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Abstract
This work introduces the new class of pure reaction automata, as well as a new update manner, called maximal reactive man-
ner, that can also be applied to standard reaction automata. Pure reaction automata differ from the standard model in that they 
don’t have permanence: the entities that are not consumed by the reactions happening at a certain state are not conserved in 
the result states. We prove that the set of languages accepted by the new class under the maximal reactive manner contains 
the set of languages accepted by standard reaction automata under the same manner or under the maximal parallel manner. 
We also prove that a strict subclass of pure reaction automata can compute any partial recursive function.
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1 Introduction

Reaction systems (RS) are a growing and now established 
computational model, introduced by Ehrenfeucht and Rozen-
berg (2004, 2007), Brijder et al. (2011a), that takes inspi-
ration from the chemical reactions occurring inside living 
cells: a set of entities or chemical species is transformed by 
one or more reactions and, like in real life, a reaction for 
which all reactants are present and all inhibitors are absent 
will generate all the expected products. Reaction Systems 
have some characteristics that distinguish them from other 
bio-inspired models. First of all, there is no permanence: an 
entity that is not used by any reaction will not remain in the 
system, but it will disappear. Second, there is no conflict: 
even if two reactions have the same reactants both of them 
will be enabled if their respective inhibitors are not present.

Reaction systems have been successfully employed as 
a modelling tool in several areas, see for instance (Corolli 
et al. 2012; Azimi et al 2014; Barbuti et al. 2021). Concern-
ing theoretical aspects, their properties have been studied 
from the point of view of the complexity of the dynamics 
(Formenti et al. 2014a, b, 2015; Ehrenfeucht et al. 2017; 
Barbuti et al. 2018a; Holzer and Rauch 2021; Teh and Lim 
2022; Ascone et al. 2024; from the causality perspective 
(Brijder et al. 2010; Barbuti et al. 2016, 2018b); by introduc-
ing in a natural way additional restrictions and extensions 
(Brijder et al. 2011b; Salomaa 2017; Azimi 2017; Bottoni 
et al. 2019; Manzoni et al. 2020); by classifying and simu-
lating them (Manzoni et al. 2014; Teh and Atanasiu 2017, 
2020); and by relating them with other computational mod-
els (Kleijn et al. 2011; Păun et al. 2013; Dutta et al. 2019).

However, reaction systems are limited by the fact that 
their states are subsets of a finite set of entities. Hence, 
their dynamics can only contain a finite number of distinct 
configurations, making computational universality unat-
tainable for them. A natural way to preserve the funda-
mentals of reaction systems while making them a universal 
computational model is to allow multiplicity for the enti-
ties. More than a decade ago, the first significant step in 
this direction was taken by Okubo et al. (2012b) with the 
introduction of Reaction Automata and with the successive 
streamline of studies on the topic (see Okubo et al. 2012a; 
Okubo 2014; Okubo and Yokomori 2015, 2018; Yokomori 
and Okubo 2021; Okubo et al. 2022). In reaction automata, 
a state is a multiset of entities (thus allowing an infinite 
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set of possible states) and reactions are modified to require 
multisets of reactants and products. A significant change 
introduced by this model is that now there is competition 
between reactions, requiring the model to specify a policy 
to decide which reactions are allowed to take place.

A well-studied model that resembles reaction automata 
are P automata (see, e.g., Csuhaj-Varjú and Vaszil 2002; 
Freund et al. 2003; Csuhaj-Varjú et al. 2006, 2009), the 
automata-like version of P systems, where multisets of 
objects are subdivided into multiple regions (or mem-
branes). Those objects evolve according to a series of rules 
(usually antiport rules) that move the objects between the 
different regions and rewrite them. These rules are applied 
according to a given computational model, like sequential 
or maximally parallel (where conflicts are possible). One 
main difference between P automata and reaction automata 
is the “spatial” component of the former, where the sub-
division of the space in regions is essential to perform the 
computation. The latter can be seen as a “degenerate” case 
of P automata, where only one region is present and only 
rules of a particular kind are admitted.

In this work, we continue the study of reaction autom-
ata by providing several new results and connections to 
other models. First of all, we define the maximally reactive 
manner, a new criterion on how to select which reactions, 
among the competing ones, will take place. We also intro-
duce a new kind of reaction automata, called pure reaction 
automata. They differ from those introduced by Yokomori 
and Okubo (2021) in how the outcome of a reaction is 
defined. While classical reaction automata have perma-
nence (i.e., the entities that are not used are preserved), 
in pure reaction automata the entities that are not used by 
any reaction are lost. This makes pure reaction automata 
more similar, in this aspect, to reaction systems, where 
non-permanence is a defining characteristic.

The introduction of a new manner and a new model of 
reaction automata raises the question of its computation 
power compared to the already existing models. We prove 
that the set of languages accepted by pure reaction autom-
ata working in a maximal reactive manner contains the 
set of languages accepted by standard reaction automata 
working in the same manner as well as the set of languages 
accepted by reaction automata working in a maximal par-
allel manner (a manner already investigated by Yokomori 
and Okubo (2021)).

We also introduce a new research direction for reaction 
automata by looking at them as devices to compute partial 
functions—similarly to what has been already done for 
chemical reaction networks in Chen et al. (2014), Clamons 
et al. (2020). From this new point of view, we show that 
a restricted class of pure reaction automata can compute 
any recursive function from ℕk to ℕ.

The paper is structured as follows. In Sect. 2 we give 
preliminary notions on reaction automata. In Sect. 3 we 
define and explore the computational power of pure reaction 
automata as language acceptors, while in Sect. 4 we change 
the perspective by exploring the computational power of 
a restricted class of pure reaction automata as devices for 
computing partial recursive functions. In Sect. 5 we pro-
vide a summary of our results and some directions for future 
research.

2  Preliminaries

Let S be a finite alphabet. We denote by S∗ the set of words 
over S , that is, all finite sequences of elements of S , with 
� ∈ S∗ denoting the empty word consisting of zero letters. 
A multiset over S is defined as a function V ∶ S → ℕ such 
that V(a) ∈ ℕ is the multiplicity of a ∈ S in the multiset. 
By S# we denote the set of all multisets over S . Given V  and 
W  two multisets over S , we define a partial order and four 
operations as follows:

– Inclusion: V ≤ W  if V(a) ≤ W(a) , for each a ∈ S;
– Sum: (V +W)(a) ∶= V(a) +W(a) , for each a ∈ S;
– Intersection: (V ∩W)(a) ∶= min{V(a),W(a)} , for each 

a ∈ S;
– Difference: (V −W)(a) ∶= V(a) −W(a) , for each a ∈ S 

(only defined for W ≤ V);
– S y m m e t r i c  d i f f e r e n c e :  (V △W)(a) ∶=

(V +W)(a) − (V ∩W)(a) , for each a ∈ S.

Furthermore, we define a relation between the letters of S 
and a multiset: given V ∈ S# and a ∈ S , a ∈ V  if and only 
if V(a) ≥ 1 , i.e., a letter is an element of V  if and only if 
its multiplicity is at least one. This allows us to define the 
set underlying a multiset V ∈ S# as the set of letters with 
nonzero multiplicity:

The following properties follow immediately for any 
V ,W ∈ S#:

Moreover, if V ≤ W  , then set(V) ⊆ set(W) , while the con-
verse is not true: e.g., for V = {a, a, b} and W = {a, b, c} , we 
have that set(V) ⊆ set(W) but V ≰ W .

A set U ⊆ S can be seen as a multiset VU such that 
VU(a) = 1 if a is in U and VU(a) = 0 otherwise. In particular, 
for each symbol a ∈ S , we will often denote the multiset V{a} 
simply by a . We will denote the empty multiset by 0 ∈ S# . 

set(V) ∶= {a ∈ S ∣ a ∈ V}.

set(V +W) = set(V) ∪ set(W), set(V ∩W) = set(V) ∩ set(W).
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The total number of elements in a multiset V ∈ S is defined 
as ‖V‖ ∶=

∑
a∈S V(a).

Remark 1 The following map:

is an isomorphism of monoids; we will denote such isomor-
phism by S# ≅ ℕ

|S|.

2.1  Reaction automata

In this section, we recall the definition of reaction automata 
given by Yokomori and Okubo (2021) and we introduce a 
new policy for enabling reactions.

Definition 2 (Reaction) Given an alphabet of reactants S, a 
reaction over S is a triple a = (R

a
, I

a
,P

a
) , where R

a
∈ S# is 

the multiset of reactants, I
a
⊆ S is the set of inhibitors and 

P
a
∈ S# is the multiset of products. The set of all reactions 

over S is denoted by rac(S).

A crucial assumption in the reaction system model is 
that if a reactant is present at a certain state T ∈ S# , then its 
quantity is always enough for all the reactions that use it to 
take place, provided the respective inhibitors are not present. 
In other words, reactions do not conflict even if they share 
some resources. This assumption is no longer in place in the 
model of reaction automata, for which there is only a certain 
quantity of each of the reactants. It is therefore necessary 
to specify a criterion (called a manner) that decides which 
of several conflicting reactions take place. In this paper, 
we focus on two manners, provided in Definition 3. Before 
defining such manners, we need to introduce a few opera-
tions and relations among reactions.

L e t  a = (R
a
, I

a
,P

a
)  ,  b = (R

b
, I

b
,P

b
) ∈ rac(S)  ; 

we  de f ine  t he  sum o f  t he  two  reac t ions 
a + b ∶= (R

a
+ R

b
, I

a
∪ I

b
,P

a
+ P

b
) . Furthermore, we define 

a partial order over all possible reactions over S: a≤rb if 
and only if R

a
≤ R

b
 and I

a
⊆ I

b
 . In other words, a reaction 

is greater than another when it is more restrictive, i.e., it 
requires more reactants and there are more elements capable 
of disabling it. With this relation, we get that a=rb if and 
only if R

a
= R

b
 and I

a
= I

b
 , but we do not impose any condi-

tions on the products: in particular, it could hold a=rb with 
P
a
≠ P

b
 . We remark that this partial order is different from 

the one proposed by Ehrenfeucht and Rozenberg (2009) for 
reactions within reaction systems.

