
Vol.:(0123456789)

https://doi.org/10.1007/s11047-024-09980-7

Pure reaction automata

Rocco Ascone1 · Giulia Bernardini1 · Enrico Formenti2 · Francesco Leiter1 · Luca Manzoni1

Accepted: 28 February 2024
© The Author(s) 2024

Abstract
This work introduces the new class of pure reaction automata, as well as a new update manner, called maximal reactive man-
ner, that can also be applied to standard reaction automata. Pure reaction automata differ from the standard model in that they
don’t have permanence: the entities that are not consumed by the reactions happening at a certain state are not conserved in
the result states. We prove that the set of languages accepted by the new class under the maximal reactive manner contains
the set of languages accepted by standard reaction automata under the same manner or under the maximal parallel manner.
We also prove that a strict subclass of pure reaction automata can compute any partial recursive function.

Keywords Reaction systems · Reaction automata · Formal languages · Computability

1 Introduction

Reaction systems (RS) are a growing and now established
computational model, introduced by Ehrenfeucht and Rozen-
berg (2004, 2007), Brijder et al. (2011a), that takes inspi-
ration from the chemical reactions occurring inside living
cells: a set of entities or chemical species is transformed by
one or more reactions and, like in real life, a reaction for
which all reactants are present and all inhibitors are absent
will generate all the expected products. Reaction Systems
have some characteristics that distinguish them from other
bio-inspired models. First of all, there is no permanence: an
entity that is not used by any reaction will not remain in the
system, but it will disappear. Second, there is no conflict:
even if two reactions have the same reactants both of them
will be enabled if their respective inhibitors are not present.

Reaction systems have been successfully employed as
a modelling tool in several areas, see for instance (Corolli
et al. 2012; Azimi et al 2014; Barbuti et al. 2021). Concern-
ing theoretical aspects, their properties have been studied
from the point of view of the complexity of the dynamics
(Formenti et al. 2014a, b, 2015; Ehrenfeucht et al. 2017;
Barbuti et al. 2018a; Holzer and Rauch 2021; Teh and Lim
2022; Ascone et al. 2024; from the causality perspective
(Brijder et al. 2010; Barbuti et al. 2016, 2018b); by introduc-
ing in a natural way additional restrictions and extensions
(Brijder et al. 2011b; Salomaa 2017; Azimi 2017; Bottoni
et al. 2019; Manzoni et al. 2020); by classifying and simu-
lating them (Manzoni et al. 2014; Teh and Atanasiu 2017,
2020); and by relating them with other computational mod-
els (Kleijn et al. 2011; Păun et al. 2013; Dutta et al. 2019).

However, reaction systems are limited by the fact that
their states are subsets of a finite set of entities. Hence,
their dynamics can only contain a finite number of distinct
configurations, making computational universality unat-
tainable for them. A natural way to preserve the funda-
mentals of reaction systems while making them a universal
computational model is to allow multiplicity for the enti-
ties. More than a decade ago, the first significant step in
this direction was taken by Okubo et al. (2012b) with the
introduction of Reaction Automata and with the successive
streamline of studies on the topic (see Okubo et al. 2012a;
Okubo 2014; Okubo and Yokomori 2015, 2018; Yokomori
and Okubo 2021; Okubo et al. 2022). In reaction automata,
a state is a multiset of entities (thus allowing an infinite

 * Rocco Ascone
 rocco.ascone@phd.units.it

 * Francesco Leiter
 francesco.leiter@studenti.units.it

 Giulia Bernardini
 giulia.bernardini@units.it

 Enrico Formenti
 enrico.formenti@univ-cotedazur.fr

 Luca Manzoni
 lmanzoni@units.it

1 University of Trieste, Trieste, Italy
2 Université Côte d’Azur, CNRS, I3S, Nice, France

Natural Computing (2024) 23:189–204

/ Published online: 29 M ay 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-024-09980-7&domain=pdf

R. Ascone et al.

set of possible states) and reactions are modified to require
multisets of reactants and products. A significant change
introduced by this model is that now there is competition
between reactions, requiring the model to specify a policy
to decide which reactions are allowed to take place.

A well-studied model that resembles reaction automata
are P automata (see, e.g., Csuhaj-Varjú and Vaszil 2002;
Freund et al. 2003; Csuhaj-Varjú et al. 2006, 2009), the
automata-like version of P systems, where multisets of
objects are subdivided into multiple regions (or mem-
branes). Those objects evolve according to a series of rules
(usually antiport rules) that move the objects between the
different regions and rewrite them. These rules are applied
according to a given computational model, like sequential
or maximally parallel (where conflicts are possible). One
main difference between P automata and reaction automata
is the “spatial” component of the former, where the sub-
division of the space in regions is essential to perform the
computation. The latter can be seen as a “degenerate” case
of P automata, where only one region is present and only
rules of a particular kind are admitted.

In this work, we continue the study of reaction autom-
ata by providing several new results and connections to
other models. First of all, we define the maximally reactive
manner, a new criterion on how to select which reactions,
among the competing ones, will take place. We also intro-
duce a new kind of reaction automata, called pure reaction
automata. They differ from those introduced by Yokomori
and Okubo (2021) in how the outcome of a reaction is
defined. While classical reaction automata have perma-
nence (i.e., the entities that are not used are preserved),
in pure reaction automata the entities that are not used by
any reaction are lost. This makes pure reaction automata
more similar, in this aspect, to reaction systems, where
non-permanence is a defining characteristic.

The introduction of a new manner and a new model of
reaction automata raises the question of its computation
power compared to the already existing models. We prove
that the set of languages accepted by pure reaction autom-
ata working in a maximal reactive manner contains the
set of languages accepted by standard reaction automata
working in the same manner as well as the set of languages
accepted by reaction automata working in a maximal par-
allel manner (a manner already investigated by Yokomori
and Okubo (2021)).

We also introduce a new research direction for reaction
automata by looking at them as devices to compute partial
functions—similarly to what has been already done for
chemical reaction networks in Chen et al. (2014), Clamons
et al. (2020). From this new point of view, we show that
a restricted class of pure reaction automata can compute
any recursive function from ℕk to ℕ.

The paper is structured as follows. In Sect. 2 we give
preliminary notions on reaction automata. In Sect. 3 we
define and explore the computational power of pure reaction
automata as language acceptors, while in Sect. 4 we change
the perspective by exploring the computational power of
a restricted class of pure reaction automata as devices for
computing partial recursive functions. In Sect. 5 we pro-
vide a summary of our results and some directions for future
research.

2 Preliminaries

Let S be a finite alphabet. We denote by S∗ the set of words
over S , that is, all finite sequences of elements of S , with
� ∈ S∗ denoting the empty word consisting of zero letters.
A multiset over S is defined as a function V ∶ S → ℕ such
that V(a) ∈ ℕ is the multiplicity of a ∈ S in the multiset.
By S# we denote the set of all multisets over S . Given V and
W two multisets over S , we define a partial order and four
operations as follows:

– Inclusion: V ≤ W if V(a) ≤ W(a) , for each a ∈ S;
– Sum: (V +W)(a) ∶= V(a) +W(a) , for each a ∈ S;
– Intersection: (V ∩W)(a) ∶= min{V(a),W(a)} , for each

a ∈ S;
– Difference: (V −W)(a) ∶= V(a) −W(a) , for each a ∈ S

(only defined for W ≤ V);
– S y m m e t r i c d i f f e r e n c e : (V △W)(a) ∶=

(V +W)(a) − (V ∩W)(a) , for each a ∈ S.

Furthermore, we define a relation between the letters of S
and a multiset: given V ∈ S# and a ∈ S , a ∈ V if and only
if V(a) ≥ 1 , i.e., a letter is an element of V if and only if
its multiplicity is at least one. This allows us to define the
set underlying a multiset V ∈ S# as the set of letters with
nonzero multiplicity:

The following properties follow immediately for any
V ,W ∈ S#:

Moreover, if V ≤ W , then set(V) ⊆ set(W) , while the con-
verse is not true: e.g., for V = {a, a, b} and W = {a, b, c} , we
have that set(V) ⊆ set(W) but V ≰ W .

A set U ⊆ S can be seen as a multiset VU such that
VU(a) = 1 if a is in U and VU(a) = 0 otherwise. In particular,
for each symbol a ∈ S , we will often denote the multiset V{a}
simply by a . We will denote the empty multiset by 0 ∈ S# .

set(V) ∶= {a ∈ S ∣ a ∈ V}.

set(V +W) = set(V) ∪ set(W), set(V ∩W) = set(V) ∩ set(W).

190

Pure reaction automata

The total number of elements in a multiset V ∈ S is defined
as ‖V‖ ∶=

∑
a∈S V(a).

Remark 1 The following map:

is an isomorphism of monoids; we will denote such isomor-
phism by S# ≅ ℕ

|S|.

2.1 Reaction automata

In this section, we recall the definition of reaction automata
given by Yokomori and Okubo (2021) and we introduce a
new policy for enabling reactions.

Definition 2 (Reaction) Given an alphabet of reactants S, a
reaction over S is a triple a = (R

a
, I

a
,P

a
) , where R

a
∈ S# is

the multiset of reactants, I
a
⊆ S is the set of inhibitors and

P
a
∈ S# is the multiset of products. The set of all reactions

over S is denoted by rac(S).

A crucial assumption in the reaction system model is
that if a reactant is present at a certain state T ∈ S# , then its
quantity is always enough for all the reactions that use it to
take place, provided the respective inhibitors are not present.
In other words, reactions do not conflict even if they share
some resources. This assumption is no longer in place in the
model of reaction automata, for which there is only a certain
quantity of each of the reactants. It is therefore necessary
to specify a criterion (called a manner) that decides which
of several conflicting reactions take place. In this paper,
we focus on two manners, provided in Definition 3. Before
defining such manners, we need to introduce a few opera-
tions and relations among reactions.

L e t a = (R
a
, I

a
,P

a
) , b = (R

b
, I

b
,P

b
) ∈ rac(S) ;

we de f ine t he sum o f t he two reac t ions
a + b ∶= (R

a
+ R

b
, I

a
∪ I

b
,P

a
+ P

b
) . Furthermore, we define

a partial order over all possible reactions over S: a≤rb if
and only if R

a
≤ R

b
 and I

a
⊆ I

b
 . In other words, a reaction

is greater than another when it is more restrictive, i.e., it
requires more reactants and there are more elements capable
of disabling it. With this relation, we get that a=rb if and
only if R

a
= R

b
 and I

a
= I

b
 , but we do not impose any condi-

tions on the products: in particular, it could hold a=rb with
P
a
≠ P

b
 . We remark that this partial order is different from

the one proposed by Ehrenfeucht and Rozenberg (2009) for
reactions within reaction systems.

Given a finite set A ⊆ rac(S) , we denote by ⟨A⟩ the abe-
lian semigroup generated by the elements of A:

S# ⟶ ℕ
|S|

V ⟼ (V(a1),… ,V(an))

Note that any element of ⟨A⟩ is a reaction that can be inter-
preted as a multiset of reactions from A , where the coef-
ficients �1,… , �n give the multiplicity of each reaction. We
will thus denote a multiset of reactions that are enabled in a
certain state as a single reaction from ⟨A⟩.

