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ABSTRACT

The quest for wave channeling and manipulation has driven a strong research effort on topological and architected materials,
capable of propagating localized electromagnetical or mechanical signals. With reference to an elastic structural grid, the
elements of which can sustain both axial and flexural deformations, it is shown that material interfaces can be created with
structural properties tuned by prestress states to achieve total reflection, negative refraction, and strongly localized signal
channeling. The achievement of a flat lens and topologically localized modes is demonstrated, and the tunability of the system
allows these properties to hold for a broad range of wavelengths. An ingredient to obtain these effects is the use, suggested here
and never attempted before, of concentrated pulsating moments. The important aspect of the proposed method is that states of
prestress can be easily removed or changed to tune with continuity the propagational characteristics of the medium, so that a
new use of vibration channeling and manipulation is envisaged for elastic materials.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084258

The possibility of channeling, trapping, and controlling
waves opens new possibilities such as cloaking of a part of a
body, or achieving total reflection and negative refraction,
effects which prelude the realization of flat lens, able to over-
come the diffraction limits through superlensing effects.1–4

Negative refraction in elastic lattices has been obtained for a
plane wave5–9 (and experimentally confirmed10–12), while only in
electromagnetism13 and in elastic plates under flexure,14 pulsat-
ing sources have been considered so far.

Edge waves and trapped modes have been demonstrated,
but their realization involves the use of gyroscopic systems,15–17

piezoelectric elements,18 topological materials,19 or structures
inducing floppymodes.20,21 Recently, topologically protected edge
waves for plates subject to flexure have been demonstrated.22

A route to achieve a wide frequency bandwidth for the
above-mentioned dynamical effects is the tunability of the
mechanical properties, representing a crucial ingredient in the
development of metamaterials or architected materials, so that
the wave propagation can be changed and manipulated, accord-
ing to different needs, for instance, in a way that an interface may
be occasionally made permeable to mechanical disturbances or
changed to realize total reflection or otherwise to allow negative
refraction. Tunability has been addressed with reconfigurable

origami materials,23 connectivity,15 piezoelectric effects,18 or,
finally, prestress.24–26 The latter technique can simply be imple-
mented by applying forces to a structure prior to wave propaga-
tion, the results of which are strongly influenced, as the dynamics
of musical instruments clearly show. Forces can be readily applied
and removed, so that tunability can be easily and quickly obtained.

Prestress is shown in this article to govern flexural and axial
wave propagation in an elastic square grid of beams, so that axial
forces can be applied to a set of beams arranged in a layer inside
an infinite lattice of beams not subject to prestress. For a certain
level of prestress (always assumed tensile to avoid buckling), the
layer is shown to completely reflect waves, while waves are
transmitted for a different prestress level and may display nega-
tive refraction and focusing. Moreover, narrow layers of pre-
stressed elements give rise to highly localized trapped modes,
showing strongly focused propagation.

An infinite square lattice of elastic Rayleigh beams27 (both
axially and flexurally deformable and of length L) is assumed,
where layers are subject to a prestress, induced by axial forces P,
acting on a set of rods [Fig. 1(a)]. The prestressed layer defines a
“structured interface,” with a width chosen as 40L. The slender-
ness k ¼ L/r (where r is the radius of gyration of the beam’s
cross-section) of each beam is assumed equal to 15 and the
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lattice is analyzed for time-harmonic vibration, with angular fre-
quency x, so that introducing a dimensionless local coordinate n
¼ s/L, the equations governing the dynamics of the lattice in
terms of axial and transverse displacements, u and v, are

u00ðnÞ þ X2 uðnÞ ¼ 0 ; (1)

v0000ðnÞ þ ðX2 � pÞ v00ðnÞ � k2 X2 vðnÞ ¼ 0 ; (2)

where X ¼ xL
ffiffiffiffiffiffiffiffi
q=E

p
and p ¼ PL2=EI are the dimensionless

angular frequency and axial prestress, respectively (q is the mass
density, E the Young modulus, I the second moment of the cross
section’s area, and prime denotes the differentiation with
respect to n).

