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Abstract
Statistical indices of masculinity-femininity (M-F) summarize multivariate profiles of sex-related traits as positions on a 
single continuum of individual differences, from masculine to feminine. This approach goes back to the early days of sex 
differences research; however, a systematic discussion of alternative M-F indices (including their meaning, their mutual 
relations, and their psychometric properties) has been lacking. In this paper I present an integrative theoretical framework 
for the statistical assessment of masculinity-femininity, and provide practical guidance to researchers who wish to apply 
these methods to their data. I describe four basic types of M-F indices: sex-directionality, sex-typicality, sex-probability, and 
sex-centrality. I examine their similarities and differences in detail, and consider alternative ways of computing them. Next, 
I discuss the impact of measurement error on the validity of these indices, and outline some potential remedies. Finally, I 
illustrate the concepts presented in the paper with a selection of real-world datasets on body morphology, brain morphology, 
and personality. An R function is available to easily calculate multiple M-F indices from empirical data (with or without 
correction for measurement error) and draw summary plots of their individual and joint distributions.
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In their seminal book Sex and Personality, published almost 
90 years ago, Terman and Miles (1936) proposed that indi-
vidual differences in sex-related traits could be described as 
positions on a continuum of masculinity-femininity (M-F), 
and measured by statistically combining multiple variables 
into a single index. By relating them to the correspond-
ing trait distributions in males and females considered as 
groups, individual profiles can be rated as more or less “mas-
culine” or “feminine,” enabling fine-grained analyses both 
between and within the sexes. The notion of a bipolar M-F 
continuum waxed and waned in popularity throughout the 
twentieth century (see Lippa, 2001); it then experienced a 
renaissance with the introduction of gender diagnosticity 
(GD; Lippa, 1991; Lippa & Connelly, 1990), a method that 
employs discriminant analysis to estimate a person’s prob-
ability of being male versus female (more on this below). 
In recent years, researchers have increasingly used GD and 
other kinds of M-F indices to investigate a variety of topics 

related to gender and sexuality (e.g., Ilmarinen et al., 2023; 
Lippa, 2005; Loehlin et al., 2005; Lönnqvist & Ilmarinen, 
2021; Pozzebon et al., 2015; Rieger & Savin-Williams, 
2012; Semenyna & Vasey, 2016; Udry & Chantala, 2004; 
Verweij et al. 2016).

The idea of using statistical procedures to calculate con-
tinuous M-F scores has some obviously attractive features, 
including parsimony (complex multivariate profiles are sum-
marized by a single dimension of variation) and flexibility 
(there is no need to rely on a particular assessment instru-
ment, questionnaire or otherwise). At the same time, treat-
ing masculinity-femininity as a statistical construct leaves 
it open-ended in two important ways. To begin with, the 
same index may be calculated from different domains of 
sex-related variation. For example, gender diagnosticity is 
usually estimated from profiles of occupational preferences, 
interests, and everyday activities (see Lippa, 2001, 2010), 
but some authors have used variations on this method to 
obtain separate GD scores from personality scales, per-
sonal values, cognitive abilities, and so forth (Ilmarinen 
et al., 2023). Empirically, M-F indices calculated over dif-
ferent domains show only small to moderate correlations 
with one another, indicating that variation in psychological 
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masculinity-femininity is not characterized by a strong 
underlying “general factor” (Ilmarinen et al., 2023; Pozze-
bon et al., 2015).

Second, and key to the present paper, there is more than 
one way to translate individual trait profiles into meaningful 
M-F scores. The general construct of masculinity-femininity 
can be conceptualized in a number of different ways, yield-
ing alternative types of indices with their unique properties 
and implications. Conversely, different methods that are 
employed to construct M-F scores often embody alternative 
conceptions of masculinity-femininity (e.g., the extremity 
of the sex-related traits displayed by an individual, versus 
the degree to which an individual is statistically representa-
tive of males/females as groups). To the best of my knowl-
edge, this point has never been addressed systematically in 
the psychological literature. The outcomes include not just 
conceptual and statistical muddles, but also a failure to take 
advantage of the sophistication and descriptive richness 
afforded by multiple, complementary indices.

Here I set out to correct this blind spot and provide an 
integrative framework for the statistical assessment of mas-
culinity-femininity. I begin by describing four basic types 
of M-F indices, which I label sex-directionality (M-FD), 
sex-typicality (M-FT), sex-probability (M-FP), and sex-cen-
trality (M-FC). Each captures a somewhat distinct aspect 
of the broader construct of masculinity-femininity. It is 
especially noteworthy that, under certain conditions, the 
relative ranking of two people’s trait profiles (i.e., which 
one is more masculine vs. feminine) may switch depending 
on the index that one is employing. In fact, the same profile 
may lie on the masculine side of the continuum according 
to one type of index, but on the feminine side according 
to another. I then examine the differences and relations 
between alternative indices, explain how they are affected 
by measurement error, and consider potential remedies. 
Finally, I illustrate the concepts and methods discussed in 
the paper with a selection of real-world datasets on body 
morphology, brain morphology, and personality. These 
empirical examples offer useful insight into the behavior of 
alternative M-F indices in different scenarios, their depend-
ence on the distribution of the data, and their sensitivity 
to measurement error. To facilitate research applications, I 
provide an easy-to-use R function (mf.indices) that calcu-
lates multiple M-F indices from empirical data and draws 
summary plots of their individual and joint distributions. 
The function can be downloaded at https:// doi. org/ 10. 6084/ 
m9. figsh are. 22277 743

Before I begin, I want to stress that my goal is not to 
defend the superiority of bipolar indices, or discuss their 
intrinsic limitations in any detail. The contrast between 

bipolar conceptions of M-F and alternative models that view 
masculinity and femininity as distinct, at least partly inde-
pendent dimensions of variation is the subject of a long and 
still ongoing debate (see Lippa, 2001). I take it for granted 
that the statistical M-F indices I discuss in this paper are no 
more than convenient, broad-band summaries, which cannot 
be expected to capture everything of importance about sex-
related patterns of individual differences (Del Giudice, 2021; 
for a recent example in the field of face perception, see Hes-
ter et al., 2021). Whether bipolar M-F indices, unipolar M 
and F measures, or still other approaches are most relevant 
and informative with respect to a given research question is a 
complex methodological question that lies beyond the scope 
of this paper. I believe that M-F indices remain valuable 
tools in the ever-expanding toolbox of sex/gender research, 
and that a deeper understanding of their functioning can only 
help scientists make better, more informed decisions.

