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A way to achieve negative refraction of elastic
anti-plane shear waves is a transmission across an
interface between a homogeneous substrate and a
periodic transverse laminate. To achieve pure negative
refraction, the frequency of the source should be
lower than the upper limit of the second transition
zone (TZ) of the harmonic spectrum of the laminate.
An effective way to control the location of TZ is to
consider a canonical configuration for the laminate, a
concept that originates from the properties of quasi-
crystalline sequences among which the Fibonacci
one is a particular case. Based on the universal
structure of frequency spectrum, we provide a method
based on the reduced torus to study the effect of a
change in canonical ratio on the limits of the TZ. A
further contribution consists in the analytical estimate
of the angle of refraction for a linear relationship
between frequency and longitudinal wavenumber.
This is achieved by determining the components of
the in-plane Poynting vector. The outcome provides a
tool for the selection of a suitable laminate-substrate
combination to accomplish a particular angle of the
refracted wave. Finally, it is shown that for some
particular configurations, the transmitted energy
displays a peak that can be exploited to maximize
the amount of energy travelling across the laminate.
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This article is part of the theme issue ‘Wave generation and transmission in multi-scale
complex media and structured metamaterials (part 2)’.

1. Introduction
One of the more interesting problems in elastodynamics is how elastic waves interact with
tailored composite materials to achieve negative refraction [1–6]. This phenomenon may be then
exploited to realize specific applications based on, e.g. wave focussing [7–9] or elastic flat lenses
[10,11].

In a series of recently proposed papers, some authors have shown that a simple framework
to obtain negative refraction is that where an anti-plane shear wave travelling in an elastic
substrate encounters an interface beyond which sits a two-phase periodic layered composite—
with the layering direction perpendicular to the interface—[12–15] the dispersive properties of
the laminate govern this possibility and, in particular, it is necessary to couple the features of the
incident wave with a mode of the laminate whose wavenumber belongs to the second Brillouin
zone. When pure negative refraction is the goal (i.e. the only transmitted mode across the interface
is refracted with a negative angle), it is of prime importance for the determination of the first two
transition zone (TZ) at low frequency [16]1: to achieve pure negative refraction, the frequency of
the incident wave should not be higher than the upper limit of the second TZ; moreover, other
conditions should be met with reference to both lower limit of the second TZ and upper limit of
the first TZ.

Morini et al. [16] have studied the same problem by assuming a class of laminates generated by
a quasi-crystalline sequence and demonstrated that the recursive relationships between elements
of the class [17] can be advantageously exploited for the selection of the unit cell of the composite
to control negative refraction. One of the important outcomes of that work is that TZ of the
frequency spectrum of the laminate correspond to pass bands of the special problem of waves
travelling orthogonal to the layers, for which a scaling law can be quantitatively established
thanks to the properties of the sequence. The scaling law allows the prediction of the breadth
of relevant TZ for all elements of the sequence by knowing the information for only one
representative.

As a further development of the theory presented in [16], Chen et al. [18] have introduced
the notion of canonical quasi-crystalline laminate by extending the work developed by Gei
et al. [19] that was focused on one-dimensional axial waveguides. A canonical laminate displays
a periodic frequency spectrum for waves propagating orthogonally to the layer, therefore the
corresponding layout of TZ is periodic as well. This feature enables a more effective application
of the scaling factor to the TZ (the first two in particular) with the possibility to predict the relevant
frequencies to control negative refraction for each laminate of the sequence. A canonical laminate
is characterized by a rational canonical ratio that is a function of both shear wave speeds and
thicknesses of the two phases of the composite.

This paper continues the investigation of the connections between canonical laminates and
negative refraction by mainly addressing two aspects:

— the first one is related to the response of the laminate upon a change of the canonical ratio
maintaining the same two materials as constituents. The analysis is performed by taking
advantage of the universal representation of the frequency spectrum of elastic laminates
proposed in [20] and extended to periodic two-phase rods in [21]. In this framework,
the canonical ratio is the slope of the flow line on the two-dimensional reduced torus
and, therefore, it has a clear geometric meaning that is revealed in this contribution. The

1A transition zone is a frequency interval where the number of real solutions of the harmonic problem depends on the
frequency as that number increases of one unity by passing from low to high frequency within the interval: the first of such a
zone admits either nought or one solutions, the second one either one or two solutions (see §2 for further details).
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detailed investigation is concentrated on the determination of minima and maxima (if
any) of the three frequencies limiting the first two TZ;

— the second one considers a particular relationship between longitudinal wavenumber
and frequency for which the components of the Poynting vector, and then the angle of
refraction, can be calculated in closed form for any adopted cell of the quasi-crystalline
sequence. This is a remarkable result as it provides a tool for the selection of a suitable
laminate-substrate combination to accomplish a particular angle of the refracted wave.
The ‘inverse’ problem is illustrated where, again, the canonical ratio plays a pivotal role.

The layout of the article follows a structure that is here summarized. In §2, the general statement of
the transmission-reflection problem and the framework to study dispersive properties of periodic
elastic laminates are formulated. For waves travelling orthogonally to the laminae, the notion of
canonical laminate is then recalled. In particular, the concept of canonical frequency is reviewed
together with its role in defining the period of the stop- and pass-band layout. To complete
the section, the frequencies that bound the first two TZ and govern the possibility of negative
refraction in the substrate-laminate problem are determined together with the minimum value
of the frequency beyond which the dimensionless transverse wavenumber enters the second
Brillouin zone.

The universal representation of the frequency spectrum is introduced in §3, where we provide
a key to analyse how the canonical ratio affects the sequence of pass bands at varying frequency.
The core of the approach is the evaluation of maxima/minima of frequencies giving the limit
of the first two TZ, should they exist. For F2 and F3, an analytical result is provided, for high-
index sequences, it is suggested how the adopted representation may help to formulate an
approximated numerical estimate.

In §4, the in-plane components of the average Poynting vector are explicitly calculated for the
special case in which frequency and longitudinal wavenumber are proportional. This leads to an
analytical expression for the angle of refraction that can be adopted to select the properties of the
laminate to obtain a specific negative angle.

