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A B S T R A C T

Objectives: Plasma Epstein-Barr Virus (EBV)-DNA is a well-established prognostic biomarker in nasopharyngeal 
carcinoma (NPC). Different methods for assessment include single-copy gene targeted, European Conformity 
(CE)-marked assays, which are mostly employed in non-endemic settings, vs multiple-copy gene targeted, in- 
house BamHI-W based assays, which currently represent the most widely used method for EBV-DNA quantifi-
cation. To date, evidence concerning the commutability of these different assays is still limited. 
Materials and methods: From August 2016 to March 2018, 124 plasma and 124 whole blood (WB) samples from 
93 NPC patients were collected at different time-points for each patient. EBV-DNA viral load was quantified in 
pre- (n = 12) and post-treatment (n = 9), follow-up (n = 53), and recurrent/metastatic (R/M) (n = 50) phase. For 
each sample, one in-house BamHI-W vs three different CE-marked plasma assays were compared; the perfor-
mance of plasma vs WB matrix was also assessed. Quantitative agreement of EBV-DNA values was evaluated by 
linear correlation and Bland-Altman analysis. 
Results: A statistically significant (p = 0.0001) agreement between all CE-marked and the BamHI-W assays was 
found using plasma matrix, regardless of clinical phase. The results obtained in copies/ml were comparable to 
those expressed in IU/ml. When using WB matrix, the number of positive detections increased in the post- 
treatment phase. 
Conclusions: Our retrospective comparison supported an agreement between Plasma BamHI-W and CE-marked 
assays in measuring EBV-DNA for non-endemic NPC patients. There were no significant interferences from 
different measurement units (IU/ml vs copies/ml). Further evaluations are needed to better clarify the role of WB.  

Abbreviations: EBV, Epstein-Barr Virus; NPC, nasopharyngeal carcinoma; CE, European Conformity; WB, whole blood; R/M, recurrent/metastatic; RT-PCR, real- 
time polymerase chain reaction; PCR, polymerase chain reaction; IVD, In Vitro Diagnostic; WHO, World Health Organization; IU, International Unit; INT, Istituto 
Nazionale dei Tumori; EBER, EBV-encoded RNAs; AJCC, American Joint Committee for Cancer; RT, radiotherapy; CTRT, concomitant chemo-radiotherapy; ICT, 
induction chemotherapy; CT, chemotherapy; LLoQ, lower limit of quantification; mOS, median Overall Survival. 
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Introduction 

Nasopharyngeal carcinoma (NPC) is endemic in Asian countries 
(20–50/100.000 new cases per year), whereas incidence is low (0.5/ 
100.000/year) in Europe and the Western world [1], defined as ‘non- 
endemic’. Epstein-Barr Virus (EBV) reversion from latent to lytic state is 
one of the main drivers in NPC pathogenesis [2]. 

Plasma EBV-DNA detection was identified as prognostic biomarker 
in endemic and non-endemic NPC patients, [3–7] offering a helpful tool 
in treatment planning and patients’ monitoring. In endemic areas, USA 
and clinical trials, the most used EBV-DNA quantification method is in- 
house BamHI-W assay, [8–10] targeting multiple-repeat fragments. 
European regulatory agencies recommend “European Conformity” (CE)- 
labelled diagnostic tests, intended for In Vitro Diagnostic use (IVD), 
according to the Guidance on IVD Medical Devices Directive 98/79/EC. 
Most of these CE-assays target single-copy genes. NPC guidelines 
[11–12] suggest to include circulating EBV-DNA measurement in pre- 
and post-treatment workup due to its prognostic value [13]. However, 
there is limited evidence [14] on a formal comparison among these 
methods. Further technical discrepancies (e.g. assay design, extraction 
protocol, results reporting, etc.) [9] lead to uncertainties on the inter-
pretation and commutability of EBV-DNA quantification assays [8,15]. 
BamHI-W assay measures a variable repeat EBV-DNA genomic region, 
potentially leading to higher sensitivity, but also to possible inter- 
subject quantification bias. Therefore, we compared the performance 
of four real-time PCR-based assays measuring plasma EBV-DNA: three 
commercial (CE-IVD marked) single-copy gene vs one in-house BamHI- 
W targeting assays. 

