code is to capture strong shocks
f (arbitrarily) large Mach number. We begin testing this on a simple
od shock-tube based on the set-up of Sod ( 1978 ). The test is
reformed in a three dimensional periodic box of size L x = 140,
 y = L z = 1 with two fluids of different density and pressure ( ρ1 =
, P 1 = 1; ρ2 = 1/8, P 2 = 0.1 for γ = 1.4) that are initialized in a
NRAS 526, 616–644 (2023) 
lass-like configuration of in total 216 090 particles. When the two
hases start interacting, a shock begins to move to the right. In Fig. 11 ,
e show the resulting structure at t = 2.5 for the MFM calculations

t different Mach number and compare them to the analytic solution.
The expected profiles are matched very well, for all the Mach

umbers adopted in this work, ranging from a very low M = 1 . 5
hock to a strong M = 100 shock. This ability is directly connected
o the accuracy of the Riemann solv er. F or higher Mach numbers,
ncreasing peaks in velocity and entropy at the shock front are present
s a result of the non-TVD slope-limiting procedure, which has
lso been reported by Hopkins ( 2015 ). We note that this peak and
earby oscillations would be even larger of no limiter was used,
nd can be a v oided even better by using a TVD-limiter, which has
ore disadvantages in other cases. With increasing Mach number,
 sufficiently small time-step becomes more important. The scatter
n velocity for the high M = 100 shock, as well as the small offset
n the position of the shock front converge away with decreasing
ime-steps. 

The scatter in density present at all Mach numbers is a result of the
hoice of the ICs, which are set up in a glass-like configuration and
esigned for a higher neighbour number. It does not converge for low
eighbour numbers, as chosen for MFM. The pressure profile shows
he typical bump at the rarefaction fan, as well as the pressure blip
t the contact discontinuity, shown in more detail in Fig. 12 for the
ntermediate M = 10 shock. This indicates the presence of surface
ension-like error terms, introduced by the slope limiter. 

As discussed in Section 4.3.3 on the example of the hydrostatic
quare, these terms are present for SPH and both MFM implementa-
ions, but not for AREPO , manifesting also in the presence or absence
f the pressure blip for the different methods. The shock front is
aptured equally well for MFM and SPH, though less smoothed out
or MFM due to the lower neighbour number. AREPO poorly captures
he behaviour at the shock front. Especially, it has troubles in the mesh
econstruction in this strongly anisotropic region, which leads to a
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Figure 11. Density, pressure, velocity, and entropy profile of the shock tube at t = 2.5 calculated with our MFM implementation, comparison between different 
Mach numbers. MFM is able to reproduce the general structure of the shocks. Artefacts of surface tension introduced by the slope-limiter are visible at higher 
Mach numbers. The scatter is a result of the choice of ICs. 

Figure 12. Pressure profile of the M = 10 shock tube at t = 2.5, comparison between dif ferent hydro-methods. The dif ferent codes sho w dif ferent amount of 
surface tension and also slight differences in the position of the shock front due to different time-stepping. 

s  

i  

w

4

T
b  

S  

t  

a  

b  

K

 

ρ  

1  

p  

m
 

i
t
A

 

d
t  

s  

l  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/1/616/7269215 by U
niversita degli Studi di Trieste user on 24 O

ctober 2023
hift in the position of the shockfront and to the oscillatory behaviour
n the shocked region. It could be impro v ed using a static mesh, which
ould remo v e other adv antages of this method, ho we ver. 

.4.2 Sedov–Taylor blastwave 

his very strong radially symmetric shock has first been introduced 
y Sedov ( 1946 , 1959 ). Besides the capability to deal with jumps,
aitoh & Makino ( 2009 ) describe how it can be used to analyse the

ime-step limiter and shows the need for the limiting to be non-local,
s provided by the w ak eup scheme. The test has become a popular
enchmark for Supernova blast wa ve ev olution in recent years (e.g.
im & Ostriker 2015 ; Steinwandel et al. 2020 ). 
As ICs, we set up a regular grid with 64 3 particles and density
= 1. While almost all particles exhibit a vanishing pressure P a =

0 −6 , energy of U = 10 is distributed equally into the eight central
articles. A shock with very high M i � 2 · 10 4 arises, and quickly
o v es outwards.The radial density distribution is shown in Fig. 13 . 
All methods are able to capture the shock, though slightly smooth-

ng it, thus underestimating the height of the density peak. SPH shows 
he strongest smoothing, followed by the two MFM implementations. 

REPO is able to reproduce the height of the peak best. 
The position of the peak is similar for all methods, with minor

ifferences. While AREPO and GIZMO ’s MFM implementation predict 
he peak position correctly, MFM and SPH in O PENGADGET3 lag
lightly behind, which results in a more accurate position of the
ow-density side of the shock. This position strongly depends on the
MNRAS 526, 616–644 (2023) 
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M

Figure 13. Sedov blast at t = 0.02. Comparison between different methods. 
The analytical solution (Sedov 1946 ; Taylor 1950 ; von Neumann 1961 ) is 
shown as reference. The main difference is the height of the peak, which is 
reduced due to smoothing of the jump. 
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Figure 14. Evolution of the half-mass radius for the gravitational freefall 
test. All methods agree at early time, but deviate from the expected solution 
at later times when hydrodynamical contributions become more important. 
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recise time-step settings, indicating differences in the time-stepping
etween the codes. 

.5 Including self-gravity 

n cosmological contexts, not only hydrodynamical forces, but also
ravitational accelerations are of great importance. Gravity domi-
ates the evolution on large scales due to its long-range character. It
an lead to collapse of clouds, e.g. in the ISM for star formation, or
alance thermal pressure and lead to hydrostatic equilibrium, such
s in the global structure of galaxies or galaxy clusters. Thus, we
nalyse the interplay between hydrodynamical forces and gravity in
he following. 

.5.1 Gravitational freefall 

s a first test including self-gravity, we simulate a collapsing sphere.
he ICs are set up on a regular grid of 20 3 particles and cut out
 sphere of radius 1, which has a total mass of M sphere = 1 and
 negligible pressure of P = 10 −6 . For the AREPO run, we fill
he region not occupied by the sphere with low mass, low energy
articles at resolution of only 8 particles per unit length, arranged
n a regular grid, in order to improve the mesh reconstruction at the
oundary. We follow the evolution of the half-mass radius, to not
e influenced by boundary effects as for the full radius, shown in
ig. 14 . 
Comparing to the analytic solution for a purely gravitational

reefall 

( r) = arccos 

(√ 

r 

r 0 
+ 

√ 

r 

r 0 

√ 

1 − r 

r 0 

)
· 2 

π

√ 

3 π

32 ρ0 
, (52) 

ll methods agree at early times. At late times, pressure and thus
ffects of the hydro-scheme become more relevant, and deviations
re visible. For all methods, additional pressure contributions lead to
n increase in radius as it would be expected. As the initial pressure
s small, only a small deviation is expected. MFM lies closest to the
deal solution with both implementations being indistinguishable.
NRAS 526, 616–644 (2023) 
he moving mesh code AREPO overestimates the radius already
t early times, which can be explained by poor treatment of the
on-periodic boundary conditions. While gravity is calculated in a
on-periodic way, the mesh construction for the hydro-calculation
equires the box to be treated periodically, which is not the case
or all other methods. Including the low-mass cells at the boundary
lready decreased the error by a factor of 2 and it could be further
ecreased by enlarging the box. SPH lies in between the other
ethods except at very late times, when the deviation strongly

ncreases due to o v ersmoothing. 