Four types of M‑F indices

Sex‑directionality

The first and arguably simplest approach to masculinity-
femininity is to conceptualize it as a summary measure of 
the expression of sexually dimorphic traits. A person is more 
masculine (or feminine) than another to the extent that his/
her trait values are shifted in the male (or female) direction, 
as defined by the pattern of mean differences between the 
sexes. Thus, if men are taller than women on average, a taller 
person will be rated as more physically masculine than a 
shorter one (all else being equal). And if men have broader 
shoulders than women on average, a person with narrower 
shoulders will be rated as more physically feminine than one 
with broader shoulders (again, all else being equal). Impor-
tantly, each trait makes an independent contribution to M-F 
scores, irrespective of its correlations with the other traits. I 
propose sex-directionality (M-FD) as a descriptive label for 
indices that fit this definition.

Indices of sex-directionality have a long history in psy-
chology. Indeed, the original “M-F test” developed by Ter-
man and Miles (1936) yielded sex-directionality scores, 
obtained from the sum of “masculine” versus “feminine” 
responses to a wide assortment of items. Many classic M-F 
scales—such as the one contained in Strong’s vocational 
test (Strong, 1943)—were based on the same principle. 
Likewise, Lippa (1991) contrasted his newly developed GD 
index with a “traditional” M-F scale built by summing all 
the items that showed significant sex differences. A recent 
example is the study by Pozzebon et al. (2015), in which 
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M-F factors for personality, vocational interest, and sexual 
fantasy were obtained by factor-analyzing various scales 
selected for their patterns of mean sex differences in previ-
ous research.

A more precise and rigorous way to measure sex-direc-
tionality is to find the linear combination of traits that 
maximizes sexual dimorphism—what Mitteroecker et al. 
(2015) referred to as “maleness-femaleness” in relation to 
the morphological features of human faces. This approach 
generalizes to other trait domains. Figure 1 presents a simple 
example involving two negatively correlated traits X and Y, 
assumed to be normally distributed with equal variances/
covariances in the two sexes. Individual trait profiles are 
represented by points on the plane. M and F are the centroids 
(multivariate means) of the male and female distributions; 
on average, males score higher than females on trait X (e.g., 
dominance) but lower than females on trait Y (e.g., anxiety; 
see e.g., Kaiser et al., 2020). The line that connects the two 
centroids is also the axis of maximal sexual dimorphism (see 
Mitteroecker et al., 2015); for descriptive clarity, I label it 
the centroid axis.1

As shown in the figure, the sex-directionality of individ-
ual profiles is determined by their orthogonal projection on 
the centroid axis. The directional boundary is orthogonal 
to the centroid axis, passes through the unweighted centroid 
mean (i.e., the midpoint between the male and female cen-
troids), and identifies points that lie at the same Euclidean 
distance from the male and female centroids; the corre-
sponding profiles are neither male- nor female-directional 
and have an M-FD score of zero. Male-directional profiles 
lie on the masculine side of the boundary (i.e., they are 
closer to M than to F according to the Euclidean distance); 
by convention, they correspond to positive values of M-FD. 
Female-directional profiles lie on the feminine side and are 
indicated by negative M-FD values. In Fig. 1, profiles a, b, 
and c are all male-directional; a is more male-directional 
than b and b is more male-directional than c. Profiles e and d 
are female-directional, and have the same sex-directionality 
(i.e., the same projection on the centroid axis). Finally, pro-
file f lies on the directional boundary and is neither male- 
nor female-directional.

Following this definition of sex-directionality, an indi-
vidual’s M-FD score is simply a linear combination of his/

Fig. 1  Schematic illustration of sex-directionality with two corre-
lated traits X and Y. Points M and F are the centroids of the male and 
female distributions. The bivariate SDs of the distributions are shown 

as ellipses (note: X and Y are assumed to be multivariate normal with 
equal covariance matrices in the two sexes)

1 In a recent chapter on the measurement of sex differences (Del 
Giudice, 2022), I referred to the centroid axis as the “M-F axis”; but 
this was a poor terminological choice because it invites confusion 
between the general idea of an M-F continuum and a specific way of 
conceptualizing and measuring it.
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her trait scores, centered at the unweighted mean of the two 
sexes (so that M-FD = 0 at the directional boundary) and 
weighted by the mean sex difference on each trait.2 When 
the variables in the set are measured in heterogeneous and/
or arbitrary units (as with most psychological traits), it is 
usually advisable to convert them to standardized scores, 
yielding:

where z is a column vector of trait scores, standardized by 
the pooled within-sex SD of each trait and centered on the 
unweighted mean of the male and female distributions; and 
d is a vector of Cohen’s d values for the same traits (Cohen’s 
d is the mean sex difference standardized by the pooled 
within-sex SD; positive values indicate higher means in 
males). Note that the norm ‖�‖ corresponds to the 
standardized Euclidean distance between the male and 
female centroids. Normalizing by 1

‖�‖ yields sex-
directionality scores that are scaled in a way analogous to 
sex-typicality scores (M-FT) obtained by linear discriminant 
analysis (see below). The R function mf.indices that 
accompanies this paper uses Eq. 1 to calculate M-FD scores.

Sex‑typicality

From a different and complementary perspective, 
masculinity-femininity can be construed as a measure of 
relative typicality with respect to the male versus female 
distributions. A person is more masculine than another to 
the extent that his/her trait profile is more characteristic 
of males and less characteristic of females (vice versa 
for femininity). Even if men have broader shoulders than 
women on average, a person with narrower shoulders 
will be rated as more physically masculine than one with 
broader shoulders provided that the width of his/her 
shoulders combines with other traits (such as height) into 
a kind of profile that is relatively more typical of males 
than of females. In comparison with sex-directionality, 
the focus shifts from trait combinations that maximize 
the size of sex differences to combinations that maximize 

(1)M-FD = �
T
�

1
√
�T�

= �
T
�

1

‖�‖
,

the statistical separation between the sexes—and, 
consequently, the ability to correctly classify an individual 
as male or female based on his/her trait profile. In line 
with previous contributions (see Del Giudice, 2022), I 
use sex-typicality (M-FT) for indices that map individual 
profiles on a continuum of maximal separation, analogous 
to the continuum of maximal dimorphism that underlies 
sex-directionality. When profile typicality is used to 
estimate the probability that a person is male or female—
as in gender diagnosticity—I propose the more specific 
label of sex-probability (M-FP; more on this below).