In addition, given the role of EBV-DNA testing in NPC, it would be 
useful to increase its sensitivity to refine treatment tailoring and moni-
toring strategies, potentially improving patients’ survival outcomes 
[4,5]. Thus, we collected whole blood (WB) in addition to plasma 
samples, and we assessed the performance of CE- and BamHI-W assays 
using WB. WB can identify EBV-DNA both in cells (not only tumor cells) 
and circulating cell-free DNA, bearing an advantage over plasma for 
EBV-DNA assessment [16]. 

Materials and methods 

Study population 

From August 2016 to March 2018, peripheral blood samples (12 ml) 
were collected in EBV-related NPC patients managed at the Fondazione 
IRCCS Istituto Nazionale dei Tumori (INT) of Milano and Fondazione 
IRCCS Policlinico San Matteo of Pavia. EBV infection was detected in 
primary tissue samples by EBV-encoded RNAs (EBER) in situ hybridi-
zation. Baseline patients’ clinical characteristics are summarized in 
Table 1. Samples were collected from 93 NPC patients (86 at INT and 7 
at Pavia). 

Sample collection 

Peripheral blood samples were collected in K2EDTA tubes. Plasma 
was separated from peripheral blood by centrifugation. WB and plasma 
samples were de-identified and stored in aliquots at − 80 ◦C until use. 

Throughout NPC patients’ management, samples collection was not 
systematic, and it was performed at different time-points for each pa-
tient. Overall, four phases of sample collection were retrospectively 
identified: 1) within 2 weeks before curative treatment start; 2) early 
post-curative treatment (within 4 weeks since RT end); 3) post- 
treatment follow-up (Supplementary Table 1); 4) R/M disease moni-
toring (before treatment start and then every 2–3 months). 

EBV-DNA detection 

EBV-DNA levels were measured on plasma and WB samples by 

quantitative real-time polymerase chain reaction (RT-PCR). For each 
sample, we compared four different assays: three are commercial, CE- 
IVD marked and target a single-copy gene. These were performed ac-
cording to manufacturer’s instructions and results were calculated in 
International Unit per milliliter (IU/ml) and copies/ml. The fourth is an 
in-house assay amplifying the repetitive BamHI-W sequence; results 
were calculated in copies/ml. 

Analyses were performed by 3 different automated systems in two 
laboratories: m2000 (Abbott Molecular, Des Plaines, IL) and ELIT-
eInGenius (ELITechGroup Spa, Torino, Italy) systems were used at INT, 
while QIAsymphony RGQ (QIAGEN, Hamburg, Germany) was used at 
Pavia for two different assays (Artus and BamHI-W). For assays’ char-
acteristics see Supplementary Table 2. 

Data analysis 

Analyses were conducted considering the viral load obtained 

Table 1 
Baseline clinical characteristics of study population.  

Characteristics N (% or range) 

Gender 
M 
F  

68 (73.1) 
25 (26.9) 

Median Age 48 (19–75) 
Treatment at diagnosis 

ICT followed by CTRT 
CTRT+

RT* 
CT**  

40 (43) 
47 (50.5) 
3 (3.2) 
3 (3.2) 

Neck surgery 
No 
Yes 
Unknown  

75 (80.6) 
17 (18.3) 
1 (1.1) 

Stage (AJCC Cancer Staging Manual, VIII Edition) at diagnosis 
I 
II 
III 
IVa 
IVb 
Unknown  

1 (1.1) 
14 (15.1) 
31 (33.3) 
32 (34.4) 
11 (11.8) 
4 (4.3) 

T stage at diagnosis 
T1-2 

T3-4 

Tx*** 
Unknown  

48 (51.6) 
33 (35.5) 
8 (8.6) 
4 (4.3) 

N stage at diagnosis 
N0-1 

N2 

N3 

Nx*** 
Unknown  

26 (28.0) 
37 (39.8) 
23 (24.7) 
3 (3.2) 
4 (4.3) 

Relapse 
No 
Yes 
Locoregional 
Distant 
Locoregional + distant 
N/A (ab initio metastatic disease) 
Unknown  

49 (52.7) 
32 (34.4) 
21 (65.6) 
9 (28.1) 
2 (6.3) 
11 (11.8) 
1 (1.1) 

Death 
No 
Yes 
Unknown  

78 (83.9) 
14 (15.0) 
1 (1.1) 

Time of sampling  
Pre-treatment 

Post-treatment 
Follow-up 
Recurrent/Metastatic 
Median follow-up, months (range) 

12 
9 
53 
50 
40 (2–307) 

*Exclusive radiotherapy for early-stage disease; **palliative chemotherapy;
***patients at relapse, no data about disease at diagnosis; +for stage III-IV dis-
ease except for one case classified as cT2 cN0 (II stage). 