.5.2 Hydrostatic sphere 

n cosmological contexts, e.g. for the ICM, the ability of the
ode to preserve hydrostatic equilibrium against gravity is of great
mportance. To test this, we calculate a hydrostatic sphere as a second
est including self-gravity. It is also the first test including dark matter
s second, only gravitationally interacting particle type. The ICs have
een created following Viola et al. ( 2008 ). 88 088 DM particles are
et up following an NFW profile (Navarro, Frenk & White 1997 ),
opulated with 95 156 gas particles in hydrostatic equilibrium. The
orresponding density and internal energy profiles at different times
re shown in Fig. 15 . 

After a short relaxation period, happening on a time-scale approx-
mately corresponding to the dynamical time t freefall ≈ 1 at r = 10 2 ,
e expect the gas to keep hydrostatic equilibrium. SPH as well as
ur MFM implementation show the lowest deformation in density.
FM in GIZMO , as well as AREPO show a slightly stronger increase in

ensity, especially in the central region. While the density is only an
ndirect tracer of (numerical) dif fusi vity, the internal energy profile
s more directly affected by it. Thus, it can give even more insight
nto the convergence over time. 
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Figure 15. Evolution of gas density (top) and internal energy radial profiles (bottom) for the hydrostatic sphere for approximately 10 dynamical times until t = 

10, coloured by the time. Calculated using different hydro-methods. MFM shows a slightly larger numerical dif fusi vity, but o v erall still preserv es the density 
profile. 
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For SPH, we observe a stable situation to be reached within one
reefall time, and only minor changes to the initial profile. The same
s true for MFM in OPENGADGET3 , where changes in internal energy
re only marginally larger compared to SPH. For AREPO , changes 
ompared to the initial profile are similar to the MFM result, as the
nitial conditions were designed assuming SPH. After a similar time- 
cale for this relaxation, also for this method a stable situation is
eached. For MFM in GIZMO , in contrast, an impact of the numerical
if fusi vity can be observed. Resulting mixing in the central region
eads to a decrease in internal energy, leading to the observed increase
n central density. Differences between the MFM implementations 
re results of the different Riemann solver in combination with fine 
ifferences of the implementation. Also in previous implementations 
f ours, we observed a similar change as for GIZMO . Ov er v ery long
ime-scales, the sphere would tend to become isothermal for MFM. 
espite these findings, the effect on the density profile is quite small

or all methods o v er the time-scale considered. 

.5.3 Zeldo vich pancak e 

he Zeldovich pancake is the first problem to test our implementation 
f como ving inte gration. In addition, it is well suited to show
ffects of very high M flows, shocks, highly anisotropic particle 
rrangements, and also very low-internal energies. It has been 
ntroduced by Zel’dovich ( 1970 ). We start our calculation at z i =
00, setting up a single Fourier mode density perturbation. During 
he linear growth until the caustic formation at z c = 1, the evolution
an be described by 

 = x i − 1 + z c 

1 + z 

sin ( kx i ) 

k 
(53) 

= 

ρ0 

1 − 1 + z c 
1 + z 

cos ( kx i ) 
(54) 
 pec = −H 0 
1 + z c √ 

1 + z sin ( kx i ) 
k 

ˆ x (55) 

 = T i 

(
1 + z c 

1 + z 

)2 (
ρ( x , z) 

ρ0 

)2 / 3 

(56) 

tarting from the unperturbed position x i . ρc is the critical density,
 0 = h 0 · 100 km s −1 Mpc −1 the Hubble parameter (today) with
 0 = 1, and T i = 100 K the initial temperature, such that pres-
ure forces are negligible. The wavenumber k = 2 π /(64 h −1 Mpc)
orresponds to the first-order soundwave. We use the ICs provided 
y Hopkins ( 2015 ), with a resolution of 32 3 particles. After the
inear growth, an accretion shock forms close to the centre. As the
cale factor increases, the background density decreases strongly and 
he background temperature decreases adiabatically. This causes a 
uge temperature contrast of ≈10 orders of magnitude between the 
hocked region and the background. Due to the very low-internal 
nergy compared to other energy contributions U � 10 −3 E kin and U
 10 −2 E pot in physical units, the evolution can be strongly dominated

y numerical errors. Thus, the implementation of the energy-entropy 
witch described in Section 3.3 is important. The precise limits, 
hen the switch is supposed to be active, are related to the numerical

ccuracy and details of the implementation such as the precision of
he Riemann solver. The effect of the limits chosen on the evolution
f the Zeldovich pancake is described further in Section 4.8.2 . 
The resulting structure at z = 0 is shown in Fig. 16 . Again,

e compare the performance of the different hydro-methods. The 
nergy-entropy switch is included for MFM in OPENGADGET3 if U 

 0.01 E pot , corresponding also to the value implemented in GIZMO .
or AREPO , we had to use additional mesh regularization to a v oid too

rregular cell shapes in the highly unisotropically compressed shock 
egion and allow the code to run until the end. All methods agree with
he peculiar velocity profile with only slight differences. Compared 
o Hopkins ( 2015 ), we find that all methods seem to have a too low
iscosity and show particle o v er or undershooting compared to the
MNRAS 526, 616–644 (2023) 
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Figure 16. Zeldovich pancake at z = 0 for different hydro-methods. As a comparison, a high resolution 1D simulation of Hopkins ( 2015 ) is shown. While 
velocity and density profiles agree between the methods, strong deviations can be seen for the temperature profile. MFM performs best due to the energy-entropy 
switch employed. 
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redicted velocity profile, as a result of a punch-through of some
articles in the high M shock. One difference between the methods
s the height of the density peak. This is the lowest for SPH , which
an be explained by the larger kernel for SPH, leading to stronger
moothing, compared to MFM. Thus, MFM in OPENGADGET3 is
ble to resolve the central region better and has a slightly higher
eak. The AREPO run shows an even higher peak, contrarily to what
opkins ( 2015 ) found. Compared to the expected profile, all these
ethods o v ersmooth the central re gion. The GIZMO code captures the

ensity profile best, reaching the highest central peak. Most difficult
or all methods is to capture the temperature structure with its very
trong contrasts. Both MFM implementations work very well, as
he energy-entropy switch suppresses any numerical noise in the
ow-energy background and allows a clear jump between shocked
nd unshocked region. Slight differences in the implementation of
he energy-entropy switch between O PENGADGET3 and GIZMO , as
ell as a lower temperature in the central region in general result

n more particles in the centre, being treated with the switch for
IZMO , resulting in a larger number of cold particles. This difference
an also explain the different height of the density peak. As we
ill show in Section 4.8.2 , a less aggressive switch will result in a
igher density peak. As no analytical solution exists for this test, it
s unclear if this behaviour is wanted. The jump for SPH is more
trongly smoothed in comparison to the other methods. In addition,
mplified initial (numerical) noise causes a large scatter of several
rders of magnitude in the very cold background. For AREPO , we
nd that this behavior is much more drastic, and the background is
ominated entirely by numerical noise. To properly resolve it, some
NRAS 526, 616–644 (2023) 
nergy-entropy switch would be required also in AREPO , which does
ot seem to be implemented in the public version. 