An exact Floquet-Bloch analysis guides the determination
of the level of prestress to tune desired dynamic responses of
the lattice, for instance, achieving the total reflection of a wave,
or its negative refraction, when the wave impinges on an inter-
face separating the lattice without prestress from the pre-
stressed layer. In particular, the prestress level is determined
using the slowness contours, obtained from the dispersion
equation, of the periodic homogeneous lattice without and with
prestress (dispersion surfaces as influenced by the prestress p
are shown in Figs. 1(b)–1(d). Special attention has been paid to
eliminate the possibility of buckling, by selecting a tensile pre-
stress (even though effects similar to those shown in the follow-
ing can be obtained for compressive prestress, or changing the

slenderness of a layer of beams, an option presented in the sup-
plementary material).

The eigenvalue problem governing wave propagation in the
periodic grid can be easily formulated as follows (see also Ref. 28
for details). On each beam of the unit cell, the solution of Eqs. (1)
and (2) can be expressed in terms of a linear combination of
complex exponentials, uðnÞ ¼ Ceign and vðnÞ ¼ Deicn, where the
characteristic roots are

g1;2 ¼ 6X ;

c1;2;3;4 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

X2 � p6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2X2 þ ðX2 � pÞ2

q� �s
:

Then, the solution of the unit cell is constrained by imposing the
junction and equilibrium conditions at the central joint and the
Bloch-Floquet boundary conditions between corresponding
sides of the unit cell for (i) axial and flexural displacements, (ii)
rotation, (iii) internal moment, and (iv) axial and shear forces.

A homogeneous linear system of equations governing the
propagation of Floquet-Bloch waves is found in the form

AðX;K; p; kÞ c ¼ 0 ; (3)

where AðX;K; p; kÞ is a 24� 24 complex matrix, function of the
angular frequency X and the wave vector K, of dimensionless
components K1 and K2 (obtained from the multiplication of the
Bloch wave vector, k ¼ k1e1 þ k2e2, by L), as well as the prestress
parameter p and the slenderness k. Finally, vector c defines the
waveform as it collects the 24 complex constants that multiply
the exponential functions appearing in the displacement fields. As
the system (3) is homogeneous, all non-trivial solutions are found
when the matrix AðX;KÞ becomes singular, a condition providing
the dispersion equation. The latter equation has been solved
numerically in order to identify the influence of the axial prestress
on the structure of the dispersion surfaces [see Figs. 1(b), 1(c), and
1(d)] and consequently to tune the prestress parameter p.

Two forcing sources have been considered to demonstrate
the effects related to the presence of an interface separating elas-
tic beams unloaded from beams pre-loadedwith an axial force.

The first dynamic excitation is a plane wave generated and
propagated in the grid using the following technique. In a first
step, by means of Eq. (3), a single Floquet-Bloch wave is calcu-
lated for an infinite square grid of beams not subject to pre-
stress. In a second step, the just calculated displacements are
applied on a finite portion of the boundary of a square region,
which contains layers of prestressed elastic beams and is
enclosed within a perfectly matched layer (the damping param-
eter is tuned to prevent reflection at the boundary). Propagation
in the latter square region is analyzed via finite elements using
COMSOL MultiphysicsVR in the frequency response mode. The
rotational inertia term of the Rayleigh model is implemented by
modifying the moment equation of the standard Euler-Bernoulli
elements.8 The second dynamic excitation is a concentrated
time-harmonic moment (of out-of-plane axis) applied to a junc-
tion of the beam network (where the prestress is absent), adja-
cent to the boundary of the prestressed structured interface.