The default approach for computing M-FT scores is to 
make the simplifying assumption that the data are multi-
variate normal, with equal covariance matrices in the two 
sexes (e.g., Verweij et al., 2016; see Del Giudice, 2022). 
In this scenario, the axis that maximizes the statistical 
separation between the sexes (or, equivalently, minimizes 
their overlap) is not the centroid axis but the discriminant 
axis. The sex-typicality of individual profiles is deter-
mined by their orthogonal projection on the discriminant 
axis, as illustrated in Fig. 2. The classification bound-
ary is orthogonal to the discriminant axis and identifies 
points that lie at the same Mahalanobis distance3 from the 
male and female centroids (M-FT = 0); assuming equal 
proportions of males and females in the population, both 
the classification boundary and the directional boundary 
pass through the unweighted centroid mean. Male-typical 
profiles (positive M-FT scores) are closer to M than to 
F according to the Mahalanobis distance, and are more 
likely to be males than females; female-typical profiles 
(negative M-FT scores) are closer to F and more likely to 
be females than males.4

Figure 2 shows the same profiles of Fig. 1, along with 
their projections on the discriminant axis. Profiles a, b, and 
f are male-typical; a and b have the same sex-typicality 
and are both more male-typical than f. Profiles d and e are 

3 The Mahalanobis distance DM(�1, �2) =

√
(�1 − �2)

T
�−1(�1 − �2) is a 

generalization of the standardized Euclidean distance that takes cor-
relations into account (see Del Giudice, 2023a; Huberty, 2005). 
Specifically, DM corresponds to length of the straight-line segment 
between two points, divided by the value of the multivariate SD along 
the direction of that segment. In the formula, z1 and z2 are the vec-
tors of standardized scores corresponding to the two points, and R is 
the correlation matrix (pooled in the case of two groups). If the traits 
are all orthogonal, the correlation matrix becomes the identity matrix 
and the Mahalanobis distance reduces to the standardized Euclidean 
distance D2.
4 In Del Giudice (2022), I defined sex-typicality as the non-orthogo-
nal projection of individual profiles on the centroid axis in the direc-
tion of the classification boundary (instead of their orthogonal projec-
tion on the discriminant axis, as described here). This was intended as 
a way to simplify the explanation by not having to explicitly discuss 
the difference between the centroid and discriminant axes; in retro-
spect, it made the explanation needlessly confusing even if techni-
cally true.

2 This weighting scheme implies that the resulting M-FD scores will 
be dominated by the traits showing the largest univariate differences. 
An alternative approach not explored here (but common in the early 
days of M-F research) is to compute an unweighted sum of traits 
(e.g., by replacing Cohen’s d values in vector d of Eq. 1 with +1 or 
–1, depending on the direction of the sex difference on each trait). 
Such unweighted sex-directionality scores may be regarded as more 
“balanced” because they give the same importance to all the traits, 
and are more robust to sampling error (e.g., Dawes, 1979). In prac-
tice, these two kinds of sex-directionality scores tend to converge 
when sex differences are relatively homogeneous across traits and/or 
the set of traits is sufficiently large.
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female-typical, whereas profile c lies on the classification 
boundary and is neither male- nor female-typical.

Based on the assumptions laid out in the preceding para-
graph, the linear combination that yields M-FT scores cor-
responds to the discriminant function of linear discriminant 
analysis (LDA; see Boedeker & Kearns, 2019; Venables & 
Ripley, 2002). Trait scores are centered at the unweighted 
mean of the two sexes and weighted by a vector of discrimi-
nant coefficients a. For standardized scores, the discriminant 
coefficients are obtained as:

where R is the pooled within-sex correlation matrix. It is 
convenient to normalize the discriminant scores by 1√

�T�−1�

 
so that their within-sex variance equals 1 (Venables & Rip-
ley, 2002). This yields:

If traits are all orthogonal (R = R–1 = I), the Mahalanobis 
distance reduces to the standardized Euclidean distance (see 
Del Giudice, 2023a); as a result, a = d and the M-FT scores 
computed with Eq. 3 become identical to the M-FD scores 
computed with Eq. 1.

It is important to stress that LDA is not the only method 
that may be used to calculate M-FT scores. A natural 
alternative to consider is logistic regression, which is 
structurally equivalent to LDA but does not assume 
multivariate normality (see James et al., 2021). By default, 

(2)� = �
−1
�,

(3)M-FT = �
T
�

1
√
�T�−1�

.

function mf.indices calculates M-FT scores with LDA 
(Eq. 3), with the option of using logistic regression instead.5 
In principle, one could also compute M-FT indices based 
on nonlinear discriminant analysis (e.g., Roth & Steinhage, 
1999), or other methods that maximize the separation 
between the sexes in a nonlinear transformation of the 
original trait space; to the best of my knowledge, these 
nonlinear methods have yet to be applied to the analysis of 
masculinity-femininity.

Sex‑typicality versus sex‑directionality: Rank reversals 
and discordant profiles

While sex-typicality and sex-directionality are both mean-
ingful aspects of masculinity-femininity, they do not meas-
ure exactly the same thing. In most realistic scenarios, the 
M-FT and M-FD scores of Eqs. 1 and 3 are going to be 
strongly and positively correlated (i.e., the angle between the 
centroid and discriminant axes is going to be much less than 
90º), but that correlation is not going to be perfect except 
in special cases (for example, when the traits under study 
are all orthogonal). This has some interesting implications 
for the classification and ranking of individual profiles, as 
I now discuss.