Given a finite set A ⊆ rac(S) , we denote by ⟨A⟩ the abe-
lian semigroup generated by the elements of A:

S# ⟶ ℕ
|S|

V ⟼ (V(a1),… ,V(an))

Note that any element of ⟨A⟩ is a reaction that can be inter-
preted as a multiset of reactions from A , where the coef-
ficients �1,… , �n give the multiplicity of each reaction. We 
will thus denote a multiset of reactions that are enabled in a 
certain state as a single reaction from ⟨A⟩.

Definition 3 (Manners)  Let a = (R
a
, I

a
,P

a
) ∈ rac(S) 

and T ∈ S# , we say that a is enabled in T if R
a
≤ T  and 

I
a
∩ set(T) = ∅ . Given A a finite set of reactions over S and 

a ∈ ⟨A⟩ enabled in T, then: 

1. a is enabled in T in a maximally parallel manner (mp) 
if there exists no c ∈ ⟨A⟩ such that a + c is enabled in T, 
i.e., a is maximal w.r.t. addition.

2. a is enabled in T in a maximally reactive manner (mr) if 
there exists no b ∈ ⟨A⟩ such that a<rb and b is enabled 
in T, i.e., a is maximal w.r.t the partial order ≤r.

We denote by EnX
A
(T) the set of reactions from ⟨A⟩ enabled 

in T in manner X ∈ {mp,mr}.
Remark 4 The notion of mp manner given in Definition 3 is 
equivalent to the one given by Yokomori and Okubo (2021). 
Indeed, given �, � ∈ A

# , consider the corresponding ele-
ments a, b ∈ ⟨A⟩ , identified by � ↦

∑
d∈A �(d)d ∈ ⟨A⟩ . If 

𝛽 > 𝛼 is enabled by T, then c = b − a is such that a + c = b 
is enabled by T; the viceversa is obtained in a similar way.

Remark 5 At first sight, the definitions of manners mp and 
mr are hard to tell apart. However, the two criteria are dis-
tinct, and in particular, mr is stronger than mp in the sense 
that Enmr

A
(T) ⊆ En

mp

A
(T) for any A ⊆ rac(S) and any state T. 

In other words, if a reaction a ∈ ⟨A⟩ is enabled in a maxi-
mally reactive manner, it is also enabled in a maximally 
parallel manner. Indeed, the existence of c ∈ ⟨A⟩ s.t. a + c 
is enabled in T would imply that a reaction greater than a is 
enabled in T, leading to a contradiction. The converse is not 
always true: see Example 7.

In reaction systems, the state resulting from a set of 
reactions is simply defined as the union of the products of 
all the reactions. In reaction automata, the reactants that 
are not consumed by the reactions that take place remain 
in the resulting states. We make this concept precise in 
Definition 6.

Definition 6 (Result) The result of a set of reactions A on a 
state T in a manner X is a set of states, denoted by ResX

A
(T) , 

defined as follows:

⟨A⟩ ∶= {�1a1 +⋯ + �nan ∣ ai ∈ A, �i ∈ ℕ ∀i = 1,… , n}.

Res
X

A
(T) = {P

a
+ (T − R

a
) ∣ a = (R

a
, I

a
,P

a
) ∈ En

X

A
(T)}.
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When EnX
A
(T) = ∅ , we define ResX

A
(T) = {T} , that is, if 

no multiset of reactions from ⟨A⟩ is enabled in T, then T 
remains unchanged.

Example 7 Let S = {w1,w2,♡} , A = {a
1
= (w

1
,∅,♡),

a
2
= (w

1
+ w

2
,∅,w

2
)} , and consider a state T = w1 + w2 . 

Then the set of reactions enabled in T in a maximally parallel 
manner is Enmp

A
(T) = {a1, a2} , as ∄c ∈ ⟨A⟩ such that a1 + c is 

enabled in T; and the set of reactions enabled in T in a maxi-
mally reactive manner is Enmr

A
(T) = {a2} , because a2>ra1 

and thus a1 is not mr-enabled. The corresponding results 
in the two manners are thus Resmp

A
(T) = {♡ + w2,w2} , 

Res
mr
A
(T) = {w2}.

We are now in a position to define reaction automata.

Definition 8 (Yokomori and Okubo (2021)) A reaction 
automaton ( RA ) A is a five-tuple A = (S,Σ,A,D0, f ) , where 
S is a finite set of reactants, called the background set of A ; 
Σ ⊆ S is the input alphabet of A ; A ⊆ rac(S) is a finite set of 
reactions over S; D0 ∈ S# is the initial multiset; and f ∈ S is 
a special symbol which indicates the final state.

Definit ion 9  Cons ider  a  reac t ion  au tomaton 
A = (S,Σ,A,D0, f ) , a word w = w1 ⋯wn ∈ Σ∗ and a man-
ner X ∈ {mp,mr} . An interactive process in A with input w 
in manner X is an infinite sequence � = D0,… ,Di,… where

By IPX(A,w) we denote the set of all interactive processes in 
A with input w in manner X. We say that a process � strongly 
accepts w if there exists m ≥ n = |w| such that f ∈ Dm and 
En

X
A
(Dm) = ∅ (see also Example 11). By AIPX(A,w) we 

denote the set of all processes � ∈ IPX(A,w) such that � 
strongly accepts w. The language strongly accepted by A 
is defined as

The set of languages strongly accepted by reaction automata 
working in manner X is denoted by RAX : L ∈ RAX if and 
only if there exists a reaction automaton working in manner 
X that strongly accepts L.

We say that a process � weakly accepts w if there exists 
m ≥ n = |w| such that f ∈ Dm and Dk = Dm for all k ≥ m 
(see also Example 12). By AIPw

X
(A,w) we denote the set of 

all processes � ∈ IPX(A,w) such that � weakly accepts w. 
The language weakly accepted by A is defined as

{
Di+1 ∈ Res

X
A
(wi+1 + Di) for 0 ≤ i ≤ n − 1

Di+1 ∈ Res
X
A
(Di) for i ≥ n.

LX(A) = {w ∈ Σ∗ ∣ AIPX(A,w) ≠ ∅}.

Lw
X
(A) = {w ∈ Σ∗ ∣ AIPw

X
(A,w) ≠ ∅}.

The set of languages weakly accepted by reaction automata 
working in manner X is denoted by RA

w

X
.

We will sometimes represent an interactive process � with 
the following “arrow notation”, which extends the notation 
proposed by Yokomori and Okubo (2021):

where Di−1

ai
��������→
wi

Di means wi is the input letter at state Di−1 , 

ai ∈ ⟨A⟩ is the reaction enabled in Di−1 + wi which takes 
place, and Di ∈ Res

X
A
(wi + Di−1).

Example 10 If w = � the empty word, then |w| = n = 0 , thus 
an interactive process accepting strongly � is of the form 
D0

a1
��������→ D1

a2
��������→ D2

a3
��������→ ⋯Dm �→ Dm �→ Dm ⋯ , where Dm does 

not enable any reaction.

Note that in Definition 9 we call strong the acceptance 
condition proposed by Yokomori and Okubo (2021); the 
weak notion of acceptance will be needed for the definition 
of pure reaction automata (see Sect. 3).

In Proposition 13 we show that the weak acceptance cri-
terion extends the strong criterion in the following sense: 
given an automaton that strongly accepts a certain language, 
it is always possible to construct another automaton that 
weakly accepts the same language. Examples 11 and 12 
provide intuition on this result before we formally prove 
it in Proposition 13: Example 11 provides an automaton 
accepting words with the strong criterion, while Example 12 
constructs another automaton that accepts exactly the same 
language as in Example 11 but using the weak criterion.

Example 11 Given an input alphabet Σ = {a, b} , a  
background set S = {a, b, s0, s1, f } and a set of reac-
t ions A = {a

1
= (s

0
+ a,∅, s

1
), a

2
= (s

1
+ b,∅, s

0
), a

3
= (s

0
,∅, f ),

a
4
= (b,∅, b)}, let A = (S,Σ,A, s0, f ) be a reaction automa-

ton working in mr manner that accepts words with the strong 
criterion. We show that the language strongly accepted by 
A is Lmr(A) = {(ab)n ∶ n ∈ ℕ} . Consider the input word 
w = abab ∈ Σ∗ : we obtain the following process.

The computation stops since Enmr
A
(f ) = ∅ . A trivial exten-

sion of this argument proves that {(ab)n ∶ n ∈ ℕ} ⊆ Lmr(A).
To show the other inclusion, observe that a word 

w ∉ {(ab)n ∶ n ∈ ℕ} if and only if at least one of the follow-
ing cases happens: (i) aa occurs in w; (ii) bb occurs in w; (iii) 
w starts with b; (iv) w ends with a. In case (i), when the sec-
ond consecutive a is fed to the process, it ends up in the state 
s1 + a : the computation stops because Enmr

A
(s1 + a) = ∅ , but 

� ∶ D
0

a
1

����������→
w
1

D
1

a
2

����������→
w
2

D
2

a
3

����������→
w
3

⋯D
n−1

a
n

����������→
w
n

D
n

a
n+1

���������������→ D
n+1

a
n+2

���������������→ ⋯

s0
a1
��������→
a

s1
a2
��������→
b

s0
a1
��������→
a

s1
a2
��������→
b

s0
a3
��������→ f .
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since f ∉ s1 + a , w is not strongly accepted. In case (ii), after 
reading the second consecutive b, the process reaches the 
state s0 + b : then s0 + b

a3+a4
���������������������→ b + f  and Enmr

A
(b + f ) = {a4} , 

thus the process keeps looping in this state and w is not 
strongly accepted because Enmr

A
(b + f ) ≠ ∅ . The same hap-

pens in case (iii), when b is added to the initial state s0 . 
Finally, in case (iv), after reading the last a, the process ends 
up in state s1 : the computation stops because Enmr

A
(s1) = ∅ , 

but since f ∉ s1 , w is not strongly accepted. We can thus 
conclude that Lmr(A) = {(ab)n ∶ n ∈ ℕ}.