.5.4 Nifty cluster 

inally, we apply our newly implemented method on more complex,
osmological cases. As an example, we resimulate a cluster from the
USIC-2 sample (Prada et al. 2012 ; Sembolini et al. 2013 , 2014 ;
iffi et al. 2014 ), analysed in detail with different codes by a collab-
ration formed during a nifty workshop (Sembolini et al. 2016 ), thus
alled nifty cluster in the following. The cluster has a mass M 200c =
0 15 M � with resolution m DM 

= 9.01 · 10 8 h −1 M � for dark matter
nd m gas = 1.9 · 10 8 h −1 M � for gas particles. The background cos-
ology has parameters �M 

= 0 . 27 , �b = 0 . 0469 , �� 

= 0 . 73 , σ8 =
 . 82 , n = 0 . 95 , h = 0 . 7 (Komatsu et al. 2011 ). The projected surface
ensity at z = 0 is shown in Fig. 17 , where the cluster center and
irial radius are obtained using SUBFIND (Springel et al. 2001 ; Dolag
t al. 2009 ). 

We compare MFM to SPH with a different amount of artificial
onductivity, ranging from the usually used amount αmax = 0.25,
min = 0 (notation following Price 2008 ) o v er a run with physical
onductivity at 1/20th of the Spitzer value (Dolag et al. 2004 ), effec-
ively corresponding to an intermediate amount, to more traditional
PH without artificial conductivity. The usual amount is chosen to
imic the behaviour of Godunov methods such as MFM, which have

ntrinsic numerical dif fusi vity due to the Riemann solver and thus
llow for more mixing. The structure looks very similar between
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Figure 17. Projected surface density of the nifty cluster at z = 0, comparison between MFM and SPH with usual amount ( αcond 
max = 0 . 25), physical ( κphys ), 

corresponding to an intermediate amount, and without artificial conductivity αcond 
max = 0. The o v erall structure is very similar. Small sub-structures, ho we ver, 

appear less compact for MFM. 
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FM and SPH with standard settings. This will change, ho we ver,
or dif ferent v alues for artificial conducti vity. For reduced artificial
onductivity, structures are slightly less ‘smeared out’, while the 
lobal structure does not change. 
A more quantitative analysis can be done using gas radial density, 

emperature and entropy profiles shown in Fig. 18 . 
As a comparison, we provide lines from the nifty paper, obtained 

sing AREPO and GADGET3-MUSIC as an example of a more 
raditional SPH code, which mark the range of solutions obtained. 
PH can span the whole range of possible solutions provided by 
embolini et al. ( 2016 ). By construction traditional SPH without 
rtificial conductivity has no mixing and thus forms low-entropy 
ores. Subgrid mixing due to the Riemann solver for MFM and 
REPO leads to mixing into the core, increasing the entropy compared 

raditional SPH. Thus, the central density is reduced. By including 
rtificial conductivity in SPH, it can reach the same profile as MFM,
nd also lie in between for ef fecti vely intermediate v alues by using
hysical conductivity. 
.6 Decaying sub-sonic turbulence 

n many astrophysical systems, ranging from the atmosphere over 
he ISM up to galaxy clusters, turbulence plays a crucial role. In
he ICM, we expect sub-sonic turbulence with a turbulent energy 
raction of X ≈ 0.1 to be excited, for instance after a merger (compare
.g. Schuecker et al. 2004 ; Subramanian et al. 2006 ). The different
ydro-schemes have problems to capture its full behaviour. It has 
een shown that traditional SPH is not well suited to calculate sub-
onic turbulence (Bauer & Springel 2012 ), but can be impro v ed
sing modern SPH with more ideal settings for artificial diffusion 
erms (Price 2012 ). While grid based methods produce better results,
ifficulties still remain for the evolution of turbulence within galaxy 
lusters. 

To test and compare the performance of our MFM implementation, 
e set up a 300 kpc cubic box with varying number of particles, and

eed the largest ≈70 modes, similar to Bauer & Springel ( 2012 ).
ue to the low-initial density of ρ ≈ 1.5 · 10 −6 , gravitational 
MNRAS 526, 616–644 (2023) 
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Figure 18. Gas density (left), temperature (middle), and entropy (right) radial profiles of the nifty cluster at z = 0, comparison between different hydro-methods, 
including our MFM implementation (red plus), SPH in OPENGADGET with usual (green), physical, corresponding to an intermediate value, (turquoise), and 
without artificial conductivity (blue). As a comparison, the AREPO (black dashed) and G3-MUSIC (traditional) SPH line (red solid) from Sembolini et al. ( 2016 ) 
are shown. The vertical line marks R 200 . Our modern SPH run with sufficiently high artificial conductivity, as well as A REPO and MFM produce higher entropy 
cores with lower less peaked density, while the central entropy is much lower for SPH with lower artificial conductivity. 

Figure 19. Normalized turbulent velocity power spectrum for different methods at X i = 0.3 and resolution 128 3 . All methods agree at large scales, but show 

a lack in energy at intermediate to small scales compared to the e xpected Kolmogoro v-slope P ∼ k −5/3 . Ov erall, all methods work v ery well reproducing the 
expected spectrum. 
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cceleration can be neglected. The initial turbulent energy fraction
s varied between X i = E turb, i / E therm, i = 0.3, corresponding to
 Mach number M i ≈ 0 . 7 and X i = 0.00001 corresponding to

 i ≈ 0 . 004. In addition, the resolution is varied, ranging from 64 3 

p to 256 3 particles. We evolve the turbulence for 1.5 sound-crossing-
imes. The turbulent kinetic energy cascades down to smaller scales,
NRAS 526, 616–644 (2023) 
orming a turbulent power spectrum. In order to analyse the velocity
ower spectrum, the data are binned to a grid using the code
PH2GRID . 5 From that, a power spectrum is calculated. We use a

https://github.com/jdonnert/Sph2Grid
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20 sampling, to conserve energy (Cui et al. 2008 ). Theoretically, 
 Kolmogorov slope E ( k ) ∼ k −5/3 would be expected (Kolmogorov
941 ). In Fig. 19 , we compare the power spectra of the different
ethods, normalized by the e xpected slope. The wav enumber k box 

orresponds to a wavelength of the box size. Energy is seeded 
etween k SEED, max and k SEED, min . An estimate for the resolution limit
s provided by k 128 

SML , corresponding to the mean smoothing length 
or a Wendland C6 kernel at resolution 128 3 in plots where an SPH
un is included, otherwise to the mean smoothing length for a cubic
pline kernel at resolution 128 3 , and k 128 

Nyquist denoting wavenumber 
f the initial grid-spacing and thus the smallest length to be possibly
esolved. 