Before the Conclusion, the final section of the paper collects some observations related to the
balance of energy. In general, the incoming energy flow splits into refracted and reflected ones.
For some particular combinations of the materials composing the substrate-laminate system,
the former displays a peak that can be exploited to maximize the amount of the pure negative
refracted energy travelling across the laminate.

We conclude the Introduction by recalling that elements of the Fibonacci sequence Fi are
generated by the recursive rule Fi =Fi−1Fi−2 (i ≥ 2), with the ‘initial condition’ F0 = B and
F1 = A, where A and B are the two homogeneous constituents. The natural number i is the index
of the element Fi. The total length of the unit cell Fi is given by Li = nA

i hA + nB
i hB, where nA

i and
nB

i are the number of laminae A and B included in the cell, respectively, and the total number of
laminae corresponds to the Fibonacci number ni = nA

i + nB
i .

2. Pure negative refraction of anti-plane shear waves and canonical laminates

(a) Introduction of the problem
We are concerned with the problem of an elastic substrate with shear modulus μ0 and mass
density ρ0 which occupies the half-space y < 0; the substrate is bonded to a periodic laminate with
layering direction parallel to the axis y and whose domain is the region y > 0 (figure 1). An anti-
plane wave of frequency f and wavenumber K0 (and speed c0 = √

μ0/ρ0 = 2π f/K0) approaches
the interface y = 0 with an angle of incidence θ and is, in general, split into refracted and
reflected components. The number of modes are infinite, but the propagating waves are a finite
number (the remaining are evanescent waves) [14,15]. By denoting with u(x, y; t) the out-of-plane
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Figure 1. Substrate-periodic laminate system where the represented unit cell of the laminate isF4. Coordinate x0l is the left-
hand boundary of the generic cell, whereas xl is the left-hand boundary of a generic layer (the third one in the figure). (Online
version in colour.)

displacement, the incident wave can be written as

uinc(x, y; t) = A exp[i(2π ft − xK0 sin θ − yK0 cos θ )], (2.1)

whereas displacement fields for refracted and reflected modes can be suitably represented as

u(x, y; t) =
∞∑

l=0

Tlwl(x) exp[i(2π ft − xKx − yK(l)
y )] (2.2)

and

urefl(x, y; t) =
∞∑

m=−∞
RmUm(x) exp[i(2π ft − xKx + yk(m)

y )]. (2.3)

In equations (2.2) and (2.3), Tl and Rm are the scattering coefficients, Kx and Ky are the transverse
(or horizontal) and the longitudinal (or vertical) wavenumbers of the laminate, respectively, and
w(x) is the mode shape. Note also that the r.h.s. of equation (2.3) is the Fourier series and, therefore,
Um = exp(−i2mπx/Li); moreover, the longitudinal wavenumber for the reflected wave takes the
form

k(m)
y =

√
K2

0 −
(

K0 sin θ + 2mπ

Li

)2
. (2.4)

Compatibility at the interface requires that

Kx = K0 sin θ =
(

2π f
c0

)
sin θ . (2.5)

When the scattering coefficients are to be found, the conditions of transmission are the
continuity of shear stress σyz and out-of-plane displacement u at the interface that are imposed
averaging along the length of a unit cell (see an example in §5). To this end, suitable orthogonality
conditions should be imposed as shown in [14].

Pure negative refraction occurs when the only transmitted mode across the interface is
refracted with a negative angle.
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(b) Dispersion equation in periodic laminates and canonical configurations
The structure of the elastic laminate (figure 1) is such that phases A and B are arranged within
the selected unit cell following the pattern suggested by one element of the Fibonacci sequence
Fi [16]. For each phase, shear modulus μX, mass density ρX and thickness of the layer hX are
defined, with X ∈ {A, B}.

With the given notation, the displacement u(x, y; t) (equation (2.2)) satisfies in both phases
the equation μ(u,xx + u,yy) = ρü. At each interface of the laminate, u and the shear stress σxz are
continuous. At each coordinate x, it is

Σ(x) = MX(x, xl)Σ(xl), (2.6)

where ΣT(x) = [σxz(x) u(x)] is the stress–displacement vector, xl is the coordinate of the left-hand
interface of the lamina concerned (figure 1), while xl ≤ x ≤ hX + xl; the local transmission matrix
takes the form

MX(x, xl) =
⎡
⎣cos[qX(x − xl)] −μXqX sin[qX(x − xl)]

sin[qX(x − xl)]
μXqX

cos[qX(x − xl)]

⎤
⎦ . (2.7)

In equation (2.7),

qX = qX(f , Ky) =
√(

2π f
cX

)2
− K2

y, (2.8)

where cX is the speed of shear waves in the considered phase, namely cX = √
μX/ρX. Note that

for a propagating wave, the quantities qX should be real and so are the components of MX.
For the whole cell Fi, the transmission matrix Mi turns out to be Mi =∏ni

p=1[MX]p (X ∈ {A, B}).
Matrix Mi is unimodular, i.e. det Mi = 1, and can be generated recursively as Mi = Mi−2Mi−1
(i ≥ 2). It connects the two stress–displacement vectors at the outer boundaries of the cell, i.e.
Σ(x0l + Li) = MiΣ(x0l), where x0l is the left-hand boundary of the whole cell.

As the composite is infinite periodic, Floquet–Bloch conditions provide an additional
relationship between the two vectors, so that the problem can be reduced to an eigenvalue
problem for Mi, i.e.