Note that using the weak notion of acceptance instead of 
the strong one for the reaction automaton A of Example 11 
would imply {(ab)n ∶ n ∈ ℕ} ⊊ Lw

mr
(A) , since for example 

the string w = b ∉ {(ab)n ∶ n ∈ ℕ} is weakly accepted by 
the following process:

Example 12 shows that it is anyway possible to construct 
another RA B such that Lw

mr
(B) = {(ab)n ∶ n ∈ ℕ}.

Example 12 Given an input alphabet Σ = {a, b} and a back-
ground set S = {a, b, s0, s1,♠,♣, f } let B = (S,Σ,B, s0 + ♣, f ) 
be a reaction automaton working in mr manner and using 
the weak acceptance criterion, with B consisting of the fol-
lowing reactions:

We show that B weakly accepts the same language that 
is strongly accepted by A in Example  11. Consider 
w = ab ∈ {(ab)n ∶ n ∈ ℕ} . We obtain the following process:

The computation stops since En
mr
B
(f ) = ∅ ,  thus 

Res
mr
B
(f ) = {f } and w is weakly accepted. Consider now the 

string w = aa ∉ {(ab)n ∶ n ∈ ℕ} . We obtain the following 
process:

and the computation stops since Enmr
B
(s1 + a) = ∅ ; aa is not 

weakly accepted because f ∉ s1 + a . Similarly, it is easy to 
see that any string in case (i) of Example 11 is not weakly 

s0
a3+a4
���������������������→

b
b + f

a4
��������→ b + f

a4
��������→ ⋯ .

a
♠

1
= (s

0
+ a, {♠}, s

1
+ ♠) a

♣

1
= (s

0
+ a, {♣}, s

1
+ ♣)

a
♠

2
= (s

1
+ b, {♠}, s

0
+ ♠) a

♣

2
= (s

1
+ b, {♣}, s

0
+ ♣)

a
♠

3
= (s

0
, {♠}, f + ♠) a

♣

3
= (s

0
, {♣}, f + ♣)

a
♠

4
= (b, {♠}, b + ♠) a

♣

4
= (b, {♣}, b + ♣)

r
♠ = (♠,∅, 0) r

♣ = (♣,∅, 0) .

s0 + ♣
a
♠

1
+r♣

����������������������→
a

s1 + ♠
a
♣

2
+r♠

����������������������→
b

s0 + ♣
a
♠

3
+r♣

����������������������→ f + ♠
r♠

���������→ f .

s0 + ♣
a
♠

1
+r♣

����������������������→
a

s1 + ♠
r♠

���������→
a

s1 + a

accepted. Consider the string w = b ∉ {(ab)n ∶ n ∈ ℕ} . We 
obtain the following process:

The states b + f + ♣ and b + f + ♠ keep alternating, so the 
string is not weakly accepted. Similarly, one can prove that 
any string starting with b (case (iii) of Example 11) is not 
weakly accepted. Working out the other cases in a similar 
fashion, it is easy to show that Lw

mr
(B) = {(ab)n ∶ n ∈ ℕ}.

In Example 12 we were able to simulate the processes of 
A using the following rule: for any step m, if EnX

A
(Dm) = ∅ 

then the computation stops also in B ; if, instead, 
En

X
A
(Dm) ≠ ∅ , then the computation in B keeps alternating 

between states containing ♠ and states containing ♣ . The 
proof of the following Proposition 13 relies on a generaliza-
tion of this argument.

Proposition 13 Given any reaction automaton 
A = (S,Σ,A,D0, f ) working in a manner X ∈ {mp,mr} , 
there exists a reaction automaton B working in manner X 
such that LX(A) = Lw

X
(B).

Proof Let A = (S,Σ,A,D0, f ) and let ♠,♣ ∉ S be two 
symbols that are not in the alphabet of A . We define 
B = (S ∪ {♠,♣},Σ,B,D0 + ♣, f ) the reaction automaton 
such that B ∶= A

♠ ∪ A
♣ ∪ {r♠, r♣} , where

Given a =
∑n

j=1
�jaj ∈ ⟨A⟩ we def ine c

a
=
∑n

j=1
�j  , 

a♠ =
∑n

j=1
�ja

♠

j
∈ ⟨A♠⟩ and similarly a♣ =

∑n

j=1
�ja

♣

j
∈ ⟨A♣⟩

.
We want to prove that B weakly accepts the same lan-

guage that is strongly accepted by A . Given a process 
� ∈ IPX(A,w)

if n is even, there is a one-to-one correspondence with the 
process �̄� ∈ IPX(B,w)

If n is odd, a process corresponding to � can be obtained 
similarly. Since ♠,♣ are not present in any of the reactant 

s0 + ♣
a
♠

3
+a♠

4
+r♣

�����������������������������������→
b

b + f + ♠
a
♣

4
+r♠

����������������������→ b + f + ♣
a
♠

4
+r♣

����������������������→ b + f + ♠ → ⋯

A
♠ = {a♠ = (R, I ∪ {♠},P + ♠) ∣ a = (R, I,P) ∈ A}

A
♣ = {a♣ = (R, I ∪ {♣},P + ♣) ∣ a = (R, I,P) ∈ A}

r
♠ = (♠,∅, 0)

r
♣ = (♣,∅, 0) .

� ∶ D0

a1
����������→
w1

D1

a2
����������→
w2

D2

a3
����������→
w3

…Dn−1

an
����������→
wn

Dn

an+1

���������������→ Dn+1 ⋯

�̄� ∶ D0 + ♣
a
♠

1
+r♣

����������������������→
w1

D1 + c
a1
♠

a
♣

2
+ca1 r

♠

��������������������������������→
w2

D2 + c
a2
♣

a
♠

3
+ca2 r

♣

��������������������������������→
w3

⋯

⋯Dn−1 + c
an−1

♠

a♣
n
+can−1 r

♠

��������������������������������������→
wn

Dn + c
an
♣

a
♠

n+1
+can r

♣

�������������������������������������→ ⋯ .
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sets of A♠ and A♣ , the reaction r♠ (respectively, r♣ ) is ena-
bled as many times as the multiplicity of ♠ (respectively, 
♣ ) in any given state; this is independent of the manner 
X ∈ {mp,mr} we are working with. In particular, any pro-
cess in IPX(B,w) ends in a state Dm s.t. Dk = Dm for all 
k > m if and only if at some step no reactions are enabled 
(as otherwise, ♠ and ♣ would keep alternating). Therefore 
AIPX(A,w) is in a bijection with AIPw

X
(B,w) . We conclude 

that LX(A) = Lw
X
(B) .   ◻

Corollary 14 RAmr ⊆ RA
w

mr
 and RAmp ⊆ RA

w

mp
.

Proof Follows directly from Proposition 13.   ◻

Corollary 15 Every recursively enumerable language is 
weakly accepted by a reaction automaton working in a maxi-
mally parallel manner.

Proof Follows from Proposition  13 and (Okubo et  al. 
2012b, Corollary 1).   ◻

We thus proved that the weak acceptance criterion 
extends the strong criterion. This will be useful in the next 
section to demonstrate the computational power of pure 
reaction automata.

3  Pure reaction automata

In this section, we introduce a different kind of reaction 
automata, which differs from the model introduced by 
Yokomori and Okubo (2021) by how the result of a reac-
tion is defined: instead of transferring the reactants that 
are not consumed by the reactions in the result states, we 
define the next states to consist only of the products of the 
reactions, similar to what is done in reaction systems. We 
make this concept formal in Definition 16.

Definition 16 (Pure result) The pure result of a finite set of 
reactions A on a state T in a manner X is

and we define R̂es
X

A
(T) = {0} when EnX

A
(T) = ∅.

Example 17 Let S = {w1,w2,♡} , A = {a
1
= (w

1
,∅,♡),

a
2
= (w

1
+ w

2
,∅,w

2
)} and consider a state T = w1 + w2 as 

in Example 7. Recall that Resmp
A
(T) = {♡ + w2,w2} (since 

En
mp

A
(T) = {a1, a2} ); in contrast, the pure result of T in mp 

R̂es
X

A
(T) = {P

a
∣ a = (R

a
, I

a
,P

a
) ∈ En

X

A
(T)},

manner is R̂es
mp

A
(T) = {♡,w2} . In particular, reaction a1 does 

not consume the reactant w2 that is present in T: the pure 
result of a1 only consists of ♡ and w2 is lost, while in Exam-
ple 7 w2 was preserved in the result.

We name this new kind of reaction automata Pure Reac-
tion Automata (PRA). We define interactive processes in 
pure reaction automata in much the same way as standard 
reaction automata, as specified by Definition 18.

Definition 18 Let M = (S,Σ,A,D0, f ) be a PRA , 
w = w1 ⋯wn ∈ Σ∗ and X ∈ {mp,mr} . An interactive pro-
cess in M with input w in manner X is an infinite sequence 
� = D0,… ,Di,… where

Exactly as for reaction automata, we say that � weakly 
accepts w if there exists m ≥ n = |w| such that f ∈ Dm 
and Dk = Dm for all k ≥ m . We also define IPX(M,w) , 
AIP

w

X
(M,w) , and Lw

X
(M) in the same way as for reaction 

automata. The set of languages weakly accepted by PRA 
working in manner X is denoted by PRA

w

X
.

Example 19 Given an input alphabet Σ = {a, b} , a 
background set S = {a, b, s0, s1, f } and a set of reac- 
tions A = {a

1
= (s

0
, {b}, s

1
), a

2
= (s

1
+ b,∅, s

0
), a

3
= (s

0
, {a, b}, f ), a

4
= (f ,∅, f ), let 

M = (S,Σ,A, s0, f ) be a pure reaction automaton working in 
mr manner. We show that the language (weakly) accepted by 
M is Lw

mr
(M) = {(ab)n ∶ n ∈ ℕ} . Consider the input word 

w = abab ∈ Σ∗ : we obtain the following process.