Fig. 2  Schematic illustration of sex-typicality (based on LDA) with two correlated traits X and Y. The distributions and points shown in the fig-
ure are the same as in Fig. 1

5 In practice, the difference between LDA and logistic regression 
tends to be negligible if the data do not deviate too dramatically from 
multivariate normality. I have compared the two methods on a vari-
ety of real-world psychological and anatomical datasets, and in every 
case the resulting scores have been almost perfectly correlated with 
each other (r > .99, typically r > .999).
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Figure 3 shows the same distributions of traits X and Y of 
Figs. 1 and 2, but the centroid and discriminant axes (with 
the corresponding boundaries) are both depicted at the same 
time. A new set of points offers a geometric illustration of 
the phenomena that can take place at the interface of sex-
typicality and sex-directionality. Consider profile b, which 
is less male-directional than a and yet more male-typical. If 
X and Y represent dominance and anxiety (respectively), a 
is somewhat more dominant than b and considerably less 
anxious; both differences go in a more masculine direction 
when examined separately. However, the combination of 
a’s dominance and anxiety scores is less male-typical than 
the combination of b’s scores—specifically, a is much less 
dominant than one would expect given its low level of anxi-
ety. For comparison, profile c is just as male-directional as 
a, but more male-typical than both a and b; whereas profile 
d is as male-typical as a, but less male-directional than both 
a and b.

The example of a and b demonstrates how the ranking of 
two profiles can reverse depending on whether one considers 
sex-typicality or sex-directionality. An even more dramatic 
pattern of inconsistency is illustrated by profile e, which is 
simultaneously female-directional and male-typical. Con-
versely, profile f is male-directional but female-typical. In fact, 
any profile lying in the shaded regions between the direc-
tional and classification boundaries will show a discordance 
between sex-typicality and sex-directionality. And the wider 

the angle between the discriminant and centroid axes (i.e., the 
smaller the correlation between M-FT and M-FD scores), the 
larger the proportion of profiles that can be expected to exhibit 
discordant M-F patterns. Discordant profiles are character-
ized by M-FT and M-FD scores in the vicinity of zero, neither 
strongly masculine nor strongly feminine. Profiles that fall in 
this category are interesting because they may serve as “test 
cases” to probe the relative influence of sex-typicality and 
sex-directionality (for example, on perceptions of masculinity-
femininity in a certain domain). In practice, however, one has 
to consider that discordant M-F patterns are easily overshad-
owed by even small amounts of measurement error, and must 
be treated with caution unless traits have been measured with 
very high levels of reliability.

Of note, the “local” geometry of rank reversals reproduces 
the “global” geometry of discordant profiles: each point in 
the multivariate space can be seen as lying at the intersection 
of two boundaries with the same orientation as the 
directional and classification boundaries; those boundaries 
separate the points that rank consistently with the focal point 
from those that exhibit rank reversal. Figure 3 illustrates 
this concept in the case of profile g. All the profiles that 
lie in the shaded regions originating from g (shown only in 
part) will switch rank with g depending on whether M-FT 
and M-FD scores are considered; whereas the profiles that 
populate the rest of the space will show consistent rankings 
with g regardless of the chosen index.

Fig. 3  Schematic illustration of the relations between sex-directionality and sex-typicality (based on LDA) with two correlated traits X and Y
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Sex‑probability

The indices of sex-typicality discussed in the previous sec-
tion are useful because they locate profiles on a continuum 
that is analogous to that of sex-directionality. Among other 
things, this facilitates geometrical comparisons between dif-
ferent aspects of masculinity-femininity (as in Fig. 3) and thus 
promotes conceptual clarity. However, in some cases it can be 
convenient to translate the dimensional concept of typicality 
into a more intuitive notion: the probability of being classi-
fied as male (vs. female) based on one’s combination of traits.

Gender diagnosticity (Lippa, 1991, 1998, 2001; Lippa & 
Connelly, 1990) was the first method to employ classification 
probabilities to measure masculinity-femininity; GD scores are 
the prototypical example of a sex-probability index (M-FP). In 
the original implementation of GD, probabilities are estimated 
with LDA. Assuming equal prior probabilities of being male 
versus female (see Lippa, 1991), the relevant formula is:

Note that, in Eq. 4, probabilities are calculated from the 
entire set of traits at once. In the GD literature, researchers 
often calculate multiple probability estimates from subsets 
of traits (e.g., preferences for different sets of occupations) 
and average them, as a means to estimate the reliability of the 
resulting scores (e.g., Lippa, 1991; Lippa & Connelly, 1990).

Since LDA models distributions as multivariate nor-
mal, one may wish to relax this assumption and use logistic 
regression instead, as was done by Ilmarinen et al. (2023). 
This amounts to replacing the un-normalized discriminant 
score �T� in Eq. 4 with the un-normalized linear predic-
tor of the regression model. Function mf.indices employs 
Eq. 4 by default, with the option of using logistic regression 
as an alternative. In both cases, M-FP scores are a simple 
monotonic (logistic) function of the corresponding M-FT 
scores, as visualized in Fig. 4. With equal priors for males 
and females, a sex-typicality score of zero (indicating that 
the profile lies on the classification boundary) corresponds 
to a sex-probability of 0.5. Male-typical profiles are also 
male-probable (M-FP > 0.5), whereas female-typical profiles 
are also female-probable (M-FP < 0.5). This means that the 
direction of sex-probability is always concordant with that of 
sex-typicality (there can be no rank reversals or discordant 
profiles); also, the patterns of reversal and discordance that 
take place between sex-typicality and sex-directionality are 
exactly mirrored in the comparison between sex-probability 
and sex-directionality.

With the proliferation and widespread adoption of machine 
learning methods, the options for calculating other variants of 

(4)M-FP =
exp(�T�)

1 + exp(�T�)
.