Definition 3 (Manners) Let a = (R
a
, I

a
,P

a
) ∈ rac(S)

and T ∈ S# , we say that a is enabled in T if R
a
≤ T and

I
a
∩ set(T) = ∅ . Given A a finite set of reactions over S and

a ∈ ⟨A⟩ enabled in T, then:

1. a is enabled in T in a maximally parallel manner (mp)
if there exists no c ∈ ⟨A⟩ such that a + c is enabled in T,
i.e., a is maximal w.r.t. addition.

2. a is enabled in T in a maximally reactive manner (mr) if
there exists no b ∈ ⟨A⟩ such that a<rb and b is enabled
in T, i.e., a is maximal w.r.t the partial order ≤r.

We denote by EnX
A
(T) the set of reactions from ⟨A⟩ enabled

in T in manner X ∈ {mp,mr}.
Remark 4 The notion of mp manner given in Definition 3 is
equivalent to the one given by Yokomori and Okubo (2021).
Indeed, given �, � ∈ A

, consider the corresponding ele-
ments a, b ∈ ⟨A⟩ , identified by � ↦

∑
d∈A �(d)d ∈ ⟨A⟩ . If

𝛽 > 𝛼 is enabled by T, then c = b − a is such that a + c = b
is enabled by T; the viceversa is obtained in a similar way.

Remark 5 At first sight, the definitions of manners mp and
mr are hard to tell apart. However, the two criteria are dis-
tinct, and in particular, mr is stronger than mp in the sense
that Enmr

A
(T) ⊆ En

mp

A
(T) for any A ⊆ rac(S) and any state T.

In other words, if a reaction a ∈ ⟨A⟩ is enabled in a maxi-
mally reactive manner, it is also enabled in a maximally
parallel manner. Indeed, the existence of c ∈ ⟨A⟩ s.t. a + c
is enabled in T would imply that a reaction greater than a is
enabled in T, leading to a contradiction. The converse is not
always true: see Example 7.

In reaction systems, the state resulting from a set of
reactions is simply defined as the union of the products of
all the reactions. In reaction automata, the reactants that
are not consumed by the reactions that take place remain
in the resulting states. We make this concept precise in
Definition 6.

Definition 6 (Result) The result of a set of reactions A on a
state T in a manner X is a set of states, denoted by ResX

A
(T) ,

defined as follows:

⟨A⟩ ∶= {�1a1 +⋯ + �nan ∣ ai ∈ A, �i ∈ ℕ ∀i = 1,… , n}.

Res
X

A
(T) = {P

a
+ (T − R

a
) ∣ a = (R

a
, I

a
,P

a
) ∈ En

X

A
(T)}.

191

R. Ascone et al.

When EnX
A
(T) = ∅ , we define ResX

A
(T) = {T} , that is, if

no multiset of reactions from ⟨A⟩ is enabled in T, then T
remains unchanged.

Example 7 Let S = {w1,w2,♡} , A = {a
1
= (w

1
,∅,♡),

a
2
= (w

1
+ w

2
,∅,w

2
)} , and consider a state T = w1 + w2 .

Then the set of reactions enabled in T in a maximally parallel
manner is Enmp

A
(T) = {a1, a2} , as ∄c ∈ ⟨A⟩ such that a1 + c is

enabled in T; and the set of reactions enabled in T in a maxi-
mally reactive manner is Enmr

A
(T) = {a2} , because a2>ra1

and thus a1 is not mr-enabled. The corresponding results
in the two manners are thus Resmp

A
(T) = {♡ + w2,w2} ,

Res
mr
A
(T) = {w2}.

We are now in a position to define reaction automata.

Definition 8 (Yokomori and Okubo (2021)) A reaction
automaton (RA) A is a five-tuple A = (S,Σ,A,D0, f) , where
S is a finite set of reactants, called the background set of A ;
Σ ⊆ S is the input alphabet of A ; A ⊆ rac(S) is a finite set of
reactions over S; D0 ∈ S# is the initial multiset; and f ∈ S is
a special symbol which indicates the final state.

Definit ion 9 Cons ider a reac t ion au tomaton
A = (S,Σ,A,D0, f) , a word w = w1 ⋯wn ∈ Σ∗ and a man-
ner X ∈ {mp,mr} . An interactive process in A with input w
in manner X is an infinite sequence � = D0,… ,Di,… where

By IPX(A,w) we denote the set of all interactive processes in
A with input w in manner X. We say that a process � strongly
accepts w if there exists m ≥ n = |w| such that f ∈ Dm and
En

X
A
(Dm) = ∅ (see also Example 11). By AIPX(A,w) we

denote the set of all processes � ∈ IPX(A,w) such that �
strongly accepts w. The language strongly accepted by A
is defined as

The set of languages strongly accepted by reaction automata
working in manner X is denoted by RAX : L ∈ RAX if and
only if there exists a reaction automaton working in manner
X that strongly accepts L.

We say that a process � weakly accepts w if there exists
m ≥ n = |w| such that f ∈ Dm and Dk = Dm for all k ≥ m
(see also Example 12). By AIPw

X
(A,w) we denote the set of

all processes � ∈ IPX(A,w) such that � weakly accepts w.
The language weakly accepted by A is defined as

{
Di+1 ∈ Res

X
A
(wi+1 + Di) for 0 ≤ i ≤ n − 1

Di+1 ∈ Res
X
A
(Di) for i ≥ n.

LX(A) = {w ∈ Σ∗ ∣ AIPX(A,w) ≠ ∅}.

Lw
X
(A) = {w ∈ Σ∗ ∣ AIPw

X
(A,w) ≠ ∅}.

The set of languages weakly accepted by reaction automata
working in manner X is denoted by RA

w

X
.

We will sometimes represent an interactive process � with
the following “arrow notation”, which extends the notation
proposed by Yokomori and Okubo (2021):

where Di−1

ai
��������→
wi

Di means wi is the input letter at state Di−1 ,

ai ∈ ⟨A⟩ is the reaction enabled in Di−1 + wi which takes
place, and Di ∈ Res

X
A
(wi + Di−1).

Example 10 If w = � the empty word, then |w| = n = 0 , thus
an interactive process accepting strongly � is of the form
D0

a1
��������→ D1

a2
��������→ D2

a3
��������→ ⋯Dm �→ Dm �→ Dm ⋯ , where Dm does

not enable any reaction.

Note that in Definition 9 we call strong the acceptance
condition proposed by Yokomori and Okubo (2021); the
weak notion of acceptance will be needed for the definition
of pure reaction automata (see Sect. 3).

In Proposition 13 we show that the weak acceptance cri-
terion extends the strong criterion in the following sense:
given an automaton that strongly accepts a certain language,
it is always possible to construct another automaton that
weakly accepts the same language. Examples 11 and 12
provide intuition on this result before we formally prove
it in Proposition 13: Example 11 provides an automaton
accepting words with the strong criterion, while Example 12
constructs another automaton that accepts exactly the same
language as in Example 11 but using the weak criterion.

Example 11 Given an input alphabet Σ = {a, b} , a
background set S = {a, b, s0, s1, f } and a set of reac-
t ions A = {a

1
= (s

0
+ a,∅, s

1
), a

2
= (s

1
+ b,∅, s

0
), a

3
= (s

0
,∅, f),

a
4
= (b,∅, b)}, let A = (S,Σ,A, s0, f) be a reaction automa-

ton working in mr manner that accepts words with the strong
criterion. We show that the language strongly accepted by
A is Lmr(A) = {(ab)n ∶ n ∈ ℕ} . Consider the input word
w = abab ∈ Σ∗ : we obtain the following process.

The computation stops since Enmr
A
(f) = ∅ . A trivial exten-

sion of this argument proves that {(ab)n ∶ n ∈ ℕ} ⊆ Lmr(A).
To show the other inclusion, observe that a word

w ∉ {(ab)n ∶ n ∈ ℕ} if and only if at least one of the follow-
ing cases happens: (i) aa occurs in w; (ii) bb occurs in w; (iii)
w starts with b; (iv) w ends with a. In case (i), when the sec-
ond consecutive a is fed to the process, it ends up in the state
s1 + a : the computation stops because Enmr

A
(s1 + a) = ∅ , but

� ∶ D
0

a
1

����������→
w
1

D
1

a
2

����������→
w
2

D
2

a
3

����������→
w
3

⋯D
n−1

a
n

����������→
w
n

D
n

a
n+1

���������������→ D
n+1

a
n+2

���������������→ ⋯

s0
a1
��������→
a

s1
a2
��������→
b

s0
a1
��������→
a

s1
a2
��������→
b

s0
a3
��������→ f .

192

Pure reaction automata

since f ∉ s1 + a , w is not strongly accepted. In case (ii), after
reading the second consecutive b, the process reaches the
state s0 + b : then s0 + b

a3+a4
���������������������→ b + f and Enmr

A
(b + f) = {a4} ,

thus the process keeps looping in this state and w is not
strongly accepted because Enmr

A
(b + f) ≠ ∅ . The same hap-

pens in case (iii), when b is added to the initial state s0 .
Finally, in case (iv), after reading the last a, the process ends
up in state s1 : the computation stops because Enmr

A
(s1) = ∅ ,

but since f ∉ s1 , w is not strongly accepted. We can thus
conclude that Lmr(A) = {(ab)n ∶ n ∈ ℕ}.

Note that using the weak notion of acceptance instead of
the strong one for the reaction automaton A of Example 11
would imply {(ab)n ∶ n ∈ ℕ} ⊊ Lw

mr
(A) , since for example

the string w = b ∉ {(ab)n ∶ n ∈ ℕ} is weakly accepted by
the following process:

Example 12 shows that it is anyway possible to construct
another RA B such that Lw

mr
(B) = {(ab)n ∶ n ∈ ℕ}.

Example 12 Given an input alphabet Σ = {a, b} and a back-
ground set S = {a, b, s0, s1,♠,♣, f } let B = (S,Σ,B, s0 + ♣, f)
be a reaction automaton working in mr manner and using
the weak acceptance criterion, with B consisting of the fol-
lowing reactions:

We show that B weakly accepts the same language that
is strongly accepted by A in Example 11. Consider
w = ab ∈ {(ab)n ∶ n ∈ ℕ} . We obtain the following process:

The computation stops since En
mr
B
(f) = ∅ , thus

Res
mr
B
(f) = {f } and w is weakly accepted. Consider now the

string w = aa ∉ {(ab)n ∶ n ∈ ℕ} . We obtain the following
process:

and the computation stops since Enmr
B
(s1 + a) = ∅ ; aa is not

weakly accepted because f ∉ s1 + a . Similarly, it is easy to
see that any string in case (i) of Example 11 is not weakly

s0
a3+a4
���������������������→

b
b + f

a4
��������→ b + f

a4
��������→ ⋯ .

a
♠

1
= (s

0
+ a, {♠}, s

1
+ ♠) a

♣

1
= (s

0
+ a, {♣}, s

1
+ ♣)

a
♠

2
= (s

1
+ b, {♠}, s

0
+ ♠) a

♣

2
= (s

1
+ b, {♣}, s

0
+ ♣)

a
♠

3
= (s

0
, {♠}, f + ♠) a

♣

3
= (s

0
, {♣}, f + ♣)

a
♠

4
= (b, {♠}, b + ♠) a

♣

4
= (b, {♣}, b + ♣)

r
♠ = (♠,∅, 0) r

♣ = (♣,∅, 0) .

s0 + ♣
a
♠

1
+r♣

����������������������→
a

s1 + ♠
a
♣

2
+r♠

����������������������→
b

s0 + ♣
a
♠

3
+r♣

����������������������→ f + ♠
r♠

���������→ f .

s0 + ♣
a
♠

1
+r♣

����������������������→
a

s1 + ♠
r♠

���������→
a

s1 + a

accepted. Consider the string w = b ∉ {(ab)n ∶ n ∈ ℕ} . We
obtain the following process:

The states b + f + ♣ and b + f + ♠ keep alternating, so the
string is not weakly accepted. Similarly, one can prove that
any string starting with b (case (iii) of Example 11) is not
weakly accepted. Working out the other cases in a similar
fashion, it is easy to show that Lw

mr
(B) = {(ab)n ∶ n ∈ ℕ}.