[Mi − exp(−iKxLi)Id]Σ(x0l) = 0, (2.9)

where Kx should be read now as the Bloch wavenumber and Id the identity matrix of order 2.
A non-trivial solution of system (2.9) requires the vanishing of the associated determinant and
this leads to the well-known equation

cos(KxLi) = 1
2

ti(f , Ky), (2.10)

where ti(f , Ky) = tr Mi(f , Ky) is the key quantity governing the problem.
Wave propagation orthogonal to the layers reveals some relevant features for the laminates

under investigation. In this case, the dispersion characteristics come directly from the
specialization of equation (2.10), i.e.

cos(K̄xLi) = 1
2

ti(f , 0), (2.11)

where the bar identifies the Bloch wavenumber calculated in this case.
Canonical laminates are a special subclass of composites described by the Fibonacci sequence

which feature a periodic frequency spectrum for orthogonal waves. They have been introduced
by Chen et al. [18] (see the electronic supplementary material) who exploited some algebraic
properties of the recursive rule of the sequence, in particular

ti+1(f , 0) = ti−1(f , 0)ti(f , 0) − ti−2(f , 0) (i ≥ 2). (2.12)

Briefly, their characteristics can be listed as follows:
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— denoting by C (canonical ratio) the dimensionless quantity

C = cAhB

cBhA
, (2.13)

there exist three families of canonical laminates each of them identified by one of the
following ratios:

C(1) = 1 + 2j
1 + 2k

, C(2) = 1 + 2j
2q

and C(3) = 2q
1 + 2k

(j, k, q ∈ N), (2.14)

where the superscript in the l.h.s. indicates the family and indices j, k and q are such that
fractions on the r.h.s. are in lowest terms;

— laminate layouts defined by conditions (2.14) are associated with canonical frequencies that,
for each family, can be written as f (r)

cn = f (r)
c (1 + 2n) (n ∈ N, r ∈ {1, 2, 3}), where

f (1)
c = cA

4hA
(1 + 2k), f (2)

c = cA

4hA
2q, f (3)

c = cA

4hA
(1 + 2k). (2.15)

Conditions (2.14) force the functions ti(f , 0) to be periodic, a property that leads to a
periodic arrangement of stop and pass band for each Fi. Within the periodic range, the
configurations of stop and pass band display a symmetry with respect to both fc and 3fc;

— the function of the frequency

I0(f ) = (β2 − 4) sin2(q0AhA) sin2(q0BhB), (2.16)

is the (Kohmoto’s) invariant of the sequence that is independent of index i and q0X =
qX(f , 0); coefficient β is the impedance mismatch

β = μBcA

μAcB
+ μAcB

μBcA
.

(c) Pure negative refraction across an interface between a substrate and a
transverse laminate

The next step is to clarify how transmission of waves across the interface in figure 1 is influenced
by the dispersive properties of the two media.

The number of ‘refracted’ modes depends on equation (2.10) that provides, at a given Kx,
solutions Ky, each of them identifying a wavevector K = Kxex + Kyey, where ex and ey are the
unit normal aligned with axes x and y, respectively. The analyses conducted in previous papers
(see, e.g. [13,14,16,18]) have clearly demonstrated that negative refraction must be sought for KxLi
lying in the second Brillouin zone (π < KxLi < 2π )2 ; moreover, in this subset of solutions, pure
negative refraction may take place only up to a threshold frequency f̃ that is obtained from the
investigation of ti(f , 0). In more detail, let [0, f 1st

i ] and [f 2nd
i , f̃i] be the first and second pass band

attained by solving equation (2.11), respectively.
Then, for the general problem of the laminate, i.e. equation (2.10), for f ∈ [0, f 1st

i ] the number of real
solutions depends on the frequency and is either nought or one, for f ∈ [f 1st

i , f 2nd
i ] that number is

always one, whereas for f ∈ [f 2nd
i , f̃i] the solutions can be either one or two. In both the first and

the third interval among those listed above, the value K̄xLi is the switching value between the
two different numbers of solutions. According to the definition introduced in [16], the intervals
[0, f 1st

i ] and [f 2nd
i , f̃i] are the first and second TZ for the laminate Fi, respectively.

Summarizing, if the dimensionless wavenumber of incident wave KxLi enters the second
Brillouin zone, pure negative refraction could be obtained. From equation (2.5), the minimum

2In general, the requirements are met for KxLi belonging to Brillouin zone of any even order, however most of the
investigations conducted so far and the results presented here are restricted to the second Brillouin zone only.
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frequency such that KxLi > π is

f min
i = c0

2Li sin θ
. (2.17)

Thus, the conditions that must be simultaneously fulfilled to achieve pure negative refraction are:

(i) the frequency f of the incoming wave should satisfy f min
i < f < f̃i;

(ii) if f < f 1st
i , then it should be KxLi > 2π − K̄xLi; if f 1st

i ≤ f ≤ f 2nd
i , KxLi > π should be

satisfied; if f 2nd
i < f < f̃i, it should be KxLi > 2π − K̄xLi.

Moreover, total reflection of the shear wave may be observed for f < f 1st
i if 2π − K̄xLi > KxLi >

K̄xLi.

3. Role of canonical ratio in pure negative refraction
The theory reported in §2c recognizes that the three frequencies f 1st

i , f 2nd
i and f̃i play an important

role in defining the possibility of pure negative refraction in the substrate-laminate problem.
Based on the notion of canonical laminate, our goal is now to investigate how we can exploit
the ratio C in order to maximize (or minimize), with the same phases A and B, the values of f̃i, f 1st

i
and f 2nd

i .
To this end, we propose an analysis to reveal what is the influence of C for cells with the

same two phases and maintaining the length Li fixed when analysing the same cell. We study the
combination (A: PMMA, B: steel), see table 1, and vary the thickness ratio hA/hB (recall equation
(2.13)). In particular, we assume preliminarily hA = 3 mm and hB = 1.3 mm, and calculate the
length Li = nA

i hA + nB
i hB; then the thicknesses of the two phases are varied to scan all possible

values of C.
In the plots of figure 2, the three quantities f 1st

i , f 2nd
i and f̃i are reported for cells F2 to F8 as a

function of canonical ratio C. It is evident that, for the adopted phases, in all functions, there exists
at least one stationary point; in addition, cusps exist for frequency f̃i in the graphs for both F2 and
F3.3 The knowledge of the values of C at which maxima/minima occur would be very helpful
for design purposes. To accomplish the goal, we take advantage of the universal representation
of the frequency spectrum proposed for elastic waveguides in [20], extended in [21], and effective
to represent in a compact fashion pass and stop bands.