In contrast to many previous findings (compare e.g. Padoan et al. 
007 ; Bauer & Springel 2012 ; Hopkins 2015 ), all methods are able
o reproduce the expected Kolmogorov slope very well for such 
 mildly sub-sonic turbulence. SPH shows the strongest deviation, 
ccurring already at intermediate scales, while for MFM in both 
mplementations and also AREPO with moving and stationary mesh, 
ifferences are present only at very small scales, approaching the 
esolution limit. 

In addition, the MFM result converges quickly with resolution, 
hown in Fig. 20 . As the dip mo v es towards smaller scales, the
 v erall spectrum becomes even closer to the Kolmogorov one o v er a
ider range of scales. At the highest resolution considered, it almost 
erfectly resembles the e xpected Kolmogoro v slope o v er almost on
rder of magnitude of scales. 
F or ev en lower initial turbulent energy fractions, corresponding to 

 ven lo wer Mach numbers, more dif ferences between the methods
ecome visible. In Fig. 21 , we show the resulting spectrum for an
nitial turbulent energy fraction of 0.01, corresponding to M i ≈ 0 . 1.

hile all methods agree at large scales, where the energy was 
eeded, they show huge discrepancies at intermediate to small scales. 
REPO sho ws de viations at the smallest scales compared to the other
ethods, underestimating the energy present at scales close to the 

esolution limit. SPH starts deviating at slightly larger scales, with a 
ess deep dip in the power spectrum. For MFM, the power spectrum
hows a dip in energy at similar scales as the moving mesh code
REPO , but with a much shallower depth than in all other cases, thus
eing closer to the expected slope. Differences between the two MFM 

mplementations can be attributed to different Riemann solvers used. 
verall, advantages of MFM become clear for such very subsonic 

urbulence. 
While the power spectrum builds up, energy is not only transported 

o smaller scales, but also partly converted into internal energy. We 
lot this decay of kinetic, turbulent energy, here labelled with E , in
ig. 22 , comparing the different hydro-methods. In order to better 
ompare the slopes independent of initial turbulent energy fraction, 
e fit an exponential decay for each run and normalize by E 

fit 
i =

 

fit ( t = 0). While in a physical situation the decay would depend on
 as microph ysics such as its viscosity, here we can use it to get an
nsight into the code behaviour. The decay is mainly determined by 
umerical dissipation. 
In all cases, the energy shows a periodic variation, caused by 

he ‘ringing’ of the initially seeded modes. The decay for SPH 

epends mildly on the artificial viscosity especially visible for 
he run excluding it. The power spectrum, in contrast, is only 
eakly influenced by the amount of artificial viscosity. In practical 

pplications, it is tuned to a value of αvisc 
max = 3, which leads to a

imilar decay rate as the other methods. The exponential decay time 
 dec roughly corresponds to the sound crossing time t sc = L box / c s . 

A comparison for the decay at different initial turbulent energy 
ractions, corresponding to variations in the Mach number, is shown 
n Fig. 23 for MFM and SPH.The variation between 0.3 and 0.000 01
or the initial turbulent energy fraction corresponds to a range 
f Mach numbers from 0.7 down to below 0.004. For SPH, the
ecay is decreasing with initial turbulent energy fraction down to 
 i = 0.01 ( M ≈ 0 . 1), and stays independent of the Mach number
fterwards, as one would expect, so it is for AREPO . For MFM, the
ame initial trend can be observ ed. F or v ery low initial turbulent
nergy fraction X i < 0.0001 ( M � 0 . 01), ho we ver, an unphysical
ncrease of turbulent energy occurs. At the same point also the density 
df deviates from the Gaussian shape together with the velocity 
ower spectrum becoming strongly non-Kolmogorov, indicating the 
volution is dominated by numerical artefacts for such low Mach 
umbers. Specifically, while we find that for this test total energy
s conserved the internal energy only accounts for a small fraction,
uch that even evolving internal energy instead of total energy will be
ominated by numerical errors. Applying an energy-entropy switch 
ould in principle alleviate this problem. On the other hand, it would
e unclear if this would remo v e other advantages for MFM in this
est problem. 

.7 Runtime analysis 

he precise difference in wallclock runtime between MFM and 
PH depends on the problem that is considered, as this can include
ifferent additional physics and might trigger different time-step 
imiters. Therefore, we provide an overview of all runtimes for the
ests that we have run, including the MPI and OpenMP configuration
n Table 1 . 

Overall, the computational costs for running MFM are comparable 
o those of SPH. For pure hydrodynamical problems the number 
f time-steps required increases together with the ef fecti ve spatial
esolution by a factor of � 2. It can be even larger for strong
hocks due to the more strict time-step limiting at higher spatial
esolution. The CPU-time required per time-step is very similar 
etween the methods. While the Riemann solver is more e xpensiv e
han the calculation of hydrodynamical accelerations for SPH, and 
lso additional neighbour loops are required for MFM, the lower 
eighbour number leads to a decrease in computational costs. 
epending on the problem, the time required per time-step can be

maller or larger than the time required for the SPH comparison run.
n combination, these effects on average lead to slightly larger total
untimes by a factor of ≈2 for MFM. 

If gravity is included, the simulation time-step is dominated by the
ravitational interactions in many cases, such that a similar number 
f time-steps is required, independent of the hydro-method. Also, 
he time spent per time-step becomes even more similar, as the
omputation of gravitational interaction, which is calculated in the 
ame way for MFM and SPH, is contributing as well. 

If even more modules are activated, such as s UBFIND , as it is done
or the nifty cluster, the runtime is mainly determined by the precise
volution. For the nifty cluster, we found a slight increase in runtime
or MFM, but it can be different for other objects simulated. If even
ore physics was turned on, we expect differences to become even

maller. 
Memory requirements are mainly defined by the size of the particle

tructures. As MFM holds more variables in the gas particle structure,
t is larger by a factor of ≈2 compared to SPH. It could be impro v ed
y making more efficient use of existing SPH data and a v oiding
uplication which are currently still present. The total memory 
equirement is thus larger by a factor of ≈1.3–2 for pure hydro
roblems and ≈1.5 for the nifty cluster. Including more physics, the
ifference would become negligible. 
MNRAS 526, 616–644 (2023) 
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Figure 20. Normalized turbulent velocity power spectrum for MFM with different resolutions at X i = 0.3. MFM converges fast with resolution towards the 
e xpected Kolmogoro v-slope P ∼ k −5/3 . 
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.8 Effects of numerical parameters 

he performance of the numerical methods strongly depends on the
recise parameters used. Effects of neighbour number and kernel
ave already been analysed in detail by various authors (compare
.g. Dehnen & Aly 2012 ; Tricco & Price 2013 ; Hu et al. 2014 )
or SPH. To this end, we focus on two other parameters that play
 major role for MFM, namely the slope-limiting scheme and the
nergy-entropy switch. 