In the following applications, the frequency levels have
been selected to provide a slowness contour of the ambient

FIG. 1. (a) Geometry of the beam grid lattice and the prestressed layer. The vertical
beams marked in red are subject to the axial prestress P, so that a tunable interface
is realized. The dispersion surfaces of the ambient lattice (not prestressed) and of
the prestressed lattice are reported in parts (b), (c), and (d), showing the strong
effect of the prestress (made dimensionless as p ¼ PL2=EI).
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lattice (not prestressed) characterized by almost perfectly
straight edges, in order to favor a strongly localized forced
response.28,29

A total reflection is shown in Fig. 2(a) of a plane wave
(inclined at 45� and propagating at the frequencyX¼ 3.10) against
an interface with prestressed vertical elements subject to a ten-
sile load of p¼65. This value of prestress (and those assumed in
the following) is very high, so that in a practical implementation

of the concept presented in this paper, a nonlinear material with
a tangent stiffness modulus strongly decreasing with strain has to
be used (strictly speaking, only the tangent modulus at the pre-
scribed prestress level enters the formulation).

The black and green arrows denote the group velocity of
the incident wave vgrinc and the reflected wave vgrrefl, respectively,
while the slowness contour of the lattice is shown in the inset
without (marked green) and with (marked red) prestress. With
reference to the inset, the propagation direction of the incident
plane wave, with fronts perpendicular to vector K, is defined by
the gradient of the dispersion relation at the point A, i.e., the
group velocity of the incident wave vgrinc (black arrow) in the lat-
tice without prestress. Using the conservation of the component
of K parallel to the interface (Kk ¼ K2), the gradient at point B
determines the group velocity of the reflected wave vgrrefl (green
arrow). The directions of vgrinc and vgrrefl highlight the total reflec-
tion, also marked by the fact that the slowness contour of the
interface (red) is not intersected by the projection of the vector
K along the direction of the interface.

Channeling of the signal generated by a pulsating concen-
trated moment (of out-of-plane axis) is shown in Fig. 2(b). The
source, vibrating at X ¼ 3.10, is applied near the same interface
used for Fig. 2(a) and defining a prestressed layer, so that total
reflection is again observed, but now obtained for the wide
Bloch spectrum generated by the pulsating moment.

Tuning the prestress to p¼ 190 in the geometry already
analyzed for total reflection, now negative refraction is observed
[Fig. 3(a)], so that a part of the incident wave continues to be
reflected and another part crosses the interface with a strongly
negative angle of refraction. In particular, the black, green, and
red arrows denote the group velocity of the incident vgrinc,
reflected vgrrefl, and refracted vgrrefr waves, respectively. The inset
shows that the green slowness contour remains the same as that
of the grid without prestress,while the red contour is nowmodi-
fied by the higher value of prestress p. The level of prestress is
tuned to obtain a significant change of the group velocity direc-
tion between the ambient lattice and the prestressed grid. The
gradient at point B determines the group velocity vgrrefl (green
arrow), while the gradient at point C determines the group
velocity of the refracted wave vgrrefr (red arrow). The strong nega-
tive refraction follows from the scalar product vgrinc � v

gr
refr � 0.

Using the negative refraction achieved with the prestressed
interface, it is possible to transform the layer of prestressed
beams into a flat lens,1,2,5,6 as demonstrated by the wave focus-
ing, forming an image evident in Fig. 3(b), where a channeled
wave pattern generated by the pulsating concentrated bending
moment is reported.