Following the method, a set of two new variables are defined, i.e.

ξA = 2π
hA

cA
f and ξB = 2π

hB

cB
f , (3.1)

so that the first three traces at low index take the form

t0(ξB) = 2 cos ξB, t1(ξA) = 2 cos ξA and t2(ξB, ξA) = 2 cos ξB cos ξA − β sin ξB sin ξA, (3.2)

where we have highlighted the dependency of the functions on both ξA and ξB. After (3.2),
equation (2.12) yields the ensuing traces in terms of the same variables. For f > 0, and for each
cell Fi, definitions (3.1) describe parametrically a segment (or, more appropriately, a flow line)
originating from the origin in the cartesian plane OξBξA (see, e.g. figure 3). In that plane, it is useful
to subdivide the domain into two parts, namely where |ti| ≤ 2 (pass band, depicted in white) and
|ti| > 2 (stop band, depicted in blue). A typical stop-band region has a shape resembling that of a
‘lens’ or a ‘pea pod’. The slope of the segment is connected to the canonical ratio as its equation
reads

ξA = 1
C

ξB; (3.3)

the segment on the diagonal (i.e. ξA = ξB) characterizes a laminate for which C = 1.

3As a reference, it may be interesting to note the following limits: limC→∞ f 1st
i = limC→∞ f 2nd

i = cB
2Li

, limC→∞ f̃i = cB
Li

,

limC→0 f 1st
i = limC→0 f 2nd

i = cA
2Li

and limC→0 f̃i = cA
Li

.
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Figure 2. Relevant frequencies for controlling pure negative refraction in canonical laminates as a function of the canonical
ratio C for the material combination (A: PMMA, B: steel): (a) f 1st

i , (b) f 2nd
i and (c) f̃i . CellsF2 toF8 are reported; within the

same cell, the total length Li is maintained fixed. (Online version in colour.)
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Figure 3. Universal representation of the reduced torus for thematerial combination (A: PMMA,B: steel): (a)F2, (b)F4.Within
the same cell, the total length Li is maintained fixed (thicknesses are hA = 3 mm and hB = 1.3 mm). Blue (white) regions
denote stop (pass) bands. Thick black lines highlight boundaries of pass bands relevant for the analysis. In (a), the red flow
line corresponds to C = 1 and the yellow segments refer to local stationary points of frequencies reported in figure 2 for the
unit cellF2. (Online version in colour.)

Table 1. Properties of the materials adopted in the examples.

steel PMMA iron copper aluminium nylon polyethylene

μ (GPa) 80 3 52.5 44.7 26 4 0.117
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ (kg m−3) 8000 1180 7860 8940 2700 1150 930
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In figure 3a, the case F2 is reported. It is interesting to note that along the two cartesian axes, a
pass band is always met except in a set of isolated points placed at regular intervals where either
|ti(ξB, 0)| = 2 or |ti(0, ξA)| = 2 (i ≥ 2). At the upper limit of the first pass band, the boundary line for
F2 (that is the one which corresponds to f 1st

2 ) has equation

ξA = 2 arctan
(

Γ −

tan(ξB/2)

)
, (3.4)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 J

an
ua

ry
 2

02
3 

8



9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210401

...............................................................

where Γ ± = γ ±
√

γ 2 − 1 and γ = β/2. The boundary line for F2 associated with f 2nd
2 is

represented by the same equation, but with Γ + in place of Γ −. The union of the two lines is
the boundary of the first stop-band (blue) region encountered by a flow line at low frequencies.
The boundary line which sets the upper limit of the second TZ is composed of two branches
whose parametric equations are

ξA = 2 arctan
(

Γ −

tan(ξB/2)

)
+ π and ξA = 2 arctan

(
Γ +

tan((ξB − π )/2)

)
; (3.5)

they are represented in figure 3a by the black curves bounding from below the two blue domains
encountered by a flow line satisfying 2π > max{ξA, ξB} > π . As the total length Li is fixed, then the
frequency can be obtained in terms of either ξA or ξB as

f = ξA
nA

i cA + nB
i cBC

2πLi
and f = ξB

nA
i cA/C + nB

i cB

2πLi
. (3.6)

The stationary points for functions f 1st
2 (C), f 2nd

2 (C) and f̃2(C) can be found through equations
(3.1) and (3.3) (see electronic supplemental material for the details). For the first one, values of the
minimum and associated canonical ratio are

f 1st
2 = 1

πL2
(cB arccot ε1 + cA arctan(ε1Γ

−)) and C = arccot ε1

arctan(ε1Γ −)
. (3.7)

whereas the maximum for f 2nd
2 corresponds to

f 2nd
2 = 1

πL2
(cB arccot ε2 + cA arctan(ε2Γ

+)) and C = arccot ε2

arctan(ε2Γ +)
, (3.8)

in which the functions ε1 and ε2 are

ε1 =
√

ρAρB(cA − cBΓ +)2

(μA − μB)(ρA − ρB)
and ε2 =

√
ρAρB(cA − cBΓ −)2

(μA − μB)(ρA − ρB)
. (3.9)

The local stationary points for f̃2 for either upper or lower boundary lines are

f̃2u = 1
2πL2

(2cB arccot ε1 + cA(π + 2 arctan(ε1Γ
−))) (3.10)

and

f̃2l = 1
2πL2

((cA + 2cB)π − 2cB arccot ε2 − 2cA arctan(ε2Γ
+)), (3.11)

respectively. They are two minima, achieved at

Cu = 2 arccot ε1

π + 2 arctan(ε1Γ −)
and Cl = 2(π − arccot ε2)

π − 2 arctan(ε2Γ +)
, (3.12)

respectively. In figure 3a, yellow segments represent flow lines whose slopes are given by equation
(3.7)2, (3.8)2, (3.12)1 and (3.12)2. Their intersection with the pertinent boundary determines the
point at which one of the stationary frequencies occurs. The cusp that can be observed for F2
in figure 2c for C = 1 is at the transition point (whose coordinates are (π , π )) between boundaries
(3.5), at which right and left derivatives are discontinuous. At that point, f̃2 = (cA + cB)/(2L2). Note
also that a cusp occurs at C = 2 for F3; this is perfectly consistent as this case can be traced back
to that for F2 by rearranging the unit cell between the periodic layout of layers. From the point of
view of one willing to maximize the range of frequencies for which pure negative refraction may
occur, the performed analysis shows that, for cell F2, the canonical ratio C to be selected should
be equal to 1, as this value maximizes f̃2. For i > 3, any cusp is found in the plot for f̃i as the lower
boundary of the second pass band is smooth (figure 3b). In this case, one minimum shows up in
the curves of figure 2c for i > 3.