F. Taverna et al.                     
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through BamHI-W plasma assay as a reference [10]. We compared the 
obtained log10-transformed viral load using each CE-method (Artus, 
Abbott, ELITech) with this reference. Considering the current use of 
World Health Organization (WHO) standard IU/ml as measurement unit 
for EBV-DNA, [17] we compared CE-methods in IU/ml vs BamHI-W in 
copies/ml. We repeated the analyses considering all methods in copies/ 
ml. 

Quantitative agreement was assessed through linear regression 
analysis which allowed the estimation of the regression line (estimated 
slope and intercept) [14]. Bland-Altman plots allowed the estimation of 
the bias between each pair of methods, its variance and 95 % confidence 
intervals. Samples lying outside the 95 % confidence interval were 
considered as outliers. 

We verified EBV-DNA prognostic value by comparing viral load in 
pre- vs post-treatment samples +/- recurrence. Early post-curative 
treatment (phase 2) and follow-up (phase 3) samples were all consid-
ered as “post-treatment“ samples. We compared the ability of each 
method to detect EBV-DNA (including “detected and quantified” values 
and “detected below lower limit of quantification (LLoQ)” values), as a 
preliminary indicator of its prognostic capability. We compared log10 
viral load obtained from plasma vs WB assays. 

Results 

We evaluated EBV-DNA viral load in 248 samples (124 plasma and 
124 WB) by considering four assays. Each sample was labeled according 
to the sampling setting (12 pre-treatment, 9 early post-curative treat-
ment, 53 post-treatment follow-up and 50 R/M disease). 

Agreement between BamHI-W and CE-assays in plasma 

We found agreement between all CE- and BamHI-W assays, with high 
correlation (Fig. 1A-C). All estimated slopes were < 1, suggesting a 
positive proportional bias for BamHI-W. All estimated intercepts were <
0, implying that BamHI-W can provide larger values than CE-methods. 
Correlation was always statistically significant (p < 0.0001). 

At Bland-Altman analysis, all CE-assays had a mean difference in the 
0.5–1 log interval, with a variance in the order of 1 log, and < 8 % 
outliers out of total samples (Table 2). Comparing all CE-methods, Artus 
agreed with BamHI-W with the lowest bias, the smallest amplitude of 
agreement interval, and the highest percentage of values within 1 log 
difference. Bland-Altman plot showed a narrow distribution within the 
mean of Artus (Fig. 1D). Abbott had larger agreement intervals and a 
more scattered distribution of differences compared to Artus. The dif-
ference had a slight tendency to increase with the magnitude of the 
average value detected (Fig. 1E). ELITech had a similar distribution to 
Artus, with larger intervals and bias (Fig. 1F). 

We repeated the same analysis transforming CE-methods values from 
IU/ml to copies/ml, to match BamHI-W measurement unit. The 

Fig. 1. Concordance analysis between BamHI-W (copies/ml) and CE-assays (IU/ml). A, B, C: Scatter plots representing the correlation between BamHI-W 
expressed in copies/ml and CE-assays expressed in IU/ml in plasma samples. The full line represents the estimated linear fit. Dashed lines represent confidence 
intervals. 1A: BamHI-W vs Artus, 1B: BamHI-W vs Abbott, 1C: BamHI-W vs ELITech. D, E, F: Bland-Altman plots representing the agreement between BamHI-W 
expressed in copies/ml and CE-assays expressed in IU/ml in plasma samples. The full line represents the bias. Dashed lines represent confidence intervals. 1D: BamHI- 
W vs Artus, 1E: BamHI-W vs Abbott, 1F: BamHI-W vs ELITech. 

Table 2 
Results of Bland Altman analysis for the plasma matrix.   

Artus (IU/ml) Abbott (IU/ml) ELITech (IU/ml) 

Bias − 0.75 − 1.00 − 0.77 
Variance 0.92 1.14 0.97 

Confidence Interval 
1.06 1.23 1.14 
− 2.55 − 3.23 − 2.68 

% in 1 log 55.56 53.17 55.56 
Outliers (%) 10 (8 %) 2 (2 %) 8 (6 %)  

F. Taverna et al.                                                                                                                                                                                                                                
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transformation was obtained using a conversion factor, according to 
different manufacturers: the results obtained in copies/ml (Fig. 2) were 
comparable to those expressed in IU/ml. 