It is worth noting that the designed interface is capable of
refracting most of the Bloch spectrum activated by the pulsating
moment and therefore reflecting only a small part of the inci-
dent signal. Furthermore, as a consequence of the simplicity of
the tuning obtained through prestress of some beams, the
transmission properties of the interface can be easily changed,
so that the response can switch from a pure reflection [Fig. 2(b)]
to a flat lens effect [Fig. 3(b)]. This provides much more flexibility
for applications in dynamics than solutions requiring structural
modifications of the material.5,11,30–33

FIG. 2. Total reflection on a layer of prestressed (p¼ 65) elastic rods, at a frequency
X ¼ 3.10 of (a) a plane wave incident at 45� and (b) a channeled wave pattern gener-
ated by a pulsating concentrated moment. The black and green arrows in part (a)
denote the group velocities vgrinc and vgrrefl , respectively, and the inset shows the slow-
ness contours for the lattice without (green) and with (red) prestress, respectively.
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Taking advantage of the interplay between the mechanical
properties of the lattice subject or not to prestress, it is possible
to introduce a band of prestressed beams inside a homogeneous
lattice in such a way to generate complex paths to be followed
by a trapped wave generated by a concentrated bending
moment applied inside the path.

An “S-shaped” trapped wave is shown in Fig. 4(a), which
propagates at frequency X ¼ 5.65 inside a channel delimited by
two narrow layers of prestressed beams (p¼ 190), an expedient
which realizes a simple method to spatially control the energy
transmission along any desired path.34 Again, since the effect is
prestress-induced, it provides a valuable alternative to other
methods of channeling dynamic signals (e.g., leveraging edge-
waves in gyroscopic systems15–17 and topological materials19 or
embedding piezoelectric elements in elastic lattices18).

FIG. 3. Negative refraction inside a layer of highly prestressed, p¼ 190, beams (a),
producing a flat lens (b). In part (a) a plane wave is incident at 45� on the interface at
the frequency X ¼ 3.10 and the black, green, and red arrows denote the group veloci-
ties vgrinc, v

gr
refl , and vgrrefr , respectively. The inset shows the slowness contours for the

periodic lattice without (green) and with (red) prestress, respectively. In part (b), a chan-
neled wave pattern is generated by a pulsating concentrated moment and the corre-
sponding image is reconstructed through a flat lens interface.

FIG. 4. (a) Trapping of a wave generated by a concentrated bending moment, pul-
sating at the frequency X ¼ 5.65, inside a channel delimited by two narrow layers
of prestressed beams (p¼ 190) aligned parallel to the desired propagation path.
(b) The combination of two layers of beams at different levels of prestress (p¼ 65
and p¼ 187.5) generates a complex channeled wave pattern with negative refrac-
tion and focussing effects (X ¼ 3.10).
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Finally, it is worth mentioning that layers of beams subject
to different prestress levels can be introduced to obtain compli-
cated effects. For instance, a complex channeled wave pattern
showing negative refraction and focussing effects is shown in
Fig. 4(b), as obtained by the combination of two layers of pre-
stressed beams at different values of force (p¼65 and p¼ 187.5).
This double-layer interface is designed to first bend the signal
(through the negative refraction occurring at the first pre-
stressed layer p¼ 187.5) and then to focus it on the reflective
prestressed layer (p¼65). The second interface totally reflects
the signal towards the first one, which in turn directs it, with a
negative angle of refraction, towards the original source, where
the signal is concentrated exactly where it is generated. Only a
small part of the original signal is lost in the passage through the
first interface due to partial reflection. As the thickness of these
layers can be easily adjusted, the point of focussing can be effec-
tively engineered as a function of distance from the forcing
source.

In summary, we have demonstrated that prestress repre-
sents a simple way to tune the mechanical properties of an elas-
tic grid of (axially and flexurally deformable) beams, so that the
response to wave propagation of a totally reflective interface can
be changed so to leave the signal refracting through the interface
with a negative angle. Moreover, the prestress can be used to
localize wave propagation into narrow layers inside a material, to
mimic edge wave propagation in topological materials, or to trap
energy inside thin channels. The wave manipulation tool pro-
posed in this letter benefits from the fact that the signal is gener-
ated by a moment source and the obtained dynamical properties
work correctly for a wide range of wavelengths.

Similar effects to those reported in this letter can be
obtained by tuning the slenderness of the elastic links. Related
results are reported in the online supplementary material.
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