.8.1 Slope-limiter 

he different slope-limiting procedures, which are implemented in
ur code, differ not only in how aggressively they limit the slope, but
lso in how much numerical diffusivity they introduce. In general,
ifferent limiters are shown to produce different results for specific
est cases (compare e.g. Barth & Jespersen 1989 ; Balsara 2004 ;

ay & Berger 2013 ; Hubber et al. 2018 ; Alonso Asensio et al.
023 ). 
In the following, we compare the three cases of the limiter from

IZMO as described by equation ( A6 ) in combination with their
airwise limiter (equation A10 and A11 ), that we usually use,
he AREPO (equation A5 ) and, the TVD limiter (equation A3 ).
he GIZMO and TVD limiters are the most extreme cases of the

imiters implemented, with lowest and highest numerical diffusivity,
espectively. The AREPO limiter lies in between. We analyse the
ffect on the hydrostatic square (compare also Section 4.3.3 ) and the
ayleigh–Taylor instability (Section 4.3.1 ). The results are shown in
ig. 24 . 
NRAS 526, 616–644 (2023) 
While for the Rayleigh–Taylor instability the much less dif fusi ve
IZMO limiter performs best, evolving a much finer structure,

his causes the strongest deformation of the hydrostatic square.
he AREPO limiter is slightly more dif fusi ve, leading to less
trong secondary instabilities for the Rayleigh–Taylor instability
nd slightly less deformation of the square, especially at the edges.
he TVD limiter has an even higher numerical dif fusi vity, thus
trongly smooths the Rayleigh–Taylor instability, not only preventing
econdary instabilities to form, but also noticeably reducing the
 v erall growth of the instability. The hydrostatic square, ho we ver,
s preserved best, due to lower surface-tension like errors, which also

anifest in the presence of absence of the pressure-blib for shocks. 
Combining the results, we show that it is not al w ays clear which

lope-limiting procedure would be the o v erall preferred choice. As,
n most cases, the GIZMO limiter performs best, we chose this as our
eference method. 

.8.2 Energy-entropy switch 

o a v oid numerical errors to dominate the ev olution of the internal
ner gy, an ener gy-entropy switch as described in Section 3.3 has to be
sed in specific problems such as the Zeldovich pancake. Especially,
he numerical noise should be suppressed in the very cold, unshocked
egion, while the shock should not be influenced at all. 

The resulting structure at z = 0, comparing different possibilities
or the switch based on potential and kinetic energy estimates
compare also equation 46 ), is shown in Fig. 25 . 
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Figure 21. Normalized turbulent velocity power spectrum for different methods at X i = 0.01 and resolution 128 3 . At such low initial turbulent energy fraction, 
differences between the methods become more visible, where MFM works best o v erall reproducing the expected spectrum. 

Figure 22. Decay time of turbulent energy for different methods at X i = 0.3. 
For SPH, the viscosity is varied between αvisc 

max = 10 and αvisc 
max = 0, where 

αvisc 
max = 3 is the value typically used (notation following Beck et al. 2016a ). 

A REPO has the highest decay time corresponding to the lowest numerical 
dissipation, while MFM and SPH at typical value of viscosity are on a similar 
order with a decay time of a few dynamical time-scales. 
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Figure 23. As Fig. 22 , but for varying initial turbulent energy fractions 
X i , corresponding to variations in the turbulent Mach number. The decay 
is consistent for all X i for SPH, and down to X i = 0.003 for MFM, when 
numerical artefacts lead to an unphysical increase in energy. 
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We increase the tuned values ( α1 = 10 −2 for the potential energy
nd α2 = 3 · 10 −3 for kinetic energy) by a factor of 2 and decrease
hem by a factor of ≈3. 

A more strict switch (larger α) causes less particles to be treated
ith the adiabatic approximation. For the kinetic energy switch, this 
ifference causes strong variations in the temperature profiles. While 
or α2 = 1 · 10 −3 more extended wings form and some scatter in the
ow-temperature background close to the peak appears, the increased 
alue of 6 · 10 −3 treats even particles inside the peaked region with
he adiabatic approximation and causes too low temperatures. A very 
MNRAS 526, 616–644 (2023) 



638 F. Groth et al. 

M

Table 1. Comparison of the runtime between MFM and SPH in OPENGADGET3 . Different test are run with different MPI and OpenMPI configurations 
and also on different machines. In general, we observe an increase in runtime between MFM and SPH, varying between a factor of ≈2 for pure 
hydrodynamical tests to only a factor of 1.1 for the nifty cluster. 

test MPI OpenMP runtime [s] time per time-step [s] #steps 
MFM SPH MFM SPH MFM SPH 

soundwave (res 128) 4 14 4.3 · 10 4 3.2 · 10 4 5 .3 · 10 0 7 .9 · 10 0 8.1 · 10 3 4.1 · 10 3 

kepler disc 4 14 4.1 · 10 5 5.4 · 10 5 8 .1 · 10 0 8 .0 · 10 0 5.1 · 10 4 6.8 · 10 4 

Rayleigh–Taylor instability 4 14 8.4 · 10 3 3.4 · 10 3 2 .6 · 10 −1 1 .1 · 10 −1 3.2 · 10 4 3.0 · 10 4 

Kelvin–Helmholtz instability 8 12 6.7 · 10 5 2.9 · 10 5 1 .0 · 10 1 8 .8 · 10 0 6.5 · 10 4 3.2 · 10 4 

Hydrostatic square 4 14 1.9 · 10 2 7.1 · 10 1 2 .3 · 10 −2 1 .6 · 10 −2 8.2 · 10 3 4.2 · 10 3 

blob test 8 12 2.5 · 10 6 1.5 · 10 6 1 .3 · 10 2 1 .4 · 10 2 1.9 · 10 4 1.1 · 10 4 

shock tube ( M = 10) 4 14 8.9 · 10 3 1.7 · 10 3 1 .1 · 10 0 7 .7 · 10 −1 8.2 · 10 3 2.1 · 10 3 