It is worth noting that a close inspection of functions ε1 and ε2 reveals that the expressions (3.7),
(3.8), (3.10) and (3.11) are only valid if either ρA > ρB, μA > μB or ρA < ρB, μA < μB, as those are
the only requirements which ensure that functions ε1 and ε2 are real. If densities and shear moduli
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do not satisfy the given inequalities, local stationary values for the investigated frequencies do not
exist (see electronic supplemental material for more details).

For a high-index Fi, the analytical expressions of the boundaries of pass-band regions are not
available, therefore we propose an approximate method to reach, in any case, an accurate result.
We first observe that the two axes are subdivided into equal segments by the vertices of the
‘lenses’ in a way dictated by the algebraic Fibonacci sequence: in particular, intervals ξB ∈ [0, π ]
and ξA ∈ [0, π ] are subdivided into ni−2 and ni−1 subintervals, respectively, as can be easily
inferred by studying points where |ti(ξB, 0)| = 2 and |ti(0, ξA)| = 2 (note also that max{|ti(ξB, 0)|} =
2, max{|ti(0, ξA)|} = 2). A third point in each of the three profiles associated with f 1st

i , f 2nd
i and

f̃i can be obtained by studying the flow line along the bisector (whose equation is ξA = ξB) as a
function of β. With the third point in place, a parabola can be interpolated and adopted in the
search for possible stationary frequencies (other interpolation functions can also be selected). For
example, for F4 in figure 3b, the calculated approximated stationary values are f 1st = 39.1 kHz
and f 2nd = 53.9 kHz, whereas the counterparts read in figure 2a,b are f 1st = 39.1 kHz and f 2nd =
53.7 kHz, respectively.

4. Components of the Poynting vector and an ‘inverse’ problem

(a) Explicit expressions of the in-plane components of the Poynting vector
The angle of refraction of a transmitted wave across the interface between a substrate and a
transverse quasi-crystalline-generated laminate can be determined through the relationship [16]

tan θ tr = v
g
x

v
g
y

= 〈Px〉
〈Py〉 , (4.1)

where v
g
x = ∂ω/∂Kx = 〈Px〉/〈E〉 and v

g
y = ∂ω/∂Ky = 〈Py〉/〈E〉 are the components of the group

velocity parallel and perpendicular to the interface, respectively, Px and Py are analogous to the
time-averaged real part components of the Poynting vector, E is the total energy density and the
brackets 〈·〉 denote the space average over the unit cell Fi. According to Willis [14], the real part
of the time-averaged acoustic Poynting vector is given by

Pj = −1
2

Re[σjzu̇∗] (j = x, y), (4.2)

where ∗ denotes the complex conjugate; the components Pj averaged over the unit cell then
become

〈Px〉 = π f
Li

Re

[
i

∫ x0l+Li

x0l

σxzu∗ dx

]
= π f

Li
Re

[∫ x0l+Li

x0l

μ

(
i
dw
dx

w∗ + Kxww∗
)

dx

]
(4.3)

and

〈Py〉 = π f
Li

Re

[
i

∫ x0l+Li

x0l

σyzu∗ dx

]
= π f

Li
Re

[∫ x0l+Li

x0l

μKyww∗ dx

]
. (4.4)

The function w(x) in equations (4.3) and (4.4) is the mode shape defined in equation (2.2) (for a
generic mode), and corresponding to the real solution Ky of the dispersion relation of the laminate
(2.10) at a given Kx.

We now focus on the derivation of simplified expressions for 〈Px〉 and 〈Py〉 in order to obtain an
explicit formula for tan θ tr. By using the definition of transmission matrix, together with equation
(2.2), the integral in equation (4.3) is then computed along the whole unit cell (see electronic
supplemental material) and the outcome is

〈Px〉 = π f
Li

ni∑
p=1

Re

[
i
∫ xl+hX

xl

σxzu∗ dx

]
= π f

Li

ni∑
p=1

{hX Im[σ ∗
xz(xl)u(xl)]}p. (4.5)
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The quantities σ ∗
xz(xl) and u(xl) in equation (4.5) can be calculated by starting from σ ∗

xz(x0l) and
u(x0l) and repeating the application of MA and MB to the stress–displacement vector according to
the layout of the cell. By observing the properties of the eigenvalue problem (2.9), it is clear that
the stress–displacement vector at the left-hand boundary of the cell is an eigenvector of the same
problem that can be written as

[α, −α(Mi11 − e−iKxLi )/Mi12]T, (4.6)

where α is an arbitrary constant. As Mi11 and Mi12 are real numbers, this leads to
Im[σ ∗

xz(x0l)u(x0l)] = −|α|2 sin(KxLi)/Mi12. Note that equation (2.6) is valid within each layer and
that the four elements of each local matrix MX are real numbers, therefore it can be shown that
Im[σ ∗

xz(x0l)u(x0l)] = Im[σ ∗
xz(xl)u(xl)] for each layer (∀p in equation (4.5)).

Consequently, as a first conclusion, the component of the averaged Poynting vector parallel to
the interface becomes

〈Px〉 = −|α|2π f
sin(KxLi)

Mi12
. (4.7)

Equation (4.7) shows that the transmission angle is null when the value of KxLi is at the boundary
of a Brillouin zone (i.e. . . . 0, π , 2π , . . . ).