At Bland-Altman analysis, the comparison among three CE-assays 
showed a mean difference in the − 0.23/+0.22 log interval, with a 
variance < 1log (0.55–0.61) (Supplementary Fig. 1). 

Comparison between plasma and whole blood 

We first compared EBV-DNA viral loads obtained in plasma and WB 
samples by BamHI-W assay. At regression analysis, the results coming 
from the two matrices were correlated (Fig. 3A), with WB providing 
slightly larger values. Bland-Altman analysis (Fig. 3B) showed a small 
bias (0.15 log) with a very scattered distribution of the differences, as 
demonstrated by the large variance (1.21 log) and confidence interval 
(-2.21, 2.52 log). This is mostly due to the number of zeros (no EBV-DNA 
detected), which was larger with plasma than with WB matrix in post- 
treatment samples. 

Then, we compared plasma EBV-DNA levels obtained by BamHI-W 
assay to the results by CE-assays on WB matrix. Correlation and Bland- 
Altman analyses were summarized in Supplementary Table 3. 

EBV-DNA detection capability 

A summary of the test performance based on sensitivity, specificity, 
false positive and false negative rates is reported in Table 3. Using all 
methods, post-treatment (phase 2 + 3) plasma samples (i.e., without 
apparent macroscopic disease) had significantly lower EBV-DNA con-
centrations than R/M and pre-treatment samples (Supplementary 
Fig. 2). With WB, the number of positive detections increased in post- 
treatment samples (Fig. 4). 

Pre-treatment: 

Plasma samples 

In pre-treatment plasma samples (Fig. 4), BamHI-W and Abbott 
methods always detected positive EBV-DNA, whereas Artus and ELITech 
did not detect EBV-DNA in 1/12 samples. This sample corresponded to a 
patient staged as cT2 cN0 cM0 (stage II AJCC VIII TNM) with a baseline 
BamHI-W value ≤ 1 log. 

WB samples 

In pre-treatment WB samples (Fig. 4), the number of not-detected 
EBV-DNA increased compared to baseline plasma values. In detail, 
EBV-DNA level was not-detected by BamHI-W and Artus in 1 and 3/12 
cases (8 % and 25 %, respectively). Abbott and ELITech provided non- 
zero values for all samples. 

Post-treatment: 

Plasma samples 

In post-treatment (Fig. 4), all methods provided 59/62 (95.2 %) not- 
detected EBV-DNA plasma samples. Of the three non-zero samples, one 
was detected by all methods and corresponded to a case, sampled 26 
months after curative treatment completion, and relapsed (loco-regional 
recurrence) 5 months later. The two other samples without agreement 
among all methods corresponded to one patient sampled at 12 and 15 
months after curative treatment completion, without recurrence after 
41 months since EBV-DNA detection. 

Among all not-detected post-treatment EBV-DNA samples (N = 59), 
corresponding to 55 patients, 5/55 patients recurred (3 loco-regional 
recurrences, 1 distant, 1 both) after a median of 14 months (range 

Fig. 2. Concordance analysis between BamHI-W (copies/ml) and CE-assays (copies/ml). A, B, C: Scatter plots representing the correlation between BamHI-W 
and CE-assays in plasma samples, both expressed in copies/ml. The full line represents the estimated linear fit. Dashed lines represent confidence intervals. 2A: 
BamHI-W vs Artus, 2B: BamHI-W vs Abbott, 2C: BamHI-W vs ELITech. D, E, F: Bland-Altman plots representing the agreement between BamHI-W and CE-assays in 
plasma samples. The full line represents the bias. Dashed lines represent confidence intervals. 2D: BamHI-W vs Artus, 2E: BamHI-W vs Abbott, 2F: BamHI-W 
vs ELITech. 

F. Taverna et al.                                                                                                                                                                                                                                
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2–16) since EBV-DNA analysis. In detail, 3/5 had positive plasma EBV- 
DNA at the time of clinical/radiological recurrence. 