In Example 12 we were able to simulate the processes of
A using the following rule: for any step m, if EnX

A
(Dm) = ∅

then the computation stops also in B ; if, instead,
En

X
A
(Dm) ≠ ∅ , then the computation in B keeps alternating

between states containing ♠ and states containing ♣ . The
proof of the following Proposition 13 relies on a generaliza-
tion of this argument.

Proposition 13 Given any reaction automaton
A = (S,Σ,A,D0, f) working in a manner X ∈ {mp,mr} ,
there exists a reaction automaton B working in manner X
such that LX(A) = Lw

X
(B).

Proof Let A = (S,Σ,A,D0, f) and let ♠,♣ ∉ S be two
symbols that are not in the alphabet of A . We define
B = (S ∪ {♠,♣},Σ,B,D0 + ♣, f) the reaction automaton
such that B ∶= A

♠ ∪ A
♣ ∪ {r♠, r♣} , where

Given a =
∑n

j=1
�jaj ∈ ⟨A⟩ we def ine c

a
=
∑n

j=1
�j ,

a♠ =
∑n

j=1
�ja

♠

j
∈ ⟨A♠⟩ and similarly a♣ =

∑n

j=1
�ja

♣

j
∈ ⟨A♣⟩

.
We want to prove that B weakly accepts the same lan-

guage that is strongly accepted by A . Given a process
� ∈ IPX(A,w)

if n is even, there is a one-to-one correspondence with the
process �̄� ∈ IPX(B,w)

If n is odd, a process corresponding to � can be obtained
similarly. Since ♠,♣ are not present in any of the reactant

s0 + ♣
a
♠

3
+a♠

4
+r♣

�����������������������������������→
b

b + f + ♠
a
♣

4
+r♠

����������������������→ b + f + ♣
a
♠

4
+r♣

����������������������→ b + f + ♠ → ⋯

A
♠ = {a♠ = (R, I ∪ {♠},P + ♠) ∣ a = (R, I,P) ∈ A}

A
♣ = {a♣ = (R, I ∪ {♣},P + ♣) ∣ a = (R, I,P) ∈ A}

r
♠ = (♠,∅, 0)

r
♣ = (♣,∅, 0) .

� ∶ D0

a1
����������→
w1

D1

a2
����������→
w2

D2

a3
����������→
w3

…Dn−1

an
����������→
wn

Dn

an+1

���������������→ Dn+1 ⋯

�̄� ∶ D0 + ♣
a
♠

1
+r♣

����������������������→
w1

D1 + c
a1
♠

a
♣

2
+ca1 r

♠

��������������������������������→
w2

D2 + c
a2
♣

a
♠

3
+ca2 r

♣

��������������������������������→
w3

⋯

⋯Dn−1 + c
an−1

♠

a♣
n
+can−1 r

♠

��������������������������������������→
wn

Dn + c
an
♣

a
♠

n+1
+can r

♣

�������������������������������������→ ⋯ .

193

R. Ascone et al.

sets of A♠ and A♣ , the reaction r♠ (respectively, r♣) is ena-
bled as many times as the multiplicity of ♠ (respectively,
♣) in any given state; this is independent of the manner
X ∈ {mp,mr} we are working with. In particular, any pro-
cess in IPX(B,w) ends in a state Dm s.t. Dk = Dm for all
k > m if and only if at some step no reactions are enabled
(as otherwise, ♠ and ♣ would keep alternating). Therefore
AIPX(A,w) is in a bijection with AIPw

X
(B,w) . We conclude

that LX(A) = Lw
X
(B) . ◻

Corollary 14 RAmr ⊆ RA
w

mr
 and RAmp ⊆ RA

w

mp
.

Proof Follows directly from Proposition 13. ◻

Corollary 15 Every recursively enumerable language is
weakly accepted by a reaction automaton working in a maxi-
mally parallel manner.

Proof Follows from Proposition 13 and (Okubo et al.
2012b, Corollary 1). ◻

We thus proved that the weak acceptance criterion
extends the strong criterion. This will be useful in the next
section to demonstrate the computational power of pure
reaction automata.

3 Pure reaction automata

In this section, we introduce a different kind of reaction
automata, which differs from the model introduced by
Yokomori and Okubo (2021) by how the result of a reac-
tion is defined: instead of transferring the reactants that
are not consumed by the reactions in the result states, we
define the next states to consist only of the products of the
reactions, similar to what is done in reaction systems. We
make this concept formal in Definition 16.

Definition 16 (Pure result) The pure result of a finite set of
reactions A on a state T in a manner X is

and we define R̂es
X

A
(T) = {0} when EnX

A
(T) = ∅.

Example 17 Let S = {w1,w2,♡} , A = {a
1
= (w

1
,∅,♡),

a
2
= (w

1
+ w

2
,∅,w

2
)} and consider a state T = w1 + w2 as

in Example 7. Recall that Resmp
A
(T) = {♡ + w2,w2} (since

En
mp

A
(T) = {a1, a2}); in contrast, the pure result of T in mp

R̂es
X

A
(T) = {P

a
∣ a = (R

a
, I

a
,P

a
) ∈ En

X

A
(T)},

manner is R̂es
mp

A
(T) = {♡,w2} . In particular, reaction a1 does

not consume the reactant w2 that is present in T: the pure
result of a1 only consists of ♡ and w2 is lost, while in Exam-
ple 7 w2 was preserved in the result.

We name this new kind of reaction automata Pure Reac-
tion Automata (PRA). We define interactive processes in
pure reaction automata in much the same way as standard
reaction automata, as specified by Definition 18.

Definition 18 Let M = (S,Σ,A,D0, f) be a PRA ,
w = w1 ⋯wn ∈ Σ∗ and X ∈ {mp,mr} . An interactive pro-
cess in M with input w in manner X is an infinite sequence
� = D0,… ,Di,… where

Exactly as for reaction automata, we say that � weakly
accepts w if there exists m ≥ n = |w| such that f ∈ Dm
and Dk = Dm for all k ≥ m . We also define IPX(M,w) ,
AIP

w

X
(M,w) , and Lw

X
(M) in the same way as for reaction

automata. The set of languages weakly accepted by PRA
working in manner X is denoted by PRA

w

X
.

Example 19 Given an input alphabet Σ = {a, b} , a
background set S = {a, b, s0, s1, f } and a set of reac-
tions A = {a

1
= (s

0
, {b}, s

1
), a

2
= (s

1
+ b,∅, s

0
), a

3
= (s

0
, {a, b}, f), a

4
= (f ,∅, f), let

M = (S,Σ,A, s0, f) be a pure reaction automaton working in
mr manner. We show that the language (weakly) accepted by
M is Lw

mr
(M) = {(ab)n ∶ n ∈ ℕ} . Consider the input word

w = abab ∈ Σ∗ : we obtain the following process.

Therefore the string abab is accepted. Note that the pure
result of reaction a1 applied at states s0 + a consists only of
s1 , even if a is not consumed by the reaction. We also remark
that the step s0

a3
��������→ f generates f instead of s1 because a3 >r a1

and thus Enmr
B
(s0) = {a3} . A trivial extension of this argu-

ment proves that {(ab)n ∶ n ∈ ℕ} ⊆ Lw
mr
(M) . Consider now

the string w = aa ∉ {(ab)n ∶ n ∈ ℕ} , as in Example 12. We
obtain the following process:

and the computation stops since Enmr
B
(s1 + a) = En

mr
B
(0) = ∅ ,

thus aa is not accepted. Working out the other cases
listed in Example 11 similarly, it is easy to see that
Lw
mr
(M) = {(ab)n ∶ n ∈ ℕ}.

{
Di+1 ∈ R̂es

X

A
(wi+1 + Di) for 0 ≤ i ≤ n − 1

Di+1 ∈ R̂es
X

A
(Di) for i ≥ n.

s0
a1
��������→
a

s1
a2
��������→
b

s0
a1
��������→
a

s1
a2
��������→
b

s0
a3
��������→ f

a4
��������→ f

a4
��������→ ⋯ .

s
0

a
1

��������→
a

s
1
�����→
a

0 �→ 0 �→ ⋯

194

Pure reaction automata

Note that a non-pure automaton with the same sets of
reactions, initial state and final element would not accept,
e.g., the string ab ∈ {(ab)n ∶ n ∈ ℕ} since the only interac-
tive process with input ab is:

and the computation stops without accepting ab since, as
previously remarked, Enmr

B
(s1 + a) = ∅.

Theorem 20 G iven any reac t ion au tomaton
A = (S,Σ,A,D0, f) working in a maximally reactive man-
ner, there exists a pure reaction automaton M working in
a maximally reactive manner such that Lw

mr
(A) = Lw

mr
(M).

Proof We def ine a pure react ion automaton
M = (S ∪ S�,Σ,A�

,D0, f) operating in a maximally reactive
manner such that:

• S� = {x� ∣ x ∈ S} is a set in a bijection with the elements
of S (a “copy” of S). From now on, given a multiset X
over S, X′ will be naturally defined as the multiset con-
sisting of the copies of the elements of X.

• Σ is the same input alphabet as A;
• A

� = Ap ∪ Ac , where Ap = {(x,∅, x + x�) ∣ x ∈ S} and
Ac = {(R + R�, I�,P + P�) ∣ (R, I,P) ∈ A}.

• D0 is the same initial state as A;
• f ∈ S is the same final element as A.

Claim 21 For any state W of A , it holds W ∈ Res
mr
A
(V) if and

only if W +W � ∈ R̂es
mr

A
� (V + V �).

Proof Given a reaction a ∈ A , we denote the corresponding
reaction in Ac by a′ . We prove the two implications.