M-FP indices—based on models that can range from simple 
to extremely complex—have greatly expanded. For example, 
Sanchis-Segura et al. (2022) used brain morphology data to 
compute what they called the “probability of being classified as 
male” (PCAM) with five classifiers: LDA, logistic regression, 
multiple adaptive regression splines (MARS), support vector 
machines (SVM), and random forests (for an overview of these 
methods see James et al., 2021). The sex-probability scores gen-
erated by the five classifiers were strongly correlated (rs from 
.79 to .99) when sex differences in total brain volume were not 
controlled for, and moderately to strongly correlated (rs from 
.56 to .99) after the relevant correction. Unlike LDA or logistic 
regression, some of these methods yield an M-FP score with-
out a corresponding M-FT score. For example, random forests 
are ensemble models composed of a large number of simpler 
classification trees (see James et al., 2021); the standard way 
of obtaining a sex-probability score from a random forest is to 
“count the votes” of individual trees, and use the proportion of 
“male” classifications over the entire ensemble as a measure of 
probability.6

In sum, the main advantages of sex-probability indices 
are their interpretability and the fact that they can be easily 
obtained from a wide range of classification models. A 
potential downside is that, compared with male-typicality 
indices, they tend to compress the masculine and feminine 
ends of the continuum into a narrow range of values (see 
Fig. 4). This is a virtue when the task is binary classification, 
but not necessarily when one seeks to measure individual 
differences on a common scale. In particular when the male 
and female distributions are statistically well separated, 
M-FP scores provide good discriminability for intermediate 
scores close to 0.5, but tend to blur the distinction between 
profiles that are “merely” male- or female-typical and those 
that are highly or extremely typical of one sex. Depending on 
the application at hand, this may or may not be an issue. For 
example, as I discuss later, sex-probability scores can be less 
sensitive to measurement error than their counterparts under 
certain scenarios. It is also possible that, in some research 
contexts, variation at the tails of the typicality distribution is 
less meaningful and/or predictive than variation around the 
classification boundary, making sex-probability indices the 
preferred option. In any event, one should keep in mind that 
M-FP and M-FT scores have different statistical properties 
and potentially different costs and benefits.

6 In contrast to LDA and logistic regression, the probabilities gen-
erated by random forests, SVMs, and many other classifiers used in 
machine learning are generally not calibrated—that is, they do not 
correspond to the true relative frequency of the corresponding events, 
and hence cannot be interpreted in a frequentist sense. There are ways 
to transform the output of these classifiers into well-calibrated prob-
abilities (see Niculescu-Mizil & Caruana, 2005).
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Sex‑centrality

From the perspective of sex-typicality, a trait profile is 
deemed more or less characteristic of males/females based 
on its position on the axis of maximal statistical separation 
between the sexes. However, there is an alternative way 
to think about representativeness that leads to yet another 
type of M-F index. If one takes the male and female 
centroids (i.e., the average male and female profiles) as 
being maximally representative of their respective sexes, 
a profile can be rated as masculine/feminine by comparing 
its distance from the male centroid with its distance from 
the female centroid. This is the notion of masculinity-
femininity as sex-centrality (M-FC). A profile is male-
central to the extent that it is more “average” relative to 
the male distribution than to the female distribution (and 
vice versa for female-central profiles). Thus, sex-centrality 
can be useful to distinguish the relative averageness of 
a profile from its extremity or typicality (attractiveness 
comes to mind as a potential area of application, given that 
faces with average features tend to be rated as attractive).

Under multivariate normality, the Mahalanobis distance 
(see Footnote 3) provides a natural way to measure mul-
tivariate distances when traits are correlated. This can be 
leveraged to derive a simple index of sex-centrality. Tak-
ing the difference between the distance from F and that 
from M yields a positive score when a profile is closer to 
the male centroid (male-central), negative when a profile 
is closer to the female centroid (female-central). To make 
scores more interpretable, this difference can be normal-
ized by its maximum possible value, which corresponds 

to the Mahalanobis distance between the centroids. This 
yields:

where DM is the Mahalanobis distance between two points 
(based on the pooled correlation matrix), and m and f are the 
centered and standardized trait vectors corresponding to the 
male and female centroids. Function mf.indices uses Eq. 5 
to calculate M-FC scores. A score of M-FC = 1 means that a 
profile is as male-central as the male centroid M; a score of 
M-FC = –1 means that a profile is as female-central as the 
female centroid F. Profiles that lie at the same Mahalanobis 
distance from the two centroids have M-FC = 0. Note that 
the line of points with M-FC = 0 is nothing but the familiar 
classification boundary; male-central profiles (M-FC > 0) 
are also male-typical and male-probable, whereas female-
central profiles (M-FC < 0) are also female-typical and 
female-probable. In other words, the direction of sex-
centrality is always concordant with that of sex-typicality 
and sex-probability if these constructs are based on LDA. 
(As noted earlier, logistic regression typically yields very 
similar results despite its different assumptions.)

In contrast with the other M-F indices described so 
far, the sex-centrality of a profile cannot be described by 
a simple orthogonal projection on a particular axis. Fig-
ure 5 illustrates this point by showing a selection of curves 
connecting points with the same value of M-FC (or “iso-
centrality” curves). As one moves away from the classifica-
tion boundary, the curvature progressively increases, until 

(5)M-FC =
DM(�, � ) − DM(�,�)

DM(�, � )
,

Fig. 4  In both LDA and logistic regression, sex-probability (M-FP) is linked to sex-typicality (M-FT) by a logistic function. Negative (female-
typical) M-FT scores correspond to M-FP < 0.5, whereas positive (male-typical) scores correspond to M-FP > 0.5
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the curves collapse into two half-lines (corresponding to 
M-FC = ±1) originating from the centroids and aligned 
with the directional axis. The key properties of M-FC can 
be gleaned from Fig. 5. For intermediate scores around 
zero, iso-centrality curves remain roughly parallel to the 
classification boundary; hence, in this region, there are 
going to be strong correlations between M-FC, M-FT, and 
M-FP. (Recall that this is the same region in which M-FP 
scores are approximately linearly proportional to M-FT; 
see Fig. 4). However, the behavior of M-FC diverges more 
and more dramatically from that of M-FT and M-FP as one 
moves toward the masculine and feminine ends of these 
indices.

One consequence is that, even if the direction of sex-
centrality is always concordant with that of sex-typicality, 
there is room for rank reversals (e.g., a profile can be more 
female-typical but less female-central than another). Another 
is that sex-centrality scores are less “compressed” toward the 
extremes than their sex-probability counterparts. Across the 
full distribution of scores, M-FC tends to correlate strongly 
with M-FT, even when the male and female distributions 
are highly separated (some examples below). This makes it 
largely redundant in many research contexts. However, when 
researchers are specifically interested in the extremes of 
masculinity-femininity, M-FC provides unique information 

and can usefully complement other, more standard indices 
such as M-FT and M-FD.