Sedov blast 4 14 1.1 · 10 2 1.9 · 10 2 2 .1 · 10 −1 2 .5 · 10 −1 5.3 · 10 2 7.8 · 10 2 

gravitational freefall 4 14 1.3 · 10 1 1.7 · 10 1 5 .1 · 10 −2 6 .6 · 10 −2 2.6 · 10 2 2.7 · 10 2 

hydrostatic sphere 4 14 1.3 · 10 4 1.9 · 10 4 8 .2 · 10 −1 1 .2 · 10 0 1.6 · 10 4 1.6 · 10 4 

zeldovich pancake 4 14 1.6 · 10 3 2.5 · 10 3 1 .1 · 10 0 1 .6 · 10 0 1.5 · 10 3 1.5 · 10 3 

nifty cluster 16 28 2.6 · 10 4 2.3 · 10 4 1 .7 · 10 0 1 .4 · 10 0 1.5 · 10 4 1.6 · 10 4 

turbulence (resolution 128) 8 12 1.2 · 10 5 4.9 · 10 4 2 .4 · 10 1 1 .6 · 10 1 5.1 · 10 3 3.1 · 10 3 

Figure 24. Hydrostatic square (top) and Rayleigh–Taylor instability (bot- 
tom), de veloped using dif ferent slope limiters, the GIZMO limiter we usually 
use (left), compared the same test, b ut ev olved using the AREPO limiter 
(middle) and TVD limiter (right). Depending on the test, different slope- 
limiters could be preferred. 
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Figure 25. Effect of the choice of the energy-entropy switch on the Zeldovich 
pancake. Comparison between the switch based on kinetic and potential 
energy, each with three different α-values. The switch based on potential 
energy is much more stable. 
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ne-tuned choice of α2 is necessary to accurately capture all particles,
oth the shocked ones and the low-temperature ones. 
Compared to that, a variation of α1 within the switch based on

otential energy influences the temperature profile only weakly.
hus, it seems to be much more stable and should be the preferred
ption. We thus used α1 = 10 −2 and α2 = 0 for the calculations in
ection 4.5.3 . 

 DISCUSSION  A N D  C O N C L U S I O N S  

e presented a new MFM implementation into OPENGADGET3
s an alternativ e hydro-solv er to the currently used modern SPH.
e verified its capabilities, both in idealized and more complex

osmological test cases. Tests range from smooth simple situations,
ixing instabilities, shocks, tests including self-gravity, to the nifty

luster as cosmological example and decaying sub-sonic turbulence.
 comparison has been preformed between MFM and SPH in
PENGADGET3 , the MFM implementation in GIZMO and the moving
esh code AREPO . In addition, two parameters have been analysed

n more detail. 
NRAS 526, 616–644 (2023) 
Overall, we find very good agreement between the MFM imple-
entation in OPENGADGET3 and that in GIZMO . Minor differences

re found in the precise appearance, while global properties are
ndistinguishable in most test cases. Even without further tuning,

FM reproduces the expected behaviour in all test cases considered.
he soundwave test is well suited for a convergence analysis, as an
nalytical solution exists. MFM shows a very good convergence
ehaviour between first and second order for dispersion errors.
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iffusion errors as well as the scatter converge second order. While 
he convergence is better than for SPH and a moving mesh, these

ethods sho w lo wer errors at lo w resolution, especially for the
ispersion error. 
An important advantage of MFM o v er SPH is the capability to

ccurately evolve mixing instabilities without additional artificial 
iscosity or conductivity as for SPH. In addition, a lower neighbour 
umber compared to SPH is sufficient. MFM as well as a moving
esh even show secondary instabilities to occur. The blob test as

ombination between mixing and shocks emphasizes the ability 
f MFM to allow for more mixing. The decay rate of the cloud is
imilar to that of a moving mesh simulation and larger than for SPH.
ompared to the more traditional SPH implementation shown by 
opkins ( 2015 ), the modern SPH implementation OPENGADGET3 

llows for more mixing and leads to a faster decay of the cloud. As
his test is designed to mimic ram-pressure stripping, we expect this
ffect to be modelled more accurately using MFM compared to SPH. 
his should also lead to an o v erall more accurate evolution of galaxies

n the environment of galaxy clusters. To fully understand and follow 

he evolution of such gas blob in cosmological contexts, more physics 
uch as cooling, and depending on the context, star formation, is nec-
ssary. Gronke & Oh ( 2018 , 2020 , 2023 ) have analysed this test in de-
ail with such additional physics and found a great importance of the
ooling. 

In addition, MFM can model shocks for a wide range of Mach
umbers. For the shock tube tests, MFM performs especially well 
or lower Mach numbers, while effects of surface tension due to 
he choice of the slope-limiter are visible at higher Mach numbers. 
evertheless, it is still able to capture the main features of the shock

ncluding the position of the shock front, the contact discontinuity, 
nd the rarefaction fan. Different methods lead to differences in 
he smoothing of the shock front. The lower neighbour number in 

FM compared to SPH increases the ef fecti ve spatial resolution by a
actor of ≈2. For AREPO , the shock front is dominated by numerical
rtefacts due to difficulties in the mesh reconstruction in such highly 
nisotropic region. 

The Sedov blast works well for all methods, verifying the capa- 
ility of the w ak eup scheme as non-local time-step criterion. Main
ifferences are the smoothing and resulting lower amplitude of the 
ensity peak, revealing an even smaller smoothing for the moving 
esh compared to MFM. The narrower shock front will help e.g. for

hock detection in cosmological simulations (compare e.g. Pfrommer 
t al. 2006 ; Beck, Dolag & Donnert 2016b ). 

In general, MFM is able to preserve hydrostatic equilibrium 

ccurately, as well as preserving stable orbits. The better stability of
he Kepler disc compared to SPH will impro v e results for simulations
f e.g. isolated galaxies. For this case, a moving mesh leads to even
etter results, but requires additional boundary particles. 
The hydrostatic sphere test showed that our MFM implementation 

oupled to gravity leads to stable hydrodynamical equilibrium, as 
or SPH and a moving mesh. Depending on the details of the
mplementation, ho we ver, numerical dif fusi vity can be introduced. 
hus, one could expect isolated galaxies or also the core of galaxy
lusters to be more compact and cooler in the centre. The time-scales,
n which these changes would happen, are, ho we v er, v ery long. 
Also, for the nifty galaxy cluster we saw that there is no difference

etween MFM, AREPO , and modern SPH in the global structure. 
umerical dif fusi vity introduced by the Riemann solver allows 
ixing of entropy into the core, thus decreasing the central density 

ompared to traditional SPH, which suppresses any mixing. Modern 
PH mimics the same effect by applying artificial conductivity, while 
 variation of the precise amount introduced can lead to significant 
hanges in the structure. As observed galaxy clusters show a wide
ange of central entropy profiles (Cavagnolo et al. 2009 ), both
esults are consistent with observations. Especially, we expect a 
ore complex interplay with cooling, as well as stellar and AGN

eedback to influence the entropy evolution of the core (compare 
.g. Pearce et al. 2000 ; Borgani et al. 2005 ; Rasia et al. 2015 ). These
ffects lead to the whole range of possible central profiles, dominating
 v er effects of the hydro-solver. Thus, further studies including such
rocesses would be necessary. 
In the intracluster medium, we expect turbulence at low-Mach 

umber to be seeded e.g. by mergers at large scales. It will then
ecay and build up a turbulent power spectrum. Such decaying, 
ub-sonic turbulence is a very challenging problem for many hydro- 
ethods. MFM is able to reco v er the turbulent power spectrum best

ompared to SPH and a moving and stationary mesh, best visible
t very low initial turbulent energy fractions. Only a small lack of
nergy at intermediate to small scales close to the resolution limit –
imilar to where this occurs also for AREPO – is present. This ‘dip’ in
nergy mo v es to smaller scales for higher resolution, o v erall leading
o fast convergence towards the expected Kolmogorov spectrum. 