⇒) If W ∈ Res
mr
A
(V) then ∃a = (R

a
, I

a
,P

a
) ∈ En

mr
A
(V) such

that P
a
+ V − R

a
= W . Consider a�� ∶= a� + (V − R

a
,

∅,V − R
a
+ V

� − R
�
a
) = (V + R

�
a
, I

�
a
,W +W

�) ∈ ⟨��⟩ .
Clearly, V + V � enables a′′ ; we want to show
that it is mr enabled. Suppose for a contradic-
tion that there exists b�� ∈ ⟨��⟩ such that b′′>ra

′′
and b′′ is enabled by V + V � , then b′′ is of the form
b
�� = b

� + (R,∅,R + R�) for some b= (R
b
, I

b
,P

b
) ∈ ⟨A⟩

and some R ∈ S# . Looking at the reactants, we have
that V + V � ≥ R

b
+ R�

b
+ R ≥ V + R�

a
 , which implies

R
b
+ R = V ⇒ R

b
≤ V and R′

b
≥ R′

a
 . Furthermore,

looking at the inhibitors, we obtain that I′
b
⊇ I′

a
 , thus

b>ra and b is enabled by V. Since a is mr enabled
we get a contradiction, thus a�� ∈ En

mr

A
� (V + V �) , hence

W +W � ∈ R̂es
mr

A
� (V + V �).

s
0

a
1

��������→
a

s
1
+ a

a
2

��������→
b

s
0
+ a

a
1

��������→ s
1
+ a �→ s

1
+ a⋯

⇐) I f W +W � ∈ R̂es
mr

A
� (V + V �) t h e n ∃a�� = a�+

(R,∅,R + R
�) ∈ En

mr

A
� (V + V

�) , for some a ∈ ⟨A⟩
and R ∈ S# , such that P

a
+ R = W . We notice that

V − R
a
= R , as otherwise for any x ∈ V − R

a
− R

the reaction a�� + (x,∅, x + x�) would be enabled by
V + V � and would be strictly greater than a′′ , in con-
tradiction to the fact that a′′ is mr enabled. Clearly,
a ∈ ⟨A⟩ is enabled by V. We now prove it is also mr
enabled. Suppose for a contradiction that there exists
b ∈ ⟨A⟩ such that b>ra and b is enabled by V, then
b
�� ∶= b

� + (V − R
b
,∅,V − R

b
+ V � − R�

b
) w o u l d

be enabled by V + V � and b′′>ra
′′ , a contradiction.

Finally we can conclude that a ∈ En
mr
A
(V) , hence

P
a
+ V − R

a
= W ∈ Res

mr
A
(V) . ◻

Let us now make some considerations about the work-
ings of M . Consider any state V, let R be s.t. (R, I,P) ∈ A
for some I and P and (R ∪ R�) ⊆ V + V � ; then, for any x ∈ R ,
the corresponding reaction (x,∅, x + x�) ∈ Ap cannot be mr
enabled, as it is smaller than (R + R�, I�,P + P�) ∈ Ac . Thus a
reaction (x,∅, x + x�) ∈ Ap will only be applied in two cases:
either (i), the multiplicity of x in V is greater than that of x′ ,
thus there is at least one “spare” x that will not be used by
any reaction from Ac ; or (ii), there is no (R ∪ R�) ⊆ V + V �
such that (R, I,P) ∈ A . Note that case (i) can only happen in
the initial state D0 , in which there are no elements from S′ ,
or when x is added to a state because it is a letter of an input
word: this is because every state other than D0 is the product
of some reaction in ⟨A′⟩ , thus, by definition, it is of the form
P + P� for some P ∈ S# . Case (ii) ensures that if x is not
consumed by any reaction from ⟨Ac⟩ , then it is conserved in
the next state by a reaction from Ap , simulating what would
happen in the reaction automaton A when a reactant is not
consumed by any reaction from A.

Consider now an input word w = w1 ⋯wn ∈ Σ∗ . We
notice that when a letter wi of w is added to the (i − 1)-th state
of a process in M , it immediately reacts through the cor-
responding reaction (wi,∅,wi + w�

i
) ∈ Ap because it occurs

case (i) above. This helps us to find the desired correspond-
ence between processes of A and processes of M accepting
w. Let � = D0,D1,… ,Di,… ∈ IPmr(A,w) : the correspond-
ing process E0,E1 … ,En ∈ IPmr(M,w) is obtained as fol-
lows. E1 ∶= D0 + D�

0
+ w1 + w�

1
∈ R̂es

mr

A
� (D0 + w1) since the

only reactions that are enabled are those in ⟨A�⟩ . In the next
steps we have, by Claim 21 and the observations here above:

Hence the processes of M mimic those of A with one
step of delay, i.e., �� ∶= D0,E1,… ,Ei,… ∈ IPmr(M,w) .
If � ∈ AIP

w

mr
(A,w) then there exists m ≥ |w| such that

⎧⎪⎨⎪⎩

E
k+1 = D

k
+ D

�
k
+ w

k+1 + w
�
k+1

∈ R̂es
mr

A
� (Ek

+ w
k+1) ∀k = 1,… , n − 1

E
k+1 = D

k
+ D

�
k
∈ R̂es

mr

A
� (Ek

) ∀k ≥ n.

195

R. Ascone et al.

Dk = Dm for all k ≥ m and f ∈ Dm ; this holds true if and
only if Ek = Em+1 for all k ≥ m + 1 and f ∈ Em+1 . Therefore
� ∈ AIP

w

mr
(A,w) if and only if �� ∈ AIP

w

mr
(M,w) . Since the

accepting condition is the same, and a state maintaining f in
A must correspond to a state maintaining f in M , we have
that AIPw

mr
(A,w) is in a natural bijection with AIPw

mr
(M,w) ,

and hence we obtain the thesis. ◻

We next prove in Theorem 24 that for any reaction autom-
aton working in mp manner, there exists a pure reaction
automaton working in mr manner that weakly accepts the
same languages. Example 22 shows that this result cannot
be achieved using the same construction as in the proof of
Theorem 20, thus we will provide a more involved reduction,
an example of which is laid out in Example 23.

E xa m p l e 2 2 G i ve n Σ = {w1,w2} , S = {w1,w2,♡}
a n d A = {a1 = (w1,∅,♡), a2 = (w1 + w2,∅,w2)} , l e t
A = (S,Σ,A,w1,♡) be a reaction automaton work-
ing in mp manner. Consider the pure reaction automaton
M = (S ∪ S�,Σ,A�

,w1,♡) as in the proof of Theorem 20,
thus with A� = {a�

1
, a�

2
} ∪ {ax = (x,∅, x + x�) ∣ x ∈ S} . Then

w2 belongs to the language weakly accepted by A in a maxi-
mally parallel manner, i.e., w2 ∈ Lw

mp
(A) (see Definition 9),

but it does not belong to the language accepted by A in a
maximally reactive manner, i.e., w2 ∉ Lw

mr
(M).

Indeed, as seen in Example 7, the set of reac-
tions from A enabled in state T = w1 + w2 in a maxi-
mally parallel manner is Enmp

A
(w1 + w2) = {a1, a2} ,

t hus the resu l t i s Res
mp

A
(w1 + w2) = {♡ + w2,w2}

and w2 is accepted by the interactive process
D0 + w2 = w1 + w2

a1
��������→ ♡ + w2 → ♡ + w2 → ⋯ ∈ AIP

w(w2,A).
In contrast, since the set of reactions enabled

in T = w1 + w2 in a maximally recative manner is
En

mr
A
(w1 + w2) = {a2} (see Example 7), then the

result is Resmr
A
(w1 + w2) = {w2} , thus by Claim 21

we obtain that the set of reactions from M enabled in
T + T � = w1 + w�

1
+ w2 + w�

2
 in a maximally reactive

manner is Enmr
A

� (w1 + w�
1
+ w2 + w�

2
) = {a�

2
} and the pure

result is R̂es
mr

A
(w1 + w�

1
+ w2 + w�

2
) = {w2 + w�

2
} . There-

fore there is only one process with input w2 , namely:

D
0
+ w

2
= w

1
+ w

2

aw1
+aw2

������������������������������������→ w
1
+ w

�
1
+ w

2
+ w

�
2

a
�
2

����������→ w
2
+ w

�
2

aw2
����������������→ w

2
+ w

�
2

aw2
����������������→ ⋯;

since ♡ ∉ w1 + w�
2
 , this is not an accepting process, thus w2

is not in the language weakly accepted by M in a maximally
reactive manner, i.e., w2 ∉ Lw

mr
(M).

Example 23 Consider A = (S,Σ,A,w1,♡) the RA
from Example 22. We make two copies of each ele-
ment of the background set, the i-th copy being in a

natural correspondence with reaction ai : Si = {wi
1
,wi

2
,♡i}

for i ∈ {1, 2} . Let A′ consist of the following reactions over
S ∪ S1 ∪ S2:

We d e f i n e t h e p u r e r e a c t i o n a u t o m a t o n
M

� = (S ∪ S1 ∪ S2,Σ,A�
,w1,♡) . We h a v e t h a t

En
mr

A
� (w1 + w1

1
+ w2

1
+ w2 + w1

2
+ w2

2
) = {a�

2
, a�

1
+ aw2

} since
a
′
2
 and a�

1
+ aw2

 are not comparable and are both maximal.
Therefore we obtain the following accepting process with
input w2:

We have obtained that w2 ∈ Lw
mr
(M�) . In the proof of the

following theorem, we will extend this construction.

Theorem 24 Given a reaction automaton A = (S,Σ,A,D0, f)
working in a maximally parallel manner, there exists a pure
reaction automaton M working in a maximally reactive
manner such that Lw

mp
(A) = Lw

mr
(M).

Proof Let A = {a1,… , ak} . We make k = |A| copies of each
element of the background set, the i-th copy being in a nat-
ural correspondence with reaction ai : Si = {xi ∣ x ∈ S} for
each i = 1, 2,… , |A| . We define a pure reaction automaton
M = (S ∪ S�,Σ,A�

,D0, f) working in a maximally reactive
manner such that:

• S� ∶= S1 ∪⋯ ∪ Sk;
• Σ is the same input alphabet as A;
• A

� ∶= Ap ∪ Ac , where

• D0 is the same initial state as A;
• f is the same final element as A.

Furthermore, for any T ∈ S# we define T � ∶=
∑k

j=1
Tj ∈ (S�)# ,

where Tj consists of the j-th copy of every element of T. In
particular, x′ denotes x1 + x2 +⋯ + xk for any x ∈ S.

a
�
1
∶= (w1 + w1

1
,∅,♡ + ♡

1 + ♡
2)

a
�
2
∶= (w1 + w2 + w2

1
+ w2

2
,∅,w2 + w1

2
+ w2

2
)

ax ∶= (x,∅, x + x1 + x2) for all x ∈ S.

D0 + w2 = w1 + w2

aw1
+aw2

�����������������������������→ w1 + w1

1
+ w2

1
+ w2 + w1

2
+ w2

2

a
�
1
+aw2

�������������������������→ ♡ + ♡
1 + ♡

2 + w2 + w1

2
+ w2

2

a♡+aw2
��������������������������→ ♡ + ♡

1 + ♡
2 + w2 + w1

2
+ w2

2

a♡+aw2
��������������������������→ ⋯ .

Ap ∶= {(x,∅, x + x1 + x2 +⋯ + xk) ∣ x ∈ S}

Ac ∶= {a�
i
∶= (R

ai
+ Ri

ai
, Ii

ai
,P

ai
+ P1

ai
+⋯ + Pk

ai
) ∣

ai = (R
ai
, I

ai
,P

ai
) ∈ A}

196

Pure reaction automata

Claim 25 W ∈ Res
mp

A
(V) iff W +W � ∈ R̂es

mr

A
� (V + V �).

Proof We prove the two implications.