Sex‑centrality in high‑dimensional domains

As I noted at the start of this section, the meaning of sex-
centrality rests on the notion that centroids are maximally rep-
resentative of their distributions. This is true in the sense that, 
as multivariate means, they are the points with the highest 
probability density (at least in normal and other bell-shaped 
distributions). In low-dimensional contexts, it is also the case 
that the mass of the distribution clusters around the centroid, 
with only a small proportion of points located in the tails. 
But as dimensionality increases, a larger proportion of the 
probability mass becomes concentrated in the tail region, 
where density is comparatively low. That is, the majority of 
the points move far away from the centroid, along a progres-
sively thinner “shell” that envelopes a mostly empty interior 
(see Del Giudice, 2023a; Giraud, 2015; van Tilburg, 2019). 
As the number of traits grows larger, the male and female 
centroids become less representative of the majority of males 
and females, and even highly “sex-central” profiles are likely 
to lie at a considerable distance from the nearest centroid. This 
caveat should be kept in mind when interpreting M-FC scores 
calculated from high-dimensional data.

Fig. 5  Schematic illustration of sex-centrality (M-FC) with two cor-
related traits X and Y. The gray curves connect points with the same 
value of M-FC. Note: the specific values of M-FC shown in the figure 

are based on distributions with a correlation of –.50 between X and 
Y, and a Mahalanobis distance of 1.62 between the centroids
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The impact of measurement error 
and possible remedies

In real-world datasets, traits are always measured with a 
smaller or greater amount of noise. The effects of measure-
ment error on statistical M-F indices are surprisingly far-
reaching, so they have to be addressed explicitly and dis-
cussed in some detail. For the present purposes, I define the 
reliability of a trait as the proportion of that trait’s observed 
variance that is not accounted for by measurement error 
(“true score variance” in classical test theory). I also define 
the validity of an M-F index as the correlation between its 
measured values and the “true” values that it would obtain 

if the traits had been measured without error (that is, with 
perfect reliability).

To begin, one should note that measurement error attenu-
ates the correlations among traits, shrinking them toward 
zero (see Del Giudice, 2022). This is important because, as 
the reliability of the variables decreases, the observed cor-
relation matrix becomes more similar to the identity matrix, 
and the standardized discriminant axis moves closer to the 
centroid axis. The result is that indices of sex-typicality, sex-
probability, and sex-centrality all become less clearly dis-
tinct from sex-directionality; M-FT, M-FP, and M-FC scores 
become more highly correlated (and thus more redundant) 
with M-FD scores, and the proportion of discordant profiles 

Fig. 6  Validity of the four M-F indices at different levels of trait reli-
ability, with five traits. Boxplots summarize the distribution of results 
across 100 simulated samples (N = 2000 each, 50% females). The 
mean absolute true correlations between traits were in the .20–.25 

range; univariate sex differences (Cohen’s d) were normally distrib-
uted, with mean 0 and SD = 0.70, and the true Mahalanobis distance 
between the male and female centroids had an average of about 2

Fig. 7  Relations between sex-directionality (M-FD) and sex-typicality 
(M-FT) at different levels of trait reliability, with five traits. Panel (a): 
observed correlations between M-FD and M-FT. Panel (b): Phi coef-
ficients for concordant vs. discordant profiles (i.e., profiles showing 

M-FD and M-FT scores with the same or opposite signs) at different 
levels of trait reliability. All simulation parameters were the same as 
in Fig. 6
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(those in shaded regions of Fig. 3) diminishes accordingly. 
This phenomenon is not due to sampling error but to meas-
urement error, and therefore is not ameliorated by increasing 
the size of the sample.

A notable implication is that measurement error reduces 
the validity of sex-typicality and sex-centrality indices 
(both of which rely on patterns of trait correlations) much 
more dramatically than that of sex-directionality. Sex-
probability as defined in Eq. 4 is just a monotonic function 
of sex-typicality; however, high and low typicality values 
are compressed when turned into probabilities, especially 
when there is little overlap between the male and female 
distributions. As a result, M-FP scores may show higher or 
lower validity than M-FT and M-FC scores, depending on 

the specific patterns found in the data. Whenever alternative 
M-F indices are directly compared in a statistical analysis 
(for example, to assess their relative predictive value with 
respect to an outcome), one should keep in mind that their 
validities are going to differ in predictable ways, especially 
if traits have been measured with substantial noise. The 
problem of validity is going to become especially acute if 
M-F indices are calculated from collections of single items, 
which tend to have much lower reliabilities than longer 
psychometric scales.

Figures 6, 7, 8, 9, 10, and 11 illustrate these patterns 
using simulated, multivariate normal datasets with different 
numbers of traits (from 5 to 30) and levels of trait reliability 
(from .50 to .99). Correlation matrices were generated with 

Fig. 8  Validity of the four M-F indices at different levels of trait reli-
ability, with 10 traits. Boxplots summarize the distribution of results 
across 100 simulated samples (N = 2000 each, 50% females). The 
mean absolute true correlations between traits were in the .20–.25 

range; univariate sex differences (Cohen’s d) were normally distrib-
uted, with mean 0 and SD = 0.50, and the true Mahalanobis distance 
between the male and female centroids had an average of about 3

Fig. 9  Relations between sex-directionality (M-FD) and sex-typicality 
(M-FT) at different levels of trait reliability, with 10 traits. Panel (a): 
observed correlations between M-FD and M-FT. Panel (b): Phi coef-
ficients for concordant vs. discordant profiles (i.e., profiles showing 

M-FD and M-FT scores with the same or opposite signs) at different 
levels of trait reliability. All simulation parameters were the same as 
in Fig. 8
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the vine method, keeping the beta parameter fixed at 4 (see 
Lewandowski et al., 2009). To reflect typical real-world sce-
narios, the true Mahalanobis distance between the male and 
female centroids was allowed to increase with the number 
of traits in the dataset (as detailed in the figure legends). All 
the M-F indices were calculated with LDA using function 
mf.indices.

As can be seen in Figs. 6, 7, 8, 9, 10, and 11, increasing 
the number of traits amplifies the adverse impact of 
noise—particularly on M-FT, M-FC, and (somewhat less 
consistently) M-FP. This suggests one possible response 
to measurement error, which is to minimize the number of 
traits in the analysis and/or aggregate them into a smaller 
number of composites with higher reliability (e.g., via factor 

analysis or principal component analysis [PCA]). While 
this approach can be quite effective, reducing the number 
of traits can have its own downsides; for example, if sex 
differences in a certain domain emerge more clearly at a 
finer level of analysis (as is the case with personality; see 
Del Giudice, 2022, 2023a), the aggregation of narrow traits 
into broader composites may easily end up obscuring them. 
In many cases, there is a trade-off between the granularity 
of the data (and hence their ability to accurately describe 
sex-differentiated patterns of traits) and their vulnerability 
to both sampling and measurement noise.