Therefore the string abab is accepted. Note that the pure 
result of reaction a1 applied at states s0 + a consists only of 
s1 , even if a is not consumed by the reaction. We also remark 
that the step s0

a3
��������→ f  generates f instead of s1 because a3 >r a1 

and thus Enmr
B
(s0) = {a3} . A trivial extension of this argu-

ment proves that {(ab)n ∶ n ∈ ℕ} ⊆ Lw
mr
(M) . Consider now 

the string w = aa ∉ {(ab)n ∶ n ∈ ℕ} , as in Example 12. We 
obtain the following process:

and the computation stops since Enmr
B
(s1 + a) = En

mr
B
(0) = ∅ , 

thus aa is not accepted. Working out the other cases 
listed in Example  11 similarly, it is easy to see that 
Lw
mr
(M) = {(ab)n ∶ n ∈ ℕ}.

{
Di+1 ∈ R̂es

X

A
(wi+1 + Di) for 0 ≤ i ≤ n − 1

Di+1 ∈ R̂es
X

A
(Di) for i ≥ n.

s0
a1
��������→
a

s1
a2
��������→
b

s0
a1
��������→
a

s1
a2
��������→
b

s0
a3
��������→ f

a4
��������→ f

a4
��������→ ⋯ .

s
0

a
1

��������→
a

s
1
�����→
a

0 �→ 0 �→ ⋯
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Note that a non-pure automaton with the same sets of 
reactions, initial state and final element would not accept, 
e.g., the string ab ∈ {(ab)n ∶ n ∈ ℕ} since the only interac-
tive process with input ab is:

and the computation stops without accepting ab since, as 
previously remarked, Enmr

B
(s1 + a) = ∅.

Theorem  20  G iven  any  reac t ion  au tomaton 
A = (S,Σ,A,D0, f ) working in a maximally reactive man-
ner, there exists a pure reaction automaton M working in 
a maximally reactive manner such that Lw

mr
(A) = Lw

mr
(M).

Proof We def ine  a  pure  react ion automaton 
M = (S ∪ S�,Σ,A�

,D0, f ) operating in a maximally reactive 
manner such that:

• S� = {x� ∣ x ∈ S} is a set in a bijection with the elements 
of S (a “copy” of S). From now on, given a multiset X 
over S, X′ will be naturally defined as the multiset con-
sisting of the copies of the elements of X.

• Σ is the same input alphabet as A;
• A

� = Ap ∪ Ac , where Ap = {(x,∅, x + x�) ∣ x ∈ S} and 
Ac = {(R + R�, I�,P + P�) ∣ (R, I,P) ∈ A}.

• D0 is the same initial state as A;
• f ∈ S is the same final element as A.

Claim 21 For any state W of A , it holds W ∈ Res
mr
A
(V) if and 

only if W +W � ∈ R̂es
mr

A
� (V + V �).

Proof Given a reaction a ∈ A , we denote the corresponding 
reaction in Ac by a′ . We prove the two implications. 

⇒)  If W ∈ Res
mr
A
(V) then ∃a = (R

a
, I

a
,P

a
) ∈ En

mr
A
(V) such 

that P
a
+ V − R

a
= W  . Consider a�� ∶= a� + (V − R

a
,

∅,V − R
a
+ V

� − R
�
a
) = (V + R

�
a
, I

�
a
,W +W

�) ∈ ⟨��⟩ . 
Clearly, V + V � enables a′′ ; we want to show 
that it is mr enabled. Suppose for a contradic-
tion that there exists b�� ∈ ⟨��⟩ such that b′′>ra

′′ 
and b′′ is enabled by V + V � , then b′′ is of the form 
b
�� = b

� + (R,∅,R + R�) for some b= (R
b
, I

b
,P

b
) ∈ ⟨A⟩ 

and some R ∈ S# . Looking at the reactants, we have 
that V + V � ≥ R

b
+ R�

b
+ R ≥ V + R�

a
 , which implies 

R
b
+ R = V ⇒ R

b
≤ V  and R′

b
≥ R′

a
 . Furthermore, 

looking at the inhibitors, we obtain that I′
b
⊇ I′

a
 , thus 

b>ra and b is enabled by V. Since a is mr enabled 
we get a contradiction, thus a�� ∈ En

mr

A
� (V + V �) , hence 

W +W � ∈ R̂es
mr

A
� (V + V �).

s
0

a
1

��������→
a

s
1
+ a

a
2

��������→
b

s
0
+ a

a
1

��������→ s
1
+ a �→ s

1
+ a⋯

⇐)  I f  W +W � ∈ R̂es
mr

A
� (V + V �)  t h e n  ∃a�� = a�+

(R,∅,R + R
�) ∈ En

mr

A
� (V + V

�) ,  for some a ∈ ⟨A⟩ 
and R ∈ S# , such that P

a
+ R = W  . We notice that 

V − R
a
= R , as otherwise for any x ∈ V − R

a
− R 

the reaction a�� + (x,∅, x + x�) would be enabled by 
V + V � and would be strictly greater than a′′ , in con-
tradiction to the fact that a′′ is mr enabled. Clearly, 
a ∈ ⟨A⟩ is enabled by V. We now prove it is also mr 
enabled. Suppose for a contradiction that there exists 
b ∈ ⟨A⟩ such that b>ra and b is enabled by V, then 
b
�� ∶= b

� + (V − R
b
,∅,V − R

b
+ V � − R�

b
)  w o u l d 

be enabled by V + V � and b′′>ra
′′ , a contradiction. 

Finally we can conclude that a ∈ En
mr
A
(V) , hence 

P
a
+ V − R

a
= W ∈ Res

mr
A
(V) .   ◻

Let us now make some considerations about the work-
ings of M . Consider any state V, let R be s.t. (R, I,P) ∈ A 
for some I and P and (R ∪ R�) ⊆ V + V � ; then, for any x ∈ R , 
the corresponding reaction (x,∅, x + x�) ∈ Ap cannot be mr 
enabled, as it is smaller than (R + R�, I�,P + P�) ∈ Ac . Thus a 
reaction (x,∅, x + x�) ∈ Ap will only be applied in two cases: 
either (i), the multiplicity of x in V is greater than that of x′ , 
thus there is at least one “spare” x that will not be used by 
any reaction from Ac ; or (ii), there is no (R ∪ R�) ⊆ V + V � 
such that (R, I,P) ∈ A . Note that case (i) can only happen in 
the initial state D0 , in which there are no elements from S′ , 
or when x is added to a state because it is a letter of an input 
word: this is because every state other than D0 is the product 
of some reaction in ⟨A′⟩ , thus, by definition, it is of the form 
P + P� for some P ∈ S# . Case (ii) ensures that if x is not 
consumed by any reaction from ⟨Ac⟩ , then it is conserved in 
the next state by a reaction from Ap , simulating what would 
happen in the reaction automaton A when a reactant is not 
consumed by any reaction from A.

Consider now an input word w = w1 ⋯wn ∈ Σ∗ . We 
notice that when a letter wi of w is added to the (i − 1)-th state 
of a process in M , it immediately reacts through the cor-
responding reaction (wi,∅,wi + w�

i
) ∈ Ap because it occurs 

case (i) above. This helps us to find the desired correspond-
ence between processes of A and processes of M accepting 
w. Let � = D0,D1,… ,Di,… ∈ IPmr(A,w) : the correspond-
ing process E0,E1 … ,En ∈ IPmr(M,w) is obtained as fol-
lows. E1 ∶= D0 + D�

0
+ w1 + w�

1
∈ R̂es

mr

A
� (D0 + w1) since the 

only reactions that are enabled are those in ⟨A�⟩ . In the next 
steps we have, by Claim 21 and the observations here above:

Hence the processes of M mimic those of A with one 
step of delay, i.e., �� ∶= D0,E1,… ,Ei,… ∈ IPmr(M,w) . 
If � ∈ AIP

w

mr
(A,w) then there exists m ≥ |w| such that 

⎧⎪⎨⎪⎩

E
k+1 = D

k
+ D

�
k
+ w

k+1 + w
�
k+1

∈ R̂es
mr

A
� (Ek

+ w
k+1) ∀k = 1,… , n − 1

E
k+1 = D

k
+ D

�
k
∈ R̂es

mr

A
� (Ek

) ∀k ≥ n.
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Dk = Dm for all k ≥ m and f ∈ Dm ; this holds true if and 
only if Ek = Em+1 for all k ≥ m + 1 and f ∈ Em+1 . Therefore 
� ∈ AIP

w

mr
(A,w) if and only if �� ∈ AIP

w

mr
(M,w) . Since the 

accepting condition is the same, and a state maintaining f in 
A must correspond to a state maintaining f in M , we have 
that AIPw

mr
(A,w) is in a natural bijection with AIPw

mr
(M,w) , 

and hence we obtain the thesis.   ◻

We next prove in Theorem 24 that for any reaction autom-
aton working in mp manner, there exists a pure reaction 
automaton working in mr manner that weakly accepts the 
same languages. Example 22 shows that this result cannot 
be achieved using the same construction as in the proof of 
Theorem 20, thus we will provide a more involved reduction, 
an example of which is laid out in Example 23.

E xa m p l e  2 2  G i ve n  Σ = {w1,w2} ,  S = {w1,w2,♡} 
a n d  A = {a1 = (w1,∅,♡), a2 = (w1 + w2,∅,w2)} ,  l e t 
A = (S,Σ,A,w1,♡) be a reaction automaton work-
ing in mp manner. Consider the pure reaction automaton 
M = (S ∪ S�,Σ,A�

,w1,♡) as in the proof of Theorem 20, 
thus with A� = {a�

1
, a�

2
} ∪ {ax = (x,∅, x + x�) ∣ x ∈ S} . Then 

w2 belongs to the language weakly accepted by A in a maxi-
mally parallel manner, i.e., w2 ∈ Lw

mp
(A) (see Definition 9), 

but it does not belong to the language accepted by A in a 
maximally reactive manner, i.e., w2 ∉ Lw

mr
(M).