⇒) If W ∈ Res
mp

A
(V) then ∃a =

∑k

j=1
�jaj ∈ En

mp

A
(V) such

that P
a
+ V − R

a
= W . Consider a�� ∶=

∑k

j=1
�ja

�
j
+

(V − R
a
,∅,V − R

a
+ V

� − R
�
a
) ∈ ⟨��⟩ , then V + V � ena-

bles a′′ ; we want to show that it is mr enabled. Let
b
�� ∈ ⟨��⟩ such that b′′>ra

′′ and suppose for a contra-
diction that b′′ is enabled by V + V � . We have that
b
�� =

∑k

j=1
�ja

�
j
+ (R,∅,R + R�) f o r s o m e

b =
∑k

j=1
�jaj ∈ ⟨A⟩ and some R ∈ S# , thus looking at

the reactants we obtain R = V − R
b
 . Furthermore,

since b′′>ra
′′ , there exists i such that 𝜆i < 𝜇i , thus

a + (�i − �i)ai≤rb is enabled by V, a contradiction
since a is enabled in maximally parallel manner.
Finally, we can conclude that a�� ∈ En

mr

A
� (V + V �) ,

hence W +W � ∈ R̂es
mr

A
� (V + V �).

⇐) I f W +W � ∈ R̂es
mr

A
� (V + V �) t h e n ∃a�� = a�+

(R,∅,R + R
�) ∈ En

mr

A
� (V + V

�) , for some a ∈ ⟨A⟩ and
R ∈ S# , such that P

a
+ R = W . Note that V − R

a
= R ,

as otherwise, for any x ∈ V − R
a
− R , the reaction

a�� + (x,∅, x + x�) would be enabled by V + V � and
strictly greater than a′′ , in contradiction to the fact that
a is maximally enabled. We immediately remark that
a ∈ ⟨A⟩ is enabled by V. We want to prove that is mp
enabled. Let c ∈ ⟨A⟩ such that a + c is enabled by V,
then (a + c)��>ra

�� is enabled by V + V � , a contradic-
tion. Finally we can conclude that a ∈ En

mp

A
(V) , hence

P
a
+ V − R

a
= P

a
+ R = W ∈ Res

mp

A
(V) . ◻

We conclude as in Theorem 20. ◻

C o r o l l a r y 2 6 RAmr ⊆ RA
w

mr
⊆PRA

w

mr
 a n d

RAmp ⊆ RA
w

mp
⊆PRA

w

mr
.

Proof Follows directly from Theorems 20 and 24 and Corol-
lary 14. ◻

Corollary 27 Every recursively enumerable language is
weakly accepted by a pure reaction automaton working in a
maximally reactive manner.

Proof Follows directly from Corollary 15 and Theo-
rem 24. ◻

4 Computing functions with pure reaction
automata

In this section, we introduce a new angle to investigate the
computing power of pure reaction automata. Inspired by
existing work on chemical reaction networks (see Chen et al.
2014; Clamons et al. 2020) we will show that PRA can be
seen as machines to compute partial functions from ℕk into
ℕ . For more details on partial recursive functions and related
computability issues, we refer the reader to Rogers (1987).

Definition 28 Given a partial function � ∶ ℕ
n ⇀ ℕ , con-

sider an alphabet Σ ∶= {a1,… , an} so that Σ# ≅ ℕ
n . A PRA

M = (S,Σ,A,D0, f) computes � in a manner X ∈ {mp,mr}
if:

• when �(x1,… , xn) is defined, it holds �(x1,… , xn) = y
if and only if when the linear combination
x1a1 +⋯ + xnan is added to the initial state D0 for any
process D0 + x1a1 +⋯ + xnan,… ,Dk,… there exists
k ∈ ℕ such that Dk = Dm∀m ≥ k, yf ≤ Dk, (y + 1)f ≰ Dk;

• �(x1,… , xn) is undefined if and only if all pro-
cesses star ting from D0 + a1 +⋯ + xnan satisfy
∀k ∈ ℕ ∶ Dk ≠ Dk+1 , i.e., none of the processes stabi-
lizes.

In other words, a PRA computes a partial function � if
and only if, interpreting (x1,… , xn) ∈ ℕ

n as the coefficients
of a linear combination of the elements in Σ and adding
this combination to the initial state, one of the following
happens: if � is not defined for (x1,… , xn) , no process that
starts from there stabilizes; otherwise, any process stabi-
lizes on a state that contains f with multiplicity y, where
�(x1,… , xn) = y.

We will focus on a special class of PRA , specified in
Definition 29, such that there is exactly one process that
can start from each possible initial state. Throughout this
section, we assume that all PRA operate in a maximally
reactive manner.

Definition 29 Given M = (S,Σ,A,D0, Sf) a PRA working
in a manner X ∈ {mp,mr} , we say that M is deterministic
(DPRA) if and only if for any reachable state V, the pure
result R̂es

X

A
(V) consists of one element only.

The next lemmas provide a few examples of partial
functions that can be computed with DPRA working in a
maximally reactive manner.

Lemma 30 There exists a DPRA computing the sum function
� ∶ ℕ

n → ℕ , �(x1, x2) ∶= x1 + x2.

197

R. Ascone et al.

P r o o f L e t Σ ∶= {a1, a2} , S ∶= {a1, a2, f } a n d
A ∶= {b1 = (a1,∅, f) , b2 = (a2,∅, f) , b3 = (f ,∅, f)} .
M ∶= (S,Σ,A, 0, f) is clearly deterministic and it computes
� as, for any (x1, x2) ∈ ℕ

2 , adding x1a1 + x2a2 to the initial
state 0 gives rise to the process

 ◻

Lemma 31 There exists a DPRA computing the difference
function � ∶ ℕ

n ⇀ ℕ , �(x1, x2) ∶= x1 − x2.

Proof Clearly, �(x1, x2) is defined if and only if x1 ≥ x2 . Let
Σ ∶= {a1, a2} , S ∶= {a1, a2, a

�
1
, a�

2
,♢, f } and let A consist of

the following six reactions:

We claim that M ∶= (S,Σ,A, 0, f) computes � . Indeed, let
(x1, x2) ∈ ℕ

2 such that x1 ≥ x2 , then adding x1a1 + x2a2 to
the initial state 0 gives rise to the process

On the other hand, if (x1, x2) ∈ ℕ
2 is such that x1 < x2 , then

the process becomes

thus the process gets stuck in an unstable configuration.
Note that the proof relies heavily on maximal reactivity:
b5>rb3 + b4 since a�

1
+ a�

2
+ ♢ > a�

1
+ a�

2
 . The role of the ele-

ment ♢ is precisely to make b5 maximal in this case. ◻

We will prove that the class of functions that DPRA oper-
ating in mr can compute is universal, in the sense of Church-
Turing’s Thesis. We start with the following basic lemma.

x1a1 + x2a2
x1b1+x2b2
�����������������������������������→ (x1 + x2)f

(x1+x2)b3
��������������������������������→ (x1 + x2)f ⟶ ⋯ .

b1 = (a1,∅, a�
1
)

b2 = (a2,∅, a�
2
+ ♢)

b3 = (a�
2
,∅, a2)

b4 = (a�
1
,∅, f)

b5 = (a�
1
+ a�

2
+ ♢,∅, 0)

b6 = (f ,∅, f).

x1a1 + x2a2
x1b1+x2b2

��→ x1a
�
1
+ x2a

�
2
+ x2♢

(x1−x2)b4+x2b5
���→ (x1 − x2)f

(x1−x2)b6
��������������������������������→ (x1 − x2)f ⟶ ⋯ .

x1a1 + x2a2
x1b1+x2b2

��→ x1a
�
1
+ x2a

�
2
+ x2♢

(x2−x1)b3+x1b5
���→ (x2 − x1)a2
(x2−x1)b2
��������������������������������→ (x2 − x1)a

�
2
+ (x2 − x1)♢

(x2−x1)b3
��������������������������������→ (x2 − x1)a2 ⟶ ⋯ ,

Lemma 32 The constant function equal to 0, the successor
function and the projection functions can be computed by
a DPRA.

Proof Constant function. The constant function
C0 ∶ ℕ

k → ℕ , C0(x1,… , xk) ∶= 0 ∀(x1,… , xk) ∈ ℕ
k is com-

puted by the DPRA M = (Σ ∪ {f },Σ,∅, 0, f) . It is straight-
forward to verify that x1a1 +⋯ + xkak gives rise to the pro-
cess x1a1 +⋯ + xkak → 0 → 0 → ⋯.

Successor function. The successor function S ∶ ℕ → ℕ ,
S(x) ∶= x + 1∀x ∈ ℕ , is computed by the DPRA
M = (S,Σ,A,⊳, f) , where S = Σ ∪ {⊳, f } , Σ = {a}
and A = {(⊳,∅, f), (a,∅, f), (f ,∅, f)} . It is straight-
forward to verify that ⊳ + xa gives rise to the process
⊳ + xa → (x + 1)f → (x + 1)f → ⋯.

Pro jec t ion func t ions . G iven k, n ∈ ℕ w i t h
1 ≤ n ≤ k , the projection function Pk

n
∶ ℕ

k → ℕ ,
Pk
n
(x1,… , xk) ∶= xn ∀(x1,… , xk) ∈ ℕ

k , i s c o m p u t e d
by the DPRA M = (S,Σ,A, 0, f) where S = Σ ∪ {f } ,
Σ = {a1,… , ak} and A = {(an,∅, f), (f ,∅, f)} . It is straight-
forward to verify that x1a1 +⋯ + xkak gives rise to the pro-
cess x1a1 +⋯ + xkak → xnf → xnf → ⋯ . ◻

Note that so far we have not made use of inhibitors in
the reactions; however, they will become crucial in prov-
ing the following results.

Remark 33 If a process within a DPRA reaches the state
Dk = 0 , then Dk+1 = 0 . Furthermore, by determinism, if
Dk = Dk+1 then Dk+m = Dk for all m ∈ ℕ , thus to decide
whether the process stabilizes it suffices to find the smallest
k ∈ ℕ such that Dk = Dk+1.

D e f i n i t i o n 3 4 (No r m a l i z e d DPRA) A DPRA
M = (S,Σ,A,D0, f) operating in a maximally reactive man-
ner which computes a partial function � is called normalized
if the following two conditions hold:

1. there exists h ∈ S such that, whenever �(x1,… , xk) = y ,
the process D0 + x1a1 +⋯ + xnan,… ,Dk,… stabilizes
in a state of the type P + h + yf , for some P ∈ S#;

2. h and f are not present in the multiset of reactants of any
reaction in A.

A normalized DPRA computing � will be denoted by
M(�, h, f).

The following lemma proves that to determine the com-
putational power of DPRA as function acceptors, it suffices
to study normalized DPRA.

Lemma 35 Given any DPRA computing a partial function
� , there exists a normalized DPRA computing �.

198

Pure reaction automata

Proof G iven M = (S,Σ,A,D0, f) compu t ing � ,
Σ = {a1,… , an} , S = Σ ∪ {s1,… , sm, f } , we def ine
M̂ = (Ŝ,Σ,A�

,⊳ + ♢ + ♠, g) as follows:

• Ŝ ∶= S0 ∪ S1 ∪ S2 ∪ S3 ∪ Σ ∪ {⊳, g, g1, h,◻,♢,♠, #1, #3} ,
where Si ∶= {si ∶ s ∈ S} for all i ∈ {0, 1, 2, 3}.