When feasible, the alternative approach is to apply 
an error correction procedure to the data before the 
analysis, to remove some noise from the trait measures 

Fig. 10  Validity of the four M-F indices at different levels of trait reli-
ability, with 30 traits. Boxplots summarize the distribution of results 
across 100 simulated samples (N = 2000 each, 50% females). The 
mean absolute true correlations between traits were in the .20–.25 

range; univariate sex differences (Cohen’s d) were normally distrib-
uted, with mean 0 and SD = 0.05, and the true Mahalanobis distance 
between the male and female centroids had an average of about 4

Fig. 11  Relations between sex-directionality (M-FD) and sex-typical-
ity (M-FT) at different levels of trait reliability, with 30 traits. Panel 
(a): observed correlations between M-FD and M-FT. Panel (b): Phi 
coefficients for concordant vs. discordant profiles (i.e., profiles show-

ing M-FD and M-FT scores with the same or opposite signs) at differ-
ent levels of trait reliability. All simulation parameters were the same 
as in Fig. 10
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and obtain a more accurate estimate of the correlation 
matrix. If reliability estimates for the observed trait values 
are available, the function mf.indices has the option of 
correcting the data using data matrix disattenuation (DMD), 
a novel correction method presented in Del Giudice (2023b). 
DMD can significantly increase the reliability of variables 
in multivariate datasets, while adjusting trait correlations 
to counteract the attenuating effect of measurement error. 
The correction afforded by DMD becomes more effective 
as the sample size and the number of variables increase. 
Indeed, when using error correction, it might pay off to 
maximize rather than minimize the number of traits in the 
analysis. In the online supplement, the simulated data of 
Figs. 6, 7, 8, 9, 10, and 11 are reanalyzed to demonstrate 
how this method can substantially improve the validity of 
M-F scores, and recover much more accurate correlations 
between sex-typicality and sex-directionality. However, 
correcting measurement error is not without costs—in 
particular, reducing the bias due to error increases the 
variance of parameter estimates, widening their standard 
errors (see Carroll et al., 2006; Del Giudice, 2023b). For this 
reason, error correction is especially advisable when sample 
size is large enough that the resulting inflation of sampling 
variance can be tolerated. Other methods that may be used to 
correct measurement error are described by Mansolf (2023) 
and Carroll et al. (2006).

As is apparent from Figs. 6, 7, 8, 9, 10, and 11, measure-
ment error has a particularly strong impact on the classifica-
tion of discordant profiles. As larger amounts of noise are 
added to measured trait values, more profiles that would be 
discordant based on their true M-FD and M-FT scores are 
classified as concordant, while more would-be concordant 
profiles are classified as discordant. This can greatly reduce 
the validity of the “discordant” category. Crucially, the valid-
ity of concordant/discordant classifications drops rather 
steeply as measurement error increases; even relatively small 
amounts of error can easily lead to a situation in which mis-
classified profiles outnumber the correctly classified ones. As 
illustrated in the online supplement, the validity of concord-
ant/discordant classifications improves only marginally even 
after correcting for measurement error. Because discordant 
profiles are so sensitive to noise, one should be very cautious 
about analyzing and interpreting profile concordance/discord-
ance unless the traits in question have been measured with 
suitably high precision. (Simulations may help determine 
how much error can be tolerated on a case-by-case basis.)

Empirical examples

Before concluding, I illustrate the M-F indices presented 
in this paper with a selection of empirical datasets. All 
analyses were performed in R 4.2.2 (R Core Team, 2022). 
M-F indices were calculated and plotted with function mf.
indices, using the default LDA method. The code and data 
(when available for sharing) can be downloaded at https:// 
doi. org/ 10. 6084/ m9. figsh are. 22277 758

Masculinity‑femininity in body morphology

For the first example, I calculated indices of physical mas-
culinity-femininity in adults based on eight anthropomet-
ric variables from the US National Health and Nutrition 
Examination Survey (NHANES), accessed via the nhanesA 
package v. 0.6.5 (Endres, 2018). Specifically, the variables 
are height, upper leg length, calf circumference, upper arm 
length, arm circumference, waist circumference, triceps 
skinfold, and subscapular skinfold. I chose these variables 
because they had a relatively low proportion of missing 
cases and represented a reasonable assortment of measures 
tapping body size, adiposity, and muscularity. To control for 
overall body fat, all the variables involving circumferences 
(calf, arm, and waist) were residualized on body mass index 
(BMI) prior to the analysis. The complete cases between 18 
and 40 years of age included 879 males and 976 females. 
The Mahalanobis distance between the centroids was DM = 
3.01 (bias-corrected DMu = 3.00),7 indicating a high degree 
of separation between the sexes.

Figure 12 presents a graphical summary of the four M-F 
indices and their mutual relations. The figure shows the 
distribution of each index in males and females (on the 
diagonal), as well as bivariate scatterplots showing the indi-
vidual data points, with different colors for the two sexes 
(below the diagonal). The shaded areas of the scatterplots 
in the left column identify discordant profiles, which in this 
case amounted to 9.6% of the sample. Above the diagonal, 
the figure displays the correlations among indices in the 
whole sample (r) and the corresponding partial correlations 
controlling for sex (rp). Partial correlations are often more 
meaningful and informative, as they are not confounded 
with the overall size of sex differences. Both sex-probability 

7 Because of sampling error, estimates of DM can be substantially 
biased upward, especially when sample size is small relative to the 
number of traits. To address this problem, one can use the bias-cor-
rected estimator
 DMu =

√
max

[
0,
(

Nm+Nf−k−3

Nm+Nf−2
D

2
M
− k

Nm+Nf

NmNf

)] , where k is the number of traits, 

and Nm and Nf are the sizes of the male and female subsamples (see Del 
Giudice, 2022).
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and sex-centrality tend to track sex-typicality—and one 
another—pretty closely; thus, the correlation between sex-
typicality and sex-directionality (which also contributes 
to determine the proportion of discordant patterns) is of 
particular interest. In this dataset, the partial correlation 
between M-FT and M-FD was rp = .78, indicating a fairly 
strong—but far from perfect—association between the typi-
cality and directionality of physical profiles within each sex. 
As can be seen in the figure, the large separation between 
males and females yielded highly skewed distributions of 
M-FP scores, narrowly clustered in the vicinity of 0 and 1.