The decay rate of turbulent energy due to numerical dissipation 
s on the same order as for modern SPH, and decreases towards
igher resolution. The results are consistent down to very small initial
urbulent energy fractions X i = 0.0001, corresponding to small Mach 
umbers M = 0 . 01. For smaller X i < 0.0001, numerical effects
ominate and lead to unphysical increase in turbulent energy. Overall, 
he results are very promising for the accurate evolution of turbulence
lso within galaxy clusters. 

An energy-entropy switch is of great importance to accurately 
volve the temperature profile for the Zeldovich pancake. When it 
s included, MFM yields the best results, having a clear jump in the
emperature. Comparing different possible values for such a switch, 
e found that careful tuning is required. In general, the switch based
n potential energy produces more stable results. 
AREPO misses the implementation of such a switch in the public

ersion, such that the low-temperature region is entirely dominated 
y numerical noise. SPH also shows noise in the low-temperature 
egion, originating from the amplification of noise present in the 
Cs, and also much broader wings around the peak. All methods
how some punch-through in the temperature profile, indicating a 
oo low viscosity. 

In addition to comparing different methods, we used two tests to
nalyse the impact of the slope-limiter. Depending on the problem, 
ifferent slope-limiters can be preferred. While the GIZMO limiter 
erforms best in most test cases, having a much lower numerical
if fusi vity, specific cases such as the hydrostatic square and also
trong shocks work better using a more dif fusi ve TVD-limiter. The
REPO limiter has an intermediate dif fusi vity and lies in between the

wo other results. 
Overall, our implementation of MFM produces accurate results 

or the cases considered. It a v oids some of the disadvantages of
PH, while requiring a similar computational cost per time-step. 
he total number of time-steps and thus the total runtime increases
s a result of the smaller smoothing length and ef fecti vely higher
patial resolution. A faster, approximate Riemann solver can further 
ecrease the computational costs in some cases, but has the drawback
f introducing more numerical dif fusi vity, as discussed in Appendix
 . Compared to MFM, a moving mesh requires a very expensive

essellation to be performed, such that the required computational 
osts for many tests are drastically increased. 

Overall, MFM is a promising alternative for cosmological simu- 
ations. 
MNRAS 526, 616–644 (2023) 
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.1 Outlook – possible extensions in the future 

o make use of the full advantages of OPENGADGET3 , it will be useful
o couple MFM not only to gra vity, b ut also to include more physical
rocesses, such as cooling, star formation and stellar feedback, AGN
eedback, physical conductivity, and viscosity. For these, we can
ake use of already existing implementations in OPENGADGET3 . 
Finally, MFM can be expanded to an MHD method, including
agnetic fields. This will also allow to include the existing imple-
entation of cosmic rays. 
F or man y of these e xtensions, coupling can be done in a similar

ay as for SPH, while others such as magnetic fields will require
ore significant changes including another Riemann solver. 
In principle, also a general-relativistic (GR) extension would be

ossible, which has been implemented both for SPH (Liptai & Price
019 ; Rosswog & Diener 2021 ) and a moving mesh (Chang &
tienne 2020 ; Lioutas et al. 2022 ) and also exists for MFM within

he GIZMO code (Lupi 2022 ). As GR is mainly important in extreme
ituations such as accretion discs around black holes, this would also
ake use of the fact that our MFM implementation is originally

ased on GANDALF , which itself was designed to deal with star and
lanet formation, and thus we would expect also our implementation
o be well suited for calculations of discs. 
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e implemented seven different slope-limiters and therein variants 
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 αi , k ∇W i , k for each particle i and component k , for the face
nterpolation, with αi , k ∈ [0, 1]. In the following, we briefly describe
he implemented limiters. 

The simplest option is to use a zeroth order interpolation setting 

ZERO SLOPES 
i,k = 0 (A1) 

r to include no slope-limiter 

NULL 
i,k = 1 . (A2) 

lternati vely, we implemented se veral more complex limiters. A
ommonly used one is a TVD scalar limiter (Duffell & MacFadyen
011 ), which is designed to produce good results especially for strong
hocks. Compared to the other limiters implemented, it is the most
if fusi ve one. It sets 

TVD SCALAR 
i,k = min 

j∈ Ngb 
max 

⎧ ⎨ 

⎩ 

0 

min 

{
1 
�W ij ,k / d W ij ,k 

(A3) 

here � W ij = W j − W i , d W ij = d r ij · ∇ ⊗ W . 
An alternative is the scalar limiter which is a modified version

f the Balsara ( 2004 ) and Gaburov & Nitadori ( 2011 ) limiter, with
elaxed constraints, as presented in the GANDALF code (Hubber et al.
018 ). It loses the TVD behaviour but is less dif fusi ve. Only the
xtreme values are used over the neighbours in the numerator, and
he maximum possible values to be reconstructed in the denominator,
hus a v oiding an additional neighbour loop, leading to the limiter 

SCALAR 
i,k = max 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

0 

min 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

min 

{ 

�W i max ,k 
| d r | max | ∇W k | 

�W i min ,k 
| d r | max | ∇W k | 

(A4) 

here � W i min /max, k = | W i , k − min /max j ∈ Ngb W j , k | , and | d r | max =
ax (max j ∈ Ngb | r ij | , h i ). In contrast to the TVD limiter, only the

lobal neighbour distribution is considered. Thus, values calculated
rom all neighbours individually for the TVD limiter are calculated in
n approximate way . Finally , we implemented the limiters used both
n the AREPO and GIZMO code. In the AREPO code (Springel 2010 ),
he slope is limited using the Barth & Jespersen ( 1989 ) limiter 

AREPO 
i,k = min 

j∈ Ngb 

⎧ ⎨ 

⎩ 

�W i max ,k / d W ij ,k if d W ij ,k > 0 
�W i min ,k / d W ij ,k if d W ij ,k < 0 
1 if d W ij ,k = 0 . 

(A5) 

t lies in between the TVD and scalar limiter, as only the dividend
s approximated from the global neighbour distribution, while the
ivisor is still calculated for all neighbours individually. 
In GIZMO (Hopkins 2015 ), a general limiter is introduced described

y 

GIZMO 
i,k = min 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

βi min 

{ 

d W i max ,k 
0 . 5 h i | ∇W k | 

d W i min ,k 
0 . 5 h i | ∇W k | . 