• Σ is the same input alphabet as M;
• A

� ∶= Ain ∪ A
0 ∪ A

♠
∪ Af , where

• ⊳ + ♢ + ♠ is the new initial state.
• g is the new final element.

Before analyzing the processes within M , let us give an
intuition about the role of each group of reactions and each
symbol in Ŝ . The reactions of type A0 mimic the reactions
of M : at every step of the process, they produce two copies
of the state that would have been reached by the process in
M . One of the copies always consists of elements from S0 ,
the second copy consists of elements from S1 in the first step,
from S2 in the second step, and they keep alternating because
the two groups of reactions in A0 are inhibited by elements
from S1 and S2 , respectively. We call the steps in which ele-
ments from S1 are produced of type 1; the steps in which ele-
ments from S2 are produced are of type 2. In steps of type 1,
the reactions from the first group also produce the symbol #1
with a multiplicity equal to the number of elements from S1
that are produced; #1 is thus a counter for the elements from
S1 in the next state.

The first two groups of reactions from Ain only happen
at the beginning of the computation (indeed ⊳ symbolizes
starting the computation), their role being to produce two
copies, consisting of elements from S0 and S1 , respectively,
of all the input elements and a copy of the initial state of M ,
so as to allow the reactions from A0 to take place; they also
produce the symbol ♠ , which must be produced as long as
the computation has not reached a stationary state. The last

Ain ∶=

⎧
⎪⎨⎪⎩

(a,∅, a0 + a1 + #1) for each a ∈ Σ,

(⊳,∅,D0

0
+ D1

0
+ ‖D0‖#1 + ♠)

(♢, {◻},♢)

A
0 ∶=

�
(R0, I0 ∪ S1 ∪ {◻},P0 + P1 + ‖P1‖#1) for each (R, I,P) ∈ A

(R0, I0 ∪ S2 ∪ {◻},P0 + P2) for each (R, I,P) ∈ A

A
♠
∶=

⎧⎪⎨⎪⎩

(#1 + a1, {◻}, #3 + a3) for each a ∈ S

(a2, {◻},♠) for each a ∈ S

(a3, {◻},♠) for each a ∈ S

(a2 + a3 + #3, {◻}, 0) for each a ∈ S

Af ∶=

⎧
⎪⎨⎪⎩

(#1 + f 1, {♠,◻}, g)

(♢, S2 ∪ {♠,◻,⊳},◻)

(g,∅, g + g1)

(◻,∅,◻ + h)

reaction produces the symbol ♢ , whose role is explained
later, at every step, until there is a signal for the computa-
tion to stop.

The reactions in the first group of A♠ have the role of
transforming every element from S1 in the current state into
its copy from S3 in the next state, producing also a coun-
ter #3 that will have the same multiplicity as #1 . The rest
of the reactions are used to compare the elements from S2

with those from S3 in the current state: the symbol ♠ is pro-
duced as long as they differ, and it is no longer produced as
soon as they are equal. This comparing mechanism heav-
ily relies on maximal reactivity, because it always holds
(a2 + a3 + #3, {◻}, 0)>r(a

2, {◻},♠) + (a3, {◻},♠) for any
a ∈ S : this implies that if the elements from S2 are a copy
of those from S3 , none of the reactions from the second and
third group of A♠ will be maximally enabled (note that #3
will be present in the exact same quantity as the multiplicity
of the elements from S3) thus ♠ will not be produced. The
role of the #3 counters is really important since they give a
way to prioritize the last group of reactions in A♠.

The reactions from Af are needed to produce the last
states at the end of the computation. The first two take place
as soon as ♠ is no longer present in a state, thus when the
computation needs to stop. If f was generated by the last
reaction when the process stops in the original automaton
M , then f 1 is present as well (together with the right mul-
tiplicity of the counter #1), thus the first reaction from Af
takes place: indeed, it is always greater than the first reac-
tion from A♠ (because its set of inhibitors also contains ♠),
thus it is enabled in a maximal reactive manner. The second
reaction from Af is maximally enabled as well (it is strictly
greater than the last reaction from Ain) thus it produces ◻ ,
while ♢ is no longer produced. The role of ◻ is to disable
all the reactions from A0 ; the role of ♢ is to enable the reac-
tion that produces ◻ whenever needed. Finally, the last two

199

R. Ascone et al.

reactions from Af are enabled, and they produce h and y
copies of g + g1.

Let us now analyze the processes within M̂ . Given
� = D0 + x1a1 +⋯ + xnan,… ,Dk,… a process in M , we
denote X0 ∶= D0 + x1a1 +⋯ + xnan . We obtain the follow-
ing process for M̂:

Suppose � stabilizes, then by Remark 33 there exists a k such
that Dk = Dk+1 but Dk−1 ≠ Dk . We first consider the case in
which Dk ≠ 0.

If k is odd, we have:

If k is even, we obtain the same process as above, except
it starts from the second row. Note that if Dk = 0 , thus
Dk−1 ≠ 0 , then the computation in M stops returning the
value y = 0 . We divide again two cases:

• i f k i s o d d t h e n D
3

k−1
+ ‖D

k−1‖#3 + ♢ → ‖
k − 1‖♠ +◻ → ◻ + h → ◻ + h → ⋯;

⊳ +♠ + ♢ + x1a1 +⋯ + xnan

⟶ X0

0
+ X1

0
+ ‖X0‖#1 + ♠ + ♢

⟶ D0

1
+ D2

1
+ X3

0
+ ‖X0‖#3 + ♢

⟶ D0

2
+ D1

2
+ ‖D2‖#1 + ‖X0 △ D1‖♠ + ♢

⟶ ⋯

D0

k
+ D2

k
+ D3

k−1
+ ‖Dk−1‖#3 + ♢ ⟶

⟶ D0

k
+ D1

k
+ ‖Dk‖#1 + ‖Dk △ Dk−1‖♠ + ♢

⟶ D0

k
+ D2

k
+ D3

k
+ ‖Dk‖#3 + ♢

⟶ D0

k
+ D1

k
+ ‖Dk‖#1 + ‖Dk △ Dk‖

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=0

♠ + ♢

⟶ ◻ + D0

k
+ D2

k
+ D3

k
− yf 3 + ‖Dk − yf‖#3 + yg + yg1 + ♢

⟶ ◻ + h + yg + yg1 ⟶ ◻ + h + yg + yg1 ⟶ ⋯ .

• if k is even then ‖D
k−1 △ D

k−2‖♠ +♢ → ♢ → ◻ →

◻ + h → ◻ + h → ⋯;

Recall that Condition 1 of Definition 34 requires the state
on which the process stabilizes to be of the form P + h + yf .
In all the previous cases, this condition is satisfied with
P = ◻ + yg ∈ Ŝ# and f = g1.

If, instead, the process � in M does not stabilize (and in
particular, we have that Dk ≠ 0 for all k), then ♠ will never
disappear, thus ◻ will never be generated, and thus the cor-
responding process in M̂ will never stabilize as well. ◻

Building on Lemma 35, we can prove that DPRA com-
pute a much larger class of partial functions.

Lemma 36 Given � ∶ ℕ
k ⇀ ℕ and �i ∶ ℕ

n ⇀ ℕ for all
i ∈ {1,… , k} , all computable by DPRA , the composition
function � ∶ ℕ

n ⇀ ℕ defined by

is also computable by a DPRA.

Proof Let Σ = {a1,… , an} and ΣN = {bN
1
,… , bN

k
} be two

disjoint sets such that Σ# ≅ ℕ
n and (ΣN)# ≅ ℕ

k ; we
additionally define Σi = {ai

j
∶ aj ∈ Σ} for all i ∈ {1,… , k} .

We consider N ∶= N(�, hN , f N) = (SN ,ΣN ,A
N
,DN

0
, f N)

t h e n o r m a l i z e d DPRA c o m p u t i n g � a n d
M

i ∶= M(�i, h
i, f i) = (Si,Σi,A

i
,Di

0
, f i) the normalized

DPRA computing �i for all i = 1,… , k ; furthermore, we
assume that the respective background sets SN , S1,… , Sk are
disjoint, and we will label the corresponding reactions and
e lements wi th t he same apex . We denote
K ∶= (S,Σ,A,D0, f

N) the DPRA defined by:

• S ∶= SN ∪ S1 ∪⋯ ∪ Sk ∪ Σ ∪ {⊳M ,⊳N ,◻M ,◻N} , where
⊳M ,⊳N ,◻M ,◻N are new elements;

• Σ ∶= {a1,… , an} is the input alphabet;
• A ∶= Ain ∪ Ac ∪ A

N

◻
∪ A

1

◻
∪⋯ ∪ A

k

◻
 , where

�(x1,… , xn) ∶= �(�1(x1,… , xn),… ,�k(x1,… , xn))

Ain ∶=

⎧⎪⎨⎪⎩

(⊳M ,∅,D1

0
+⋯ + Dk

0
),

(⊳N ,∅,DN
0
),

(◻N ,∅,◻N)

(ai,∅, a1
i
+⋯ + ak

i
) for each i ∈ {1,… , n}

Ac ∶=

�
(h1 +⋯ + hk +◻N , {◻M},⊳N +◻M)

(f i,◻N , bN
i
) for each i ∈ {1,… , k}

A
N

◻
∶=

�
(RN

a
, IN

a
∪ {◻N},PN

a
) for each (RN

a
, IN

a
,PN

a
) ∈ A

N

A
i
◻
∶=

�
(Ri

a
, Ii

a
∪ {◻M},Pi

a
) for each (Ri

a
, Ii

a
,Pi

a
) ∈ A

i
�

∀i ∈ {1,… , k};

200

Pure reaction automata

• D0 ∶= ⊳M +◻N is the initial state;
• f N is the same final element as N .

We want to analyse the process star ting with
⊳M +◻N + x1a1 +⋯ + xnan . At the first step, only the
reactions in Ain are enabled; thus k copies of each of
the input elements are generated (one for each of the
alphabets Σi), as well as the initial states D1

0
,… ,Dk

0
 of

M
1
,… ,M

k . The element ◻N is preserved. Now each
of the Mi is simulated by the reactions in Ai

◻
 , and ◻N is

preserved by the third reaction of Ain until the reaction
(h1 +⋯ + hk +◻N , {◻M},⊳N +◻M)>r(◻

N ,∅,◻N) from
Ac becomes enabled, i.e., when the computation of all Mi
terminates and produces all the elements hi (note that here it
is crucial to operate in a mr manner). Recall that by Condi-
tion 2 from Definition 34, none of the elements hi are present
in any reactant multiset, thus no combination of the reactions
from Ai

◻
 can be greater than the first reaction from Ac . When

this reaction takes place, ◻N is replaced by ⊳N +◻M , thus
the reactions (⊳N ,∅,DN

0
) and (f i,◻N , bN

i
) produce the initial

state and the input for N , while ◻M will block any reactions
in A1

◻
,… ,A

k

◻
.