WB samples 

In post-treatment WB samples, BamHI-W did not detect EBV-DNA in 
52/62 samples (84 %), Artus in 48 (77 %), Abbott in 43 (69 %), and 
ELITech in 47 (76 %) (Fig. 4). Not-detected samples were less than those 
obtained with plasma. Of 5 patients with not-detected post-treatment 
plasma EBV-DNA experiencing disease recurrence, only 1 was detect-
able by WB without a full agreement among methods (detected by 
Abbott and Artus vs not-detected by BamHI-W and ELITech). This 
recurrent patient, considered as false negative by post-treatment plasma 
EBV-DNA, had low tumor stage at baseline and disease recurrence 
(cT1cN0cM0, stage I AJCC VIII TNM) and was treated by RT (at diag-
nosis) and surgery (at recurrence). Time elapsed between WB EBV-DNA 
test and recurrence detection was 14 months. 

R/M disease: 

Plasma samples 

In R/M plasma samples (Fig. 4), BamHI-W did not detect EBV-DNA in 
7/50 samples (14 %), Artus in 15 (30 %), Abbott in 13 (26 %), and 
ELITech in 16 (32 %). 

Regarding the 7 not-detected EBV-DNA samples (corresponding to 6 
patients) by BamHI-W, also all CE-methods agreed in the lack of 
detection [median Overall Survival (mOS) 38 months, range 4–212]. 
The 11 not-detected samples by CE-methods (corresponding to 9 pa-
tients) had viral load ≤ 1 log in BamHI-W and low total tumor burden 
and/or only loco-regional disease recurrence (mOS 49 months, range 
18–212). The mOS of the 32 concordant positive samples (correspond-
ing to 20 patients) was 37 months (range 2–171). 

Fig. 3. BamHI-W: comparison of EBV-DNA levels between plasma and WB samples. 3A: Correlation analysis. The full line represents the estimated linear fit. 
Dashed lines represent confidence intervals. 3B: Bland-Altman plot. The full line represents the bias. Dashed lines represent confidence intervals. 

Table 3 
Different assays’ performance based on sensitivity, specificity, false positive, and false negative rates.   

Pre-treatment Post-treatment R/M disease 
Artus Abbott ELITech Artus Abbott ELITech Artus Abbott ELITech 

Agreement (%) 92 % 100 % 92 % 100 % 97 % 97 % 84 % 88 % 82 % 
Not detected by CE-assays (false negative, %) 8 % 0 % 8 % 0 % 2 % 2 % 16 % 12 % 18 % 
Detected by CE-assays (false positive, %) 0 % 0 % 0 % 0 % 2 % 2 % 0 % 0 % 0 % 
Sensitivity 0.92 1.00 0.92 1.00 0.50 0.50 0.81 0.86 0.79 
Specificity N/A N/A N/A 1.00 0.98 0.98 1.00 1.00 1.00  

Fig. 4. Not-detected EBV-DNA samples using plasma and WB matrix at different clinical phases. Data are represented as percentage of the population (pre- 
treatment N = 12; post-treatment N = 62; R/M N = 50). 

F. Taverna et al.                                                                                                                                                                                                                                
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WB samples 

In R/M WB samples (Fig. 4), BamHI-W did not detect EBV-DNA in 7/ 
50 samples (14 %), Artus in 17 (34 %), Abbott and ELITech in 12 (24 %). 
These not-detected WB samples are not fully overlapping with not- 
detected plasma samples: 5 were not-detected both with plasma and 
WB, whereas the majority (15 samples) were detected by BamHI-W with 
plasma but were not-detected by at least one WB method. Overall, 
among 7 not-detected (by BamHI-W and CE-assays) plasma R/M sam-
ples, none was detected by all methodologies on WB. 

Discussion 

Our analysis showed a statistically significant (p = 0.0001) agree-
ment between BamHI-W and all CE-methods considered, in terms of 
plasma EBV-DNA viral load quantification. Plasma EBV-DNA values 
concordance among BamHI-W and CE-assays was confirmed in both 
correlation and Bland-Altman analyses without significant variation (i. 
e., in the order of 1log). 

This study first compared three single-copy gene CE-methods (e.g. 
Artus, Abbott, ELITech) vs one BamHI-W-based assay in a non-endemic 
NPC patients’ cohort [14]. 

Our results support comparability of plasma EBV-DNA values 
measured by BamHI-W and CE-assays. This is advocated for better 
interpretation and commutability of EBV-DNA assays in real-world 
settings. No significant interferences from different measurement units 
were found and CE-methods results were confirmed when transformed 
from ‘IU/ml’ into ‘copies/ml’. 