Indeed, as seen in Example  7, the set of reac-
tions from A enabled in state T = w1 + w2 in a maxi-
mally parallel manner is Enmp

A
(w1 + w2) = {a1, a2} , 

t hus  the  resu l t  i s  Res
mp

A
(w1 + w2) = {♡ + w2,w2} 

and w2 is accepted by the interactive process 
D0 + w2 = w1 + w2

a1
��������→ ♡ + w2 → ♡ + w2 → ⋯ ∈ AIP

w(w2,A).
In contrast, since the set of reactions enabled 

in T = w1 + w2 in a maximally recative manner is 
En

mr
A
(w1 + w2) = {a2} (see Example  7),  then the 

result is Resmr
A
(w1 + w2) = {w2} , thus by Claim 21 

we obtain that the set of reactions from M enabled in 
T + T � = w1 + w�

1
+ w2 + w�

2
 in a maximally reactive 

manner is Enmr
A

� (w1 + w�
1
+ w2 + w�

2
) = {a�

2
} and the pure 

result is R̂es
mr

A
(w1 + w�

1
+ w2 + w�

2
) = {w2 + w�

2
} . There-

fore there is only one process with input w2 , namely: 

D
0
+ w

2
= w

1
+ w

2

aw1
+aw2

������������������������������������→ w
1
+ w

�
1
+ w

2
+ w

�
2

a
�
2

����������→ w
2
+ w

�
2

aw2
����������������→ w

2
+ w

�
2

aw2
����������������→ ⋯; 

since ♡ ∉ w1 + w�
2
 , this is not an accepting process, thus w2 

is not in the language weakly accepted by M in a maximally 
reactive manner, i.e., w2 ∉ Lw

mr
(M).

Example 23 Consider  A = (S,Σ,A,w1,♡) the  RA 
from Example 22. We make two copies of each ele-
ment of the background set, the i-th copy being in a 

natural correspondence with reaction ai : Si = {wi
1
,wi

2
,♡i} 

for i ∈ {1, 2} . Let A′ consist of the following reactions over 
S ∪ S1 ∪ S2:

We  d e f i n e  t h e  p u r e  r e a c t i o n  a u t o m a t o n 
M

� = (S ∪ S1 ∪ S2,Σ,A�
,w1,♡)  .  We  h a v e  t h a t 

En
mr

A
� (w1 + w1

1
+ w2

1
+ w2 + w1

2
+ w2

2
) = {a�

2
, a�

1
+ aw2

} since 
a
′
2
 and a�

1
+ aw2

 are not comparable and are both maximal. 
Therefore we obtain the following accepting process with 
input w2:

We have obtained that w2 ∈ Lw
mr
(M�) . In the proof of the 

following theorem, we will extend this construction.

Theorem 24 Given a reaction automaton A = (S,Σ,A,D0, f ) 
working in a maximally parallel manner, there exists a pure 
reaction automaton M working in a maximally reactive 
manner such that Lw

mp
(A) = Lw

mr
(M).

Proof Let A = {a1,… , ak} . We make k = |A| copies of each 
element of the background set, the i-th copy being in a nat-
ural correspondence with reaction ai : Si = {xi ∣ x ∈ S} for 
each i = 1, 2,… , |A| . We define a pure reaction automaton 
M = (S ∪ S�,Σ,A�

,D0, f ) working in a maximally reactive 
manner such that:

• S� ∶= S1 ∪⋯ ∪ Sk;
• Σ is the same input alphabet as A;
• A

� ∶= Ap ∪ Ac , where 

• D0 is the same initial state as A;
• f is the same final element as A.

Furthermore, for any T ∈ S# we define T � ∶=
∑k

j=1
Tj ∈ (S�)# , 

where Tj consists of the j-th copy of every element of T. In 
particular, x′ denotes x1 + x2 +⋯ + xk for any x ∈ S.

a
�
1
∶= (w1 + w1

1
,∅,♡ + ♡

1 + ♡
2)

a
�
2
∶= (w1 + w2 + w2

1
+ w2

2
,∅,w2 + w1

2
+ w2

2
)

ax ∶= (x,∅, x + x1 + x2) for all x ∈ S.

D0 + w2 = w1 + w2

aw1
+aw2

�����������������������������→ w1 + w1

1
+ w2

1
+ w2 + w1

2
+ w2

2

a
�
1
+aw2

�������������������������→ ♡ + ♡
1 + ♡

2 + w2 + w1

2
+ w2

2

a♡+aw2
��������������������������→ ♡ + ♡

1 + ♡
2 + w2 + w1

2
+ w2

2

a♡+aw2
��������������������������→ ⋯ .

Ap ∶= {(x,∅, x + x1 + x2 +⋯ + xk) ∣ x ∈ S}

Ac ∶= {a�
i
∶= (R

ai
+ Ri

ai
, Ii

ai
,P

ai
+ P1

ai
+⋯ + Pk

ai
) ∣

ai = (R
ai
, I

ai
,P

ai
) ∈ A}
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Claim 25 W ∈ Res
mp

A
(V) iff W +W � ∈ R̂es

mr

A
� (V + V �).

Proof We prove the two implications. 

⇒)  If W ∈ Res
mp

A
(V) then ∃a =

∑k

j=1
�jaj ∈ En

mp

A
(V) such 

that P
a
+ V − R

a
= W  . Consider a�� ∶=

∑k

j=1
�ja

�
j
+

(V − R
a
,∅,V − R

a
+ V

� − R
�
a
) ∈ ⟨��⟩ , then V + V � ena-

bles a′′ ; we want to show that it is mr enabled. Let 
b
�� ∈ ⟨��⟩ such that b′′>ra

′′ and suppose for a contra-
diction that b′′ is enabled by V + V � . We have that 
b
�� =

∑k

j=1
�ja

�
j
+ (R,∅,R + R�)  f o r  s o m e 

b =
∑k

j=1
�jaj ∈ ⟨A⟩ and some R ∈ S# , thus looking at 

the reactants we obtain R = V − R
b
 . Furthermore, 

since b′′>ra
′′ , there exists i such that 𝜆i < 𝜇i , thus 

a + (�i − �i)ai≤rb is enabled by V, a contradiction 
since a is enabled in maximally parallel manner. 
Finally, we can conclude that a�� ∈ En

mr

A
� (V + V �) , 

hence W +W � ∈ R̂es
mr

A
� (V + V �).

⇐)  I f  W +W � ∈ R̂es
mr

A
� (V + V �)  t h e n  ∃a�� = a�+

(R,∅,R + R
�) ∈ En

mr

A
� (V + V

�) , for some a ∈ ⟨A⟩ and 
R ∈ S# , such that P

a
+ R = W  . Note that V − R

a
= R , 

as otherwise, for any x ∈ V − R
a
− R , the reaction 

a�� + (x,∅, x + x�) would be enabled by V + V � and 
strictly greater than a′′ , in contradiction to the fact that 
a is maximally enabled. We immediately remark that 
a ∈ ⟨A⟩ is enabled by V. We want to prove that is mp 
enabled. Let c ∈ ⟨A⟩ such that a + c is enabled by V, 
then (a + c)��>ra

�� is enabled by V + V � , a contradic-
tion. Finally we can conclude that a ∈ En

mp

A
(V) , hence 

P
a
+ V − R

a
= P

a
+ R = W ∈ Res

mp

A
(V) .   ◻

We conclude as in Theorem 20.   ◻

C o r o l l a r y  2 6  RAmr ⊆ RA
w

mr
⊆PRA

w

mr
 a n d 

RAmp ⊆ RA
w

mp
⊆PRA

w

mr
.

Proof Follows directly from Theorems 20 and 24 and Corol-
lary 14.   ◻

Corollary 27 Every recursively enumerable language is 
weakly accepted by a pure reaction automaton working in a 
maximally reactive manner.

Proof Follows directly from Corollary 15 and Theo-
rem 24.   ◻

4  Computing functions with pure reaction 
automata

In this section, we introduce a new angle to investigate the 
computing power of pure reaction automata. Inspired by 
existing work on chemical reaction networks (see Chen et al. 
2014; Clamons et al. 2020) we will show that PRA can be 
seen as machines to compute partial functions from ℕk into 
ℕ . For more details on partial recursive functions and related 
computability issues, we refer the reader to Rogers (1987).

Definition 28 Given a partial function � ∶ ℕ
n ⇀ ℕ , con-

sider an alphabet Σ ∶= {a1,… , an} so that Σ# ≅ ℕ
n . A PRA 

M = (S,Σ,A,D0, f ) computes � in a manner X ∈ {mp,mr} 
if:

• when �(x1,… , xn) is defined, it holds �(x1,… , xn) = y 
if  and only if when the linear combination 
x1a1 +⋯ + xnan is added to the initial state D0 for any 
process D0 + x1a1 +⋯ + xnan,… ,Dk,… there exists 
k ∈ ℕ such that Dk = Dm∀m ≥ k, yf ≤ Dk, (y + 1)f ≰ Dk;

• �(x1,… , xn) is undefined if and only if all pro-
cesses star ting from D0 + a1 +⋯ + xnan satisfy 
∀k ∈ ℕ ∶ Dk ≠ Dk+1 , i.e., none of the processes stabi-
lizes.

In other words, a PRA computes a partial function � if 
and only if, interpreting (x1,… , xn) ∈ ℕ

n as the coefficients 
of a linear combination of the elements in Σ and adding 
this combination to the initial state, one of the following 
happens: if � is not defined for (x1,… , xn) , no process that 
starts from there stabilizes; otherwise, any process stabi-
lizes on a state that contains f with multiplicity y, where 
�(x1,… , xn) = y.

We will focus on a special class of PRA , specified in 
Definition 29, such that there is exactly one process that 
can start from each possible initial state. Throughout this 
section, we assume that all PRA operate in a maximally 
reactive manner.

Definition 29 Given M = (S,Σ,A,D0, Sf ) a PRA working 
in a manner X ∈ {mp,mr} , we say that M is deterministic 
( DPRA ) if and only if for any reachable state V, the pure 
result R̂es

X

A
(V) consists of one element only.

The next lemmas provide a few examples of partial 
functions that can be computed with DPRA working in a 
maximally reactive manner.