In order to obtain an explicit expression of 〈Py〉, the integral
∫xl+hX

xl
wμw∗ dx must be calculated,

namely
∫ xl+hX

xl

wμw∗ dx = |σxz(xl)|2
μXq2

X

(
hX

2
− sin(2qXhX)

4qX

)
+ σ ∗

xz(xl)u(xl)
sin2(qXhX)

2q2
X

+ σxz(xl)u
∗(xl)

sin2(qXhX)

2q2
X

+ μX|u(xl)|2
(

hX

2
+ sin(2qXhX)

4qX

)
. (4.8)

Equation (4.8) can be simplified under some assumptions concerning Kohmoto’s invariant. For
Ky �= 0, the invariant, that is a generalization of I0 in (2.16), is given by

I =
(

μ2
Bq2

B − μ2
Aq2

A
μAqAμBqB

)2

sin2(qBhB) sin2(qAhA). (4.9)

The case where expression (4.9) is null independently of the values of sinusoidal functions
provides a special configuration of laminates for which the sought-after simplification can be
achieved. In particular, this leads to μAqA = μBqB = r, a real quantity, which results in the
following relationship between f and Ky

Ky = 2π fκ , (4.10)

where κ =
√

(μAρA − μBρB)/(μ2
A − μ2

B). Assuming κ real, the two elementary transmission
matrices then become

MA =
⎡
⎣cos(qAhA) −r sin(qAhA)

sin(qAhA)
r

cos(qAhA)

⎤
⎦ and MB =

⎡
⎣cos(qBhB) −r sin(qBhB)

sin(qBhB)
r

cos(qBhB)

⎤
⎦ , (4.11)

whereas Mi assumes the form

Mi =
⎡
⎣cos(2π fνLi) −r sin(2π fνLi)

sin(2π fνLi)
r

cos(2π fνLi)

⎤
⎦ . (4.12)

In equation (4.12), 2π fνLi = nA
i qAhA + nB

i qBhB, where

ν = nA
i cAQA + CnB

i cBQB

cAnA
i + CcBnB

i

, QA =
√

1

c2
A − κ2

and QB =
√

1

c2
B − κ2

. (4.13)

Note here that as QX = qX/(2π f ), QA and QB are real and so is ν.
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The dispersion equation (2.10) provides the relationships

cos(KxLi) = cos(2π fνLi) and sin(KxLi) = ± sin(2π fνLi), (4.14)

and the eigenvector (4.6) becomes, in this case, [α, ±i α/r]T. The criterion for the selection of the
sign in equation (4.14)2 will be clarified later, however we anticipate that + (−) is for a positive
(negative) refracted wave. Then, for an arbitrary layer, the left-hand boundary conditions at
x = xl of each layer can be calculated by repeated applications of matrices equation (4.11) to the
eigenvector, namely [

σxz(xl)
u(xl)

]
=
⎡
⎣α cos n̂ ∓ i α sin n̂

α
sin n̂

r
± i α

cos n̂
r

⎤
⎦ , (4.15)

where n̂ = nAqAhA + nBqBhB. In this expression, nA and nB are the number of layers A and
B between x = x0l and x = xl, respectively (the two integer values run from 0 to nA

i or to
nB

i , respectively). By substituting equation (4.15) into equation (4.8), note that σ ∗
xz(xl)u(xl) +

σxz(xl)u∗(xl) = 0, |σxz(xl)|2 = 1 and |u(xl)|2 = 1/r2. Thus, equation (4.8) becomes

1
|α|2

∫ xl+hX

xl

wμw∗ dx = 1
rqX

(
hX

2
− sin(2qXhX)

4qX

)

+ (cos n̂ ± i sin n̂)(sin n̂ ± i cos n̂)
r

sin2(qXhX)

2q2
X

+ (cos n̂ ∓ i sin n̂)(sin n̂ ∓ i cos n̂)
r

sin2(qXhX)

2q2
X

+ 1
rqX

(
hX

2
+ sin(2qXhX)

4qX

)
,

and then simplified to yield the y-component of the averaged Poynting vector

〈Py〉 =
ni∑

p=1

π fKy

Li

∫ xl+hX

xl

wμw∗ dx = π fKy|α|2
rLi

ni∑
p=1

(
hX

qX

)
p

. (4.16)

Through equation (4.12) and (4.14)2, equation (4.7) can be simplified so that the components of
the averaged Poynting vector for the assumption (4.10) finally become

〈Px〉 = ±π f |α|2
r

, 〈Py〉 = π fKy|α|2
rLi

(
nA

i
hA

qA
+ nB

i
hB

qB

)
. (4.17)

Using these expressions, from (4.1), we finally obtain

tan θ tr = ± Li

Ky(nA
i (hA/qA) + nB

i (hB/qB))
. (4.18)

Note that equation (4.17) and (4.18) hold true for a Fibonacci laminate of any index i. Equation
(4.18) can be further manipulated by taking advantage of the definition of qX (see equation (2.8)),
of equation (4.10) and the fact that hA = Li/(nA

i + nB
i CcB/cA) and hB = Li/(nA

i cA/(CcB) + nB
i ), to

yield

tan θ tr = ± QAQB(nA
i + nB

i (CcB/cA))(nA
i (cA/CcB) + nB

i )

κ[nA
i (nA

i (cA/CcB) + nB
i )QB + nB

i (nA
i + nB

i (CcB/cA))QA]
. (4.19)

In both (4.18) and (4.19), the fraction in the r.h.s. is a positive real number, therefore it becomes
clear now that the sign + and − also determine the sign of the angle θ tr.

Equation (4.19) shows that θ tr does not depend explicitly on f , nor the angle θ , nor the
properties of the substrate. Thus, it is interesting to investigate its relationship with the materials
of the two phases and the canonical ratio C.
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Figure 4. Plots of angle of transmission θ tr (in degrees) versus canonical ratio C (equation (4.19)) for Fibonacci laminatesF2

toF8. (a) A: PMMA, B: steel (κ ≈ 0.316 × 10−4 s m−1), (b) A: iron, B: copper (κ ≈ 1.311 × 10−4 s m−1) and (c) A: steel, B:
polyethylene (κ ≈ 3.162 × 10−4 s m−1). (Online version in colour.)