CE-assays could overcome the main BamHI-W potential drawback, 
that is circulating EBV-DNA inter-subject variability; this could lead to 
better defined EBV-DNA cut-off values, expressed in international units, 
which to date are lacking in non-endemic areas [4,6,18,19]. Indeed, pre- 
and post-treatment EBV-DNA prognostic significance in NPC is well 
established, and can be crucial to determine different treatment and/or 
monitoring strategies [11]. In this respect, a recent multicenter study 
has shown how patients with EBV-DNA–negative NPC had better sur-
vival outcomes than their EBV-DNA–positive counterpart; moreover, 
authors validated a new staging system by incorporating pre-treatment 
plasma EBV-DNA to TNM stage, which outperformed AJCC VIII TNM 
alone prognostic performance [7]. All these aspects should encourage a 
more widespread plasma EBV-DNA quantification in NPC patients’ 
routine clinical management, throughout standardized cutoffs and a 
reproducible method in each clinical setting [13]. 

Moreover, concordance among CE-assays (Artus vs Abbott, Artus vs 
ELITech, Abbott vs ELITech) was better than their comparison with 
BamHI-W. We underline that discrepancies among different assays may 
be not only due to inter-laboratory variability, but also assay design, 
PCR efficiency, amplicon size, extraction volume [20,21] other than the 
different gene target (multiple vs single-copy gene). 

Dissecting BamHI-W vs CE-assays performance in plasma EBV-DNA 
quantification in pre- and post-treatment and R/M disease, we demon-
strated the concordance of all methods in identifying positive EBV-DNA 
cases. 

In detail, in pre-treatment phase, we observed correlation between 
all methodologies except for one case with low tumor burden (cT2N0, 
stage II AJCC VIII TNM), where BamHI-W method only resulted positive. 

In R/M phase, patients (n = 9) with discordant samples, i.e., samples 
not-detected by CE-methods and with ≤ 1 log viral load by BamHI-W, 
had low tumor burden and/or only loco-regional disease recurrence. 
The mOS of this subgroup was longer than mOS of patients (n = 20) with 
concordant samples, i.e., samples detected both at BamHI-W and CE- 
assays (n = 32) (49 months, range 18–212 vs 37 months, range 
2–171, respectively). Indeed, low tumor burden, both at disease pre-
sentation and recurrence, is known to influence the accuracy of EBV- 
DNA detection, [6,22–25] and could play a role in this minor discor-
dance between single vs multiple-copy gene target assays. 

In post-treatment phase, all the methods agreed in finding patients at 
high risk of recurrence. Among the not-detected (by all methods) post- 
treatment plasma EBV-DNA values (59 samples, 55 patients), five cases 
experienced disease recurrence after a median of 14 months (range 2–16) 
since EBV-DNA analysis and could be considered as “false negative”. Only 
1/5 false negative plasma post-treatment EBV-DNA values was detectable 
on WB without agreement among all methods. Nonetheless, the small 
sample size and the retrospective nature of the study, in the lack of a 
longitudinal circulating EBV-DNA assessment, prevent from drawing any 
conclusions on plasma and WB sensitivity rate. 

Persistent positive circulating EBV-DNA after curative treatment has 
a well-known negative prognostic value [4] and these patients may 
represent the best enriched population for adjuvant trials [26–29]. 
Moreover, identification of circulating EBV-DNA during follow-up has 
shown to correlate with an increased risk of recurrence and to anticipate 
its radiological or clinical appearance [5]. 

Given the limitations of our analysis (small sample size, retrospective 
design with lack of prospective sample collection and evaluation, 
different treatment modalities), further prospective and larger studies 
are awaited to confirm the comparability of different plasma EBV-DNA 
assays (e.g., single-copy gene vs BamHI-W). WB failure to show a clear 
advantage over plasma may be attributable to the fact that circulating B- 
cells, the main reservoir of EBV, represent a small subset of circulating 
leukocytes and are found in variable numbers per ml of blood; hence, 
WB sensitivity for EBV-DNA detection may be affected [30]. In conclu-
sion, the role of WB deserves more extensive evaluation, as its better 
performance compared to plasma in post-treatment setting should be 
considered as purely hypothesis-generating.  
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