Lemma 30 There exists a DPRA computing the sum function 
� ∶ ℕ

n → ℕ , �(x1, x2) ∶= x1 + x2.
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P r o o f  L e t  Σ ∶= {a1, a2}  ,  S ∶= {a1, a2, f }  a n d 
A ∶= {b1 = (a1,∅, f ) ,  b2 = (a2,∅, f ) ,  b3 = (f ,∅, f )} . 
M ∶= (S,Σ,A, 0, f ) is clearly deterministic and it computes 
� as, for any (x1, x2) ∈ ℕ

2 , adding x1a1 + x2a2 to the initial 
state 0 gives rise to the process

  ◻

Lemma 31 There exists a DPRA computing the difference 
function � ∶ ℕ

n ⇀ ℕ , �(x1, x2) ∶= x1 − x2.

Proof Clearly, �(x1, x2) is defined if and only if x1 ≥ x2 . Let 
Σ ∶= {a1, a2} , S ∶= {a1, a2, a

�
1
, a�

2
,♢, f } and let A consist of 

the following six reactions:

We claim that M ∶= (S,Σ,A, 0, f ) computes � . Indeed, let 
(x1, x2) ∈ ℕ

2 such that x1 ≥ x2 , then adding x1a1 + x2a2 to 
the initial state 0 gives rise to the process

On the other hand, if (x1, x2) ∈ ℕ
2 is such that x1 < x2 , then 

the process becomes

thus the process gets stuck in an unstable configuration. 
Note that the proof relies heavily on maximal reactivity: 
b5>rb3 + b4 since a�

1
+ a�

2
+ ♢ > a�

1
+ a�

2
 . The role of the ele-

ment ♢ is precisely to make b5 maximal in this case.   ◻

We will prove that the class of functions that DPRA oper-
ating in mr can compute is universal, in the sense of Church-
Turing’s Thesis. We start with the following basic lemma.

x1a1 + x2a2
x1b1+x2b2
�����������������������������������→ (x1 + x2)f

(x1+x2)b3
��������������������������������→ (x1 + x2)f ⟶ ⋯ .

b1 = (a1,∅, a�
1
)

b2 = (a2,∅, a�
2
+ ♢)

b3 = (a�
2
,∅, a2)

b4 = (a�
1
,∅, f )

b5 = (a�
1
+ a�

2
+ ♢,∅, 0)

b6 = (f ,∅, f ).

x1a1 + x2a2
x1b1+x2b2

��������������������������������������������������������→ x1a
�
1
+ x2a

�
2
+ x2♢

(x1−x2)b4+x2b5
���������������������������������������������������→ (x1 − x2)f

(x1−x2)b6
��������������������������������→ (x1 − x2)f ⟶ ⋯ .

x1a1 + x2a2
x1b1+x2b2

��������������������������������������������������������→ x1a
�
1
+ x2a

�
2
+ x2♢

(x2−x1)b3+x1b5
���������������������������������������������������→ (x2 − x1)a2
(x2−x1)b2
��������������������������������→ (x2 − x1)a

�
2
+ (x2 − x1)♢

(x2−x1)b3
��������������������������������→ (x2 − x1)a2 ⟶ ⋯ ,

Lemma 32 The constant function equal to 0, the successor 
function and the projection functions can be computed by 
a DPRA.

Proof Constant function.  The constant function 
C0 ∶ ℕ

k → ℕ , C0(x1,… , xk) ∶= 0 ∀(x1,… , xk) ∈ ℕ
k is com-

puted by the DPRA M = (Σ ∪ {f },Σ,∅, 0, f ) . It is straight-
forward to verify that x1a1 +⋯ + xkak gives rise to the pro-
cess x1a1 +⋯ + xkak → 0 → 0 → ⋯.

Successor function. The successor function S ∶ ℕ → ℕ , 
S(x) ∶= x + 1∀x ∈ ℕ ,  is  computed by the DPRA 
M = (S,Σ,A,⊳, f ) ,  where  S = Σ ∪ {⊳, f } ,  Σ = {a} 
and A = {(⊳,∅, f ), (a,∅, f ), (f ,∅, f )} .  It is straight-
forward to verify that ⊳ + xa gives rise to the process 
⊳ + xa → (x + 1)f → (x + 1)f → ⋯.

Pro jec t ion  func t ions .  G iven  k, n ∈ ℕ w i t h 
1 ≤ n ≤ k  ,  the projection function Pk

n
∶ ℕ

k → ℕ , 
Pk
n
(x1,… , xk) ∶= xn ∀(x1,… , xk) ∈ ℕ

k  ,  i s  c o m p u t e d 
by the DPRA M = (S,Σ,A, 0, f ) where S = Σ ∪ {f } , 
Σ = {a1,… , ak} and A = {(an,∅, f ), (f ,∅, f )} . It is straight-
forward to verify that x1a1 +⋯ + xkak gives rise to the pro-
cess x1a1 +⋯ + xkak → xnf → xnf → ⋯ .   ◻

Note that so far we have not made use of inhibitors in 
the reactions; however, they will become crucial in prov-
ing the following results.

Remark 33 If a process within a DPRA reaches the state 
Dk = 0 , then Dk+1 = 0 . Furthermore, by determinism, if 
Dk = Dk+1 then Dk+m = Dk for all m ∈ ℕ , thus to decide 
whether the process stabilizes it suffices to find the smallest 
k ∈ ℕ such that Dk = Dk+1.

D e f i n i t i o n  3 4  ( No r m a l i z e d  DPRA  )  A  DPRA 
M = (S,Σ,A,D0, f ) operating in a maximally reactive man-
ner which computes a partial function � is called normalized 
if the following two conditions hold: 

1. there exists h ∈ S such that, whenever �(x1,… , xk) = y , 
the process D0 + x1a1 +⋯ + xnan,… ,Dk,… stabilizes 
in a state of the type P + h + yf  , for some P ∈ S#;

2. h and f are not present in the multiset of reactants of any 
reaction in A.

A normalized DPRA computing � will be denoted by 
M(�, h, f ).

The following lemma proves that to determine the com-
putational power of DPRA as function acceptors, it suffices 
to study normalized DPRA.

Lemma 35 Given any DPRA computing a partial function 
� , there exists a normalized DPRA computing �.
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Proof  G iven  M = (S,Σ,A,D0, f )  compu t ing  �  , 
Σ = {a1,… , an} ,  S = Σ ∪ {s1,… , sm, f } ,  we  def ine 
M̂ = (Ŝ,Σ,A�

,⊳ + ♢ + ♠, g) as follows:

• Ŝ ∶= S0 ∪ S1 ∪ S2 ∪ S3 ∪ Σ ∪ {⊳, g, g1, h,◻,♢,♠, #1, #3} , 
where Si ∶= {si ∶ s ∈ S} for all i ∈ {0, 1, 2, 3}.

• Σ is the same input alphabet as M;
• A

� ∶= Ain ∪ A
0 ∪ A

♠
∪ Af  , where 

• ⊳ + ♢ + ♠ is the new initial state.
• g is the new final element.

Before analyzing the processes within M , let us give an 
intuition about the role of each group of reactions and each 
symbol in Ŝ . The reactions of type A0 mimic the reactions 
of M : at every step of the process, they produce two copies 
of the state that would have been reached by the process in 
M . One of the copies always consists of elements from S0 , 
the second copy consists of elements from S1 in the first step, 
from S2 in the second step, and they keep alternating because 
the two groups of reactions in A0 are inhibited by elements 
from S1 and S2 , respectively. We call the steps in which ele-
ments from S1 are produced of type 1; the steps in which ele-
ments from S2 are produced are of type 2. In steps of type 1, 
the reactions from the first group also produce the symbol #1 
with a multiplicity equal to the number of elements from S1 
that are produced; #1 is thus a counter for the elements from 
S1 in the next state.

The first two groups of reactions from Ain only happen 
at the beginning of the computation (indeed ⊳ symbolizes 
starting the computation), their role being to produce two 
copies, consisting of elements from S0 and S1 , respectively, 
of all the input elements and a copy of the initial state of M , 
so as to allow the reactions from A0 to take place; they also 
produce the symbol ♠ , which must be produced as long as 
the computation has not reached a stationary state. The last 

Ain ∶=

⎧
⎪⎨⎪⎩

(a,∅, a0 + a1 + #1) for each a ∈ Σ,

(⊳,∅,D0

0
+ D1

0
+ ‖D0‖#1 + ♠)

(♢, {◻},♢)

A
0 ∶=

�
(R0, I0 ∪ S1 ∪ {◻},P0 + P1 + ‖P1‖#1) for each (R, I,P) ∈ A

(R0, I0 ∪ S2 ∪ {◻},P0 + P2) for each (R, I,P) ∈ A

A
♠
∶=

⎧⎪⎨⎪⎩

(#1 + a1, {◻}, #3 + a3) for each a ∈ S

(a2, {◻},♠) for each a ∈ S

(a3, {◻},♠) for each a ∈ S

(a2 + a3 + #3, {◻}, 0) for each a ∈ S

Af ∶=

⎧
⎪⎨⎪⎩

(#1 + f 1, {♠,◻}, g)

(♢, S2 ∪ {♠,◻,⊳},◻)

(g,∅, g + g1)

(◻,∅,◻ + h)

reaction produces the symbol ♢ , whose role is explained 
later, at every step, until there is a signal for the computa-
tion to stop.

The reactions in the first group of A♠ have the role of 
transforming every element from S1 in the current state into 
its copy from S3 in the next state, producing also a coun-
ter #3 that will have the same multiplicity as #1 . The rest 
of the reactions are used to compare the elements from S2 

with those from S3 in the current state: the symbol ♠ is pro-
duced as long as they differ, and it is no longer produced as 
soon as they are equal. This comparing mechanism heav-
ily relies on maximal reactivity, because it always holds 
(a2 + a3 + #3, {◻}, 0)>r(a

2, {◻},♠) + (a3, {◻},♠) for any 
a ∈ S : this implies that if the elements from S2 are a copy 
of those from S3 , none of the reactions from the second and 
third group of A♠ will be maximally enabled (note that #3 
will be present in the exact same quantity as the multiplicity 
of the elements from S3 ) thus ♠ will not be produced. The 
role of the #3 counters is really important since they give a 
way to prioritize the last group of reactions in A♠.