(A6) 

lso, this limiter has the advantage of a v oiding an additional
eighbour loop. The parameter β has to be β i > 0.5 to ensure second
rder stability. A higher number corresponds to a more aggressive,
ess dif fusi ve and less stable limiter. We use the suggested value β =
 of Hopkins ( 2015 ), which is a compromise to reduce numerical
if fusi vity while still working for very strong interacting shocks.
hile they suggest this value to be used only for particle distributions

eing isotropic enough based on the condition number, we use this
alue al w ays as we found hardly an y differences. F or β = 2, this
imiter is also similar to the scalar limiter with the difference that
NRAS 526, 616–644 (2023) 
he theoretically possible distance between neighbours is defined
nly by the smoothing length. In addition, Hopkins ( 2015 ) provides
 pairwise limiter, acting on only one specific interaction, instead
f all neighbours. For this, it uses already limited slopes for the
nterpolation. The pairwise limiter described by Hopkins ( 2015 )
imits the already interpolated face values. The aim is to directly
alculate the face value W 

new 
ij ,k , starting from the extrapolated value

 

frame 
ij ,k according to equation ( 39 ), possible already with limited

radients. If W i , k = W j , k , the face value is just chosen the same as
he particle values W 

new 
ij ,k = W i,k . Otherwise, the values 

1 = ψ 1 

∣∣W i,k − W j,k 

∣∣ (A7) 

2 = ψ 2 

∣∣W i,k − W j,k 

∣∣ (A8) 

re calculated. The free parameters ψ 1/2 are tuned to ψ 1 = 0.5, ψ 2 =
.25. A simple intermediate value used later is given by 

¯
 ij ,k = W i,k + 

d r ij 
d r frame 

i 

( W j,k − W i,k ) . (A9) 

he maximum/minimum value is W min /max, k = min /max ( W i , k , W j , k ).
epending on how the two face values compare, the new face value

s calculated: if W i , k < W j , k , then 

 

new 
ij ,k = max 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

⎧ ⎨ 

⎩ 

W min ,k − δ1 if SIGN ( W min ,k − δ1 ) = SIGN ( W min ,k ) 
W min ,k 

1 + δ1 | W min ,k | 
else 

min 

{
W 

frame 
ij ,k 

W̄ ij ,k + δ2 . 

(A10) 

f W i , k ≥ W j , k , then 

 

new 
ij ,k = min 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

⎧ ⎨ 

⎩ 

W max ,k + δ1 if SIGN ( W max ,k + δ1 ) = SIGN ( W max ,k ) 
W max ,k 

1 + δ1 | W max ,k | 
else 

max 

{
W 

frame 
ij ,k 

W̄ ij ,k − δ2 . 

(A11) 

he same limiter is applied for particle j . Finally, the GIZMO code
ses a slightly different pairwise limiter. Depending on the tolerance
 chosen as input parameter for the run with a typical value of 1, the
arameters 

 1 = 

⎧ ⎨ 

⎩ 

0 t = 0 
0 . 5 t = 1 
0 . 75 t = 2 

(A12) 

 2 = 

⎧ ⎨ 

⎩ 

0 t = 0 
0 . 4 t = 1 
0 . 375 t = 2 

(A13) 

re defined. To calculate W̄ ij ,k , the factor d r ij / d r frame 
i is approximated

y the first order value 0.5. Except these differences, the limiter is
dentical to the already described one. In our implementation, we
pply the limiter in the reference frame of the interface, such that the
elocity is a relative velocity. This makes the limiter Lagrangian
nd increases the symmetry between different directions within
ymmetric flows such as in the Zeldovich pancake. 

PPENDI X  B:  EFFECT  O F  T H E  R I E M A N N  

OLV ER  

n OPENGADGET3 , we use an e xact iterativ e Riemann solv er (Toro
009 ) by default. This is, ho we v er, computationally e xpensiv e as
p to eight iterations are used to get close to the exact solution.
n alternative is using approximate Riemann solvers, where we

mplemented a Roe solver (Roe 1981 ), the HLL solver (Toro 2009 ),
nd the HLLC (Toro 2009 ) solver. 
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Figure B1. Rayleight–Taylor instability at time t = 3.6, evolved using different Riemann solvers. Secondary instabilities are more or less pronounced, depending 
on the solver used. 
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The strongest effect in runtime is present for strong shocks, where 
e find a speedup of up to 20 per cent in total. For more smooth
roblems, where less iterations of the exact solver are necessary, the 
peedup for the calculation of the fluxes itself is 20 per cent, resulting
n an o v erall speedup of only up to 9 per cent for such problems
ominated by hydrodynamical calculations. The effect becomes less 
mportant when using gravity and possibly even more extensions in 
osmological applications. Already for the hydrostatic sphere, there 
s no significant difference in runtime, or even a slight increase. 

As the Riemann solver introduces numerical dif fusi vity, the 
volution will be different. This can be seen in various test problems,
uch as the Rayleigh–Taylor instability, shown in Fig. B1 . 

While the instability evolved using the exact Riemann solver 
hows the most prominent secondary instabilities, closely followed 
y the Roe solver and the HLLC solver, the HLL Riemann solver
eads to a suppression of any asymmetries in the final shape of the
nstability. This is a result of the additional numerical dif fusi vity
ntroduced by the Riemann solver, as discussed in Section 4.5.2 . 

While for specific problems, these alternative solvers could lead 
o faster results, we in general use the most accurate exact Riemann
olver. The increase in runtime is compensated by the gain in 
ccuracy. 
PPENDI X  C :  S O U N DWAV E  C O N V E R G E N C E  

I TH  AREPO 

s described in Section 4.2.1 , we would expect A REPO to have better
onvergence than observed. A first reason is the mesh regularization. 
f triggered, the position of the cells are shifted, introducing a small

umerical noise. In addition, small interfaces which contribute by 
ess than 10 −5 to the total interface are neglected. While this makes
he code more stable in extreme environments, it introduces small 
rrors (R. Pakmor pri v ate communication), which will be rele v ant
or the very small deviations analysed here. 

Turning off the mesh regularization and only skipping interfaces 
hich contribute by less than 10 −8 , AREPO shows much better

on vergence behaviour , close to what is expected from the analysis
y Weinberger et al. ( 2020 ), as shown in Fig. C1 . Especially, the
catter error drastically decreases, also making the determination of 
he other error components more reliable. 

While these changes can lead to a better convergence behaviour, 
hey will cause other problems in cosmological simulations, such that 
n physical applications rather the non-optimized behaviour would 
e observed. 
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Figure C1. Offset-, amplitude-, scatter and total L1-errors of the density of a soundwave at t = 

2 
c s 

. Applying the changes described in the text reduces especially 
the scatter error, thus increasing the order of convergence and making also the determination of the other components more reliable. Thus, also the o v erall order 
of convergence increases. 
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