Finally, in the successive computation, there will be no
element of S1 ∪⋯ ∪ Sk left, and N will start its computing
process using, as desired, the outputs of the other k machines
as inputs. ◻

Lemma 37 Given � ∶ ℕ
k+2 ⇀ ℕ and � ∶ ℕ

k ⇀ ℕ , both
computable by DPRA , the primitive recursion � ∶ ℕ

k+1 ⇀ ℕ
defined by

and

is also computable by a DPRA.

Proof Let Σk = {a1,… , ak} such that Σ#

k
≅ ℕ

k and
let a, a0 ∉ Σk be two extra symbols. We define
two additional alphabets ΣM ∶= {aM

1
,… , aM

k
} and

ΣN = {aN , aN
0
, aN

1
,… , aN

k
} , so that (ΣN)# ≅ ℕ

k+2.
We consider N ∶= N(�, hN , f) = (SN ,ΣN ,A

N
,DN

0
, f)

t h e n o r m a l i z e d DPRA c o m p u t i n g � a n d
M ∶= M(� , hM , f) = (SM ,ΣM ,A

M
,DM

0
, f) the normal-

ized DPRA computing � ; furthermore, we assume that the
respective background sets SN , SM are disjoint except for
the final element, i.e., SN ∩ SM = {f } ; we will label the cor-
responding reactions and elements with the same apex. We
define R ∶= (S,Σ,A,D0, f

�) the DPRA such that:

• S ∶= S
N ∪ S

M ∪ Σ ∪ Σ�
k
∪ {⊳,⊳M

,⊳N
,◻M

,◻N
,◻

M

in
,◻

N

in
,↺N

, #, #
�
, f

�} , where
Σ�
k
= {a�

1
,… , a�

k
};

�(0, x1,… , xk) ∶= �(x1,… , xk)

�(y + 1, x1,… , xk) ∶= �(y, �(y, x1,… , xk), x1,… , xk) ∀y ≥ 1

• Σ ∶= {a, a1,… , ak} is the input alphabet;
• A ∶= Ain ∪ Am ∪ Ac ∪ A

N

◻
∪ A

M

◻
 , where

• D0 ∶= ⊳ +◻N is the new initial state;
• f ′ is the new final element.

First, we note that the reactions in Am are inhibitorless. Thus,
they will occur, maintaining the respective elements and
generating a copy of them using the alphabet Σ�

k
 , whenever

their reactants are present, as they do not conflict with any
other reaction. The elements from Σ�

k
 will be later translated

into the corresponding elements from ΣM or ΣN , depending
on the phase of the process, by the last two reaction groups
from Ain.

We now explain how the machine works. In the initial
state ⊳ +◻N + ya + x1a1 +⋯ + xkak , the reaction

is maximally enabled; in particular, it generates ⊳M , which
in the next step enables the generation of the initial state of
M . Moreover, the element ◻M

in
 is generated and later pre-

served via the reaction (◻M
in
,∅,◻M

in
) ∈ Am , preventing the

initial state of M from being generated multiple times. The
process that would take place in M is then simulated with
the reactions from AM

◻
 ; whenever M terminates, it produces

a single element hM . We remark that ya is preserved in any
state via (a,∅, a) ∈ Am , then we have to consider two cases:

Ain ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(⊳,∅,⊳M)

(⊳M , {◻M ,◻M

in
},DM

0
+◻

M

in
)

(⊳N , {◻N ,◻N

in
},DN

0
+◻

N

in
)

(f �, {◻N ,◻N

in
}, aN

0
)

(#�, {◻N ,◻N

in
}, aN)

(a�
i
, {◻M ,◻M

in
}, aM

i
) for each i ∈ {1,… , k}

(a�
i
, {◻N ,◻N

in
}, aN

i
) for each i ∈ {1,… , k}

Am ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ai,∅, ai + a
�
i
) for each i ∈ {1,… , k}

(a,∅, a)

(◻N ,∅,◻N)

(◻M ,∅,◻M)

(◻N

in
,∅,◻N

in
)

(◻M

in
,∅,◻M

in
)

(#,∅, # + #�)

(f ,∅, f �)

Ac ∶=

⎧⎪⎪⎨⎪⎪⎩

(hM + a,∅,↺N)

(hN + a,∅,↺N +◻N)

(↺N +◻N ,∅,◻M + ⊳N)

(↺N +◻N

in
+◻N ,∅, # + #� + ⊳N)

A
N

◻
∶={(RN

a
, I

N

a
∪ {◻N},PN

a
) ∶ (RN

a
, I

N

a
,P

N

a
) ∈ A

N}

A
M

◻
∶={(RM

a
, I

M

a
∪ {◻M},PM

a
) ∶ (RM

a
, I

M

a
,P

M

a
) ∈ A

M};

(⊳,∅,⊳M) + y(a,∅, a) +

k∑
i=1

xi(ai,∅, ai + a�
i
)

201

R. Ascone et al.

y = 0. No reaction from Ac nor AN

◻
 is enabled, so the sys-

tem reaches a stable state and the result is the same
as the result given by M with input (x1,… , xk).

y ≥ 1. The reaction (hM + a,∅,↺N) is enabled (being
strictly greater than one instance of (a,∅, a) ,
thus reducing the multiplicity of a, which is ini-
tially equal to y, by 1); in the next step, the reac-
tion (↺N +◻N ,∅,◻M + ⊳N) will take place,
thus eliminating ◻N and introducing ◻M , whose
role is to block all reactions from AM

◻
 (simulat-

ing M) and to enable the reactions from AN

◻

(simulating N). At this point, the initial state
of N is generated by reactions in Ain , receiv-
ing as input (0,�(x1,… , xk), x1,… , xk) , as the
reaction (f �, {◻N ,◻

N
in
}, aN

0
) transfers the output

of M to the second coordinate of � , and since #
is not present, and consequently #′ neither, the
first coordinate is 0. The process will continue
until N eventually produces an output. If a is
no longer present (y − 1 = 0), the output will be
�(0,�(x1,… , xk), x1,… , xk) , as desired; if a is still
present (y > 1), the reaction (hN + a,∅,↺N +◻N)
will take place, and as a consequence, the whole
simulation of N will be reinitialized by ◻N . The
only reactions that will take place are those from
Am maintaining and copying the input, the reaction
(f ,∅, f �) saving the output of N , and the reaction
(↺N +◻N

in
+◻N ,∅, # + #� + ⊳N) that will reini-

tialize N in the next step. Since it will receive the
multiplicity of #′ as the first coordinate, the mul-
tiplicity of f ′ as the second one and then the rest
of the saved input, the machine will then calculate
�(1,�(0,�(x1,… , xk), x1,… , xk), x1,… , xk) . This
process will repeat until the occurrences of a are
exhausted (recall that its multiplicity decreases by
1 at every iteration), so we have proved that R com-
putes � , the primitive recursion operator of � and � .

 ◻

Lemma 38 Given � ∶ ℕ
k+1 ⇀ ℕ , computable by a DPRA ,

the minimization operator �� ∶ ℕ
k ⇀ ℕ defined by

where ⊥ means that the operator is undefined, is also com-
putable by a DPRA.

𝜇𝜙(x1,… , xk) ∶=

{
z if 𝜙(z, x1,… , xk) = 0 and 𝜙(y, x1,… , xk) > 0 for all y < z

⊥ otherwise

Proof We consider, with the same notation as in the previ-
ous lemmas, N ∶= N(�, hN , f N) = (SN ,ΣN ,A

N
,DN

0
, f N) the

normalized DPRA computing � , with ΣN = {aN
0
, aN

1
,… , aN

k
} .

We define M ∶= (S,Σ,A,D0, f
�) the DPRA given by:

• S ∶= SN ∪ Σ ∪ {⊳,◻N ,◻N
in
, f , f �};

• Σ ∶= {a1,… , ak} is the new input alphabet;
• A ∶= Ain ∪ Am ∪ Ac ∪ A

N

◻
 , where

• D0 ∶= ⊳ is the new initial state;
• f ′ is the new final element.

Much like in previous proofs, the reactions from Am main-
tain the input elements. We now analyze the process of M
starting from the state ⊳ + x1a1 +⋯ + xkak . At the begin-
ning of the computation, using the first reaction from Ain ,
the initial state of N is generated, receiving an input with
0 as the first coordinate: indeed, the value of the first coor-
dinate is given by the multiplicity of aN

0
 , which at the first

step is not produced because f is not present in the initial
state. Then N is simulated with the reactions from AN

◻
 .

If N terminates and produces hN , there are two possible
cases:

1. f N is not present. Then, since neither f ′ is present, the
state remains unchanged, and hence the result is 0.

2. f N is present. This indicates that N has returned a
non-zero value, so the reaction (hN + f N ,∅,◻N) takes
place, inhibiting every reaction from AN

◻
 and enabling

(◻N +◻
N
in
,∅, f � + f + ⊳) in the next step. Since the for-

mer reaction is greater than (◻N
in
,∅,◻N

in
) , the element

◻
N
in

 is not generated and the reaction generating the

initial state of N is enabled again, receiving as input
(1, x1,… , xk) , because now f is present with multiplicity
1, thus aN

0
 is generated with multiplicity 1. This process

is iterated until N eventually outputs 0: at each itera-

Ain ∶=

⎧
⎪⎨⎪⎩

(⊳, {◻N ,◻N
in
},DN

0
+◻

N
in
)

(f , {◻N ,◻N
in
}, aN

0
)

(ai, {◻
N ,◻N

in
}, aN

i
) for each i ∈ {1,… , k}

Am ∶=

⎧
⎪⎨⎪⎩

(ai,∅, ai) for each i ∈ {1,… , k}

(f �,∅, f + f �)

(◻N
in
,∅,◻N

in
)

Ac ∶=

�
(hN + f N ,∅,◻N)

(◻N +◻
N
in
,∅, f + f � + ⊳)

A
N

◻
∶={(RN

a
, IN

a
∪ {◻N},PN

a
) ∶ (RN

a
, IN

a
,PN

a
) ∈ A

N};

202

Pure reaction automata

tion, the multiplicity of f ′ is increased by 1 (as well as
those of f, via the second reaction from Am , and of aN

0

via the second reaction from Ain), thus when the process
terminates, the result is precisely the multiplicity of f ′.

We proved that M computes the minimization operator of
� . ◻

We have arrived at the main result of this section.

Theorem 39 The class of partial functions computed by
deterministic pure reaction automata operating in a maxi-
mally reactive manner coincides with the class of general
recursive functions.

Proof By Lemma 32, deterministic pure reaction automata
can compute the basic functions: namely, the constant func-
tion equal to 0, the successor function and the projection
functions. Furthermore, the partial functions computed by
deterministic pure automata are closed under composition
(Lemma 36), primitive recursion (Lemma 37) and minimiza-
tion (Lemma 38), therefore they coincide with the class of
general recursive functions. ◻

5 Conclusions

In this work, we introduced and studied a new criterion,
the maximally reactive manner, for selecting the reactions
that take place in a computation step of a reaction automa-
ton. We also defined a new variant of reaction automata,
the pure reaction automata, where there is no permanence,
mimicking (in this aspect) the behaviour of reaction systems.
We studied the relation between pure and classical reaction
automata working in a maximally reactive manner, showing
that the absence of permanence is not a strong limitation:
for every reaction automaton working in a maximally paral-
lel (or maximally reactive) manner recognizing a certain
language, there always exists a pure reaction automaton
working in a maximally reactive manner recognizing the
same language. When seen as devices for computing partial
functions, deterministic pure reaction automata working in
a maximally reactive manner are able to compute all general
recursive functions.