The reactions from Af  are needed to produce the last 
states at the end of the computation. The first two take place 
as soon as ♠ is no longer present in a state, thus when the 
computation needs to stop. If f was generated by the last 
reaction when the process stops in the original automaton 
M , then f 1 is present as well (together with the right mul-
tiplicity of the counter #1 ), thus the first reaction from Af  
takes place: indeed, it is always greater than the first reac-
tion from A♠ (because its set of inhibitors also contains ♠ ), 
thus it is enabled in a maximal reactive manner. The second 
reaction from Af  is maximally enabled as well (it is strictly 
greater than the last reaction from Ain ) thus it produces ◻ , 
while ♢ is no longer produced. The role of ◻ is to disable 
all the reactions from A0 ; the role of ♢ is to enable the reac-
tion that produces ◻ whenever needed. Finally, the last two 
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reactions from Af  are enabled, and they produce h and y 
copies of g + g1.

Let us now analyze the processes within M̂ . Given 
� = D0 + x1a1 +⋯ + xnan,… ,Dk,… a process in M , we 
denote X0 ∶= D0 + x1a1 +⋯ + xnan . We obtain the follow-
ing process for M̂:

Suppose � stabilizes, then by Remark 33 there exists a k such 
that Dk = Dk+1 but Dk−1 ≠ Dk . We first consider the case in 
which Dk ≠ 0.

If k is odd, we have:

If k is even, we obtain the same process as above, except 
it starts from the second row. Note that if Dk = 0 , thus 
Dk−1 ≠ 0 , then the computation in M stops returning the 
value y = 0 . We divide again two cases:

• i f  k  i s  o d d  t h e n  D
3

k−1
+ ‖D

k−1‖#3 + ♢ → ‖
k − 1‖♠ +◻ → ◻ + h → ◻ + h → ⋯;

⊳ +♠ + ♢ + x1a1 +⋯ + xnan

⟶ X0

0
+ X1

0
+ ‖X0‖#1 + ♠ + ♢

⟶ D0

1
+ D2

1
+ X3

0
+ ‖X0‖#3 + ♢

⟶ D0

2
+ D1

2
+ ‖D2‖#1 + ‖X0 △ D1‖♠ + ♢

⟶ ⋯

D0

k
+ D2

k
+ D3

k−1
+ ‖Dk−1‖#3 + ♢ ⟶

⟶ D0

k
+ D1

k
+ ‖Dk‖#1 + ‖Dk △ Dk−1‖♠ + ♢

⟶ D0

k
+ D2

k
+ D3

k
+ ‖Dk‖#3 + ♢

⟶ D0

k
+ D1

k
+ ‖Dk‖#1 + ‖Dk △ Dk‖

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=0

♠ + ♢

⟶ ◻ + D0

k
+ D2

k
+ D3

k
− yf 3 + ‖Dk − yf‖#3 + yg + yg1 + ♢

⟶ ◻ + h + yg + yg1 ⟶ ◻ + h + yg + yg1 ⟶ ⋯ .

• if k is even then ‖D
k−1 △ D

k−2‖♠ +♢ → ♢ → ◻ →

◻ + h → ◻ + h → ⋯;

Recall that Condition 1 of Definition 34 requires the state 
on which the process stabilizes to be of the form P + h + yf  . 
In all the previous cases, this condition is satisfied with 
P = ◻ + yg ∈ Ŝ# and f = g1.

If, instead, the process � in M does not stabilize (and in 
particular, we have that Dk ≠ 0 for all k), then ♠ will never 
disappear, thus ◻ will never be generated, and thus the cor-
responding process in M̂ will never stabilize as well.   ◻

Building on Lemma 35, we can prove that DPRA com-
pute a much larger class of partial functions.

Lemma 36 Given � ∶ ℕ
k ⇀ ℕ and �i ∶ ℕ

n ⇀ ℕ for all 
i ∈ {1,… , k} , all computable by DPRA , the composition 
function � ∶ ℕ

n ⇀ ℕ defined by

is also computable by a DPRA.

Proof Let Σ = {a1,… , an} and ΣN = {bN
1
,… , bN

k
} be two 

disjoint sets such that Σ# ≅ ℕ
n and (ΣN)# ≅ ℕ

k ; we  
additionally define Σi = {ai

j
∶ aj ∈ Σ} for all i ∈ {1,… , k} . 

We consider N ∶= N(�, hN , f N) = (SN ,ΣN ,A
N
,DN

0
, f N)  

t h e  n o r m a l i z e d  DPRA  c o m p u t i n g  �  a n d 
M

i ∶= M(�i, h
i, f i) = (Si,Σi,A

i
,Di

0
, f i) the normalized 

DPRA computing �i for all i = 1,… , k ; furthermore, we 
assume that the respective background sets SN , S1,… , Sk are 
disjoint, and we will label the corresponding reactions and 
e lements  wi th  t he  same  apex .  We denote 
K ∶= (S,Σ,A,D0, f

N) the DPRA defined by:

• S ∶= SN ∪ S1 ∪⋯ ∪ Sk ∪ Σ ∪ {⊳M ,⊳N ,◻M ,◻N} , where 
⊳M ,⊳N ,◻M ,◻N are new elements;

• Σ ∶= {a1,… , an} is the input alphabet;
• A ∶= Ain ∪ Ac ∪ A

N

◻
∪ A

1

◻
∪⋯ ∪ A

k

◻
 , where 

�(x1,… , xn) ∶= �(�1(x1,… , xn),… ,�k(x1,… , xn))

Ain ∶=

⎧⎪⎨⎪⎩

(⊳M ,∅,D1

0
+⋯ + Dk

0
),

(⊳N ,∅,DN
0
),

(◻N ,∅,◻N)

(ai,∅, a1
i
+⋯ + ak

i
) for each i ∈ {1,… , n}

Ac ∶=

�
(h1 +⋯ + hk +◻N , {◻M},⊳N +◻M)

(f i,◻N , bN
i
) for each i ∈ {1,… , k}

A
N

◻
∶=

�
(RN

a
, IN

a
∪ {◻N},PN

a
) for each (RN

a
, IN

a
,PN

a
) ∈ A

N

A
i
◻
∶=

�
(Ri

a
, Ii

a
∪ {◻M},Pi

a
) for each (Ri

a
, Ii

a
,Pi

a
) ∈ A

i
�

∀i ∈ {1,… , k};
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• D0 ∶= ⊳M +◻N is the initial state;
• f N is the same final element as N .

We want to analyse the process star ting with 
⊳M +◻N + x1a1 +⋯ + xnan . At the first step, only the 
reactions in Ain are enabled; thus k copies of each of 
the input elements are generated (one for each of the 
alphabets Σi ), as well as the initial states D1

0
,… ,Dk

0
 of 

M
1
,… ,M

k . The element ◻N is preserved. Now each 
of the Mi is simulated by the reactions in Ai

◻
 , and ◻N is 

preserved by the third reaction of Ain until the reaction 
(h1 +⋯ + hk +◻N , {◻M},⊳N +◻M)>r(◻

N ,∅,◻N) from 
Ac becomes enabled, i.e., when the computation of all Mi 
terminates and produces all the elements hi (note that here it 
is crucial to operate in a mr manner). Recall that by Condi-
tion 2 from Definition 34, none of the elements hi are present 
in any reactant multiset, thus no combination of the reactions 
from Ai

◻
 can be greater than the first reaction from Ac . When 

this reaction takes place, ◻N is replaced by ⊳N +◻M , thus 
the reactions (⊳N ,∅,DN

0
) and (f i,◻N , bN

i
) produce the initial 

state and the input for N  , while ◻M will block any reactions 
in A1

◻
,… ,A

k

◻
.

Finally, in the successive computation, there will be no 
element of S1 ∪⋯ ∪ Sk left, and N  will start its computing 
process using, as desired, the outputs of the other k machines 
as inputs.   ◻

Lemma 37 Given � ∶ ℕ
k+2 ⇀ ℕ and � ∶ ℕ

k ⇀ ℕ , both 
computable by DPRA , the primitive recursion � ∶ ℕ

k+1 ⇀ ℕ 
defined by

and

is also computable by a DPRA.

Proof Let Σk = {a1,… , ak} such that Σ#

k
≅ ℕ

k  and 
let a, a0 ∉ Σk  be two extra symbols. We define 
two additional alphabets ΣM ∶= {aM

1
,… , aM

k
} and 

ΣN = {aN , aN
0
, aN

1
,… , aN

k
} , so that (ΣN)# ≅ ℕ

k+2.
We consider N ∶= N(�, hN , f ) = (SN ,ΣN ,A

N
,DN

0
, f ) 

t h e  n o r m a l i z e d  DPRA  c o m p u t i n g  �  a n d 
M ∶= M(� , hM , f ) = (SM ,ΣM ,A

M
,DM

0
, f ) the normal-

ized DPRA computing � ; furthermore, we assume that the 
respective background sets SN , SM are disjoint except for 
the final element, i.e., SN ∩ SM = {f } ; we will label the cor-
responding reactions and elements with the same apex. We 
define R ∶= (S,Σ,A,D0, f

�) the DPRA such that:

• S ∶= S
N ∪ S

M ∪ Σ ∪ Σ�
k
∪ {⊳,⊳M

,⊳N
,◻M

,◻N
,◻

M

in
,◻

N

in
,↺N

, #, #
�
, f

�} , where 
Σ�
k
= {a�

1
,… , a�

k
};

�(0, x1,… , xk) ∶= �(x1,… , xk)

�(y + 1, x1,… , xk) ∶= �(y, �(y, x1,… , xk), x1,… , xk) ∀y ≥ 1

• Σ ∶= {a, a1,… , ak} is the input alphabet;
• A ∶= Ain ∪ Am ∪ Ac ∪ A

N

◻
∪ A

M

◻
 , where 

• D0 ∶= ⊳ +◻N is the new initial state;
• f ′ is the new final element.

First, we note that the reactions in Am are inhibitorless. Thus, 
they will occur, maintaining the respective elements and 
generating a copy of them using the alphabet Σ�

k
 , whenever 

their reactants are present, as they do not conflict with any 
other reaction. The elements from Σ�

k
 will be later translated 

into the corresponding elements from ΣM or ΣN , depending 
on the phase of the process, by the last two reaction groups 
from Ain.