Masculinity‑femininity in brain morphology

For the second example, I used the gray matter volume 
data of the 1000 Functional Connectomes Project, one 
of the imaging datasets originally analyzed by Joel and 

colleagues (2015) in an influential paper on sex differ-
ences in brain morphology. The complete cases included 
495 males and 360 females. In order to reduce sampling 
error and limit overfitting, I employed PCA followed by 
oblimin rotation to summarize the 116 regional variables 
with 11 correlated components (the number of compo-
nents was suggested by parallel analysis; see Hayton 
et al., 2004). The results are displayed in Fig. 13. With a 
Mahalanobis distance of DM = 0.86 (bias-corrected DMu 
= 0.82), the overlap between male and female brain pro-
files was substantially larger than in the case of physi-
cal profiles. This is clearly reflected in the distribution 
of M-FP scores, which is markedly less skewed than in 
Fig. 12. Note that M-FT and M-FD scores were reasonably 
distinct, with a partial correlation of rp = .80; accord-
ingly, 21.4% of the brains in the dataset showed discord-
ant M-F profiles.

Fig. 12  Summary plot of M-F indices measuring masculinity-femi-
ninity in body morphology (calculated with LDA based on eight vari-
ables from the NHANES dataset; see the main text for details). Cor-
relations in the whole sample (r) and partial correlations controlling 

for sex (rp) are displayed above the diagonal. The shaded areas in the 
scatterplots represent discordant profiles that are male-directional but 
female-typical, or vice versa. M-FD = sex-directionality; M-FT = sex-
typicality; M-FP = sex-probability; M-FC = sex-centrality
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Masculinity‑femininity in personality traits

The last example I present in this section comes from a large 
online study of personality carried out by the Open-Source 
Psychometrics Project (https://openpsychometrics.org). In 
this study, the 15 primary personality factors of Cattell’s 
16PF model were measured using public domain items. Fig-
ure 14 is based on the US subsample of the dataset (7974 
males and 13,607 females, 16–90 years), which was previ-
ously analyzed by Kaiser et al. (2020). The Mahalanobis 
distance between the male and female centroids was DM = 

1.17 (DMu = 1.17), and the proportion of discordant profiles 
was 12.6%. With 15 traits, the data are high-dimensional 
enough that most of the probability mass is concentrated 
in the outer regions of the distribution (see Del Giudice, 
2023a). Thus, one should keep in mind that even highly 
sex-central profiles are unlikely to lie in the vicinity of the 
corresponding centroid.

Overall, the four indices were more strongly correlated 
than in the other datasets, both in the whole sample and 
within each sex. The partial correlation between M-FD and 
M-FT scores was rather high, with rp = .88. Most likely, this 

Fig. 13  Summary plot of M-F indices measuring masculinity-femi-
ninity in brain morphology (calculated with LDA based on 11 com-
ponents of gray matter volume, from the 1000 Functional Connec-
tomes Project dataset; see the main text for details). Correlations in 
the whole sample (r) and partial correlations controlling for sex (rp) 

are displayed above the diagonal. The shaded areas in the scatterplots 
represent discordant profiles that are male-directional but female-typ-
ical, or vice versa. M-FD = sex-directionality; M-FT = sex-typicality; 
M-FP = sex-probability; M-FC = sex-centrality
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was due to the comparatively high levels of measurement 
error in personality scores; Kaiser et al. (2020) estimated 
the reliability of the 15 scales with Cronbach’s α; values 
ranged from .68 to .91, with an average of α = .83.

Together with the large sample size, the fact that 
reliability estimates for the personality scores are 
readily available makes this dataset an ideal candi-
date to attempt error correction with DMD. The cor-
rected results are shown in Fig. 15. After correction, 
the Mahalanobis distance between centroids rose to DM 
= 1.67 (DMu = 1.67), with 18.3% of profiles classi-
fied as discordant. The increased separation between 
the male and female distributions was underscored by 
a more skewed distribution of M-FP scores. At the same 
time, the partial correlation between M-FD and M-FT 
scores decreased to rp = .71; as expected, adjusting 
trait correlations to counteract the attenuating effect 

of measurement error revealed a clearer distinction 
between sex-typicality and sex-directionality than ini-
tially suggested by the raw data. The M-F scores cal-
culated from the corrected data are also expected to be 
noticeably more valid than those calculated from the 
observed data, especially in the case of M-FT, M-FP, 
and M-FC (see the online supplement).

Conclusion

Various kinds of statistical M-F indices have been used 
for almost 100 years, but a systematic presentation of their 
characteristics and mutual relations has been lacking. In this 
paper, I laid out a theoretical and practical framework for the 
multivariate assessment of masculinity-femininity. I also 
discussed some important issues that had not been adequately 

Fig. 14  Summary plot of M-F indices measuring masculinity-femi-
ninity in personality traits (calculated with LDA based on 15 person-
ality factors of Cattell’s 16PF model, from the Open Psychometrics 
dataset; see the main text for details). Correlations in the whole sam-
ple (r) and partial correlations controlling for sex (rp) are displayed 

above the diagonal. The shaded areas in the scatterplots represent dis-
cordant profiles that are male-directional but female-typical, or vice 
versa. M-FD = sex-directionality; M-FT = sex-typicality; M-FP = sex-
probability; M-FC = sex-centrality
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addressed in the earlier literature, such as the emergence of 
reversals and discordant profiles and the profound impact of 
measurement error on the validity of M-F indices. I hope this 
synthesis will help bring conceptual clarity to the field, and 
encourage researchers to probe the usefulness of alternative 
indices in a variety of research contexts. Despite many decades 
of debate and study, the interface between sex and individual 
differences is still largely uncharted. While methodology quickly 
becomes sterile without the guide of theory, it is also true that 
theoretical progress is often aided by advances in measurement. 
Sex/gender research is no different; we should constantly 
strive to refine our tools and develop a clear, sophisticated 
understanding of how they work.
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