An interesting direction for future research is to further
investigate the relation between the different manners since
the choice of one or the other can potentially change the
computational power of a reaction automaton (pure or not).
The choice of different manners could also give rise to inter-
esting results for the chemical version of reaction automata,
in which the set of inhibitors is constrained to be empty. The
role of determinism is also to be further explored since it can
be another factor that impacts the computational power of
reaction automata, possibly also determining which kinds of

functions can be computed under time and space (size of the
multisets) constraints. Reaction systems were also explored
with additional extensions and restrictions, like adding a
duration for reactions or forcing each reaction to have only
one reactant or one inhibitor. Similar questions can be asked
about reaction automata: what is their effect on the compu-
tational power? Can we still obtain universality in all cases?

Author Contributions LM and FL conceived the research work; FL and
RA proved the main results; GB, RA and LM wrote the manuscript;
LM and GB supervised the work; EF, RA, GB and LM reviewed the
manuscript.

Funding Open access funding provided by Università degli Studi di
Trieste within the CRUI-CARE Agreement. No funding available.

Data availability No Data associated with the manuscript.

Declarations

Conflict of interest No Conflict of interest to declare.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ascone R, Bernardini G, Manzoni L (2024) Fixed points and attractors
of reactantless and inhibitorless reaction systems. Theor Comput
Sci 984(114):322. https:// doi. org/ 10. 1016/j. tcs. 2023. 114322

Azimi S (2017) Steady states of constrained reaction systems. Theor
Comput Sci 701:20–26

Azimi S, Iancu B, Petre I (2014) Reaction system models for the heat
shock response. Fund Inform 131(3–4):299–312. https:// doi. org/
10. 3233/ FI- 2014- 1016

Barbuti R, Gori R, Levi F et al (2016) Investigating dynamic causalities
in reaction systems. Theor Comput Sci 623:114–145. https:// doi.
org/ 10. 1016/j. tcs. 2015. 11. 041

Barbuti R, Gori R, Levi F et al (2018) Generalized contexts for reac-
tion systems: definition and study of dynamic causalities. Acta
Inform 55:227–267

Barbuti R, Bove P, Gori R et al (2021) Encoding threshold Boolean
networks into reaction systems for the analysis of gene regulatory
networks. Fund Inform 179(2):205–225. https:// doi. org/ 10. 3233/
FI- 2021- 2021

Barbuti R, Bernasconi A, Gori R, et al (2018a) Computing preimages
and ancestors in reaction systems. In: International conference
on theory and practice of natural computing. Springer, pp 23–35

203

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.tcs.2023.114322
https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.1016/j.tcs.2015.11.041
https://doi.org/10.1016/j.tcs.2015.11.041
https://doi.org/10.3233/FI-2021-2021
https://doi.org/10.3233/FI-2021-2021

R. Ascone et al.

Bottoni P, Labella A, Rozenberg G (2019) Reaction systems with influ-
ence on environment. J Membr Comput 1:3–19

Brijder R, Ehrenfeucht A, Main M et al (2011) A tour of reaction sys-
tems. Int J Found Comput Sci 22(07):1499–1517

Brijder R, Ehrenfeucht A, Rozenberg G (2011) Reaction systems with
duration. Comput Coop Life 6610:191–202. https:// doi. org/ 10.
1007/ 978-3- 642- 20000-7_ 16

Brijder R, Ehrenfeucht A, Rozenberg G (2010) A note on causalities in
reaction systems. In: Electronic communications of the EASST 30

Chen H, Doty D, Soloveichik D (2014) Deterministic function compu-
tation with chemical reaction networks. Nat Comput 13(4):517–
534. https:// doi. org/ 10. 1007/ S11047- 013- 9393-6

Clamons S, Qian L, Winfree E (2020) Programming and simulat-
ing chemical reaction networks on a surface. J R Soc Interface
17(166):20190,790. https:// doi. org/ 10. 1098/ rsif. 2019. 0790

Corolli L, Maj C, Marini F et al (2012) An excursion in reaction
systems: from computer science to biology. Theor Comput Sci
454:95–108. https:// doi. org/ 10. 1016/j. tcs. 2012. 04. 003

Csuhaj-Varjú E, Ibarra OH, Vaszil G (2006) On the computational
complexity of P automata. Nat Comput 5:109–126

Csuhaj-Varjú E, Marion O, Vaszil G (2009) The Oxford handbook
of membrane computing, Oxford University Press, chap P
Automata

Csuhaj-Varjú E, Vaszil G (2002) P automata or purely communicat-
ing accepting p systems. In: Workshop on membrane comput-
ing, Springer, pp 219–233

Dutta S, Jankowski A, Rozenberg G et al (2019) Linking reaction
systems with rough sets. Fund Inform 165(3–4):283–302

Ehrenfeucht A, Rozenberg G (2007) Reaction systems. Fund Inform
75(1–4):263–280

Ehrenfeucht A, Kleijn J, Koutny M et al (2017) Evolving reaction
systems. Theor Comput Sci 682:79–99. https:// doi. org/ 10.
1016/j. tcs. 2016. 12. 031

Ehrenfeucht A, Rozenberg G (2004) Basic notions of reaction
systems. In: 8th international conference on developments
in language theory (DLT). Lecture Notes in Computer Sci-
ence, vol 3340. Springer, pp 27–29. https:// doi. org/ 10. 1007/
978-3- 540- 30550-7_3

Ehrenfeucht A, Rozenberg G (2009) Introducing time in reaction
systems. Theor Comput Sci 410(4):310–322. https:// doi. org/ 10.
1016/j. tcs. 2008. 09. 043, computational Paradigms from Nature

Formenti E, Manzoni L, Porreca AE (2015) On the complexity of
occurrence and convergence problems in reaction systems. Nat
Comput 14:185–191

Formenti E, Manzoni L, Porreca AE (2014a) Cycles and global attrac-
tors of reaction systems. In: Descriptional complexity of formal
systems: 16th international workshop (DCFS), Springer, pp 114–
125. https:// doi. org/ 10. 1007/ 978-3- 319- 09704-6_ 11

Formenti E, Manzoni L, Porreca AE (2014b) Fixed points and attrac-
tors of reaction systems. In: 10th conference on computability
in Europe (CiE). Language, life, limits, Springer, pp 194–203.
https:// doi. org/ 10. 1007/ 978-3- 319- 08019-2_ 20

Freund R, Martín-Vide C, Obtułowicz A, et al (2003) On three classes
of automata-like p systems. In: 7th international conference on
developments in language theory, DLT 2003 Szeged, Hungary,
July 7–11, 2003 Proceedings 7, Springer, pp 292–303

Holzer M, Rauch C (2021) On the computational complexity of reac-
tion systems, revisited. In: Computer Science–Theory and Appli-
cations: 16th International Computer Science Symposium in Rus-
sia, CSR 2021, Sochi, Russia, June 28–July 2, 2021, Proceedings
16, Springer, pp 170–185

Kleijn J, Koutny M, Rozenberg G (2011) Modelling reaction systems
with petri nets. In: BioPPN-2011, 2nd International Workshop on
Biological Processes and Petri Nets, Newcastle University

Manzoni L, Pocas D, Porreca AE (2014) Simple reaction systems and
their classification. Int J Found Comput Sci 25(04):441–457.
https:// doi. org/ 10. 1142/ S0129 05411 44000 5X

Manzoni L, Porreca AE, Rozenberg G (2020) Facilitation in reaction
systems. J Membr Comput 2(3):149–161

Okubo F (2014) Reaction automata working in sequential manner.
RAIRO-Theor Inform Appl-Informatique Théorique et Applica-
tions 48(1):23–38

Okubo F, Yokomori T (2018) The computing power of determinism
and reversibility in chemical reaction automata. Springer, Cham,
pp 279–298. https:// doi. org/ 10. 1007/ 978-3- 319- 73216-9_ 13

Okubo F, Kobayashi S, Yokomori T (2012) On the properties of lan-
guage classes defined by bounded reaction automata. Theor Com-
put Sci 454:206–221

Okubo F, Fujioka K, Yokomori T (2022) Chemical reaction regular
grammars. New Gener Comput 40(2):659–680. https:// doi. org/
10. 1007/ S00354- 022- 00160-8

Okubo F, Kobayashi S, Yokomori T (2012) Reaction automata. Theor
Comput Sci 429:247–257. https:// doi. org/ 10. 1016/j. tcs. 2011. 12.
045, magic in Science

Okubo F, Yokomori T (2015) Recent developments on reaction autom-
ata theory: a survey. In: Recent advances in natural computing:
selected results from the IWNC 7 symposium, Springer, pp 1–22

Păun G, Pérez-Jiménez MJ, Rozenberg G (2013) Bridging membrane
and reaction systems-further results and research topics. Fund
Inform 127(1–4):99–114

Rogers H (1987) Theory of recursive functions and effective comput-
ability. MIT Press, Cambridge

Salomaa A (2017) Minimal reaction systems: duration and blips. Theor
Comput Sci 682:208–216

Teh WC, Atanasiu A (2017) Irreducible reaction systems and reaction
system rank. Theor Comput Sci 666:12–20

Teh WC, Atanasiu A (2020) Simulation of reaction systems by the
strictly minimal ones. J Membr Comput 2:162–170

Teh WC, Lim J (2022) Evolvability of reaction systems and the invis-
ibility theorem. Theor Comput Sci 924:17–33. https:// doi. org/ 10.
1016/j. tcs. 2022. 03. 039

Yokomori T, Okubo F (2021) Theory of reaction automata: a sur-
vey. J Membr Comput 3(1):63–85. https:// doi. org/ 10. 1007/
S41965- 021- 00070-6

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

204

https://doi.org/10.1007/978-3-642-20000-7_16
https://doi.org/10.1007/978-3-642-20000-7_16
https://doi.org/10.1007/S11047-013-9393-6
https://doi.org/10.1098/rsif.2019.0790
https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/10.1016/j.tcs.2016.12.031
https://doi.org/10.1016/j.tcs.2016.12.031
https://doi.org/10.1007/978-3-540-30550-7_3
https://doi.org/10.1007/978-3-540-30550-7_3
https://doi.org/10.1016/j.tcs.2008.09.043
https://doi.org/10.1016/j.tcs.2008.09.043
https://doi.org/10.1007/978-3-319-09704-6_11
https://doi.org/10.1007/978-3-319-08019-2_20
https://doi.org/10.1142/S012905411440005X
https://doi.org/10.1007/978-3-319-73216-9_13
https://doi.org/10.1007/S00354-022-00160-8
https://doi.org/10.1007/S00354-022-00160-8
https://doi.org/10.1016/j.tcs.2011.12.045
https://doi.org/10.1016/j.tcs.2011.12.045
https://doi.org/10.1016/j.tcs.2022.03.039
https://doi.org/10.1016/j.tcs.2022.03.039
https://doi.org/10.1007/S41965-021-00070-6
https://doi.org/10.1007/S41965-021-00070-6

	Pure reaction automata
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Reaction automata

	3 Pure reaction automata
	4 Computing functions with pure reaction automata
	5 Conclusions
	References