We now explain how the machine works. In the initial 
state ⊳ +◻N + ya + x1a1 +⋯ + xkak , the reaction

is maximally enabled; in particular, it generates ⊳M , which 
in the next step enables the generation of the initial state of 
M . Moreover, the element ◻M

in
 is generated and later pre-

served via the reaction (◻M
in
,∅,◻M

in
) ∈ Am , preventing the 

initial state of M from being generated multiple times. The 
process that would take place in M is then simulated with 
the reactions from AM

◻
 ; whenever M terminates, it produces 

a single element hM . We remark that ya is preserved in any 
state via (a,∅, a) ∈ Am , then we have to consider two cases: 

Ain ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(⊳,∅,⊳M)

(⊳M , {◻M ,◻M

in
},DM

0
+◻

M

in
)

(⊳N , {◻N ,◻N

in
},DN

0
+◻

N

in
)

(f �, {◻N ,◻N

in
}, aN

0
)

(#�, {◻N ,◻N

in
}, aN )

(a�
i
, {◻M ,◻M

in
}, aM

i
) for each i ∈ {1,… , k}

(a�
i
, {◻N ,◻N

in
}, aN

i
) for each i ∈ {1,… , k}

Am ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ai,∅, ai + a
�
i
) for each i ∈ {1,… , k}

(a,∅, a)

(◻N ,∅,◻N )

(◻M ,∅,◻M)

(◻N

in
,∅,◻N

in
)

(◻M

in
,∅,◻M

in
)

(#,∅, # + #�)

(f ,∅, f �)

Ac ∶=

⎧⎪⎪⎨⎪⎪⎩

(hM + a,∅,↺N )

(hN + a,∅,↺N +◻N )

(↺N +◻N ,∅,◻M + ⊳N )

(↺N +◻N

in
+◻N ,∅, # + #� + ⊳N )

A
N

◻
∶={(RN

a
, I

N

a
∪ {◻N},PN

a
) ∶ (RN

a
, I

N

a
,P

N

a
) ∈ A

N}

A
M

◻
∶={(RM

a
, I

M

a
∪ {◻M},PM

a
) ∶ (RM

a
, I

M

a
,P

M

a
) ∈ A

M};

(⊳,∅,⊳M) + y(a,∅, a) +

k∑
i=1

xi(ai,∅, ai + a�
i
)
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y = 0.  No reaction from Ac nor AN

◻
 is enabled, so the sys-

tem reaches a stable state and the result is the same 
as the result given by M with input (x1,… , xk).

y ≥ 1.  The reaction (hM + a,∅,↺N) is enabled (being 
strictly greater than one instance of (a,∅, a) , 
thus reducing the multiplicity of a, which is ini-
tially equal to y, by 1); in the next step, the reac-
tion (↺N +◻N ,∅,◻M + ⊳N) will take place, 
thus eliminating ◻N and introducing ◻M , whose 
role is to block all reactions from AM

◻
 (simulat-

ing M ) and to enable the reactions from AN

◻
 

(simulating N  ). At this point, the initial state 
of N  is generated by reactions in Ain , receiv-
ing as input (0,�(x1,… , xk), x1,… , xk) , as the 
reaction (f �, {◻N ,◻

N
in
}, aN

0
) transfers the output 

of M to the second coordinate of � , and since # 
is not present, and consequently #′ neither, the 
first coordinate is 0. The process will continue 
until N  eventually produces an output. If a is 
no longer present ( y − 1 = 0 ), the output will be 
�(0,�(x1,… , xk), x1,… , xk) , as desired; if a is still 
present ( y > 1 ), the reaction (hN + a,∅,↺N +◻N) 
will take place, and as a consequence, the whole 
simulation of N  will be reinitialized by ◻N . The 
only reactions that will take place are those from 
Am maintaining and copying the input, the reaction 
(f ,∅, f �) saving the output of N  , and the reaction 
(↺N +◻N

in
+◻N ,∅, # + #� + ⊳N) that will reini-

tialize N  in the next step. Since it will receive the 
multiplicity of #′ as the first coordinate, the mul-
tiplicity of f ′ as the second one and then the rest 
of the saved input, the machine will then calculate 
�(1,�(0,�(x1,… , xk), x1,… , xk), x1,… , xk) . This 
process will repeat until the occurrences of a are 
exhausted (recall that its multiplicity decreases by 
1 at every iteration), so we have proved that R com-
putes � , the primitive recursion operator of � and � . 

  ◻

Lemma 38 Given � ∶ ℕ
k+1 ⇀ ℕ , computable by a DPRA , 

the minimization operator �� ∶ ℕ
k ⇀ ℕ defined by

where ⊥ means that the operator is undefined, is also com-
putable by a DPRA.

𝜇𝜙(x1,… , xk) ∶=

{
z if 𝜙(z, x1,… , xk) = 0 and 𝜙(y, x1,… , xk) > 0 for all y < z

⊥ otherwise

Proof We consider, with the same notation as in the previ-
ous lemmas, N ∶= N(�, hN , f N) = (SN ,ΣN ,A

N
,DN

0
, f N) the 

normalized DPRA computing � , with ΣN = {aN
0
, aN

1
,… , aN

k
} . 

We define M ∶= (S,Σ,A,D0, f
�) the DPRA given by:

• S ∶= SN ∪ Σ ∪ {⊳,◻N ,◻N
in
, f , f �};

• Σ ∶= {a1,… , ak} is the new input alphabet;
• A ∶= Ain ∪ Am ∪ Ac ∪ A

N

◻
 , where 

• D0 ∶= ⊳ is the new initial state;
• f ′ is the new final element.

Much like in previous proofs, the reactions from Am main-
tain the input elements. We now analyze the process of M 
starting from the state ⊳ + x1a1 +⋯ + xkak . At the begin-
ning of the computation, using the first reaction from Ain , 
the initial state of N  is generated, receiving an input with 
0 as the first coordinate: indeed, the value of the first coor-
dinate is given by the multiplicity of aN

0
 , which at the first 

step is not produced because f is not present in the initial 
state. Then N  is simulated with the reactions from AN

◻
 . 

If N  terminates and produces hN , there are two possible 
cases: 

1. f N is not present. Then, since neither f ′ is present, the 
state remains unchanged, and hence the result is 0.

2. f N is present. This indicates that N  has returned a 
non-zero value, so the reaction (hN + f N ,∅,◻N) takes 
place, inhibiting every reaction from AN

◻
 and enabling 

(◻N +◻
N
in
,∅, f � + f + ⊳) in the next step. Since the for-

mer reaction is greater than (◻N
in
,∅,◻N

in
) , the element 

◻
N
in

 is not generated and the reaction generating the 

initial state of N  is enabled again, receiving as input 
(1, x1,… , xk) , because now f is present with multiplicity 
1, thus aN

0
 is generated with multiplicity 1. This process 

is iterated until N  eventually outputs 0: at each itera-

Ain ∶=

⎧
⎪⎨⎪⎩

(⊳, {◻N ,◻N
in
},DN

0
+◻

N
in
)

(f , {◻N ,◻N
in
}, aN

0
)

(ai, {◻
N ,◻N

in
}, aN

i
) for each i ∈ {1,… , k}

Am ∶=

⎧
⎪⎨⎪⎩

(ai,∅, ai) for each i ∈ {1,… , k}

(f �,∅, f + f �)

(◻N
in
,∅,◻N

in
)

Ac ∶=

�
(hN + f N ,∅,◻N)

(◻N +◻
N
in
,∅, f + f � + ⊳)

A
N

◻
∶={(RN

a
, IN

a
∪ {◻N},PN

a
) ∶ (RN

a
, IN

a
,PN

a
) ∈ A

N};
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tion, the multiplicity of f ′ is increased by 1 (as well as 
those of f, via the second reaction from Am , and of aN

0
 

via the second reaction from Ain ), thus when the process 
terminates, the result is precisely the multiplicity of f ′.

We proved that M computes the minimization operator of 
� .   ◻

We have arrived at the main result of this section.

Theorem 39 The class of partial functions computed by 
deterministic pure reaction automata operating in a maxi-
mally reactive manner coincides with the class of general 
recursive functions.

Proof By Lemma 32, deterministic pure reaction automata 
can compute the basic functions: namely, the constant func-
tion equal to 0, the successor function and the projection 
functions. Furthermore, the partial functions computed by 
deterministic pure automata are closed under composition 
(Lemma 36), primitive recursion (Lemma 37) and minimiza-
tion (Lemma 38), therefore they coincide with the class of 
general recursive functions.   ◻

5  Conclusions

In this work, we introduced and studied a new criterion, 
the maximally reactive manner, for selecting the reactions 
that take place in a computation step of a reaction automa-
ton. We also defined a new variant of reaction automata, 
the pure reaction automata, where there is no permanence, 
mimicking (in this aspect) the behaviour of reaction systems. 
We studied the relation between pure and classical reaction 
automata working in a maximally reactive manner, showing 
that the absence of permanence is not a strong limitation: 
for every reaction automaton working in a maximally paral-
lel (or maximally reactive) manner recognizing a certain 
language, there always exists a pure reaction automaton 
working in a maximally reactive manner recognizing the 
same language. When seen as devices for computing partial 
functions, deterministic pure reaction automata working in 
a maximally reactive manner are able to compute all general 
recursive functions.

An interesting direction for future research is to further 
investigate the relation between the different manners since 
the choice of one or the other can potentially change the 
computational power of a reaction automaton (pure or not). 
The choice of different manners could also give rise to inter-
esting results for the chemical version of reaction automata, 
in which the set of inhibitors is constrained to be empty. The 
role of determinism is also to be further explored since it can 
be another factor that impacts the computational power of 
reaction automata, possibly also determining which kinds of 

functions can be computed under time and space (size of the 
multisets) constraints. Reaction systems were also explored 
with additional extensions and restrictions, like adding a 
duration for reactions or forcing each reaction to have only 
one reactant or one inhibitor. Similar questions can be asked 
about reaction automata: what is their effect on the compu-
tational power? Can we still obtain universality in all cases?
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