(b) ‘Inverse’ problem: selection of the properties of the system to achieve a given
transmission angle

This subsection is devoted to the presentation of the ‘inverse’ problem consisting of the
determination of the properties of laminate and substrate to obtain a particular value of the
transmission angle θ tr. As suggested in closing the previous part, the first aspect to consider is
how θ tr depends on C in equation (4.19). To illustrate this, three different laminates are considered
in figure 4 for unit cells F2 to F8, where the sign + in the equation is assumed: (a) A: PMMA, B:
steel, (b) A: iron, B: copper and (c) A: steel, B: polyethylene. The derivative of tan θ tr w.r.t. C may
help in the discussion; this yields

∂ tan θ tr

∂C
= ±(QB − QA)

cAcBnA
i nB

i QAQB

κ(cAnA
i QB + CcBnB

i QA)2
. (4.20)

The term ±(QB − QA) governs the sign of the derivative. If QB − QA > 0, with the positive
(negative) sign, tangent and angle increase (decrease) with C increasing.

As QB − QA = −5.217 × 10−4s m−1 in figure 4a, the curves are monotonic decreasing, whereas
functions in figure 4b,c display an opposite behaviour as QB − QA = 6.352 × 10−5 s m−1 and QB −
QA = 2.798 × 10−3 s m−1, respectively. Through a representation akin to figure 4, the canonical
ratio corresponding to a required transmission angle could be selected. Figure 4 also demonstrates
that the range of possible angle θ tr for a given laminate is, in general, limited, an issue that should
be taken into account.

The procedure for the ‘inverse’ problem is the following: first, from the target value of θ tr

the associated canonical ratio can be determined from equation (4.19) with selected materials for
phases A and B. Second, the corresponding value of ν can be obtained from equation (4.13)1. Then,
equation (4.14) can be used to determine the connection between KxLi and 2π fνLi which provides,
through equation (2.5), the relationship between frequency f of the incoming wave, wave speed
of the substrate c0 and angle of incidence θ .

We have already briefly discussed the first step in presenting the plots of figure 4. It is necessary
now to establish the bridge between the dimensionless wavenumber KxLi and the term 2π fνLi in
the case of negative refraction. Recalling equation (4.14), now with sign −, negative refraction
occurs provided the following conditions are satisfied

cos(KxLi) = cos(2π fνLi) and sin(KxLi) = − sin(2π fνLi), (4.21)

whose solution is KxLi = 2δπ − 2π fνLi (δ ∈ N
+).

We restrict the analysis to the case δ = 1, which means that KxLi should lie in the second
Brillouin zone. For this to occur, it is necessary that 2π fνLi < π or, alternatively, f < 1/(2νLi).
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Figure 5. Laminate F2 with material combination (A: PMMA, B: steel) with C = 1. Plots of real solutions of the dispersion
equation in graph KyL2 versus KxL2 for several given frequencies; in particular, (a) selected frequencies in the range f ∈
[20, 460] kHz, (b) selected frequencies in the range f ∈ [480, 550] kHz. The black and red triangles mark points that satisfy
equation (4.10) and are relevant for negative refraction. (Online version in colour.)

Equation (2.5) provides the required connection between θ , c0 and frequency as

(
1

fLi
− ν

)
c0 = sin θ , (4.22)

in which the term in brackets is positive as a consequence of the inequality f < 1/(2νLi), whereas
the whole l.h.s. should be less than one for a real angle of incidence (θ �= π/2).

As a conclusion, under the condition set by equation (4.10), pure negative refraction must
satisfy the conditions listed at the end of §2c, with

f ∈
]

f min
i , min

{
1

2νLi
, f̃i

}[
(4.23)

and 2π fνLi < K̄xLi. The substrate must be chosen so that the speed c0 is such that the l.h.s. of
equation (4.22) is less than one; the same equation determines the angle of incidence θ .

To illustrate the proposed analytical procedure, an application based on a prototype example is
proposed for a laminate with the usual combination (A: PMMA, B: steel). We start by choosing the
angle θ tr in figure 4a (pertinent to our case). For simplicity, assume θ tr = −5.431◦ that corresponds
to C = 1. Then, the frequency f of the incoming wave can be decided and the value of KxL2 selected
from figure 5a that is for this canonical ratio. In this figure, triangles mark the pairs (f , KyL2) which
satisfy equation (4.10) for negative refraction. For instance, for f = 460 kHz, the data deduced from
the figure used in equation (4.22) provide an angle of incidence of 74.4◦ for a substrate made of
aluminium and 35.4◦ for a substrate made of nylon.

To complete the investigation, figure 6 reports two plots for the adopted laminate coupled with
the same substrates, i.e. (a) aluminium and (b) nylon, where all possible admissible combinations
between angle of incidence θ , frequency f and angle of refraction θ tr are displayed which satisfy
equation (4.22). As the value of f min

i in (4.23) depends linearly on c0 (see equation (2.17)), the softer
material, i.e. nylon, which has a value of c0 that is approximately 60% that of aluminium, ensures
a wider range of the involved parameters (f , θ , θ tr) for negative refraction as becomes evident by
comparing part (b) to part (a) of figure 6. Therefore, a substrate with a relatively low shear wave
speed should be preferred to maximize the combinations between the involved parameters.
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Figure 6. LaminateF2 with material combination (A: PMMA, B: steel). Plots of the angle of incidence θ as a function of angle
of transmission θ tr and frequency f with substrate (a) aluminium, (b) nylon. (Online version in colour.)

5. Peaks of energy of negative refracted waves
Up to this point, it has been shown how to control negative refraction through an accurate
selection of mechanical and geometrical properties of both substrate and layers of the laminate.
However, the transmission problem has an additional aspect that is related to the fraction of
the energy of the incoming wave that is transmitted across the laminate. In order to effectively
exploit a negative refracted wave, a sufficient amount of energy should be conveyed across
the laminate. We address this point in this section by highlighting the fact that some substrate-
laminate combinations show a peak in the transmitted energy carried by the negative refracted
wave.

To calculate energy fluxes, the method traditionally adopted [15,21] restricts the number of
both reflected and transmitted modes to arrange a finite-size linear system where the unknowns
are the scattering coefficients (see equations (2.2) and (2.3)). For the former, the selected range
of modes is −N ≤ m ≤ N, for the latter the involved indices are 0 ≤ l ≤ 2N; in both cases,
real solutions and evanescent waves are included. In this way, the point-wise continuity of
displacement u and stress σyz at the interface y = 0 is formulated as

2N∑
l=0

T̄lwl(x) ≈ 1 +
N∑

m=−N

R̄mUm(x), (5.1)

and

μ(x)
2N∑
l=0

K(l)
y T̄lwl(x) ≈ μ0K0 cos θ − μ0

N∑
m=−N

k(m)
y R̄mUm(x), (5.2)

respectively, where T̄l = Tl/A and R̄m = Rm/A (note that strict equalities only hold for N → ∞).
The above equations can be transformed into a system of 2(2N + 1) relations in as many variables
through application of suitable orthogonality condition [14,15]. The method has been applied in
[21] and is reported in the electronic supplemental material. Due to the form of functions Um,
we note that equations (5.1) and (5.2) look like Fourier series expansions with R̄m as Fourier
coefficients. Thus, if the number of terms of the series is ‘sufficiently high’, the continuity
condition is satisfied and the corresponding system can provide a satisfactory solution.

After the calculation of the scattering coefficients, the balance of the normalized energy flux
takes the form [15]

Ē =
2N∑
l=0

|T̄l|2
μ̄ Re[K(l)

y ]

μ0K0 cos θ
+

N∑
m=−N

|R̄m|2 Re[k(m)
y ]

K0 cos θ
= 1, (5.3)

in which the two summations represent the normalized transmitted and reflected energies,
respectively. The values of the energy associated with each real mode can be plotted versus
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Figure 7. Plots of normalized energy functions for transmitted (T̄0) and reflected (R̄0, R̄−1) modes of a canonical laminate
(C = 1), unit cellF2, with material combination (A: PMMA, B: steel), L2 = 4.3 mm. Top row: results for a substrate made of
steel, frequencies (a) 420 kHz, (b) 440 kHz, (c) 459.36 kHz; in each panel, the domain on the right of the vertical black dashed
line is the second Brillouin zone (π < KxLi < 2π ) and the black arrow indicates a peak of the transmitted energy. Bottom row:
results for different substrates with frequency 459.36 kHz, (d) iron, (e) aluminium, (f ) nylon. (Online version in colour.)

the angle of incidence θ to appreciate the behaviour of the functions or, alternatively, versus
the transverse wavenumber KxLi. With the latter choice (preferred in the plots of figure 7), it
is easier to assess the behaviour of the energy flows when entering in the second Brillouin zone,
i.e. π < KxLi < 2π .

Plots in figure 7 display the energy landscape of all real transmitted and reflected modes
available for the considered problem. In all cases, the scattering coefficients are calculated by
assuming N = 6 in system (12 evanescent and one transmitted modes; 11 or 12—depending on
the case—evanescent reflected waves). The number of real transmitted modes is always equal to
one (i.e. T̄0), while the reflected ones can be either one (i.e. R̄0) or two (i.e. R̄0 and R̄−1).

In figure 7, the three panels in the top row (i.e. (a), (b), (c)) show that for the selection (substrate:
steel-laminate: A: PMMA, B: steel) a peak in the energy of T0 in the second Brillouin zone does
exist for a significant range of frequencies. The presence of this maximum is not found for other
combinations as displayed in the bottom row (i.e. (d), (e), (f )), where three different substrates are
coupled with the same laminate.

As an additional note, in all plots of figure 7, the energy associated with the reflected mode
R−1 is symmetric w.r.t. KxLi = π at which the function is stationary. The observed symmetry is
related to properties of equation (2.4), with m = −1, as can be demonstrated quite easily.

The picture that emerges from this preliminary investigation deserves to be further analysed
in the future, specially in view of the assessment of the optimal performance of a particular choice
of materials of the system.

6. Conclusion
Negative refraction of anti-plane elastic shear waves can be achieved by wave transmission across
an interface between a substrate and a periodic laminate whose lamination direction is orthogonal
to the interface. Previous studies have shown that pure negative refraction can be accomplished
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if the frequency of the wave approaching the interface is compatible with propagation of the
refracted wave within the second Brillouin zone of the laminate. This paper analyses some aspects
of the problem where the composite is a canonical laminate linked to a quasi-crystalline sequence
Fi that obeys a recursive rule. The focus here is on the role of the canonical ratio. The conclusions
can be summarized as follows.

— The universal representation of the frequency spectrum based on the reduced torus
allows us to study effectively how a change in canonical ratio affects the change in the
frequencies relevant for negative refraction, namely, those at the limits of the first two
TZ. This representation provides a tool that can be exploited for optimization of the
performance of the subtrate-laminate system. To demonstrate it, we study analytically
the case F2 and suggest an approximated method to carry out the same task for the unit
cell of any element Fi.

— For a linear relationship between longitudinal wavenumber and frequency, the Poynting
vector indicating the direction of energy flow—and then the transmission angle—can
be calculated explicitly. With this closed-form solution, the properties of laminate and
substrate, and the angle of incidence can be easily selected to achieve a particular
direction of the negative refracted wave without solving numerically the whole coupled
problem.

— While, on the one hand, the possibility to achieve negative refraction can be analysed
through an accurate selection of both materials and layouts of the unit cell, on the other,
the amount of transmitted energy is an additional factor that should be duly considered
as it may vary considerably at a change of the angle of incidence. We show here that,
for a combination of materials of the substrate-laminate system, a peak in the energy of
the only transmitted mode is found, whereas this feature is not present for several other
configurations. This aspect must be taken into account in practical applications when the
investigated prototype system is adopted.
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